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Preface

The 10th International Conference in Modern Group Analysis, MOGRAN X,
took place in Larnaca, Cyprus, from October 24th, to October 31st, 2004. The aim
of the meeting was to bring together leading scientists in group analysis and math-
ematical modelling for exchange of ideas and presentation of results. The main
emphasis of the conference was on applications of group methods in investigat-
ing nonlinear wave and diffusion phenomena, Mathematical models in biology,
Integrable systems as well as the Classical heritage, historical aspects and new
theoretical developments in group analysis. The conference also highlighted edu-
cational aspects and introduced new software packages in group analysis.

This series of international conferences was intended to be a continuation of two
conferences in group theoretic methods in mechanics held in Calgary (Canada)
in 1974 and in Novosibirsk (USSR) in 1978. The subsequent MOGRAN III to
MOGRAN IX conferences took place in 1991 (Ufa, USSR), 1992 (Catania, Italy),
1994 (Johananesburg, S.A.), 1996 (Johannesburg, S.A.), 1997 (Nordfjordeid, Nor-
way), 2000 (Ufa, Russia) and 2002 (Moscow, Russia).

Approximately 60 scientists from 20 different countries participated in MO-
GRAN X. Forty five lectures on recent developments in traditional and modern
aspects of group analysis were presented.

This book consists of selected papers presented at the conference. All 33 papers
have been reviewed by two independent referees.

We would like to thank the team of support for their great help in organizing
this conference.

We are grateful to the contributors for preparing their manuscript promptly.
Furthermore we express our gratitude to all anonymous referees for their con-
structive suggestions for improvement of the papers that appear in this volume.

The conference was made possible by the financial support of several sponsors
that are listed below.

It is finally a pleasure to thank our colleagues of the Institute of Mathematics
of National Academic of Science of Ukraine, and in particular Nataliya Ivanova,
Roman Popovych and Vyacheslav Boyko, for preparing this volume.

Nail H. IBRAGIMOV
Christodoulos SOPHOCLEOUS

Pantelis A. DAMIANOU
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On a Group Method for the Poisson Equation

in a Polygon

Mina B. ABD-EL-MALEK † and Medhat M. HELAL ‡

† Math. Dept., The American University in Cairo, Cairo 11511, Egypt
E-mail: minab@aucegypt.edu

‡ Dept. of Phys. and Eng. Math., Zagazig University, Zagazig, Egypt
E-mail: mmhelal@aucegypt.edu

The group method is applied for the solution of a Poisson equation in an ar-
bitrary convex polygon with N sides. We solve both the Laplace and Poisson
equations in the regular hexagonal and sector plates with certain boundary
conditions. The obtained results are presented graphically.

1 Introduction

In many physical problems, Poisson equation (1) occurs for instance when cal-
culating an electric potential T (x, y) at the point (x, y) ∈ Ω in the presence of
a charge distribution prescribed by a function h(x, y). Also occurs in heat con-
duction problems when there is a source of heat h(x, y) inside the region in which
the temperature distribution T (x, y) is being calculated.

Although a large quantity of theoretical investigations relating to steady state
temperature has appeared in the literature, approximately all the existing works
have considered boundary conditions of specified temperature, specified heat flux
in only specified regions such as rectangular or circular. Only few theoretical
studies involving a multilateral regions exist in the literature, see Fokas and Ka-
paev [1]. This is perhaps due to the failure of standard analytical techniques for
such problems.

The mathematical technique in the present analysis is the parameter-group
transformation. The advantages of the method are due to simplicity, and in re-
ducing the number of independent variables by one, consequently, yields complete
results with less efforts. Hence it is applicable to solve a wider variety of nonlinear
problems. The base of the group-theoretic method were introduced and treated
extensively by Lie [2]. Birkhoff [3], made use of one-parameter transformation
groups. Morgan [4], presented a theory which has led to improvements over ear-
lier similarity methods. Recently, the method has been applied intensively by
Abd-el-Malek [5] et al.



Group Method for the Poisson Equation in a Polygon 7

2 Mathematical Formulation of the Problem

The governing equation for the distribution of temperature T (x, y), is given by

∂2T

∂x2
+
∂2T

∂y2
= h(x, y); (x, y) ∈ Ω, (1)

with the boundary conditions (see Fig. 1):

T (x, y) = αxn; (x, y) ∈ ÃL1, T (x, y) = βym; (x, y) ∈ ÃL2. (2)

where n,m ∈ {0, 1, 2, 3, . . .} and both α, β are constants.

Figure 1. Geometrical of the problem

It is required to find the distribution T (x, y) inside the domain Ω and the
heat flux across Lk; 2 < k ≤ N where: L1 : y = x tanφ1, L2 : y = x tanφ2,
Lk : y = x tanφk + bk, bk 6= 0; 2 < k ≤ N . Let T (x, y) = w(x, y)q(x), q(x) 6= 0
in Ω. Hence (1) and (2) reduce to

q(x)

(
∂2w

∂x2
+
∂2w

∂y2

)
+ 2

∂w

∂x

dq

dx
+ w

d2q

dx2
= h(x, y), (3)

with the boundary conditions:

w(x, y) =
αxn

q(x)
; (x, y) ∈ ÃL1, w(x, y) =

βym

q(x)
; (x, y) ∈ ÃL2. (4)

3 Solution of the Problem

The method of solution depends on the application of one-parameter group trans-
formation to the partial differential equation (3).

3.1 The Group Systematic Formulation

Consider the group G, of one parameter a of the form

G : S̄ = Cs(a)S + P s(a), (5)

where S stands for x, y, w, q, h and the C ′s and P ′s are real-valued functions
and at least differentiable in the real argument a.
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3.2 The Invariance Analysis

Transformations of the derivatives are obtained from G via chain-rule operations:

S̄ī =

(
Cs

Ci

)
Si, S̄īj̄ =

(
Cs

CiCj

)
Sij , i = x, y, j = x, y, (6)

where S stands for w, q and h, and Si = ∂S/∂i, Sij = ∂2S/(∂i∂j), . . .. Equa-
tion (3) is said to be invariantly transformed whenever

q̄(x̄)

(
∂2w̄

∂x̄2
+
∂2w̄

∂ȳ2

)
+ 2

∂w̄

∂x̄

dq̄

dx̄
+ w̄

d2q̄

dx̄2
− h̄(x̄, ȳ)

= H(a)

[
q(x)

(
∂2w

∂x2
+
∂2w

∂y2

)
+ 2

∂w

∂x

dq

dx
+ w

d2q

dx2
− h(x, y)

]
, (7)

for some function H(a) which may be a constant.
Substitution from (5) into (7) yields

q(x)

([
CqCw

(Cx)2

]
∂2w

∂x2
+

[
CqCw

(Cy)2

]
∂2w

∂y2

)

+2

[
CqCw

(cx)2

]
∂w

∂x

dq

dx
+

[
cqCw

(Cx)2

]
w
d2q

dx2
− Chh(x, y) + ζ(a)

= H(a)

[
q(x)

(
∂2w

∂x2
+
∂2w

∂y2

)
+ 2

∂w

∂x

dq

dx
+ w

d2q

dx2
− h(x, y)

]
, (8)

where

ζ(a) =

[
P qCw

(Cx)2

]
∂2w

∂x2
+

[
P qCw

(Cy)2

]
∂2w

∂y2
+

[
PwCq

(Cx)2

]
d2q

dx2
+ P h.

The invariance of (8) implies ζ(a) = 0. This is satisfied by P q = Pw = P h = 0,
and

[
CwCq

(Cx)2

]
=

[
CwCq

(Cy)2

]
= Ch = H(a), (9)

which yields

Cx = Cy and Ch =
CwCq

(Cx)2
. (10)

Moreover, the invariance of boundary conditions (4) implies P x = P y = 0 and
Cq = (Cx)n/Cw = (Cy)m/Cw. From (9) and (10), we get n = m and

Ch = (Cx)n−2. (11)

Finally, we get the one-parameter group G which transforms invariantly (8)
and (4) is of the form:

G : x̄ = Cxx, ȳ = Cxy, w̄ = Cww, q̄ =
(Cx)n

Cw
q, h̄ = (Cx)n−2h.
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3.3 The Complete Set of Absolute Invariants

Our aim is to make use of group method to represent the problem in the form
of an ordinary differential equation in a single independent variable. In addition
to the absolute invariant of the independent variable, there are three absolute
invariants of the independent variables w, q and h.

If η = η(x, y) is the absolute invariant of the independent variables, then

gj(x, y;w, q, h) = Fj [η(x, y)] , j = 1, 2, 3 (12)

which are the three absolute invariants corresponding to w, q and h. The function
g = g(x, y;w, q, h) is an absolute invariant of a one parameter group if it satisfies
the following first-order linear differential equation

5∑

i=1

(αiSi + βi) ∂g/∂Si = 0, (13)

where Si stands for x, y w, q and h, and αi = ∂CSi(a0)/∂a and βi = ∂PSi(a0)/∂a,
i = 1, 2, . . . , 5, where a0 denotes the identity element of the group. From
group (11) and using (13), we get α1 = α2 and βi = 0; i = 1, 2, . . . , 5.

At first, we seek the absolute invariant of the independent variable. From (12),
η(x, y) is an absolute invariant if it satisfies x∂η/∂x + y∂η/∂y = 0, which has
a solution of the form

η(x, y) = f (y/x) , (14)

where f is an arbitrary function and can be selected to be the identity function.
Thus we get

η(x, y) = y/x. (15)

Similarly, the absolute invariants of the dependent variables q, w, and h are

q(x) = R(x)θ(η), w(x, y) = Γ(x)F (η), h(x, y) = V (x)ψ(η). (16)

It is clear θ(η) must be a constant, say θ(η) = 1, hence

q(x) = R(x). (17)

3.4 The Reduction to Ordinary Differential Equation

As the general analysis proceeds, the established forms of the dependent and
independent absolute invariant are used to obtain ordinary differential equation.
Generally, the absolute invariant η(x, y) has the form given in (14).

Substituting from (15) and (16) into (3) yields

(
η2 + 1

) d2F
dη2
− 2η

[(
1

Γ

dΓ

dx
+

1

R

dR

dx

)
x− 1

]
dF

dη

+

[
1

Γ

d2Γ

dx2
+

2

RΓ

dR

dx

dΓ

dx
+

1

R

d2R

dx2

]
x2F =

x2V (x)ψ(η)

Γ(x)R(x)
. (18)
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For (17) to be reduced to an expression in a single independent variable η, the
coefficients in (17) should be constants or functions of η only. Thus

(
1

Γ

dΓ

dx
+

1

R

dR

dx

)
x = C1, (19)

(
1

Γ

d2Γ

dx2
+

2

RΓ

dR

dx

dΓ

dx
+

1

R

d2R

dx2

)
x2 = C2. (20)

It follows from (18) that Γ(x)R(x) = C3x
C1 . Integrating (19), and using (20),

we get C2 = C1(C1 − 1). Take C3 = 1 and C1 = n, we get Γ(x)R(x) = xn and
C2 = n(n− 1). Also, from (17) we obtain only

V (x) =
1

x2
Γ(x)R(x) = xn−2. (21)

Therefore, the ordinary differential equation (17) reduces to

(
η2 + 1

) d2F
dη2
− 2(n− 1)η

dF

dη
+ n(n− 1)F = ψ(η). (22)

Under the similarity variable η, the boundary conditions (4) take the form

F (tanφ1) = α, F (tanφ2) = β tann φ2. (23)

3.5 Analytical Solution

The solution of the corresponding homogenous differential equation of (21) can
be expressed in the form of the following power series F (η) = a1Ψ1(η) + a2Ψ2(η),
where

Ψ1(η) =

[n
2
]∑

i=0

(−1)i
(
n

2i

)
η2i, Ψ2(η) =

1

n

[n−1
2

]∑

i=0

(−1)i
(

n

2i+ 1

)
η2i+1, (24)

a1 and a2 are constants that can evaluated from (22).
The general solution of the differential equation (21), can be found if one of

the solutions of the corresponding homogenous differential equation, say Ψ1, is
known, has the form

F (η) =

{∫

η=ξ

[
(1 + ξ2)n−1

Ψ1
2(ξ)

(∫

ξ=ν

ψ(ν)Ψ1(ν)

(1 + ν2)n
dν

)]
dξ

+ c1

∫

η=ξ

(1 + ξ2)n−1

Ψ1
2 dξ + c2

}
Ψ1(η),

where c1 and c2 are constants that be evaluated from (22). Uniqueness of the
solution exists if φ2 − φ1 is not a multiple of π/n.
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The temperature distribution can be calculated from the formula

T (x, y) = xnF
(y
x

)
. (25)

The heat flux, Q, across Lm is given by

Q = −σ∂T (x, y)
∂M

, (26)

where σ is the thermal conductivity and M is the outer normal direction to
the side Lm. Therefore Q = −σ (lx∂T/∂x+ ly∂T/∂y), where lx and ly are the
direction cosines of the normal to the side Lm with the x and y coordinate axes,
respectively.

4 Problem of Regular Hexagonal Plate

A steady distribution temperature in a regular hexagonal, see Fig. 2, is considered
for two cases:

Figure 2. Geometrical of the regular hexagonal

4.1 Laplace Equation with Quadratic Boundary Conditions

The governing equation and the boundary conditions are given by

∂2T

∂x2
+
∂2T

∂y2
= 0; (x, y) ∈ Ω,

T (x, y) = x2; (x, y) ∈ ÃL1, T (x, y) = y2; (x, y) ∈ ÃL2.

Substituting n = 2 in the solution (23) we get T (x, y) = x2 − 5xy/
√
3 − y2.

The shape of the temperature distribution and the heat flux are plotted in Fig. 3a
and Fig. 3b, respectively.
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Figure 3a. Temperature distri-
bution for h(x, y) = 0

Figure 3b. Heat flux profiles for
h(x, y) = 0

Figure 4a. Temperature distri-
bution for h(x, y) = x4/(x2 + y2)

Figure 4b. Heat flux profiles for
h(x, y) = x4/(x2 + y2)

4.2 Poisson Equation with Quartic Boundary Conditions

The governing equation and the boundary conditions are given by

∂2T

∂x2
+
∂2T

∂y2
=

x4

x2 + y2
; (x, y) ∈ Ω,

T (x, y) = x4; (x, y) ∈ ÃL1, T (x, y) = 0; (x, y) ∈ ÃL2.

Substituting n = 4 in the solution (24) we get

T (x, y) =

(
1

16
tan−1

(y
x

)
+

357
√
3 + 6π

288

)
xy(x2−y2)+

(
x4 − 89

16
x2y2 +

11

12
y4
)
.

The shape of the temperature distribution and the heat flux are plotted in Fig. 4a
and Fig. 4b, respectively.
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5 Problem of Sector Plate

The plate of Fig. 5 has a boundary L3 as a sector of circle with radius R.

Figure 5. Geometrical of the curved plate

5.1 Laplace Equation with Quartic Boundary Conditions

The governing equation and the boundary conditions are given by

∂2T

∂x2
+
∂2T

∂y2
= 0; (x, y) ∈ Ω,

T (x, y) = αx4; (x, y) ∈ ÃL1, T (x, y) = βy4; (x, y) ∈ ÃL2. (27)

Substituting n = 4 in the homogenous solution (23) we get

T (x, y) = β
(
x4 − 6x2y2 + y4

)
+

√
3

6
(9α+ 8β)

(
x3y − xy3

)
. (28)

The heat flux Q across L3 is given by

Q = −σ ∂T
∂M

(x, y) |L3 , (29)

where

∂T

∂M
(x, y)

∣∣∣∣
L3

=
∂T

∂x
sin γ +

∂T

∂y
cos γ and (30)

tan γ =
x√

R2 − x2
. (31)

Substituting (27) in (29), using (30), we get

∂T

∂M
=

4β

R

(
R4 − 8R2x2 + 8x4

)
+

√
3(9α+ 8β)

3R
x(R2 + x2)

√
R2 − x2.

Upon substituting (31) in (28) we get the heat flux across L3.
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5.2 Poisson Equation with Quartic Boundary Conditions

Consider the previous case with h(x, y) = x2 with the same boundary conditions.
The calculated temperature distribution inside the plate is given by

T (x, y) =
x4

12
+ β

(
x4 − 6x2y2 + y4

)
+

√
3

24
(36α+ 32β − 3)xy

(
x2 − y2

)
.

The heat flux Q across L3 is given by (28), where

∂T

∂M
=

4β

R

(
R4 − 8R2x2 + 8x4

)

+

√
3

8R
(36α+ 32β − 3)x(2x2 −R2)

√
R2 − x2.

6 Conclusions and Remarks

The group method transformation is presented to study steady temperature that
satisfy a boundary-value-problem for the Poisson equation in an arbitrary convex
polygon with N sides. The most difficult step in solving boundary-value-problems
for linear elliptic equations is some parts of the boundary have no prescribed
conditions!

The Poisson, and consequently Laplace, equation is characterized by that it
can be investigated using conformal mapping. But conformal mappings fail for
general boundary conditions, see [1] . However, the method presented here can
be applied to elliptic equations for which conformal mappings are not applicable.
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We prove that the classical, non-periodic Toda lattice is super-integrable.
In other words, we show that it possesses 2N − 1 independent constants of
motion, where N is the number of degrees of freedom. The main ingredient of
the proof is some special action-angle coordinates introduced by Moser to solve
the equations of motion.

1 Introduction

The Toda lattice is arguably the most fundamental and basic of all finite dimen-
sional Hamiltonian integrable systems. It has various intriguing connections with
other parts of mathematics and Physics.

The Hamiltonian of the Toda lattice is given by

H(q1, . . . , qN , p1, . . . , pN ) =
N∑

i=1

1

2
p2i +

N−1∑

i=1

eqi−qi+1 . (1)

Equation (1) is known as the classical, finite, non–periodic Toda lattice to distin-
guish the system from the many and various other versions, e.g., the relativistic,
quantum, infinite, periodic etc. This system was investigated in [7–9, 11–14] and
numerous other papers that are impossible to list here.

This type of Hamiltonian, sometimes called the Toda chain, was considered
first by Morikazu Toda [14]. The original Toda lattice can be viewed as a discrete
version of the Korteweg–de Vries equation. It is called a lattice as in atomic lattice
since interatomic interaction was studied. This system also appears in Cosmology.
It appears also in the work of Seiberg and Witten on supersymmetric Yang–Mills
theories and it has applications in analog computing and numerical computation
of eigenvalues. But the Toda lattice is mainly a theoretical mathematical model
which is important due to the rich mathematical structure encoded in it.

Hamilton’s equations become

q̇j = pj , ṗj = eqj−1−qj − eqj−qj+1 .
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The system is integrable. One can find a set of independent functions {H1, . . . , HN}
which are constants of motion for Hamilton’s equations. To determine the con-
stants of motion, one uses Flaschka’s transformation:

ai =
1

2
e(qi−qi+1)/2, bi = −

1

2
pi. (2)

Then

ȧi = ai(bi+1 − bi), ḃi = 2(a2i − a2i−1). (3)

These equations can be written as a Lax pair L̇ = [B,L], where L is the Jacobi
matrix

L =




b1 a1 0 · · · · · · 0

a1 b2 a2 · · · ...

0 a2 b3
. . .

...
. . .

. . .
...

...
. . .

. . . aN−1
0 · · · · · · aN−1 bN




and

B =




0 a1 0 · · · · · · 0

−a1 0 a2 · · · ...

0 −a2 0
. . .

...
. . .

. . .
. . .

...
...

. . .
. . . aN−1

0 · · · · · · −aN−1 0




This is an example of an isospectral deformation; the entries of L vary over time
but the eigenvalues remain constant. It follows that the functionsHj = trLj/j are
constants of motion. This elegant integrability demonstration is due to Flaschka
in 1974.

Consider R2N with coordinates (q1, . . . , qN , p1, . . . , pN ), the standard symplec-
tic bracket

{f, g}s =
N∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

and the mapping F : R2N → R2N−1 defined by

F : (q1, . . . , qN , p1, . . . , pN )→ (a1, . . . , aN−1, b1, . . . , bN ).
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There exists a bracket on R2N−1 which satisfies {f, g} ◦ F = {f ◦ F, g ◦ F}s. It is
a bracket which (up to a constant multiple) is given by

{ai, bi} = −ai, {ai, bi+1} = ai (4)

all other brackets are zero. H1 = b1 + b2 + · · · + bN is the only Casimir. The
Hamiltonian in this bracket is H2 = trL2/2. The Lie algebraic interpretation of
this bracket can be found in [10]. We denote this bracket by π1.

The quadratic Toda bracket appears in conjunction with isospectral defor-
mations of Jacobi matrices. First, let λ be an eigenvalue of L with normalized
eigenvector v. Standard perturbation theory shows that

∇λ = (2v1v2, . . . , 2vN−1vN , v
2
1, . . . , v

2
N )

T := Uλ,

where ∇λ denotes (∂λ/∂a1, . . . , ∂λ/∂bN ). Some manipulations show that Uλ

satisfies π2 U
λ = λπ1 U

λ, where π1 and π2 are skew-symmetric matrices. It turns
out that π1 is the matrix of coefficients of the Poisson tensor (4), and π2, whose
coefficients are quadratic functions of the a’s and b’s, can be used to define a new
Poisson tensor. The quadratic Toda bracket appeared in a paper of Adler [1] in
1979. It is a Poisson bracket in which the Hamiltonian vector field generated by
H1 is the same as the Hamiltonian vector field generated by H2 with respect to
the π1 bracket. The defining relations are

{ai, ai+1} = 1
2aiai+1, {ai, bi} = −aibi,

{ai, bi+1} = aibi+1, {bi, bi+1} = 2 a2i ,
(5)

all other brackets are zero. This bracket has detL as Casimir and H1 = trL is
the Hamiltonian. The eigenvalues of L are still in involution. Furthermore, π2 is
compatible with π1. We also have

π2∇Hj = π1∇Hj+1 . (6)

These relations are similar to the Lenard relations for the KdV equation; they
are generally called the Lenard relations. Taking j = 1 in (6), we conclude that
the Toda lattice is bi–Hamiltonian.

The multi-Hamiltonian structure of the Toda lattice was first derived using
master symmetries. We quote the results from refs. [3, 4].

Theorem 1. There exists a sequence of Poisson tensors πi and a sequence of
master symmetries Xi such that
i) πj are all Poisson.

ii) The functions Hi are in involution with respect to all of the πj.

iii) Xi(Hj) = (i+ j)Hi+j.

iv) LXiπj = (j − i− 2)πi+j.

v) [Xi, Xj ] = (j − i)Xi+j.

vi) πj ∇ Hi = πj−1 ∇ Hi+1, where πj denotes the Poisson matrix of the tensor πj.
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The super-integrability of the Toda lattice was conjectured in [5] where a third
integral was obtained for the special case N = 2. The integral in [5] was obtained
using Noether’s theorem.

In the case of two degrees of freedom the potential is simply V (q1, q2) = eq1−q2 ,
and the procedure of Noether produces the following three integrals:

H1 = −
1

2
(p1 + p2), J1 = (p1 − p2)2 + 4eq1−q2 ,

I1 =
p1 − p2 +

√
J1

p1 − p2 −
√
J1

exp

(√
J1
q1 + q2
p1 + p2

)
. (7)

Note that H = H2
1 + J1/4 and that the function G = (q1 + q2)/(p1 + p2) which

appears in the exponent of I1 is a time function, i.e., it satisfies {G,H} = 1.

The existence of the integral I1 shows that the two degrees of freedom Toda
lattice is super-integrable with three integrals of motion {H1, J1, I1}. As we will
see, the complicated integral I1 has a simple expression if one uses Moser’s coor-
dinates.

The super-integrability of this type of systems should be expected due to their
dispersive asymptotic behavior. However, the construction of integrals is not
typically a trivial task. In the case of the open Toda lattice, asymptotically the
particles become free as time goes to infinity with asymptotic momenta being the
eigenvalues of the Lax matrix. Therefore, the system behaves asympotically like a
system of free particles which is super-integrable. For this reason we believe that
the generalizations of the Toda lattice to other semi–simple Lie groups due to
Bogoyavlensky should also be super-integrable. On the other hand, the periodic
Toda lattice is clearly not super-integrable.

2 Moser’s Solution of the Toda Lattice

Moser’s beautiful solution of the open Toda lattice uses the Weyl function f(λ) and
an old (19th century) method of Stieltjes which connects the continued fraction of
f(λ) with its partial fraction expansion. The key ingredient is the map which takes
the (a, b) phase space of tridiagonal Jacobi matrices to a new space of variables
(λi, ri) where λi is an eigenvalue of the Jacobi matrix and r2i is the residue of
rational functions that appear in the solution of the equations. We present a brief
outline of Moser’s construction.

Moser in [12] introduced the resolvent R(λ) = (λI − L)−1 and defined the Weyl
function f(λ) = (R(λ)e1, e1), where e1 = (1, 0, . . . , 0).

The function f(λ) has a simple pole at λ = λi and positive residue at λi equal
to r2i :

f(λ) =
N∑

i=1

r2i
λ− λi

.
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Moreover, for λ large one has λf(λ) → 1 and therefore
∑N

i=1 r
2
i = 1. Thus we

have a mapping from the space of (a1, . . . , aN−1, b1, . . . , bN ) with ai > 0 to the
space (λ1, . . . , λN , r1, . . . , rN ) with λ1 < λ2 < · · · < λN and

∑N
i=1 r

2
i = 1. This

mapping is one-to-one and onto. The inverse of this map is a discrete analogue of
the inverse scattering method of spectral theory.

The variables (a, b) may be expressed as rational functions of λi and ri using a
continued fraction expansion of f(λ) which dates back to Stieltjes. Since the com-
putation of the continued fraction from the partial fraction expansion is a rational
process the solution is expressed as a rational function of the variables (λi, ri).

Moser ignores the condition
∑N

i=1 r
2
i = 1 and views ri as projective coordinates.

Under this modification the equations of the Toda lattice take the simple form

λ̇i = 0, ṙi = λiri . (8)

These equations show that the (λi, log ri) are action–angle variables.

Finally, we comment on the Poisson brackets in the new coordinates. In [6] Fay-
busovich and Gekhtman find another method of generating the multi-Hamiltonian
structure for the Toda lattice. The Poisson brackets of Theorem 1 project onto
some rational brackets in the space of Weyl functions and in particular, the Lie–
Poisson bracket π1 corresponds to the Atiyah–Hitchin bracket [2]. The idea is
to construct a sequence of Poisson brackets on the space (λi, ri) whose image
under the inverse spectral transform are the brackets πi defined in Theorem 1.
A rational function of the form q(λ)/p(λ) is determined uniquely by the distinct
eigenvalues of p(λ), λ1, . . . , λn and values of q at these roots. The residue ri is
equal to q(λi)/p

′(λi) and therefore we may choose

λ1, . . . , λn, q(λ1), . . . , q(λn)

as global coordinates on the space of rational functions (of the form q/p with p
having simple roots and q, p coprime). We have to remark that the image of
the Moser map is a much larger set.

The kth Poisson bracket is defined by

{λi, q(λi)} = −λki q(λi), {q(λi), q(λj)} = {λi, λj} = 0.

The initial Poisson bracket, i.e., the image of the linear bracket (4) under the Moser
map is given explicitly by

{λi, λj} = 0, {ri, rj} = 0,

{λi, rj} = δijrj , i, j = 1, . . . , N. (9)

Similarly, the quadratic Toda bracket, π2, corresponds to a bracket with only
non-zero terms {λi, ri} = λiri.

The Hamiltonian function in the new coordinates is H2 = 1
2

∑N
i=1 λ

2
i . More

generally, the functions Hj take the form Hj =
1
j

∑N
i=1 λ

j
i .
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3 The Toda Lattice is Super-Integrable

We now come to the main result of this paper. We define

Ij = (rj/rj+1)
2 eFj,j+1 , j = 1, . . . , N − 1, (10)

where

Fj,j+1 =
2(λj+1 − λj)

H1
ln
( N∏

i=1

ri

)
.

It is easily shown, using equation (8) that dIj/dt = 0, for j = 1, . . . , N − 1 and
thus the functions Ij are constants of motion.

The functions Hi and Ij , i = 1, . . . , N , j = 1, . . . , N − 1 are functionally
independent. In fact, the Jacobian (2N − 1) × 2N matrix of the functions Hi

and Ij has a (2N − 1) × (2N − 1) subdeterminant, dN+1, which is obtained by
deleting the (N + 1)-column which is not identically zero. A simple calculation
gives

dN+1 = −2N−1N
r21

rN−2rN−1r
3
N

λ1
H1

eF1,N
∏

1≤i<j≤N

(λi − λj) .

Since the eigenvalues of real Jacobi matrices are distinct, the functions Hi and Ij
are independent. We summarize the results in the following:

Theorem 2. The Toda lattice with N degrees of freedom possesses 2N − 1 in-
dependent constants of motion, Hi, i = 1, . . . , N , Ij, j = 1, . . . , N − 1, and is
therefore super-integrable.

Remark 1. It is clear that the functions Hn, n = 1, . . . , N are in involution.
Moreover it can be shown that {Ii, Ij} = 0, i, j = 1, . . . , N − 1. In addition, for
n = 1, . . . , N , j = 1, . . . , N − 1 {Hn, Ij} = 2cn(λj+1 − λj)EjIj/H1, where cn = 1
for n = 2, . . . , N , c1 = N/(N − 2) and

Ej =
∑

λn−1i − w(n− 2)
∑

λi − 2λj+1λj w(n− 3).

The sums are taken over all i from 1 to N where i 6= j, j + 1 The function w(n)
symbolizes the full homogeneous polynomial in λj and λj+1 that have total weight
equal to n. For instance, w(n) = 0, n ∈ −Z+, w(0) = 1, w(1) = λj + λj+1,
w(2) = λ2j + λ2j+1 + λjλj+1, etc.

One can, of course, use the quadratic Toda bracket in (λi, ri) coordinates. We
must then take TrL = λ1 + · · · + λN as Hamiltonian. However, in this bracket
the Hi, Ij do not form a finite dimensional algebra.

Remark 2. We clearly have {H2, Ij} = 0, j = 1, . . . , N−1, sinceH2 is the Hamil-
tonian and the functions Ij are constants of motion.
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We define the sets S1 = {H1, . . . , HN} and S2 = {H2, I1, . . . , IN−1}. Then if
f, g ∈ S1 ⇒ {f, g} = 0 and if f, g ∈ S2 ⇒ {f, g} = 0. In other words the sets S1
and S2 are both maximal sets of integrals in involution. We therefore have two
different sets demonstrating the complete integrability of the Toda lattice.

Remark 3. We finally would like to comment on how the integrals Ij were
guessed: The complicated integral (7) at the end of the introduction is quite
simple in Moser’s coordinates. For example,

√
J1 is simply equal to 2(λ2 − λ1)

and the expression

p1 − p2 +
√
J1

p1 − p2 −
√
J1

reduces to − (r1/r2)
2. The exponent is simplified as follows. On the one hand,

(q1 + q2)
˙= p1 + p2 = −2(b1 + b2) = −2(λ1 + λ2) .

On the other hand from ṙi = −riλi one obtains that (ln ri)
˙ = −λi and there-

fore the exponent is simply 2(λ1 − λ2) ln(r1r2)/(λ1 + λ2). Therefore, up to a sign
the integral (7) is precisely the same as the one in (10).
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We demonstrate that a reduction of a Maxwell–Bloch system, that includes
the effects of a permanent dipole and inhomogeneous broadening, is completely
integrable and we present the Lax pair. An appropriate Bäcklund transforma-
tion is employed to solve the equations exactly and produce a family of soliton
solutions.

1 Introduction

We consider the optical phenomenon of propagation of an electric field through
a quantized medium. We make use of the classical wave-equation of Maxwell for
the dynamical evolution of the electric field, coupled with the quantum Bloch
equations that describe the behavior of the induced polarization field. At the
atomic level, the phenomenon of stimulated emission of radiation is made ex-
perimentally possible when an appropriate medium is used and the frequency of
the electromagnetic light waves is close to resonance with the natural oscillatory
modes of the medium [10]. The optical scales involved are those of the electric field
and the relaxation times of the medium. When the latter is larger then the former,
the result is a pulse containing a half up to only a few optical cycles, resulting
to what is commonly referred to as an extremely short pulse or electromagnetic
bubble.

Under certain physically motivated assumptions the Maxwell–Bloch (MB) sys-
tem reduces to several models, each one derived at a different level of approxima-
tion. Two physical phenomena closely related to the interaction of light and mat-
ter are the effects of: (i) inhomogeneous broadening, and (ii) a permanent dipole.
In reducing the MB equations either the first and/or the second phenomena were
usually neglected. In several treatments of reduced Maxwell–Bloch models, for
example [4, 6, 7, 9], the equations under consideration incorporate the effects of
inhomogeneous broadening in the absence, however, of a permanent dipole. In [1]
a model has been introduced that includes the effects of a permanent dipole in
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a homogeneous medium. The presence of the permanent dipole results to stronger
coupling of the electric and polarization fields, and mathematically this translates
to further nonlinearity in the equations. Also in [8], a homogeneous version of the
MB equations with the permanent dipole effect present is studied. The goal of
this paper is to demonstrate the integrability of a reduction of the MB system, in
the case when the relevant equations retain the properties of both inhomogeneous
broadening, and a permanent dipole. We present the Lax pair for the model
and use a Bäcklund transformation to find explicit solutions in terms of elemen-
tary functions for both the one- and the two-soliton solutions. We note that the
relatively small in amplitude backscattering of the electric field is neglected.

The method for constructing the new Lax pair involves the use of a pseudo-
potential [3,5,11]. In section 2 we present the inhomogeneously broadened reduced
Maxwell–Bloch (ib-rMB) equations and in section 3 the Lax pair representation
is formulated. In section 4 we construct a Bäcklund transformation that enables
us to obtain the soliton solutions family in section 5. In section 6 we discuss the
physical implications of the analysis of the solutions, and in 7 we summarize the
results of the paper and give directions for further research on the subject.

2 Inhomogeneously Broadened Model

We begin by introducing a set of Maxwell–Bloch equations that recount the in-
teraction between light and matter as described in the introduction.

∂E

∂x
+

1

c

∂E

∂t
=

∆dN
2cε0

〈ωSω〉g, ~
∂Rω
∂t

= (∆h−∆dE)Sω, (1)

~
∂Sω
∂t

= −(∆h−∆dE)Rω +
1

2
~ωUω,

∂Uω
∂t

= −2ωSω. (2)

The dynamical variables are the electric field, E, and the elements of the Bloch
vector (Rω, Sω, Uω), which are linear combinations of the elements of the polariza-
tion matrix. The subscript ω for (Rω, Sω, Uω) is meant to indicate the dependence
of those quantities on the varying parameter ω, which portrays the different oscil-
lation frequencies of the atoms of the medium. The function that gives the spread
of the frequencies around a specific resonant frequency, ω0, is g(ω) and in the
sharp line case g(ω) = δ(ω − ω0). For a function F of ω, 〈F (ω)〉g is the average
of the function F over all possible frequencies:

〈F (ω)〉g =
∫ ∞

−∞
F (ω)g(ω)dω.

Time and space are represented by t and x. The permanent dipole effect is encoded
in the parameters ∆d and ∆h. The absence of the permanent dipole is translated
to ∆h = 0. ∆h has units of energy and ∆d has units of charge × distance. c is
the speed of light in the vacuum, N is the atomic density and ε0 is the electric
capacitance of the vacuum per unit length.
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To nondimensionalize the equations above, we let ω′ = ω/ωa, where ωa is a
typical atomic frequency such that ω′ is of the order of unity. We note that ωa is
fixed. We define,

τ = ωat, ζ =
ωa
c
x, β =

∆h

ωa~
,

γe =
∆d

ωa~
E, γ =

∆d2N
2ωaε0~

, Ω =
ω

ωa
.

(3)

β is a dimensionless constant since ∆h has units of energy, and is of the order of
unity. γ is also a dimensionless constant of the order of unity. For example, in SI
units a typical value of ∆d is 10−18, of N/ε0 is 1018 and of ~ωa is 10−34 × 1015 =
10−19. Using this scaling in equations (1)–(2), letting τ 7→ τ + ζ, ζ 7→ ζ, and
dropping the prime for ω′ yields the ib-rMB equations,

∂e

∂ζ
= 〈ωSω〉,

∂Rω
∂τ

= (β − γe)Sω, (4)

∂Sω
∂τ

= −(β − γe)Rω +
1

2
ωUω,

∂Uω
∂τ

= −2ωSω. (5)

The permanent dipole is encoded in the dimensionless constants β and γ. It is note
worthy that this set of equations can be thought of as an infinite, one-parameter
family of equations, the parameter being the broadened transition frequency ω,
which can be chosen randomly according to the distribution function g(ω).

3 Pseudo-Potential Technique

The inhomogeneously broadened reduced Maxwell–Bloch equations (4)–(5) are
completely integrable. There exists a rational, one-parameter family of pairs of
differential operators, that depend on the dynamical variables e, Rω, Sω, Uω and
commute in a Lie-bracket sense if and only if e, Rω, Sω, Uω satisfy the ib-rMB
equations (4)–(5).

The Lax pair representation is found using the pseudo-potential technique. We
consider the following scalar equations,

ψζ = X(~u, ψ), ψτ = T (~u, ψ),

where ~u is a vector whose entries are the unknown dynamical quantities e, Rω, Sω,
Uω, usually called potentials. ψ is called a pseudo-potential. We derive necessary
and sufficient conditions for the commutativity of the two flows, (ψζ)τ = (ψτ )ζ ,
to be equivalent to the ib-rMB equations.

We first consider the case of the n-species and then we will take the limit when
n goes to infinity. We have 3n+ 1 potentials: R1, . . . , Rn, S1, . . . , Sn, U1, . . . , Un
and e, which we shall put in a vector

~u = (u1, . . . , u3n+1) := (R1, . . . , Rn, S1, . . . , Sn, U1, . . . , Un, e).
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We let ψζ = X(~u, ψ) :=
3n+1∑

i=1

αi(ψ)ui. Now, (ψζ)τ =
3n+1∑

i=1

α′iTui + αi
∂ui
∂τ

and

(ψτ )ζ = Tψ

3n+1∑

1=1

αiui +
3n+1∑

i=1

∂T

∂ui

∂ui
∂ζ

.

Using the ib-rMB equations we rewrite (ψζ)τ ,

(ψζ)τ =
3n+1∑

i=1

α′iTui +
2n∑

i=n+1

αi

(
−(β − γe)Ri−n +

1

2
ωi−nUi−n

)

+
n∑

i=1

αi(β − γe)Si +
3n∑

i=2n+1

αi(−2ωi−2nSi−2n) + α3n+1
∂e

∂τ
.

In the ib-rMB equations we have no ζ−derivatives of R,S and U and no τ -de-
rivative of e. Thus, the commutation of the flows gives that a3n+1 = 0, and
∂T/∂ui = 0 for i = 1, . . . , 3n. Hence, T = T (e, ψ). We take T to be linear in e
and without loss of generality we take the coefficient of e to be 1 (if it is not 1
then we divide by the coefficient to make it 1). Therefore, the flows take the form,

X(~u, ψ) =

3n∑

i=1

αi(ψ)ui, T (e, ψ) = e+G2(ψ).

We have,

(ψζ)τ =
3n∑

i=1

α′i(e+G2(ψ))ui +
n∑

i=1

αi(β − γe)Si

+
n∑

i=1

αi+n

(
−(β − γe)Ri +

1

2
ωiUi

)
+

n∑

i=1

αi+2n(−2ωiSi)

and

(ψτ )ζ = G′2

3n∑

1=1

αiui +

n∑

i=1

ωig(ωi)Sidω.

Equating the two flows and demanding that the Ri, Si, Ui, eRi, eSi, eUi, i =
1, . . . , n vanish independently yields the following ordinary differential equations,

eUi : α′2n+i = 0,

eRi : α′i + αi+nγ = 0,

eSi : α′i+n − γαi = 0,

Ri : α′i G2 − βαi+n = G′2 αi,

Ui : α′2n+i G2 +
1

2
αi+nωi = G′2 α2n+i,

Si : βαi + α′n+i G2 − 2ωiαi+2n = G′2 αn+i + ωig(ωi)dω.



26 M.A. Agrotis, N.M. Ercolani and S.A. Glasgow

These can be integrated to give αi = Ai cos(γψ + φ), αn+i = Ai sin(γψ + φ),
α2n+i = c2n+i, for i = 1, . . . , n and, G2 = −β/γ + c cos(γψ + φ). c2n+i, Ai and c
are constants of integration. In total we have 2n + 1 constants of integration.
However, the unused equations are only 2n. To determine the 2n constants we
use the equations for the Si and the Ui to obtain,

Ai =
λ

ω2
i + λ2

ωig(ωi)dω, c2n+i = −
1

2

ω2
i g(ωi)

ω2
i + λ2

dω, i = 1, . . . , n,

where c was set to c = λ/γ. The two flows take the form,

ψτ = e− β

γ
+
λ

γ
cos(γψ + φ),

ψζ =
n∑

i=1

ωig(ωi)

ω2
i + λ2

(
λ(Ri cos(γψ + φ) + Si sin(γψ + φ))− 1

2
ωiUi

)
dω.

Let x = γψ + φ. For any two functions, f1(x) and f2(x), we define the oper-
ation [f1(x), f2(x)] := f ′1(x)f2(x) − f1(x)f ′2(x), where the differentiation is with
respect to x. The operation is antisymmetric, bilinear and satisfies the Jacobi
identity and consequently defines a Lie bracket. The generating functions appear-
ing in the above flows are 1, sin(x), cos(x). Their Lie brackets are computed,
[sin(x), cos(x)] = 1, [sin(x), 1] = cos(x), [cos(x), 1] = − sin(x). The Lie algebra
defined by these brackets is isomorphic to the well known Lie algebra with basis
elements

σz =
1

2

(
1 0
0 −1

)
, σx =

1

2

(
0 1
1 0

)
, iσy =

(
0 1
−1 0

)
,

that satisfy the following brackets, [σz, σx] = iσy, [σz, iσy] = σx, [σx, iσy] = −σz.
Therefore the two Lie algebras are isomorphic via the Lie bracket preserving
isomorphism: sin(x) 7→ σz, cos(x) 7→ σx, 1 7→ iσy. Therefore the Lax pair takes
the form,

ψτ = {(e− β

γ
)iσy +

λ

γ
σx}ψ,

ψζ =
{ n∑

i=1

1

ω2
i + λ2

[λωig(ωi)(Riσx + Siσz)−
1

2
ω2
i g(ωi)Uiiσy]dω

}
ψ.

Finally, we take the limit when n 7→ ∞, and write σx, σz, iσy in terms of the basis
elements of the Lie algebra su(2), H, F , E given as,

H =

(
i 0
0 −i

)
, F =

(
0 1
−1 0

)
, E =

(
0 i
i 0

)
.
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We send λ 7→ iλ and then use the Lie algebra map (that preserves the bracket),
H 7→ F , F 7→ E , E 7→ H to obtain,

ψτ =
{ 1

2

(
e− β

γ

)
E + λ

2γ
H
}
ψ,

ψζ =
{ 1

4

∫ ∞

−∞

1

ω2 − λ2
(
λ2ωg(ω)(RωH+ SωF)− ω2g(ω)UωE

)
dω
}
ψ,

and arrive at the final form of the Lax pair for the ib-rMB equations. Namely,
we define two differential operators L and A, that depend on λ, the spectral
parameter, such that [L,A] := LA−AL = 0 is equivalent to equations (4)–(5),

A = −∂τ +Q(0), L = ∂ζ +Q(1),

where,

Q(0) = λ(h0H+ f0F) + e0E ,

Q(1) =

∫ ∞

−∞

1

(ω2 − λ2)
(
λ(h1H+ f1F) + e1E

)
dω ,

and

h0 =
1

2
, h1 = −

1

2
γωg(ω), f0 = 0, f1 = −

1

2
γωg(ω)SωRω,

e0 = −
1

2
(β − γe), e1 =

1

4
γω2g(ω)Uω.

(6)

We call Q(0), and Q(1) loop elements due to their close relationship to loop
algebras [2] and hj , fj , ej for j = 0, 1, the potentials. We note that the potentials
depend on the solutions e,Rω, Sω, Uω of equations (4)–(5). Therefore a precise
description of the loop element is equivalent to having a set of solutions for our
system.

4 Bäcklund Transformation

The existence of a Lax pair for the ib-rMB equations (4)–(5) has lead us to the
search of an appropriate Bäcklund transform, that could iteratively produce new
solutions of the system. In particular, we consider the eigenvalue problem,

∂τΨ = Q(0)Ψ, ∂ζΨ = −Q(1)Ψ.

We aim to find a new eigenfunction Ψ and the corresponding new loop elements
Q(0), Q(1) that satisfy the eigenvalue problem. The loop elements are functions of
hj , ej , fj , j = 0, 1 and will in turn give rise to the new solutions of the ib-rMB
system via expressions (6). This transformation theory leads to an analogue of
superposition formulas that allows one to construct multisoliton solutions starting
from single solitons by purely algebraic means.

We derive a formula for the loop element after n iterations of the BT, call it
Qn, in terms of the previous one, Qn−1 (see [1]).
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Proposition 1.

Qn(λ) = λhn−10 H+mnh
n−1
0 [H, NnHN−1n ] + en−10 E (7)

+

∫ ∞

−∞

1

(ω2 − λ2)
1

(ω2 +m2
n)

{
λ
(
ω2(hn−11 H+ fn−11 F)

− (mn)
2(NnHN−1n )(hn−11 H+ fn−11 F)(NnHN−1n ) +mne

n−1
1 [E , NnHN−1n ]

)

+mnω
2
(
hn−11 [H, NnHN−1n ] + fn−11 [F , NnHN−1n ]

)

+ω2en−11 E − (mn)
2en−11 (NnHN−1n )E(NnHN−1n )

}
dω.

We have taken the specific value of the spectral parameter to be purely imag-
inary, νn = imn ∈ iR, to ensure the reality of the potentials and consequently
the solutions e, Rω, Sω, Uω. However, we will demonstrate in section 5, that this
condition can be relaxed when we iterate the BT twice (figure 1). Expression (7)
gives the loop element at the n-th BT in terms of the potentials of the (n−1) BT,
hn−10 , fn−10 , en−10 , hn−11 , fn−11 , en−11 and the matrix Nn which can be constructed
using data appearing at the (n − 1) BT. Therefore, formula (7) iteratively pro-
duces the n-soliton potentials for n ∈ N. The upper indices of the potentials hn0 ,
fn0 , e

n
0 , h

n
1 , f

n
1 , e

n
1 , and the lower indices of the loop element Qn are meant to

indicate the level of the Bäcklund transformation. We note that the potentials h0
and f0 are invariant under the BT because they are constant quantities and thus
hj0 = h0, f

j
0 = f0 = 0, for j ∈ N. We also note that in the calculations if there is

no upper index for the potentials, then it is meant to be 0.

5 Solutions

To initialize the Bäcklund transformation we start with a constant set of solutions
to the system. Namely, e = β/γ, Sω = 0, Uω = 0 and Rω = Rinit, a nonzero
constant. The reader can easily verify that these constitute a set of solutions for
equations (4)–(5).

Using Proposition 1 we obtain the one-soliton potentials, which in turn give
the one-soliton solutions of the ib-rMB equations (4)–(5):

e1−sol(ζ, τ) =
2m1

γ
sech(x1) +

β

γ
,

S1−sol
ω (ζ, τ) =

2m2
1

ω2 +m2
1

Rinitsech(x1) tanh(x1),

R1−sol
ω (ζ, τ) =

1

ω2 +m2
1

Rinit(ω2 +m2
1 − 2m2

1sech
2(x1)),

U1−sol
ω (ζ, τ) =

−4m1ω

ω2 +m2
1

Rinitsech(x1),
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where, x1 = 2(α1ζ −m1h0τ) + ln(c1),

α1 =

∫ ∞

−∞

m1

ω2 + (m1)2
h1dω, h1 = −

1

2
γωg(ω)Rinit

and c1 is any positive constant.
An iteration of the procedure, which is equivalent to setting n = 2 in Propo-

sition 1, produces the two-soliton solutions. In particular, the two-soliton poten-
tial e20 takes the form,

e20 = 2h0
m2

1 −m2
2

m2
1 +m2

2

m1 sechx1 −m2 sechx2

1− 2m1m2

m2
1 +m2

2

(tanhx1 tanhx2 − sechx1 sechx2)
,

where xj = 2(αjζ − mjh0τ) + ln(cj) and αj =

∫ ∞

−∞

mj

ω2 +m2
j

h1dω for j = 1, 2,

and h1 = −γωg(ω)Rinit/2. The two-soliton electric field, e2−sol, is obtained via
e2−sol0 = −(β − γe2−sol)/2. We note that for complex values of the spectral pa-
rameters, m2 = −m1, the two-soliton solutions remain real (figure 1).
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Figure 1. Self-similar propagation of the two-soliton electric field (m1 = 1 + 1.5i,

m2 = −m∗1, ω = 1.005)

6 Discussion of the Solutions

Let us consider a distribution function of the form g(ω) = σ/(π((ω − ω0)
2 + σ2)).

Then, α1 = −γRinitm1ω0/(2(m1 + σ)2 + ω2
0) and the velocity, v, of the one-

soliton electric field is, v = −((m1 + σ)2 + ω2
0)/(γR

initω0). The amplitude of
the one-soliton electric field is analogous to the value of the spectral parameter
m1, whereas the amplitude of the Bloch fields R1−sol, S1−sol and U1−sol depends
on the ratio ω/m1. If we assume that ω is very close to the resonant frequency
ω0 = 1 and set the variance of the distribution to σ = 0.01 = ε, then with proba-
bility 0.98, ω belongs in the interval (0.5, 1.5). Within this range for the transition
frequency we have three subcases depending on the amplitude of the electric field:
(1a) order ε Bloch fields coexist with an order ε electric field, (1b) order 1 Bloch
fields interact with an order 1 electric field, and (1c) in the large amplitude limit,
the dielectric accommodates Bloch fields S1−sol, R1−sol of order 1 and U1−sol of



30 M.A. Agrotis, N.M. Ercolani and S.A. Glasgow

order ε. A less likely to happen case corresponds to a value of ω ∈ (0, 0.08). Here
we have: (2a) in the small amplitude limit Bloch fields of order 1 interacting with
an electric field of order ε and (2b) an electric field of order 1 or higher that occurs
when R1−sol, S1−sol are of order 1 and U 1−sol is of order ε. We note that in the
rare case of the small amplitude limit (2a), the contribution of the Bloch fields is
significantly bigger than (1a), and has the potential to affect the dynamics of the
equations (figure 2).
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Figure 2. Simultaneous snapshots (ζ = 0) of the one-soliton solutions with m1 = 0.025

(small amplitude limit), for ω = 0.95 (solid) and ω = 0.07 (dotted).

7 Summary

We study the ib-rMB equations that describe the optical pulse propagation through
a two-level atom medium. The effects of both inhomogeneous broadening, caused
by the Doppler shifting of the resonant frequencies of the atoms, and a permanent
dipole are present in the analysis. The equations are integrable and a Lax pair is
presented. Using the Lax pair we develop a Bäcklund transformation in Darboux
form so that it is easily iterated, and produces analytical expressions for the one-
and the two-soliton solutions in terms of elementary functions.
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The interplay between the randomly chosen transition frequency and the spec-
tral parameter(s) produces several scenarios, that can be separated in two main
categories: the most likely to happen cases that correspond to transition frequency
values that are close to the resonant transition frequency value, and the unlikely
to happen cases, that correspond to values of the probability function g that are
much less than one. We have demonstrated that in the latter case the polarization
fields can significantly influence the nonlinear dynamics of the equations.

Different avenues that we are currently exploring are related with an appropri-
ate loop algebra construction. We would like to place the ib-rMB equations in a
wider frame, that will enable us to view the system as one among an infinite fam-
ily of systems in involution with respect to an appropriate Poisson bracket, and
reveal an infinite number of conservation laws. We speculate that equations that
belong in this hierarchy could possibly be considered as higher order corrections
to the ib-rMB equations.
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We consider here a reaction diffusion model which arises in the development of
swarm colonies of the Proteus mirabilis. After having obtained the equivalence
transformations admitted by the model we give a classification of two special
subclasses of this last one.

1 Introduction

In this paper, we consider an important example of a reaction–diffusion system
of partial differential equations arising in the development of bacterial colonies,
provided by the Proteus mirabilis swarm colonies.

Proteus mirabilis, part of the Enterobacteriaceae family, is a small Gram-
negative facultative anerobic bacterium. Commonly, it is part of the normal flora
of the human intestinal tract, but can also be found free living in water and soil [1].
Proteus mirabilis is an opportunistic pathogen that can colonize the bladder, sur-
gical wounds, lungs and the urinary tract causing severe histological damage. It
has the power to shift its shape and often appears in different forms: swarmer cell
and swimmer cell. The organism, in fact, goes through a cycle of differentiation,
migration and consolidation depending upon the level of nutrients available to
it. When the bacillus is a nutrient-rich environment, it exists as swarmer cell,
or in swarms. When the nutrients run out the cells form swimmer cells through
dividing. Swimmer cells consist virtually exclusively of short oligo-flagellated cells
comparable in their behaviour to motile Escherichia coli, and go through a pro-
totypical bacterial cell growth and division cycle. However, a second channel of
behavior appears: some cells cease septation but continue to grow and produce
many lateral flagella to form elongated multinucleoid hyper-flagellated swarmer
cells which aggregate in parallel arrays to form elongated motile multicellular
rafts. Only swarmer cells in contact with other cells are capable of transloca-
tion, while swimmer cells and isolated swarmer cells are immobile. Thus, swarm
motility is an inherently cooperative process resulting in non-linear transport of
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the population characterized by expansion dependent on bacterial density. After
some time migrating, swarmer cells have been observed to cease movement, sep-
tate and produce groups of swimmer cells which can then undergo the typical cell
division cycle.

Thus, the colonies of Proteus mirabilis are especially interesting because their
morphogenesis involves periodic oscillation between phases of migration over the
substrate (swarming) and phases of growth within stationary populations (con-
solidation). Proteus colonies present two key problems:

i to account for their deceptively simple circular symmetry and regular ter-
racing;

ii to explain the robust periodicity of cyclic behaviour under conditions when
the velocity and duration of swarming are variable.

Based on experimental observations of cellular differentiation and group motil-
ity some models [1–3] have been developed to describe the swarmer cell differ-
entiation — dedifferentiation cycle and the spatial evolution cycle and the spa-
tial evolution of swimmer and swarmer cells during the Proteus mirabilis swarm
colonies development.

Here we consider the (1+1)-dimensional mathematical model of the Proteus
mirabilis showed in [2]

ut = νv + (α− µ)u+ (D(u, v)ux)x, vt = (α− ν)v + µu. (1)

The dependent variables u(t, x) and v(t, x) correspond to the surface densities of
the populations of swarm cells and swimmer cells, respectively. The coefficients
α, µ, ν are density dependent functions and characterize the cellular growth, divi-
sion and differentiation, respectively. The diffusion appearing in the equation (1)
models the migration of swarm cells.

Even though the (1 + 1)-model considered is, of course, quite restricted in its
ability to demonstrate some observed results as, for instance, pattern formations,
in this paper we begin the study of system (1) in the framework of the group
analysis.

In particular the search for symmetries gives not only the generators of admit-
ted invariance groups, but, at same time, offers informations about the functional
forms of α, µ, ν, D, so that the model allows invariant solutions.

As in the phenomenological theories of continuum media we have in mind to
use these results in order to select functional forms of constitutive parameter in
agreement with experimental observations.

The plan of the paper is the following. In the section 2 we find, by using
the Lie–Ovsiannikov infinitesimal criterion, the algebra of continuous equivalence
transformations assuming α, µ, ν, D, arbitrary and without requiring the invari-
ance of the socalled auxiliary conditions. In the section 3, we restrict to two special
cases which usually can occur in the development of bacterial colonies of Proteus
mirabilis and obtain a classification of the corresponding models. In the section 4,
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we verify that, if we require the invariance of the auxiliary conditions, in general,
we get symmetry algebras smaller than that ones we obtained in the section 3.
The conclusions are given in the section 5.

2 On the Equivalence Algebra

Here we look for continuous equivalence transformations for the system (1) whose
infinitesimal generator is of the form:

Y = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η1

∂

∂u
+ η2

∂

∂v
+ φ1

∂

∂α
+ φ2

∂

∂µ
+ φ3

∂

∂ν
+ φ4

∂

∂D
, (2)

where ξ1, ξ2, η1 and η2 are sought depending on t, x, u and v, while φi (i =
1, 2, 3, 4) are sought depending on t, x, u, v, α, µ, ν and D. We apply the in-
finitesimal criterion of Lie–Ovsiannikov [4] by requiring the invariance of the sys-
tem (1) with respect the suitable prolongation Y (2) of generator (2), that is

Y (2) [ut − νv − (α− µ)u− (D(u, v)ux)x] = 0,

Y (2) [vt − (α− ν)v − µu] = 0

under the constraints that variables u and v have to satisfy the Eqs. (1).
At this step, in view of further applications, and as suggested in [4], we do not

require the invariance of the auxiliary conditions [5–7].
After having solved the determining system obtained from invariance condi-

tions, by supposing that α − ν 6= 0 or µ 6= 0, we get the equivalence algebra LE
which is infinite-dimensional and is spanned by:

Y0 = ∂x, Y1 = x∂x + 2D∂D, (3)

Yf = f(t)∂u +
f ′ − αf
u+ v

∂α +

[
−fµ
u

+
vfα− vf ′
u(u+ v)

]
∂µ, (4)

Yg = ug(t)∂u +
ug′ + g(νv − µu)

u+ v
∂α +

[−uµg − vg′
u+ v

+
−v2gν
u(u+ v)

]
∂µ, (5)

Yh = h(t)∂t − αht∂α +

(
νvht
u
− µht

)
∂µ −Dht∂D, (6)

Yl = l(t, v)∂v +
lt + lv(α− ν)v + lvµu− αl

u+ v
∂α+

+

[
lt + lv(α− ν)v + lvµu− αl

u+ v
+
νl

u

]
∂µ, (7)

Yn =
vn(t, x, u, v, α, µ, ν,D)

u
∂µ + n∂ν , (8)

where f , g, h, l and n are arbitrary functions of their arguments.
We have not considered the special cases α − ν = 0 or µ = 0 as they are not

compatible with our model.
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3 Special Cases

Here we restrict ourself to the following special cases which usually can occur in
the development of bacterial colonies of Proteus mirabilis:

1. The functions α, µ and ν (cellular growth, division and differentiation) are
assigned constants while the diffusion coefficient D = D̃(u, v) is still consid-
ered as an arbitrary function.

2. The diffusion coefficient D has the form D(u, v) = D0u/(u+ kv) while α, µ
and ν are considered arbitrary functions depending only on v.

In both cases in order to get equivalence algebras and symmetries we follow the
procedures showed in [5–7].

3.1 Case 1

In this case, α, µ and ν being assigned constants, we must require φ1 = φ2 =
φ3 = 0 so the equivalence algebra LE becomes six-dimensional and it is spanned
by:

Y0 = ∂x, Y1 = x∂x + 2D∂D, Y2 = u∂u + v∂v, (9)

Y3 = ∂t + (α− µ)u∂u + (α− µ)v∂v, (10)

Y4 =
νeαt

µ+ ν
∂u +

µeαt

µ+ ν
∂v, Y5 = −e(α−µ−ν)t∂u + e(α−µ−ν)t∂v. (11)

In order to get the symmetries we apply the following theorem [6,8]

Theorem 1. Let the infinitesimal equivalence generator Y = ciYi (i = 0, . . . , 5)
for the system considered in the Case 1. The projection of Y in the (t, x, u, v)-
space X = ξ1∂t + ξ2∂x + η1∂u + η2∂v is an infinitesimal symmetry generator if
and only if the specializations of the function D are invariant with respect to Y .

In our case, the invariance of the function D = D̃(u, v) with respect to opera-
tor Y leads to φ4 = D̃uη

1 + D̃vη
2 which, taking (9)–(11) into account, reads

2D̃c1 = D̃u

[
c4
νeαt

µ+ ν
− c5e(α−µ−ν)t + c3u(α− µ) + c2u

]

+ D̃v

[
c4
µeαt

µ+ ν
+ c5e

(α−µ−ν)t + c3v(α− µ) + c2v

]
.

From the previous classifying equation we get easily that the principal Lie algebra
LP is two-dimensional and spanned by X1 = ∂t, X2 = ∂x, while the extensions
with respect to LP are the following:

1. D = D̃(σ) with D̃ arbitrary function of σ = u+v: X3 = e(α−µ−ν)t(−∂u+∂v).
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2. D = (u+ v)hD0 where h and D0 are arbitrary constitutive constants:

X3 = −e(α−µ−ν)t∂u + e(α−µ−ν)t∂v, X4 =
hx

2
∂x + u∂u + v∂v.

3. D = D̃(σ) with D̃ arbitrary function of σ = µu−νv: X3 = νeαt∂u+µe
αt∂v.

4. D = (σ + D1)
hD0 where σ = µu − νv, while h, D0 and D1 are arbitrary

constitutive constants:

X3 = νeαt∂u + µeαt∂v,

X4 =
hx

2
∂x +

(
u− D1e

(α−µ−ν)t

µ+ ν

)
∂u +

(
v +

D1e
(α−µ−ν)t

µ+ ν

)
∂v.

5. D = (u −D0)
hD̃ (σ) with D̃ arbitrary function of σ = (u−D0)/(v +D0),

while D0 and h are arbitrary constitutive constants:

X3 =
hx

2
∂x +

(
u−D0e

(α−µ−ν)t
)
∂u +

(
v +D0e

(α−µ−ν)t
)
∂v.

3.2 Case 2

The coefficient of diffusion D assumes the form D(u, v) = D0u/(u+ kv) and
α = α̃(v), µ = µ̃(v) and ν = ν̃(v) are arbitrary functions of v.

In this case, by applying the aforsaid procedures, we get that the equivalence
algebra LE is infinite-dimensional and is spanned by:

Y0 = ∂x, Y1 = ∂t,

Y2 = 2t∂t + x∂x − 2α∂α +
(
2νv
u − 2µ

)
∂µ,

Yf = uf(t)∂u + vf(t)∂v + f ′(t)∂α,

Yn =
v

u
n(t, x, u, v, α, µ, ν)∂µ + n∂ν ,

(12)

where f and n are arbitrary functions of their arguments.
Following the Theorem 1, in a similar way, we get easily the following classifying

system

φ1 = α̃vη
2, φ2 = µ̃vη

2, φ3 = ν̃vη
2,

which, taking (12) into account, reads

f ′ − 2c2α̃ = α̃vvf,
2c2(ν̃v − µ̃u) + vn

u
= µ̃vvf, n = ν̃vvf.

From the previous system it follows that the principal Lie algebra LP is two-
dimensional and spanned by X1 = ∂t, X2 = ∂x, while the extensions with respect
to LP are the following:

1. α = α0v
k0 , µ = µ0v

k0 and ν = ν0v
k0 : X3 = −k0x

2 ∂x − k0t∂t + u∂u + v∂v.

2. α = ln vk0 , µ = µ0 and ν = ν0: X3 = ek0tu∂u + ek0tv∂v.
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4 A Remark on the Equivalence Transformations

In the previous section we have obtained a classification of two specializations
(case 1 and case 2) of the system (1). We have used the equivalence algebras
obtained in both cases from the equivalence algebra (3)–(8) by specializing some
of the four arbitrary costitutive functions appearing in the system (1).

If we require the invariance of auxiliary conditions concerned with the func-
tional dependence of arbitrary functions, i.e.

αt = αx = µt = µx = νt = νx = Dt = Dx = 0,

we get the following subset of the algebra (3)–(8)

Y0 = ∂x, Y1 = x∂x + 2D∂D, Y2 = ∂u −
α

u+ v
∂α +

[
−µ
u
+

vα

u(u+ v)

]
∂µ,

Y3 = u∂u +
νv − µu
u+ v

∂α −
[
uµ

u+ v
+

v2ν

u(u+ v)

]
∂µ,

Y4 = t∂t − α∂α +
(νv
u
− µ

)
∂µ −D∂D, Y5 = ∂t,

Yl = l(v)∂v +
(α− ν)vlv+ µulv− αl

u+ v
∂α +

[
lv(α− ν)v + lvµu− αl

u+ v
+
νl

u

]
∂µ,

Yn =
vn(u, v, α, µ, ν,D)

u
∂µ + n∂ν .

Then by considering for instance the Case 1, following the above procedures, we
get two classifying equations:

• 2D̃c1 = c3uD̃u + c3vD̃v if α 6= µ+ ν;

• 2D̃c1 = D̃u(c2 + uc3) + D̃v(c3v − c2) if α = µ+ ν.

From which we obtain, only, the following extensions of the principal Lie alge-
bra LP :

1. D = (u −D0)
hD̃ (σ) with D̃ arbitrary function of σ = (u−D0)/(v +D0),

while h and D0 are arbitrary constitutive constants:

X3 =
hx

2
∂x + (u−D0) ∂u + (v +D0) ∂v.

2. D = (u + v)hD0 where h and D0 are arbitrary constitutive constants and
α = µ+ ν:

X3 = −∂u + ∂v, X4 =
hx

2
∂x + u∂u + v∂v.

These results verify that the symmetry algebra is smaller than that one we ob-
tained for the case 1 in the previous section.
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5 Conclusions

Starting from the search for the equivalence transformations of a general model
in the development of bacterial colonies of Proteus mirabilis, we have classified
two interesting specializations of the model and have obtained several extensions
of LP algebra concerned with the different functional forms of the constitutive
parameters α, µ, ν and D.

These results are, of course, only the first step of our study in this field. Further
news about the agreement of the model with experimental observations, will be
obtained from the analyses of the solutions of different systems of reduced equa-
tions. These ones are currently under consideration and will be matter of a future
paper.
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We discuss a classical nonlinear oscillator, which is proved to be a superin-
tegrable system for which the bounded motions are quasiperiodic oscillations
and the unbounded (scattering) motions are represented by hyperbolic func-
tions. This oscillator can be seen as a position-dependent mass system and we
show a natural quantization prescription admitting a factorization with shape
invariance for the n = 1 case, and then the energy spectrum is found. Other
isochronous systems which can also be considered as a generalization of the
harmonic oscillator and admit a nonstandard Lagrangian description are also
discussed.

1 Introduction

The harmonic oscillator is a system playing a privileged rôle both in classical and
quantum mechanics. It is almost ubiquitous in Physics and appears in many phys-
ical applications running from condensed matter to semiconductors (see e.g. [1]
for references to such problems). The dynamical evolution of the classical system
in one dimension is given by

dq

dt
= v,

dv

dt
= −ω2q,

and admits a Lagrangian formulation with L =
(
v2 − ω2 q2

)
/2, the general solu-

tion of the equations of motion being

q = q0 cosωt−
v0
ω

sinωt = A cos(ωt+ ϕ)

and therefore the solutions are periodic with angular frequency ω, while A and ϕ
are arbitrary. This is the main characteristic of the classical system. As far as
the quantum system is concerned, the eigenvalues of the Hamiltonian, which is
given by H = (p2 + ω2q2)/2, are equally spaced. We should also remark that the
natural extensions to two dimensions, given by H = (p2x+p

2
y)/2+(ω2

1x
2+ω2

2y
2)/2
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admits two constants of motion in involution, I1 = Ex = (p2x+ω
2
1x

2)/2, I2 = Ey =
(p2v + ω2

2y
2)/2, and therefore it is completely integrable in the sense of Liouville.

Moreover it has been proved that, when ω1 and ω2 are rationally related, i.e.
ω1 = n1ω0, ω2 = n2ω0, with n1, n2 ∈ N, there exist a new constant of motion and
the system is superintegrable. Actually the complex function, J = Kn2

x (K∗
y )
n1

with Kx = px + in1ω0 x and Ky = py + in2ω0y, is a constant of the motion.
Our aim is to comment on some possible generalizations of this system from the

perspective of the theory of the symmetry, i.e. trying to preserve the fundamental
symmetry properties.

2 A Position-Dependent Mass Nonlinear Oscillator

A often used generalization was proposed by Mathews and Lakshmanan [2, 3] as
a one-dimensional analogue of some models of quantum field theory [4, 5]. It is
described by a Lagrangian

L =
1

2

(
1

1 + λx2

)(
ẋ2 − α2x2

)
, (1)

which can be considered as an oscillator with a position-dependent effective mass
m = (1 + λx2)−1 (see e.g. [6, 7] and references therein). It was proved that the
general solution is also q(t) = A cos(ωt+ϕ), but now the amplitude A depends on
the frequency. More explicitly ω2(1 + λA2) = α2. Note also that this Lagrangian
is of mechanical type, the kinetic term being invariant under the tangent lift of
the vector field

Xx(λ) =
√

1 + λx2
∂

∂x
.

It was recently shown in [8] that there is a generalization to n dimensions
preserving the symmetry characteristics. In particular the two-dimensional gen-
eralization studied in [8] was given by the Lagrangian

L(λ) =
1

2

( 1

1 + λr2

) [
v2x + v2y + λ(xvy − yvx)2 − α2r2

]
, r2 = x2 + y2, (2)

and it was shown to be not only integrable but also superintegrable. This is
the only generalization to n dimensions for which the kinetic term is a quadratic
function in the velocities that is invariant under rotations and under the two
vector fields generalizing the symmetries of the one-dimensional model, i.e.

X1(λ) =
√

1 + λr2
∂

∂x
, X2(λ) =

√
1 + λr2

∂

∂y
.

This is valid for any value of λ. However, when λ < 0, λ = −|λ|, this function
has a singularity at 1− |λ|r2 = 0 and we restrict our dynamics to the interior of
the circle x2 + y2 < 1/|λ|.
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These two vector fields close with the generator of rotations, XJ = x∂/∂y −
y∂/∂x, on a Lie algebra

[X1(λ), X2(λ)] = λXJ , [X1(λ), XJ ] = X2(λ), [X2(λ), XJ ] = −X1(λ).

which is isomorphic either to SO(3,R), when λ > 0, or to SO(2, 1), when λ < 0,
or finally to the Euclidean group in two dimensions when λ = 0.

The important property shown in [8] is that this bidimensional nonlinear har-
monic oscillator is completely integrable, because one can show that, if K1 and
K2 are the functions

K1 = P1(λ) + iα
x√

1 + λr2
, K2 = P2(λ) + iα

y√
1 + λr2

,

with

P1(λ) =
vx − λJy√
1 + λr2

, P2(λ) =
vy + λJx√
1 + λr2

, J = xvy − yvx,

then the complex functions Kij defined as Kij = KiK
∗
j , i, j = 1, 2, are constants

of motion. In fact the time-evolution of the functions K1 and K2 is

d

dt
K1 =

iα

1 + λ r2
K1,

d

dt
K2 =

iα

1 + λ r2
K2 ,

from which we see that the complex functions Kij are constants of the motion.
Therefore the system is superintegrable with the following first integrals of motion

I1(λ) = |K1 |2 , I2(λ) = |K2 |2 , I3 = =(K12) = α (xvy − yvx) .

The Legendre transformation for a two-dimensional Lagrangian system of me-
chanical type with kinetic term as in (2) is given by

px =
(1 + λ y2)vx − λxyvy

1 + λ r2
, py =

(1 + λx2)vy − λxyvx
1 + λ r2

,

(note that xpy−ypx = xvy−yvx) and the general expression for the corresponding
λ-dependent Hamiltonian is

H(λ) =
1

2

[
p2x + p2y + λ (xpx + ypy)

2
]
+

1

2
α2 V (x, y) , (3)

and hence the associated Hamilton–Jacobi equation is

(
∂S

∂x

)2

+

(
∂S

∂y

)2

+ λ

(
x
∂S

∂x
+ y

∂S

∂y

)2

+ α2 V (x, y) = 2E . (4)

This equation is not separable in (x, y) coordinates, but it was shown in [8]
that there exist three particular systems of orthogonal coordinates, and three
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particular families of associated potentials, in which such Hamiltonians admit a
Hamilton–Jacobi separability. The first system of coordinates is given by

(zx, y) , zx =
x√

1 + λ y2
, (5)

for which the Hamilton–Jacobi equation becomes:

(1 + λ z2x)

(
∂S

∂zx

)2

+ (1 + λ y2)2
(
∂S

∂y

)2

+ α2 (1 + λ y2)V = 2(1 + λ y2)E,

and therefore the Hamilton–Jacobi equation is separable if the potential V (x, y)
can be written on the form

V =
W1(zx)

1 + λ y2
+W2(y). (6)

The potential is therefore integrable with the following two quadratic integrals of
motion

I1(λ) = (1 + λ r2)p2x + α2W1(zx) ,

I2(λ) = (1 + λ r2)p2y − λJ2 + α2
(
W2(y)−

λ y2

1 + λ y2
W1(zx)

)
.

In a similar way, one can see, using coordinates (x, zy) with zy = y(1+λx2)−1/2,
that the Hamilton–Jacobi equation is separable when the potential V (x, y) is of
the form

V =W1(x) +
W2(zy)

1 + λx2
. (7)

and the potential is integrable with the following two quadratic first integrals:

I1(λ) = (1 + λ r2)p2x − λJ2 + α2
(
W1(x)−

λx2

1 + λx2
W1(zy)

)
,

I2(λ) = (1 + λ r2)p2y + α2W2(zy).

Finally using polar coordinates (r, φ) the Hamiltonian H(λ) is written

H(λ) =
1

2

[
(1 + λ r2)p2r +

p2φ
r2

]
+
α2

2
V (r, φ) (8)

and the Hamilton–Jacobi equation is given by

(1 + λ r2)

(
∂S

∂r

)2

+
1

r2

(
∂S

∂φ

)2

+ α2 V (r, φ) = 2E .

Then the equation admits separability when the potential V is of the form

V = F (r) +G(φ)/r2. (9)
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Such a potential V is integrable with the following two quadratic first integrals:

I1(λ) = (1 + λ r2)p2r +
1− r2
r2

p2φ + α2
[
F (r) +

1− r2
r2

G(φ)

]
,

I2(λ) = p2φ + α2G(φ).

Consequently, the potential

V =
α2

2

( x2 + y2

1 + λ (x2 + y2)

)

is super-separable since it is separable in three different systems of coordinates
(zx, y), (x, zy), and (r, φ) because

V =
α2

2

(
1

1 + λ y2

)[
z2x

1 + λ z2x
+ y2

]
=
α2

2

(
1

1 + λx2

)[
x2 +

z2y
1 + λ z2y

]

=
α2

2

(
r2

1 + λ r2

)
.

3 The One-Dimensional Quantum Nonlinear
Oscillator

We now consider the quantum case and restrict ourselves to the one-dimensional
case. The first problem is to define the quantum operator describing the Hamilto-
nian of this position-dependent mass system, because the mass function and the
momentum P do not commute and this fact gives rise to an ambiguity in the or-
dering of factors. It has recently been proposed to avoid the problem by modifying
the Hilbert space of functions describing the system [9]. More explicitly we can
consider the measure dµ = (1 + λx2)−1/2 dx, which is invariant under the vector
field Xx(λ) =

√
1 + λx2 ∂/∂x, for then the operator P = −i

√
1 + λx2 ∂/∂x is

selfajdoint in the space L2(R, dµ). In the case of the nonlinear oscillator in which
we are interested we can consider the Hamiltonian operator

Ĥ1 = −
1

2
(1 + λx2)

d2

dx2
− 1

2
λx

d

dx
+

1

2

α2 x2

1 + λx2
. (10)

The spectral problem of such operator can be solved by means of algebraic tech-
niques. We first remark that if β is such that α2 = β(β+λ), then Ĥ ′1 = Ĥ1−β/2
can be factorized as a product Ĥ ′1 = A†(β)A(β) and

A =
1√
2

(√
1 + λx2

d

dx
+

β x√
1 + λx2

)
, (11)

for which its adjoint operator is

A† =
1√
2

(
−
√

1 + λx2
d

dx
+

β x√
1 + λx2

)
. (12)
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The important point is that the partner Hamiltonian Ĥ ′2 = A(β)A†(β) is related

to Ĥ ′1 by Ĥ ′2(β) = Ĥ ′1(β1) + R(β1) with β1 = f(β) and where f and R are
the functions f(β) = β − λ and R(β) = β + 1/2. Hamiltonians admitting such
factorization [10] and related to its s partner in such a way are said to be shape
invariant and their spectra and the corresponding eigenvectors can be found by
using the method proposed by Gendenshtëın [11, 12] (see also [13] for a modern
presentation based on the Riccati equation). Therefore, as the quantum nonlinear
oscillator is shape invariant, we can develop the method proposed in [11, 12] for
finding both the spectrum and the corresponding eigenvectors. The spectrum is
given by [9] En = nβ − n2λ/2 + β/2. The existence of a finite or infinite number
of bound states depends up on the sign of λ as also discussed in [9].

4 Periodic Motions and Another Nonlinear Oscillator

Another possible generalization of the harmonic oscillator would be to look for
alternative isochronous systems. For instance one can consider a potential

U(x) =

{
U1(x) if x < 0,
U2(x) if x > 0 ,

where U2(x) is an increasing function and U1(x) is a decreasing function, and try
to determine the explicit functions U1 and U2 in order to have an isochronous
system. The problem of the determination of the potential when the period is
known as a function of the energy was solved by Abel [14]. When the potential is
symmetric the solution is unique. Therefore the only symmetric potential giving
rise to isochronous motions around the origin is the harmonic oscillator. The
isotonic oscillator is also symmetric and isochronous, but the origin is a singular
point and not a minimum of the potential. Other nonsymmetric potentials can
be used, for instance a potential given by

U1(x) = ω2
1 x

2, U2(x) = ω2
2 x

2.

If we want to find more general solutions for the symmetric case we may con-
sider Lagrangians of a nonstandard mechanical type, in which there is no potential
term. These more general Lagrangians can also be relevant in other problems.
For instance another interesting oscillator-like system has recently been studied
by Chandrasekar et al [15]. As mentioned in that paper the oscillator-like system
admits a Lagrangian formulation. We recall that there are systems admitting a
Lagrangian formulation of a nonmechanical type. As an example we can consider
Q = R as the configuration space and the Lagrangian function [16]

L(x, v) = (α(x) v + U(x))−1 , (13)

which is singular in the zero level set of the function ϕ(x, v) = α(x) v + U(x).
Then the Euler–Lagrange equation is

α′(x) v + U ′(x)− α′(x) v = −2α(x)[α′(x)v2 + U ′(x)v + α(x)a]

α(x)v + U(x)
,
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where v and a denote the velocity and the acceleration, respectively. This is
a conservative system the equation of motion of which can be rewritten as

[α(x)]2 ẍ+ α(x)α′(x) ẋ2 +
3

2
α(x)U ′(x) ẋ+

1

2
U(x)U ′(x) = 0.

The energy is given by EL(x, v) = −[2α(x) v + U(x)][α(x) v + U(x)]−2. In
particular, when α(x) = 1, the Lagrangian is L(x, v) = [v + U(x)]−1 and the
Euler–Lagrange equation reduces to

ẍ+
3

2
U ′(x) ẋ+

1

2
U(x)U ′(x) = 0 (14)

and the energy function turns out to be EL(x, v) = −[2 v + U(x)][v + U(x)]−2.
When U(x) = k x2, the equation is

ẍ+ 3 k x ẋ+ k2 x3 = 0,

and the energy is EL = −[2 v + k x2][v + k x2]−1. It can be seen from the energy
conservation law that the general solution is

x =
2 t

k t2 − E .

The two-dimensional system described by L(x, y, vx, vy) = [vx + k1 x
2]−1 +

[vy + k2 y
2]−1 is superintegrable. Actually not only the energies of each degree of

freedom are conserved but also the functions [16]

I3 =
x

vx + k1 x2
− y

vy + k2 y2
,

I4 =
k2

vx + k1 x2
+

k1
vy + k2 y2

− k1 k2 x y

(vx + k1 x2)(vy + k2 y2)
.

Another example is that of a nonlinear oscillator for which we were looking.
The following Lagrangian depending on the parameter ω

L(x, v;ω) =
1

k vx + k2 x2 + ω2
, (15)

produces the nonlinear Euler–Lagrange equation ẍ+3 k x ẋ+k2 x2+ω2x = 0, which
is the nonlinear oscillator system recently studied by Chandrasekar et al [15], and
the energy is EL = −[2 k vx + k2 x2 + ω2][(k vx + k2 x2 + ω2)]−2. The general
solution for the dynamics, which can be found from the energy conservation, is

x =
ω
√
E sin(ωt+ φ)

1− k
√
E cos(ωt+ φ)

.
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We have recently been able to prove [16] that in the rational case of the two-
dimensional problem, for which ω1 = n1 ω0 and ω2 = n2 ω0, the system is superin-
tegrable as it was the case for the harmonic oscillator. To introduce the additional
constants of motion we define

K1 =
vx + k1 x

2 + i n1 ω0 x

k1 vx + k21 x
2 + n21 ω

2
0

, K2 =
vy + k2 y

2 + i n2 ω0 y

k2 vy + k22 y
2 + n22 ω

2
0

, (16)

and then the complex function K
n2
1 (K∗2)

n1 is a constant of the motion.
In summary, not only position-dependent mass generalizations of the harmonic

oscillator can be interesting but there exist also systems described by Lagrangians
of non-mechanical type which preserve the property of superintegrability for the
harmonic oscillator with rationally related frequencies. This example points out
the importance of the study of such non-standard Lagrangians.
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Special polynomials associated with rational solutions of the fourth Painlevé
equation and with rational and rational-oscillatory solutions of the defocusing
nonlinear Schrödinger equation are studied. It is demonstrated that the roots
of these polynomials have regular, symmetric structure in the complex plane.

1 Introduction

In this paper our interest is in special polynomials associated with rational solu-
tions of the fourth Painlevé equation (PIV)

w′′ =
(w′)2

2w
+

3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
, (1)

where ′ ≡ d/dz, with α and β arbitrary constants, and special polynomials asso-
ciated with rational and rational-oscillatory solutions of the defocusing nonlinear
Schrödinger (NLS) equation

iut = uxx − 2|u|2u, (2)

which is a soliton equation solvable by inverse scattering [53].
The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and

their colleagues whilst studying which second order ordinary differential equations
(ODEs) have the property that the solutions have no movable branch points; now
known as the Painlevé property [28, Chap. 14]. The general solutions of the
Painlevé equations are transcendental in the sense that they cannot be expressed
in terms of known elementary functions and so require the introduction of new
transcendental functions. Further the Painlevé equations can be thought of as
nonlinear analogues of the classical special functions (cf. [11, 29, 49]). However
PII–PVI have rational solutions, algebraic solutions, and solutions expressed in
terms of the classical special functions (see, e.g. [4,6,18–20,25,31,34–37,39–42,46]
and the references therein).
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Vorob’ev [51] and Yablonskii [52] expressed the rational solutions of PII in terms
of certain special polynomials, the Yablonskii–Vorob’ev polynomials. Okamoto
[39] obtained analogous special polynomials related to rational solutions of PIV,
which were generalised by Noumi and Yamada [38] (see Section 2). Clarkson and
Mansfield [16] investigated the locations of the roots of the Yablonskii–Vorob’ev
polynomials in the complex plane and showed that these roots have a very regular,
approximately triangular structure. The structure of the roots of the special
polynomials associated with rational solutions of PIV in [13], which either have
an approximate rectangular structure and or are a combination of approximate
rectangular and triangular structures.

Ablowitz and Segur [2] demonstrated a relationship between the Painlevé equa-
tions and completely integrable partial differential equations solvable by inverse
scattering, the soliton equations, such as the Korteweg-de Vries (KdV) equation

ut + 6uux + uxxx = 0, (3)

and the NLS equation (2). Airault, McKean and Moser [5] studied the motion
of the poles of rational solutions of the KdV equation (3) and a related many-
body problem; see also [1, 3, 10]. Subsequently there have been studies of the
motion of poles of rational solutions of other soliton equations, e.g. the Boussinesq
equation [23], the classical Boussinesq system [45], the Kadomtsev-Petviashvili
equation [43,44] and the NLS equation [26,27].

This paper is organised as follows. In Section 2 we discuss the special polyno-
mials associated with rational solutions of PIV (1). In Section 3 we discuss the
special polynomials associated with rational and rational-oscillatory solutions of
the NLS equation equation (2). In Section 4 we discuss our results.

2 Special Polynomials Associated
with Rational Solutions of PIV

Rational solutions of PIV (1) are summarized in the following theorem.

Theorem 1. PIV has rational solutions if and only if the parameters (α, β) are
given by either of the following

α = m, β = −2(2n−m+ 1)2, (4)

α = m, β = −2(2n−m+ 1
3)

2, (5)

with m,n ∈ Z. Further the rational solutions for these parameters are unique.

Proof. See Lukashevich [32], Gromak [24] and Murata [36]; also [6, 25,50]. ¥

Simple rational solutions of PIV are

w1(z;±2,−2) = ±1/z, w2(z; 0,−2) = −2z, w3(z; 0,−
2

9
) = −2

3
z. (6)
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It is known that there are three sets of rational solutions of PIV, which have
the solutions (6) as the simplest members. These sets are known as the “−1/z
hierarchy”, the “−2z hierarchy” and the “−2z/3 hierarchy”, respectively (cf. [6]).
The “−1/z hierarchy” and the “−2z hierarchy” form the set of rational solutions of
PIV with parameters given by (4) and the “−2z/3 hierarchy” forms the set with
parameters given by (5). The rational solutions of PIV with parameters given
by (4) lie at the vertexes of the “Weyl chambers” and those with parameters
given by (5) lie at the centres of the “Weyl chambers” [50].

In a comprehensive study of PIV, Okamoto [39] defined two sets of polynomials
associated with rational solutions of PIV, analogous to the Yablonskii–Vorob’ev
polynomials. Noumi and Yamada [38] generalized Okamoto’s results and intro-
duced the generalized Hermite polynomials Hm,n(z), defined in Theorem 2, and
the generalized Okamoto polynomials Qm,n(z), defined in Theorem 3; see also [13].

Theorem 2. Suppose Hm,n(z) satisfies the recurrence relations

2mHm+1,nHm−1,n = Hm,nH
′′
m,n −

(
H ′m,n

)2
+ 2mH2

m,n,

2nHm,n+1Hm,n−1 = −Hm,nH
′′
m,n +

(
H ′m,n

)2
+ 2nH2

m,n, (7)

with H0,0 = H1,0 = H0,1 = 1 and H1,1 = 2z, then

w(i)
m,n = − d

dz

{
ln

(
Hm,n+1

Hm,n

)}
≡ −2mHm+1,nHm−1,n+1

Hm,n+1Hm,n
, (8a)

w(ii)
m,n =

d

dz

{
ln

(
Hm+1,n

Hm,n

)}
≡ 2n

Hm,n+1Hm+1,n−1

Hm+1,nHm,n
, (8b)

where w
(j)
m,n = w(z;α

(j)
m,n, β

(j)
m,n), for j = i, ii, are solutions of PIV, respectively,

for the parameters (α
(i)
m,n, β

(i)
m,n) = (−(m + 2n + 1),−2m2) and (α

(ii)
m,n, β

(ii)
m,n) =

(2m+ n+ 1,−2n2).

Proof. See Noumi and Yamada [38]; also [13]. ¥

The rational solutions of PIV defined by (8) include all solutions in the “−1/z”
and “−2z” hierarchies, i.e. the set of rational solutions of PIV with parameters
given by (4), and can be expressed in terms of determinants whose entries are
Hermite polynomials [30, 38]. These rational solutions of PIV are special cases of
the special function solutions which are expressible in terms of parabolic cylinder
functions Dν(ξ) (cf. [13]). Each polynomial Hm,n(z) has degree mn with integer
coefficients [38]; in fact Hm,n(ζ/2) is a monic polynomial in ζ with integer coef-
ficients. Examples of generalized Hermite polynomials and plots of the locations
of their roots are given in [13]. Plots of the roots of H6,6(z) and H7,7(z) are given
in Figure 1.

Next we consider the generalized Okamoto polynomials.
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Figure 1. Roots of the generalized Hermite polynomials H6,6(z) and H7,7(z)

Theorem 3. Suppose Qm,n(z) satisfies the recurrence relations

Qm+1,nQm−1,n=
9

2

[
Qm,nQ

′′
m,n−

(
Q′m,n

)2]
+
[
2z2+ 3(2m+ n− 1)

]
Q2
m,n, (9a)

Qm,n+1Qm,n−1=
9
2

[
Qm,nQ

′′
m,n−

(
Q′m,n

)2]
+
[
2z2+ 3(1−m− 2n)

]
Q2
m,n,(9b)

with Q0,0 = Q1,0 = Q0,1 = 1 and Q1,1 =
√
2 z, then

w̃(i)
m,n = −2z

3
− d

dz

{
ln

(
Qm,n+1

Qm,n

)}
≡ −

√
2

3

Qm+1,nQm−1,n+1

Qm,n+1Qm,n
, (10a)

w̃(ii)
m,n = −2z

3
+

d

dz

{
ln

(
Qm+1,n

Qm,n

)}
≡ −

√
2

3

Qm,n+1Qm+1,n−1

Qm+1,nQm,n
, (10b)

where w̃
(j)
m,n = w(z; α̃

(j)
m,n, β̃

(j)
m,n), for j = i, ii, are solutions of PIV, respectively,

for the parameters (α
(i)
m,n, β

(i)
m,n) = (−(m + 2n),−2(m − 1

3)
2) and (α

(ii)
m,n, β

(ii)
m,n) =

(2m+ n,−2(n− 1
3)

2).

Proof. See Noumi and Yamada [38]; also [13]. ¥

The rational solutions of PIV defined by (10) include all solutions in the
“−2z/3” hierarchy, i.e. the set of rational solutions of PIV with parameters given
by (5), which also can be expressed in the form of determinants [30, 38]. Each
polynomial Qm,n(z) has degree dm,n = m2 +n2 +mn−m−n with integer coeffi-
cients [38]; in fact Qm,n(ζ/

√
2) is a monic polynomial in ζ with integer coefficients.

Examples of generalized Okamoto polynomials and plots of the locations of their
roots are given in [13]. Plots of the roots of Q6,6(z) and Q7,7(z) are given in
Figure 2.

Next we express rational solutions of the ODE satisfied by the Hamiltonian for
PIV in terms of Hm,n(z) and Qm,n(z).
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Figure 2. Roots of the generalized Okamoto polynomials Q6,6(z) and Q7,7(z)

Example 1. The Hamiltonian for PIV is [39] HIV(q, p, z; θ0, θ∞) = 2qp2 − (q2 +
2zq + 2θ0)p+ θ∞q, then from Hamilton’s equation we have

q′ = 4qp− q2 − 2zq − 2θ0, p′ = −2p2 + 2pq + 2zp− θ∞. (11)

Eliminating p in (11), shows that q = w satisfies PIV with parameter values
(α, β) =

(
1− θ0 + 2θ∞,−2θ20

)
, and eliminating q in (11), gives that w = −2p

satisfies PIV with (α, β) =
(
−1 + 2θ0 − θ∞,−2θ2∞

)
. The Hamiltonian function

σ(z; θ0, θ∞) = HIV(q, p, z; θ0, θ∞) satisfies
(
σ′′
)2

= 4
(
zσ′ − σ

)2 − 4σ′
(
σ′ + 2θ0

) (
σ′ + 2θ∞

)
. (12)

This is equivalent to equation SD-I.c in the classification of second-order, second-
degree ODEs with the Painlevé property due to Cosgrove and Scoufis [17], an equa-
tion first derived and solved by Chazy [9] and rederived by Bureau [8]. Further (12)
arises in various applications including random matrix theory (cf. [21, 48]). It is
shown in [14] that rational solutions of (12) have the form

σm,n(z;−n,m) = H ′
m,n(z)/Hm,n(z), (13a)

σ̃m,n(z;−n+
1

3
,m− 1

3
) =

4

27
z3 − 2

3
(m− n)z +Q′m,n(z)/Qm,n(z). (13b)

Using this Hamiltonian formalism, it is shown in [14] thatHm,n(z) andQm,n(z),
which are defined by differential-difference equations (7) and (9) respectively, also
satisfy fourth order bilinear ODEs and homogeneous difference equations.

3 Rational and Rational-Oscillatory Solutions
of the Nonlinear Schrödinger Equation

The NLS equation (2) has the scaling reduction u(x, t) = t−1/2R(ζ) exp{iΘ(ζ)},
ζ = x/

√
t, where R(z) and Θ(ζ) satisfy

R′′ −R
(
Θ′
)2

=
1

2
RζΘ′ + 2R3, 2R′Θ′ +RΘ′′ +

1

2
ζR′ +

1

2
R = 0 (14)
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(see [7, 22,33] for details). Multiplying (14b) by R and integrating yields

Θ′(ζ) = −1

4
ζ +

C

R2(ζ)
− 1

4R2(ζ)

∫ ζ

R2(s) ds,

with C an arbitrary constant. Substituting this into (14a) and setting V (ζ) =∫ ζ
R2(s) ds− 4C yields a third-order equation which has first integral

(
V ′′
)2

= −
(
V − ζV ′

)2
/4 + 4

(
V ′
)3

+KV ′, (15)

with K an arbitrary constant. This is solvable in terms of PIV provided that
K = (α + 1)2/9 and β = −2(α + 1 + 2iµ)2/9 since making the transformation
V (ζ) = −e−πi/4W (z)/2, with ζ = 2eπi/4z, in (15) yields

(
W ′′
)2

= 4
(
zW ′ −W

)2 − 4
(
W ′
)3

+ 4κ2W ′, (16)

with κ2 = 4K = 4(α + 1)2/9. Equation (16) is a special case of (12), with
θ0 = ±κ/2 and θ∞ = ∓κ/2, and so can be solved in terms of PIV. Therefore,
from (13), rational solutions of (16) have the form

Wn(z;±2n) = H ′
n,n(z)/Hn,n(z), (17a)

W̃n(z;±2(n−
1

3
)) = 4z3/27 +Q′n,n(z)/Qn,n(z). (17b)

Hirota and Nakamura [26] (see also [7,27]) show that the NLS equation (2) has
rational solutions, which decay algebraically as |x| → ∞, in the form

un(x, t) = gn(x, t)/fn(x, t), (18)

where gn(x, t) and fn(x, t) are polynomials in x of degrees n2 − 1 and n2, respec-
tively. Hence it can be shown that

gn(x, t) = n exp

{
1

2
(n2 − 1)(ln t− 1

2
πi)

}
Hn+1,n−1(z), z =

x eπi/4

2
√
t
,

fn(x, t) = exp

{
1

2
n2(ln t− 1

2
πi)

}
Hn,n(z),

and so algebraically decaying rational solutions of the NLS equation (2) are
given by

un(x, t) =
n eπi/4√

t

Hn+1,n−1(z)

Hn,n(z)
, z =

x e−πi/4

2
√
t
. (19)

The first of these are

u1(x, t) =
1

x
, u2(x, t) =

2x(x2 + 6it)

x4 − 12t2
,

u3(x, t) =
3(x8 + 16itx6 − 120t2x4 + 720t4)

x(x8 − 72t2x4 − 2160t4)
.
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Figure 3. The zeroes (◦) and poles (+) of the rational solutions u5(x, t) and u6(x, t)

Plots of the zeroes (◦) and poles (+) of u5(x, t) and u6(x, t) are given in Figure 3.
Hone [27] showed that more general algebraically decaying rational solutions

of the NLS equation (2) have the form

un(x, t) = Gn(x, t;κ2n−1)/Fn(x, t;κ2n−1), (20)

where Gn(x, t;κ2n−1) and Fn(x, t;κ2n−1) are polynomials in x of degrees n2 − 1
and n2, respectively, with coefficients that are polynomials in t and the parameters
κm = (κ3, κ4, . . . , κm). The first few polynomials are

F2(x, t;κ3) = x4 − 12t2 + κ3x, G2(x, t;κ3) = 2x3 + 12ixt− κ3,
F3(x, t;κ5) = x9 + 6κ3x

6 − 72x5t2 + κ5x
4 + 120κ4x

3t+ 360κ3x
2t2

+ (κ3κ5 − 15κ24 − 2160t4)x− 12κ5t
2 − 60κ3κ4t− 5κ33,

G3(x, t;κ5) = 3x8 + 48ix6t+ 6κ3x
5 − 30(iκ4 + 12t2)x4 − 2(κ5 + 60iκ3t)x

3

+ 30κ23x
2 −

[
i(12κ5t+ 30κ3κ4) + 360κ3t

2
]
x+ 2160t4 + κ3κ5

− 15κ24 − 60i(κ23 + 6κ4t)t.

Note that when κ2n−1 = 0 then Fn(x, t;0) = fn(x, t) and Gn(x, t;0) = gn(x, t).
We write the generalized rational solution (20) in the form

un(x, t) =
Gn(x, t;κ2n−1)

Fn(x, t;κ2n−1)
≡

n2∑

j=1

ψj(t;κ2n−1)

x− ϕj(t;κ2n−1)
, (21)

to study the motion of the residues ψj(t;κ2n−1) and the poles ϕj(t;κ2n−1), for j =
1, 2, . . . , n2. Preliminary numerical simulations suggest the following conjecture,
which it is anticipated can be verified by developing the ideas in [27], though we
shall not pursue this further here.

Conjecture 1. Generalized rational solutions of the NLS equation (2) have the
form

u(x, t) =
n∑

j=1

αj(t)

x− aj(t)
+

n(n−1)/2∑

k=1

{
βk(t)

x− bk(t)
+

γk(t)

x− b∗k(t)

}
, (22)
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where aj(t) are real, b∗k(t) is the complex conjugate of bk(t) and

|αj(t)| = 1, j = 1, 2, . . . , n, βk(t)γ
∗
k(t) = 1, k = 1, 2, . . . , n(n−1)/2, (23)

with γ∗k(t) the complex conjugate of γk(t).

Analogously, using the rational solutions of (16) that are expressed in terms
of Qm,n(z), i.e. (17b), it can be shown that the NLS equation (2) has rational-
oscillatory solutions of the form

ũn(x, t) =
e−πi/4

3
√
2t

Qn+1,n−1(z)

Qn,n(z)
exp

(
− ix2

6t

)
, z =

x eπi/4

2
√
t
. (24)

We believe that these are new solutions of the NLS equation (2). The first few of
these are

ũ0(x, t) =
x

6t
exp

(
− ix2

6t

)
, ũ1(x, t) =

x2 − 6it

6xt
exp

(
− ix2

6t

)
,

ũ2(x, t) =
x(x8 − 48itx6 − 504t2x4 − 45360t4)

6t(x8 + 504x4t2 − 9072t4)
exp

(
− ix2

6t

)
.

Since Qm,n(z) has degree dm,n = m2 + n2 +mn−m− n then the solutions (24)
have the form

ũn(x, t) =
g̃n(x, t)

f̃n(x, t)
exp

(
− ix2

6t

)
,

where g̃n(x, t) and f̃n(x, t) are polynomials in x of degrees 3n2−2n+1 and 3n2−2n,
respectively, with coefficients that are polynomials in t. Plots of the zeroes (◦)
and poles (+) of ũ5(x, t) and ũ6(x, t) are given in Figure 4.
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Figure 4. The zeroes (◦) and poles (+) of the rational solutions ũ5(x, t) and ũ6(x, t)
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It is an open question whether, analogous to the generalized rational solu-
tions (20), there are generalized rational-oscillatory solutions of the NLS equa-
tion (2) in the form

ũn(x, t) =
G̃n(x, t;κm)

F̃n(x, t;κm)
exp

(
− ix2

6t

)
, (25)

where G̃n(x, t;κm) and F̃n(x, t;κm) are polynomials in x of degrees 3n2 − 2n+ 1
and 3n2− 2n, respectively, with coefficients that are polynomials in t and the pa-
rameters κm = (κ3, κ4, . . . , κm), such that G̃n(x, t;0) = g̃n(x, t) and F̃n(x, t;0) =
f̃n(x, t).

We remark that the NLS equation (2) has the rational-oscillatory solution

u(x, t) =
1

2
ρei(κx−ωt)

{
1− 4(1− iρ2t)

1− ρ2(x− 2κt)2 + ρ4t2

}
, ω = κ2 +

1

2
ρ2,

with ρ and κ arbitrary constants, which is not of the form (24), see Tajiri and
Watanabe [47].

4 Discussion

In this paper we have studied properties of special polynomials associated with
rational solutions of PIV and with rational and rational-oscillatory solutions of
the NLS equation (2). In particular the roots of these polynomials are shown
numerically to have a very symmetric structure. There are similar results for
special polynomials associated with rational solutions of PII [16], rational and
algebraic solutions of PIII [12], rational and algebraic solutions of PV [15], and
rational solutions of equations in the PII hierarchy [16].

The poles of rational solutions of the KdV equation (3) satisfy a dynamical
system, a constrained Calogero-Moser system [3, 5, 10]. The zeroes and poles of
the rational solutions of the NLS equation (2) given by (20) satisfy an dynamical
system [27] which warrants further investigation. It is anticipated that zeroes and
poles of the rational-oscillatory solutions of the NLS equation (2) given by (24)
will also satisfy an interesting dynamical system.

An explanation and interpretation of the numerical results for these special
polynomials is an interesting open problem, as is whether they have applications,
e.g. in numerical analysis?
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polynomials. Nagoya Math. J. 153 (1999), 53–86.
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[49] H. Umemura, Painlevé equations and classical functions. Sugaku Expositions 11 (1998),
77–100.

[50] H. Umemura and H. Watanabe, Solutions of the second and fourth Painlevé equations I.
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58–59.

[52] A.I. Yablonskii, On rational solutions of the second Painlevé equation. Vesti Akad. Navuk.
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Ordinarily Lie point symmetries, Noether symmetries, potential symmetries
and so on, of differential equations have been calculated by determining the
action of a vector field on solutions of the equation. An alternative method,
devised by B. Kent Harrison and Frank Estabrook [4], calculates Lie symmetries
of differential equations by calculating the Lie derivative of differential forms
associated with the differential equation. In this paper the original method is
modified slightly and then extended to incorporate potential symmetries and
approximate symmetries. Examples are given.

1 Introduction

A method for writing a differential equation or system of differential equations
in terms of differential forms is described. The method was devised by B. Kent
Harrison and F. Estabrook and the reader is referred to [4] for a more complete
description. For the properties of differential forms and their products see, e.g.,
Do Carmo [3].

A modification to the method is demonstrated on a wave equation with variable
speed and the modified method is extended to calculate approximate and potential
symmetries, and finally, Noether symmetries.

2 A Modification

In Harrison and Estabrook’s original method differential equations were expressed
in terms of differential forms and one requirement was that the differential forms
should form a differential ideal. Another requirement was that the Lie derivative
of these forms should remain in the ideal. Here, rather than ensuring that the Lie
derivative of our forms stays within an ideal, we ensure that the Lie derivative
of the forms is zero when the forms themselves are zero. There are some advan-
tages to this method, one of which being that it is easy to extend the method
to approximate symmetries. A wave equation with variable speed is used as an
example.

Consider the equation

utt = e2xuxx. (1)
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Let ut = w and ux = z. Then (1) becomes wt = e2xzx, which is now a first order
equation. Let

α = du− wdt− zdx = uxdx+ utdt− wdt− zdx, (sectioning)

α = 0 =⇒ ut = w ; ux = z, (annulling)

and

β = dwdx+ e2xdzdt = (wxdx+ wtdt)dx+ e2x(zxdx+ ztdt)dt

= wtdtdx+ e2xzxdxdt, (sectioning)

β = 0 =⇒ wt = e2xzx. (annulling)

We do not worry about dα or dβ because it is not necessary that they are members
of an ideal. In fact, it turns out that imposing the condition dα = 0 (which
corresponds to the equation utx = uxt) actually limits the number of symmetries.
This is because LXβ = 0 does not imply that LXdβ = 0.

Now we calculate the Lie derivatives of α and β on solutions of (1), i.e. when
α = β = 0:

LXα|α=0, β=0 = Xc(dα) + d(Xcα)|α=0, β=0 = −Xzdx−Xwdt+ ηxdx

+ηtdt+ ηu(zdx+ wdt)− zξxdx− zξtdt− zξu(zdx+ wdt)

−wτxdx− wτtdt− wτu(zdx+ wdt),

where α = 0 implies du = wdt + zdx, and β = 0 has no effect because β is
a 2-form. Separating the coefficients of dt and dx shows that

LXα|α=0, β=0 = 0 =⇒
dx : Xz = ηx + z(ηu − ξx)− z2ξu − wτx − wzτu,
dt : Xw = ηt + w(ηu − τt)− zξt − zwξu − w2τu.

In other words, LXα|α=0, β=0 = 0 gives us the prolongation coefficients of X.
Now, our wave equation (1) is a second-order equation, but with this technique,
we need only calculate prolongation coefficients up to first order.

Next we turn our attention to β.

LXβ|α=0, β=0 = Xc(dβ) + d(Xcβ)|α=0, β=0

= (Xw
t − e2xXz

x − ze2xXz
u + wXw

u )dtdx− (ξt + e2xXz
w + wξu)dtdw

− e2x(Xz
z + τt + wτu −Xw

w − ξx − zξu + 2ξ)dtdz

− (Xw
z + e2xτx + e2xzτu)dxdz,

where the substitutions du = wdt + zdx and dwdx = e2xdtdz were made. Sepa-
rating coefficients of dtdx, etc, gives

dtdx : Xw
t − e2xXz

x − ze2xXz
u + wXw

u = 0,

dtdw : ξt + e2xXz
w + wξu = 0,

dtdz : Xz
z + τt + wτu −Xw

w − ξx − zξu + 2ξ = 0,

dxdz : Xw
z + e2xτx + e2xzτu = 0.
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We substitute the prolongation formulae, so that all equations are in terms of w,
z and functions independent of w and z. The coefficients of w and z are split,
to get the usual determining equations, and, eventually, the symmetries

X1 = u
∂

∂u
, X2 =

∂

∂t
, X3 =

∂

∂x
− t ∂

∂t
+
u

2

∂

∂u
,

X4 = t
∂

∂x
− 1

2
(t2 + e−2x)

∂

∂t
+
tu

2

∂

∂u
, X∞ = B(x, t)

∂

∂u
,

where Btt = e2xBxx. We note that the algebra is complete, with commutators as
follows:

[X1, X2] = 0, [X1, X3] = 0, [X1, X4] = 0, [X1, X∞] = −X∞,

[X2, X3] = −X2, [X2, X4] = X3, [X2, X∞] = Bt
∂

∂u
= X∞,

[X3, X4] = −X4, [X3, X∞] =

(
Bx − tBt −

1

2
B

)
∂

∂u
= X∞,

[X4, X∞] =

(
tBx −

1

2

(
t2 + e−2x

)
Bt −

t

2
B

)
∂

∂u
= X∞.

3 Extensions

The ideas above may also be used to calculate potential symmetries, approximate
symmetries and Noether symmetries.

3.1 Potential Symmetries

The method is demonstrated in the following example.
Consider Burgers’ equation uxx − uux − ut = 0 which has the associated aux-

illiary system

vx = 2u, vt = 2ux − u2. (2)

We introduce the 2-forms

α = dvdt− 2udxdt = vxdxdt− 2udxdt,

β = dvdx+ 2dudt+ u2dtdx = vtdtdx− 2uxdtdx+ u2dtdx,

which return the system (2) when annulled. It is unnecessary to introduce new
variables since the equations are already first-order. This means that no prolon-
gation coefficients need be calculated. To calculate a symmetry X = τ∂t + ξ∂x +
φ∂u + η∂v of (2) we calculate the Lie derivatives of these forms. Firstly

LXα = Xcdα+ d(Xcα) = (2φ− ηx + 2uξx + 2uτt)dtdx+

(2uξu − ηu)dtdu+ (2uξv − ηv − τt)dtdv − 2uτudxdu

+(−τx − 2uτv)dxdv − τududv.
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When α = β = 0, we have dtdv = 2udtdx and dxdv = u2dtdx− 2dtdu so that

LXα|α=β=0 = (2φ− ηx + 2uξx + 2uτt − u2τx − 2u3τv + 4u2ξv − 2uηv

−2uτt)dtdx+ (2uξu − ηu + 2τx + 4uτv)dtdu− 2uτudxdu− τududv
and we may now split the coefficients of dtdx, dtdu etc to get

dtdx : 2φ− ηx + 2uξx + 2uτt − u2τx − 2u3τv + 4u2ξv − 2uηv − 2uτt = 0,

dtdu : 2uξu − ηu + 2τx + 4uτv = 0,

dudv : τu = 0,

dxdu : the same.

Next

LXβ = Xc(dβ) + d(Xcβ) = (2uφ+ ηt − 2φx + u2τt + u2ξx)dtdx

+(u2ξu − 2φu − 2τt)dtdu+ (u2ξv − ξt − 2φv)dtdv

+(−u2τu − ηu − 2τx)dxdu+ (−ηv − ξx − u2τv)dxdv + (2τv − ξu)dudv.
When α = β = 0, we get

LXβ|α=β=0 = (2uφ+ ηt − 2φx − u2τt + u2ξx + 2u3ξv − 2uξt − 4uφv

−u2ηv − u2ξx − u4τv)dtdx+ (u2ξu − 2φu − 2τt + 2ηv + 2ξx + 2u2τv)dtdu

−(ηu + 2τx + u2τu)dxdu+ (2τv − ξu)dudv,
which may be split into

u2ξu − 2φu − 2τt + 2ηv + 2ξx + 2u2τv = 0,

ηu + 2τx + u2τu = 0, 2τv − ξu = 0,

2uφ+ ηt − 2φx − u2τt + u2ξx + 2u3ξv − 2uξt − 4uφv−
u2ηv − u2ξx − u4τv = 0.

From here onwards the calculations proceed in the standard way and eventually
we arrive at the symmetries

X1 =
∂

∂t
, X2 = t

∂

∂x
+

∂

∂u
+ 2x

∂

∂v
, X3 =

∂

∂v
,

X4 =
∂

∂x
, X∞ = ev/4 (2Cx + uC)

∂

∂u
+ 4ev/4C

∂

∂v
,

where C is any solution of Ct = Cxx. The commutators are as follows:

[X1, X2] = X4, [X1, X3] = 0, [X1, X4] = 0, [X2, X3] = 0,

[X1, X∞] = ev/4(2Cxt + uCt)
∂

∂u
+ ev/4Ct

∂

∂v
= X∞,

[X2, X4] = −2X4, [X2, X∞] = ev/4(2tCxx + utCx + C + xCx

+
ux

2
C)

∂

∂u
+ ev/4(4tCx + 2xC)

∂

∂v
= X∞, [X3, X4] = 0,

[X3, X∞] =
1

4
X∞, [X4, X∞] = ev/4(2Cxx + uCx)

∂

∂u
+ 4ev/4Cx

∂

∂v
= X∞.
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3.2 Approximate Symmetries

We have shown that differential forms may be used to calculate ordinary Lie
symmetries and potential symmetries of differential equations. The method may
be extended to calculate approximate symmetries as well, as the next example
demonstrates. Firstly, we recall some notation. Let

E(xi, uα, uα(1), . . .) + εF (xi, uα, uα(1), . . .) = 0 (3)

be a perturbed equation, where E = 0 is the associated unperturbed equation.
An approximate symmetry of (3) is a vector field X such that

X(E + εF )|E+εF=0 = O(ε2).

Now the perturbed equation gives rise to differential forms γj = αj+εβj , where
the αj are forms arising from the unperturbed equation E = 0. We refer to the
γj collectively as I and the αj as I0. The phrase I = 0 should be taken to mean
that for each γj we have γj = 0 and similarly for I0 = 0. The condition that X
be an approximate symmetry of (3) can now be rewritten as the system

LXγj |I=0 = O(ε2).

3.2.1 A Perturbed Wave Equation

We adapt the algorithm due to Baikov et al in [1] and [2] to find the approximate
symmetries of a perturbed wave equation

utt − e2xuxx + εF (t, x, u, ut, ux) = 0, (4)

the unperturbed version of which we have already encountered (equation (1))
and calculated symmetries. Recall that we introduced new variables w = ut and
z = ux and used the forms α = du− zdx− wdt and β = dwdx+ e2xdzdt, which
gave rise to, among others, the symmetry

X0 =
∂

∂x
− t ∂

∂t
+
u

2

∂

∂u

(
+
3w

2

∂

∂w
+
z

2

∂

∂z

)
.

For the perturbed equation (4), we continue to use the 1-form α, which gives
w = ut and z = ux when annulled, but β will not work without modification
and so we introduce γ = dwdx + e2xdzdt + εFdtdx = β + εFdtdx, which gives
utt − e2xuxx + εF = 0 when annulled. Using the symmetry X0 for the algorithm
described above, we calculate h1 = ε−1LX0α|I=0 = 0. Thus for α we must find a
symmetry, X1, such that

LX1α|I0=0 + h1 = 0 =⇒ LX1α|I0=0 = 0,

which is no different to the unperturbed case and we end up finding that X1 must
have the usual prolongation coefficients although we note that, as before, they
need only be calculated to first order.
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Next h2 = ε−1LX0γ|I=0 = (Fx − tFt + (uFu + 3wFw + zFz − 5F )/2) dtdx. The
next step in our algorithm is to find X1 (which we call Y to avoid confusion with
subscripts) such that LY β|α=β=0+h2 = 0, where we recall that β = γ when ε = 0.

LY β|α=β=0 + h2 = {Y cdβ + d(Y cβ)} |α=β=0 + h2 =
(
Y w
t − e2xY z

x

−ze2xY z
u + wY w

u +Fx − tFt +
u

2
Fu +

3w

2
Fw +

z

2
Fz −

5

2
F

)
dtdx

+
(
−2ξt − e2xY z

w − wξu
)
dtdw + e2x (−ξ − Y z

z − τt − wτu + Y w
w

+ξx + zξu) dtdz +
(
−Y w

z − e2xτx − ze2xτu
)
dxdz.

Thus LY β|α=β=0 + h2 = 0 implies that

Y w
t − e2xY z

x − ze2xY z
u + wY w

u + Fx − tFt +
u

2
Fu +

3w

2
Fw +

z

2
Fz −

5

2
F = 0,

ξt + e2xY z
w + wξu = 0, 2ξ + Y z

z + τt + wτu − Y w
w − ξx − zξu = 0,

Y w
z + e2xτx + ze2xτu = 0,

which is exactly the same set of determining equations that the ordinary method
gives and so from here on the calculations are identical.

4 Conclusion

We see that the Lie derivative offers, in some ways, a more natural way of calcu-
lating symmetries of differential equations; with this method, fewer prolongation
coefficients need be calculated than with the traditional method.

There are possible insights to be gained from the way the independent variables
are handled using these methods. For example, we see that the exact role played by
the equality (or lack of equality) of mixed derivatives of the dependent variables,
and the way that this seems to limit the number of symmetries available, could
perhaps be made clearer.
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A new package for computing the symmetries of systems of differential equa-
tions using Mathematica is presented. Armed with adaptive equation solving
capability and pattern matching techniques, this package is able to handle sys-
tems of differential equations of arbitrary order and number of variables with
the least memory cost possible. By harnessing the capabilities of Mathematica’s
front end, all the intermediate mathematical expressions, as well as the final
results apear in familiar form. This renders the package a very useful tool for
introducing the symmetry solving method to students and non-mathematicians.

1 Introduction

The effectiveness of the method of symmetry analysis of differential equations
first introduced by Sophus Lie is well established. The success of Lie’s method is
partly due to the fact that it allows one to find the symmetries of a given (sys-
tem of) equation(s) algorithmically. However, as the number of variables and/or
equations increases, the pertinent calculations become unmanageable. On the
other hand, complex systems involving a large number of independent variables
are frequently met in practice, e.g. in all areas of theoretical and applied physics.
The Einstein field equations of general relativity and the Navier–Stokes equations
of hydrodynamics could be cited as representative examples. In all such cases,
the huge amount of calculations involved in applying the symmetry method render
the use of computer algebra programs imperative.

In recent years, several symmetry–finding packages have been developed [1].
Most of them are based on the widely used computer algebra systems (CAS), such
as REDUCE [2], MACSYMA, Maple and Mathematica [3]. The functionality of
the above packages varies greatly. Some of them are effective only for differential
equations of polynomial form. Others give only the determining equations in a
reduced form and, then, the user must solve the latter interactively, at best. In
any case, most of the packages developed so far fare well in practice only for
determining the Lie point symmetries of scalar equations.

The purpose of this presentation is to introduce SYM, a new package for com-
puting symmetries using Mathematica. SYM’s main advantage over its predeces-
sors is twofold. First, it provides the user with an easy to comprehend interface.
This has been made possible by hiding effectively the cumbersome and awkward
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way the CAS itself represents mathematical expressions. In particular, all the ex-
pressions appearing in both the input and output of the package are represented
in the familiar form encountered in the mathematical literature. Moreover, SYM
is distinguished by its ability to handle and calculate the symmetries of complex
systems of differential equations efficiently and without much intervention from
the user. This has been achieved by making use of the powerful programming
language of Mathematica. As a result the package is fast, reliable, and consumes
less memory.

2 The Sym Package

The fundamental characteristic of SYM is its modularity. This means that it is
based on a specific set of functions which are employed in the symmetry analysis
of a given equation. They are functions defined using the well known algorithms of
symmetry analysis which stems from Sophus Lie’s theory ( [5–8]). In this section
we give some further details regarding the features of the program and a few
examples that illustrate its effectiveness.

2.1 Main Features

The basic functions that any symmetry finding package has to perform are [4, 5]:

(i) To obtain the determining equations,

(ii) To reduce and simplify the system of determining equations, and

(iii) To integrate this overdetermined system

Besides complying to the above guidelines, SYM carries the following features.

• Every infinitesimal generator and its prolongation are defined and used as
operators. Hence, the action of an infinitesimal generator on any algebraic
or differential equation can be easily manipulated. This is accomplished
using the command X[n,{x,y},{u}] which turns the n-th extension of the
infinitesimal operator ξ1(x, y, u)∂x+ξ2(x, y, u)∂y+η(x, y, u)∂u into a “a pure
function”. Examples where this feature can be exploited are the analysis of
the invariant surface condition and the supplementary equations involved in
the symmetry analysis of an initial–boundary problem. Likewise, the com-
mand X[n,{x,y},{u,h},2] defines as a pure function the n-th extension of
the infinitesimal generator in characteristic form:

Q1(x, y, u, h, ux, uy, uxy, uxx, uyy, hy, hxy, hxx, hyy)∂u

+Q2(x, y, u, h, ux, uy, uxy, uxx, uyy, hy, hxy, hxx, hyy)∂h,

which is needed in the investigation of generalized symmetries.
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• The structural elements of the equations to be analyzed are automatically
pinpointed and characterized. This is attained by making the program look
at a differential equation in a human like fashion, using commands like
CharacterizeEq[*]. The latter produces automatically several features of
equation, such as its order, the independent and dependent variables, etc.
This feature minimizes the input required, restricting it to the differential
equation or the system of such equations under study, only. The above
commands not only facilitate the substitutions needed in the process of
automatically solving the linearized symmetry condition, but they render
these substitutions easy to materialize in the case the user has to solve the
above system interactively.

• An intelligent integrator of the system of overdetermined equations, which is
incorporated in the fundamental command SolveOverdeterminedEqs. En-
hancing Mathematica’s internal one, SYM’s differential solver mimics the
human behavior by following a novel algorithm we call “Seek&Solve”: it lo-
cates the appropriate equation to solve, substitutes the solution of the latter
to the remaining equations and, after making the necessery simplifications,
it repeats the previous cycle. Thanks to the various rules and tactics in-
corporated in the solver, the program will adapt its solving strategy to the
system at hand. It terminates only when the complete solution is achieved,
or when the remaining equations are not solvable. In this connection, we
stress that the solver can deal with systems which include equations of non
polynomial type. All possible differential constraints on arbritary functions
contained in the solutions are given explicitly. In addition, the package pro-
vides the option of printing all the steps followed in obtaining the solution.
This feature allows the program’s user to check all the intermediate steps
at any time.

• Additional functions for manipulating the system’s symmetries are included.
SYM gives all the generators of the one–parameter subgroups, their com-
mutator table and the structure constants of the corresponding algebra.

• All intermediate and final expressions are presented in a compact and el-
egant fashion. More specifically, by taking advandage of the expression
masking capabilities of Mathematica, SYM presents both the equations to
be solved as well as the intermediate and final results in the familiar form
that one encounters in the mathematical literature. Moreover, these familiar
expressions can be manipulated freely by the user himself.

2.2 Illustrative Examples

The package has been tested against a variety of differential equations, espe-
cially systems, from various sources [5–8]. It has also been tested by the in-
teractive derivation of conditional symmetries — both point and generalized, of
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several equations of research interest. The following are characteristic examples
of the equations against which SYM has been tested. The last one has been
considered, up to now, as the benchmark for symmetry–finding packages.

(i) The modified Kadomtsev–Petviashvili equation

3uyy − 4uxt − 6uyuxx − 6u2xuxx + uxxxx = 0 (1)

(ii) The generalization of the Ernst equation derived in [9]

∂u

(
Aυ +

A2

ρ
Uυ(u, υ) +m

A

ρ

)
+ ∂υ

(
Au +

A2

ρ
Uu(u, υ)− n

A

ρ

)
= 0,

ρ =
1

2
(υ − u), A =

1

2

(
2ρ

Uuυ
UuUυ

+
n

Uu
− m

Uυ

)
. (2)

(iii) The Einstein vacuum equations for the Bondi metric [10]

βr =
rγ2r
2
,

Urr =
2e−2γ(u,r,θ)

r3

(
−2e2β(u,r,θ)βθ − 2e2γr2Ur + e2γr3Urβr

− 2re2βγr cot θ + 2e2βrγrγθ − e2γr3Urγr + e2βrβrθ − e2βrγrθ
)
,

βθθ = −
1

4
e−4β

(
−4e4β − 8e2(β+γ)rU(u, r, θ) cot θ − 8e2(β+γ)rUθ+

4e4ββθ cot θ + 4e4ββ2θ − 12e4βγθ cot θ − 8e4ββθγθ + 8e4βγ2θ−
4e4βγθθ − 2e2(β+γ)r2Ur cot θ + e4γr4U2

r + 4e2(β+γ)Vr− (3)

2e2(β+γ)r2Urθ

)
,

γθθ = −e−2β
(
3e2γrU cot θ + e2γrUθ − 2e2ββθ cot θ + 3e2βγθ cot θ

+ e2β − 2e2γrUγθ + 2e2ββθγθ − 2e2βγ2θ + e2γr2Ur cot θ − e2γVr
− e2γr2γθUr − e2γr2U cot θγr + e2γV (u, r, θ)γr − e2γr2Uθγr
+e2γrVrγr − 2e2γr2Uγrθ + e2γrV γrr − 2e2γrγu − 2e2γr2γur

)

(iv) The Magneto–Hydro–Dynamics equations

ρt = −∇ · (ρ(x, y, z, t)~υ),

~υt = −(~υ · ∇)~υ −
1

ρ

(
∇
(
p(x, y, z, t) +

1

2
~H2(x, y, z, t)

)
− ( ~H · ∇) ~H

)
,

~Ht = ( ~H · ∇)~υ − (~υ · ∇) ~H − ~H∇ · ~υ, (4)

∇ · ~H = 0, pt = −kp(∇ · ~υ)− (~υ · ∇)p.
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The Lie point symmetries of the above equations were obtained using SYM’s
ClassicalSymmetries[] function. In the table below we present the time and
the amount of physical memory needed for the calculation. The PC used in the
test was a Pentium IV laptop at 3.2GHz with 1GB of physical memory.

equation time physical memory

1 6.8 sec 6 MB

2 95.8 sec 374 MB

3 25.1 min 269 MB

4 19.4 min 32 MB

In way of comparison, we first mention that MathLie, the symmetry–finding pack-
age for Mathematica developed by G. Baumann [11], wasn’t able to give non–
interactively even the determining equations for examples (ii)–(iv). On the other
hand, the MACSYMA based package SYMMGRP.MAX took 50 minutes of CPU
time on a Digital VAX 4500 with 64MB of RAM for deriving only the (222)
determining equations of example (iv).

The Lie point symmetries of the equations in examples (i) and (iv) are well
documented [4]. Therefore we restrict ourselves to presenting the symmetry gen-
erators of the equations in examples (ii) and (iii). They are given by

X1 = ∂u + ∂υ, X2 = u∂υ + υ∂υ, X3 = ∂U , X4 = U∂U , X5 = U2∂U

and

X1 = −r∂r − 2V ∂V +
1

2
∂β + ∂γ , X2 = 2r∂r + 4V ∂V + ∂β,

Xf1 = f1(u)∂u − Uf1u∂U − V f1u∂V −
f1u
2
∂β,

Xf2 = −r
2
(f2 cot θx+ f2θ)∂r + f2(u, θ)∂θ+

(
Uf2θ + f2u +

e2(β−γ)

2r
(f2θθ + f2θ cot θ − f2 csc2 θ)

)
∂U+

(
r2(Uf2θθ + f2u cot θ + f2uθ) + (r2U cot θ − V )f2θ−

(r2U csc2 θ + V cot θ)f2
)
∂V +

f2 cot θ + f2θ
4

∂β +
f2 cot θ − f2θ

2
∂γ ,

respectively.

3 Applications in Education

Because of the familiar way it represents mathematical expressions, its easy to
use interface and modular structure, SYM can be used effectively in courses on
the symmetry analysis of differential equations. By using it, students can become
familiar with the fundamental notions of symmetry analysis much more easily.
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Because it presents the symmetry construction process in a step by step fashion
and allows students to experiment on their own. In addition, the package can be
exploited in the context of webMathematica. More specifically, everyone with an
internet access can use SYM for getting introduced to modern group analysis of
differential equations, without having to own the actual CAS.

4 Future Additions

The symmetry–finding package presented in this talk needs to be further devel-
oped and completed. The following are among the additions that would make
SYM even more effective:

• High–level comands that would make it able to automatically calculate con-
ditional, non–local and discrete symmetries,

• Tools for the construction of recursion operators and master symmetries,

• Functions concerning various aspects of the corresponding Lie algebras, such
as their solvability, the optimal system etc., and the group classification of
solutions.

• Differential algebra algorithms which determine the system of determining
equations and specify its solution space [12,13]
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In a previous paper [1] the Singular Manifold Method was presented as an
excellent tool to study the 2+1 dimensional equation (hxxz − 3(hz)

−1h2
xz/4 +

3hxhz)x = hyz. In this paper a method to obtain iterated solutions is given
and different solitonic solutions are presented.

1 Introduction

It is well-known that there are different ways to study non-linear partial differen-
tial equations, among them, the Singular Manifold Method (SMM), [6] based on
the Painlevé property [7], playing a significant role. In fact, once the Painlevé test
has been checked for a given partial differential equation, the SMM method gives
Bäcklund transformations, Lax pairs, Darboux transformations and tau-functions
for the partial differential equation. However, the procedure is not very straight-
forward, and some of the problems connected with Painlevé property, Painlevé
test and SMM are listed in a previous paper [1]. It was shown there that a partial
differential equation in 2+1 dimensions can be much better analyzed using the
SMM than its reductions to 1+1 dimensions. This, apparently, strange behavior
seems to be due to the excessive restrictions imposed by the SMM method when
the number of dimensions is not high enough.

In the present work we deal with the same equation from [1] and give a rich
number of iterated solutions, an aspect not studied in detail in that paper.

The paper is organized as follows: In section 2, the equation considered in [1] is
given and the various results found are summarized. Section 3 offers a collection
of solutions.

2 An Equation in 2+1 Dimensions

The equation addressed in our study is as follows

(
hxxz −

3

4

(
h2xz
hz

)
+ 3hxhz

)

x

= hyz, (1)
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where h is a field depending on 2+1 variables: x, y and z. By introducing a new
dependent field p(x, y, z), we can write (1) as the system

hz + p2 = 0, −py + pxxx +
3

2
phxx + 3pxhx = 0.

2.1 Painlevé Test

As proved in [1], the above equation passes the Painlevé test. In fact, writing as
in [1]

h =
∞∑

j=0

hj(x, y, z) (φ(x, y, z))
j−a , (2)

we obtain
∑∞

j=0Cj (φ(x, y, z))
3j−3a−6 , and it turns out that a = 1, and the equa-

tion has resonances in j = 1, 3, 4 while C1, C3 and C4 are identically 0 for any
value of h1, h3 and h4.

2.2 Reductions

Obvious reductions of (1), as stated in [1], are:
1) ∂h/∂y = 0 equivalent to ∂h/∂y = ∂h/∂x (redefining h as h+ x/3) gives us

(
hxxz −

3

4

(
h2xz
hz

)
+ 3hxhz

)

x

= 0, (3)

hz + p2 = 0, (2ppxx − p2x + 3p2hx)x = 0 (4)

(4) is the Ermakov–Pinney equation [2] .
2) From ∂h/∂z = ∂h/∂x, we have the modified Korteweg-de Vries equation

py − pxxx + 6p2px = 0

3) ∂h/∂z = ∂h/∂y affords the 1+1 equation

(
hxxz −

3

4

(
h2xz
hz

)
+ 3hxhz

)

x

= hzz, or

hz + p2 = 0, −pz + pxxx +
3

2
phxx + 3pxhx = 0.

The problems of these equations with respect to the SMM have been discussed
in [1] and, we refer interested readers to that source.

2.3 The Singular Manifold Method

Writing equation (1) in non-local form (see [1]) as

hy = nx, hxxzhz −
3

4
h2xz + 3hxh

2
z − hznz = 0, (5)
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and using the truncated expansion of the Painlevé series (2) at the constant level
j = 1, it follows that solutions h(1), n(1) of (5) can be written as

h(1) = h+
φx
φ
, n(1) = n+

φy
φ
, (6)

where h and n are also seed solutions of the system (5) and φ is the singular
manifold associated with the solution (h, n). By substitution of (6) in (5), we
obtain:

a) The seed solutions; that is, the seed field h can be written as

hx = −Vx
3
− V 2

12
+
Q

3
, hz = −

1

4R
(Rx +RV )2,

where V , R and Q are defined as V = φxx/φx, R = φz/φx, Q = φy/φx.

b) The Singular Manifold Equations, that is

Qz = Sz −
3

2
Rx

(
S +

Rxx
R
− R2

x

2R2

)
(7)

together with the compatibility conditions between the definitions of V,R and Q

Vz = (Rx +RV )x, Vy = (Qx +QV )x,

where S is the Schwartzian derivative, S = Vx − V 2/2.

c) The Lax pair

−ψy + ψxxx + 3hxψx +
3

2
hxxψ = 0 (8)

2hzψxz − hxzψz + 2h2zψ = 0, (9)

where the eigenfunction ψ is related to the singular manifold by φx = ψ2.

d) If ψ1 and ψ2 are two different eigenfunctions for h, there must be two singular
manifolds for h defined by

φ1,x = ψ2
1 and φ2,x = ψ2

2 (10)

and we obtain a new solution (h1), n1)) through the truncated expansion

h1) = h+
φ1,x
φ
, (11)

n1) = n+
φ1,y
φ
, (12)

and a singular manifold φ1) for h1) defined through the expression φ
1)
x = (ψ(1))2.
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Thus, the truncated expression for h1) and n1) can be extended to ψ1) and φ1) as

ψ1) = ψ2 +
Λ

φ1
, φ1) = φ2 +

∆

φ1
, (13)

where Λ = −ψ1Ω and ∆ = −Ω2, and

dΩ = ψ1ψ2dx+(ψ1ψ2,xx+ψ2ψ1,xx−ψ1,xψ2,x+3hxψ1ψ2)dy−
ψ1,zψ2,z

hz
dz (14)

Finally, it follows that (11) and (12), together with (13), are binary Darboux
transformations, although as remarked in [1], they are not the usual binary trans-
formations that appear, for instance, in references [4] and [5]. In reference [3] they
are denominated Bäcklund-gauge transformations.

3 Iterated Solutions

The results of the previous section can be used as an iterative procedure of con-
struction of solutions in the following way. According to (13), φ1) is a singular
manifold for h1). We can therefore construct a new solution h2) by iterating (11) as

h2) = h1) +
φ
1)
x

φ1)
. (15)

A combination of (11) and (15) provides h2) = h+τx/τ, where (13) has been used
to write τ = φ1)φ1 = φ1φ2 − Ω2. Consequently, two elementary solutions ψ1 and
ψ2 of the Lax pair (8)–(9) of a seed solution h allow us to construct a first and
second iteration in the following way h1) = h+ φ1,x/φ1, h

2) = h+ τx/τ, where

φ1)x = (ψ(1))2, φ2)x = (ψ(2))2, τ = φ1)φ1 = φ1φ2 − Ω2,

and Ω is given in (14).
Let us to give some examples of how the method works.

3.1 Dromions: h = 0

Equation (9) is identically satisfied when h = 0. Elementary solutions of (8) are

ψ1 = ek1x+k
3
1y, ψ2 = ek2x+k

3
2y.

Integration of (10) (with the aid of (7)) gives us

φ1 =
1

2k1

(
α1(y) + β1(z) + ψ2

1

)
, φ2 =

1

2k2

(
α2(y) + β2(z) + ψ2

2

)
.

(14) provides Ω = ψ1ψ2/(k1 + k2), τ = φ1φ2 − Ω2. A particular case can be
obtained by choosing the arbitrary functions αi and βi as follows

αi = 0, βi =
1 +

∑n
j=1 e

2ωijz

1 +
∑n

j=1 cije
2ωijz

i = 1, 2.
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In this case, we have

φi =
1

2ki

(
βi + ψ2

i

)
, i = 1, 2.

τ =
1

4k1k2

(
β1β2 + β2ψ

2
1 + β1ψ

2
2 +

(
k1 − k2
k1 + k2

)2

ψ2
1ψ

2
2

)
, and

h1) =
φ1,x
φ1

, h2) =
τx
τ
.

In figure 1, we show the behavior of h
1)
z for n = 2. It corresponds to a dromion

with two jumps.

Figure 1. h
1)
z for n = 2: One-dromion solution with two jumps.

The two-dromion solution can be obtained by setting n = 1 in h
2)
z . This case

is shown in Figure 2.

Figure 2. h
2)
z for n = 1: Two-dromion solution with one jump.

3.2 Line Solitons: h = ω0z

Solutions ψ1 and ψ2 of the Lax pair (8)–(9) are

ψ1 = e
k1x+k3

1y−
ω0
k1
z
, ψ2 = e

k2x+k3
2y−

ω0
k2
z
.
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The corresponding expressions for φ1 and φ2 are

φ1 =
1

2k1

(
1 + ψ2

1

)
, φ2 =

1

2k2

(
1 + ψ2

2

)
,

and Ω and τ are

Ω =
1

k1 + k2
ψ1ψ2, τ =

1

4k1k2

(
1 + ψ2

1 + ψ2
2 +

(
k1 − k2
k1 + k2

)2

ψ2
1ψ

2
2

)
.

The graphics corresponding to h1z and h2z are shown in figure 3.

Figure 3. Line solitons: h
1)
z (left) and h

2)
z (right).
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We show that the fixed point set of a proper action of a Lie groupG on a Poisson
manifoldM by Poisson automorphisms has a natural induced Poisson structure
and we give several applications.

1 Introduction

In the present work, we consider a Poisson action G×M →M of a Lie group G
on a Poisson manifold M : this means that each element g ∈ G acts by a Poisson
diffeomorphism of M . We recall that the action is called proper if the map:

G×M →M ×M, (g, p) 7→ (p, g · p),

is a proper map1. As usual, we will denote byMG the fixed point set of the action:

MG = {p ∈M : g · p = p, ∀g ∈ G}.

For proper actions, the connected components of the fixed point set MG are
(embedded) submanifolds ofM . Notice that these components may have different
dimensions.

The main result of this paper is the following:

Theorem 1. Let G×M → M be a proper Poisson action. Then the fixed point
set MG has a natural induced Poisson structure.

This result is a generalization to Poisson geometry of a well-known proposition
in symplectic geometry, due to Guillemin and Sternberg (see [6], Theorem 3.5),
stating that fixed point sets of symplectic actions are symplectic submanifolds.
We stress that the fixed point set is not a Poisson submanifold. This happens
already in the symplectic case. In the general Poisson case,MG will be a Poisson–
Dirac submanifold in the sense of Crainic and Fernandes (see [1], Section 8) and
Xu ( [11]).

Proper symplectic/Poisson actions have been study intensively in the last 15
years. For example, the theory of (singular) reduction for Hamiltonian systems
has been developed extensively for these kind of actions. We refer the reader

1A map f : X → Y between two topological spaces is called proper if for every compact
subset K ⊂ Y , the inverse image f−1(K) is compact.
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to the recent monograph by Ortega and Ratiu [7] for a nice survey of results in
this area. Theorem 1 should have important applications in symmetry reduction,
and this is one of our main motivations for this work. We refer the reader for
an upcoming publication ( [5]).

This paper is organized as follows. In Section 1, we recall the notion of
a Poisson–Dirac submanifold, and some related results which are needed for
the proof of Theorem 1. In Section 2, we prove our main result. In Section 3, we
deduce some consequences and give some applications.

2 Poisson–Dirac Submanifolds

Let M be a Poisson manifold. For background in Poisson geometry we refer
the reader to Vaisman’s book [10]. We will denote by π ∈ X

2(M) the Poisson
bivector field so that the Poisson bracket is given by:

{f, g} = π(df, dg), ∀f, g ∈ C∞(M).

Recall that a Poisson submanifold N ⊂ M is a submanifold which has a Poisson
bracket and for which the inclusion i : N ↪→M is a Poisson map:

{f ◦ i, g ◦ i}M = {f, g}N ◦ i, ∀f, g ∈ C∞(N).

Such Poisson submanifolds are, in a sense, extremely rare. In fact, they are
collections of open subsets of symplectic leaves of M .

Example 1. LetM be a symplectic manifold with symplectic form ω. Recall that
a symplectic submanifold is a submanifold i : N ↪→ M such that the restriction
i∗ω is a symplectic form on N . For every even dimension 0 ≤ 2i ≤ dimM there
are symplectic submanifolds of dimension 2i. On the other hand, the only Poisson
submanifolds are the open subsets of M .

Crainic and Fernandes in [1] introduce the following natural extension of the
notion of a Poisson submanifold:

Definition 1. Let M be a Poisson manifold. A submanifold N ⊂ M is called
a Poisson–Dirac submanifold if N is a Poisson manifold such that:

(i) the symplectic foliation of N is N ∩ F = {L ∩N : L ∈ F}, and

(ii) for every leaf L ∈ F , L ∩N is a symplectic submanifold of L.

Note that if (M, {·, ·}) is a Poisson manifold, then the symplectic foliation with
the induced symplectic forms on the leaves, gives a smooth (singular) foliation
with a smooth family of symplectic forms. Conversely, given a manifold M with
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a foliation F furnished with a smooth family of symplectic forms on the leaves,
then we have a Poisson bracket on M defined by the formula2

{f, g} ≡ Xf (g),

for which the associated symplectic foliation is precisely F . Hence, a Poisson
structure can be defined by specifying its symplectic foliation. It follows that
a submanifold N of a Poisson manifold M has at most one Poisson structure
satisfying conditions (i) and (ii) above, and this Poisson structure is completely
determined by the Poisson structure of M .

Example 2. If M is a symplectic manifold, then there is only one symplectic
leave, and the Poisson–Dirac submanifolds are precisely the symplectic submani-
folds of M .

Therefore, we see that the notion of a Poisson–Dirac submanifold generalizes
to the Poisson category the notion of a symplectic submanifold.

Example 3. Let L be a symplectic leaf of a Poisson manifold, and N ⊂ M
a submanifold which is transverse to L at some x0:

Tx0M = Tx0L⊕ Tx0N.

Then one can check that conditions (i) and (ii) in Definition 1 are satisfied in some
open subset in N containing x0. In other words, if N is small enough then it is
a Poisson–Dirac submanifold. Sometimes one calls the Poisson structure on N
the transverse Poisson structure to L at x0 (up to Poisson diffeomorphisms, this
structure does not depend on the transversal N).

The two conditions in Definition 1 are not very practical to use. Let us give
some alternative criteria to determine if a given submanifold is a Poisson–Dirac
submanifold.

Observe that condition (ii) in the definition means that the symplectic forms
on a leaf L ∩ N are the pull-backs i∗ωL, where i : N ∩ L ↪→ L is the inclusion
into a leaf and ωL ∈ Ω2(L) is the symplectic form. Denoting by # : T ∗M → TM
the bundle map determined by the Poisson bivector field, we conclude that we
must have3:

TN ∩#(TN0) = {0}, (1)

since the left-hand side is the kernel of the pull-back i∗ωL. If this condition holds,
then at each point x ∈ N we obtain a bivector πN (x) ∈ ∧2TxN , and one can
prove (see [1]):

2In a Poisson (or symplectic) manifold, we will denote by Xf the Hamiltonian vector field
associated with a function f :M → R.

3For a subspace W of a vector space V , we denote by W 0 ⊂ V ∗ its annihilator. Similarly, for
a vector subbundle E ⊂ F , we denote by E0 ⊂ F ∗ its annihilator subbundle.
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Proposition 1. Let N be a submanifold of a Poisson manifold M , such that

(a) equation (1) holds, and

(b) the induced tensor πN is smooth.

Then πN is a Poisson tensor and N is a Poisson–Dirac submanifold.

Notice that, by the remarks above, the converse of the proposition also holds.

Remark 1. Equation (1) can be interpreted in terms of the Dirac theory of con-
straints. This is the reason for the use of the term “Poisson–Dirac submanifold”.
We refer the reader to [1] for more explanations.

On the other hand, from Proposition 1, we deduce the following sufficient
condition for a submanifold to be a Poisson–Dirac submanifold:

Corollary 1. Let M be a Poisson manifold and N ⊂M a submanifold. Assume
that there exists a subbundle E ⊂ TNM such that:

TNM = TN ⊕ E
and #(E0) ⊂ TN . Then N is a Poisson–Dirac submanifold.

Proof. Under the assumptions of the corollary, one has a decomposition

π = πN + πE ,

where πN ∈ Γ(∧2TN) and πE ∈ Γ(∧2E) are both smooth bivector fields. On the
other hand, one checks easily that (1) holds. By Proposition 1, we conclude that
N is a Poisson–Dirac submanifold. ¥

There are Poisson–Dirac submanifolds which do not satisfy the conditions of
this corollary. Also, the bundle E may not be unique. For a detailed discussion
and examples we refer to [1].

Under the assumptions of the corollary, the Poisson bracket on the Poisson–
Dirac submanifoldN ⊂M is quite simple to describe: Given two smooth functions
f, g ∈ C∞(N), to obtain their Poisson bracket we pick extensions f̃ , g̃ ∈ C∞(M)
such that dxf̃ , dxg̃ ∈ E0

x. Then the Poisson bracket on N is given by:

{f, g}N = {f̃ , g̃}|N . (2)

It is not hard to check that this formula does not depend on the choice of exten-
sions.

Remark 2. Let M be a Poisson manifold and N ⊂ M a submanifold. Assume
that there exists a subbundle E ⊂ TNM such that E0 is a Lie subalgebroid of T ∗M
(equivalently, E is a co-isotropic submanifold of the tangent Poisson manifold
TM). Then E satisfies the assumptions of the corollary, so N is a Poisson–
Dirac submanifold. This class of Poisson–Dirac submanifolds have very special
geometric properties. They where first study by Xu in [11], which calls them
Dirac submanifolds. They are further discussed by Crainic and Fernandes
in [1], where they are called Lie–Dirac submanifolds.
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3 Fixed Point Sets of Proper Poisson Actions

In this section we will give a proof of Theorem 1, which we restate now as follows:

Theorem 2. Let G×M → M be a proper Poisson action. Then the fixed point
set MG is a Poisson–Dirac submanifold.

Since the action is proper, the fixed point set MG is an embedded submanifold
ofM . Its connected components may have different dimensions, but our argument
will be valid for each such component, so we will assume that MG is a connected
submanifold. The proof will consist in showing that there exists a subbundle
E ⊂ TMGM satisfying the conditions of Corollary 1.

First of all, given any action G×M →M (proper or not) there exists a lifted
action G× TM → TM . For proper actions we have the following basic property:

Proposition 2. If G×M →M is a proper action then there exists a G-invariant
metric on TM .

For a proof of this fact and other elementary properties of proper actions, we
refer to [3]. Explicitly, the G-invariance of the metric means that:

〈g · v, g · w〉g·p = 〈v, w〉p, ∀v, w ∈ TpM.

where g ∈ G and p ∈M .
We fix, once and for all, a G-invariant metric 〈 , 〉 for our proper Poisson action

G ×M → M . Let us consider the subbundle E ⊂ TMGM which is orthogonal
to TMG:

E = {v ∈ TMGM : 〈v, w〉 = 0, ∀w ∈ TMG}.
We have:

Lemma 1. TMGM = TMG ⊕ E and #(E0) ⊂ TMG.

Proof. Since E = (TMG)⊥, the decomposition TMGM = TMG ⊕ E is obvious.
Now for a proper action, we have (TM)G = TMG so this decomposition can also
be written as:

TMGM = (TM)G ⊕ E, (3)

On the other hand, we have the lifted cotangent action G× T ∗M → T ∗M , which
is related to the lifted tangent action by g · ξ(v) = ξ(g−1 · v), ξ ∈ T ∗M, v ∈ TM .
We claim that:

E0 ⊂ (T ∗M)G. (4)

In fact, if v ∈ TM we can use (3) to decompose it as v = vG + vE , where
vG ∈ (TM)G and vE ∈ E. Hence, for ξ ∈ E0 we find:

g · ξ(vG + vE) = ξ(g−1 · vG + g−1 · vE) = ξ(vG) + ξ(g−1 · vE) = ξ(vG)

= ξ(vG) + ξ(vE) = ξ(vG + vE).

We conclude that g · ξ = ξ and (4) follows.
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Since G × M → M is a Poisson action, we see that # : T ∗M → TM is
a G-equivariant bundle map. Hence, if ξ ∈ E0, we obtain from (4) that:

g ·#ξ = #(g · ξ) = #ξ.

This means that #ξ ∈ (TM)G = TMG, so the lemma holds. ¥

This lemma shows that the conditions of Corollary 1 are satisfied, so MG is
a Poisson–Dirac submanifold and the proof of Theorem 2 is completed.

Remark 3. If one works further with the decomposition (3) and its transposed
version, it is not hard to show that E0 is actually a Lie subalgebroid of T ∗M .
Therefore, the fixed point set MG of a proper Poisson action is, in fact, a Lie–
Dirac submanifold of M (see Remark 2).

Remark 4. Special cases of Theorem 2 where obtained by Damianou and Fernan-
des in [2] for a compact Lie group G, and by Fernandes and Vanhaecke in [4] for
a reductive algebraic group G. Xiang Tang also proves a version of this theorem
in his PhD thesis [9].

Notice that the Poisson bracket of functions f, g ∈ C∞(MG) can be obtained
simply by choosing G-invariant extensions f̃ , g̃ ∈ C∞(M)G, and setting:

{f, g}MG = {f̃ , g̃}|MG .

This follows from equation (2) and the remark that for any such G-invariant
extensions we have dMG f̃ , dMG g̃ ∈ E0. It is an instructive exercise to prove
directly that the bracket on MG does not depend on the choice of extensions.

4 Applications and Further Results

Every compact Lie group action is proper. In particular, a finite group action is
always a proper. The case G = Z2 leads to the following result:

Corollary 2. Let φ :M →M be an involutive Poisson automorphism of a Pois-
son manifold M . The fixed point set {p ∈ M : φ(p) = p} has a natural induced
Poisson structure.

Proof. Apply Theorem 2 to the Poisson action of the group G = {Id, φ}. ¥

This result is known in the literature as the Poisson Involution Theorem
(see [2, 4, 11]). It has been applied in [2, 4] to explain the relationship between
the geometry of the Toda and Volterra lattices, and there should be similar re-
lations between other known integrable systems. In this respect, it should be
interesting to find extensions of our results to infinite dimensional manifolds and
actions.
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Recall that if an action G ×M → M is proper and free then the space of or-
bits M/G is a smooth manifold. For general non-free actions the orbit space can
be a very pathological topological space. However, for proper actions the singu-
larities of the orbit space are very much controlled, and M/G is a nicely stratified
topological space. For proper symplectic actions there is a beautiful theory of
singular symplectic quotients due to Lerman and Sjamaar [8] which describes
the geometry of M/G. For proper Poisson actions one should expect that the or-
bit space still exhibits some nice Poisson geometry. In fact, we will explain in [5]
that Theorem 2 leads to the following result that generalizes a theorem due to
Lerman and Sjamaar:

Theorem 3. Let G ×M → M be a proper Poisson action. Then the quotient
M/G is a Poisson stratified space.

Note that if a Poisson action is proper and free then the orbit space is a smooth
Poisson manifold. In this case one can identify the smooth functions on the quo-
tient M/G with the G-invariant functions on M :

C∞(M/G) ' C∞(M)G.

In the non-free case, the smooth structure of M/G as a stratified space also leads
to such an identification. Rather than explaining in detail the notion of a Poisson
stratified space (see the upcoming paper [5]), we will illustrate this result with
an example.

Example 4. Let C
n+1 be the complex n+1-dimensional space with holomorphic

coordinates (z0, . . . , zn) and anti-holomorphic coordinates (z0, . . . , zn). On the
(real) manifold C

n+1 − 0 we will consider a (real) quadratic Poisson bracket of
the form:

{zi, zj} = aijzizj , {zi, zj} = {zi, zj} = 0.

where A = (aij) is a skew-symmetric matrix.
The group C

∗ of non-zero complex numbers acts on C
n+1−0 by multiplication

of complex numbers. This is a free and proper Poisson action, so the quotient
CP (n) = C

n+1 − 0/C∗ inherits a Poisson bracket.
Let us consider now the action of the n-torus T

n on C
n+1 − 0 defined by:

(θ1, . . . , θn) · (z0, z1, · · · , zn) = (z0, e
iθ1z1, · · · , eiθnzn).

This is a Poisson action that commutes with the C
∗-action. It follows that

the T
n-action descends to a Poisson action on CP (n). Note that the action of T

n

on CP (n) is proper but not free. The quotient CP (n)/Tn is not a manifold but
it can be identified with the standard simplex

∆n =
{
(µ0, . . . , µn) ∈ R

n+1 :
n∑

i=0

µi = 1, µi ≥ 0
}
.
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This identification is obtained via the map µ : CP (n)→ ∆n defined by:

µ([z0 : · · · : zn]) =
( |z0|2
|z0|2 + · · ·+ |zn|2

, · · · , |zn|2
|z0|2 + · · ·+ |zn|2

)
.

Let us describe the Poisson stratification of ∆n = CP (n)/Tn. The Poisson
bracket on ∆n is obtained through the identification:

C∞(∆n) ' C∞(CP (n))T
n
.

For that, we simply compute the Poisson bracket between the components of
the map µ. A more or less straightforward computation will show that:

{µi, µj} =
(
aij −

n∑

l=0

(ail + alj)µl

)
µiµj , (i, j = 0, . . . , n). (5)

Now notice that (5) actually defines a Poisson bracket on R
n+1. For this Poisson

bracket, the interior of the simplex and its faces are Poisson submanifolds: a face
∆i1,...,in−d

of dimension 0 ≤ d ≤ n is given by equations of the form:

n∑

i=0

µi = 1, µi1 = · · · = µin−d
= 0, µi > 0 for i 6∈ {i1, . . . , in−d}.

These equations define Poisson submanifolds since:

(a) the bracket {µi, µl} vanishes whenever µl = 0, and

(b) the bracket {µi,
∑n

l=0 µl} vanishes whenever
∑n

l=0 µl = 1.

Therefore, the Poisson stratification of ∆n consists of strata formed by the faces
of dimension 0 ≤ d ≤ n, which are smooth Poisson manifolds.
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In this paper we consider a class of third order diffusion equations which are of
interest in mathematical physics. For some of these equations nonlocal poten-
tial symmetries are derived. These nonclassical potential symmetries allow us
to increase the number of solutions. These solutions are neither solutions aris-
ing from nonclassical symmetries nor solutions arising from classical potential
symmetries.

1 Introduction

In the past years we can observe a significant progress in application on symme-
tries to the study of linear and nonlinear partial differential equations of physical
importance, as well as in finding exact solutions for these equations.

Motivated by the fact the symmetry reductions for many PDE’s are known
that are not obtained by using the classical Lie method there have been several
generalizations of the classical Lie group method for symmetry reductions.

Bluman and Cole [3] developed the nonclassical method to study the symmetry
reductions of the heat equation. The basic idea of the method is to require that
the N order PDE

∆ = ∆
(
x, t, u, u(1)(x, t), . . . , u(N)(x, t)

)
= 0

where (x, t) ∈ R
2, are the independent variables, u ∈ R is the dependent variable

and u(l)(x, t) denote the set of all partial derivatives of l order of u and the
invariance surface condition

ξux + τut − φ = 0

which is associated with the vector field

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u, (1)

are both invariant under the transformation with infinitesimal generator (1). Since
then, a great number of papers have been devoted to the study of nonclassical
symmetries of nonlinear PDE’s in both one and several dimensions.

An obvious limitation of group-theoretic methods based in local symmetries,
in their utility for particular PDE’s, is that many of these equations does not have
local symmetries.
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Akhatov, Gazizov and Ibragimov [1] gave nontrivial examples of nonlocal sym-
metries generated by heuristic procedures.

In [4, 5] Bluman introduced a method to find a new class of symmetries for
a PDE. By writing a given PDE, denoted by R{x, t, u} in a conserved form a
related system denoted by S{x, t, u, v} as additional dependent variables is ob-
tained. Any Lie group of point transformations admitted by S{x, t, u, v} induces
a symmetry for R{x, t, u}; when at least one of the generators of the group de-
pends explicitly of the potential, then the corresponding symmetry is neither a
point nor a Lie-Bäcklund symmetry. These symmetries of R{x, t, u} are called
potential symmetries.

Knowing that an associated system to the Boussinesq equation has the same
classical symmetries as the Boussinesq equation, Clarkson [7] proposed as an open
problem if an auxiliary system of the Boussinesq equation does posses more or
less nonclassical symmetries than the equation itself. Bluman claims [2] that
the ansatz to generate nonclassical solutions of the associated system could yield
solutions of the original equation which are neither nonclassical solutions nor
solutions arising from potential symmetries.

However as far as we know these new class of potential symmetries, which
we have called nonclassical potential symmetries, were first derived in [11] for
the Burgers equation and in [10] for the porous medium equation. After that
were have derived nonclassical potential symmetries, in different way for some
interesting equations. We have obtained nonclassical potential symmetries for the
Burgers equation [11] as nonclassical symmetries of the integrated equation and
in [13] as nonclassical symmetries of the potential associated system. Nonclassical
potential symmetries were derived in [12] for a nonlinear diffusion equation which
arises in modelling two-phase flow in porous media and have multiple applications.

For a dissipative KdV equation nonclassical potential symmetries were derived
in [14] by considering the integrated equation.

In previous works [9, 15], we have obtained respectively nonclassical symme-
tries for a porous medium equation with absorption and a porous medium with
convection. The classical potential symmetries were classified in [8] for the porous
medium equation when it can be written in a conserved form

ut = [(un)x +m−1f(x)um]x, (2)

and lead for some special values of the parameters and some functions f(x) to the
linearization of (2) by a non-invertible mapping which transforms any solution of
the a linear equation

wz2 − wz1z1 − cw = 0 (3)

to a solution of (2). The nonclassical potential symmetries were derived [10] as
nonclassical symmetries of the associated equation (3).

In [6] P.A. Clarkson found that the solutions arising from the nonclassical
symmetries of the associated potential system of the shallow water equation were
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obtainable by the nonclassical symmetries of the shallow water equation. Con-
sequently, it remain as an open problem the existence of nonclassical potential
symmetries, in the sense that they lead to new solutions.

We were able to solve this problem for the Fokker–Planck equation

ut = uxx + [f(x)u]x. (4)

The classical symmetries for (4) were derived in [5]. The classical potential sym-
metries were derived by Pucci and Saccomandi in [20]. We have studied in [17,18]
the nonclassical symmetries of the Fokker–Planck equation, as well as the nonclas-
sical potential symmetries. We were able to find a class of functions f(x) for which
equation (4) does not admit, classical Lie symmetries, nonclassical symmetries nor
classical potential symmetries but it admits nonclassical potential symmetries.

In [16], for equations that model diffusion processes

ut = [unux]x,

we have derived nonclassical potential symmetries, which are realized as nonclas-
sical symmetries of an associated system. The significance of these symmetries
were be pointed out by the fact that for this diffusion equations that model fast
processes (with n = −1) classical potential symmetries were not admitted.

In [21] the authors have derived nonclassical potential symmetries for Richard’s
equation and in [19] the authors have derived nonclassical potential symmetries
for some linear wave equations in (1 + 1)-dimensions.

The aim of this work is to derive classical, classical potential and nonclassical
potential symmetries for a third order diffusion equation Although in this case
the infinitesimals of these nonclassical potential symmetries do not depend on
v =

∫
u(x)dx they do not project on to any of the infinitesimals corresponding

to the classical or nonclassical generators. Consequently the new exact solutions
that we found can not be obtained by using classical Lie symmetries, nonclassical
symmetries nor classical potential symmetries.

2 Lie Symmetries

One of the mathematical models for diffusion processes is the third order nonlinear
diffusion equation

ut = [unuxx]x, (5)

where u(x, t) is a function of position x and time t and may represent the tem-
perature. In order to apply the classical method to equation (5), we consider
the one-parameter Lie group of infinitesimal transformations in (x, t, z, u) given by

x∗ = x+ εξ(x, t, u) +O(ε2),
t∗ = t+ ετ(x, t, u) +O(ε2),
u∗ = u+ εη(x, t, u) +O(ε2),
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where ε is the group parameter. Then one requires that this transformation leaves
invariant the set of solutions of (5). This yields to an overdetermined, linear
system of equations for the infinitesimals ξ(x, t, u), τ(x, z, t, u) and φ(x, z, t, u).
The associated Lie algebra of infinitesimal symmetries is the set of vector fields of
the form (1). Having determined the infinitesimals, the symmetry variables are
found by solving the invariant surface condition

Φ1 ≡ ξux + τut − φ = 0.

The classical Lie method applied to the the PDE (5) leads to a three-parameter
Lie group. Associated with this Lie group we have the Lie algebra which can be
represented by the generators, these generators are

v1 = ∂t, v2 = ∂x, v3 = (n+ 1)x∂x + 3t∂t + 3u∂u,

with n an arbitrary constant.

2.1 Classical Potential Symmetries

As equation (5) is a conservation law, in order to derive the classical potential
symmetries of (5), we consider the associated potential system

vx = u, vt = unuxx. (6)

In this case the classical Lie analysis is based upon the infinitesimal transforma-
tions

x∗ = x+ εξ(x, t, u, v) +O(ε2), t∗ = t+ ετ(x, t, u, v) +O(ε2),
u∗ = u+ εφ(x, t, u, v) +O(ε2), v∗ = v + εψ(x, t, u, v) +O(ε2).

The associated Lie algebra of infinitesimal symmetries is the set of vector fields
of the form v = ξ∂x + τ∂t + φ∂u + ψ∂v.

The classical Lie method applied to system (6) leads to a five-parameter Lie
group. Associated with this Lie group we have the Lie algebra which can be
represented by the generators, these generators are

v1 = ∂t, v2 = ∂x, v3 = ∂v, v4 = nx∂x + 3∂u − (n+ 3)v∂v,

v5 = nt∂x − u∂u + v∂v,

where n is an arbitrary constant. We can easily see that none of these generators
depend explicitly on v, that is condition ξ2v + τ2v + φ2v 6= 0 is not satisfied. Conse-
quently, we can assure that point symmetries of (6) project onto local symmetries
of equation (5) and equation (5) does not admit classical potential symmetries by
considering the associated potential system (6).

Nevertheless, when n = 3 we can also consider the following associated poten-
tial system

vx = u−1, vt = −uuxx − u2x. (7)
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The classical Lie method applied to system (7) leads to an infinite-parameter
Lie group of point transformations. Associated with this Lie group we have the
Lie algebra which can be represented by the generators, these generators are

v1 = ∂t, v2 = ∂v, v3 = x∂x + u∂u, v4 = 3t∂t − u∂u + v∂v,

and the following potential generator

vα = α(t, v)∂x + αv(t, v)∂u

here α(t, v) is an arbitrary function of t and v satisfying the linear equation αt −
αvvv = 0. This generator vα allow us to linearize (5) when n = 3.

2.2 Nonclassical Potential Symmetries

In order to compute the nonclassical-potential symmetries of equation (5) we
apply the nonclassical method to system (6). In the case τ 6= 0 we can set τ ≡ 1
without loss of generality. Then the nonclassical method applied to (6) give rise
to six nonlinear determining equations for the infinitesimals that lead to

ξ = ξ(x, t), ψ = α(x, t)v + β(x, t), φ = (ψv − ξx)u+ ψx,

α = ξx + δ(t), ξ = −δx+ ν(t),

with β, δ and ν related by a nonlinear equation.
After solving the determining system a complete classification of the nonclas-

sical system of the governing equation has been performed for τ 6= 0 and we can
state:
Case 1: n 6= −1. The nonclassical method applied to system (6) does not yield
any new symmetry different from the ones obtained by Lie classical method.
Case 2: n = −1. By applying the nonclassical method we get that α = 0 and β,
δ, ν are related by the following conditions

δtx− 2δ2x+ 2δν = 0, βxδx− βxν − 2βδ − βt = 0, ββx − βxxx = 0.

We find that for δ = 0, ν = c and c = const the infinitesimals become

ξ = c, ψ = β(x, t), φ = βx

and β must satisfy

βxxx − ββx = 0, βt − cβx = 0 i.e. β = β(w), w = x+ ct.

From the characteristic equation we obtain the independent similarity variable
z = x− ct and the similarity solution

v =
1

2c

∫
β(w)dw + g(z) = f(x+ ct) + g(x− ct), (8)
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where f satisfies the condition

f ′′′ − c(f ′)2 = k, (9)

with k being an arbitrary constant. Finally, by introducing (8) into (6) we arrive
at the reduced equation for the dependent similarity variable g:

g′′′ + c(g′)2 = −k. (10)

Now, from a couple of solutions of equations (9) and (10) we have that a solution
of (5) is given by

u(x, t) = vx(x, t) = f ′(x+ ct) + g′(x− ct). (11)

These solutions represent a linear superposition of tho waves propagating with
velocities c and −c.

An explicit solution for (5) is the two soliton solution

u = 3c−1
√
−c k

(
sech2

(
4
√
−c k(x− ct)√

2
+ k1

)
− 1

3

)

− 3c−1
√
−c k

(
sech2

(
4
√
−c k(x− ct)√

2
+ k2

)
− 1

3

)
.
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Figure 1. Two soliton solution

We must remark that although the infinitesimals do not depend on potential
v =

∫
u(x)dx, they do no project on to any of the infinitesimals corresponding

to the classical or nonclassical generators of (5). Indeed, it is easy to see that
for τ 6= 0, every nonclassical symmetry of (5) corresponds to a classical one.
Consequently, solutions (11) are solutions of (5) which can not be obtained by
using classical or nonclassical symmetries of (5).
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Partially invariant solution on the group of rotations of ideal magnetohydrody-
namics equations is observed. It is shown that in nonreducible solution the ve-
locity and magnetic field vectors of the particle are coplanar to the radius-vector
of the particle. The initial system is reduced to invariant subsystem and in-
volutive equations for non-invariant function. Description of the stationary
solution is given.

1 Introduction

In the space R
3(x, y, z) × R

3(u, v, w) it is given a group O(3) of simultaneous
rotations of the subspaces R

3(x, y, z) and R
3(u, v, w). The corresponding Lie

algebra is generated by the following operators:

X1 = z∂y − y∂z + w∂v − v∂w,
X2 = x∂z − z∂x + u∂w − w∂u, (1)

X3 = y∂x − x∂y + v∂u − u∂v.

In order to check the necessary conditions of existence of O(3)-invariant solution
it is necessary to write the matrix of coefficients of operators (1).

M(ξ|η) =




0 z −y 0 w −v
−z 0 x −w 0 u
y −x 0 v −u 0




One can easily check that

rankM(ξ) < rankM(ξ|η). (2)

Here M(ξ) is a matrix of the first three columns of M(ξ|η). Relation (2) proves
a well-known fact [2], that nonsingular O(3)-invariant solution of any system
of equations for sought functions u = (u, v, w) and independent variables x =
(x, y, z) does not exist. However, one can use an ansatz

u = f(|x|)x, (3)
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which corresponds to a singular O(3)-invariant solution. Solutions of the type (3)
are usually called the rotationally-invariant ones.

Group O(3) gives rise to another type of solution, namely, a partially invariant
one. Let us observe a spherical coordinate system

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (4)

The decomposition of a vector field u on the basis of a spherical coordinate system
gives

ur = u sin θ cosϕ+ v sin θ sinϕ+ w cos θ,

uθ = u cos θ cosϕ+ v cos θ sinϕ− w sin θ,

uϕ = −u sinϕ+ v cosϕ.

(5)

With these notations invariants of the O(3) can be written as follows

r = |x|, ur, u2θ + u2ϕ.

The representation of invariant part of solution is distinguished by the following
conditions

ur = U(r), u2θ + u2ϕ =M2(r). (6)

Only two of three functions, which determine a vector field u, are specified by
the equalities (6). The third value is assumed to be an arbitrary function of
(r, θ, ϕ), namely

uθ =M cosω, uϕ =M sinω, ω = ω(r, θ, ϕ). (7)

For any system of equations, which admits the Lie group O(3), relations (6), (7)
define a representation of O(3)-partially invariant solution. Functions U and M
will be called further the invariant ones, since they depend only on invariant
variable r. On the contrary, function ω, which depends on all the independent
variables (r, θ, ϕ), will be called the non-invariant one.

Notice, that any other sought functions, which are not transformed under O(3)
action must be assumed as the invariant ones, i.e. dependent only on the invariant
variable r. On the other hand, if equations involve some additional independent
variables, for example, time t, the dependence on these variables must be added
to both invariant and non-invariant functions.

The substitution of obtained representation of solution into the investigated
system of equations usually gives equations of two types: invariant ones, which
involve only invariant functions and variables, and non-invariant ones, which in-
volve the non-invariant function ω. The latter equations should be observed as
an overdetermined system for non-invariant function ω. Its compatibility condi-
tions enlarge the invariant subsystem. Solution of the invariant subsystem and
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consequent determination of the non-invariant function provides the solution of
the initial equations.

First, solution of the type (6), (7) was investigated by L.V. Ovsyannikov [1]
for Euler equations for ideal compressible and incompressible fluid. In his work
the overdetermined system for function ω was completed to involution. Its general
implicit solution, which involve an arbitrary function of two arguments, was also
given. All the invariant functions were determined from the well-defined system
of PDEs with two independent variables. The main features of the fluid flow,
governed by the obtained solution, were pointed out. Namely, it was shown, that
trajectories of particles are flat curves in 3D space. The position and orientation of
the plane, which contains the trajectory, depends on the particle’s initial location.
Another noted feature is that the continuous solution can be determined not in
the whole 3D space, but in some moving or stationary channels.

The title of Ovsyannikov’s article “singular vortex” is related to the special
choice of non-invariant function, which guarantees the continuous initial data for
the solution. Afterwards, the name “singular vortex” was awarded to all solutions,
which are partially invariant with respect to the group O(3).

Independent investigation of the singular vortex for ideal incompressible fluid
is performed by H.V. Popovych [3]. The article includes the investigation of
the overdetermined system for non-invariant function and also investigation of
symmetry reductions of invariant subsystem. Further analysis of singular vortex
for ideal compressible fluid can be found in [4, 5].

The general concept of singular vortex was proposed by L.V. Ovsyannikov at
his lecture on the conference ”New mathematical models at mechanics: construc-
tion and investigation”, which was held in May 10–14, 2004 in Novosibirsk, Russia.
Ovsyannikov has also shown the examples of acoustic singular vortex and irrota-
tional singular vortex. According to the suggestion by corresponding member of
Russian Academy of Science, S.I. Pohozhaev, the singular vortex is called now as
“Ovsyannikov vortex”.

In the present work we investigate a singular vortex for the mathematical
model of ideal compressible magnetohydrodynamics. The analysis is complicated
by simultaneous presence of two vector fields: velocity and magnetic. The system
for non-invariant function ω is strongly overdetermined but it is possible to find
a condition, under which the system is in involution and has a functional arbi-
trariness of the solution. The latter condition is that for any particle of fluid
it’s radius vector, velocity and magnetic field vectors are coplanar. In this case
the non-invariant function is determined from the implicit finite (not differential)
equation, which involves one arbitrary function of one argument.

The main features of the magnetic fluid flow, governed by the singular vortex
are similar to those, obtained for ideal gas dynamics. Namely, trajectories and
magnetic field lines are also flat curves. The solution is defined not in the whole
space, but in some channel. The description of stationary solution is given.
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2 Magnetohydrodynamics Equations

The equations for ideal fluid with infinite conductivity are the following:

Dρ+ ρ divu = 0,

D u+ ρ−1∇p+ ρ−1H× rotH = 0,

D p+A(p, ρ) divu = 0,

DH+H divu− (H · ∇)u = 0,

divH = 0, D = ∂t + u · ∇.

(8)

Here u = (u, v, w) is the velocity vector, p, ρ are pressure and density,
H = (H1, H2, H3) is the magnetic field. All functions depend on time t and
coordinates (x, y, z). Function A(p, ρ) depends on the state equation of the fluid.
Note that system (8) is overdetermined, it contains 9 equations for 8 sought func-
tions. However, the system (8) is in involution since the last equation can be
observed as a restriction for initial data. According to the induction equation if
the last equation is satisfied at some moment of time, then it will also be valid
for all times of solution existence.

The admitted group for the system (8) for the case of polytropic state equation
A(p, ρ) = γp (γ is the adiabatic exponent) is known [6]. It is a 13-dimensional
extension of the Euclidean group via the time-translation and dilatations.

The admitted group includes a simple subgroup O(3) of simultaneous rotations
in the spaces R

3(x), R
3(u) and R

3(H). Construction of the singular vortex for
equations (8) demands calculation of invariants of O(3) in the space of functions
and variables.

2.1 The Representation of the Solution

For the convenience we introduce the spherical coordinate system (4). Vectors
u and H are decomposed by spherical frame according to (5). The following
individual notations of components of velocity and magnetic field vectors are
introduced (see fig. 1)

vr = U, vθ =M cosΩ, vϕ =M sinΩ;

Hr = H, Hθ = N cosΣ, Hϕ = N sinΣ.

Here U and H are radial components of u and H. Values M and N denote
an absolute value of it’s tangential to spheres r = const components. Functions Ω
and Σ are the angles between tangential components of u and H and meridional
direction.

In these notations the invariants of the group O(3) could be chosen as follows:

t, r, U, M, H, N, Ω− Σ, p, ρ.
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Figure 1. The decomposition of the velocity and magnetic field vectors

According to the described algorithm the representation of partially invariant
solution can be constructed in the form

U = U(t, r), M =M(t, r), H = H(t, r), N = N(t, r),

Σ = σ(t, r) + ω(t, r, θ, ϕ), Ω = ω(t, r, θ, ϕ), p = p(t, r), ρ = ρ(t, r).
(9)

2.2 Equations of the Ovsyannikov Vortex

Substitution of representation (9) into MHD (8) provides a system Π of 9 equa-
tions for invariant functions U , H, N , M , ρ, p and non-invariant function ω.
This system should be observed as an overdetermined system of the first-order
PDEs for function ω(t, r, θ, ϕ) under assumption that all the invariant functions
are known. The compatibility conditions for this system give the equations for
invariant functions. This procedure is illustrated by the following diagram

MHD
(9)−−→ Π — equations for ω

↗
↘

CS — compatible system for ω

IS — equations for invariant functions

In order to omit trivial situations, we observe only the case, when function ω
is determined with functional arbitrariness. Function ω has only constant arbi-
trariness if it is possible to express all the first-order derivatives of ω from the
system Π. To impose a ban on this situation we calculate a matrix of coefficient
of derivatives of function ω and demand it to be of rank 3 or less. The demand is
satisfied only in the following 3 cases:

• M = 0 — radial velocity field;

• N = 0 — radial magnetic field;

• σ = 0 — coincidence of deviation angles of the tangential component of the
velocity and magnetic vector fields.
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All these 3 cases signify that velocity vector u and magnetic field vector H in each
point are coplanar to the radius-vector of the point. Further we observe the most
general case σ = 0, i.e. Σ = Ω = ω(t, r, θ, ϕ). New notations are introduced:

M1 = r−1M, H1 = r2H, N1 = r N, H1 = cos−1 τ. (10)

The invariant subsystem IS can be presented as

D0M1 +
2

r
UM1 −

1

r4ρ cos τ
N1r = 0,

D0N1 +N1Ur −
1

cos τ
M1r −M1N1 tan τ = 0,

D0 p+A(p, ρ)

(
Ur +

2

r
U −M1 tan τ

)
= 0,

D0 U +
1

ρ
pr +

N1N1r

r2ρ
− rM2

1 = 0, τr = N1 cos τ,

D0 ρ+ ρ

(
Ur +

2

r
U −M1 tan τ

)
= 0, D0 τ =M1,

D0 = ∂t + U∂r.

(11)

This overdetermined system of 7 equations for 6 functions is in involution (com-
patible and locally solvable) since the compatibility condition of last two equations
of (11) (equations for τ) coincide with the second equation of (11).

Equations CS for non-invariant function ω are the following:

N1 ωt + (N1U −H1M1)ωr = 0,

H1 cosω ωr +N1 ωθ − hN1 sinω = 0,

sin θ sinω ωθ − cosω ωϕ − h sin θ − cos θ cosω = 0.

(12)

The latter system is also in involution on the solutions of equations (11). The ar-
bitrariness of the general solution of (12) is 1 function of 1 argument. The general
solution of (12) can be implicitly represented as

F (η, ζ) = 0, (13)

where F is an arbitrary function of the invariants η and ζ, which are

η = sin θ cosω cos τ − cos θ sin τ,

ζ = ϕ+ arctan
sinω cos τ

cos θ cosω cos τ + sin θ sin τ
.

(14)

The invariant system (11) determines the dependence of all the sought functions
on radial coordinate, while equations (13), (14) define a distribution of tangential
components of vectors u and H on spheres r = const.
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3 Stationary Solution

Let us observe a stationary solution of invariant subsystem (11). It is assumed,
that all the invariant functions depend only on r. Equations (11) are reduced to
the following system of ODEs

UM ′
1 +

2

r
UM1 −

N ′1
r4ρ cos τ

= 0, (15)

UN ′1 +N1U
′ − M ′

1

cos τ
−M1N1 tan τ = 0, (16)

Up′ + γp

(
U ′ +

2

r
U −M1 tan τ

)
= 0, (17)

UU ′ +
1

ρ
p′ +

N1N
′
1

r2ρ
− rM2

1 = 0, (18)

Uρ′ + ρ

(
U ′ +

2

r
U −M1 tan τ

)
= 0, (19)

τ ′ = N1 cos τ, Uτ ′ =M1. (20)

Compatibility of equations (20) gives

UN1 cos τ =M1. (21)

According to (10) it is equivalent to UN =MH. This means, that under the con-
sidered assumptions the vectors u and H are collinear. Equation (16) is satisfied
due to (21). From (17) and (19) we obtain the entropy conservation: S = const.
Transformation of continuity equation (19) taking into account equation (20) gives

r2ρU cos τ = n−1, n = const.

From the latter and (21) it follows that N1 = nr2ρM1. According to involution
transformation U → −U , M1 → −M1 one can assume n > 0. Equation (15)
under condition (21) can be integrated as

r2M1 = nN1 +m, m = const.

Using the involution r → −r, M1 → −M1, N1 → −N1 one can make m > 0.
In the case ρ 6= n−2 one can express M1 and N1 by means of ρ. Substitution of
these relations into (18) allows us to integrate it as

U2 +
2γ

γ − 1
ργ−1 +

m2

r2(1− n2ρ)2 = b2, b = const. (22)

Relation (22) is an analogue of the Bernoulli integral. The only equation left
is (20). Let us introduce an auxiliary function σ(r) by the following formula

σ =

∫
N1(r)dr.
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The first equation of (20) is integrated as τ = 2arctan [tanh (σ/2)]. Expressing
all the other functions in terms of σ gives

M1 =
m+ nσ′

r2
, N1 = σ′, ρ =

σ′

mn+ n2σ′
, U =

(mn+ n2σ′) coshσ

nr2σ′
.

Substitution of obtained representations into the Bernoulli integral (22) gives an
equation for determining of σ:

(mn+ n2σ′)2 cosh2 σ

n2r4σ′2
+

2γ

γ − 1

(
σ′

mn+ n2σ′

)γ−1
+
m2

r2

(
1 +

n

m
σ′
)2

= b2. (23)

The similar analysis in the case ρ = n−2 gives the following. All invariant
functions have a representation in terms of function σ:

M1 =
nσ′

r2
, N1 = σ′, U =

n coshσ

r2
.

The function σ is determined from the equation

σ′
2
=
b2r2

n2
− cosh2 σ

r2
. (24)

Thus, the solution is reduced to the set of first integrals and one first-order ODEs.
Both ODEs (23), (24) are not solved with respect to derivative σ ′(r). Solutions
of the equations are not unique. Different branches of solutions may be joined
by means of weak or strong discontinuity. This fact gives extra possibilities for
construction of solution.
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We present here the complete solution to the problem on linearization of third-
order equations by means of general point transformations. We also formulate
the criteria for reducing third-order equations to the equation y′′′ = 0 by con-
tact transformations.

1 Introduction

The problem of linearization of differential equations by a change of variables is
a particular case of a more general equivalence problem. S.Lie made a signifi-
cant contribution to this problem by solving in 1883 the linearization problem
for second-order equations [1] and giving in 1896 the general form of third-order
equations linearizable by contact transformations [2]. A. Tresse [3] treated Lie’s
result on linearization of the second-order equations in the framework of the equiv-
alence problem using relative invariants of the equivalence group of point trans-
formations. An infinitesimal technique for obtaining relative invariants of infinite
equivalence groups was developed by N.H. Ibragimov [4] and subsequently ap-
plied [5] to the linearization problem.

A geometric approach for tackling the equivalence problem of second-order
ordinary differential equations was developed by E.Cartan [6]. The idea of his
approach was to associate with every differential equation a uniquely defined ge-
ometric structure of a certain form. S.S. Chern [7], using Cartan’s approach,
developed a geometric approach to third-order equations. In the series of sub-
sequent articles [8–12], Chern’s results were formulated in an explicit form more
convenient for using as a test for linearization of third-order equations by contact
transformations. Linearization by means of a restricted class of point transfor-
mations was studied in [13]. In [14], the linearization of third-order equations
by means of non-local transformations (namely, so-called generalized Sundman
transformations) was investigated.

The solution to the problem on linearization of third-order equations by general
point transformations was given recently in [15].
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2 Linearization by Point Transformations

Let us take the general linear third-order equation with the independent variable
t and the dependent variable u in Laguerre’s canonical form:

u′′′ + α(t)u = 0. (1)

The change of the independent and dependent variables

t = ϕ(x, y), u = ψ(x, y) (2)

leads to an equation of the form

y′′′ − 3ϕy
(ϕx + y′ϕy)

(y′′)2 + a(x, y, y′)y′′ + b(x, y, y′) = 0.

More specifically, considering separately the transformations (2) with ϕy = 0 and
ϕy 6= 0, we obtain two distinctly different candidates for linearization. Namely,

y′′′ + (A1 y
′ +A0)y

′′ +B3 y
′3 +B2 y

′2 +B1 y
′ +B0 = 0 (3)

when ϕy = 0 and

y′′′ + (y′ + r)−1
(
−3(y′′)2 + (C2 y

′2 + C1 y
′ + C0)y

′′ +D5 y
′5

+D4 y
′4 +D3 y

′3 +D2 y
′2 +D1 y

′ +D0

)
= 0

(4)

when ϕy 6= 0, where we set r = ϕx/ϕy. Here Ai = Ai(x, y), Bi = Bi(x, y),
r = r(x, y), Ci = Ci(x, y) and Di = Di(x, y) are written through the functions ϕ
and ψ and their derivatives. The following theorems are proved in [15].

Theorem 1. Equation (3) is linearizable if and only if

A0y −A1x = 0, (3B1 −A2
0 − 3A0x)y = 0, (5)

3B2 = 3A1x +A0A1, 9B3 = 3A1y +A2
1, (6)

Ωy = 0. (7)

Provided that the conditions (5)–(7) are satisfied, the linearizing transformation
t = ϕ(x), u = ψ(x, y) is defined by the third order ordinary differential equation
for the function ϕ(x):

3(2χx − χ2) = 3B1 −A2
0 − 3A0x, where χ = ϕ−1x ϕxx, (8)

and by the following involutive system of partial differential equations for ψ(x, y):

3ψyy = A1 ψy, 3ψxy = (3χ+A0)ψy, (9)

ψxxx = 3χψxx +B0 ψy −
1

6
(3A0x +A2

0 − 3B1 + 9χ2)ψx − Ωψ. (10)

The coefficient α of the resulting linear equation (1) is given by α = Ωϕ−3x , where

Ω =
1

54

(
9A0xx + 18A0xA0 + 54B0y − 27B1x + 4A3

0 − 18A0B1 + 18A1B0

)
.
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Theorem 2. Equation (4) is linearizable if and only if its coefficients obey the
following 8 equations:

C0 = 6r ry − 6 rx + r C1 − r2C2,

6 ryy =
∂C2

∂x
− ∂C1

∂y
+ r

∂C2

∂y
+ C2 ry,

18D0 = 3r3
∂ C1

∂ y
− 6r2

∂C1

∂x
− 3r3

∂C2

∂x
+ 9r4

∂C2

∂y
− 36r2rxy + 18r rxx

+ 90r rxry − 36r2ry
2 + 6r(3C1 − rC2)rx + 9r2(rC2 − 2C1)ry

− 54rx
2 − 2r2C2

1 + 2r3C1C2 + 4r4C2
2 + 18r4D4 − 72r5D5,

18D1 = 9r2
∂C1

∂y
− 12r

∂C1

∂x
− 27r2

∂C2

∂x
+ 33r3

∂C2

∂y
− 36rrxy

+ 18rxx + 6(3C1 + 4rC2)rx − 3r(6C1 + 7rC2)ry + 18rry
2

− 18rxry − 4rC2
1 − 2r2C1C2 + 20r3C2

2 + 72r3D4 − 270r4D5,

9D2 = 3r
∂C1

∂y
− 3

∂C1

∂x
− 21r

∂C2

∂x
+ 21r2

∂C2

∂y
+ 15C2rx

− 15 r C2ry − C2
1 − 5rC1C2 + 14r2C2

2 + 54r2D4 − 180r3D5,

3D3 = 3r
∂C2

∂y
− 3

∂C2

∂x
− C1C2 + 2rC2

2 + 12rD4 − 30r2D5,

54
∂D4

∂x
=18

∂2C1

∂y2
+ 3C2

∂C1

∂y
− 72

∂2C2

∂x∂y
− 39C2

∂C2

∂x
+18r

∂2C2

∂y2
− 3rC2

∂C2

∂y

+ 72
∂C2

∂y
ry + 378 r

∂D5

∂x
− 108r2

∂D5

∂y
+ 270D5rx + 33C2

2ry + 108D4ry

− 540rD5ry + 36 r C1D5 − 8 r C3
2 − 36 r C2D4 + 108 r2C2D5 + 54 r H,

and Hx = 3Hry + rHy, where

H =
∂D4

∂y
− 2

∂D5

∂x
− 3r

∂D5

∂y
− 5D5ry − 2rC2D5

+
1

3

[∂2C2

∂y2
+ 2C2

∂C2

∂y
− 2C1D5 + 2C2D4

]
+

4

27
C3
2 .

The transformations (2) with ϕy(x, y) 6= 0 mapping equation (4) into a linear
equation (1) are obtained by solving the following compatible system of equations
for the functions ϕ(x, y) and ψ(x, y):

ϕx = r ϕy , ψx = −W ϕy + r ψy ,

6ϕy ϕyyy = 9ϕyy
2 +

(
15rD5 − 3D4 − C2

2 − 3
∂C2

∂y

)
ϕy

2,

ψyyy=W D5 ϕy +
1

6

[
15 r D5 − C2

2 − 3D4 − 3
∂C2

∂y

]
ψy

− 1

2
Hψ + 3ϕyyψyyϕy

−1 − 3

2
ϕyy

2ψyϕy
−2,
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where the function W is defined by the equations

3Wx = (C1 − rC2 + 6ry)W, 3Wy = C2W. (11)

The coefficient α of the resulting linear equation (1) is given by 2α = ϕ−3y H.

3 Linearization by Contact Transformations

S.Lie [2] noticed that any third order ordinary differential equation related with
the simplest linear equation u′′′ = 0 by a contact transformation

t = ϕ(x, y, p), u = ψ(x, y, p), q = g(x, y, p), (12)

where p = y′, should be at most cubic in the second order derivative:

y′′′ + a(x, y, y′)y′′ 3 + b(x, y, y′)y′′ 2 + c(x, y, y′)y′′ + d(x, y, y′) = 0. (13)

Recall that the contact transformations (12) satisfy the conditions

gϕp = ψp , ψx + pψy = g(ϕx + pϕy),

(ϕyg − ψy) (ϕp(gx + gyp)− gp(ϕx + ϕyp)) 6= 0.

Note that the contact transformation (12) of the general linear equation (1) also
leads to the equations of the form (13). We will discuss here only the case α = 0.
We will assume that ϕp 6= 0, since the equation ϕp = 0 leads to ψp = 0, and hence
corresponds to point transformations.

Theorem 3. Equation (13) is linearizable to the equation (1) with α = 0 if and
only if its coefficients obey the equations

J1 = 0, J2 = 0, J3 = 0, J4 = 0, (14)

where J1, J2, J3, and J4 are relative invariants defined by

J1 = 27apx + 27apyp− 18apc− 18axb− 18aybp+ 81ay + 18bpb− 9bpp+

18bxa+ 18byap− 36cpa− 54a2d+ 18abc− 4b3,

J2 = −18apd− 18axc+ 9axx − 18aycp+ 18ayxp+ 9ayyp
2 + 6bpc+ 3bpx+

3bpyp+ 6bxb+ 6bybp+ 24by − 6cpp − 36dpa− 18abd+ 12ac2 − 2b2c,

J3 = 36axd+ 36aydp− 6bxx − 12byxp− 6byyp
2 − 6cpc+ 3cpx + 3cpyp− 6cxb−

6cybp− 21cy + 18dpb+ 9dpp + 18dxa+ 18dyap− 18acd+ 12b2d− 2bc2,

J4 = −36bxd− 36bydp+ 18cpd+ 18cxc+ 9cxx + 18cycp+ 18cyxp+ 9cyyp
2−

18dpc− 27dpx − 27dpyp− 18dxb− 18dybp+ 54dy + 54ad2 − 18bcd+ 4c3.
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Provided that the conditions (14) are satisfied, the transformation (12) mapping
equation (13) to a linear equation (1) with α = 0 is obtained by solving the follow-
ing compatible system of equations for the functions ϕ(x, y, p), ψ(x, y, p), g(x, y, p),
k(x, y, p), and H(x, y, p):

Dψ = Hg, ψy = ϕyg + k, ψp = ϕpg, ϕpgpp = (ϕppgp + ak),

ϕpDg = Hgp − k, 3gyϕ
2
p = 3ϕppk + 3aHk + ϕp(3ϕygp − bk),

3ϕ2
pDk = 3ϕppHk + 3aH2k −Hϕpbk + 3ϕpϕyk,

9ϕ2
pky = 18ϕpyϕpk − 9ϕppϕyk + 3aHk(2ϕpc− 3ϕy)− 9aϕ2

pdk−
9DaHϕpk + 3Dbϕ2

pk +Hϕpk(3bp − 2b2) + ϕpk(−3cpϕp + ϕpbc+ 3ϕyb),

3ϕpkp = 3ϕppk + 3aHk − ϕpbk,
54ϕ2

pϕyy = 108ϕpyϕpϕy − 54ϕppϕ
2
y + 6aH(3ϕ2

pbd− 2ϕ2
pc

2 + 3ϕ2
pDc+

6ϕpϕyc− 9ϕ2
y) + 18aϕ2

p(2ϕpcd− 3ϕpDd− 3ϕyd)+

18DaHϕp(2ϕpc− 3ϕy)− 108Daϕ3
pd− 18DbHϕ2

pb+ 6Dbϕ2
p(ϕpc+ 3ϕy)+

Hϕp(−6bpϕpc+ 18bpϕy − 27byϕp + 6cpϕpb+ 9(Db)pϕp + 2ϕpb
2c−

27ϕpD
2a− 12ϕyb

2) + 2ϕp(9bpϕ
2
pd− 9cpϕpϕy + 27cyϕ

2
p − 9(Dc)pϕ

2
p−

9dpϕ
2
pb− 12ϕ2

pb
2d+ 2ϕ2

pbc
2 + 6ϕ2

pbDc+ 9ϕ2
pD

2b+ 3ϕpϕybc+ 9ϕ2
yb),

54ϕ2
pϕppy = 108ϕpyϕppϕp + 54ϕpyaHϕp − 18ϕpyϕ

2
pb− 27ϕ2

ppϕy−
54ϕppaHϕy + 18ϕppϕpϕyb+ 9a2H2(−2ϕpc− 3ϕy) + 54a2Hϕ2

pd+

27aDaH2ϕp − 18aDbHϕ2
p + 3aH2ϕp(−3bp + 2b2)+

6aHϕp(3cpϕp − ϕpbc+ 3ϕyb) + 9aϕp(−3dpϕ2
p − 4ϕ2

pbd+ 2ϕ2
pc

2−
ϕ2
pDc− 2ϕpϕyc− 3ϕ2

y) + 9Daϕ2
p(−4ϕpc+ 3ϕy) + 18Dbϕ3

pb− 54Hayϕ
2
p+

ϕ2
p(6bpϕpc− 9bpϕy + 45byϕp − 6cpϕpb− 9(Db)pϕp − 2ϕpb

2c+

27ϕpD
2a+ 3ϕyb

2),

6ϕpϕppp = 9ϕ2
pp − 9a2H2 + 6aHϕpb− 12aϕpϕy − 3Daϕ2

p−
6Hapϕp + ϕ2

p(3bp − b2),
3ϕ2

pDH = 3ϕppH
2 + 3aH3 −H2ϕpb+Hϕp(−ϕpc+ 3ϕy) + 3ϕ3

pd,

18ϕpHy = (18ϕpyH + 6aH2c− 18aHϕpd− 9DaH2+

6DbHϕp +H2(3bp − 2b2) + 2Hϕp(−3cp + bc) + 9dpϕ
2
p+

6ϕ2
pbd− 2ϕ2

pc
2 − 3ϕ2

pDc+ 9ϕ2
y),

3ϕpHp = 3ϕppH + 3aH2 − 2Hϕpb+ ϕp(ϕpc+ 3ϕy).

where H = ϕx + pϕy, k = ϕpgx + ϕpgyp− ϕxgp − ϕygpp 6= 0.
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4 Examples

Example 1. It is known from [2] (see also [16], Section 8.3.3)) that the equations

(C) y′′′ =
3y′ y′′ 2

1 + y′ 2
and (H) y′′′ =

3y′′ 2

2y′
(15)

describing the families of circles and hyperbolas, respectively, are connected by
a complex transformation, and that Equation (15) (H) can be linearized to the
equation u′′′ = 0 by a contact transformation (specifically, by the Legendre trans-
formation). One can readily check that Equation (15) (C) also satisfies the con-
ditions (14), and hence can be reduced to u′′′ = 0 by a (real valued) contact
transformation. The reckoning yields the following linearizing transformation:

ϕ =
y(1 +

√
p2 + 1)

p
− x, ψ = −y(1+ 1 +

√
p2 + 1

p2
), g = −1 +

√
p2 + 1

p
·

An alternative transformation is

ϕ = −
(
p+

√
1 + p2

)
, ψ = (px−y)

(
p+

√
1 + p2

)
, g = y−x

(
p+

√
1 + p2

)
.

Remark 1. It is erroneously stated in [17] that the contact transformation

t = −2xg(x, y, p), u = y + xp, u′ = g(x, y, p), where g2 = −p, (16)

maps the equation u′′′ = 0 to the equation for circles (15) (C). In fact, the trans-
formation (16) relates the equation u′′′ = 0 with the equation (15) (H), not (C).

Example 2. Consider again the equations of the form (3). One can readily verify
that two of conditions for linearization by a contact transformation are satisfied,
namely J1 = 0 and J2 = 0. Equating to zero two other invariants, J3 and J4,
we conclude that equation (3) can be mapped by a contact transformation to the
equation u′′′ = 0 if and only if the following equations hold:

2(3B2 − 3A1x −A0A1) = 7(A0y −A1x), 9B3 = 3A1y +A2
1,

3(A0y −A1x)y −A1(A0y −A1x) = 0,

6(A0y −A1x)x + 2A0(A0y −A1x)− 3(3B1 −A2
0 − 3A0x)y = 0,

9A0xx + 18A0xA0 + 54B0y − 27B1x + 4A3
0 − 18A0B1 + 18A1B0 = 0.

(17)

The last equation (17) yields Ω = 0 (for the definition of Ω, see Theorem 1). In-
voking Theorem 1 and noting that Equations (5)–(6) imply the first four equations
(17), we conclude that Equation (3) is linearizable simultaneously by contact and
point transformations if and only if its coefficients satisfy the equation Ω = 0 and
the equations (5)–(6).

For example, the equation y′′′+3y′y′′/y−3y′′−3y′2/y+2y′−y = 0 is linearizable
by a point transformation, but it is not linearizable by a contact transformation.
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On the other hand, the equation y′′′ + yy′′ + (63p2 + 24y2p + y4)/54 = 0 can
be linearized by a contact transformation, but cannot be linearized by a point
transformation since A0y −A1x 6= 0.

The equation y′′′ + yy′′ + β(1 − y′ 2) = 0 widely used in hydrodynamics (it
is called the Blasius equation when β = 0, the Hiemenz flow when β = 1, and
also known as the Falkner–Skan equation [18]) is linearizable neither by point nor
contact transformation.
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[6] E. Cartan, Sur les variétés àconnexion projective. Bull. Soc. Math. France 52 (1924),
205–241.

[7] S.S. Chern, The geometry of a differential equation y′′′ = F (x, y, y′, y′′), Vol. 4. Sci. Rep.
Tsing Hua Univ., Paris, 1940. Reprinted in: S.-S. Chern, Selected Papers, Springer, Berlin,
1978.

[8] A.V. Bocharov, V.V. Sokolov, and S. I. Svinolupov, On some equivalance problems for
differential equations. Preprint, WRI/Ufa, 1993.

[9] G. Grebot, The linearization of third order ODEs. unpublished, 1996.

[10] V.N. Gusyatnikova and V.A. Yumaguzhin, Contact transformations and local reducibility
of ODE to the form y′′′ = 0. Acta App. Math. 56 (1999), 155–179.

[11] B. Doubrov, B. Komrakov, and T. Morimoto, Equivalence of holonomic differential equa-
tions. Lobachevskii Journal Of Mathematics 3 (1999), 39–71.
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We study local conservation laws of variable coefficient diffusion–convection
equations of the form f(x)ut = (g(x)A(u)ux)x+h(x)B(u)ux. The main tool of
our investigation is the notion of equivalence of conservation laws with respect
to the equivalence groups. That is why, for the class under consideration we
first construct the usual equivalence group G∼ and the extended one Ĝ∼ in-
cluding transformations which are nonlocal with respect to arbitrary elements.
The extended equivalence group Ĝ∼ has interesting structure since it contains
a non-trivial subgroup of gauge equivalence transformations. Then, using the
most direct method, we carry out two classifications of local conservation laws
up to equivalence relations generated by G∼ and Ĝ∼, respectively. Equivalence
with respect to Ĝ∼ plays the major role for simple and clear formulation of the
final results.

1 Introduction

In this paper we study local conservation laws of PDEs of the general form

f(x)ut = (g(x)A(u)ux)x + h(x)B(u)ux, (1)

where f = f(x), g = g(x), h = h(x), A = A(u) and B = B(u) are arbitrary
smooth functions of their variables, and f(x)g(x)A(u) 6=0.

Conservation laws were investigated for some subclasses of class (1). In par-
ticular, Dorodnitsyn and Svirshchevskii [2] (see also [4, Chapter 10]) constructed
the local conservation laws for the class of reaction–diffusion equations of the
form ut = (A(u)ux)x + C(u), which has non-empty intersection with the class
under consideration. The first-order local conservation laws of equations (1) with
f = g = h = 1 were constructed by Kara and Mahomed [6]. Developing the
results obtained in [1] for the case hB = 0, f = 1, in the recent papers [5, 10] we
completely classified potential conservation laws (including arbitrary order local
ones) of equations (1) with f = g = h = 1 with respect to the corresponding
equivalence group.
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For class (1) in Section 2 we first construct the usual equivalence group G∼ and
the extended one Ĝ∼ including transformations which are nonlocal with respect to
arbitrary elements. We discuss the structure of the extended equivalence group Ĝ∼

having non-trivial subgroup of gauge equivalence transformations. Then we carry
out two classifications of local conservation laws up to the equivalence relations
generated by G∼ and Ĝ∼, respectively, using the most direct method (Section 3).

The main tool of our investigation is the notion of equivalence of conservation
laws with respect to equivalence groups, which was introduced in [10]. Below we
adduce some necessary notions and statements, restricting ourselves to the case of
two independent variables. See [9, 10] for more details and general formulations.

Let L be a system L(t, x, u(ρ)) = 0 of PDEs for unknown functions u =
(u1, . . . , um) of independent variables t (the time variable) and x (the space vari-
able). Here u(ρ) denotes the set of all the partial derivatives of the functions u of
order no greater than ρ, including u as the derivatives of the zero order.

Definition 1. A conservation law of the system L is a divergence expression

DtF (t, x, u(r)) +DxG(t, x, u(r)) = 0 (2)

which vanishes for all solutions of L. Here Dt and Dx are the operators of total
differentiation with respect to t and x, respectively; F and G are correspondingly
called the density and the flux of the conservation law.

Two conserved vectors (F,G) and (F ′, G′) are equivalent if there exist func-
tions F̂ , Ĝ and H of t, x and derivatives of u such that F̂ and Ĝ vanish for all
solutions of L and F ′ = F + F̂ +DxH, G′ = G+ Ĝ−DtH.

Lemma 1. [10] Any point transformation g between systems L and L̃ induces
a linear one-to-one mapping g∗ between the corresponding linear spaces of conser-
vation laws.

Consider the class L|S of systems L(t, x, u(ρ), θ(t, x, u(ρ))) = 0 parameterized
with the parameter-functions θ = θ(t, x, u(ρ)). Here L is a tuple of fixed func-
tions of t, x, u(ρ) and θ. θ denotes the tuple of arbitrary (parametric) func-

tions θ(t, x, u(ρ)) = (θ1(t, x, u(ρ)), . . . , θ
k(t, x, u(ρ))) satisfying the additional con-

dition S(t, x, u(ρ), θ(q)(t, x, u(ρ))) = 0.
Let P = P (L, S) denote the set of pairs each from which consists of a system

from L|S and a conservation law of this system. Action of transformations from an
equivalence group G∼ of the class L|S together with the pure equivalence relation
of conserved vectors naturally generates an equivalence relation on P . Classifica-
tion of conservation laws with respect to G∼ will be understood as classification
in P with respect to the above equivalence relation. This problem can be investi-
gated in the way that it is similar to group classification in classes of systems of
differential equations. Specifically, we firstly construct the conservation laws that
are defined for all values of the arbitrary elements. (The corresponding conserved
vectors may depend on the arbitrary elements.) Then we classify, with respect
to the equivalence group, arbitrary elements for each of the systems that admits
additional conservation laws.



Conservation Laws of Diffusion–Convection Equations 109

2 Equivalence Transformations and Choice
of Investigated Class

In order to classify the conservation laws of equations of the class (1), firstly we
have to investigate equivalence transformations of this class.

The usual equivalence group G∼ of class (1) is formed by the nondegenerate
point transformations in the space of (t, x, u, f, g, h,A,B), which are projectible
on the space of (t, x, u), i.e. they have the form

(t̃, x̃, ũ) = (T t, T x, T u)(t, x, u),

(f̃ , g̃, h̃, Ã, B̃) = (T f , T g, T h, TA, TB)(t, x, u, f, g, h,A,B), (3)

and transform any equation from the class (1) for the function u = u(t, x) with the
arbitrary elements (f, g, h,A,B) to an equation from the same class for function
ũ = ũ(t̃, x̃) with the new arbitrary elements (f̃ , g̃, h̃, Ã, B̃).

Theorem 1. G∼ consists of the transformations

t̃ = δ1t+ δ2, x̃ = X(x), ũ = δ3u+ δ4,

f̃ =
ε1δ1f

Xx(x)
, g̃ = ε1ε

−1
2 Xx(x)g, h̃ = ε1ε

−1
3 h, Ã = ε2A, B̃ = ε3B,

where δj (j = 1, 4) and εi (i = 1, 3) are arbitrary constants, δ1δ3ε1ε2ε3 6= 0, X is
an arbitrary smooth function of x, Xx 6= 0.

It appears that class (1) admits other equivalence transformations which do not
belong to G∼ and form, together with usual equivalence transformations, an ex-
tended equivalence group. We demand for these transformations to be point with
respect to (t, x, u). The explicit form of the new arbitrary elements (f̃ , g̃, h̃, Ã, B̃)
is determined via (t, x, u, f, g, h,A,B) in some non-fixed (possibly, nonlocal) way.
We construct the complete (in this sense) extended equivalence group Ĝ∼ of
class (1), using the direct method.

Existence of such transformations can be explained in many respects by fea-
tures of representation of equations in the form (1). This form leads to an ambigu-
ity since the same equation has an infinite series of different representations. More
exactly, two representations (1) with the arbitrary element tuples (f, g, h,A,B)
and (f̃ , g̃, h̃, Ã, B̃) determine the same equation iff

f̃ = ε1ϕf, g̃ = ε1ε
−1
2 ϕg, h̃ = ε1ε

−1
3 ϕh,

Ã = ε2A, B̃ = ε3(B + ε4A), (4)

where ϕ = exp
(
−ε4

∫ h(x)
g(x)dx

)
, εi (i = 1, 4) are arbitrary constants, ε1ε2ε3 6= 0

(the variables t, x and u do not transform!).
The transformations (4) act only on arbitrary elements and do not really

change equations. In general, transformations of such type can be considered
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as trivial [9] (“gauge”) equivalence transformations and form the “gauge” (nor-
mal) subgroup Ĝ∼g of the extended equivalence group Ĝ∼. Application of “gauge”
equivalence transformations is equivalent to rewriting equations in another form.
In spite of really equivalence transformations, their role in group classification
comes not as a choice of representatives in equivalence classes but as a choice of
the form of these representatives.

Let us note that transformations (4) with ε4 6= 0 are nonlocal with respect to
arbitrary elements, otherwise they belong to G∼ and form the “gauge” (normal)
subgroup G∼g of the equivalence group G∼.

The factor-group Ĝ∼/Ĝ∼g coincides for class (1) with G∼/G∼g and can be
assumed to consist of the transformations

t̃ = δ1t+ δ2, x̃ = X(x), ũ = δ3u+ δ4,

f̃ =
δ1f

Xx(x)
, g̃ = Xx(x)g, h̃ = h, Ã = A, B̃ = B,

(5)

where δi (i = 1, 4) are arbitrary constants, δ1δ3 6= 0, X is an arbitrary smooth
function of x, Xx 6= 0.

Using the transformation t̃ = t, x̃ =
∫

dx
g(x) , ũ = u from G∼/G∼g, we can reduce

equation (1) to

f̃(x̃)ũt̃ = (A(ũ)ũx̃)x̃ + h̃(x̃)B(ũ)ũx̃,

where f̃(x̃) = g(x)f(x), g̃(x̃) = 1 and h̃(x̃) = h(x). (Likewise any equation of
form (1) can be reduced to the same form with f̃(x̃) = 1.) That is why, without
loss of generality we restrict ourselves to investigation of the equation

f(x)ut = (A(u)ux)x + h(x)B(u)ux. (6)

Any transformation from Ĝ∼, which preserves the condition g = 1, has the
form

t̃ = δ1t+ δ2, x̃ = δ5
∫
eδ8

∫
h dxdx+ δ6, ũ = δ3u+ δ4,

f̃ = δ1δ
−1
5 δ9fe

−2δ8
∫
h dx, h̃ = δ9δ

−1
7 he−δ8

∫
h dx,

Ã = δ5δ9A, B̃ = δ7(B + δ8A),

(7)

where δi (i = 1, 9) are arbitrary constants, δ1δ3δ5δ7δ9 6= 0. The set Ĝ∼1 of
such transformations is a subgroup of Ĝ∼. It can be considered as a general-
ized equivalence group of class (6) after admitting dependence of (3) on arbitrary
elements [10] and additional supposition that such dependence can be nonlocal.
The group G∼1 of usual (local) equivalence transformations of class (6) coincides
with the subgroup singled out from Ĝ∼1 via the condition δ8 = 0. The transfor-
mations (7) with non-vanishing values of the parameter δ8 are nonlocal and are
compositions of (nonlocal) gauge and usual equivalence transformations from G∼1 .

There exists a way to avoid operations with nonlocal in (t, x, u) equivalence
transformations. More exactly, we can assumed that the parameter-function B
is determined up to an additive term proportional to A and subtract such term
from B before applying equivalence transformations (5).



Conservation Laws of Diffusion–Convection Equations 111

3 Local Conservation Laws

We search local conservation laws of equations from class (6).

Lemma 2. Any conservation law of form (2) of any equation from class (6) is
equivalent to a conservation law that has the density depending on t, x, and u and
the flux depending on t, x, u and ux.

Note 1. A similar statement is true for an arbitrary (1+1)-dimensional evolution
equation L of the even order r = 2r̄, r̄ ∈ N. For example [3], for any conservation
law of L we can assume up to equivalence of conserved vectors that F and G
depend only on t, x and derivatives of u with respect to x, and the maximal order
of derivatives in F is not greater than r̄.

Theorem 2. A complete list of G∼1 -inequivalent equations (6) having nontrivial
conservation laws is exhausted by the following ones

1. h = 1 : ( fu, −Aux −
∫
B ).

2. h = x−1 : (xfu, −xAux +
∫
A−

∫
B ).

3. B = εA : (yfe−ε
∫
hu, −yAe−ε

∫
huy +

∫
A), (fe−ε

∫
hu, −Ae−ε

∫
huy).

4. B = εA+ 1, f = −hZ−1, h = Z−1/2 exp

(
−
∫
a00 + a11

2Z
dy

)
:

( (σk1y + σk0)fe−ε
∫
hu, −(σk1y + σk0)(Ae−ε

∫
huy + hu) + σk1

∫
A )

5. B = εA+ 1, f = hy : ( et−ε
∫
hhyu, −et(Ae−ε

∫
huy + hu) ).

6. B = εA+ 1, f = hy + hy−1 :

( et−ε
∫
hyfu, −et(yAe−ε

∫
huy + yhu−

∫
A) ).

7. A = 1, Bu 6= 0, f = −h(h−1)xx :

( et(h−1)xxu, e
t(h−1ux − (h−1)xu+

∫
B) ).

8. A = 1, B = 0 : (αfu, −αux + αxu ).

Here y is implicitly determined by the formula x =
∫
eε

∫
h(y)dydy; ε, aij = const,

i, j = 0, 1; (σk1, σk0) = (σk1(t), σk0(t)), k = 1, 2, is a fundamental solution of
the system of ODEs σνt = aµνσ

µ; Z = a01y
2 + (a00 − a11)y − a10; α = α(t, x) is

an arbitrary solution of the linear equation fαt + αxx = 0 (which is an adjoint
equation to the initial one). (Together with constraints on A, B, f and h we also
adduce complete lists of linear independent conserved vectors.)

In Theorem 2 we classify conservation laws with respect to the usual equiva-
lence group G∼1 . The results that are obtained can be formulated in an implicit
form only, and indeed Case 4 is split into a number of inequivalent cases depending
on values of aij . At the same time, using the extended equivalence group Ĝ∼1 , we
can present the result of classification in a closed and simple form with a smaller
number of inequivalent equations having nontrivial conservation laws.
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Theorem 3. A complete list of Ĝ∼1 -inequivalent equations (6) having nontrivial
conservation laws is exhausted by the following ones

1. h = 1 : ( fu, −Aux −
∫
B ).

2a. B = 0 : ( fu, −Aux ), (xfu, −xAux +
∫
A ).

2b. B = 1, f = 1, h = 1 : (u, −Aux − u ),
( (x+ t)u, −(x+ t)(Aux + u) +

∫
A ).

2c. B = 1, f = ex, h = ex : ( ex+tu, −et(Aux + exu) ),

( ex+t(x+ t)u, −et(x+ t)(Aux + exu) + et
∫
A ).

2d. B = 1, f = xµ−1, h = xµ : (xµ−1eµtu, −eµt(Aux + xµu) ),

(xµe(µ+1)tu, e(µ+1)t(−xAux − xµ+1u+
∫
A) ).

3. B = 1, f = eµ/xx−3, h = eµ/xx−1, µ ∈ {0, 1} :
( fe−µtxu, −e−µtx(Aux + hu) + e−µt

∫
A ),

( fe−µt(tx− 1)u, −e−µt(tx− 1)(Aux + hu) + te−µt
∫
A ).

4. B = 1, f = |x− 1|µ−3/2|x+ 1|−µ−3/2, h = |x− 1|µ−1/2|x+ 1|−µ−1/2 :
( fe(2µ+1)t(x− 1)u, −e(2µ+1)t(x− 1)(Aux + hu) + e(2µ+1)t

∫
A ),

( fe(2µ−1)t(x+ 1)u, −e(2µ−1)t(x+ 1)(Aux + hu) + e(2µ−1)t
∫
A ).

5. B = 1, f = eµ arctanx(x2 + 1)−3/2, h = eµ arctanx(x2 + 1)−1/2 :

( feµt(x cos t+ sin t)u, −eµt(x cos t+ sin t)(Aux + hu) + eµt cos t
∫
A ),

( feµt(x sin t− cos t)u, −eµt(x sin t− cos t)(Aux + hu) + eµt sin t
∫
A ).

6. B = 1, f = hx : ( ethxu, −et(Aux + hu) ).

7. B = 1, f = hx + hx−1 : ( etxfu, −et(xAux + xhu−
∫
A) ).

8. A = 1, Bu 6= 0, f = −h(h−1)xx :

( et(h−1)xxu, e
t(h−1ux − (h−1)xu+

∫
B) ).

9. A = 1, B = 0 : (αfu, −αux + αxu ).

Here µ = const, α = α(t, x) is an arbitrary solution of the linear equation
fαt + αxx = 0 (which is an adjoint equation to the initial one). (Together with
constraints on A, B, f and h we also adduce complete lists of linear independent
conserved vectors.)

Note 2. The cases 2b–2d can be reduced to the case 2a by means of additional
equivalence transformations:

2b→2a: t̃ = t, x̃ = x+ t, ũ = u;

2c→2a: t̃ = et, x̃ = x+ t, ũ = u;

2d (µ+ 1 6= 0)→2a: t̃ = (µ+ 1)−1(e(µ+1)t − 1), x̃ = etx, ũ = u;

2d (µ+ 1 = 0)→2a: t̃ = t, x̃ = etx, ũ = u.
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4 Conclusion

The present paper is the beginning for further studies on this subject. For the
class under consideration we intend to perform a complete classification of po-
tential conservation laws and construct an exhaustive list of locally inequivalent
potential systems corresponding to them. These results can be developed and
generalized in a number of different directions. So, studying different kinds of
symmetries (Lie, nonclassical, generalized ones) of constructed potential systems,
we may obtain the corresponding kinds of potential symmetries (usual poten-
tial, nonclassical potential, generalized potential). Analogously, local equivalence
transformations between potential systems constructed for different initial equa-
tions result in nonlocal (potential) equivalence transformations for the class under
consideration. In such way it is possible to find new nonlocal connections between
variable coefficient diffusion–convection equations. We believe that the same ap-
proach used in this article, can be employed for investigation of wider classes of
differential equations.
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In this paper, a method to compute symmetries merging the notions of non-
classical and potential symmetries, which we call nonclassical potential sym-
metries, for partial differential equations (PDEs) written in conserved forms
is presented. We determine a number of new such symmetry generators for
a wave equation in inhomogeneous media as an illustrative example. The cor-
responding group-invariant solutions are also constructed.

1 Introduction

The classical symmetry group methods based on local symmetries provide a sys-
tematic method for obtaining group-invariant solutions of partial differential equa-
tions (PDEs) see [1–5] and the references therein. Motivated by the fact that for
many PDEs group-invariant solutions are known that are not obtained by using
the classical symmetry group method, there have been several generalisations of
these methods for finding group-invariant solutions, the nonclassical method of
Bluman and Cole [6], the direct method of Clarkson and Kruskal [7] and the
differential constraint approach by Olver and Rosenau [8].

In nonclassical method the original PDE is augmented with the invariant sur-
face conditions, a system of first-order differential equations satisfied by all func-
tions invariant under a certain vector field [9]. The number of determining equa-
tions for the nonclassical method is smaller than for the classical method therefore
the set of solutions is larger than for the classical method.

In [10], Bluman and Kumei introduced a method which yields new classes of
symmetries of a given PDE that are neither Lie point nor Lie–Bäcklund symme-
tries. They are nonlocal symmetries called potential symmetries. The potential
symmetries of a given PDE are realized as a local symmetries of a system of
PDEs, obtained by replacing the PDE by an equivalent conserved form, with ad-
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ditional dependent variables [1]. A Lie point symmetry generator of the system,
acting on the space consisting of the independent and dependent variables of the
given PDE and the (potential) variables, yields a potential symmetry of the given
PDE if atleast one of the infinitesimals of the generator depends explicitly on the
potential variables.

The nonclassical potential symmetry method is a combination of potential sym-
metry and nonclassical method and was studied in, see [11–13] and the references
therein. By combining the nonclassical method with potential symmetry method
it was shown that useful nonclassical potential symmetries can be found.

We adopt the notation presented in [13] wherein the method is elaborately
detailed.

2 Applications

We consider the quasi-linear second order hyperbolic PDE in two independent
variables x, t and the dependent variable u, the wave equation

utt = c2(x)uxx, (1)

which charaterise small transverse vibrations of a string with variable density with
wave speed c(x) in an inhomogeneous medium. If c(x) = x, then the PDE (1) can
be written in a conserved form

Dt

(
x−2ut

)
−Dx(ux) = 0. (2)

Then the auxiliary covering system of first-order PDEs obtained from the equa-
tion (2) with additional dependent variable v (potential) is

vt = ux, vx = x−2ut. (3)

The symmetry generator

X = τ(t, x, u, v)
∂

∂t
+ ξ(t, x, u, v)

∂

∂x
+ φ(t, x, u, v)

∂

∂u
+ ζ(t, x, u, v)

∂

∂v
(4)

that leaves invariant the equation (3) and the following system of first-order PDEs

τut + ξux − φ = 0, τvt + ξvx − ζ = 0 (5)

is a non-trivial nonclassical potential symmetry of the equation (1) if the infinites-
imals τ , ξ, φ depend on v explicitly.

The system (3) admits the following potential symmetry

X̃3 = 2tx
∂

∂x
+ 2 log x

∂

∂t
+ (tu− xv) ∂

∂u
− (tv + x−1u)

∂

∂v

of equation (1) (see [1]).
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To obtain the nonclassical potential symmetries of (1), we apply the nonclassi-
cal method to the system of equations (3). To apply the nonclassical method (3)
and (5) to be invariant under the infinitesimal generator (4).

Case 1. τ = 1. We determine ξ, φ and ζ by giving specific form for them,
namely, ξ = A(t, x), φ = B(t, x)u + C(t, x)v and ζ = D(t, x)u + E(t, x)v. The
following determining equations for ξ, φ and ζ are obtained by substitution and
then separating by the coefficients of u and v

u : Dt +
DB

1−A2x−2
− AD2

1−A2x−2
+

DE

1−A2x−2
− ABEx−2

1−A2x−2

+
AAtDx

−2

1−A2x−2
− AtBx

−2

1−A2x−2
−Bx +

AB2x−2

1−A2x−2
− BD

1−A2x−2

+
ACDx−2

1−A2x−2
− BCx−2

1−A2x−2
+

AxD

1−A2x−2
− ABAxx

−2

1−A2x−2
= 0, (6)

v : Et +
DC

1−A2x−2
− ADE

1−A2x−2
+

E2

1−A2x−2
− ACEx−2

1−A2x−2

+
AAtEx

−2

1−A2x−2
− AtCx

−2

1−A2x−2
− Cx +

ABCx−2

1−A2x−2
− BE

1−A2x−2

+
ACEx−2

1−A2x−2
− C2x−2

1−A2x−2
+

AxE

1−A2x−2
− AAxCx

−2

1−A2x−2
= 0 (7)

and

u : Dx +
D2

1−A2x−2
− ABDx−2

1−A2x−2
+

BEx−2

1−A2x−2
− ADEx−2

1−A2x−2

+
AAxDx

−2

1−A2x−2
− AxBx

−2

1−A2x−2
+

2ABx−3

1−A2x−2
− 2A2Dx−3

1−A2x−2

− x−2Bt +
ABDx−2

1−A2x−2
− B2x−2

1−A2x−2
+

ABCx−4

1−A2x−2
− CDx−2

1−A2x−2

+
AtDx

−2

1−A2x−2
− AAtBx

−4

1−A2x−2
= 0, (8)

v : Ex +
DE

1−A2x−2
− ACDx−2

1−A2x−2
+

CEx−2

1−A2x−2
− AE2x−2

1−A2x−2

+
AAxEx

−2

1−A2x−2
− AxCx

−2

1−A2x−2
+

2ACx−3

1−A2x−2
− 2A2Ex−3

1−A2x−2

− x−2Ct +
ABEx−2

1−A2x−2
− BCx−2

1−A2x−2
+

AC2x−4

1−A2x−2
− CEx−2

1−A2x−2

+
AtEx

−2

1−A2x−2
− AAtCx

−4

1−A2x−2
= 0. (9)
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If A = B = E = 0, then solving the equations (6)–(9) yields C = (α − 1)x,
D = α/x, α 6= 1 which results in obtaining the following nonclassical potential
symmetry

X1 =
∂

∂t
+ (α− 1)xv

∂

∂u
+
αu

x

∂

∂v
.

If A = B = D = 0, as a result of solving the determining equations we obtain the
following nonclassical potential symmetries

X2 =
∂

∂t
+

xv

x− 1

∂

∂u
+

v

t+ 1

∂

∂v
, X3 =

∂

∂t
− xv ∂

∂u
+
v

t

∂

∂v
.

Case 2. τ = 0, ξ = 1. Again, after substitutions and then separating by the
coefficients of u and v we obtain the following determining equations

u : Dt + x2D2 +BE −Bx −B2 − CD = 0, (10)

v : Et + x2DE + CE − Cx −BC − CE = 0, (11)

u : x2Dx + x2BD + x2DE + 2xD −Bt − x2BD −BC = 0, (12)

v : x2Ex + x2CD + x2E2 + 2xE − Ct − x2BE − C2 = 0. (13)

If B = D = 0, then solving the equations (10)–(13) results in obtaining the
following nonclassical potential symmetries for the equation (1)

X4 =
∂

∂x
+

v

t+ 1

∂

∂u
+

v

x2 − x
∂

∂v
, X5 =

∂

∂x
+

v

t+ 1

∂

∂u
− v

x

∂

∂v
.

3 Group-Invariant Solutions Corresponding
to the Nonclassical Potential Symmetries

1. For the nonclassical potential symmetry generator X1 the characteristic system
related to the invariant surface conditions (5) admits the following three invariants

y = x, z = βx2v2 − αu2,

w = −
√
αβ t+ log

(√
β xv +

√
αu
)
− 1

2
log (β x2v2 − αu2), (14)

where β = α− 1.
Differentiating the equation (14b) w.r.t. t we obtain v = (αuut)/(βx

2ux). Now,
differentiate the equation (14c) w.r.t. t again and substituting v = (αuut)/(βx

2ux)
into the resulting equation and solving it yields u(t, x) = xαΦ(t). Now, using
vt = ux we obtain Φ′′(t)− αβ Φ(t) = 0. Hence the solution to the equation (1) is

u(t, x) = xα
(
C1 exp

(√
αβ t

)
+ C2 exp

(
−
√
αβ t

))

where C1 and C2 are arbitrary constants.
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2. The nonclassical potential symmetry generators X2 and X4 of the equation (1)
yield the group-invariant solution

u(t, x) = C3(x− log x) + C3
(t+ 1)2

2
+ C4

and X3 and X5 give rise to the group-invariant solutions

u(t, x) = C5 log x− C5
t2

2
+ C6 and u(t, x) = C7 log x− C7

(t+ 1)2

2
+ C8

respectively, where C3, C4, C5, C6, C7 and C8 are arbitrary constants.

4 Concluding Remarks

In this paper, we extend the theory of potential symmetry method of Bluman
and Kumei [1] to nonclassical potential symmetries and we have shown that these
new symmetries yield some interesting group-invariant solutions for a quasi-linear
PDE which is considered differently in literature. We found that different class
of solutions may be obtained when one studies given PDEs through nonclassical
potential symmetries.

The authors have learnt that the method used here has been used by Gan-
darias [12]. However, we believe that the results, viz., the exact solutions, obtained
here differs. This is possible as the choice of nonclassical symmetry generators to
determine exact solutions are numerous. Also, the set of nonclassical symmetry
generators do not form a Lie algebra. The reader is also referred to the paper by
Bluman and Yan [14].
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We compare certain infinite dimensional Lie algebras of conserved quantities for
the free Newton equation q̈ = 0, the free heat system and the Euclidean non-
linear Schrödinger equation. There is a natural differential operator defined
for all polynomials of the conservation laws I0, I1, . . . in the NLS hierarchy.
We discuss the invariant polynomials and point out a connection to the free
classical equation. The basic ingredient is the presence of an extra ‘Heisenberg’
element in addition to I0, I1, . . ..

1 Introduction

This work is related to the studies of invariance properties of Schrödinger (Bern-
stein) and related diffusion processes in [1-4, 8, 10, 14, 15], in particular, the case
of Gaussian processes [1, 2].

Going back to a paper [11] by Sophus Lie from 1881, we know that the Lie
algebra for the free heat equation in 1+1 dimensions is, except for a ‘trivial’ infinite
dimensional stemming from linearity, of dimension six. It is a general fact, see [3],
that this Lie algebra has a classical counterpart of constants of motion. In fact,
in a certain sense they differ at most by one element which needs a “quantum
correction”. In particular, they have the same dimension. It is shown in the
papers referred to above, how to obtain martingales, or stochastic constants of
motion, from the heat Lie algebra.

The classical counterpart to the free heat equation is the free Newton equation
q̈ = 0, which has a six dimensional Poisson–Lie algebra given by the functions 1,
p, pt − q, p2, p(pt − q) and (pt − q)2, where p := q̇. It consists of all functions
in t, q and p which are of order at most two w.r.t. p. With In = pn we get an
infinite sequence of constants of motion. They commute w.r.t. the natural Poisson
bracket.

In the case of the free heat Lie algebra, it is clear that partial derivation w.r.t.
the space variable q preserves the heat equation: ∂q is a recursion operator [6, 12].
We can express this in a more symmetric way by looking at the free heat system
u̇ + u′′/2 = 0, −v̇ + v′′/2 = 0. (Here and below u̇ = ut and u′ = uq.) Then all



Symmetries for Euclidean NLS and Related 121

the functionals In := (u(n)v + (−1)nuv(n))/2, for n = 0, 1, . . . are conservation
laws in involution w.r.t. a (well known) natural Lie bracket defined below. It is
an elementary but deep fact that

v
δIn
δv
− uδIn

δu
= u(n)v − (−1)nuv(n) = ∂

∂q

(
u(n−1)v − u(n−2)v′ + . . .

)

and that u(n−1)v − u(n−2)v′ + . . ., as a conservation law, is equivalent to DIn =
nIn−1. This operator D can be extended to a derivation on the space of polyno-
mials obtained from In, n ≥ 0.

In the last part of the paper we compare this example with the classical case and
a non-linear system of heat equations, viz the Euclidean non-linear heat equation
u̇ + u′′/2 = u2v, −v̇ + v′′/2 = uv2. We also study more generally the structure
on the polynomials obtained from a derivation D. This is sketched below, details
will appear elsewhere.

2 The Heat Lie Algebra in 1+1 Dimensions

For u = u(t, q), t, q real, we define the (backward) free heat operator by Ku :=
u̇+ u′′/2. Consider all linear partial differential operators Λ of order at most one
in (t, q): Λ = T∂/∂t+Q∂/∂q + U, where T , Q and U are functions of (t, q), and
where U acts as multiplication operator.

Definition 1. Λ belongs to the heat Lie algebra if, for some function Φ = ΦΛ(t, q)
it holds that [K,Λ] = KΛ− ΛK = Φ ·K.

Simple calculations lead to the following well-known facts: The heat Lie algebra
consists of two parts, of which the first is generated by the operators Λ0 = 1
(the centre), Λ1 = ∂/∂q, Λ∗ = Λ∗1 = t∂/∂q − q, forming the Heisenberg algebra
(since [Λ∗1,Λ1] = 1), whereas the second, generated by

Ξ1 = Λ2 =
∂

∂t
, Ξ2 = t

∂

∂t
+

1

2
q
∂

∂q

(
+
1

4

)
, Ξ3 =

t2

2

∂

∂t
+
t

2
q
∂

∂q
− 1

4
(q2 − t)

form the Lie algebra sl2. (We remark that Λ∗ is not intended to suggest adjoint.)

3 The Classical Counterpart

Consider a two-dimensional phase space with coordinates p and q, and the usual
Poisson bracket

{φ, ψ} = ∂φ

∂p

∂ψ

∂q
− ∂φ

∂q

∂ψ

∂p
.

Regarding t as a parameter, the functions 1, p and pt − q, form the Heisenberg
algebra, whereas p2, p(pt− q) and (pt− q)2 form sl2.
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We now turn to the free Newton equation q̈ = 0, in which case p := q̇ and
pt − q are obvious constants of motion (CMs). The functions 1, . . . , (pt − q)2 is
a basis for the CMs which are of order at most two in the variable p. We call it
the classical algebra.

The first five functions correspond to the same operators as in the heat case.
The sixth function corresponds to the operator

t2

2

∂

∂t
+
t

2
q
∂

∂q
− q2

4
(no t-term)

The zero-order term q2− t in the heat case is the “quantum version”, q2− t =: q2 :
in physicist notation. Readers familiar with stochastic analysis will no doubt
recognise the extra term, e.g. from Ito’s formula.

The heat Lie algebra and the classical algebra satisfy the same commutator
relations. The Heisenberg algebra is an ideal. Clearly I0 = 1, I1 = p, I2 = p2, . . .
all commute. With I∗ = I∗1 = pt − q, we get {I∗, In} = nIn−1 = dIn/dp. We
see that In → In+1 is the “creation operator” multiplication with p, whereas
In → In−1 is the “annihilation operator” d/dp.

4 The Free Heat System

We consider the system of two equations

u̇+
1

2
u′′ = 0, −v̇ + 1

2
v′′ = 0, (1)

obtained from the Lagrangian L = (uv̇ − u̇v)/2 + u′v′/2. The symmetry Lie
algebra contains the vector fields

Λ0 = v
∂

∂v
− u ∂

∂u
, Λ1 =

∂

∂q
, Λ∗1 = t

∂

∂q
− q

(
v
∂

∂v
− u ∂

∂u

)
, Λ2 =

∂

∂t
.

By Noether’s theorem we get the conservation laws I0 = uv, I1 = 1
2(u

′v − uv′),
I∗ = tI1 − qI0, I2 = (u′′v + uv′′)/2, where I0, I1 and I∗ = I∗1 form a Heisenberg
algebra with respect to the (field theory) bracket

{F,G} :=
∫ (

δF

δu

δG

δv
− δF

δv

δG

δu

)
dq,

t being looked upon as a parameter. Here, the variational derivative refers to the
space variable:

δF

δu
=
∂F

∂u
− d

dq

∂F

∂u′
+

d2

dq2
∂F

∂u′′
− . . . .

There are two more vector fields corresponding to the remaining elements of sl2,
viz.

Ξ2 = t
∂

∂t
+
q

2

∂

∂q
, and Ξ3 =

t2

2

∂

∂t
+
tq

2

∂

∂q
− q2

4
Λ0 −

t

4

(
u
∂

∂u
+ v

∂

∂v

)
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but our main interest is with I0, I1, I
∗ and I2. We remark however, that in this

more symmetric setting the quantum correction disappears: the conservation law
corresponding to Ξ3 is 1/2 times t2I2 + tqI1 − q2I0/2.

Now, defining In :=
(
u(n)v + (−1)nuv(n)

)
/2, n ≥ 0, i.e. In+1 = CIn = D/2 ·In

(Hirota bilinear derivative) one finds {Im, In} = 0 and {I∗, In} = nIn−1, m, n ≥ 0
(with I−1 = 0). Exactly as in the classical case, C is the creation and {I∗, ·}
the annihilation operator.

5 Constants of Motion for the Free Heat System

Assume that u and v satisfy (1) (we could add interaction terms here). Then

d

dt

∫
uv dq = 0.

Let f = f(t, q). It is easy to show that d
dt

∫
f uv dq =

∫
Df uv dq =

∫
D∗f uv dq,

where

Df :=
1

u
K(fu) = ḟ +

1

2
f ′′ +

u′

u
f, D∗f := −1

v
K†(fv) = ḟ − 1

2
f ′′ − v′

v
f.

Then, if Λ = T∂t +Q∂q + U belongs to the heat Lie algebra, we have

D(Λu/u) = KΛu = ([K,Λ] + ΛK)u = (ΦΛ + Λ)Ku = 0.

This is an alternative way to express that Λu · v is the density of a conservation
law. In more detail, the preceding equation may be written D(Λu/u) = T u̇/u +
Qu′/u+ U = 0, very much as in the classical case. The coefficients u̇/u and u′/u
are, respectively, the energy density and the momentum density in a form that
emphasizes the backward motion. The density is I0 = uv, and e.g. u′v = u′/u · I0
is an equivalent form for I1.

6 Euclidean Non-Linear Schrödinger System

ENS may be looked upon as an extension of the free heat system with a ‘potential’
V that depends on u and v. We start somewhat more generally with u̇+u′′/2 = V u
and −v̇ + v′′/2 = V v, obtained from the Lagrangian L = (uv̇ − u̇v)/2 + u′v′/2 +
Φ(uv), provided V = φ(uv), with φ = Φ′.

The following are always conservation laws: I0 = uv, I1 = 1
2(u

′v − uv′), I∗ =
tI1 − qI0, I2 = (u′′v + uv′′)/2 − 2Φ(uv) for the same reasons as in the free heat
case. They also commute. One can prove that there is a third order conservation
law,

(u′′′v − uv′′′)/2 + terms of lower order,

only when Φ′′′ = 0. Leaving the linear case (Φ′′ = 0) aside, we choose Φ(s) =
s2/2 so that our heat equations become u̇ + u′′/2 = u2v and −v̇ + v′′/2 = uv2,
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corresponding to V = uv. This can be seen as a two-dimensional field theory
with quartic interaction. One can prove [8] that there is an operator C such that
In := CnI0, n ≥ 0, satisfy the same relations as in the free case: {Im, In} = 0 and
{I∗, In} = nIn−1, m, n ≥ 0. After I2, the next two are

I3 =
1
2(u

′′′v − uv′′′)− 3
2uv(u

′v − uv′),
I4 =

1
2(u

ivv + uviv) + u′2v2 + u2v′2 + 6uu′vv′ + 2u3v3.

Since all In commute with I0, we have vδIn/δv − uδIn/δu = dan/dq for some
functional an. More generally, one sees that for each I that commutes with I0,
the operator

DI :=

(
d

dq

)−1(
v
δI

δv
− uδIn

δu

)

is well defined. One can show that for functions of I0, I1, I2, . . ., D is a derivation
in that D{f(I0, I1, . . . , In)} =

∑n
µ=0 ∂µf(I0, I1, . . . , In)DIµ, for any C

1 function f .
This holds also in the free heat case.

7 Invariant Polynomials

We assume, without reference to the particular cases considered above, that we are
given variables I0, I1, I2, . . ., and an operator D such that DIµ = µIµ−1 for all µ =
0, 1, . . . We also assume that Df(I0, I1, . . . , In) =

∑n
µ=0 ∂µf(I0, I1, . . . , In)µIµ−1

for any n ∈ N and for any function f ∈ C1(Rn+1).

Definition 2. A function M = Mα of the form M = Iα0
0 Iα1

1 · · · Iαnn , where
α0, α1, . . . , αn ∈ N, is a monomial of order N =

∑
µαµ = ||α||.

Definition 3. A function P of the form P =
∑
||α||=N cαMα, where cα are con-

stants, is a polynomial of order N .

Definition 4. A polynomial P is invariant if DP = 0.

For N = 0 every polynomial, in fact, every differentiable function, of I0 is
invariant. These functions should be looked upon as scalars. For N = 1 there are
no invariant polynomials. For N = 2, K2 = I21 − I0I2 is invariant, and for N = 3,
K3 = 2I31 − 3I0I1I2 + I20I3 is invariant. Up to multiplication with functions of I0,
K2 and K3 are unique. For N = 4, of course K2

2 is invariant. There is another
one, unique up to multiplication with functions of I0, viz. K4 = 4I1I3−3I22−I0I4.
K4 is irreducible. For N = 5 we get the obviously invariant polynomial K2K3 and
a new, irreducible, invariant polynomial, K5. For N = 6 we get K3

2 , K
2
3 and

K2K4 in addition to the new, irreducible, invariant polynomial K6.

Theorem 1. For each N ≥ 2 there is an irreducible invariant polynomial KN ,
unique up to multiplication with functions of I0.
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Denote by P all polynomials and byM the quotient spaceM = P/(K2,K3, . . .).
That K2 ≡ 0 means that I0I2 ≡ I21 or I2/I0 ≡ (I1/I0)

2. Using also K3 ≡ 0 we
find I3/I0 ≡ (I1/I0)

3, and so on: In/I0 ≡ (I1/I0)
n, n = 2, 3, . . . . Note that

D
I1
I0

= 1, and D
In
I0
≡ D

(
I1
I0

)n
= n

(
I1
I0

)n−1
, n = 0, 1, . . . .

Hence I1/I0 correspond to p in our first example, the free equation q̈ = 0. We
remark that I1/I0 is the momentum density mentioned at the end of Section 5
above.
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The report reviews the recent advances in modern group analysis approach
to constructing solutions of self-consistent Vlasov-Poisson system of integral
and differential equations in plasma. The solutions obtained describe different
physical phenomena, such as nonlinear plasma oscillations, the ion acceleration
in the adiabatic expansion of a plasma bunch and the Coulomb explosion of
cluster plasma.

1 Introduction

The self-consistent Vlasov–Poisson system of equations is used for a kinetic treat-
ment of plasma expansion into a vacuum. Theoretically the process has been stud-
ied for almost 40 years, since the work by Gurevich et al. [1]. However, until last
decade this problem have been treated mainly by using hydrodynamic models [2].
In the 90-s the kinetic aspects of plasma expansion already prevailed. The need for
kinetic treatment was aimed to better understanding the mechanisms and char-
acteristics of ions triggered by the interaction of a short-laser-pulse with plasma.
Developments in laser technology have enabled high power lasers to produce multi-
terrawatt femtosecond pulses, which allow the examination of the fundamental
physics of ion acceleration at multi-MeV energies. At high focal intensities laser-
triggered ion acceleration results in the formation of a multi-MeV beam propagat-
ing in the forward direction [3,4]. Experiments have already proven the possibility
of transforming the laser energy into collimated ultra-fast ion bunches with high
efficiency when focusing ultra-short laser pulses on solid targets [5, 6]. The com-
monly recognized effect responsible for ion acceleration is charge separation in the
plasma due to high-energy electrons, driven by the laser inside the target [3–6].
During the plasma expansion, the kinetic energy of the fast electrons transforms
into the energy of electrostatic field, which accelerates ions and their energy is
expected to be at the level of the hot-electron energy. The mechanisms and char-
acteristics of ions triggered by the interaction of a short-laser-pulse with plasma
are of current interest because of their possible applications to the novel-neutron-
source development and isotope production. In the near future ultra-intense laser
pulses will be used for ion beam generation with energies useful for proton therapy,
fast ignition inertial confinement fusion, radiography, neutron-sources.
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Along with interactions with solid targets there exists the other interesting
field of application of high-intensity ultrashort laser pulses, namely experiments
with cluster plasmas. A characteristic feature of cluster plasma is its ability to
strongly (almost entirely) absorb laser radiation. This property makes it possible
to built high-brightness X-ray sources [7]. Moreover, the expansion of clusters
results in ion acceleration to high energies [8–11]. In the case of deuteron clus-
ters, ion–ion collisions produce fusion neutrons; this provides an opportunity to
create sub-nanosecond neutron sources for use in materials science. If the laser
field is strong enough, it almost instantaneously knocks electrons out of a cluster,
thereby creating conditions for the subsequent Coulomb explosion of a positively
charged microplasma. The ions of the exploding clusters are accelerated to high
energies and give rise to a macroplasma with a high effective ion temperature. The
maximum energy of the accelerated ions, the ion energy spectrum and the rela-
tion between this spectrum and the initial ion density distribution are of current
theoretical interest.

The mathematical model for phenomena of cluster explosion and laser-plasma
interactions with solid foil targets, which demonstrate ion acceleration at multi-
MeV energies, is based on the unified system of Vlasov–Maxwell (differential and
integral) equations of the plasma kinetic theory. Up to recently theoretical investi-
gations were based mainly on a simplified phenomenological hydrodynamic theory
and numerical modelling, and only few analytical approaches to the complete sys-
tem of Vlasov–Maxwell equations were known. Here we describe a substantial
progress made recently in analytical investigations of plasma kinetic theory equa-
tions that is based on methods of the modern group analysis. As an illustration we
indicate several approaches to construction of new solutions of Vlasov–Maxwell
and Vlasov–Poisson equations, which describe nonlinear plasma oscillations, the
expansion of a cluster plasma and acceleration of ions in quasi-neutral approxi-
mation.

2 Basic Model: Vlasov–Maxwell Equations

Different physical phenomena for short pulse laser-plasma interactions are treated
on basis of the same mathematical model, i.e. the Vlasov equations for the particle
distribution functions fα(t, r,v) for the electrons (α = e) and ions (α = 1, 2, . . .),

fαt + vfαr +
eα
mαγ

{
E +

1

c
[vB]− 1

c2
v (vE)

}
fαv = 0;

γ =
1√

1− (v/c)2
,

(1)

supplemented by Maxwell equations for the electric and magnetic fields, E and B,

Bt + c rotE = 0, divE = 4πρ,

Et − c rotB + 4πj = 0, divB = 0,
(2)



128 V.F. Kovalev

and the nonlocal material equations for the charge and current densities, ρ and j,

ρ =
∑

α

eαm
3
α

∫
dv fα(γ)5 , j =

∑

α

eαm
3
α

∫
dv fα(γ)5v. (3)

The symmetry group admitted by Vlasov–Maxwell (VM) equations (1)–(3) is
given by the 10-th dimensional Poincare group

L10 = 〈X0, X1, X2, X3〉,
X0 = ∂t, X1 = ∂r, X2 = r∂t + c2t∂r + c2∂v − v (v, ∂v)

− c [B, ∂E ] + c [E, ∂B] + c2ρ∂j + j∂ρ,

X3 = [r, ∂r] + [v, ∂v] + [E, ∂E ] + [B, ∂B] + [j, ∂j ] ,

(4)

that describes time and space translations, X0 and X1, Lorentz transforma-
tions X2, and rotations X3. These operators are supplemented by the generator
of dilations

X4 = t∂t + r∂r − 2
∑

α

fα∂fα −E∂E −B∂B − 2j∂j − 2ρ∂ρ, (5)

and (k−1) generators (omitted here) of pairwise translations in the space of distri-
bution functions when there are more than two particle species in plasma [12,13].

For the plane geometry and in non-relativistic limit (c→∞) equations (1)–(3)
are simplified

fαt + vfαx + (eα/mα)E(t, x)fαv = 0, (6)

Ex − 4π
∑

α

∫
dveαf

α = 0, Et + 4π
∑

α

∫
dvveαf

α = 0. (7)

For this case the Poincare group and the dilation operator are reduced to the
following generators

X0 = ∂t, X1 = ∂x, X3 = x∂x + v∂v −
∑

α

fα∂fα + E∂E ,

X2 = t∂x + ∂v, X4 = 2t∂t + x∂x − v∂v − 3
∑

α

fα∂fα − 2E∂E ,
(8)

describing time and space translations, X0 and X1, Galilean boosts, X2, and
dilations, X3 and X4. The joint system of equations (6) and the first equation in
(7) is often referred to as Vlasov-Poisson (VP) equations. We are interested in a
solution to the Cauchy problem to equations (6) with the initial conditions that
correspond to the electron and ion distribution functions specified at the initial
time, fα

∣∣
t=0

= fα0 (x, v).
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3 Expansion of the Plasma Bunch

VP equations (6)–(7) seem to be the simplest one-dimensional mathematical
model, which is commonly used to describe the expansion of a plasma slab. Even
so the modern group analysis methods fail to create the spatially symmetric solu-
tion of (6)–(7) for the distribution functions with initial zero mean velocity. Thus,
with the goal to find physically reasonable solution we are forced to simplify the
basic system of VP equations and consider two limiting cases.

I. The first case corresponds to small time scales, when the term proportional
to the electric field in (6) is small and can be considered as a perturbation that
violates the free particle movement. In this case we calculate the symmetry group
as the approximate symmetry starting from the zero-order approximation that
describes the flow of particles when the electric field is neglected. The approximate
symmetry group operator thus constructed depends on the initial space-velocity
particle distribution functions. In the particular case of the Maxwellian velocity
and the Gaussian space distribution it is presented in the following form

Rappr = κe∂fe + κq∂fq + . . . , κj = κj,0 + κj,1 , j = 0, 1, 2, . . .

κ1,0 = −vf ex +
x− vt
d2

V 2
Te(f

e
v + tf ex) , ⇔ f e0 ∼ e−v

2/2V 2
Te−x

2/2d2 ,

κ2,0 = −vf ix +
x− vt
d2

V 2
T i(f

i
v + tf ix) , ⇔ f i0 ∼ e−v

2/2V 2
Ti−x

2/2d2 ,

κ1,1 =
e

m

{
E
(
1 + (t2V 2

Te/d
2)
)
fev −

(
D0
t + vD0

x

)−1
fev ×

(
3tE(V 2

Te/d
2) + (4π/d2)(V 2

T i − V 2
Te)(t

2ji − txρi)
)}

,

κ2,1 =
ei

M

{
E
(
1 + (t2V 2

T i/d
2)
)
f iv −

(
D0
t + vD0

x

)−1
f iv ×

(
3tE(V 2

T i/d
2) + (4π/d2)(V 2

Te − V 2
T i)(t

2je − txρe)
)}

.

(9)

Here we use standard notations for the operators of the total differentiation eval-
uated on the VP manifold when electric field is neglected.

The approximate symmetry group obtained describes the evolution of parti-
cles distribution functions and the electric field on the initial stage of plasma
dynamics when nonlinear oscillations of plasma density are excited. Particularly,
this approach made it possible to calculate the plasma densities disturbances
and the related space distribution of the electrostatic field [14] for the expanding
electron-ion plasma on small time scales. The initial electron and ion distribution
functions were taken Maxwellian with the thermal velocities VTe and VT i and the
initial density space distribution were described by the Gaussian curve with the
same density scale d.

II. The second case describes the physical situation on long time scales, when
the laser pulse terminates and the plasma trends toward quasi-neutrality. It means
that one can neglect the field terms in Poisson and Maxwell equations (7) and
consider the total charge and current densities equal to zero. Hence, particle
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distribution functions fα(t, x, v) for the electrons (α = e) and ions α = 1, 2, . . .)
are assumed to satisfy the quasi-neutrality conditions,

∫
dv
∑

α

eαf
α = 0 ,

∫
dv v

∑

α

eαf
α = 0 . (10)

and the electric field is expressed in terms of moments of distribution functions

E(t, x) =

∫
dv v2 ∂x

∑

α

eαf
α

{∫
dv
∑

α

e2α
mα

fα
}−1

. (11)

To find the symmetry group, admitted by (6) and (10), the electric field E(t, x)
is considered to be unknown function of the coordinate x and time t. This case
of finding the symmetry logically follows from the simpler, quasi-neutral model
of plasma description, in contrast to the complete system of VM or VP equa-
tions. The principal difference of the admitted symmetry group, as compared to
the symmetry group generators for VP equations, is that the two dilation opera-
tors X3, X4 in (8) are replaced by the three dilation operators X3, X4, and X5,
supplemented by the new, projective group generator X6,

X3 = t∂t − v∂v, X4 = x∂x + v∂v, X5 =
∑

α

fα∂fα ,

X6 = t2∂t + tx∂x + (x− vt)∂v.
(12)

The linear combination of time translations generator X1 and the generator X6,

Rquasi = (1 + Ω2t2)∂t +Ω2tx∂x +Ω2(x− vt)∂v, (13)

allows to derive an entire class of solutions to the Cauchy problem for different
initial distributions of the particles [15]; the generalization of these results to the
spherically symmetric case is straightforward [16].

The generator (13) is the only which selects the spatially symmetric initial
distribution functions with zero mean velocity. The value Ω can be treated as the
ratio of the ion acoustic velocity to the gradient length L0. Distribution functions
are group invariants of the transformations, defined by (13),

fα = fα0 (I
(α)) , I(α) =

1

2

(
v2 +Ω2(x− vt)2

)
+

eα
mα

Φ0(x
′), (14)

where the dependence of Φ0 on self-similar variable x′ = x/
√
1 + Ω2t2 is defined

by quasi-neutrality conditions (10).
Distribution functions (14) give exhaustive information on the kinetics of plasma

bunch expansion. However, for practical applications rough integral characteris-
tics, such as partial ion density, nq(t, x), (q = 1, 2, . . .) and ion energy spectra,
dNq/dε, might be more useful,

nq =

∞∫

−∞

dvf q(t, x, v) ,
dNq

dε
=

1

mqv

∞∫

−∞

dx (f q(t, x, v) + f q(t, x,−v)) . (15)
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Here nq is the linear functional of f q, hence we prolong [17] the generator Rquasi

to get the following generator that describes the density transformations

Rdensity = (1 + Ω2t2)∂t +Ω2tx∂x +Ω2tnq∂nq . (16)

Finite group transformations defined by (16) yield the behavior of nq for arbitrary
t 6= 0,

nq =
nq0√

1 + Ω2t2
Nq (χ) , Nq =

∞∫

−∞

dvf q0 , χ =
x√

1 + Ω2t2
. (17)

The general form of dNq/dε is rather complicated but its asymptotic behavior at
Ωt→∞ is described by the same function Nq,

dNq

dε
≈
√

2

mqε

nq0
Ω
Nq
(
ε =

mqU
2

2

)
, 2ε/Tq À (Ωt)−2 , U = Ωχ . (18)

These results are applied to plasma that contains ions of several, say two, types
(the index q = 1, 2 corresponds to heavy and light ions, respectively) with ini-
tial Maxwellian velocity distribution functions, and the electrons obeying a two-
temperature Maxwellian distribution function with densities and temperatures of
the cold and hot components nc0 and nh0 (nc0 + nh0 =

∑
q Zqnq0) and Te and

Th, respectively. In this case the density distribution and, hence, the ion energy
spectrum is expressed as

Nq = exp

[
E
(
ZqTc
Tq

)
− U2

2v2Tq

(
1 +

Zqme

mq

)]
, q = 1, 2 , v2Tq =

Tq
mq

, (19)

where the function E is defined in the implicit form

nc0 =
∑

q=1,2

Zqnq0 exp
[
(1 + (ZqTc/Tq)) E − (U2/2v2Tq)

× (1 + (Zqme/mq))]− nh0 exp [(1− (Tc/Th)) E ] .
(20)

The high end of the energy spectrum for light ions (q = 2) in a plasma bunch
with hot electrons, defined by (19)–(20), typically has a sharp decrease, so that
the value (2 − 3)Z2Th can be referred to as the characteristic ion energy cutoff.
Acceleration of light impurity ions is of current interest in the experiments on
high-energy proton generation by short laser pulses with thin foil targets and the
measured proton energy cutoff (see, e.g., [18]) is in qualitative agreement with the
above estimation.



132 V.F. Kovalev

4 Coulomb Explosion in a Cluster Plasma

Up to recently the Coulomb explosion of a cluster and the related spectrum of
the accelerated ions have been described in the simplest “ideal cluster” model,
in which the exploding cluster is treated as an exploding homogeneous spherical
bunch with a given initial radius rc. It predicts a square-root ion energy spectrum√
ε with a sharp energy cutoff at the maximal energy εmax ∝ r2c . Similar energy

spectra were obtained in three-dimensional particle-in-cell simulations [10] and
also were observed in experiments. At the same time, in some experiments, ion
energy spectra were found to differ from the above square-root spectrum with a
sharp energy cutoff. This difference may be attributed to, e.g., the radial non-
uniformity of the ion density nc(r) in a cluster or to the initial spread in the cluster
radii. In cluster plasma theory, however, the question of how to describe the ion
energy spectrum as a function of the initial ion density profile up to recently
has remained open. We just indicate a feasible routine to the problem, based on
modern group analysis.

The motion of the cluster plasma governed by the electrostatic field is defined
by a single kinetic equation (1) for cluster ions. For spherically symmetric case,
f = f r(t, r, v)f⊥(v2

⊥) we integrate f over transverse velocities, F (t, r, v) =
∫
fdv⊥

and get the kinetic equation, which we will write down neglecting transverse
thermal motion,

gt + vgr +
ei

M
Egv = 0 , (r2E)r − 4πei

∞∫

−∞

dv g = 0, g ≡ r2F, (21)

which should be solved with the initial condition F |t=0= f0(v, r). The boundary
conditions for the electric field imply that it vanishes at r = 0 and decreases
to zero at infinity. The cluster ion spectrum, defined by the equality, akin to
(18), is the linear functional of the distribution function F . Therefore, using the
suitable symmetry that defines the solution of the initial value problem we can
prolong the symmetry operator on this functional and restore the behavior of
the ion energy spectrum at arbitrary moment t 6= 0. In the “cold” ion plasma
limit, f0(v, r) = δ(v)nc(r) the form of ion spectra and its dependence on the initial
profile of ion density and the initial spread in the cluster radii were discribed in [19]
(the admitted symmetry group for this case was reported in [21]). However, even
for the case when thermal motion of ions is neglected the problem of calculation
of the ion spectrum is not trivial as the “cold” solution exists over a finite time
interval, followed by the multi-flux regime [19,20].
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Some important equations in Financial Mathematics such as the Black–Scholes
equation arise from an application of the Feynman–Kac Theorem to the
stochastic processes underlying the mathematical modelling of financial in-
struments. This is in close parallel to the mathematical modelling of physical
phenomena based on Brownian motion. We examine certain of the equations
which arise in Financial Mathematics from the point of view of their symme-
tries. These include both linear and nonlinear models. We note certain pecu-
liarities of the nonlinear models. We relate the symmetry structure of (1 + 1)
evolution equations to what is known in mechanical systems, both Classical
and Quantal. In particular we consider the relationship with the Noetherian
symmetries of a classical Lagrangian. The connection with mechanical systems
prompts some speculation about the behaviour of the solutions of the equations
of Financial Mathematics in (1 + 2) dimensions.

1 Some Equations of Financial Mathematics

The best known equation of Financial Mathematics is undoubtedly the Black–
Scholes equation [2,14]. It and related equations arise from an application of the
Feynman–Kac Theorem to the stochastic processes underlying the mathemati-
cal modelling of financial instruments. The Feynman–Kac Theorem comes from
the study of Brownian Motion in Statistical Mechanics which is not generally re-
garded as having any connection with Finance. However, the stochastic processes
are based on Brownian Motion as a model.

This connection in itself demonstrates the power of Mathematical Modelling
since it manages to bring two disparate areas of inquiry under the same mathe-
matical umbrella.

We list a number of partial differential equations which arise in Financial Math-
ematics. We give some emphasis to the Black–Scholes Equation for the very reason
of its familiarity to the broader scientific community.
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1.1 The Black–Scholes Equation

The practice of taking and exercising put and call options became common and
acceptable in the Sixties of the last century. Earlier opinion had been that these
were somewhat akin to gambling and were not appropriate activities for the Stock
Exchange, perhaps in reaction to some of the excesses associated with the Great
Crash of 1929. In 1973 two seminal papers appeared which were devoted to the
mathematical theory of option pricing. Black and Scholes developed a parabolic
partial differential equation to describe the evolution in time of the value of what
is known as an ‘European option’. Black and Scholes obtained the equation

∂u

∂t
+

1

2
σ2x2

∂2u

∂x2
+ rx

∂u

∂x
− ru = 0, (1)

where u(t, x) is the value of the option as a function of the time t and the stock
price x. The parameters r and σ2 represent the risk-free interest rate and the
variance of the rate of the return on the stock respectively. In the model as it
stands these parameters are constants. The rigorous derivation of the Black–
Scholes equation was given by Harrison and Pliska in 1981 [5].

At about the same time as the appearance of the paper by Black and Scholes
a mathematically somewhat more sophisticated paper was presented by Merton
which was a substantial revision of some earlier work. The paper by Black and
Scholes was received for publication towards the end of 1970 so that it would
seem that both Merton and Black and Scholes were working closely in parallel.
Nevertheless Merton acknowledges the superiority of the Black–Scholes model
in its provision of supplementary assumptions which enable a precision to be
attached to the predictions of the model which were not available in his more
general construct on mathematical principles and theorems.

In his Introduction Merton observes that, ‘since options are specialised and
relatively unimportant financial securities, the amount of time and space devoted
to the development of a pricing theory might be questioned.’

Already in their Conclusion Black and Scholes had observed that their results
could be extended to many other situations and, in a sense, that virtually every
financial instrument could be regarded in terms of an option.

By way of contrast to Merton’s comment Kwok [12] observes that the revolution
in derivate securities, which began in the early Seventies of the last century, has led
to growth in the field which can only be described as phenomenal. The widespread
growth of hedging as an attempt, not entirely with complete success, to protect
assets since then is indicative of this phenomenal growth.

Underlying the development of the theory is the principle of riskless hedging.
Black and Scholes made the following assumptions [17] on the workings of the
financial markets. They are

1. trading takes place continuously in time;

2. the riskless interest rate r is known and is constant over time;
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3. the asset pays no dividend;

4. there are no transaction costs in buying or selling the asset for the option
and no taxes or other imperfections;

5. the assets are perfectly divisible;

6. there are no penalties to short selling and the full use of proceeds is permitted
and

7. there are no riskless arbitrage opportunities.

This list of preconditions or assumptions is enough to make the moderately
aware reader wonder about what sort of a Dream World Black and Scholes in-
dwelled. Nevertheless they provide a framework in which a mathematical model
may be constructed. The value of the mathematical model is to be measured in its
predictions and their correlations with observations. Black and Scholes reported
the results of empirical tests of their formula on a large body of call-option data
and the results of the tests indicated that there were systematic variations of re-
ality from the prediction. Most of the deviation could be attributed to the large
transaction costs of the options market. Of slighter importance was a difference
for low-risk stocks compared with high-risk stocks.

Subsequent modifications to the Black–Scholes model have demonstrated that
it is quite robust with respect to many of the above assumptions.

We recall that Nail Ibragimov [10] reported the group analysis of the Black–
Scholes Equation in 1996.

1.2 Simplification of the Black–Scholes Equation

Equation (1) is an evolution equation with time as the evolution variable and
the price of the underlying stock being, as it were, the spatial variable. Strictly
speaking the Black–Scholes and similar equations are backwards evolution equa-
tions since they have a terminus a quo. However, the relative locations of terminal
time and current time can be reversed by a reflection of the time variable. Thus
mathematically these equations are evolution equations even though in their prac-
tical manifestations the expression ‘backwards evolution equation’ is naturally
suggested. The equation is also linear. Thus it is reasonable to seek a transfor-
mation which renders it as the archetypal evolution equation in 1+1 dimensions.
Under the transformation

τ = −σ2t, ρ = log x, ψ(ρ, τ) = exp

[(
r

σ2
− 1

2

)
ρ+Ωτ

]
u(x, t),

where Ω =
(
1 + 2r/σ2

)2
/8, (1) becomes −∂ψ/∂t + 1

2∂
2ψ/∂ρ2 = 0 which is the

archetypal evolution equation in 1 + 1 dimensions!
The equation, (1), is the simplest form of the Black–Scholes equation. In its

original conception the equation dealt with the pricing of options, but it has
become apparent that the equation has a much wider applicability.
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1.3 Some Other Equations of Mathematical Finance

There is a number of equations related to the Mathematics of Finance. We list a
few other equations which arise in various models [11].

Goldys and Musiela [4] (p. 325) present the backwards Kolmogorov equation

∂u

∂t
+

1

2
σ2x2

∂2u

∂x2
+ rx

∂u

∂x
− ru = 0,

which is just a Black–Scholes equation (actually one should reverse the comment
since Kolmogorov considerably preceded Black and Scholes), with the terminal
condition u(T, x) = (K − x)+.

Heath et al [7] (p. 516) give an equation for mean-variance hedging as

∂J

∂t
+ a

∂J

∂y
+
b

2

2∂2J

∂y2
− 1

2

(
∂J

∂y

)2

+

(
µ

y

)2

= 0 (2)

with the terminal condition J(T, y) = 0.

When (2) is solved, there remains the further equation

∂vp̂
∂t

+

(
a− b2∂J

∂y

)
∂vp̂
∂y

+
1

2
x2y2

∂2vp̂
∂x2

+
1

2

∂2vp̂
∂y2

= 0.

We return to (2) below.

The list is not restricted to equations of the (1+ 1) type. Cvitanić [3] (p. 595)
informs us that the K-hedging price for V (t, s) is the solution of the d-dimensional
Black–Scholes equation

∂V

∂t
+

1

2

d∑

i=1

d∑

j=1

aijsisj
∂2V

∂si∂sj
+ r

(
d∑

i=1

si
∂V

∂si
− V

)
= 0,

which is an equation of Hamilton-Jacobi-Bellman type.

From an entirely different source we have another form for the Hamilton-Jacobi-
Bellman equation which is [8, 9]

Jt −
1

2

µ2

σ2
J2
x

Jxx
− µsvρ

σ

JxsJx
Jxx

+ µsJs −
1

2
s2v2ρ2

J2
xs

Jxx
+

1

2
s2v2Jss = 0,

where µ, σ, v and ρ are constant parameters. For a detailed discussion of this
equation see Naicker et al [15].

This is just a small sampling of the variety of equations to be found in the
Mathematics of Finance. Evidently we cannot discuss all of these equations in
the context of a brief communication and here we are very selective to the extent
of considering a single example and then just one case at that. One hopes that
the selection gives some idea of the role which symmetry has in the analysis of
equations which arise in the area of Financial Mathematics.
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2 Mean-Variance Hedging

The system which we consider, at least in part, is given by the pair of equations

∂J

∂t
+ a

∂J

∂y
+
b

2

2∂2J

∂y2
− 1

2

(
∂J

∂y

)2

+ ν(y) = 0 (3)

with the terminal condition J(T, y) = 0 and

∂vp̂
∂t

+

(
a− b2∂J

∂y

)
∂vp̂
∂y

+
1

2
x2y2

∂2vp̂
∂x2

+
1

2

∂2vp̂
∂y2

= 0. (4)

Not surprisingly Program LIE [6, 18] returns results which depend upon the
explicit expression for the function ν(y). In a simplified form, i.e. up to point
transformations in the variables, the possible results are

ν(y) =





φ(y) 1 + 1 +∞
µ

y2
3 + 1 +∞

µ 5 + 1 +∞
µy 5 + 1 +∞
µy2 5 + 1 +∞

third or fifth +
k

y2
3 + 1 +∞

.

We do not examine all of these possible cases for the present, but report a
single case to give a flavour for the discussion. In the case that ν(y) = µ2 the Lie
point symmetries are

Γ1 = f(t, y) exp[−J/b2]∂J , Γ2 = ∂J , Γ3 = ∂t,

Γ4 = t∂t +
1

2
(y + at)∂y + µ2t∂u, (5)

Γ5 = t2∂t + ty∂y +
1

2

(
b2t− 2µ2ty − (y − at)2

)
∂J ,

Γ6 = ∂y, Γ7 = t∂y − (y − at)∂J ,

where f(t, x) is a solution of

∂f

∂t
+

1

2
b2
∂2f

∂y2
+ a

∂f

∂y
− µ2

b2
f = 0.

The compatibility of any of the symmetries listed in (5) with the terminal
condition J(T, y) = 0 must firstly be established before one attempts to construct
a similarity solution.

The general Lie point symmetry of (3) is Γ =
∑6

i=1 aiΓi, where the ai, i = 1, 6
are constants to be determined.
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The application of Γ to the terminal, i.e. t = T , gives

a3 + a4T + a5T
2 = 0 (6)

and to the terminal condition itself gives

a2 + a4µ
2T +

1

2
a5
(
b2T − 2µ2Ty − (y − aT )2

)
− a7(y − aT ) = 0. (7)

From (7) we obtain three relationships, videlicet

y2 a5 = 0,
y a7 = 0,
− a2 + a4µ

2T = 0,

so that with (6) we have

a2 = −a4µ2T, a3 = −a4T. (8)

With the combination of (7) and (8) we find that the system of equation and
terminal condition are invariant under the two Lie point symmetries

Λ1 = ∂y, Λ2 = (T − t)∂t + µ2(T − t)∂J .

We can now seek a similarity solution of (3) which is compatible with the given
terminal condition.

Invariance under Λ1 means that J = J(t) only. The associated Lagrange’s
system of Λ2 is

dt

T − t =
dJ

µ2(T − t) ,

i.e. the characteristic is ω = J − µ2t. From (3) we obtain the similarity solution
J = K − µ2t so that the solution which is consistent with the terminal condition
is J = µ2(T − t).

We note that this is the unique solution [19] to (3).

3 An Absence of an Infinite Number
of Lie Point Symmetries

The application of Program LIE to the equation

ut + uxx + (x+ u)ux − (Dx+ Eu) = 0 (9)

for general values of the parameters D and E gives three Lie point symmetries.
The algebra of the symmetries is A1⊕s 2A1, which is a representation of D⊗s T2,
the group of dilatations and translations in the plane.
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In the particular case that E = −1 we find that there is additional symmetry.
In this case the symmetries are

Λ1 = ∂t, Λ2± = exp [±Bt] {∂x ± (B ∓ 1)∂u} ,
Λ3± = exp [±2Bt]

{
∂t ±Bx∂x +

(
2B2x∓ 2Bx∓Bu

)
∂u
}
,

(10)

where B2 = D + 1, with the Lie Brackets

[Λ1,Λ2±]LB = ±BΛ2±, [Λ2+,Λ2−]LB = 0, [Λ3+,Λ3−]LB = −4BΛ1,

[Λ1,Λ3±]LB = ±2BΛ3±, [Λ2±,Λ3±]LB = 0, [Λ2+,Λ3−]LB = −Λ2−,

[Λ2−,Λ3+]LB = 2BΛ2+.

The algebra is sl(2, R) ⊕s 2A1 with the set {Λ1, Λ3±} constituting the sl(2, R)
and Λ2± the abelian subalgebra.

If in (9) with E = −1 we set w = u+ x, we obtain the equation

wt + wxx + wwx − (D − 1)x = 0, (11)

which we recognise as a not quite Burgers equation. Under the transformation
w = 2vx/v and a subsequent integration with respect to x (11) becomes

vt = −vxx +
(
K(t) +

1

4
(D + 1)x2

)
v, (12)

which is basically the Schrödinger equation for the simple harmonic oscillator in
imaginary time. As such it has 5 + 1 +∞ Lie point symmetries. The second
and third are due to the linearity of (12). It is tempting to believe that the first
set of five symmetries is derived from the set given in (10), but one would need
to verify that this be the case. The transformation from (11) to (12) is not a
point transformation and so one can understand the lack of preservation of point
symmetries. Indeed given that there is also an integration the connection between
the two is even more tenuous.

4 The Classical Connection

The results regarding the number of Lie point symmetries of a linear evolution
equation – indeed linearisable – remind one of the possible cases for the number
of the Noetherian symmetries [16] of a classical Lagrangian of the form L =
ẋ/2− V (t, x).

The possibilities, up to nontrivial time-dependent affine transformations, are

V no sym algebra

V (t, x) 0 −
V (x) 1 A1

ω2x2 +
h2

x2
3 sl(2, R)

ω2x2 5 sl(2, R)⊕s 2A1
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and this relates to the Lie point symmetries of the corresponding time-dependent
Schrödinger Equation [13] 2i∂u/∂t+ ∂2u/∂x2 − V (t, x)u = 0 for which we have

V no sym algebra

V (t, x) 0 + 1 +∞ A1 ⊕s∞A1

V (x) 1 + 1 +∞ 2A1 ⊕s∞A1

ω2x2 +
h2

x2
3 + 1 +∞ {A1 ⊕ sl(2, R)} ⊕s∞A1

ω2x2 5 + 1 +∞ {sl(2, R)⊕sW} ⊕s∞A1,

where W is the Weyl algebra with

[Σ1,Σ2]LB = 0, [Σ1,Σ3]LB = 0, [Σ2,Σ3]LB = Σ1.

Naturally the time-dependent Schrödinger Equation is transformed to the heat
equation by a point transformation. Subsequent transformation, as we have seen,
brings us to the various forms of the Black–Scholes equation, not necessarily with
5 + 1 +∞ Lie point symmetries which may well have been the attraction of the
symmetry analysis of the Black–Scholes equation in the first place.

In this context we have so far mentioned only the (1+1)-dimensional equations
of Financial Mathematics. However, there is no necessity to restrict the consider-
ations to such problems. Consequently we must look at the equivalent in Classical
Mechanics. Immediately we are in two spatial dimensions there is the possibility
of chaos if the potential departs even only modestly from the quadratic. Classical
chaos has its counterpart in the so-called Quantum Chaos which has been the
object of so much investigation and discussion over the last few decades. Given
the connection already indicated several times above between the Schrödinger
equation and the equations of Financial Mathematics we must ask whether there
is an equivalent of quantum chaos in Financial Mathematics.

If this be the case, the immediate question is whether we would have Chaotic
Economics or Economical Chaos?
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We study the class of general second-order ordinary differential equations in-
variant under translation in the independent variable and rescaling from the La-
grangian perspective and show that the differential equation, y′′+yy′+ky3 = 0,
is a unique member of this class. Other aspects of equations arising from this
analysis are also discussed.

1 Introduction

The study of second-order ordinary differential equations invariant under transla-
tion in the independent variable and rescaling has received an incredible amount
of attention [1–3]. For example the differential equation,

y′′ + yy′ + ky3 = 0, (1)

arises in the study of univalent functions [4], the study of the stability of gaseous
spheres [5], the Riccati equation [6] and in the modeling of the fusion of pellets [7].
Furthermore, for rational values of k ∈ (1/9, 1/8) the solution can be expressed in
parametric form [8] and (1) passes the weak Painlevé test. For k = 1/9 the equa-
tion possesses eight Lie-point symmetries [3] with the algebra sl(3, R) which im-
plies that equation (1) is equivalent to Y ′′ = 0 under a point transformation given
by X = x− 1/y, Y = x2/2− x/y.

For k 6= 1/9 the equation has only the two point symmetries

G1 = ∂x, G2 = −x∂x + y∂y (2)

with the algebra A2. Leach et al [1] pointed out that the value of k = 1/8
was critical in that the solution of (1) passes from nonoscillatory to oscillatory.
The main aim of this paper is to give a method to determine Lagrangians of
second-order ordinary differential equations invariant under (2) and to analyse
the equations in terms of the Painlevé analysis. Once a Lagrangian is known,
Noether’s approach can be used to determine the corresponding integrals [9].
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2 The Self-Similarity Symmetry and the Lagrangian

The general form of the second-order ordinary differential equation invariant under
the symmetries (2) is

y′′

y3
+ f

(
y′

y2

)
= 0. (3)

Proposition 1. Equation (3) has a Lagrangian of the form L = ynF
(
y′/y2

)
.

This choice emanates from the facts that the term y′/y2 occurs arbitrarily
in (3), where f = f(y′/y2), and that one cannot expect the Lagrangian to possess
the similarity symmetry.

Proof. Assume a Lagrangian of the form L = g(y)F
(
y′/y2

)
. Note that g can

also be taken to be function of y′. The corresponding Euler–Lagrange equation is
then given by

(
2u2 + f(u)

)
F ′′ − y g

′(y)

g(y)
uF ′ +

g′(y)

g(y)
yF = 0, (4)

where we recall that u = y′/y2 and F = F (u). The integration of (4) forces us
to eliminate g so that g′(y)/g(y) = n/y ⇐⇒ g = yn, where n is a constant.
Then (4), which is the differential equation for F , simplifies to the form

(
2u2 + f(u)

)
F ′′ − nuF ′ + nF = 0. (5)

¥

3 A Hierarchy of Equations

A hierarchy of equations can be developed from the coefficient of F ′′ in (5).
In the case of (5) the coefficient of F ′′ is 2u2 + f(u). Here we examine the be-
haviour of the equation for F for which the coefficient function is a square, that is,
2u2 + f(u) = m(u+ α)2, where α is a constant. Then F in (5) satisfies

m(u+ α)2F ′′ − nuF ′ + nF = 0. (6)

If we set α = 0, then (6) is u2F ′′ − nm−1uF ′ + nm−1F = 0 with characteristic
roots 1 and n/m. The solution is

F =





Au+Bun/m = A
y′

y2
+B

(
y′

y2

)n/m
, n 6= m

Au+Bu log u = A
y′

y2
+B

y′

y2
log

y′

y2
, n = m

In both cases we may set A = 0 without loss of generality. For F = (y ′/y2)(n/m),
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n 6= 0, the Lagrangian takes the form L = yn−2n/my′n/m and the Euler–Lagrange
equation is

yy′′ + (m− 2)y′2 = 0. (7)

If we use F = y′/y2 log
(
y′/y2

)
, i.e. n = m, the Euler–Lagrange equation is

also (7).

If α 6= 0 in (6) we set v = u+α and F (u) = G(v) so that the equation becomes

v2G′′ − n

m
(v − α)G′ + n

m
G = 0. (8)

After a resubstitution for the variables in (8) we obtain

F = C1u+ C2(u+ α) exp (−α/(u+ α)), where u = y′/y2.

Therefore we have the Lagrangian L = y−m(y′/y2 + α) exp
(
−α/(y′/y2 + α)

)
.

The corresponding Euler–Lagrange equation is given by

yy′′ + (m− 2)y′2 + 2mαy′y2 +mα2y4 = 0. (9)

Remark 1. Equation (9) can be rescaled to

y′′y + (m− 2)y′2 + y′y2 +
1

4m
y4 = 0. (10)

If m = 2, (10) reduces to y′′ + yy′ + y3/8 = 0 which is just the special case
of (1) with k = 1/8. The Painlevé test of (10) gives p = −1 and α = 2m (twice)
for the leading order behaviour. The resonances are r = −1, 0. Thus there
is a logarithmic singularity at the χ−1 term and the equation does not possess
the Painlevé property.

3.1 Quadratic Coefficients

If the coefficient of F ′′ is quadratic, that is m(u + α)2 + β, then the example
of (1) suggests that the value of β and its sign may have a critical impact on
the number of point symmetries, the Noetherian structure and the possibility of
possessing the Painlevé Property. The Euler–Lagrange equation corresponding to
f(u) = m(u+ α)2 + β − 2u2 is

yy′′ + (m− 2)y′2 + 2mαy′y2 + (mα2 + β)y4 = 0 (11)

which differs from (9) by the presence of the term βy4.

The rescaled form of (11) is

yy′′ + (m− 2)y′2 + y′y2 +

(
1

4m
+ k

)
y4 = 0, (12)
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where k = β/4m2α2 so that the signs of k and β are the same and there is no real
need to pass from (12) to (11) in the final analysis. The leading order behaviour
of (12) gives p = −1 and α is a root of

m− α+

(
1

4m
+ k

)
α2 = 0. (13)

(Here the α is the one for the leading order behaviour and not to be confused
with the α above.) We solve for k in (13) so that

k = − 1

4m

(
2m

α
− 1

)2

(14)

and α 6= 0. The resonances for (12) are r = −1 and 2m − α, which fits in with
the 4−α in the Painlevé analysis of (1). We therefore require (for a Right Painlevé
Series ) that 4 − α be a nonnegative integer which means that α take the values
(3, 2, 1,−1, ...). This in turn specifies the value of k. For instance, if α = 1
and m = 2, then k = −1/72. This value of k permits (12) to be linearised as it
just reduces to (1) with k = 1/9. For m = 3 in (14) we have k = − (6/α− 1)2 /12.
Since k 6= 0, we need α > 6 or α < 6. This gives separate values of α. For example,
when α = 5, then k = −1/300 and (12) takes the form yy′′+y′2+y′y2+2y4/25 = 0.
The resonances are r = −1 and 1. The equation passes the Painlevé test and still
has only the two symmetries (2). If the coefficient of F ′′ is quadratic, then (6)
is now

[
(u+ α)2 +

β

m

]
F ′′ − n

m
uF ′ +

n

m
F = 0. (15)

Equation (15) is an hypergeometric equation. Once y is determined from (15)
the Lagrangian follows. This gives a Lagrangian which is not particularly useful
in general since the hypergeometric function is a convenient label for an infinite
series. The formal expression for the first integral follows from the autonomous
Lagrangian obtained in terms of the hypergeometric function.

In the context of the relationship between coefficient functions and Lagrangians
we now look to other possibilities which the coefficient function can take.

Proposition 2. Suppose that the coefficient of F ′′ in (6) is mu2 + k then there
exists a Lagrangian of the form

L = yn
(
y′

y2
+ 1

)2

or L = yn
(
y′

y2
− 1

)2

, (16)

where n = 2m.

Proof. Starting with equation (6) we have

(
u2 +

k

m

)
F ′′ − n

m
uF ′ +

n

m
F = 0. (17)
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Let u = γx, F (u) = y(x) and put k/m = −γ2. Then the solution of (17) from
Kamke [10, 2.247] is

F = C1(u+ γ)2 + C2(u− γ)2

with the corresponding Lagrangian given by (16). ¥

The differential equation corresponding to (16) is

yy′′ + (m− 2)y′2 + ky4 = 0. (18)

Under a suitable rescaling we can put k = +1 or −1 in (18). We consider for
the Painlevé analysis the case for which k = 1 so that (18) becomes

yy′′ + (m− 2)y′2 + y4 = 0. (19)

The Painlevé analysis gives for the leading order behaviour, p = −1 and α2 = −m.
The resonances are r = −1 and 2m. The resonance condition is satisfied and hence
the equation does pass the Painlevé test. For a Right Painlevé Series we need 2m
to be a positive integer. We can represent (19) as

(
ym−1

)′′
+ (m− 1)ym+1 = 0. (20)

For z = ym−1, (20) is now equivalent to

z′′ + z
m+1
m−1 = 0. (21)

Note that equation (21) is never linear homogeneous, but for m = −1 it is a linear
nonhomogeneous equation and has eight Lie point symmetries. Equation (21) is
the Emden–Fowler equation in specific form (see reference [13] and references cited
therein) and has the two symmetries G1 = ∂x and G2 = (2/(1−m))x∂x + 2z∂z
except when the index is 1 (impossible in this case) and −3. The latter value of
the index gives m = 1/2 and (21) becomes an instance of the Ermakov–Pinney
equation, z′′ + z−3 = 0 [14,15].

4 The Riccati Transformation

The insertion of the well-known Riccati transformation, y = αϑ′/ϑ, where α is
a constant, into (12) puts the equation into the form

ϑ′ϑ′′′

ϑ2
+ (m− 2)

ϑ′′2

ϑ2
+ (α+ 1− 2m)

ϑ′′ϑ′2

ϑ3

+

[
m− α+ α2

(
1

4m
+ k

)]
ϑ′4

ϑ4
= 0. (22)

We note that the symmetry associated with the Riccati transformation is the ho-
mogeneity symmetry. Using (13) in (22) and m = 1/2 reduces to the Kummer-
Schwartz equation 2ϑ′ϑ′′′−3ϑ′′2 = 0 which plays an important role in the Painlevé
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analysis of differential equations. However, we cannot have m = 1/2 as this would
mean that α = 0 which is not permitted. Furthermore, if α = 2m − 1 in (13)
and σ is given by

σ =
y′

y
+

y

2m− 1
, (23)

in (10), then we obtain

σ′ + (m− 1)σ2 = 0, (24)

which is a Riccati equation with solution

σ = ((m− 1)x−K)−1. (25)

Equation (23) together with (25) leads to another Riccati equation

y′ +
y2

2m− 1
− y

(m− 1)x−K = 0. (26)

We substitute for y = αω′/ω in (26) and put α = 2m− 1 as before to give

ω′′

ω′
=

1

(m− 1)x−K . (27)

The integration of (27) leads to ω = (A/m) [(m− 1)x−K]m/(m−1) + C and y
immediately follows from y = αω′/ω. We have moved from a first-order equation
to a second-order equation which is easily integrated to give a solution to the first-
order equation. The insertion of σ = αω′/ω into (24) leads to

ω′′

ω
− ω′2

ω2
+ (m− 1)α

ω′2

ω2
= 0

and, with α = 1/(m − 1), this is just equivalent to ω′′ = 0 and has eight Lie-
point symmetries. We observe that the Painlevé analysis seems to pick out a pa-
rameter which results in an equation with interesting properties different from
those of the general class of the original equation. As a result it is easy to show
that we have the eight Lie-point symmetries of ω′′ = 0 as seven (one is used
in the transformation) nonlocal symmetries of the original equation. We now
move to the third-order level to check what happens to the number of symmetries
there. We recall that the value of α = 2m − 1 gives the differential equation
ϑ′′′/ϑ′′ + (m− 2)ϑ′′/ϑ′ = 0 which can be represented as

(
ϑ′m−1

)′′
= 0 suggesting

the presence of more symmetries in the third-order equation. The contact sym-
metries are G1 = ϑ′m−1∂x + ((m − 1)/m)ϑ′m∂ϑ, G2 = ∂ϑ, G3 = ∂x, G4 = x∂x
and G5 = ϑ∂ϑ. To investigate further what happens to these symmetries under
the reduction of order we look at the general equation (9) with y = αω ′/ω, that is,

ω′ω′′′ + (m− 2)ω′′2 + (α− 2m+ 1)
ω′2ω′′

ω

+

[
m− α+ α2

(
k +

1

4m

)]
ω′4

ω2
= 0, (28)
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which has the three point symmetries G1 = ∂x, G2 = x∂x and G3 = ω∂ω. If we
reduce (28) using the point symmetry ∂x, we have the invariants u = ω and v = ω′

so that the reduced equation becomes

z′′ + (α− 2m)z′ +

[
m− α+ α2

(
1

4m
+ k

)]
z = 0, (29)

with z = vm and η = log u. Equation (29) has the characteristic roots

l± =
1

2

[
2− α±

√
(−4mα2k)

]
.

In general we have equation (29) and α has not been specified. In a spirit of
simplification and connection with the Painlevé property we take the value of α
that satisfies condition (13) in (29). Then we have

z′′ + (α− 2m)z′ = 0, (30)

the characteristic roots are now 0 and 2m− α and the symmetries are

G1 = ∂z, G2 = exp ((2m− α)η)∂z,
G3 = exp ((2m− α)η) [∂η − (α− 2m)z∂z] , G4 = ∂η,

G5 = exp ((α− 2m)η)∂η, G6 = 2∂η − (α− 2m)z∂z,

G7 = z exp ((α− 2m)η)∂η, G8 = z∂η − (α− 2m)z2∂z.

In terms of y with σ1 = exp
(
1/α

∫
ydx

)
, σ2 = exp

(
m/α

∫
ydx

)
, σ3 = exp (2m− α)

and σ4 =
(
1/α

∫
ydx

)
we have

G1 =

[∫
[m(y/α)mσ2]

−1 dx

]
∂x − α

[
m(y/α)m−1σ2

]−1
∂y,

G2 = exp ((2m− α)σ4)
[∫

[m(y/α)mσ2]
−1 dx

]
∂x

− σ3
(∫

ydx

)[
m(y/α)m−1σ2

]−1
∂y,

G3 = exp ((2m− α)σ4)
(
x+ (α− 2m) [(y/α)σ1]

m
∫

[m(y/α)mσ2]
−1 dx

)
∂x

− exp ((2m− α)σ4)
[
y + (α− 2m)

y

m

]
∂y,

G4 = x∂x − y∂y, G5 = exp ((α− 2m)σ4) [x∂x − y∂y] ,

G6 =

[
2x+ (α− 2m) [(y/α)σ1]

m
∫

[m(y/α)mσ2]
−1 dx

]
∂x −

α

m
∂y,

G7 = [(y/α)σ1]
m exp ((α− 2m)σ4) [x∂x − y∂y] ,

G8 = [(y/α)σ1]
m

(
x+ (α− 2m) [(y/α)σ1]

m
∫

[m(y/α)mσ2]
−1 dx

)
∂x

− [y/α exp (σ4)]
m
[
y + (α− 2m)

y

m

]
∂y.
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We observe that these symmetries are somewhat nonlocal except for G4 which is
preserved as a point symmetry of the original equation (12). Under an increase of
order of (30) by putting z = s′ we obtain s′′′ + (α− 2m)s′′ = 0 with five contact
symmetries, G1 = ∂x, G2 = ∂s, G3 = exp (−Ax) [∂s −A∂s′ ], G4 = −x∂s− ∂s′ and
G5 = −s∂s− s′∂s′ , where A = α− 2m. We note that all of the five are point sym-
metries. It is well-known that the number of point symmetries that a linear third-
order ordinary differential equation can have is 7, 5 or 4. The value of k which
gives the Painlevé property in (12) corresponds to the increase in the amount of
symmetry. For instance, α = 2m − 1 leads to the generalised Kummer-Schwartz
equation which is equivalent to V ′′′ = 0 under a nonlocal transformation [11].
For any other values of α we obtain the three point symmetries ∂x, x∂x and ω∂ω
in (28).

5 Conclusion

We have presented some properties of second-order ordinary differential equa-
tions invariant under translation in the independent variable and rescaling in
terms of the Lagrangian. The representation of the Lagrangian was taken to be
L = ynF (y′/y2) since the variable y′/y2 appears as an arbitrary argument in
the second-order ordinary differential equation. The multiplier for F in the ex-
pression of the Lagrangian can be chosen to be any function of y or y ′. However,
the differential equation for F imposes an effective restriction on the permissi-
ble form of the multiplier of F due to the problems of integrating the equation.
The associated Euler–Lagrange equation is (2u2+ f(u))F ′′−nuF ′+nF = 0 with
u = y′/y2. A feature associated with the class of differential equations for F
with a quadratic f = f(u) is that in general they are hypergeometric functions.
The Painlevé analysis of the equations arising in the different cases was performed
and it was found that the differential equation y′′+ yy′+ky3 = 0 appears to have
a distinct behaviour for specific values of the parameters involved. A wider class is
seen also to have interesting properties characterised by nonlocal transformations
rather than point transformations. The number of symmetries following an in-
crease and decrease in order is another aspect to take into account. We have dealt
with the particular case of a parameter k which gives the Painlevé property and
corresponds to the increase in the amount of symmetry. We again remark that
the Painlevé analysis seems to pick out certain values of the parameters for which
the ‘integrable’ equations possess interesting properties.
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A direct method for solving the Camassa–Holm shallow water wave equation
is presented and is used to find multisoliton solutions in explicit form.

1 Introduction

The eponymous Camassa–Holm (CH) equation [1]

ut + 2kux + 3uux − uxxt = 2uxuxx + uuxxx, k = const, (1)

has attracted considerable interest, and acquired a substantial pedigree, over
the last decade. Although its origin can be traced back to the work of Fuchssteiner
and Fokas [2], the equation was “rediscovered” by Camassa and Holm [1] as
a model for shallow water waves. The excitement that greeted this equation
can, arguably, be ascribed to two attributes: the CH equation is completely inte-
grable and it possesses non-standard (solitonic) properties. Among the latter, we
note that, for the special case k=0, equation (1) admits peaked soliton solutions
(multipeakons) which exhibit a ‘corner’ at the wave crests.

Yet attempts to find explicit solutions of the general CH equation and, in
particular, the hallmark analytic N -soliton solutions, have met with limited suc-
cess. Schiff [3] used a Bäcklund transformation (BT) to derive the solitary wave
(N = 1) and an (incomplete) two-soliton solution, while Johnson [4] has imple-
mented the inverse scattering transform (IST) procedure for equation (1) [5] to
obtain multisoliton solutions as far as N = 3. However, their results were re-
stricted to k 6= 0 in (1). Significantly, these authors showed that the analytic
soliton solutions of CH equation can be represented explicitly only in parametric
form (see Section 2).

We present an alternative method for finding exact solutions of equation (1)
that is based on Hirota’s bilinear transformation method [6], and show how it
may be used to elicit the erstwhile elusive N -solitons for any value of k.

2 Bilinear Form of the Camassa–Holm Equation

The work of Schiff [3], Johnson [4] and Constantin [5] suggests that we cannot
find the Hirota form of the CH equation (1) directly, but must first transform the
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equation appropriately. Without loss of generality, we may assume that k ≥ 0
and rewrite (1) as

ut + 2κ2ux + 3uux − uxxt = 2uxuxx + uuxxx, κ ≥ 0 const. (2)

In what follows, we will take κ > 0 and treat the special case κ = 0 of equation (2)
separately. Now, introducing the quantity

r(x, t)=
√
u− uxx + κ2, (3)

equation (2) may be written in the conserved form

rt + (ur)x = 0.

Then, following Fuchssteiner [7], one can define a reciprocal co-ordinate transfor-
mation (x, t)→ (y, t) by

dy = r dx− ur dt, dt = dt, (4)

which transforms the CH equation (2) to the the associated Camassa–Holm (ACH)
equation

u = r2 − r ∂2yt ln r − κ2, rt + r2uy = 0. (5)

Schiff’s [3] strategy for solving the CH equation is now apparent: first solve for
r(y, t) and use (5) to find a solution u(y, t) of the ACH equation. One can then
use the inverse of (4),

∂x

∂y
=

1

r(y, t)
,

∂x

∂t
= u(y, t), (6)

to obtain the co-ordinate transformation x(y, t). This gives a solution u(x, t) of
the CH equation in parametric form in terms of y, with the proviso that r > 0
(equation (3)). Whereas Schiff sought solutions for r by using BTs, we shall do
so by means of Hirota’s bilinear method. Accordingly, we introduce the Hirota
function f(y, t) such that

r = κ− 2 ∂2yt ln f, (7)

which yields the bilinear form of the ACH equation [8]

[
Dy(Dt + 2κ3Dy − κ2D2

yDt) +
1

3
κ2Dt(Dτ +D3

y)
]
f · f = 0, (8)

Dy(Dτ +D3
y) f · f = 0, (9)

where Dy, Dt are the Hirota derivatives defined by [6]

DyDt a · b = (∂y − ∂y′)(∂t − ∂t′) a(y, t) b(y′, t′)|y′=y, t′=t. (10)

We remark that the auxiliary variable τ that appears in (8) and (9) is needed to
effect the bilinearisation of the ACH equation in terms of the D-operators (10);
it plays no role in the final form of the solution.
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3 Solitary Waves

To obtain a solitary-wave solution, we take [8] f(y, t) = 1+eθ, θ = py+ωt+στ+η,
where p, ω, σ and η are (real) constants. This solves the bilinear equations (8)
and (9) if ω = −2κ3p/(1− κ2p2), σ = −p3, with p and η arbitrary. Inserting f
into (7), we deduce r(y, t) = (2κ + cp2sech2(θ/2))/2, where we have introduced
the wave speed c = 2κ3/(1− κ2p2) in (y, t)-space. From (5), one then obtains the
solitary-wave solution [8]

u(y, t) =
c2p2

κ
· sech2(θ/2)

2κ+ cp2 sech2(θ/2)
, θ = p(y − ct+ α), (11)

of the ACH equation, where the τ -dependence has been subsumed in the arbitrary
phase constant α. (The auxiliary variable τ can always be absorbed in this way
and, henceforth, will be omitted whenever it is convenient to do so, without further
comment.)

A solitary wave u(x, t) of equation (2) follows by integrating (6) to get the in-
verse coordinate transformation

p(x− c̃t+ x0) =
θ

κ
+ p ln

[
(1+κp) + (1−κp) eθ
(1−κp) + (1+κp) eθ

]
, (12)

in which the wave speed c̃ in (x, t)-space is given by c̃ = c/κ = 2κ2/(1−κ2p2).
Equations (11) and (12) give a parametric representation (in θ) for the analytic
solitary wave (or one-soliton) solution of the Camassa–Holm equation (2) for all
κ > 0. The restriction r(y, t) > 0 for all (y, t) requires that

0 < κp < 1, (13)

or, equivalently, c̃ > 2κ2; i.e. the CH solitary waves propagate at supercritical
speed.

It is well-known that the reduced Camassa–Holm (RCH) equation (κ = 0),

ut + 3uux − uxxt = 2uxuxx + uuxxx, (14)

admits the peakon solitary wave that is given by [1]

u(x, t)= c̃ exp(−|x− c̃t+ x0|). (15)

The peakon wave speed c̃ in (15) is now arbitrary, which means that equation (14)
also admits anti-peakons (c̃ < 0). These curious non-analytic solutions have a
“corner” at the crest of the wave. The peakon (15) can be recovered from the
analytic CH solitary wave u(x, t) in the limit [8]

κ→ 0, κp→ 1, c̃ = const.

However, the RCH equation also possesses an analytic solitary wave that is ob-
tained by transforming the CH solution u(x, t) under the mapping

x→ x− κ2t, t→ t, u→ u− κ2, (16)

that reduces the CH equation (2) to (14).
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4 Two-soliton solution of the Camassa–Holm equation

In order to find an explicit two-soliton solution of the CH equation (2), we take [9]

f(y, t) = 1 + eθ1+ eθ2+A12e
θ1+θ2 , (17)

where θi = piy + ωit + σiτ + ηi, i = 1, 2, and pi, ωi, σi, ηi and A12 are real
constants. This is a solution of the bilinear form (8) and (9) if

A12 =

(
p1− p2
p1+ p2

)2
, ωi = −

2κ3pi
1− κ2p2i

, σi = −p3i , i = 1, 2. (18)

Substituting (17) into (7), we find that

r(y, t) = κ+
2

f2

[
c1p

2
1e
θ1 + c2p

2
2 e

θ2 +
4κ3(p1 − p2)2

(1− κ2p21)(1− κ2p22)
eθ1+θ2

+ A12

(
c1p

2
1e
θ1+2θ2 + c2p

2
2 e

2θ1+θ2
)]
,

(19)

where we have defined ‘wave speeds’ ci in (y, t)-space by

ci =
2κ3

1− κ2p2i
, i = 1, 2.

Then (5) yields the ACH two-soliton solution

u(y, t) =
2

κ
·ω

2
1e
θ1 + ω2

2 e
θ2 + b12 e

θ1+θ2 +A12

(
ω2
1e
θ1+2θ2 + ω2

2 e
2θ1+θ2

)

rf2
, (20)

where

b12 =
8κ6(p1 − p2)2(1− κ4p21 p22)
(1− κ2p21)2(1− κ2p22)2

.

This solution can be reformulated in various ways; in particular, it can be made to
agree with the two-soliton results that were reported by Schiff [3] and Johnson [4].

Finally, upon inserting (19) and (20) into (6), and integrating, we obtain the
inverse coordinate mapping

x(y, t) =
y

κ
+ ln

[
a1a2 + b1a2e

θ1 + b2a1e
θ2 + b1b2A12e

θ1+θ2

b1b2 + a1b2eθ1 + a2b1eθ2 + a1a2A12eθ1+θ2

]
+ α, (21)

where α is an arbitary constant and

ai = 1 + κpi, bi = 1− κpi, i = 1, 2. (22)

Taken together, equations (20) and (21) give an explicit expression — albeit para-
metrically in terms of y — for the analytic two-soliton solution of the CH equa-
tion (2) for any κ > 0. A corresponding analytic two-soliton solution of the RCH
equation (14) (κ = 0) now follows by using the transformation (16).

A notable feature of the ACH two-soliton solution (20) is the additional pa-
rameter b12 that is needed to formulate u(y, t) explicitly. In fact, the ‘extra’
parameter turns out to be a recurrent feature of the multisoliton solutions of the
Camassa–Holm equation (see Section 5).
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5 Three-Soliton Solution

Following the standard procedure, we start with the Hirota ansatz [9]

f(y, t) = 1 +
3∑

i=1

eθi +
3∑

i<j

Aij e
θi+θj +A12A13A23 e

θ1+θ2+θ3 , (23)

with θi=piy+ωit+σiτ+ηi, and i<j denotes summation over the ordered pairs of
(1, 2), (1, 3), and (2, 3). It is then straightforward to show that (23) is a solution
of the bilinear form (8) and (9) if

Aij =

(
pi − pj
pi + pj

)2

, 1 ≤ i < j ≤ 3, (24)

and ωi, σi (i = 1, 2, 3) are the dispersion laws in (18). Then, from (5) and (23),
we deduce the three-soliton solution of the ACH equation

u(y, t) =
2

κ

R(y, t)

rf2
, (25)

where

R(y, t) =
3∑

i=1

ω2
i e
θi +

3∑

i<j

bij e
θi+θj +

3∑

i<j

Aij

(
ω2
i e
θi+2θj + ω2

j e
2θi+θj

)

+ b123e
θ1+θ2+θ3 +

3∑

<i>

bijAikAjk e
θi+θj+2θk +

3∏

i<j

Aij

3∑

<i>

ω2
iAjk e

θi+2(θj+θk),

with

bij = 8κ6
Cij
Dij

, b123 = 16κ6
C123

D12D13D23
,

Cij = (p2i−p2j )2(1−κ4p2i p2j ), Dij =
[
(pi+pj)(1−κ2p2i )(1−κ2p2j )

]2

and

C123 =

3∑

i<j

p2i p
2
j Cij − 8κ2

[
¿p6i p

2
jp

2
kÀ −¿p4i p

4
jp

2
kÀ
]
+ 2κ4

[
¿p8i p

2
jp

2
kÀ

+2¿p6i p
4
jp

2
kÀ − 15 p41p

4
2p

4
3

]
− 8κ6

[
¿p6i p

6
jp

2
kÀ −¿p6i p

4
jp

4
kÀ
]

+κ8
[
¿p8i p

6
jp

2
kÀ − 2¿p8i p

4
jp

4
kÀ
]
.

The symbol <i> here means that the summation is strictly over the three cyclic
permutations of (1 2 3), and¿À denotes the sum over all distinct products of the
wave numbers pi obtained from the permutations (i j k) of (1 2 3). The function
r(y, t) in (25) may be found by inserting (23) into (7); the calculation is quite
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routine and we omit its detailed expression here. However, to ensure that our
solutions are well-defined, we will require 0 < κpi < 1, i = 1, 2, 3, so that r > 0
(cf. equation (13)).

In order to find the CH three-soliton u(x, t), it only remains to determine the
inverse coordinate transformation (y, t)→ (x, t) which follows by integrating (6).
After some careful manipulation, we obtain

x(y, t) =
y

κ
+ ln

(
P

Q

)
+ α, (26)

P (y, t)= a1a2a3+
3∑

<i>

biajake
θi+

3∑

i<j

Aij bibjake
θi+θj+

3∏

i<j

Aij b1b2b3e
θ1+θ2+θ3 ,

Q(y, t)= b1b2b3+
3∑

<i>

aibjbke
θi+

3∑

i<j

Aij aiajbke
θi+θj+

3∏

i<j

Aij a1a2a3e
θ1+θ2+θ3 ,

where ai, bi (i = 1, . . . , 3) are defined as in (22). Thus, equations (25) and (26)
provide an explicit representation of the three-soliton solution of the Camassa–
Holm equation (2) — albeit in parametric form in y — for all values of κ > 0.
To get an analytic three-soliton solution of the RCH equation (14) with κ = 0,
one simply resorts to the mapping (16).

6 N -Soliton Solutions

Further multisoliton solutions of the Camassa–Holm equation can be constructed
by following the procedure described in Section 4. Indeed, to find the N -soliton
solution, one uses the celebrated Hirota ansatz [6]

f(y, t) =
∑

µ=0,1

exp
[ N∑

i=1

µiθi+
N∑

i<j

µiµj lnAij

]
, θi = piy+ωit+σiτ + ηi, (27)

where we have omitted the τ -dependence in f(y, t) as before (see Section 3). This
is a solution of the bilinear form (8) and (9) provided that ωi(pi), σi(pi) satisfy
the dispersion laws (18), and the interaction coefficients Aij , 1 ≤ i < j ≤ N are
given by (24).

In principle, at least, we can now find the CH N -soliton to any order N . Thus,
we substitute (27) into equation (5) to obtain the ACH N -soliton u(y, t) , where
r(y, t) is found from (7). Once u and r are known, we use equation (6) to de-
termine the inverse co-ordinate transformation x(y, t). This yields the analytic
N -soliton solution u(x, t) of the CH equation (2) parametrically in y, for any
κ > 0. The N -soliton solution of the RCH equation (14) (κ = 0) follows from (16)
in the usual way. However, as it stands, the final steps in the procedure are less
than straightforward. Unfortunately, as the order N increases, the calculation for
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u(y, t) in (5) becomes extremely complicated and arduous, so making the integra-
tion in (6) all but intractable. Further, if one wants a generic representation for
the CH N -soliton, then the solution must surely be sought in the simplest possible
form. Work on these aspects of the method and solutions is still ongoing, and we
shall report on this elsewhere. Nevertheless, we have shown that Hirota’s bilinear
transformation method provides a systematic means of extracting the erstwhile
elusive analytic multisoliton solutions of the general Camassa–Holm equation.

Acknowledgements

We wish to thank the Institute of Mathematics and its Applications (UK) for the
generous support that has enabled us to participate in MOGRAN X.

[1] R. Camassa, R. and D.D. Holm, An integrable shallow water equation with peaked solitons.
Phys. Rev. Lett. 71 (1993), 1661–1664.

[2] B. Fuchssteiner and A.S. Fokas, Symplectic structures, their Bäcklund transformations and
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The variable χ ≡ x− 2V z − κz2, with V, κ constants, is a similarity variable
for many equations and systems of nonlinear Schrödinger type arising in opto-
electronics, with z the evolution (time-like) variable. For equations which lack
the x↔ −x symmetry, localized ‘pulses’ exist as special solutions, with κ 6= 0.
Although the governing equations are not completely integrable, these solutions
are called accelerating solitons. Their decay as χ → ±∞ has Airy-function
asymptotics, but, in practice, the pulses exhibit only small asymmetry.
By adapting the Evans function technique (widely used for reaction–diffusion
systems) stability for photorefractive (self-bending) solitons and for accelerat-
ing solitons of the sliding frequency (SFF) equation is analysed. In each system
the asymptotics must be expressed in terms of Airy functions, rather than in
terms of the decaying exponentials used in the usual Evans function technique.
Parameter regimes for which these accelerating solitons are (linearly) stable are
identified and regimes allowing (oscillatory) internal modes are identified and
confirmed by numerical integration of the original PDEs (with initial conditions
chosen as perturbations from the self-similar profiles).
Equations possessing the same symmetry reductions as the photorefractive and
SFF equations are identified. They include other practical examples.

1 Introduction

While many evolution equations, both integrable and non-integrable, possess trav-
elling wave solutions, a number of these equations also possess solutions which are
self-similar but with a similarity variable associated either with uniform acceler-
ation or with propagation along a parabolic path. The existence and stability of
localized solutions of this type is the subject of this investigation.

For systems of coupled nonlinear Schrödinger equations of the type

i∂zum+Dm∂x
2um+ umfm(|u1|2, |u2|2, . . . , |uN |2) = 0, m = 1, 2, . . . , N (1)

(with ur ∈ C, constantsDm real) the occurrence amongst the possibilities revealed
by Lie symmetry analysis of a similarity variable χ = x − 2V z − κz2 involving
constant parameters V , κ has been known since the 1980’s (see e.g. [1]). However,
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the resulting defining ODEs typically do not possess solutions bounded through-
out −∞ < χ <∞, so that the similarity reduction then has limited significance.
However, more recently, a number of equations from nonlinear optics and elec-
tronics have been shown to predict accelerating pulses or self-deflecting confined
beams of light. The complex amplitude A(x, z) of an ultra-short laser-generated
pulse travelling through an active medium was described by Vanin et al. [2] by

−iAz +Axx + |A|2A+ iA

{
1−

∫ x

−∞
|A|2 dx

}
= 0 , (2)

where x is a travelling wave coordinate and z is propagation distance. The sim-
ilarity reduction was noted in [2] and accelerating pulses were computed numer-
ically. In a number of papers, Christodoulides and co-workers investigated one-
dimensional light beams travelling through photorefractive media, showing in [3]
by direct numerical integration that localized solutions of

iuz + uxx −
u

1 + |u|2 + γ
(|u|2)xu
1 + |u|2 = 0 , γ = const (3)

follow a parabolic path (consistent with solutions u = eiθ(χ,x)F (χ)).

After Mollenauer et al. [4] proposed that, to overcome noise-induced ‘jitter’
in long-distance transmission systems, amplifiers should have successively shifted
central frequencies, an averaged treatment of such a sliding-frequency filter (SFF)
system was given by Hasegawa and Kodama [5] in terms of

iuz +
1
2uxx + |u|2u = iδu+ iβ(∂x + iα̂z)2u . (4)

Here, x is retarded time, z is propagation distance and δ > 0, β > 0 and α̂ are
constants. It is readily verified that the choice κ = −α̂/2 allows the complex
amplitude to have the form u = eiΘ(z,χ)W (χ) with Θ ≡ (2κχ+ c0)z + 2κ2z3/3 +
2κV z + c1 with W (χ) complex-valued [6]. Equations (3) and (4) are the main
examples considered in this paper, but others arising in recent opto-electronics
literature are the coupled system for the amplitudes u+ and u− of two modes in
a fibre with Raman scattering [7]

iu±z + u±xx + |u±|2u± = C(|u±|2)xu± −Ku∓ , C, K constants (5)

and a generalization of (3) to include higher-order effects of space-charge distri-
butions [8].

For (3) and (4), this account summarizes symmetry reductions, determines
restrictions which permit the existence of ‘accelerating’ localized pulses (or beams)
and outlines a recent generalization of the Evans function method for determining
regimes in which the resulting pulses are (linearly) stable. It also seeks broader
classes of equations permitting the accelerating similarity reduction, so showing
that the behaviour studied in the two examples may occur much more widely.
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2 Self-Deflecting Similarity Solutions for (3)

Equation (3), written as a pair for u and its formally independent complex con-
jugate v has a 4-parameter space of invariances spanned by the generators

X1 = ∂z , X2 = ∂x , X3 = u∂u − v∂v , X4 = 2z∂x + ixX3 ,

as is readily found by standard Lie symmetry procedures. While X1, X2 and X3

correspond simply to shifts in z, x and phase respectively, the generator X4 is
responsible for self-bending. The general similarity reduction is

u(z, x) = eiθ(z,χ)F (χ) , with χ ≡ x− 2V z − κz2 , (6)

with real amplitude F = F (χ) governed by the ordinary differential equation

F ′′(χ) +

{
B − κχ− 1

1 + F 2
+ γ

2FF ′

1 + F 2

}
F = 0 , (7)

provided that the phase θ = θ(z, χ) has the form θ ≡ (V +κz)χ+κ2z3/3+κV z2+
(V 2 − B)z + c. Here, B and c are parameters associated with translations in x
and in phase, respectively.

In the case κ = 0, the reduction (6) is the travelling wave reduction and (7) be-
comes autonomous and possesses localized solutions symmetric about their peak,
which has arbitrary value Fmax ≡ µ [3, 9]. However, these rectilinear beam solu-
tions can exist only when the parameter γ (associated physically with diffusivity
of the induced space-charge) vanishes. This follows from the identity

4γ

∫ ∞

−∞

(FF ′)2

1 + F 2
dχ+ κ

∫ ∞

−∞
F 2dχ = 0 (8)

readily obtained from (7) and showing that κ < 0 when γ > 0. For κ 6= 0, localized
solutions are computed numerically over a wide range of values of Fmax (see [9]),
using a shooting method which matches decaying solutions of the linearization
F ′′(χ) + (B − 1 − κχ)F = 0 (transformable to Airy’s equation). This procedure
allows γ and Fmax to be specified and then determines B, the curvature parameter
κ and the location χ = χ0 of the solution maximum F = Fmax.

Stability of the self-similar photorefractive beam profiles is analysed by writing
u(z, x) = eiθ(z,χ){F (χ)+w(z, χ)}, linearizing the resulting equations for w and its
complex conjugate w∗(z, χ) and then using the Evans function method [10]. This
utilizes solutions of the form w = cũ(χ)eiλz+c∗ṽ∗(χ)e−iλ

∗z (with w∗ = cṽ(χ)eiλz+
c∗ũ∗(χ)e−iλ

∗z, correspondingly) and leads to a 4th-order ODE system for ũ(χ)
and ṽ(χ). As χ → ±∞, a basis in the diffusionless case (γ = 0) is exp [ρi(λ)χ],
with ρi known (i = 1, 2, 3, 4). The relevant localized solutions have decay both
as χ → −∞ and χ → +∞. This connection problem selects the eigenvalue λ.
The Evans function procedure involves evaluation of a 4 × 4 determinant D(λ)
associated with two (numerically computed) basis functions spanning the two-
dimensional space of solutions decaying as χ → −∞ (an unstable manifold) and
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another two basis functions for the space of solutions decaying as χ→∞ (a stable
manifold). A connection exists if and only if these two spaces intersect non-
trivially so that D(λ) vanishes. Since the defining properties ensure that D(λ) is
analytic, occurrence of zeros of D in a region of the λ-plane is identified (using an
argument principle) by tracking changes in argD as λ traces around the boundary
of a region. If zeros appear anywhere within the half-plane Imλ < 0, then a mode
of instability exists.

The 4-parameter similarity reduction (6) implies that λ = 0 is an eigenvalue
of algebraic multiplicity 4. Calculations confirm that D(λ) has a 4th-order zero
at λ = 0. As Fmax is varied (at least for Fmax < 6) no zeros of D(λ) occur in
the lower half-plane. It is, however, found that around Fmax = 1.25 a pair of
zeros with Reλ = 0 arise, leading to a mode which is an even function of χ− χ0,
but oscillatory in z. Further increase in Fmax introduces a second such internal
mode [11], asymmetric in χ − χ0. However, since the amplitudes of such modes
do not grow with z, it is deduced that localized solutions for γ = 0 are stable.

In [9], a similar conclusion is shown to hold for γ 6= 0. Since the linearized
equations for ũ and ṽ have asymptotic forms (as χ → ±∞) which contain terms
−κχw and −κχw∗, the appropriate basis functions providing a modified Evans
function are identified by matching to suitable recessive branches of the Airy
function. In fact, the limiting forms (as χ→ ±∞) of the variables ũ and ṽ satisfy

(∂z+z+−z+)ũ = 0 , (∂z−z−−z−)ṽ = 0 with κ2/3z± ≡ κχ+1−B±λ . (9)

ũ and ṽ are constructed by numerical integration over the interval χ1 ≤ χ ≤ χ2
(the profile domain) used for computation of F (χ) (i.e. where |F | ≥ 10−3, say).
At χ = χ1, χ2, boundary conditions fix ũ′(χ)/ũ(χ) and ṽ′(χ)/ṽ(χ) to match to
decaying solutions to (9). Figure 1 shows images in the z± planes of the profile
domain, for typical λ ≡ α− iβ.

S0S1

S-1

z-(y2)

z+(y2)

z-(y1)

z+(y1)

a-2/3b
a-2/3b

z+

z-

Figure 1. Geometrical of the problem

Since standard Airy function theory [12] shows that Ai0(z
±) ≡ Ai(z±) and

Ai±1(z
±) ≡ Ai(z±e∓2πi/3) are the solutions recessive in the 1200 sectors S0 and

S±1 respectively, the boundary conditions at χ1, χ2 use the branches of the Airy
function recessive in the sectors within which Re z± →∞,−∞ along the respec-
tive images of the real χ-axis (recall that κ < 0, for γ > 0. Also note that the
strategy requires modification for β = 0, using the algebraically decaying Bi(z±)).
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Evaluating the 4× 4 determinant whose columns are [ũ ũ′ ṽ ṽ′]T , with solutions
ũ(χ), ṽ(χ) corresponding to fixed basis sets of the unstable and stable manifolds
yields the modified Evans function Dai(λ). Invoking analyticity of Dai(λ), noting
that eigenvalues (zeros of Dai(λ)) occur in the pattern λ,−λ, λ∗,−λ∗ and using
the argument principle for convenient contours in the complex λ-plane yields the
results: (i) No eigenvalues exist off the real axis. (ii) The origin λ = 0 is a four-
fold zero of Dai(λ) (as confirmed by numerical evaluation for λ real). (iii) As for
γ = 0, pairs of eigenvalues emerge from the continuous spectrum (the portions
|λ| ≥

√
1−B of the real axis) as Fmax increases. The corresponding eigenfunc-

tions describe mildly asymmetric internal modes, i.e. perturbations to the profile
F (χ), with increasingly many maxima and oscillatory in the evolution variable z.

Numerical computation of (3) with initial profiles slightly perturbed from
u(0, x) = eiθ(0,x)F (x) confirms not just that perturbations do not grow, but also,
for suitably large Fmax, exhibits oscillations about the self-deflecting profile with
frequency matching to the predicted eigenvalues λ.
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Figure 2. a) Profiles ṽ for two eigenvalues; γ = 0.03, Fmax = 4.0,
b) Persistent oscillations resulting when Fmax = 1.0 is perturbed by 10%.

3 Accelerating SFF Solitons

For the SFF equation (4), although the similarity reduction u = eiΘ(z,χ)W (χ)
leads to the ODE

(1+4β2)W ′′(χ)+ 2(1+ 2iβ)[−2iVW ′(χ)+ (α̂χ− c0− iδ+ |W |2)W ] = 0 (10)

with Θ = (2κχ + c0)z + 2V κz2 + 2
3κ

2z3 + c1, the acceleration coefficient κ is
not adjustable. It must equal − 1

2 α̂. Even though this reduction involves the
free parameters c0, c1 and V , it is found that imposing the (connection) condition
W → 0 as χ→∞ and as χ→ −∞ imposes a relation between c0 and V . Equation
(10) is analysed [13] in its renormalized form

w′′(y) + 2(1 + 2iβ){iBw′(y) + (y − i∆ + |w|2)w} = 0 , (11)

where w(y) = [α̂2(1 + 4β2)]−1/6W (χ), y = (α̂χ − c0)[α̂
2(1 + 4β2)]−1/3, with

B ≡ −2V α̂1/3(1 + 4β2)−2/3 and ∆ ≡ α̂−2/3(1 + 4β2)−1/3δ. Previous approximate
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treatments, for (β,∆) small [14], have suggested the existence of two families of
solutions — one narrow and with large peak amplitude |W |max and one broader
and of lower amplitude. The former was found to be stable, the latter unstable.
Numerical search using (11) has confirmed existence of these two families, over
a wide range of β and ∆. For each family, B is determined by the choice of (β,∆).

Analysing linear stability using

u(z, x) = [α̂2(1 + 4β2)]1/6eiΘ{w(y) + ũ(y)e−λδz + ṽ∗(y)eλ
∗δz}

(adapting the approach used for (3)) again leads to an eigenvalue problem for
[ũ ũ′ ṽ ṽ′]T having Airy function asymptotics (factors e±iB(1±2iβ)y having been
removed). A modified Evans function may be defined and constructed much as
before, the crucial difference being that the images of the profile domain in the
z±-planes are lines inclined at angles ± 1

3 arg(1+2iβ), so interchanging the choices
of Airy-function branches needed in boundary conditions at z±(χ2).
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For the larger-amplitude family, existence and stability of accelerating solitons
is summarized in Figure 3 (numerical search has been undertaken only above
the curve ∆ = 3β1/3/4, the existence boundary predicted in [14] as β → 0).
The boundary ∆ = ∆lim(β) above which pulses become unstable corroborates
earlier numerical investigations [15, 16]. Moreover, as for (3) the modified Evans
function method constructs internal modes (at suitable soliton amplitude). As ∆
is increased above the upper stability boundary, these oscillatory modes become
modes with growing amplitude, as illustrated in Figure 4, where direct numerical
integration with perturbed initial conditions shows emergence of (small) periodic
oscillation in peak amplitude for ∆ = 0.93, but growing oscillations for ∆ = 0.95
(respectively below and above ∆ = ∆lim(β), for β = 0.5 and α̂ = 0.05).

4 Equation Classes Having the Accelerating
Symmetry

To determine equations of the type uz = L(u, v, p, q, r, s), vz = M(u, v, p, q, r, s)
(where p ≡ ux, q ≡ vx, r ≡ uxx, s ≡ vxx) sharing with (3) the symmetry generators
X1 = ∂z, X2 = ∂x, X3 = u∂u− v∂v and X4 = 2z∂x+ixX3 the procedure in [17] is
followed. Solving the resulting determining equations corresponding to X = X1,
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Figure 4. Emerging oscillations (a) ∆ = 0.93 (stable), (b) ∆ = 0.95 (unstable).

X2 and X3 yields the forms L = uf̂(I, P,Q,R, S), M = vĝ(I, P,Q,R, S) with
I ≡ uv, P ≡ vux, Q ≡ uvx, R ≡ vuxx and S ≡ uvxx. Considering also the
generator X4 gives the result that both if̂ + R/I and −iĝ + S/I should depend
only upon I, P + Q, P 2 − IR and Q2 − IS. After rearrangement, this leads to
the statement that the accelerating symmetry reduction for the photorefractive
equation (3) is shared by all equations of the form

iuz + uxx + uf̃ [uu∗, (uu∗)x, (uu
∗)xx, (argu)xx] = 0 . (12)

For these equations, the reduction u = eiθ(χ,z)F (χ) (F real) leads to θ(χ, z) as
for (3) and to the ordinary differential equation

F ′′(χ)− κχF ′(χ) + f̃(F 2, 2FF ′, 2[FF ′′ + (F ′)2], 0) = 0 ,

(when c1 = 0, without loss of generality). A special case is equation (9) of [8] for
which f̃ takes the complicated, specific form f̃ = (αuu∗−β)(1+uu∗)−1+{

√
2[γ1−

γ2uu
∗ + γ(1 + uu∗)2](uu∗)x − 2γ3[(uu

∗)x]
2}(1 + uu∗)−3 + 2γ4(uu

∗)xx(1 + uu∗)−2,
with z =

√
2s. Self-deflecting solutions computed in [8] are therefore consistent

with the similarity variable χ.
Moreover, more general classes of equation share this symmetry reduction,

since it is readily checked that the coupled pair (5) including Raman scattering
effects [7] and more general coupled systems

i(um)z + (um)xx + umNm{|u1|2, . . . , |uN |2; (|u1|2)x, . . . , (|uN |2)x} = 0

(for m = 1, . . . , N) share this reduction. It may readily be verified that the
class (12) of equations possessing this same family of symmetries may be extended,
by including higher order derivatives, to the class

iuz + uxx + uf [uu∗, (uu∗)x, (uu
∗)xx, (uu

∗)xxx, (argu)xx, (argu)xxx] = 0,

but does not include the equation uz + uxxx + 6|u|2ux = iα|u|2u − γ(|u|2)xu for
which Yang [18] demonstrates numerically stable accelerating pulses.

Generalizing (4) as uz = L(u, v, p, q, r, s, z, x), vz = M(u, v, p, q, r, s, z, x) and
insisting that X2 ≡ ∂x, X3 ≡ u∂u−v∂v and X5 ≡ ∂z−α̂zX2−ixX3 are generators,
then solving the defining equations corresponding to X2 and X3 yields

L = uf̂(I, P,Q,R, S, z) , M = vĝ(I, P,Q,R, S, z) ,
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while consideration also of the generator X5 specializes these further to give

iuz +
1
2uxx + uf̃{uv, (uv)x, u−1(ux + iα̂zu),

u−1[(∂x + iα̂z)2u], v−1[(∂x − iα̂z)2v]} = 0 .

Equivalently, the function f̃ may be written as f̃ = f̄{uu∗, [N1(uu
∗)]x, [N2(uu

∗)]xx,
u−1ux + iα̂z, u−1(∂x + iα̂z)2u}. These examples show the importance of depen-
dence upon |u|2 within the nonlinear terms and of the operator ∂x+iα̂z. For these
generalized SFF equations the governing differential equation for W (χ) = ue−iΘ

becomes

W ′′(χ)− 4iVW ′ + 2(α̂χ− c0)W
+2Wf̄{|W |2, (N1(|W |2))χ, (N2(|W |2))χχ,W ′/W,W ′′/W} = 0 .

For many of these functions f̄ , existence and stability of accelerating solitons may
be expected to follow from use of the methods applied to the special case (4).
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The notion of a normalized class of differential equations is introduced. Using
it, we describe admissible point transformations in the class of nonlinear (1+1)-
dimensional Schrödinger equations with modular nonlinearities and potentials,
which have the form iψt+ψxx+f(|ψ|)ψ+V (t, x)ψ = 0, where f is an arbitrary
complex-valued nonlinearity depending only on ρ = |ψ| and V is an arbitrary
complex-valued potential depending on t and x. We also carry out complete
group classification for the subclass ρfρρ/fρ 6= const ∈ R.

1 Introduction

Before mathematical notions are defined in rigorous and precise form, they can
be implicitly used a long time. This commonplace is true also for the notion of
a normalized class of differential equations introduced below. The most known
classical group classification problems such as the Lie’s classifications of second or-
der ordinary differential equations [8] and of second order two-dimensional linear
partial differential equations [7] were solved with essential using strong normaliza-
tion of the above classes of differential equations. Similar classification technics
based on the properties of normalized classes was recently applied in solving group
classification problems by a number of authors (see e.g. [2, 11–14]).

In this paper we give rigorous definitions of sets of admissible point transforma-
tions and normalized classes of differential equations. Then we describe admissi-
ble point transformations in the class of nonlinear (1+1)-dimensional Schrödinger
equations with modular nonlinearities and potentials, which have the form

iψt + ψxx + f(|ψ|)ψ + V ψ = 0, (1)

where f is an arbitrary complex-valued nonlinearity depending only on ρ = |ψ|
and V is an arbitrary complex-valued potential depending on t and x. Using
proposed technics, we also carry out complete group classification for the subclass
ρfρρ/fρ 6= const ∈ R.
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2 Admissible Transformations

Let L(θ) be a system L(x, u(p), θ(x, u(p))) = 0 of l differential equations for m un-
known functions u = (u1, . . . , um) of n independent variables x = (x1, . . . , xn).
Here u(p) denotes the set of all the derivatives of u with respect to x of order no

greater than p, including u as the derivatives of the zero order. L = (L1, . . . , Ll) is
a tuple of l fixed functions depending on x, u(p) and θ. θ denotes the tuple of arbi-

trary (parametric) functions θ(x, u(n)) = (θ1(x, u(p)), . . . , θ
k(x, u(p))) running the

set S of solutions of the system S(x, u(p), θ(q)(x, u(p))) = 0. This system consists of
differential equations with respect to θ, where x and u(p) play the role of indepen-
dent variables and θ(q) stands for the set of all the partial derivatives of θ of order
no greater than q. In what follows we call the functions θ as arbitrary elements.
Denote the class of systems L(θ) with the arbitrary elements θ running S as L|S .

For θ, θ̃ ∈ S we will call the set of point transformations which maps the sys-
tem L(θ) into the system L(θ̃) as the set of admissible transformations from L(θ)
into L(θ̃) and will denote it T(θ, θ̃). The maximal Lie symmetry group Gmax(θ) of
the system L(θ) coincides with T(θ, θ). If the systems L(θ) and L(θ̃) are equivalent
with respect to point transformations then T(θ, θ̃) = Gmax(θ)◦ϕ0 = ϕ0 ◦Gmax(θ̃),
where ϕ0 is a fixed transformation from T(θ, θ̃). Otherwise, T(θ, θ̃) = ∅. The
set T(θ,L|S) = { (θ̃, ϕ) | θ̃ ∈ S, T(θ, θ̃) 6= ∅, ϕ ∈ T(θ, θ̃) } is called as the
set of admissible transformations of the equation L(θ) in the class L|S . The set
T(L|S) = { (θ, θ̃, ϕ) | θ, θ̃ ∈ S, T(θ, θ̃) 6= ∅, ϕ ∈ T(θ, θ̃) } is called as the set of
admissible transformations in L|S .
Note 1. First the set of admissible transformations was described by J.G. King-
ston and C. Sophocleous in [4] for a class of generalised Burgers equations. These
authors call transformations of such type as form-preserving ones [5, 6].

Note 2. All the notions and results adduced in this and the next sections can be
reformulated in the infinitesimal terms by means of using the notions of operators,
Lie algebras instead of transformations, Lie groups etc. For instance, see [1] for the
definition of “cones of tangent equivalences” which is the infinitesimal analogue of
the definition of T(θ,L|S). Ibid a non-trivial example of semi-normalized class of
differential equations is investigated in the framework of infinitesimal approach.

Note 3. In the case of one dependent variable (m = 1) we can extend all the
above and below notions to contact transformations.

We can define the usual equivalence group in a rigorous way using the notion
of admissible transformations. Namely, any element Φ from the usual equivalence
group G∼(L|S) is a point transformation in the space of (x, u(p), θ), which is
projectible on the space of (x, u(p′)) for any 0 ≤ p′ ≤ p, and Φ|(x,u(p′))

being the

p′-th order prolongation of Φ|(x,u), and ∀θ ∈ S: Φθ ∈ S and Φ|(x,u) ∈ T(θ,Φθ).
Let us remind that the local transformation ϕ: z̃ = ϕ(z) in the space of

the variables z = (z1, . . . , zk) is called projectible on the space of variables z ′ =
(zi1 , . . . , zik′ ), where 1 ≤ i1 < · · · < ik′ ≤ k, if expressions for z̃′ depend only on z′.
We denote the restriction of ϕ on the space of z ′ as ϕ|z′ : z̃′ = ϕ|z′(z′).
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If the arbitrary elements θ explicitly depend on x and u only (one always
can do it, assuming derivatives as new dependent variables), we may consider
the generalized equivalence group G∼gen(L|S) [10], admitting dependence of trans-
formations of (x, u) on θ. More rigorously, any element Φ from G∼gen(L|S) is a
point transformation in the space of (x, u, θ) such that ∀θ ∈ S: Φθ ∈ S and
Φ(·, ·, θ(·, ·))|(x,u) ∈ T(θ,Φθ).

Roughly speaking, G∼(L|S) is the set of admissible transformations which can
be applied to any θ ∈ S and G∼gen(L|S) is formed by the admissible transformations
which can be separated to classes parameterized with θ running whole S.

It is possible to consider other generalizations of equivalence groups, e.g. with
nonlocal dependence on arbitrary elements [3].

We can formulate the problem of description of T(L|S) similarly to the group
classification problem. The steps of investigation are the following:

1. Construction of G∼(L|S) (or G∼gen(L|S)).
2. Description of conditional equivalence transformations in the class L|S , i.e.

searching for additional conditions {Sγ | γ ∈ Γ} which determine the sets Sγ
of arbitrary elements such that G∼(L|S∩Sγ ) 6⊂ G∼(L|S) (or G∼gen(L|S∩Sγ ) 6⊂
G∼gen(L|S) ).

3. Finding admissible transformations which do not belong groups obtained on
the previous steps.

3 Normalized Classes of Differential Equations

Solving group classification problems is essentially simpler if a class of differential
equations under consideration has an additional property of normalization with
respect to point transformations.

Definition 1. The class L|S of differential equations is called normalized (with
respect to point transformations) if ∀(θ, θ̃, ϕ)∈T(L|S) ∃Φ∈G∼(L|S): θ̃ = Φθ and
ϕ = Φ|(x,u).

The class L|S is called normalized in generalized sense if ∀(θ, θ̃, ϕ) ∈ T(L|S)
∃Φ∈G∼gen(L|S): θ̃ = Φθ and ϕ = Φ(·, ·, θ(·, ·))|(x,u).
Proposition 1. If L|S is a normalized class of differential equations (in usual or
generalized sense) then for any θ0∈S the Lie symmetry group Gmax(θ0) coincides
with restriction, on the space of (x, u), of the subgroup of G∼(L|S) (or G∼gen(L|S))
preserving the value θ = θ0(x, u(p)).

Definition 2. The class L|S of differential equations is called strongly normalized
if L|S is normalized and G∼(L|S)|(x,u) =

∏
θ∈S G

max(θ).
The class L|S of differential equations is called strongly normalized with respect

to point transformations in generalized sense if L|S is normalized in generalized
sense and ∀θ0∈S: G∼gen(L|S)|θ=θ

0

(x,u) =
∏
θ∈Sθ0

Gmax(θ), where

Sθ0 = {θ′ ∈ S |G∼gen(L|S)|θ=θ
′

(x,u) = G∼gen(L|S)|θ=θ
0

(x,u)}.
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Definition 3. The class L|S of differential equations is called semi-normalized
(with respect to point transformations) if ∀(θ, θ̃, ϕ)∈T(L|S) ∃ϕ̃∈Gmax(θ), ∃Φ∈
G∼(L|S): ϕ = ϕ̃ ◦ Φ|(x,u), i.e.

T(L|S) = {(θ,Φθ, ϕ̃ ◦ Φ|(x,u)) | θ∈S, ϕ̃∈Gmax(θ), Φ∈G∼(L|S)}.

( T(L|S) = {(θ0,Φθ0, ϕ̃ ◦ Φ|θ=θ0(x,u)) | θ0 ∈ S, ϕ̃ ∈ Gmax(θ), Φ ∈ G∼gen(L|S)} if L|S is

semi-normalized in generalized sense.)

Roughly speaking, the class L|S is normalized if any admissible transforma-
tion in this class belongs to G∼(L|S) and is strongly normalized if additionally
G∼(L|S)|(x,u) is generated by elements from Gmax(θ), θ ∈ S. The set of admissi-
ble transformations of a semi-normalized class is generated by the transformations
from the equivalence group of the whole class and the transformations from the
Lie symmetry groups of equations of this class.

Proposition 2. Let Gi, i = 1, 2, be local groups of point transformations in the
space of (x, u), for which S i = {θ ∈ S |Gmax(θ) = Gi} 6= ∅. Then S1 ∼ S2
mod G∼(L|S) iff G1 ∼ G2 mod G∼(L|S).
Proposition 3. Two systems from a semi-normalized class are pointwise equiv-
alent iff they are equivalent with respect to the equivalence group of this class.

Proposition 4. Any normalized class of differential equations is semi-normalized.

In view of the above propositions, the group classification problem in any
normalized class of differential equations is reduced to subgroup analysis of the
corresponding equivalence group. The property of strong normalization allows us
to hope that essential part of subgroups will be Lie symmetry groups of systems
from the class under consideration.

Investigation of normalization of the class L|S or its subclasses is necessary for
description of T(L|S) and can be included as a step in studying T(L|S).

There exist a number of examples of implicit using the notion of normalized
classes in group classification of differential equations.

4 Covering Class of Nonlinear Schrödinger Equations

Consider the more general class of NSchEs

iψt + ψxx + S(t, x, |ψ|)ψ = 0, (2)

which cover class (1) and is more convenient, in some sense, for preliminary group
classification. Here S is an arbitrary complex-valued function depending on t, x
and ρ = |ψ|, and we additionally assume Sρ 6= 0. The latter condition is invariant
under any local transformation which transforms a fixed equation from class (2) to
an equation from the same class. The auxiliary system for the arbitrary element S
has the form

ψSψ − ψ∗Sψ∗ = 0, ψSψ + ψ∗Sψ∗ 6= 0. (3)
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Theorem 1. Class (2) is strongly normalized. The equivalence group G∼{S} of the

class (2) is formed by the transformations

t̃ = T, x̃ = εx|Tt|1/2 +X, ψ̃ = ψ̂R(t) exp

(
i

8

Ttt
|Tt|

x2 +
i

2

εεTXt

|Tt|1/2
x+ iΨ

)
,

S̃ =
1

|Tt|

(
S +

1

8

(
Ttt
Tt

)

t

x2 +
ε

2

(
Xt

|Tt|1/2
)

t

x

)
−
(
ε

4

Ttt

|Tt|3/2
x+

1

2

Xt

Tt

)2

+
1

Tt

(
Ψt − i

Rt
R
− i

4

Ttt
Tt

)
.

(4)

Here T , X, R and Ψ are arbitrary smooth real-valued functions of t, Tt 6= 0,
R > 0, ε = ±1, εT = signT , and for any complex value β

β̂ = β if Tt > 0 and β̂ = β∗ if Tt < 0.

Note 4. Indeed, the equivalence group G∼{S} is generated by the continuous fam-

ily of transformations of form (4), where Tt > 0 and ε = 1, and two discrete
transformations: the space reflection Ix (t̃ = t, x̃ = −x, ψ̃ = ψ, S̃ = S) and the
Wigner time reflection It (t̃ = −t, x̃ = x, ψ̃ = ψ∗, S̃ = S∗).

Corollary 1. For any equation of form (2) the value ρSρρ/Sρ is preserved under
any transformation which transforms this equation to an equation from the same
class, excluding It.

In particular, Theorem 1 results in the following statement on Lie symmetry
operators of equations from class (2).

Theorem 2. Any operator Q from the maximal Lie invariance algebra Amax(S)
of equation (2) with an arbitrary function S can be presented in the form Q =
D(ξ) +G(χ) + λM + ζI, where

D(ξ) = ξ∂t +
1

2
ξtx∂x +

1

8
ξttx

2M, G(χ) = χ∂x +
1

2
χtxM, (5)

M = i(ψ∂ψ − ψ∗∂ψ∗), I = ψ∂ψ + ψ∗∂ψ∗ , (6)

where χ = χ(t), ξ = ξ(t), λ = λ(t) and ζ = ζ(t) are arbitrary smooth real-
valued functions of t. Moreover, the coefficients of Q should satisfy the classifying
condition

ξSt +

(
1

2
ξtx+ χ

)
Sx + νρSρ + ξtS =

1

8
ξtttx

2 +
1

2
χttx+ λt − iζt + i

1

4
ξtt. (7)

Assuming for S to be arbitrary and splitting (7) with respect to S, St, Sx and
Sρ, we obtain the following theorem.

Theorem 3. The Lie algebra of the kernel of maximal Lie invariance groups of
equations from class (2) is Aker

{S} = 〈M〉.
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5 General case of modular nonlinearity with potential

Let us pass to the subclass (1) of class (2) (i.e. S = f(ρ) + V (t, x) where f ′ 6= 0).
This subclass is separated from class (2) with the condition Sρt = Sρx = 0, i.e.

ψSψt + ψ∗Sψ∗t = ψSψx + ψ∗Sψ∗x = 0. (8)

To find the equivalence group G∼{(f,V )} of class (1) in the framework of the
direct method, we look for all local transformations in the space of the variables
t, x, ψ, ψ∗, S and S∗, which preserve the system formed by equations (3) and (8).
Moreover, in the same way we can classify all possible local transformations in
class (1).

Theorem 4. G∼{(f,V )} is formed by the transformations (4) where Ttt = 0 and

Rt = 0. The subclass of (1) under the additional condition that ρSρρ/Sρ is not a
real constant have the same equivalence group and is normalized. There exist two
different cases for additional (conditional) equivalence transformations in class (1)
which are strongly normalized with respect to their equivalence groups in usual and
extended sense correspondingly (below σ is a complex constant):

1. ρSρρ/Sρ = −1, i.e. f = σ ln ρ.
2. ρSρρ/Sρ = γ − 1 ∈ R and γ 6= 0, i.e. f = σργ.

Note 5. It is possible to find equivalence transformations in another way, con-
sidering f and V as arbitrary elements instead of S. Then we have to look for all
local transformations in the space of the variables t, x, ψ, ψ∗, f , f∗, V and V ∗,
which preserve the system formed by equations

iψt + ψxx + Sψ = 0, ft = fx = 0, ψfψ − ψ∗fψ∗ = 0, Vψ = Vψ∗ = 0.

Due to the representation S = f+V we additionally obtain only gauge equivalence
transformations of the form f̃ = f + β, Ṽ = V − β, where β is an arbitrary com-
plex number and t, x and ψ are not changed. We neglect these transformations,
choosing f in the most suitable form.

Below we adduce results only for the general case ρSρρ/Sρ = ρfρρ/fρ 6= const ∈
R. The cases f = σ ln ρ and f = σργ which admit extensions of admissible trans-
formations and Lie symmetries have been also investigated completely and will
be subjects of our future papers.

Corollary 2. A potential V can be made to vanish in (1) by means of local
transformations iff it is, up to trivial equivalence transformations, a real-valued
function linear with respect to x.

Theorem 5. Any operator Q from the maximal Lie invariance algebra Amax(f, V )
of equation (1) with an arbitrary nonlinearity f and an arbitrary potential V can
be presented in the form Q = c0∂t + G(χ) + λM , c0 = const. Moreover, the
coefficients of Q should satisfy the classifying condition

c0Vt + χVx =
1

2
χttx+ λt. (9)
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Theorem 6. The Lie algebra of the kernel of maximal Lie invariance groups of
equations from class (1) is Aker

{(f,V )} = 〈M〉.
Let us sketch shortly a chain of statements which results in complete group

classification of class (1) in the general case.
Action of G∼{(f,V )} on f is only multiplication with non-zero real constants

and/or complex conjugation. That is why we can fix an arbitrary function f(ρ)
and restrict our consideration on the set of nonlinearities which are proportional
to f or f∗ with real constant coefficients.

The set A∪{(f,V )} = {Q = c0∂t + G(χ) + λM} is an (infinite-dimensional) Lie

algebra under the usual Lie bracket of vector fields. For any Q ∈ A∪{(f,V )} where

(c0, χ) 6= (0, 0) we can find V satisfying condition (9). Therefore, A∪{(f,V )} =

〈⋃(f,V )A
max(f, V ) 〉.

G∼{(f,V )} generates an automorphism group on A∪{f,V } and the equivalence group

on the set of equations of the form (9). Since these groups are isomorphic to
G∼{(f,V )} we use the same notation for them. Aker

{(f,V )} coincides with the center of

the algebra A∪{(f,V )} and is invariant with respect to G∼{(f,V )}.

Let A1 and A2 be the maximal Lie invariance algebras of some equations
from class (1), and S i = { (f, V ) |Amax(f, V ) = Ai}, i = 1, 2. Then S1 ∼ S2
modG∼{(f,V )} iff A1 ∼ A2 modG∼{(f,V )}.

A complete list of G∼{(f,V )}-inequivalent one-dimensional subalgebras of A∪{f,V }
is exhausted by the algebras 〈∂t〉, 〈G(χ)〉, 〈λM〉. (There exist additional equiv-
alences into {〈G(χ)〉} and {〈λM〉}, which are generated by equivalence transfor-
mations of t.)

Theorem 7. A complete set of inequivalent cases of V admitting extensions
of the maximal Lie invariance algebra of equations (1) in the case of arbitrary
nonlinearity is exhausted by the potentials given in Table 1.

Table 1. Results of classification in the case of arbitrary nonlinearity.

N V Basis of Amax

0 V (t, x) M

1 V (x) M, ∂t

2 v(t)x2 + iw(t) M, G(χ1), G(χ2)

3 0 or i M, ∂t, G(1), G(t)

4 x2 + iν M, ∂t, G(e
−2t), G(e2t)

5 −x2 + iν M, ∂t, G(cos 2t), G(sin 2t)

Here v(t), w(t), ν ∈ R, (vt, wt) 6= (0, 0). The functions χ1 = χ1(t) and χ2 = χ2(t) form
a fundamental system of solutions for the ordinary differential equation χtt = 4vχ.

Proof. Suppose that equation (1) has extension of Lie symmetry for a parameter
value (f, V ), i.e. Amax(f, V ) 6= Aker

{(f,V )}. Then there exists an operator Q =

c0∂t +G(χ) + λM ∈ Amax(f, V ) such that (c0, χ) 6= (0, 0).
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If c0 6= 0 then 〈Q〉 ∼ 〈∂t〉 modG∼{(f,V )}, i.e. we obtain Case 1.1. Investigation
of additional extensions are reduced to the next case.

If c0 = 0 then 〈Q〉 ∼ 〈G(χ)〉 modG∼{(f,V )}. It follows from (9) that the poten-

tial V have the form V = v(t)x2 + iw(t) + w0(t), and w0 = 0 modG∼{(f,V )}. For

(vt, wt) 6= (0, 0) we have Case 1.2. The condition v, w = const results in Cases 1.3,
1.4 and 1.5 depending on the sign of v. If v = 0 and w = const we can reduce w
by means of equivalence transformations to either 0 or 1. ¥
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[7] S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linear partieller
Differentialgleichung. Arch. for Math. 6, no 3 (1881), 328–368.

[8] S. Lie, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transfor-
mationen, B.G. Teubner, Leipzig, 1891.

[9] I.G. Lisle, Equivalence transformations for classes of differential equations, Thesis (Univer-
sity of British Columbia, 1992).

[10] S.V. Meleshko, Homogeneous autonomous systems with three independent variables.
J. Appl. Math. Mech. 58 (1994), 857–863.

[11] R.O. Popovych, N.M. Ivanova and H. Eshraghi, Group classification of (1+1)-dimensional
Schrodinger equations with potentials and power nonlinearities. J. Math. Phys. 45 (2004),
3049–3057 (math-ph/0311039).

[12] R.O. Popovych, N.M. Ivanova and H. Eshraghi, Lie Symmetries of (1+1)-Dimensional
Cubic Schrödinger Equation with Potential. Proceedings of Institute of Mathematics 50,
Part 1 (2004), 219–223 (math-ph/0312055).

[13] R.Z. Zhdanov and V.I. Lahno, Group classification of heat conductivity equations with a
nonlinear source. J. Phys. A.: Math. Gen. 32 (1999), 7405–7418.

[14] R. Zhdanov and O. Roman, On preliminary symmetry classification of nonlinear
Schrödinger equation with some applications of Doebner–Goldin models. Rep. Math. Phys.
45 (2000), 273–291.



Proceedings of 10th International Conference in MOdern GRoup ANalysis 2005, 175–181

Group Analysis of a Nonlinear Model

Describing Dissipative Media

Marianna RUGGIERI and Antonino VALENTI

Dipartimento di Matematica e Informatica
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Group classifications of three equivalent mathematical models describing one-
dimensional motion in nonlinear dissipative media are performed. The rela-
tionships between the symmetries of those models are explored.

1 Introduction

We consider the third order partial differential equation

wtt = f(wx)wxx + λ0wxxt, f, λ0 > 0, f ′ 6= 0, (1)

where f is an arbitrary function of its argument, λ0 is a positive real parameter,
w(t, x) is the dependent variable and subscripts denote partial derivative with
respect to the independent variables t and x. Primes, here and in what follows,
denote derivative of a function with respect to the only variable upon which it
depends.

Some mathematical questions related to (1), as the existence, uniqueness and
stability of weak solutions can be found in [1], while a study related to a generalized
“shock structure” is shown in [2].

A physical prototype of the problem studied here arises when we consider
purely longitudinal motions of a homogeneous viscoelastic bar of uniform cross-
section and we assume that the material is a nonlinear Kelvin solid. That is we
consider the equation of motion (the constant density is normalized to one)

wtt = τx (2)

and assume a stress-strain relation of the following form:

τ = σ(wx) + λ0wxt, (3)

where τ is the stress, x the position of a cross-section (which is assumed to move as
a vertical plane section) in the homogeneous rest configuration of the bar, w(t, x)
the displacement at time t of the section from its rest position, σ(wx) the elastic
tension (wx is the strain), λ0 the viscosity positive coefficient. Taking (3) into
account and setting σ′ = f the equation (2) reduces to (1).
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Moreover, the equation (1) occurs in the more well-known setting of one-
dimensional motion of a viscous isentropic gas, treated from the lagrangian point
of view. By putting wx = u and wt = v, the equation (1) can be written as a 2×2
system of partial differential equations of the form

ut = vx, (4)

vt = f(u)ux + λ0 vxx, (5)

where, u corresponds to the specific volume, p (u) =
∫ u

f(s) ds is the pressure
and v is the velocity.

The system (4)–(5), as it is well known, is equivalent to the equation (1), conse-
quently, a symmetry of any one of the equation (1) and the system (4)–(5) defines
a symmetry of the other. More specifically, because of the nonlocal transforma-
tion connecting (1) and (4)–(5), it is possible for a point symmetry of (4)–(5) to
yield a contact symmetry of (1) (for details see [3]).

Moreover, it is worthwhile noticing that the system (4)–(5) can be regarded as
the potential system associated to the following equation:

utt = [f(u)ux + λ0 uxt]x . (6)

In particular, point symmetries of the potential system (4)–(5) allows to obtain,
if they exist, nonlocal symmetries (potential symmetries [4]) of the equation (6).

When λ0 = 0, the equation (6) reduces to the nonlinear wave equation

utt = [f(u)ux]x ,

which was classified by Ames et al. [5] and give rise to numerous publications on
symmetry analysis of nonlinear wave phenomena (see [6] and references therein for
a review). While, for λ0 = ε¿ 1, a study performed by means of the approximate
symmetries can be found in [12].

In this paper we perform the complete group classification of the equation (1),
the system (4)–(5) and the equation (6). After observing that the point symme-
tries of the system (4)–(5) do not produce any contact symmetry of the equa-
tion (1) and any nonlocal symmetry (potential symmetry) of the equation (6), we
are able to demonstrate that the group classifications of (1), (4)–(5) and (6) are
identical in the sense that, for any f , a point symmetry admitted by any one of (1),
(4)–(5) and (6) induces a point symmetry admitted by the remaining two ones.

2 Group Classification of the Equation (1)

In order to discuss the group classification of the equation (1), we apply the
classical Lie method and look for the one-parameter Lie group of infinitesimal
transformations in (t, x, w)-space given by

t̂ = t+ a ξ1(t, x, w) +O(a2), (7)

x̂ = x+ a ξ2(t, x, w) +O(a2), (8)

ŵ = w + a η(t, x, w) +O(a2), (9)



Group Analysis of a Nonlinear Model Describing Dissipative Media 177

where a is the group parameter and the associated Lie algebra L is the set of
vector fields of the form

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂w
.

Then we require that the transformation (7)–(9) leaves invariant the set of so-
lutions of the equation (1), in others words, we require that the transformed
equation has the same form as the original one.

Following the well known monographs on this argument (see e.g. [6–9]), we
introduce the third prolongation of the operator X in the form

X(3) = X + ζ1
∂

∂wt
+ ζ2

∂

∂wx
+ ζ11

∂

∂wtt
+ ζ22

∂

∂wxx
+ ζ221

∂

∂wxxt
,

where we have set

ζ1 = Dt(η)− wtDt(ξ
1)− wxDt(ξ

2), (10)

ζ2 = Dx(η)− wtDx(ξ
1)− wxDx(ξ

2), (11)

ζ11 = Dt(ζ1)− wttDt(ξ
1)− wtxDt(ξ

2),

ζ22 = Dx(ζ2)− wtxDx(ξ
1)− wxxDx(ξ

2),

ζ221 = Dt(ζ22)− wxxtDt(ξ
1)− wxxxDt(ξ

2),

with operators Dt and Dx denoting total derivatives with respect to t and x.
The determining system of (1) arises from the following invariance condition:

X(3) (wtt − f(wx)wxx − λ0wtxx) = 0, (12)

under the constraints that the variable wtt has to satisfy the equation (1). This
latter allows us to find the infinitesimal generator of the symmetry transforma-
tions and, at the same time, gives the functional dependence of the constitutive
function f(wx) for which the equation admits symmetries.

From (12) we obtain the following relations:

ξ1 = 2 a5 t+ a1,

ξ2 = a5 x+ a2,

η = a6w + a7 x+ a4 t+ a3, (13)

[(a6 − a5)wx + a7] f
′ + 2 a5 f = 0,

where ai (i = 1, 2, . . . , 7), are constants.
For arbitrary f we have that the Principal Lie Algebra LP of the equation (1)

is four-dimensional and it is spanned by the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂w
, X4 = t

∂

∂w
,

otherwise we obtain the results summarized in Table 1.
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Table 1. Group classification of the equation (1). f0, p and q are constitutive constants
with f0 > 0, p 6= 0.

Case Forms of f(wx) Extensions of LP

I f(wx) = f0 e
wx

p X5 = 2 t
∂

∂t
+ x

∂

∂x
+ (w − 2 p x)

∂

∂w

II f(wx) = f0 (wx + q)
1

p X5 = 2 t
∂

∂t
+ x

∂

∂x
+ [(1− 2 p)w − 2 p q x]

∂

∂w

3 Group Classification of the System (4)–(5)

When we look for the one-parameter Lie group of infinitesimal transformations of
the system (4)–(5) in the (t, x, u, v)-space, the associated Lie algebra L̄ is the set
of vector fields of the form

X̄ = ξ̄1
∂

∂t
+ ξ̄2

∂

∂x
+ η1

∂

∂u
+ η2

∂

∂v
,

where the coordinates ξ̄1, ξ̄2, η1, η2 are functions of t, x, u and v.

Making use of the classical Lie method, from the invariance conditions which
follow by applying the second prolongation of the operator X̄ to (4)–(5), we give
rise to the following result:

ξ̄1 = 2 a5 t+ a1,

ξ̄1 = a5 x+ a2,

η1 = (a6 − a5)u+ a7,

η2 = (a6 − 2 a5) v + a4,

[(a6 − a5)u+ a7] f
′ + 2 a5 f = 0.

For f arbitrary the Principal Lie Algebra L̄P of the system (4)–(5) is three-
dimensional and it is spanned by the operators

X̄1 =
∂

∂t
, X̄2 =

∂

∂x
, X̄3 =

∂

∂v
, (14)

otherwise we obtain the results summarized in Table 2.

Table 2. Group classification of the system (4)–(5). f0, p and q are constitutive
constants with f0 > 0, p 6= 0.

Case Forms of f(u) Extensions of L̄P

I f(u) = f0 e
u

p X̄4 = 2t
∂

∂t
+ x

∂

∂x
− 2p

∂

∂u
− v ∂

∂v

II f(u) = f0 (u+ q)
1

p , X̄4 = 2t
∂

∂t
+ x

∂

∂x
− 2p(u+ q)

∂

∂u
− (1 + 2p)v

∂

∂v
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4 Group Classification of the Equation (6)

In order to obtain the complete point symmetry classification of the equation (6)
we write the infinitesimal operator in the form

X̃ = ξ̃1
∂

∂t
+ ξ̃2

∂

∂x
+ η̃

∂

∂u
,

where the coordinates ξ̃1, ξ̃2, η̃ are functions of t, x and u.
Making use of the classical Lie method, from the invariance conditions which

follow by applying the third prolongation of the operator X̃ to (6), we give rise
to the following result:

ξ̃1 = 2 a5 t+ a1, ξ̃1 = a5 x+ a2, η̃ = (a6 − a5)u+ a7,

[(a6 − a5)u+ a7] f
′ + 2 a5 f = 0.

For f arbitrary the Principal Lie Algebra L̃P of the equation (6) is two-
dimensional and it is spanned by the operators

X̃1 =
∂

∂t
, X̃2 =

∂

∂x
,

otherwise the group classification is summarized in Table 3.

Table 3. Group classification of the equation (6). f0, p and q are constitutive constants
with f0 > 0, p 6= 0.

Case Forms of f(u) Extensions of L̃P

I f(u) = f0 e
u

p X̃4 = 2t
∂

∂t
+ x

∂

∂x
− 2p

∂

∂u

II f(u) = f0 (u+ q)
1

p , X̃4 = 2t
∂

∂t
+ x

∂

∂x
− 2p(u+ q)

∂

∂u

5 Discussions of the Group Classifications

By inspecting relations (14) and Table 2 we deduce easily that point symmetries
of the system (4)–(5) do not produce any contact symmetry of the equation (1)
and any nonlocal symmetry (potential symmetry) of the equation (6). Moreover,
after observing that the following relations

ξ̄1 = ξ̃1 = ξ1 = 2 a5 t+ a1,

ξ̄2 = ξ̃2 = ξ2 = a5 x+ a2,

η1 = η̃ = (a6 − a5)u+ a7

hold, it is worthwhile noticing that we can obtain the complete group classification
of the equation (6) simply projecting in the (t, x, u)-space the operators appearing
in (14) and in Table 2. Consequently, a symmetry of any one of the system (4)–(5)
and the PDE (6) induces a symmetry of the other. After that, we will demonstrate
the following statement.
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Theorem 1. For any f , a point symmetry admitted by (1) defines a point sym-
metry admitted by (4)–(5) and viceversa.

Proof. Starting from the classification of the equation (1), in order to link the
coordinates of the operators X̄ to that ones of X, following the procedure con-
cerning with the change of variables showed in [10, 11], we require the invariance
of the transformation u = wx, v = wt, with respect to the operator

X∗ = η
∂

∂w
+ ζ1

∂

∂wt
+ ζ2

∂

∂wx
+ η1

∂

∂u
+ η2

∂

∂v
.

That is, we perform the invariance conditions

X∗(u− wx)|wx=u, wt=v
= 0, X∗(v − wt)|wx=u, wt=v

= 0. (15)

From (15) it follows

η1 = ζ2|wx=u, wt=v = (a6 − a5)u+ a7,

η2 = ζ1|wx=u, wt=v = (a6 − 2 a5)v + a4,

which give the remaining coordinates of the operator X̄.

Conversely, starting from the classification of the system (4)–(5), taking (10)
and (11) into account, from (15) we obtain

ζ2 = ηx + ηw wx − a5wx = η1
∣∣
u=wx, v=wt

= (a6 − a5)wx + a7, (16)

ζ1 = ηt + ηw wt − 2 a5wt = η2
∣∣
u=wx, v=wt

= (a6 − 2 a5)wt + a4. (17)

From (16) and (17) the relation (13) of η follows in a simple way.

¥

So, we can conclude by affirming that:

Theorem 2. The classifications of (1), (4)–(5) and (6) are identical in the sense
that, for any f , a point symmetry admitted by any one of them induces a point
symmetry admitted by the remaining two ones.
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Equations in the Planar Case
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The model for convective motion of binary mixture with thermal diffusion ef-
fect is considered. It is shown that the equations admit infinite Lie symmetry
algebra L that can be represented as the semi-direct sum of four-dimensional
subalgebra and the infinite ideal spanned by three infinite-dimensional gen-
erators. The first and second order optimal systems of subalgebras for the
algebra L are constructed.

1 Introduction

Thermal diffusion is a transport of matter associated with a thermal gradient.
It may occur in mixtures of liquids and gases. As a result of thermal gradient,
concentration gradients appear in the mixture. These gradients produce ordinary
diffusion. A steady state is reached when the separating effect of thermal diffu-
sion is balanced by the remixing effect of ordinary diffusion. As a result, partial
separation is observed. Experimental results have shown in most cases a ’nor-
mal’ behavior, i.e., the heavier components in the cold region, and the lighter
components in the hot region. Also, there are systems with ’abnormal’ behavior,
where the situation is opposite. Thermal diffusion has various applications, such
as separation of different mixtures, crystal growth, flows in oceans, and so on.

In this paper we consider convective motion of binary mixture supposing that
its density linearly depends on concentration of the lighter component and tem-
perature, ρ = ρ0(1−β1T −β2C). Here ρ0 is the mixture density at mean values of
temperature and concentration, T and C are the temperature and concentration
variations that are supposed to be small, β1 is the thermal expansion coefficient of
the mixture, and β2 is the concentration coefficient of density (β2 > 0). The equa-
tions of motion in the Oberbeck–Boussinesq approximation have the form [1]

ut + (u · ∇)u = − 1

ρ0
∇p+ ν∆u− g(β1T + β2C),

Tt + u · ∇T = χ∆T, (1)

Ct + u · ∇C = d∆C + αd∆T,

divu = 0,
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where u is the velocity vector, p is the difference between actual and hydrostatic
pressure, ν is the kinematic viscosity, χ is the thermal diffusivity, d is the diffusion
coefficient, α is the thermal diffusion parameter, and g is the gravitational accel-
eration vector. We suppose that all characteristics of the medium are constant
and correspond to the mean values of temperature and concentration.

Further, we consider the case of plane motion. The following notation is used:
x = (x1, x2), u = (u1, u2), g = (0,−g), where g is the gravitational acceleration.
In what follows we find symmetries for equations (1) and construct the first and
second order optimal systems of subalgebras for the admissible Lie symmetry
algebra.

2 The Admissible Lie Symmetry Algebra

As calculations show, equations (1) admit infinite Lie symmetry algebra that can
be represented as the semi-direct sum L = L4 ⊕ L∞. The finite subalgebra L4 is
spanned by the generators

X1 =
∂

∂t
, X2 =

1

β1

∂

∂T
− 1

β2

∂

∂C
, X3 = ρ0gx

2 ∂

∂p
+

1

β2

∂

∂C
,

X4 = 2t
∂

∂t
+ x1

∂

∂x1
+ x2

∂

∂x2
− u1 ∂

∂u1
− u2 ∂

∂u2
− 2p

∂

∂p
− 3T

∂

∂T
− 3C

∂

∂C
,

while the infinite ideal L∞ has the basis

H1(f
1(t)) = f1(t)

∂

∂x1
+ f1t (t)

∂

∂u1
− ρ0x1f1tt(t)

∂

∂p
,

H2(f
2(t)) = f2(t)

∂

∂x2
+ f2t (t)

∂

∂u2
− ρ0x2f2tt(t)

∂

∂p
,

H0(f
0(t)) = f0(t)

∂

∂p
,

where f i(t), f0(t) are smooth arbitrary functions. If the parameters entering the
system satisfy the condition α = β1(d − χ)/β2d, d 6= χ, then the equations also
admit the generator

X5 = T
∂

∂T
− β1
β2
T
∂

∂C
.

Further, it is assumed that the above relation does not hold and the generator X5

is not admitted. The system (1) is also invariant under the discrete symmetries

d1 : x̃1 = −x1, ũ1 = −u1; (2)

d2 : x̃2 = −x2, ũ2 = −u2, T̃ = −T, C̃ = −C.
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3 The Optimal Systems of Subalgebras

To find all essentially different invariant solutions (i.e. the solutions that can-
not be carried over into each other by the admissible transformations), we need
to construct the optimal system of subalgebras for the Lie algebra L [2–4] (see
also [5,6] for the examples of constructing optimal systems for infinite-dimensional
algebras).

Let us introduce the following notation: f 0(t), f(t) = (f1(t), f2(t)) are smooth
arbitrary functions, H(f) = H1(f

1) + H2(f
2) is the operator of the ideal L∞.

The functions g0(t), h0(t), g(t), h(t) are introduced in the same way. Using this
notation, we calculate the commutators for the basic generators (see Table 1).

To construct the optimal system, it is necessary to find the group of inner au-
tomorphisms IntL. This group is generated by the automorphisms Ai(ai), A

H(h),
AH0 (h0) corresponding to the basic generatorsXi, H(f), H0(f

0). Here i = 1, 2, 3, 4
and ai, h(t), h0(t) are parameters. The group IntL transforms the coordinates of
general operator X = k1X1 + · · ·+ k4X4 +H(f) +H0(f

0) by the formula

IntL : (k1, . . . , k4,f(t), f
0(t)) −→ (k̃1, . . . , k̃4, f̃(t), f̃0(t)).

The group action of IntL is presented in Table 2, where the following notation is
used:

p0(t) = k1h
0
t + k4(2th

0
t + 2h0), q(t) = k1ht + k4(2tht − h),

q0(t) = ρ0

[k1
2
(httth− hthtt)− k3gh2 + k4(2htth + thttth− thttht)

+ f tth− fhtt

]
.

Discrete automorphisms Adi (δi) generated by the discrete symmetries di, i = 1, 2
(see (2)) are also given in that table. Parameters δi have values {0, 1}. The
automorphism Adi (0) is an identity transformation.

At the first step, the optimal system for the finite Lie algebra L4 is constructed.
This algebra is decomposed as the semi-direct sum L4 = J ⊕N of its proper ideal
J = {X1, X2} and the subalgebra N = {X3, X4}. First of all, the optimal system
ΘN is obtained. Then we find the optimal system ΘL4, which is presented in
Table 3. The numbers of subalgebras are specified in the first column, while the
basic generators are given in the second column and denoted by their numbers.
For example, the symbol λ2+3 stands for λX2+X3, where λ is a real parameter.
The numbers of normalizers are given in the third column. The equality sign
marks self-normalized subalgebras. When constructing the optimal system, we
used the discrete automorphisms Adi (δi).

At the second step, the first and second order optimal systems for the Lie
algebra L are constructed. This algebra contains the infinite ideal L∞ with the
general operator

H(f̄) = H1(f
1) +H2(f

2) +H0(f
0), f̄(t) = (f1(t), f2(t), f0(t)).
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To find the first order optimal system, we need to classify two classes of sub-
algebras:

1) {H(f̄)},
2) {P +H(f̄)}, {P} ∈ Θ1L4.

The first class belongs to the infinite ideal L∞, while the second class has one-
dimensional intersection with L4. The subalgebras with basic operator P are taken
from the first order optimal system Θ1L4 (see Table 3). The optimal system Θ1L
is presented in Table 6.

To obtain the second order optimal system, it is necessary to classify three
classes of subalgebras:

1) {H(f̄), H(ḡ)},
2) {P +H(f̄), H(ḡ)}, {P} ∈ Θ1L4,

3) {P +H(f̄), Q+H(ḡ)}, {P, Q} ∈ Θ2L4.

The first class belongs to L∞, while the second and third classes have one and
two-dimensional intersections with L4 respectively. The subalgebras {P,Q} are
taken from the second order optimal system Θ2L4 (see Table 3).

The infinite subalgebras from the optimal system Θ2L are presented in
Table 4. Their basic generators depend on arbitrary functions that satisfy the
equations given in the third column. In most cases these equations can be solved
for the desired functions. Nevertheless, such form of presenting the results is
preferable since the solution may be obtained for different functions entering into
the equations.

The finite subalgebras from Θ2L are given in Table 5. The constants λ, µ, γ,
σ, c in Tables 4, 5 have any real values unless otherwise indicated.

Table 3. The optimal system of subalgebras ΘL4

i Basis NorFi i Basis NorFi

1 1, 2, 3, 4 =1 11 1, 4 =11

2 1, 2, 3 1 12 2, 4 =12

3 1, 2, 4 =3 13 λ2 + 3, 4 =13

4 2, 3, 4 =4 14 1 1

5 1, λ2 + 3, 4 =5 15 2 1

6 1, 2 1 16 λ2 + 3 1

7 2, 3 1 17 1 + 2 2

8 1, λ2 + 3 1 18 1 + λ2 + 3 2

9 1 + 2, λ1 + 3 2 19 4 =19

10 1 + 3, 2 2 20 0 1
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0,
g
2
6≡
cf

2
,

f
2
,
g
0
6≡

0

10
X

2
+
H

1
(f

1
)
+
H

2
(λ
f
1
),
H

1
(g

1
)
+
H

2
(λ
g
1
)
+
H

0
(g

0
)

f
1 tt
g
1
−
f
1
g
1 tt
=

0,
g
1
6≡
cf

1
,

f
1
,
g
0
6≡

0

11
X

2
+
H

1
(f

1
)
+
H

2
(f

2
),
H

1
(g

1
)
+
H

2
(g

2
)

f
1 tt
g
1
−
f
1
g
1 tt
+
f
2 tt
g
2
−
f
2
g
2 tt
=

0

12
λ
X

2
+
X

3
,
H

0
(g

0
)

13
λ
X

2
+
X

3
+
H

0
(f

0
),
H

1
(g

1
)

f
0 tt
g
1
−
f
0
g
1 tt
6≡

0

14
λ
X

2
+
X

3
+
H

1
(f

1
)
+
H

2
(f

2
),
H

0
(g

0
)

15
λ
X

2
+
X

3
+
H

1
(f

1
)
+
H

2
(f

2
),

f
1 tt
g
1
−
f
1
g
1 tt
=

0,
(f

2 tt
−

g)
g
2
−
f
2
g
2 tt
=

0,

H
1
(g

1
)
+
H

2
(g

2
)
+
H

0
(g

0
)

f
1
g
2
−
f
2
g
1
=

0,
g
2
,
g
0
6≡

0

16
λ
X

2
+
X

3
+
H

1
(f

1
)
+
H

2
(f

2
),
H

1
(g

1
)
+
H

2
(g

2
)

f
1 tt
g
1
−
f
1
g
1 tt
+
f
2 tt
g
2
−
f
2
g
2 tt
−

gg
2
=

0

17
X

2
+
H

0
(f

0
),
X

3
+
H

1
(g

1
)
+
H

2
(g

2
)

f
0
6≡

0

18
X

2
+
H

1
(f

1
),
X

3
+
H

0
(g

0
)

f
1 tt
g
0
−
f
1
g
0 tt
6≡

0

19
X

2
+
H

1
(f

1
)
+
H

2
(f

2
),

f
1 tt
g
1
−
f
1
g
1 tt
=

0,
f
2 tt
g
2
+
f
2
(g
−
g
2 tt
)
=

0,

X
3
+
H

1
(g

1
)
+
H

2
(g

2
)
+
H

0
(g

0
)

f
1
g
2
−
f
2
g
1
=

0,
f
2
,
g
0
6≡

0

20
X

2
+
H

1
(f

1
)
+
H

2
(f

2
),
X

3
+
H

1
(g

1
)
+
H

2
(g

2
)

f
1 tt
g
1
−
f
1
g
1 tt
+
f
2 tt
g
2
−
f
2
g
2 tt
+

gf
2
=

0
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Table 5. Finite subalgebras from the second order optimal system Θ2L

i Basis Remark

1 X1, H0(1)

2 X1, H2(1)

3 X1, H1(1) +H0(1)

4 X1, H1(1) +H2(λ) λ ≥ 0

5 X1, H0(e
±t)

6 X1, H2(e
±t)

7 X1, H1(e
±t) +H2(λe

±t) λ ≥ 0

8 X1 +X2, H0(1)

9 X1 +X2, H1(1) +H0(λ) λ ≥ 0

10 X1 +X2, H1(λ) +H2(1) λ ≥ 0

11 X1 + λX2, H0(e
±t) λ > 0

12 X1 + λX2, H2(e
±t) λ > 0

13 X1 + λX2, H1(e
±t) +H2(µe

±t) λ > 0, µ ≥ 0

14 X1 + λX2 +X3, H1(1) +H0(µ) µ ≥ 0

15 X1 + λX2 +X3, H1(µ) +H2(1) +H0(ρ0gt) µ ≥ 0

16 X1 + λX2 + µX3, H0(e
±t) µ > 0

17 X1 + λX2 + µX3, H1(e
±t) µ > 0

18 X1 + λX2 + µX3, µ > 0, σ ≥ 0

H1(σe
±t) +H2(e

±t) +H0(µρ0gte
±t)

19 X4, H0(t
γ) γ 6= −1

20 X4, H2(t
γ) γ 6= 1/2

21 X4, H1(t
γ) +H2(λt

γ) γ 6= 1/2, λ ≥ 0

22 X4, H0(1/t)

23 X4, H2(
√
t) +H0(λ/t) λ ≥ 0

24 X4, H1(
√
t) +H2(µ

√
t) +H0(λ/t) λ ≥ 0, µ ≥ 0

25 X1, X2

26 X1, X2 +H0(1)

27 X1, X2 +H1(1) +H0(λ) λ ≥ 0

28 X1, X2 +H1(λ)±H2(1) λ ≥ 0

29 X1, λX2 +X3

30 X1, λX2 +X3 ±H2(1)
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Table 5. Continue

i Basis Remark

31 X1, λX2 +X3 +H1(1) +H2(µ)

32 X1 +X2, λX1 +X3 +H1(µ) +H2(σ) µ ≥ 0

33 X1 +X3, X2 +H1(λ) +H0(µ) λ ≥ 0

34 X1 +X3, X2 +H1(λ) +H2(µ) +H0(µρ0gt) λ ≥ 0, µ 6= 0

35 X1, X4

36 X2 +H0(λ
√
t), X4 λ > 0

37 X2 +H1(λt
2) +H2(µt

2), X4 λ ≥ 0

38 λX2 +X3 +H2(
4
9gt

2) +H0(µ
√
t), X4 µ > 0

39 λX2 +X3 +H1(µt
2) +H2(σt

2), X4 µ ≥ 0

Table 6. Optimal system of subalgebras Θ1L

i Basis Remark

1 X1

2 X1 +X2

3 X1 + λX2 +X3

4 X4

5 H0(f
0) f0 6≡ 0

6 X2 +H0(f
0) f0 6≡ 0

7 H1(f
1) +H2(f

2)

8 X2 +H1(f
1) +H2(f

2)

9 λX2+X3+H1(f
1)+H2(f

2)
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Discrete Symmetries
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The full automorphism group of the Lie algebra associated to the Black–Scholes
equation is computed and all the discrete symmetries of the equation are de-
termined.

1 Introduction

Discrete symmetries of (partial) differential equations can be used in many ways.
They map solutions to (possibly new) solutions. They may be used to create
efficient numerical methods for the computation of solutions to boundary-value
problems. Discrete and continuous groups of symmetries determine the nature
of bifurcations in nonlinear dynamical systems. Equivariant bifurcation theory
describes the effects of symmetries, but it may yield misleading results unless all

the generators of the point symmetries, discrete and continuous, of the dynamical
systems are known [2].

In general it is straightforward to find all one-parameter Lie groups of sym-
metries of a given system using techniques developed by Sophus Lie more than
a century ago [5]. Yet until recently no method for finding all discrete symmetries
was known. The main difficulty is that the determining equations for discrete
symmetries typically form a highly-coupled nonlinear system.

A new approach to the problem of finding discrete point symmetries of a partial
differential equation has recently been described by Hydon ( [3,4]). The technique
is based on the observation that every point symmetry yields an automorphism
of the Lie algebra of Lie point symmetry generators. This results in a set of
auxiliary equations that are satisfied by all point symmetries. These equations
can be considerably simplified by factoring out the inner automorphisms of the Lie
algebra. After that they can be solved by standard methods and their solutions
are precisely the discrete symmetries we are looking for.

The present paper applies the whole procedure to the famous Black–Scholes
partial differential equation (1). Unlike in Hydon [4] the full automorphism group
of the Lie algebra is determined using purely algebraic techniques, such as con-
struction of generators’ centralizers and Lie algebra’s radical. The final results
are the description of the outer automorphism group, respectively, of the discrete
symmetry group associated to Black–Scholes PDE.
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2 Lie Symmetries of the Black–Scholes Equation

Consider the partial differential equation

ut +
1

2
A2x2uxx +Bxux − Cu = 0, (1)

where A,B,C are constant parameters of the model1, A 6= 0, and assume that
D ≡ B −A2/2 6= 0.

The Lie (point) symmetries of equation (1) were computed by Gazizov and
Ibragimov in [1]. They found an infinite-dimensional Lie algebra of infinitesimal
symmetries generated by the following operators:

Y1 =
∂

∂t
, Y2 = x

∂

∂x
, Y3 = 2t

∂

∂t
+ (lnx+Dt)x ∂

∂x
+ 2Ctu

∂

∂u
,

Y4 = A2tx
∂

∂x
+ (lnx−Dt)u ∂

∂u
,

Y5 = 2A2t2
∂

∂t
+ 2A2tx lnx

∂

∂x
+ [(lnx−Dt)2 + 2A2Ct2 −A2t]u

∂

∂u
,

Y6 = u
∂

∂u
, Yα = α(t, x)

∂

∂u
,

where α(·, ·) is an arbitrary solution of equation (1).
Consider the finite dimensional Lie algebra L generated by the first six oper-

ators. In order to simplify the computations, we change the set of generators of
the Lie algebra as follows:

X1 =
1

A2
(Y1 +DY2 + CY6), X2 = Y2, X3 = Y3 −

1

2
Y6, X4 = Y4,

X5 =
1

2
Y5, X6 = Y6.

Their commutator table becomes

X1 X2 X3 X4 X5 X6

X1 0 0 2X1 X2 X3 0

X2 0 0 X2 X6 X4 0

X3 −2X1 −X2 0 X4 2X5 0

X4 −X2 −X6 −X4 0 0 0

X5 −X3 −X4 −2X5 0 0 0

X6 0 0 0 0 0 0

3 Structure of the Lie Algebra

3.1 Centralizer Structure

It is known that for every operator X ∈ L its associated adjoint action

L 3 Y 7→ adX(Y ) = [Y,X] ∈ L
1In the classical Black–Scholes model, A = σ, B = r − q and C = r.
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is a linear space endomorphism, its kernel being the centralizer CL(X) of X and
its image being the subspace [X,L]. As a consequence of the Fundamental Iso-
morphism Theorem we have

dim(CL(X)) = codim[X,L] ∀X ∈ L

Using the commutator table we get

[X1,L] = 〈X1, X2, X3〉, [X2,L] = [X4,L] = 〈X2, X4, X6〉,
[X3,L] = 〈X1, X2, X4, X5〉, [X5,L] = 〈X4, X5, X6〉, [X6,L] = 0.

It becomes trivial to list all the centralizers of the generators of the Lie algebra

CL(X1) = CL(X2) = 〈X1, X2, X6〉, CL(X3) = 〈X3, X6〉,
CL(X4) = CL(X5) = 〈X4, X5, X6〉, CL(X6) = L

and its center

Z(L) =
6⋂

i=1

CL(Xi) = 〈X6〉.

3.2 Radical

All results and notation in this section are based on Ovsiannikov [6].
The Lie algebra L can be written as a direct sum

L = R
⊕
N , R = 〈X2, X4, X6〉, N = 〈X1, X3, X5〉.

R is a solvable ideal of the Lie algebra, its derived series being

R = 〈X2, X4, X6〉 ⊃ R(1) = 〈X6〉 ⊃ R(2) = {0}.

On the other hand N is a nonsolvable subalgebra, its derived series being sta-
tionary. By Lemma 1 p. 177 in [6] N is semisimple. By the Structural Theorem
p. 186 in [6] it is a simple Lie algebra. We conclude that R is the radical of L
and N is a corresponding Levi factor ( [6], p. 178).

3.3 Adjoint Action and Inner Automorphisms

The adjoint action of the one-parameter group generated by Xi is defined as
follows:

ad(Xi) : L → L, ad(Xi)X = [X,Xi] ∀X ∈ L, i = 1, 2, . . . , 6.

For every λ ∈ R and i ∈ {1, 2, . . . , 6} the exponential map

exp(λ ad(Xi)) : L → L
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is an inner automorphism of the Lie algebra and all inner automorphisms in-
duced by X1, X2, . . . , X6 generate the inner automorphism group Inn(L). Their
action Xij(λ) = exp(λad(Xi))Xj on the Lie algebra generators can be described
as follows: Xij(λ) = Xj for all i, j ∈ {1, 2, . . . , 6}, with the following exceptions:

X13(λ) = X3 − 2λX1, X14(λ) = X4 − λX2, X15(λ) = X5 − λX3 + λ2X1,

X23(λ) = X3 − λX2, X24(λ) = X4 − λX6, X25(λ) = X5 − λX4 +
λ2

2
X6,

X31(λ) = e2λX1, X32(λ) = eλX2, X34(λ) = e−λX4, X35(λ) = e−2λX5,

X41(λ) = X1 + λX2 +
λ2

2
X6, X42(λ) = X2 + λX6, X43(λ) = X3 + λX4,

X51(λ) = X1 + λX3 + λ2X5, X52(λ) = X2 + λX4, X53(λ) = X3 + 2λX5.

Remark 1. Let α be an inner automorphism of L. Then α(X6) = X6. Moreover
the i-th coordinate of α(Xi) is positive for any i ∈ {1, 2, 3, 4, 5}.

3.4 The Full Automorphism Group

We find all the automorphisms of the Lie algebra L that are pairwise nonequivalent
with respect to the inner automorphism group.

Let θ : L → L such an automorphism. Then it has to preserve the center
Z(L). Hence there exists a nonzero number ∆ such that θ(X6) = ∆X6. Denote
δ =

√
|∆| and ε = sgn(∆) so that θ(X6) = εδ2. Any automorphism must preserve

the radical R. Hence

θ(X2) = b22X2 + b24X4 + b26X6, θ(X4) = b42X2 + b44X4 + b46X6,

where the coefficients are such that

b22b44 − b24b42 = εδ2.

If we premultiply η by exp(λad(X1)), the resulting automorphism θ̄ satisfies

θ̄(X2) = (b22 − λb24)X2 + b24X4 + b26X6,

θ̄(X4) = (b42 − λb44)X2 + b44X4 + b46X6.

Case 1. b44 6= 0. We choose λ = b42/b44. Then we premultiply θ̄ by exp(λ ad(X3)),
where λ = log(|b44|/δ). The resulting automorphism satisfies

θ̃(X2) = εε′δX2 +
b24δ

|b44|
X4 + b26X6,

θ̃(X4) = ε′δX4 + b46X6,

where ε′ = sgn(b44). Next we can remove the coefficients b24, b26 and b46 by
premultiplying θ̃ by appropriate inner automorphisms induced by X5, X4, X2.
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Finally we get that when b44 6= 0, the automorphism θ is equivalent to an auto-
morphism ϕ that satisfies:

ϕ(X2) = εε′δX2, ϕ(X4) = ε′δX4.

Automorphism ϕ has to preserve the centralizer structure, that is,

〈ϕ(X1), ϕ(X2), ϕ(X6)〉 = ϕ(CL(X2)) = CL(X2) = CL(ϕ(X2)) = 〈X1, X2, X6〉,
〈ϕ(X4), ϕ(X5), ϕ(X6)〉 = ϕ(CL(X4)) = CL(ϕ(X4)) = CL(X4) = 〈X4, X5, X6〉.

Hence it satisfies

ϕ(X1) = b11X1 + b12X2 + b16X6,

ϕ(X5) = b54X4 + b55X5 + b56X6,

ϕ(X3) = ϕ([X1, X5]) = b11b54X2 + b11b55X3 + b12b55X4 + b12b54X6.

Equations [X1, X4] = X2, [X2, X5] = X4, [X1, X3] = 2X1, [X3, X5] = 2X5 give
b12 = b54 = b16 = b56 = 0 and b11 = b55 = ε. Automorphism ϕ gets a simple form:

X X1 X2 X3 X4 X5 X6

ϕ(X) εX1 εε′δX2 X3 ε′δX4 εX5 εδ2X6

Case 2. b44 = 0. As in the previous case we can prove that automorphism θ
is equivalent to an automorphism ψ that satisfies:

X X1 X2 X3 X4 X5 X6

ψ(X) εX5 −εε′δX4 −X3 ε′δX2 εX1 εδ2X6

where ε′ = sgn(b42). The set G = {ϕεε′(δ), ψεε′(δ)| ε, ε′ ∈ {−1, 1}, δ > 0} of the au-
tomorphisms constructed above possesses the property that any automorphism of
the Lie algebra L is equivalent, modulo Inn(L), to one element of G. Moreover Re-
mark 1 shows that the automorphisms in G are pairwise not equivalent. Therefore
G represents a complete set of representatives of Aut(L) modulo Inn(L).

We observe that (G, ◦) is a group itself, its multiplication table being:

◦ ϕ++(ρ) ϕ+−(ρ) ϕ−+(ρ) ϕ−−(ρ) ψ++(ρ) ψ+−(ρ) ψ−+(ρ) ψ−−(ρ)

ϕ++(σ) ϕ++(δ) ϕ+−(δ) ϕ−+(δ) ϕ−−(δ) ψ++(δ) ψ+−(δ) ψ−+(δ) ψ−−(δ)

ϕ+−(σ) ϕ+−(δ) ϕ++(δ) ϕ−−(δ) ϕ−+(δ) ψ+−(δ) ψ++(δ) ψ−−(δ) ψ−+(δ)

ϕ−+(σ) ϕ−+(δ) ϕ−−(δ) ϕ++(δ) ϕ+−(δ) ψ−−(δ) ψ−+(δ) ψ+−(δ) ψ++(δ)

ϕ−−(σ) ϕ−−(δ) ϕ−+(δ) ϕ+−(δ) ϕ++(δ) ψ−+(δ) ψ−−(δ) ψ++(δ) ψ+−(δ)

ψ++(σ) ψ++(δ) ψ+−(δ) ψ−+(δ) ψ−−(δ) ϕ+−(δ) ϕ++(δ) ϕ−−(δ) ϕ−+(δ)

ψ+−(σ) ψ+−(δ) ψ++(δ) ψ−−(δ) ψ−+(δ) ϕ++(δ) ϕ+−(δ) ϕ−+(δ) ϕ−−(δ)

ψ−+(σ) ψ−+(δ) ψ−−(δ) ψ++(δ) ψ+−(δ) ϕ−+(δ) ϕ−−(δ) ϕ++(δ) ϕ+−(δ)

ψ−−(σ) ψ−−(δ) ψ−+(δ) ψ+−(δ) ψ++(δ) ϕ−−(δ) ϕ−+(δ) ϕ+−(δ) ϕ++(δ)
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where δ = σρ. Hence G is isomorphic to the outer automorphism group of the
Lie algebra L. Its subgroups H = {ϕεε′(1), ψεε′(1)| ε, ε′ ∈ {−1, 1}} and K =
{ϕ++(δ)| δ > 0} are respectively isomorphic to the dihedral group D8 and to the
multiplicative group of the positive numbers. Moreover G is the direct product of
its subgroups H and K. All these remarks are helping us to establish the structure
of the full automorphism group Aut (L).
Proposition 1. The outer automorphism group Out (L) is isomorphic to the
direct product D8 × (0,∞).

Corollary 1. The full automorphism group Aut (L) is an extension of the inner
automorphism group Inn (L) by a direct product D8 × (0,∞).

4 Discrete Symmetries

Let Γ be a discrete symmetry that maps the independent and dependent variables
(t, x, u) into (t̂, x̂, û). Then for any generator of the Lie algebra L

Xi = ξ0i (t, x, u)
∂

∂t
+ ξ1i (t, x, u)

∂

∂x
+ ηi(t, x, u)

∂

∂u

we have according to [4]




Xit̂ =
∑6

j=1 b
j
i ξ

0
j (t̂, x̂, û),

Xix̂ =
∑6

j=1 b
j
i ξ

1
j (t̂, x̂, û),

Xiû =
∑6

j=1 b
j
iηj(t̂, x̂, û),

for every i ∈ {1, 2, . . . , 6}. The coefficients bji are elements of the matrix B =

(bji )i,j=1,6 associated to the automorphism that maps the generating system {X̂i =
ΓXiΓ

−1| i = 1, 6} into {Xi| i = 1, 6}. If we can solve this system of 18 equations,
we get the components of the symmetry Γ, (i. e., t̂, x̂, û) as functions of t, x, u.
The usual way to do it is to solve the first subsystem of six equations, use its
solution t̂(x, t, u) to solve the second subsystem and so on.

Consider firstly that the symmetry Γ is associated to an automorphism of
the type ϕεε′(δ). Its corresponding matrix is B = diag(ε, εε′δ, 1, ε′δ, ε, εδ2). Equa-
tions 2 and 6 of the first subsystem show that t̂ depends only on t. The rest of
the subsystem gives

t̂ = εt.

Solving the second subsystem we get

x̂ = exp[Dε(1− ε′δ)t+ εε′δ log x].

Equations 1, 3 and 6 of the third subsystem are compatible only if εδ2 = 1, which
implies ε = δ = 1. Finally we get the solution

û = µu, µ 6= 0.
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Since we are interested in finding discrete symmetries that are pairwise not equiv-
alent modulo the continuous ones, one may consider µ = 1. The reason for that
is the existence of continuous symmetries that preserve the independent variables
and multiply the dependent one by any nonzero constant (see [1], p. 394). There-
fore we have found two discrete symmetries, Γ0 and Γ, the first one being the
identity and the second one having the following description:

Γ





t̂ = t,
x̂ = exp(2Dt− log x),
û = u.

We apply the same procedure to an automorphism ψεε′(δ). The corresponding
matrix is

B =




0 0 0 0 ε 0
0 0 0 ε′δ 0 0
0 0 −1 0 0 0
0 −εε′δ 0 0 0 0
ε 0 0 0 0 0
0 0 0 0 0 εδ2



.

The first subsystem gives

t̂ = −εA−4t−1

and the second one

x̂ = exp(A−2Dεε′δ −A−4Dεt−1 −A−2εε′δt−1 log x).
The last subsystem is compatible iff ε = δ = 1. In this case we get

û = ν ·
√
|t| · exp

{
− 1

2A2t

[
(log x−Dt)2 + 2A2Ct2 +

2C

A2

]}
· u,

where ν is a nonzero constant. The same argument that was used above allows us
to choose ν = A. Therefore we have found two new discrete symmetries, namely

Γ+





t̂ = −A−4t−1,
x̂ = exp(A−2D −A−4Dt−1 −A−2t−1 log x),
û = A·

√
|t|·exp

{
−1

2A
−2t−1

[
(log x−Dt)2 + 2A2Ct2 + 2A−2C

]}
·u,

Γ−





t̂ = −A−4t−1,
x̂ = exp(−A−2D −A−4Dt−1 +A−2t−1 log x),

û = A·
√
|t|·exp

{
−1

2A
−2t−1

[
(log x−Dt)2 + 2A2Ct2 − 2A−2C

]}
·u.

We observe that Γ−1+ = Γ− and that Γ2
+ = Γ2

− = Γ = Γ−1, which means that
the four discrete symmetries listed above form a cyclic group. In fact we have just
proved the following results:

Theorem 1. Black–Scholes equation’s discrete symmetry group is cyclic of or-
der 4, generated by Γ+.

Corollary 2. Any symmetry of the Black–Scholes equation is a product of the
type ΥΓk+, where Υ is a continuous symmetry and k ∈ {0, 1, 2, 3}.
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We employ the infinitesimal method for calculating invariants of families of
differential equations using equivalence groups. We apply the method to the
class of semilinear wave equations utt−uxx = f(x, u, ut, ux). We show that this
class of equations admits four functionally independent differential invariants
of second order. We employ these invariants to derive necessary and sufficient
conditions such that this class of wave equations can be mapped into the linear
wave equation utt − uxx = 0.

1 Introduction

In this paper we consider a class of nonlinear one-dimensional wave equations of
the form

utt − uxx = f(x, u, ut, ux) (1)

Wave equations have a variety of applications in the physical and biological
sciences [1, 2, 16]. For example, population dynamics, tides and waves, chemical
reactors, flame and combustion problems, theory of transonic aerodynamics etc.

The differential invariants of the Lie groups of continuous transformations play
important role in mathematical modelling, non-linear science and differential ge-
ometry. First it was noted by S. Lie [8], who showed that every invariant system
of differential equations [9], and every variational problem [10], could be directly
expressed in terms of the differential invariants. Lie also demonstrated [9], how
differential invariants can be used to integrate ordinary differential equations, and
succeeded in completely classifying all the differential invariants for all possible
finite-dimensional Lie groups of point transformations in the case of one indepen-
dent and one dependent variable. These results were generalized by Tresse [15]
and Ovsiannikov [12]. The general theory of differential invariants of Lie groups
including the notion of differential invariant of a transformation group and algo-
rithms of construction of differential invariants can be found in [11,12].
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Following the method proposed by Ibragimov [3–5] we calculate invariants of
equivalence transformations of the class (1). In [14] the invariants of equivalence
transformations of the class utt − uxx = f(u, ut, ux) were found and in [13] these
invariants were used to derive linearising mappings for this class of semilinear
wave equations.

Our paper is organized as follows. In the next section we adduce some gen-
eral results on form-preserving transformations for a generalised class of wave
equations. Equivalence transformations of the class (1) were found in Section 3.
In Section 4 we prove nonexistence of differential invariants of order zero and
one and find the basis of the second order differential invariants. An example of
application of these results to linearisation of wave equations is given in Section 5.

2 Form-Preserving Transformations
for Generalised Wave Equations

In this section we present some general results on a generalised class of wave
equations. We examine the nature of point transformations that connect equations
belonging in the class

utt = H(x, t, u, ut, u1, u2, . . . , uk, . . . , un), (2)

where uk = ∂ku/∂xk, k = 1, 2, . . . n. This class of equations include many
models of physical phenomena, especially wave-type motions. For example, the
axially symmetric wave equation utt = uxx + x−1ux, the family of equations
utt = (f(u)ux)x, certain Boussinesq-type equations and many others.

The work here is similar to the analysis that is presented in [6], where the
class (2) with Hut = 0 was considered. For the proofs of the results that follow,
the reader may refer to [6].

Theorem 1. The point transformation x′ = P (x, t, u), t′ = Q(x, t, u), u′ =
R(x, t, u) transforms

u′t′t′ = H ′(x′, t′, u′, u′t′ , u
′
1, u

′
2, . . . , u

′
k, . . . , u

′
n) into

utt = H(x, t, u, ut, u1, u2, . . . , uk, . . . , un)

where n ≥ 3 if and only if P = P (x) and Q = Q(t). Also the following identity
holds:

H ′ = Q−3t
[
QtRuH +QtRuuu

2
t + (2QtRtu −QttRu)ut +QtRtt −QttRt

]
. (3)

We note that if H ′ and H are linear in u′t′ and ut, respectively, then R is linear

in u. Furthermore if H ′
u′
t′
= Hut = 0, then R = A(x)Q

1/2
t u+B(x, t) [6].

Now we consider equations (2) with n = 2 and we present the following theo-
rem:
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Theorem 2. Point transformations x′ = P (x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u)
which transforms

u′t′t′ = H ′(x′, t′, u′, u′t′ , u
′
x′ , u

′
x′x′) into utt = H(x, t, u, ut, ux, uxx)

where H ′u′
x′x′
6= 0, belongs to one of the three categories:

(a) P , Q and H ′ restricted as in the conditions of Theorem 1;

(b) P = P (t), Q = Q(x) and the following identity holds:

H ′ = Q−3x
[
QxRuuxx +QxRuuu

2
x + (2QxRux −QxxRu)ux

+QxRxx −QxxRx] ,

where

u′t′ = Q−1x (Rx +Ruux), u
′
x′ = P−1t (Pt +Ruut),

u′x′x′ = P−3t

[
PtRuH + PtRuuu

2
t + (2PtRtu − PttRu)ut

+PtRtt − PttRt] ;

(c) no restrictions on the forms of P , Q, R and

H ′ =
(Px + Puux)(Pt + Puut)

(Qx +Quux)(Qt +Quut)
u′x′x′ +G′(x′, t′, u′, u′t′ , u

′
x′),

H =
(Pt + Puut)(Qt +Quut)

(Px + Puux)(Qx +Quux)
uxx +G(x, t, u, ux, ut).

We note that in (c) the most general point transformation applies. If there is no
dependence on ut (see [6]), then Pu = Qu = 0. Hence, the appearance of ut in the
wave equation leads to hodograph-type transformations (transformations where
one of the old independent variables depends on the new dependent variable). For
example, the hodograph-type transformation

x′ = u, t′ = x+ t, u′ = x

maps

u′t′t′ =
u′t′(u

′
t′ − 1)

(u′x′)
2

u′x′x′ into utt =
ut
ux
uxx.

The similar results of Theorems 1 and 2 corresponding to infinitesimal trans-
formations can be found in [7].
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3 Equivalence Transformations

In order to construct equivalence transformations of the class (1) one can use direct
or infinitesimal method. After restricting ourselves to studying of the connected
component of unity in equivalence group we can use the Lie infinitesimal method.
To find equivalence transformations of the class (1) in the framework of this
approach, we have to investigate Lie symmetries of the system that consists of
equation (1) and additional conditions ft = 0.

Consider a one-parameter Lie group E of local transformations in (t, x, u, f)
with an infinitesimal operator of the form

Y = ξ1∂t + ξ2∂x + η∂u + ζ1∂ut + ζ2∂ux + µ∂f .

Using the classical Lie approach we find the invariance algebra of the above
system that is the linear span of operators of the form

Y1 = ∂t, Y2 = ∂x, Y3 = t∂t + x∂x − 2f∂f − ut∂ux − ux∂ux ,
Yφ = φ∂u + (φuf + φuu(u

2
t − u2x)− 2φxuux − φxx)∂f

+ φuut∂ut + (φx + φuux)∂ux . (4)

Here and below φ = φ(x, u).
It can be proved by the direct method that equivalence group E of the class (1)

coincides with the group generated by the following transformations

t′ = c1t+ c2, x′ = εc1x+ c3, u′ = R(x, u),

f ′ = c−1(Ruf + (u2t − u2x)Ruu − 2Rxuux −Rxx). (5)

Here c1 6= 0, c2, c3 are arbitrary constants, ε = ±1 and ut, ux are transformed as
follows

u′t′ = c−11 Ruut, u′x′ = c−11 ε(Ruux +Rx).

Differential invariants of order s of the class (1) are functions of the independent
variables t, x, the dependent variable u and its derivatives ut, ux, as well as of the
function f and its derivatives of maximal order s, that are invariants with respect
to the equivalence group E .

4 Differential Invariants

We search for invariants of order zero. That is, invariants of the form

J = J(t, x, u, ut, ux, f).

We apply the invariant test Y (J) = 0 to the operators Y1, Y2, Y3 and Yφ and
using the fact that φ(x, u) is arbitrary function, we obtain J = const. Hence,
equations (1) do not admit differential invariants of order zero.
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In order to determine differential invariants of the nth order,

J = J(t, x, u, ut, ux, fx, fu, fu(1)
, . . . , fu(n)

)

we need to find the nth prolongation Y (n) of Y , considering t, x, u, u(1), . . . , u(n)
as independent variables, f and derivatives of f as dependent variables. Here and
below u(k), is the sets of all kth order partial derivatives of u, f(k) denotes the sets
of all kth order partial derivatives of f .

We note that Y
(n)
1 = Y1, Y

(n)
2 = Y2. Hence for any order of differential in-

variants Jt = 0, Jx = 0. Likewise considering Y
(n)
φ we obtain that Ju = 0. That

is below we search for invariants of the form J = J(ut, ux, fx, fu, fu(1)
, . . . , fu(n)

)
only.

The first prolongation of operators (4) has the form

Y
(1)
3 = Y3 − 3fx∂fx − 2fu∂fu − fut∂fut − fux∂fux ,
Y

(1)
φ = Yφ + [φxu(f − futut − fuxux)− φxxx − φxuu(u2t − u2x)
− 2φxxuux + fxφu − φxxfx − fuφx]∂fx + [φuuu(u

2
t − u2x)

+ φuu(f − futut − fuxux)− 2φxuuux − φxxu − fuxφxu]∂fu
+ 2φuuut∂fut − 2(φuuux + φxu)∂fux (6)

Because all derivatives of φ(x, u) can be considered as independent functions,
for searching of differential invariants of the first order

J = J(ut, ux, f, fx, fu, fut , fux)

we obtain the system of 10 linear partial first order differential equations on func-
tion J depending of 7 variables. It is not difficult to show that rank r of the
matrix of this system is equal to 7, so it admits only the trivial solution J = const
and therefore equations from class (1) do not admit differential invariants of the
first order.

The invariant test

E3 = Y
(2)
3 (J) = 0, Eφ = Y

(2)
φ (J) = 0 (7)

for finding second order differential invariants produces the system of 13 linear
partial first order differential equations of rank 13 on function J depending of 17
variables. Therefore, the set of all solutions of this system forms 4-dimensional
vector space J (2). Below we shall explain in detail how to construct a basis of J (2)

(the complete set of inequivalent second order differential invariants).
Coefficients of φuuuu, φxxxx, φxxxu, and φxxx in Eφ = 0 give Jfuu = Jfxu =

Jfxx = Jfx = 0. Hence,

J = J(ut, ux, f, fu, fut , fux , fxut , fxux , fuut , fuux , futut , futux , fuxux).
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Singling out the terms with different derivatives of φ, one can obtain from (7)
the system of linear partial first order differential equations on function J :

2fJf + 2fuJfu + fuxJfux + futJfut + fuuxJfuux + fuutJfuut
+2fxuxJfxux + 2fxutJfxut + uxJux + utJut = 0,

(u2t − u2x)Jfu − 2uxJfuux + 2utJfuut = 0,

−uxJfu − Jfuux − uxJfxux + utJfxut = 0,

Jfu + 2Jfxux = 0,

(u2t − u2x)Jf + (f − uxfux − utfut)Jfu − 2uxJfux − 2Jfuxux + 2utJfut
+2Jfutut − (uxfuxux + utfutux)Jfuux − (uxfutux + utfutut)Jfuut = 0,

−2uxJf − fuxJfu − 2Jfux − fuxuxJfuux − futuxJfuut
−(uxfuxux + utfutux)Jfxux − (uxfutux + utfutut)Jfxut = 0,

Jf + fuxuxJfxux + futuxJfxut = 0,

fJf − fuxuxJfuxux − futuxJfutux − fututJfutut − fuuxJfuux
−fuutJfuut + uxJux + utJut = 0,

−fuuxJfxux − fuutJfxut + Jux = 0. (8)

Now solving the system (8) we obtain the following second order differential
invariants

J1 =
fuxux + futut

fuxut
, (9)

J2 =
utfutut − fut
utfuxut

, (10)

J3 = [2ffuxux + 4fu − f2ux + 2utfuxfuxut − utfutfuxux
+ f2ut − utfutfutut − 2uxfuux − 2utfuut − 2fxux ]u

−2
t f−2uxut , (11)

J4 = [2ffutux + utfuxfuxux + utfuxfutut − 2utfutfutux − 2utfuux

− 2uxfuut − 2fxut ]u
−2
t f−2uxut . (12)

Equivalence transformations (4) have the following invariant equations:

fuxut = 0, (13)

fuxux + futut = 0, (14)

utfutut − fut = 0, (15)

2ffuxux + 4fu − f2ux + 2utfuxfuxut − utfutfuxux + f2ut − utfutfutut ,
−2uxfuux − 2utfuut − 2fxux = 0, (16)

2ffutux + utfuxfuxux + utfuxfutut − 2utfutfutux − 2utfuux

−2uxfuut − 2fxut = 0. (17)
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5 Linearisation Using Differential Invariants

The linear wave equation

utt − uxx = 0, (18)

that is f = 0, has no differential invariants. However the invariant equations (13)–
(17) are all satisfied when f = 0. Hence any equation of the form (1) that is
connected with the linear wave equation (18) satisfies the five invariant equa-
tions. Consequently, the solution of the system (13)–(17) will provide necessary
conditions for an equation of the form (1) to be mapped into (18).

From equations (13)–(17) we deduce that

f(x, u, ux, ut) = α(x, u)(u2t − u2x) + β(x, u)ux + γ(x, u) (19)

where

2αx + βu = 0, (20)

−4γu + 2βx + 4αγ + β2 = 0. (21)

Now if we set

α(x, u) = Au(x, u), (22)

where A(x, u) is an arbitrary function, equations (20) and (21) give

β(x, u) = −2Ax +B1(x), (23)

γ(x, u) = eAB2(x) + eA
∫ u [1

2
(B1

x − 2Axx(x, u
′))

+
1

4
(B1 − 2Ax(x, u

′))2
]
e−A(x,u

′)du′ (24)

where B1(x) and B2(x) are also arbitrary function. Hence, any equation of the
class (1) which is connected under the equivalence transformation (5) with the
linear wave equation (18) is also a member of the restricted class

utt − uxx = Au(x, u)
[
u2t − u2x

]
+ [−2Ax +B1(x)]ux + eAB2(x)

+eA
∫ u [1

2
(B1

x − 2Axx(x, u
′)) +

1

4
(B1 − 2Ax(x, u

′))2
]
e−A(x,u

′)du′ (25)

Now we apply Theorem 2 to find transformations that link members of (25)
and (18). From the form of the equivalence transformation (5) we deduce that
part (a) of Theorem 2 applies. We substitute into identity (3) P = x, Q = t
(we take without loss of generality c1 = ε = 1), R = R(x, u), H ′ = u′x′x′ and
H = uxx+ RHS of equation (25). The resulting equation leads to the form of R
and may provide restrictions on the forms of A(x, u), B1(x) and B2(x).
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Straightforward calculations show that

R(x, u) = φ(x)

∫ u

e−A(x,u
′)du′ + ψ(x),

where

φ(x) = e
∫ x 1

2
B1(x′)dx′ , ψ′′(x) = B2(x)e

∫ x 1
2
B1(x′)dx′ (26)

The above form of R satisfies (3) with no restrictions imposed on the functional
forms of H(x, u), B1(x) and B2(x). This shows that equation (25) is the most
general equation of the class (1) that can be transformed into the linear wave
equation (18). The transformation that link these two latter equations is

u 7→ φ(x)

∫ u

e−A(x,u
′)du′ + ψ(x), (27)

where φ(x) and ψ(x) are defined by equation (26). Therefore we have shown that:

Theorem 3. Invariant equations (13)–(17) provide necessary and sufficient con-
ditions for linking equations of the class (1) and the linear wave equation (18)
under the equivalence transformation admitted by (1).

6 Remarks

We have shown that the class of equations (1) has no differential invariants of
order zero and order one. We have determined four functionally independent
differential invariants of second order. These invariants were employed to derive
necessary and sufficient conditions such that class (1) can be mapped into the
linear wave equation utt − uxx = 0.

We plan to continue investigations of this subject. For the class under con-
sideration we plan to find the basis of differential invariants and operators of
invariant differentiation. Another direction for us to develop the above results to
linearize equations of the class (1). For example, to construct necessary and suffi-
cient conditions for linking equations of the class (1) and the linear wave equation
utt − uxx = u. In order to be able to derive such conditions, we need to consider
third order differential invariants for (1).

To produce higher order invariants, we need to follow the procedure as above
by considering higher order prolongations, or alternatively we can introduce the
idea of invariant differentiation. Details about invariant differentiation can be
found in [4, 12].
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A Lie group of Bäcklund transformations is constructed in the manuscript.
This Lie group is admitted by a system of partial differential equations which
obtained as a reduced system for one class of partially invariant solutions of
the Navier–Stokes equations.

1 Introduction

Group analysis is one of the methods for constructing particular exact solutions
of partial differential equations. A survey of this method can be found in [1, 2].
The first step in application of group analysis to partial differential equations
consists of finding an admitted Lie group of transformations. The transforma-
tions can be point, contact or finite order tangent transformations. The Bäcklund
theorem states that there are no nontrivial tangent transformations of finite or-
der except contact transformations. This theorem is proven under assumption
that all derivatives involved in the transformations are free: they only satisfy the
tangent conditions. On the other hand, if the derivatives appearing in a system
of partial differential equations satisfy additional relations other than the tangent
conditions, then there may exist nontrivial tangent transformations of finite order.
These transformations are called Bäcklund transformations [3].

In this manuscript we construct Lie group of Bäcklund transformations for
a system of partial differential equations which arises from the study of partially
invariant solutions of the Navier–Stokes equations.

Recall that the construction of partially invariant solutions consists of choos-
ing a subgroup of the admitted group, finding a representation of a solution,
substituting the representation into the studied system of equations and studying
the compatibility of the obtained (reduced) system of equations.
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2 One Class of Partially Invariant Solutions
of the Navier–Stokes Equations

Unsteady motion of incompressible viscous fluid is governed by the Navier–Stokes
equations

ut + u · ∇u = −∇p+∆u, ∇ · u = 0, (1)

where u = (u1, u2, u3) = (u, v, w) is the velocity field, p is the fluid pressure, ∇ is
the gradient operator in the three-dimensional space x = (x1, x2, x3) = (x, y, z),
and ∆ is the Laplacian. The Lie group admitted by the Navier–Stokes equations
is infinite [4]. Its Lie algebra L can be presented in the form of a direct sum L =
L∞ ⊕ L5, where the infinite-dimensional ideal L∞ is generated by the operators

Xφi = φi(t)∂xi + φ′i(t)∂ui − φ′′i (t)xi∂p , Xψ = ψ(t)∂p

with arbitrary functions φi(t), (i = 1, 2, 3) and ψ(t). The subalgebra L5 has the
following basis:

Y = 2t∂t + xi∂xi − ui∂ui − 2p∂p, Z0 = ∂t,

Zik = xi∂xk − xk∂xi + ui∂uk − uk∂ui, i < k ≤ 3.

There is no complete classification of all subalgebras of the algebra L yet. However,
attempts for classification of infinite dimensional algebras were considered in [5,6].
In this manuscript we study solutions constructed on the basis of the Lie group
corresponding the subalgebra

{X2, X3, X5, X4 + βX6 +X10}.

where β is an arbitrary constant and

X2 = ∂y, X3 = ∂z, X4 = t∂x + ∂u, X5 = t∂y + ∂v,

X6 = t∂z + ∂w, X10 = ∂t.

This subgroup is taken from the optimal system of admitted subalgebras con-
structed for the gas dynamic equations [7]. Partially invariant solutions of the gas
dynamic equations for these groups were considered in [8].

Invariants of the Lie group G4 are

u− t, w − βt, p, x− t2/2.

The rank of the Jacobi matrix of the invariants with respect to the dependent
variables is equal to three. Since this rank is less than the number of the dependent
variables, there are no nonsingular invariant solutions that are invariant with
respect to this group. A minimally possible defect of a partially invariant solution
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with respect this group is equal to one. In this case a representation of a regular
partially invariant solution is

u = U(s) + t, w =W (s) + βt, p = P (s), s = x− t2/2,
while the function v = v(t, x, y, z) still depends on all independent variables.
Substituting this representation of a solution into the Navier–Stokes equations,
one obtains

U ′′ − UU ′ − P ′ − 1 = 0, (2)

vt + (U + t)vx + vvy + (W + βt)vz − (vxx + vyy + vzz) = 0, (3)

W ′′ − UW ′ − β = 0, (4)

U ′ + vy = 0. (5)

Integrating equations (2) and (5), one has

P = U ′ − 1

2
U2 − s+ C1, v = −U ′y + V (t, s, z).

Substituting v into equation (3), one arrives at the equation

Vt + UVs − V U ′ + (W + βt)Vz − Vss + Vzz + y(U ′′′ − UU ′′ + U ′2) = 0.

Since U , V and W do not depend on y, the last equation can be split with respect
to y:

U ′′′ − UU ′′ + U ′2 = 0,

Vt + UVs − V U ′ + (W + βt)Vz − Vss + Vzz = 0.

Thus the studied partially invariant solution of the Navier–Stokes equations is

u = U(s) + t, v = −U ′ + V (t, s, z), w =W (s) + βt,

p = U ′ − 1

2
U2 − s+ C1,

where s = x− t2/2 and the function U(s), W (s) and V (t, s, z) satisfy the reduced
system

U ′′′ − UU ′′ + U ′2 = 0,

W ′′ − UW ′ − β = 0, (6)

Vt + UVs − V U ′ + (W + βt)Vz − Vss + Vzz = 0.

3 Lie Groups of Bäcklund Transformations

The notion of a Lie group of point transformations has been generalized to involve
derivatives in the transformation1. Assume that the transformations

xk = fk(x, u, p; a), uj = φj(x, u, p; a), pjα = ψjα(x, u, p; a), (7)

k = 1, 2, . . . , n; j = 1, 2, . . . ,m; |α| ≤ q
1For details one can see [3, 9].
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form a one parameter Lie group G1, where the functions fk, φ
j and ψjα depend

on the independent variables x, the dependent variables u, and the derivatives
pkβ , (k = 1, 2, . . . ,m; |β| ≤ q) of order up to q. The infinitesimal generator of the

group G1 is given by the vector field (ξ, η, ζ)

X = ξk∂xk + ηj∂uj + ζjα∂pjα ,

where

ξk =
dfk
da

∣∣∣
a=0

, ηj =
dφj

da

∣∣∣
a=0

, ζjα =
dψjα
da

∣∣∣
a=0

,

(k = 1, 2, . . . , n; j = 1, 2, . . . ,m; |α| ≤ q).

The coefficients of the infinitesimal generator for the derivatives of any order
higher than q are defined by the recurrent prolongation formulae

ζjα,i = Diζ
j
α−pjα,kDi, |α| = q, q + 1, . . . .

Here Di is the operator of the total derivative with respect to xi.
The infinitesimal generatorX is prolonged for the differentials duj , dxi and dp

j
α:

X̃ = X + ξ̃i ∂dxi + η̃k∂duk + ζ̃jα ∂dpjα

by the usual formulae for the differentials

ξ̃i = dξi =
∂ξi

∂xl
dxl +

∂ξi

∂us
dus +

∂ξi

∂psβ
dpsβ,

η̃k = dηk =
∂ηk

∂xl
dxl +

∂ηk

∂us
dus +

∂ηk

∂psβ
dpsβ , (8)

ζ̃jα = dζjα =
∂ζjα
∂xl

dxl +
∂ζjα
∂us

dus +
∂ζjα
∂psβ

dpsβ.

The transformations (7) are called tangent transformations if the tangent condi-
tions

duj − pjidxi = 0, dpjα − pjα,kdxk = 0, (9)

are invariant with respect to them. Tangent transformations of finite order are also
called Bäcklund transformations. Hence, a Lie group of tangent transformations
has to satisfy the determining equations

(
η̃j − ζ̃ji dxi − p

j
i ξ̃
i
)∣∣∣

(9)
= 0,

(
ζ̃jα − ζ̃jα,kdxk − p

j
α,k ξ̃

k
)∣∣∣

(9)
= 0. (10)

The Bäcklund theorem [3] states that any tangent transformation is a prolongation
of a Lie group of either contact transformations or point transformations. The first
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case is only possible for m = 1. Notice that the Bäcklund theorem was proven
under the assumption that all derivatives only satisfy the tangent conditions.

A Lie group of tangent transformations with generator X is called admitted
by a system of partial differential equations

(S) F (x, u, p) = 0

if the coefficients of the infinitesimal generator satisfy the determining equations

XF |(S) = 0. (11)

Invariance of tangent conditions for the admitted Lie group of tangent transfor-
mations becomes

(
η̃j − ζ̃ji dxi− p

j
i ξ̃
i
)∣∣∣

(9), (S)
= 0,

(
ζ̃jα − ζ̃jα,kdxk− p

j
α,k ξ̃

k
)∣∣∣

(9), (S)
= 0. (12)

In contrast to the Bäcklund theorem, admitted tangent transformations involve
additional relations for the derivatives occurring in (S). This allows for the ex-
istence of Bäcklund transformations, namely tangent transformations of finite
order.

For example, direct calculations show that the Lie group of transformations
corresponding to the generators

Y1 = U ′∂V , Y2 = (tU ′ + 1)∂V , Y3 = (βt+W + zU ′)∂V (13)

is admitted by the system of equations (6). The corresponding transformations
are:

Y1 : t = t, s = s, z = z,

U = U, U
′
= U ′′, U

′′
= UU ′′ − (U ′)2,

W =W, W
′
=W ′, W

′′
=W ′′,

V = V + aU ′, V t = Vt, V z = Vz, V zz = Vzz,

V s = Vs + aU ′′, V ss = Vss + a(UU ′′ − (U ′)2),

Y2 : t = t, s = s, z = z,

U = U, U
′
= U ′′, U

′′
= UU ′′ − (U ′)2,

W =W, W
′
=W ′, W

′′
=W ′′,

V = V + a(tU ′ + 1), V t = Vt + aU ′, V z = Vz, V zz = Vzz,

V s = Vs + atU ′′, V ss = Vss + at(UU ′′ − (U ′)2),
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Y3 : t = t, s = s, z = z,

U = U, U
′
= U ′′, U

′′
= UU ′′ − (U ′)2,

W =W, W
′
=W ′, W

′′
=W ′′,

V = V + a(βt+W + zU ′), V t = Vt + aβ,

V z = Vz + aU ′, V zz = Vzz,

V s = Vs + aW ′ + azU ′′, V ss = Vss + aW ′′ + az(UU ′′ − (U ′)2).

The Lie groups of transformations (13) were originally found by seeking an ad-
mitted Lie group of point transformations for the equivalent system

Ũ ′′ − UŨ ′ + Ũ2 = 0,

W ′′ − UW ′ − β = 0, (14)

Vt + UVs − V Ũ + (W + βt)Vz − Vss + Vzz = 0,

Ũ = U ′.

For system (14) the dependent variables are

u1 = U, u2 = V, u3 =W, u4 = U ′.

The basis of the Lie algebra corresponding to the Lie group of point transforma-
tions admitted by system (14) is

X1 = ∂s, X2 = ∂z, X3 = V ∂V , X4 = ∂t + βt∂z, X5 = t∂z + ∂W ,

X6 = Ũ ′∂V , X7 = (tŨ ′ + 1)∂V , X8 = (βt+W + zŨ ′)∂V .

The generators X6, X7, X8 correspond to the operators Y1, Y2, Y3, respectively.
Notice that if one looks for an admitted group by considering the dependent
variables

u1 = U, u2 = V, u3 =W, u4 = U ′,

u5 =W ′, u6 = Vt, u7 = Vs, u8 = Vy,

then one obtains the following admitted generators

X1 = ∂s, X2 = ∂z, X3 = V ∂V + Vt∂Vt + Vs∂Vs + Vz∂Vz ,

X4 = t∂z + ∂W − Vz∂Vt , X5 = ∂t − βt∂w.

Note that Y1, Y2, and Y3 are no longer among these generators.
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In this paper we present new higher-dimensional equations with variable co-
efficients which are derived from the Burgers and KdV equations by applying
the Painlevé test.

1 Introduction

Modern theories of nonlinear science have been highly developed over the last half
century. Particularly, integrable nonlinear systems have attracted great interests
of a number of mathematicians and physicists. One of such attentions is the alge-
braic solvability of integrable nonlinear partial differential equations. In addition
to their theoretical importance, they have remarkable applications to many phys-
ical systems that are thought of as perturbations of integrable systems such as
hydrodynamics, nonlinear optics, plasma and certain field theories and so on [1].
On the other hand the definition of the infinite dimensional integrable systems [2]
is still not unified precisely but rather is characterized generally by various inter-
related common features including the space-localized solutions (solitons), Lax
pairs, Bäcklund transformations and some Painlevé properties [3,4]. Finding new
integrable systems is very important, but it is a difficult problem because of their
ambiguous properties of integrable systems and the undeveloped mathematical
backgrounds.

For the discovery of new integrable systems, many researchers have mainly in-
vestigated autonomous and lower-dimensional nonlinear systems [5–12]. Thus
many autonomous (1 + 1)-dimensional integrable nonlinear partial differential
equations have been found. On the other hand, there are few studies to find
integrable nonlinear partial differential equations with variable coefficients, since
they are essentially complicated and their theory is still in its early stages. In
physical systems, however, integrable nonlinear equations with variable coeffi-
cients are one of the exciting subjects in integrable systems [13–15]. Analysis of
higher-dimensional equations is also an active topic in the theory of integrable
systems. Since then, the study of higher dimensions has attracted much more at-
tention. Higher-dimensional generalizations of integrable systems are not usually
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unique, in the sense that there exist several equations that reduce to an original
one under dimensional reductions. So our goal in this paper is to extend inte-
grable equations with variable coefficients to higher-dimensions by applying the
Painlevé test.

2 Investigation of Equations with Variable Coefficients
in (2 + 1) Dimensions

In this section, we first give a brief review of both of the Painlevé property and of
the Painlevé test. Next we will present higher-dimensional equations with variable
coefficients of the Burgers and KdV equations by using Painlevé test. It is widely
known that the Painlevé test, in the sense of Weiss–Tabor–Carnevale (WTC)
method [3, 4], is a powerful tool for investigating integrable equations.

2.1 Weiss–Tabor–Carnevale’s Method of the Painlevé Test

Weiss et. al. [3] said that a partial differential equation (PDE) has the Painlevé
property when the solutions of the PDE are single-valued about the movable
singularity manifold. They have proposed a technique which determine whether
or not a given system is integrable, that we call WTC’s method.

When the singularity manifold is determined by

φ(z1, · · · , zn) = 0, (1)

and u = u(z1, · · · , zn) is a solution of the given PDE, then we assume that

u = φα
∞∑

j=0

ujφ
j , (2)

where φ = φ(z1, · · · , zn), uj = uj(z1, · · · , zn), j = 0, 1, 2, · · · , u0 6= 0 are analytic
functions of zj in a neighborhood of the manifold (1) and α is a negative integer
(so-called the leading order). Substitution of (2) into the PDE determines the
value of α and defines the recursion relations for uj . When the ansatz (2) is
correct, the PDE possesses the Painlevé property and it is conjectured to be
integrable.

2.2 Burgers Equation with Variable Coefficients
in (2 + 1) Dimensions

Consider the following equation:

ut + a(x, z, t)u+ b(x, z, t)ux + c(x, z, t)uz + d(x, z, t)uuz

+e(x, z, t)ux∂
−1
x uz + f(x, z, t)uxz + g(x, z, t) = 0, (3)
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where d(x, z, t)+e(x, z, t) 6= 0, f(x, z, t) 6= 0 and the subscripts with respect to the
independent variables denote partial derivatives, for example, ux = ∂u/∂x, uxz =
∂2u/(∂x∂z) etc, and ∂−1x u :=

∫ x
u(s)ds. Here a(x, z, t), b(x, z, t), . . . , g(x, z, t)

are functions of two spatial variables x, z and one temporal variable t. If we
choose a(x, z, t) = b(x, z, t) = c(x, z, t) = g(x, z, t) = 0 and d(x, z, t) = e(x, z, t) =
f(x, z, t) = 1, equation (3) is reduced to a (2 + 1)-dimensional Burgers equation:

ut + uuz + ux∂
−1
x uz + uxz = 0, (4)

which, by setting ∂/∂z = ∂/∂x, reads the (ordinary) Burgers equation which is
widely-known to be linearisable or integrable.

Here our main goal is to find new integrable equations. We apply the Painlevé
test to equation (3) and determine the coefficients by conditions from the Painlevé
test. The Painlevé test for equation (3) requires an elimination of the non-local
term. Through operations of division and differentiation, equation (3) is trans-
formed to

(eax − aex)uux + (ecx − cex)uxuz + (edx − dex)uuxuz
+(egx − gex)ux + e(d+ e)u2xuz + (ae+ ebx − bex)u2x − exutux
+euxuxt + deuuxuxz + (ce+ efx − fex)uxuxz − eguxx − aeuuxx
−eutuxx − ceuxxuz − deuuxxuz − efuxxuxz + efuxuxxz = 0, (5)

where a, b, c, d, e, f and g denote a(x, z, t), b(x, z, t), c(x, z, t), d(x, z, t), e(x, z, t),
f(x, z, t) and g(x, z, t) respectively. We assume the following singularity manifold
expansion with φ = φ(x, z, t) for u = u(x, z, t):

u = φα
∞∑

j=0

ujφ
j , (6)

where φ and the coefficients uj are analytic functions of the independent variables
x, z, t, and φ(x, z, t) = 0 defines the singularity manifold. By a leading order
analysis, substituting

u = φαu0, (7)

into equation (5), we obtain α = −1 and u0 6= 0. By the substitution of expansion
(7) with α = −1 into equation (5), the recursion relations for the uj are presented
as follows

(j − 1)(j − 2)(j + 1)e(x, z, t)f(x, z, t)2φ4xφzuj

= F (uj−1, · · · , u0, φt, φx, φz, . . .), (8)

where the explicit dependence on t, x, z of the right-hand side comes from that of
the coefficients. It is found that the resonances occur at

j = −1, 1, 2. (9)
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Let us note here that the leading order and resonances are the same result as for
the (2 + 1)-dimensional Burgers equation (4). From recurrence relations, we find

j = 0 : u0 =
2f

d+ e
φx, (10)

j = 1 :
8e2f2z

{d+ e}4×
[
{fz(d+ e)− f(dz + ez)}φ5x

− {fx(d+ e)− f(dx + ex)}φ4xφx
]
= 0, (11)

j = 2 :
1

(d+ e)5

[
4ef3(d− e)(d+ e)2{φ2xφxxφxz + φ2xφxxxφz − φ2xxφxφz

− φ3xφxxz} + · · ·+ f(u1(dz + ez) + 3bx − 2fxz)
)
}
]
φ4x

]
= 0, (12)

in lower orders. Now we look into cases to pass the Painlevé test. We take into
account only the following cases

1. e = 0, f 6= 0,

2. e 6= 0, f 6= 0, d = d(t), e = e(t), f = f(t),

3. e 6= 0, f 6= 0, f = (d+ e) exph(t),

where h(t) is a constant of integration with respect to x and z. It is easily checked
that Case 1 is not determined the leading order and the resonances. And it is
easy to see that Case 2 is a special case of Case 3. Now we discuss the following
form of equation in the Case 3:

ut + a(x, z, t)u+ b(x, z, t)ux + c(x, z, t)uz + d(x, z, t)uuz

+e(x, z, t)ux∂
−1
x uz + exp{h(t)}{d(x, z, t) + e(x, z, t)}uxz

+g(x, z, t) = 0. (13)

Substituting (6) into equation (13), we find

j = 0 : u0 = 2 exp{h(t)}φx,
j = 1 : u1 : arbitrary,

from the recurrence relations (10) and (11). For j = 2, we have

4 exp{2h(t)}(ebx − bex − ae− eh′(t))φ4x + 4 exp{2h(t)}(ecx − cex)φ3xφz
+4 exp{3h(t)}e(d− e)(φ2xφxxφxz − φ2xxφxφz − φ3xφxxz + φ2xφxxxφz)

−4 exp{2h(t)}exφ3xφt + 4 exp{3h(t)}(edx − dex)φ2xφxxφz = 0. (14)

Only when setting

a(x, z, t) = bx(x, z, t)− h′(t), c = c(z, t), d = d(z, t), e = d(z, t), (15)
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the resonance at j = 2 occurs. Here the prime of h(t) stands for differentiation
with respect to the temporal variable t. This leads to a (2+1)-dimensional Burgers
equation with variable coefficients:

ut + {bx(x, z, t)− h′(t)}u+ b(x, z, t)ux + c(z, t)uz + d(z, t)uuz

+d(z, t)ux∂
−1
x uz + 2 exp{h(t)}d(z, t)uxz + g(x, z, t) = 0. (16)

From the arbitrariness of resonance functions u1 and u2, we can set a generalized
Cole–Hopf transformation for equation (16):

u = u0φ
−1 = 2 exp

{
h(t)

}φx
φ
. (17)

In the case of g(x, z, t) = 0, by transformation (17), equation (16) is reduced to
the linear equation:

φt + b(x, z, t)φx + c(z, t)φz + 2 exp
{
h(t)

}
d(z, t)φxz = 0. (18)

Setting ∂/∂z = ∂/∂x, equation (16) is dimensionally reduced to the (1 + 1)-
dimensional Burgers equation with variable coefficients appeared in the reference
[5], which demonstrates that lower dimensional Burgers equation with variable
coefficients can be reduced to the autonomous Burgers equation.

2.3 KdV Equation with Variable Coefficients
in (2 + 1) Dimensions

We discuss the following higher-dimensional KdV type equation for u = u(x, z, t):

ut + a(x, z, t)u+ b(x, z, t)ux + c(x, z, t)uz + d(x, z, t)uuz

+e(x, z, t)ux∂
−1
x uz + f(x, z, t)uxxz + g(x, z, t) = 0. (19)

Equation (19) includes the standard higher-dimensional KdV equation [16]:

ut + uuz +
1

2
ux∂

−1
x uz +

1

4
uxxz = 0, (20)

which, by setting ∂/∂z = ∂/∂x, reads the (ordinary) KdV equation well-known to
be integrable. We determine the coefficients of equation (19) to pass the Painlevé
test. Here a potential field U = U(x, z, t) for the original u is defined as u = Ux,
since the non-local term of equation (19) should eliminate to perform the Painlevé
test. Then we are now looking for a solution of equation (19) in terms of U in the
Laurent series expansion:

U = φα
∞∑

j=0

Ujφ
j , (21)

where Uj are analytic functions of the independent variables in a neighborhood
of φ = 0. In this case, the leading order −1 and

U0 = 12f(x, z, t)φx/(d(x, z, t) + e(x, z, t))
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are given. Substituting expansion (21) with α = −1, the recursion relations for
the Uj are presented as follows:

(j − 1)(j − 4)(j − 6)(j + 1)f(x, z, t)φ3xφzUj

= F (Uj−1, · · · , U0, φt, φx, φz, · · · ), (22)

where the explicit dependence on x, z, t of the right-hand side comes from that of
the coefficients. Then, it is found that the resonances occur at j = −1, 1, 4 and
6, substituting expansion (21) with α = −1 into equation (19) in terms of U . We
are succeeded in finding two types of the higher-dimensional KdV equation with
variable coefficients. One of them is

ut +
2

3
x
{
α(z, t)− β(t) + cz(z, t)

}
ux + c(z, t)uz

+

(
d′(t)

d(t)
− f ′(t)

f(t)
+

4

3

{
α(z, t)− β(t) + cz(z, t)

})
u

+d(t)uuz +
d(t)

2
ux∂

−1
x uz + f(t)uxxz + g(z, t) = 0, (23)

and another is

ut +

(
2B1(z, t)− η′(t)

)
u+ c(z, t)uz +

{
B1(z, t)x+B2(z, t)

}
ux

+d(z, t)uuz +
d(z, t)

2
ux∂

−1
x uz +

3

2
exp{η(t)}d(z, t)uxxz + g(z, t) = 0, (24)

where α(z, t), β(t), B1(z, t), B2(z, t) and η(t) being arbitrary functions. Setting
∂/∂z = ∂/∂x, equations (23) and (24) are reduced to the (1+1)-dimensional KdV
equations with variable coefficients [5, 8, 9].

3 Conclusions

In this paper, we have presented new (1+ 1)- and (2+ 1)- dimensional integrable
nonlinear equations with variable coefficients. In section 2 we have reviewed the
Painlevé test and constructed a higher-dimensional Burgers equation with vari-
able coefficients (16). Via truncating the Laurent expansion, we have presented
a generalized Cole-Hopf transformation. And then we have also obtained higher-
dimensional KdV equations with variable coefficients (23) and (24). We presented
exact solutions, hierarchies and families of equations (16), (23) and (24) in refer-
ence [17].

Finally let us mention a special and interesting case of equation (23). Setting
the following condition of variable coefficients:

α(z, t)− β =
3

4

G′(t)

G(t)
, c = 0, d = 1, f =

1

4
, g = 0, (25)
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equation (23) becomes

ut + uuz +
1

2
ux∂

−1
x uz +

1

4
uxxz −

G′(t)

G(t)
u− xG′(t)

2G(t)
ux = 0. (26)

Equation (26) is a higher-dimensional integrable version of the general KdV
(GKdV) equation [18]:

ut +
3

2
uux +

1

4
uxxx −

G′(t)

G(t)
u− xG′(t)

2G(t)
ux = 0, (27)

by the dimensional reduction ∂/∂z = ∂/∂x. And using the Lax-pair Generating
Technique [19, 20], we obtain its Lax Pair given by

L =
1

G(t)

(
∂2x + u

)
− λ ≡ 1

G(t)
LGKdV − λ, (28)

T = ∂zLGKdV + T̃ + ∂t, (29)

which

T̃ =
1

2

(
∂−1x uz −

xG′(t)

G(t)

)
∂x −

1

4

(
uz −

G′(t)

G(t)

)
. (30)

Here λ = λ(z, t) is the spectral parameter and satisfies the non-isospectral con-
dition λt = λλz [21–23]. In reference [17] we have presented modified GKdV
and general Calogero-Degasperis-Fokas equations [24, 25] from the Lax pair (28)
and (29) using the Lax-pair Generating Technique.
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Symmetries and Group Invariant Reductions

of Integrable Partial Difference Equations

A. TONGAS, D. TSOUBELIS and V. PAPAGEORGIOU

Department of Mathematics, University of Patras, 26 500 Patras, Greece

The interplay between the symmetries of compatible discrete and continuous
integrable systems in two dimensions is investigated. Master and higher sym-
metries for certain quadrilateral lattice equations are found. The usage of
symmetries in obtaining group invariant reductions on the lattice is also dis-
cussed.

1 Introduction

The investigations of Bäcklund, in the late nineteenth century, of possible exten-
sions of Lie contact transformations led him to introduce an important class of
surface transformations in ordinary space. The intimate connection of Bäcklund
transformations with certain type nonlinear equations, which from a modern per-
spective are called integrable systems, has been the subject of intensive investi-
gations over the past century. A detailed account on Bäcklund transformations
can be found in the recent works [1, 2]. Integrable systems are also characterized
by an extremely high degree of symmetry. As a result, Lie symmetries and their
generalizations have proven to be invaluable tools for generating solutions and
obtaining classification results for this kind of systems, cf [3] and contributions in
this volume.

Due to a commutativity property, Bäcklund transformations possess the inter-
esting feature that repeated applications can be performed in a purely algebraic
fashion. This is known in classical geometry as the Bianchi permutability theo-
rem and represents a nonlinear analogue of the superposition principle for linear
homogeneous differential equations. The prototypical example is given by the
equation

(p− q) tan
(
u12 − u

4

)
= (p+ q) tan

(
u2 − u1

4

)
. (1)

It relates a solution u12 of the sine-Gordon equation

uxy = sinu , (2)

with an arbitrary seed solution u and two solutions u1 and u2 obtained from u
via the Bäcklund transformations specified by the parameters values p and q,
respectively.
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On the other hand, equation (1) may be interpreted as a partial difference
equation. This interpretation is obtained by simply identifying u1 and u2, respec-
tively, with the values attained by the dependent variable u when the discrete
independent variables n1 and n2 change by a unit step.

Recent advances in the theory of integrable systems show that discrete sys-
tems are equally important to their continuous analogues, and their study has
led to new insights into the structures behind the more familiar continuous sys-
tems. Thus, standard symmetry techniques applied to integrable discrete equa-
tions have attracted the attention of many investigators, see e.g. [4–11]. More
general symmetry approaches are being pursued starting from different philoso-
phies, see e.g. [12–18] and references therein.

In the present work, symmetries and invariant reductions of certain partial
difference equations on elementary quadrilaterals are investigated. The approach
to this problem originates in the interplay between integrable quadrilateral equa-
tions and their compatible continuous PDEs, as this has been addressed recently
in [8, 11].

2 Symmetries of Quadrilateral Equations

Central to our considerations on the discrete level are equations on quadrilaterals,
i.e. equations of the form

H(F(0,0), F(1,0), F(0,1), F(1,1); p, q) = 0 . (3)

They may be regarded as the discrete analogues of hyperbolic type partial dif-
ferential equations (PDEs) involving two independent variables. The dependent
variables (fields) are assigned on the vertices at sites (n1, n2) which vary by unit
steps only, and the continuous lattice parameters p, q ∈ C are assigned on the
edges of an elementary quadrilateral (Fig. 1). The updates of a lattice variable
F ∈ C, along a shift in the n1 and n2 direction of the lattice are denoted by
F(0,1), F(0,1) respectively, i.e.

F(1,0) = F (n1+1, n2), F(0,1) = F (n1, n2+1), F(1,1) = F (n1+1, n2+1) . (4)

A specific equation of the type (3) is given by the Bianchi lattice (1). Its linearized
version is the partial difference equation (P∆E)

(p− q)(f(1,1) − f) = (p+ q)(f(0,1) − f(1,0)) . (5)

The aim now is to find the symmetries of equation (5) and successively to find the
corresponding group invariant solutions. An indirect approach in dealing with
such a problem is to derive first a compatible set of differential-difference and
partial differential equations, by interchanging the role of the discrete variables
(n1, n2) with that of the continuous parameters (p, q). The reasoning behind this
construction is that one could set up a natural framework for the description of
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F

F(0,1) F(1,1)

F(1,0)

p

p

q q

Figure 1. An elementary quadrilateral.

f(0,1)

f(0,−1)

f f(1,0)f(−1,0)

f(1,−1)

f(1,1)

f(−1,−1)

f(−1,1)

Figure 2. A cross configuration.

the symmetry and the symmetry reduction of discrete systems, by exploiting the
notion of Lie-point symmetries and the infinitesimal methods for obtaining them,
which are well known for the continuous PDEs. We next illustrate the relevant
construction for the P∆E (5).

A particular solution of equation (5) is

f =

(
p− λ
p+ λ

)n1
(
q − λ
q + λ

)n2

, (6)

λ ∈ C. Differentiating f with respect to p, (respectively q) and rearranging terms,
we easily find that f also satisfies the differential-difference equations (D∆Es)

fp =
n1
2p

(f(−1,0) − f(1,0)) , fq =
n2
2q

(f(0,−1) − f(0,1)) , (7)

where the minus sign denotes backward shift in the direction of the corresponding
discrete variable.

By interchanging completely the role of the lattice variables n1, n2 with that
of the continuous lattice parameters p, q, the aim now is to find a PDE which
is compatible with equations (5) and (7). Using similar considerations as in [19],
we find that such a PDE is the fourth order equation obtained from the Euler-
Lagrange equation

∂pq

(
∂L

fpq

)
− ∂p

(
∂L

fp

)
− ∂q

(
∂L

fq

)
= 0 , (8)

for the variational problem associated with the Lagrangian density

L =
1

2
(p2 − q2)(fpq)2 +

2

p2 − q2 (n2fp − n1fq)(n2p
2fp − n1q2fq) . (9)

Two of the divergence symmetries of Lagrangian L are the scaling transforma-
tions

p 7→ αp , q 7→ αq , f 7→ βf , α, β ∈ C , α, β 6= 0. (10)
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Since every divergence symmetry of a variational problem is inherited as a Lie-
point symmetry by the associated Euler-Lagrange equations, the transformations
(10) are Lie-point symmetries of equations (8). They correspond to the charac-
teristic symmetry generator

XQ = Q∂f , where Q = c1(pfp + qfq) + c2 f, c1 , c2 ∈ C. (11)

In view of the compatible D∆Es (7), the characteristic Q takes the form

Q =
c1
2

(
n1(f(−1,0) − f(1,0)) + n2(f(0,−1) − f(0,1))

)
+ c2f . (12)

Equations (5), (7) and (8) form a compatible set of equations, in the sense
that they share a common set of solutions. By virtue of this fact and since the
symmetry generatorXQ given by (11) maps solutions to solutions of PDE (8), XQ,
with Q given by (12), should generate a symmetry of the discrete equation (5).
In other words, Q given by (12) should satisfy

(p− q)(Q(1,1) −Q) = (p+ q)(Q(0,1) −Q(1,0)) , (13)

for all solutions f of (5). It should be noted that Q depends on the values of f
and the four adjacent values on the lattice. Taking into account equation (5) and
its backward discrete consequences, we easily find that equation (13) holds. Thus,
Q is indeed a symmetry characteristic of equation (5).

The above considerations lead us naturally to assume that the symmetry char-
acteristic Q of a general quadrilateral equation (3) initially depends on the values
of f assigned on the points which form the cross configuration of Fig. 2. In other
words, we are led to adopt the following definition.

Let Q be a scalar function which depends on the values of F and their shifts
forming the cross configuration of Fig. 2. We denote the first prolongation of a
vector field XQ = Q∂F , by the vector field

X
(1)
Q = Q∂F +Q(−1,0) ∂F(−1,0)

+Q(0,1) ∂F(0,1)
+Q(0,−1) ∂F(0,−1)

+Q(0,1) ∂F(0,1)
. (14)

Similarly, the second prolongation of XQ is denoted by

X
(2)
Q = X

(1)
Q +Q(−1,−1)∂F(−1,−1)

+Q(−1,1)∂F(−1,1)
+Q(1,−1)∂F(1,−1)

+Q(1,1)∂F(1,1)
. (15)

We say that XQ = Q∂F is a symmetry generator of the quadrilateral equa-
tion (3), if and only if

X
(2)
Q (H) = 0 , (16)

holds, where equation (3) and its backward discrete consequences should be taken
into account.
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2.1 Symmetries of the Linearized Bianchi Lattice

The symmetries of equation (5) are determined from the functional equation (13).
Two simple solutions of the latter give the symmetry generators

X1 = (µ+ λ(−1)n1+n2 )∂f , X2 = f∂f . (17)

Symmetry characteristics corresponding to the cross configuration of Fig. 2, and
which can be found by exploiting the correspondence with the continuous PDE,
are given by the vector fields

Y1 =
(
f(1,0) − f(−1,0)

)
∂f , Y2 =

(
f(0,1) − f(0,−1)

)
∂f , (18)

Z =
(
n1(f(1,0) − f(−1,0)) + n2(f(0,1) − f(0,−1))

)
∂f . (19)

The latter serve to construct an infinite number of symmetries. This follows from
the fact that the commutator of two symmetry generators is again a symmetry
generator. Let

Q[i,0] = f(i,0) − f(−i,0) , Q[0,j] = f(0,j) − f(0,−j) i, j ∈ N , (20)

be the characteristics of the vector fields

YQ[i,0]
= Q[i,0]∂f , YQ[0,j] = Q[0,j]∂f , i, j ∈ N . (21)

By induction we find that

YQ[i−1,0]
+

1

i
[Z, YQ[i,0]

] = YQ[i+1,0]
, YQ[0,j−1]

+
1

j
[Z, YQ[0,j]

] = YQ[0,j+1]
, (22)

holds ∀ i, j ∈ N \ {0}. Repeated applications of the commutation relations (22)
produce new symmetries of equation (5), and thus the vector field Z represents
a master symmetry. The generated new symmetries correspond to extended cross
configurations.

2.2 Symmetries of the Discrete Korteweg–de Vries Equation

We next demonstrate how the above considerations can be applied equally well
to a nonlinear discrete equation, namely the discrete Korteweg–de Vries (KdV)
equation [20]

(f(1,1) − f)(f(1,0) − f(0,1)) = p− q . (23)

Recently in [22], the compatible differential-difference system

fp =
n1

f(1,0) − f(−1,0)
, fq =

n2
f(0,1) − f(0,−1)

, (24)
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was derived, along with the compatible PDE which is the Euler-Lagrange equation
for the variational problem associated with the Lagrangian density

L = (p− q)(fpq)
2

fpfq
+

1

p− q

(
(n2)

2 fp
fq

+ (n1)
2 fq
fp

)
. (25)

The importance of the above Lagrangian stems from the fact that the commuting
generalized symmetries of the associated Euler-Lagrange equation generate the
complete hierarchy of the KdV soliton equations, (cf [21] for generalizations of
the above results). Moreover, the Euler–Lagrange equation acquires a certain
physical significance, since it incorporates the hyperbolic Ernst equation for an
Einstein–Weyl field [23]. Thus, it would be interesting to find symmetries and
special solutions on the discrete level as well.

Exploiting the symmetries of the continuous PDE and the interplay between
the compatible set of differential and difference equations, we find the following
symmetries of the discrete KdV equation

X1 = ∂f , X2 = (−1)n1+n2f∂f , (26)

Y1 =
1

f(1,0) − f(−1,0)
∂f , Y2 =

1

f(0,1) − f(0,−1)
∂f , (27)

Z1 =

(
n1

f(1,0) − f(−1,0)
+

n2
f(0,1) − f(0,−1)

)
∂f , (28)

Z2 =

(
n1 p

f(1,0) − f(−1,0)
+

n2 q

f(0,1) − f(0,−1)
− 1

2
f

)
∂f , (29)

Taking the commutator of Z1 with Y1, one finds the new symmetry generator

[Z1, Y1] =
1

(f(1,0) − f(−1,0))2
(

1

f − f(2,0)
+

1

f(−2,0) − f

)
∂f (30)

and a similar relation can be found for the commutator [Z1, Y2]. Further new
symmetries are obtained by taking the commutator of Z1 with the resulting new
symmetries, which are omitted here because of their lenght.

3 Symmetry Reduction on the Lattice

Let H = 0 be a quadrilateral equation of the form (3) and XQ a symmetry
generator. In analogy with the continuous PDEs, we say that a solution of H = 0
is invariant under XQ, if it satisfies the compatible constraint Q = 0.

Let us now consider the linearized Bianchi lattice (5) and a linear combination
of the symmetries Y1 and Y2 given by equation (18). The corresponding invariant
solutions are obtained from the compatible system

(p−q)(f(1,1)−f) = (p+q)(f(0,1)−f(1,0)) , f(1,0)−f(−1,0) = c(f(0,1)−f(0,−1)). (31)
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The method for obtaining the invariant solutions on the lattice is similar to the
direct substitution method for the invariant solutions of PDEs. The aim is to
derive from the above discrete system, equations where the variables are given
in terms of only one direction of the lattice, i.e. to derive an ordinary difference
equation. To this end, we define auxiliary dependent variables

x = f(1,1) − f , a = f(1,0) − f(−1,0) , (32)

y = f(1,0) − f(0,1) , b = f(0,1) − f(0,−1) . (33)

It follows from equations (32)–(33) that

b(1,0) = x− y(0,−1) , b = x(0,−1) − y , (34)

a(0,1) = x+ y(−1,0) , a = x(−1,0) + y . (35)

Using the above relations and the system (31), we arrive at the second order linear
ordinary difference equation (O∆E) for the variable x

x(2,0) −
(
c (r − r−1)− (r + r−1)

)
x(1,0) + x = 0 , (36)

where r = (q + p)/(q − p). Equation (36) can be easily solved, giving

x = c1(n2)µ1
n1 + c2(n2)µ2

n2 , (37)

where µ1, µ2 are the two roots of the characteristic polynomial of equation (36).
In a similar manner, the arbitrary functions c1, c2 of n2 are determined from (31),
(32)–(33) and their consequences, leading finally to the invariant form of f .

We conclude this section by considering a specific symmetry reduction of the
discrete KdV (23). For the compatible symmetry constraint we choose a linear
combination of Y1 and Y2 given by (27), leading to the same symmetry constraint
as in the previous case (c̃ = 1/c). With the help of the same auxiliary variables
(32)–(33), we arrive at the following O∆E

w(1,0) =
αw + β

γ w + δ
, (38)

where w = xx(−1,0) and the parameters are given by α = −δ = r c̃, β = r2(1+ c̃),
γ = 1 − c̃ and r = p − q. Equation (38) is a discrete Riccati equation which can
be solved explicitly, by using the symmetry generator

X =
(
γw2 + (δ − α)w − β

)
∂w . (39)

It should be noted that, when c̃ = −1, the invariant solutions obtained above
correspond to the periodic reduction f(−1,1) = f(1,−1).
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4 Concluding Remarks

The main purpose of this work was to demonstrate that the notions of symmetry
and invariance on the discrete level arise naturally from the interplay between
P∆Es and PDEs that share a common set of solutions. Moreover, certain sym-
metry characteristics which admit the aforementioned cross configuration can be
used to derive invariant solutions, in exact analogy with the invariant solutions
of the continuous PDEs. In connection with the latter issue, recently in [11], a
parameter family of discrete O∆Es which are compatible with the full Painlevé VI
differential equations was derived. More recently in [19], the discrete multi-field
Boussinesq system and the compatible PDEs were investigated. It was shown
that scaling invariant solutions of the relevant PDEs are built from solutions of
higher Painlevé equations, which potentially lead to solutions in terms of new
transcendental functions. Thus, it is even more interesting to find the compatible
discrete reduced system.

Acknowledgements

The first author thanks P. Xenitidis for useful discussions. The work of A.T. was
supported by the grant Pythagoras B-365-015 of the European Social Fund (ESF),
Operational Program for Educational and Vocational Training II (EPEAEK II).

[1] R.L. Anderson and N.H. Ibragimov, Lie–Bäcklund transformations in Applications, Soc.
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crete analogues of the Painlevé II equation. Phys. Lett. A 153 (1991), 337–344.

[6] G.R.W. Quispel, R. Sahadevan, Lie symmetries and the integration of difference equations.
Phys. Lett. A 184 (1993), 64–70.

[7] R. Sahadevan, G.R.W. Quispel, Lie symmetries and linearisation of the QRT mapping.
Phys. A 234 (1997), 775–784.
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In some recent papers [1–3] we took in consideration a class of nonlinear wave
equations. In those papers, we obtained its equivalence algebra LE , first order
differential invariant and invariant equations with respect to the equivalence
group GE . Further, by means of the invariant equations and/or the differential
invariants, we found subclasses of linearizable equations. Here, we continue this
research and characterize a new subclass of equations which can be mapped by
an equivalence transformation of GE in a linear equation of the same family.

1 Introduction

In this short note, by using the results obtained in the papers [1–3], we characterize
a new subclass of the family of nonlinear wave equations

utt − uxx = f(u, ut, ux) (1)

which can be transformed by an equivalence transformation of the group GE in
a linear equation of the same class.

The equations of this type arise in different fields of mathematical physics.
They describe, for instance, the motion of vibrating strings, sound and electro-
magnetic waves. Moreover, they are used in gas dynamics, chemical technology,
to cite only a few application fields.

In the next section we recall in short the results obtained in [1, 2] which we
need in the following. In the section 3, we illustrate the method which allows us
to obtain, by using the invariant equations and/or the differential invariants, the
new subclass of family (1) which can be transformed in a linear equation.

2 Preliminary Results

In the paper [1] we considered the family of nonlinear wave equations (1) and,
by using the infinitesimal method, we found that its equivalence algebra LE is
infinite-dimensional and is spanned by the operators:

Y0 = ∂t, Y1 = ∂x, Y2 = x∂t + t∂x − ux∂ut − ut∂ux ,
Y3 = t∂t + x∂x − 2f∂f − ut∂ut − ux∂ux ,
Yϕ = ϕ∂u + [ϕ′f + ϕ′′(u2t − u2x)]∂f + ϕ′ut∂ut + ϕ′ux∂ux ,



232 R. Tracinà

where ϕ = ϕ(u) is an arbitrary function of u and prime denotes derivative with
respect to u.

Following the method proposed by Ibragimov [4, 5], by setting

λ1 ≡ (ut + ux)(fut + fux)− 2f, λ2 ≡ (ut − ux)(fut − fux)− 2f,

we showed in [2] that the class of equations (1):

• at zero order possesses the invariant equation u2t − u2x = 0, but does not
have differential invariants;

• at first order possesses two invariant equations, namely λ1 = 0, λ2 = 0 and
the following differential invariant with respect to the equivalence group GE :

λ ≡ λ2
λ1
.

3 Applications

Here we show an application in which the knowledge of the invariant equations
and/or the differential invariants can be useful for the linearization of subclasses
of equations (1).

We consider the case in which only the invariant equation

λ1 ≡ (ut + ux)(fut + fux)− 2f = 0 (2)

is satisfied.

In this case, we observe that the general form of f satisfying the invariant equation
λ1 = 0 is

f = (ut + ux)g(u, ut − ux),

with g an arbitrary function of its arguments.

So, we consider the subclass of the equations (1) of the form

utt − uxx = (ut + ux)g(u, ut − ux). (3)

Since the equation (2) is invariant with respect to GE , any equation (3) is
transformed by an equivalence transformation of the group GE into an equation
on the same subclass.

We observe that the linear equation

utt − uxx = (ut + ux)k (4)

falls in this subclass, where k is an arbitrary constant.

In the following, we suppose k 6= 0 because if k = 0 we fall in the case λ1 =
λ2 = 0 already studied in [3].
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In order to get further information about the possibility to map an equation
of the form (3) in the linear form (4), we look for the second order differential
invariants of the subclass (3).

With this aim, we consider the following change of variables:

t̄ = t, x̄ = x, ū = u, (5)

σ = ut + ux, τ = ut − ux, σg(ū, τ) = f (6)

and we write the subclass (3) in the form

ūt̄t̄ − ūx̄x̄ = σg(ū, τ). (7)

So we search for the second order differential invariants of the class (7), that is,
we search for functions of the form

J = J(t̄, x̄, ū, τ, g, gū, gτ , gūū, gūτ , . . .),

which are invariant with respect to the infinitesimal equivalence generator

Ȳ = ξ̄1∂t̄ + ξ̄2∂x̄ + η̄∂ū +Σ∂σ + T∂τ + ν∂g.

In order to obtain the new coordinates ξ̄1, ξ̄2, η̄, Σ, T , ν, taking into account
the procedure concerning with the change of variables stated in [6], we require the
invariance of the change of variables (5) and (6) with respect to the generator

Y + Ȳ ≡ ciYi + Ȳ ≡ ξ1∂t + ξ2∂x + η∂u + ζ1∂ut + ζ2∂ux + µ∂f+

+ ξ̄1∂t̄ + ξ̄2∂x̄ + η̄∂ū +Σ∂σ + T∂τ + ν∂g.

This request leads

ξ̄1 = ξ1, ξ̄2 = ξ2, η̄ = η, Σ = ζ1 + ζ2, T = ζ1 − ζ2, Σg + σν = µ.

Then, we are able to write the equivalence generator Ȳ in the form

Ȳ = (c3t̄+ c0x̄+ c1)∂t̄ + (c0t̄+ c3x̄+ c2)∂x̄ + ϕ(ū)∂ū+

+ (c0 − c3 + ϕ′)σ∂σ + (ϕ′ − c0 − c3)τ∂τ + (ϕ′′τ − c0g − c3g)∂g.

After having got Ȳ , it is a simple matter to ascertain that, as expected, the
equations (7) do not possess differential invariants of zero and first order, while
admit the following invariant differential equation of first order:

τgτ − g = 0.

We observe that for the linear equation (4) is g = k 6= 0 and τgτ − g 6= 0.
So we look for second order differential invariants of equations (7).
After having performed the invariant tests

Ȳ (2) [J(t̄, x̄, ū, τ, g, gū, gτ , gūū, gūτ , gττ )] = 0,
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where Ȳ (2) is the second prolongation of generator Ȳ , we give rise to

J = J(r1, r2)

where r1 and r2 are defined by

r1 =
τgū − τ2gūτ
(g − τgτ )2

, r2 =
τ2gττ
g − τgτ

.

For the linear equations (4) it is r1 = r2 = 0.
So an equation of the subclass (7) can be equivalent to the linear equation (4)

only if it has the same differential invariants with rwspect to GE , that is

r1 = r2 = 0. (8)

Then, after looking for the general form of the functions g, which satisfy the con-
ditions (8), we obtain

g = τh(ū) + l0,

with h an arbitrary function of ū and l0 an arbitrary constant.
Since the conditions (8) are invariant with respect to the equivalence group,

any equation of the subclass (7) of the form

ūt̄t̄ − ūx̄x̄ = σ [τh(ū) + l0] (9)

is transformed by the equivalence group into an equation of the same form.
Then by recalling the change of variables (5) and (6) we can rewrite equa-

tions (9) by using the old variables and we can affirm that the equations of
the subclass (1) which could be transformed in the linear form (4) are

utt − uxx = (ut + ux)[(ut − ux)h(u) + l0]. (10)

Conversely we will show that there exists at least an equivalence transformation
of GE mapping the equations (10) in (4). By applying to the equations (10) the
transformation

u = ψ(v),

with ψ′(v) 6= 0, we get

vtt − vxx = (vt + vx)(vt − vx)
(
ψ′h(ψ)− ψ′′

ψ′

)
+ (vt + vx)l0.

So, when ψ satisfies the ODE

ψ′h(ψ)− ψ′′

ψ′
= 0,

the equation (10) is transformed in the linear equation (4). As a result, we can
affirm:

Theorem 1. An equation belonging to the class (1) can be transformed in the lin-
ear form (4) by an equivalence transformation of GE if and only if the function f
is given by

f = (ut + ux)[(ut − ux)h(u) + l0].
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Approximate symmetries of a mathematical model describing one-dimensional
motion in a nonlinear medium with a small dissipation are studied. In a physical
application, the approximate solution is calculated making use of the approxi-
mate generator of the first-order approximate symmetry.

1 Introduction

We consider the nonlinear wave equation with a small dissipation of the form

wtt − f(wx)wxx = εwxxt, (1)

where f is a smooth function, w(t, x) is the dependent variable, ε¿ 1 is a small
parameter and subscripts denote partial derivative with respect to the independent
variables t and x.

The equation (1) can describe one-dimensional wave propagation in nonlinear
dissipative media and some mathematical questions related to (1), as the exis-
tence, uniqueness and stability of weak solutions can be found in [1], moreover
a study related to a generalized “shock structure” is showed in [2], while, for
ε = λ0 ( λ0 is the viscosity positive coefficient), a symmetry analysis is performed
in [12].

As it is well known, a small dissipation is able to prevent the breaking of the
wave profile allowing to study the so called “far field”.

A technique widely used in studying nonlinear problems is the perturbation
analysis performed by expanding the dependent variables in power series of a small
parameter (may be a physical parameter or often artificially introduced).

Combination of the Lie group theory and the perturbation analysis give rise
to the so-called approximate symmetry theories. The first paper on this sub-
ject is due to Baikov, Gazizov and Ibragimov [3]. Successively another method
for finding approximate symmetries was proposed by Fushchich and Shtelen [4].
In the method proposed by Baikov, Gazizov and Ibragimov, the Lie operator is
expanded in a perturbation series so that an approximate operator can be found.
While in the method proposed by Fushchich and Shtelen the dependent variables
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are expanded in a perturbation series; equations are separated at each order of
approximation and the approximate symmetries of the original equations are de-
fined to be the exact symmetries of the system coming out from equating to zero
the coefficients of the smallness parameter. Pakdemirli et al. in a recent paper [5]
have made a comparison of those two methods. We summarize the main results
of their analysis in the following two statements:

a) The expansion of the approximate operator assumed in the method proposed
by Baikov, Gazizov and Ibragimov, does not reflect well an approximation in
the perturbation sense; in fact, even if one uses a first order approximate operator,
the corresponding approximate solution could contain higher order terms;

b) The method proposed by Fushchich and Shtelen is consistent with the per-
turbation theory and yields correct terms for the approximate solutions but it is
impossible to work in hierarchy; in the searching of symmetries there is a cou-
pled system between the equations at several order of approximation, therefore
the algebra can increase enormously.

In this paper we follow the guide lines of the method proposed by Fushchich and
Shtelen [4] and remove the “drawback” of the impossibility to work in hierarchy.
We perform the group classification of the nonlinear function f(wx) through which
equation (1) with the small parameter ε is approximately invariant and search for
approximate solutions.

The plan of the paper is the following: the approximate symmetry method is
introduced in the next section; the group classification via approximate symme-
tries is performed in Sec.3; in Sec.4, in a physical application, the approximate
solution is calculated by means of the approximate generator of the first-order
approximate group of transformations.

2 Approximate Symmetry Method

In general, any solution of (1) will be of the form w = w(t, x, ε)and the one-
parameter Lie group of infinitesimal transformations in the (t, x, w)-space of the
equation (1), can be considered in the following form:

t̂ = t+ a ξ1(t, x, w(t, x, ε), ε) +O(a2),
x̂ = x+ a ξ2(t, x, w(t, x, ε), ε) +O(a2),
ŵ = w + a η(t, x, w(t, x, ε), ε) +O(a2),

(2)

where a is the group parameter.
Let us suppose that w(t, x, ε) and ŵ(t̂, x̂, ε), analytic in ε, can be expanded in

power series of ε, i.e.

w(t, x, ε) = w0(t, x) + εw1(t, x) +O(ε2), (3)

ŵ(t̂, x̂, ε) = ŵ0(t̂, x̂) + ε ŵ1(t̂, x̂) +O(ε2), (4)

where: w0 and w1 are some smooth functions of t and x; ŵ0 and ŵ1, are some
smooth functions of t̂ and x̂.
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Upon formal substitution of (3) in (1), equating to zero the coefficients of zero
and first degree powers of ε we arrive at the following system of PDEs

L0 := w0tt − f(w0x)w0xx = 0, (5)

L1 := w1tt − f(w0x)w1xx = g(w0x)w0xxw1x + w0xxt, (6)

where we have set

f(w0x) = f(wx) |ε=0, g(w0x) =
d f(wx)

dwx

∣∣∣
ε=0

.

Hence, w0 is a solution of the nonlinear wave equation (5) which we call unper-
turbed equation, while w1 can be determined from the linear equation (6).

In order to have an one-parameter Lie group of infinitesimal transformations
of the system (5)–(6), which is consistent with the expansions of the dependent
variables (3) and (4), we introduce these expansions in the infinitesimal transfor-
mations (2). Upon formal substitution, equating to zero the coefficients of zero
and first degree powers of ε, we get the following one-parameter Lie group of
infinitesimal transformations in the (t, x, w0, w1)-space

t̂ = t+ a ξ10(t, x, w0) +O(a2),
x̂ = x+ a ξ20(t, x, w0) +O(a2),
ŵ0 = w0 + a η0(t, x, w0) +O(a2),
ŵ1 = w1 + a [η10(t, x, w0) + η11(t, x, w0)w1] +O(a2),

(7)

where we have set

ξi0(t, x, w0) = ξi(t, x, w(t, x, ε), ε) |ε=0, i = 1, 2

η0(t, x, w0) = η(t, x, w(t, x, ε), ε) |ε=0,

η10(t, x, w0) + η11(t, x, w0)w1 =
d η

d ε

∣∣∣
ε=0

.

Similarly to Fushchich and Shtelen [4], we give the following definition:

Definition 1. We call approximate symmetries of equation (1) the (exact) sym-
metries of the system (5)–(6) through the one-parameter Lie group of infinitesimal
transformations (7).

Consequently, the one-parameter Lie group of infinitesimal transformations (7)
the associated Lie algebra and the corresponding infinitesimal operator

X = ξ1(t, x, w0)
∂

∂t
+ ξ2(t, x, w0)

∂

∂x
+ η(t, x, w0)

∂

∂w0

+ [η10(t, x, w0) + η11(t, x, w0)w1]
∂

∂w1
, (8)
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are called the approximate Lie group, the approximate Lie algebra and the ap-
proximate Lie operator of the equation (1), respectively.

Moreover, after putting

X0 = ξ10(t, x, w0)
∂

∂t
+ ξ20(t, x, w0)

∂

∂x
+ η0(t, x, w0)

∂

∂w0
, (9)

the approximate Lie operator (8) can be rewritten as

X = X0 + [η10(t, x, w0) + η11(t, x, w0)w1]
∂

∂w1
(10)

and X0 can be regarded as the infinitesimal operator of the unperturbed equa-
tion (5).

It is worthwhile noticing that, thanks to the functional dependencies of the
coordinates of the approximate Lie operator (8) (or (10)), now we are able to work
in hierarchy in finding the invariance conditions of the system (5)–(6): firstly, by
classifying the unperturbed equation (5) through the operator (9) and after by
determining η10 and η11 from the invariance condition that follows by applying
the operator (10) to the linear equation (6). In fact the invariance condition of
the system (5)–(6) reads:

X
(2)
0 (L0)

∣∣∣
L0=0

= 0, (11)

X(3)(L1)
∣∣∣
L0=0, L1=0

= 0, (12)

where X
(2)
0 and X(3) are the second and third extensions of the operators X0

and X, respectively.
Finally, the procedure outlined above is a variant of that developed by Donato

and Palumbo [7, 8] and successively by Wiltshire [9].

3 Group Classification via Approximate Symmetries

The classification of the equation (5) is well known (see for details Ibragimov [6]
and bibliography therein). From (11), we arrive at the following result:

ξ10 = a5 t
2 + a3 t+ a1, ξ20 = a4 x+ a2,

η0 = (a5 t+ a6)w0 + a7 t x+ a8 t+ a9 x+ a10,

[(a6 − a4) w0x + a9]
d f(w0x)

dw0x
− 2 (a4 − a3) f(w0x) = 0,

(a5w0x + a7)
d f(w0x)

dw0x
+ 4 a5 f(w0x) = 0,

(13)

where ai, i = 1, 2, . . . , 10 are constants.
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Taking (13) into account, from (12) we obtain the following additional condi-
tions:

a5 = a7 = 0, (14)

η10 = a11 t+ a12, η11 = a3 − 2 a4 + a6, (15)

[(a6 − a4) w0x + a9]
d g(w0x)

dw0x
+ (2 a3 − 3 a4 + a6) g(w0x) = 0, (16)

with a11 and a12 constants.
After observing that conditions (14) impose restrictions upon to X0, summa-

rizing we have to manage the following relations:

ξ10 = a3 t+ a1, ξ20 = a4 x+ a2, η0 = a6w0 + a8 t+ a9 x+ a10, (17)

η10 = a11 t+ a12, η1 = a3 − 2 a4 + a6, (18)

[(a6 − a4) w0x + a9]
d f(w0x)

dw0x
− 2 (a4 − a3) f(w0x) = 0, (19)

[(a6 − a4) w0x + a9]
d g(w0x)

dw0x
+ (2 a3 − 3 a4 + a6) g(w0x) = 0. (20)

For f an arbitrary function we obtain a6 = a4 = a3, a9 = 0, from which it follows
that g is also an arbitrary function.

We call the associate seven-dimensional Lie algebra the Approximate Principal
Lie Algebra of equation (1). It is spanned by the seven operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂w0
, X4 = t

∂

∂w0
,

X5 = t
∂

∂t
+ x

∂

∂x
+ w0

∂

∂w0
, X6 =

∂

∂w1
, X7 = t

∂

∂w1

and we denote it by ApproxLP .
Otherwise, from (19) and (20) we obtain that f and g are linked by the relation

g(w0x) =
d f(w0x)

dw0x
,

as we hoped and expected in order to be consistent with the perturbation theory.
The classification of f(w0x) and the corresponding extensions of ApproxLP

arising from (17)–(19), are reported in Table 1.

Table 1. Classification of f(w0x) and corresponding extensions of ApproxLP . f0, p and q are
constitutive constants with f0 > 0, p 6= 0.

Case Forms of f(w0x) Extensions of ApproxLP

I f(w0x) = f0 e
w0x

/p X8 = x
∂

∂x
+ (w0 + 2 p x)

∂

∂w0
− w1

∂

∂w1

II f(w0x) = f0 (w0x + q)2/p X8 = x
∂

∂x
+ [(1 + p)w0 + p q x]

∂

∂w0

+(p− 1)w1
∂

∂w1
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4 A Physical Application

Let us consider a homogeneous viscoelastic bar of uniform cross-section and as-
sume the material to be a nonlinear Kelvin solid. This model is described by
the classical equation of motion (the constant density is normalized to 1 and
the mass forces are neglected)

wtt = τx (21)

and by assuming a stress-strain relation of the following form:

τ = σ(wx) + λ0wxt, (22)

where τ is the stress, x the position of a cross-section in the homogeneous rest
configuration of the bar, w(t, x) the displacement at time t of the section from its
rest position, σ(wx) the elastic tension (wx is the strain), λ0 the viscosity positive
coefficient. Taking (22) into account and setting

d σ(wx)

dwx
= f, λ0 = ε,

the equation (21) reduces to (1).
Let us consider the following form of the tension σ(wx):

σ(wx) = σ0 log(1 + wx), (23)

which was suggested by G. Capriz [10, 11].
So, we fall in the Case II of Table 1 with the following identifications:

f0 = σ0, p = −2, q = 1.

In this case, the approximate Lie operator X8 assumes the form

X8 = x
∂

∂x
− (w0 + 2x)

∂

∂w0
− 3 w1

∂

∂w1

and from the corresponding invariant surface conditions we obtain the following
representation for the different terms in the expansion of w:

w0 =
ψ(t)

x
− x, w1 =

χ(t)

x3
, (24)

which give the form of an invariant solution approximate at the first order in ε.
The functions ψ and χ must satisfy the following system of ODEs to which,

after (23), the system (5) is reduced through (24):

ψtt + 2σ0 = 0, χtt +
6σ0
ψ

χ− 2ψt = 0. (25)



242 A. Valenti

After solving (25) and taking (24) into account, we have

w0 = −σ0
t2

x
− x, w1 = −

(40σ0 log t− 8σ0 − 25) t5 − 25

50 t2 x3
.

Therefore, the invariant solution up to the first order in ε is

w(t, x, ε) = −σ0
t2

x
− x− ε (40σ0 log t− 8σ0 − 25) t5 − 25

50 t2 x3
+O(ε2).

We have an unperturbed state represented by a stretching modified by the viscos-
ity effect. For large time this latter becomes dominant and the linear expansion is
not longer valid. This can be probably ascribed to the stress-strain relation (22)
which is linear in the viscosity. More sophisticated model with a non linear vis-
cosity are currently under investigation by the author and will be the subject of
a future paper.

5 Conclusions

In this paper we perform the group analysis of the nonlinear wave equation with
a small dissipation (1) in the framework of the approximate symmetries.

We follow the guide lines of the method proposed by Fushchich and Shtelen [4],
expanding in a perturbation series the dependent variables and removing the
“drawback” of the impossibility to work in hierarchy in calculating symmetries.

In order to remove that “drawback”, we introduce, according to the pertur-
bation theory, the expansions of the dependent variables in the one-parameter
Lie group of infinitesimal transformations of the equation (1). Equating to zero
the coefficients of zero and first degree powers of ε, we obtain an approximate
Lie operator which permits to solve in hierarchy the invariance condition of the
system (5)–(6) starting from the classification of the unperturbed non linear wave
equation (5).

The proposed strategy is consistent with the perturbation point of view and
can be generalized in a simple way to the higher orders of approximation in ε.
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In our paper we show the results of methods of group analysis to equations
describing a special kind of filtering processes. We consider two pipes separated
by a porous wall. A loaded gas flux passes this wall and the solid ingredients
are deposited on the surface of the wall. All calculations will be done by the
Mathematica-tools MathLie [1] and MathLieAlg [2].

1 Introduction

In nature a two phase flow passing through a porous medium plays an important
role. Especially those flows carring solid particles are significant in technical
applications. Such kinds of processes can be the filter function of the lung avioli,
the cleaning of a gas flux from particles or other ways of filtration actions. Our
presentation is concerned with the second way.

Power production by combustion is one of the oldest techniques of mankind.
Approximately 90% of our current power requirement are based on combustion
processes. A large part of this amount is devoted to the personal transportation
by cars driven by Otto or Diesel engines. Both kinds of engines generate a large
amount of pollutants and consume large quantities of fossil fuel. In future Diesel
engines will become a preferable and superiour driving concept. The reason is that
their consumption of fuel is less compared with otto engines. This point plays an
important rule due to the shortage of fossil fuel and the tendency of minimizing
the output of carbone dioxid.

However, diesel engines have the disadvantage of emitting nitrogen oxide and
poisonous particles. The NOx (x = 1, 2, 3, . . .) exhaust is considered as polluter
of photochemical smog and is responsible for the generation of ozone in the lower
part of the atmosphere and especially for acid rain [3].

In view of these facts, the increasing number of diesel cars and the growing
importance of nature, government decided to regulate the exhaust gas concentra-
tions by laws, which become stricter each time. This leads to an improvement of
the exhaust aftertreatment systems and so to a high effort in their design. The
consequence is that the understanding of physical and chemical processes must be
improved and the derivation of mathematical models must be adapted to this situ-
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ation. This is necessary because particles formed during the combustion processes
are classified to be carcinogenic by the World Health Organization.

In section two we derive model equations describing such a particulate trap
incorporating the technical assumptions. We discuss ways to modify the term for
the pressure difference between inlet and outlet channel in the third part. The
fourth part is dedicated to symmetry investigations of a general model and at last
its submodels in the fifth part. At the end of the work a short discussion is given.

2 Derivation of Model Equations Describing
a Particulate Trap

It is a great challenge to describe consistently the controlled loading and regenera-
tion of a ceramic particulate filter by a mathematical model. A review of different
trap models was given by Opris [4], who extended also one-dimensional models
to a two-dimensional spacial model incorporating the properties of Navier–Stokes
equation [4]. A theoretical study of the performance of traps with respect to pres-
sure drop and flow velocities was carried out by Konstandopoulos [5]. His model
is based on phenomenological assumptions for fluid friction.

To improve Konstandopoulos’s model we take into our consideration:

• a one-dimensional plug-flow model.

• The density along the x-axis is constant.

• We only consider the loading process. There is no regeneration.

• The changing in the geometry will be neglected. There is no changing of
the cross section diameter.

• There is no interaction between the flow and the particles.

• The system is considered to be isothermal. There is no energy balance.

Based on these conditions, we consider a pipe consisting of two channels. As
shown in Figure 1. the inlet channel with pressure P1 and velocity v1 is closed
at the end. In the outlet part of the filter pressure and velocity are denoted by
P2 and v2. Both channels are connected by a porous wall through which gas can
flow with a velocity 4uw.

Taking into account the assumptions listed above we use balance equations to
derive the governing equations. The major balances are mass balance:

%
∂u1
∂x

= −4uw%

a
, %

∂u2
∂x

= −4uw%

a
, (1)

momentum balance:

∂u1
∂t

+ u1
∂u1
∂x

= −∂P1
∂x

1

%
+
µ

%

∂2u1
∂x2

,
∂u2
∂t

+ u2
∂u2
∂x

= −∂P2
∂x

1

%
+
µ

%

∂2u2
∂x2

, (2)
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Figure 1. Scetch of a pfug flow trap (wall flow type)

where a is the cross section diameter, uw the wall velocity, k the specific perme-
ability in cm2 and ws the wall thickness.

To write out the equations (1), (2) in nondimensional form, we introduce scales
for length, time, velocity and pressure:

x̂ =
x

L
, t̂ =

t

T
, ûi =

ui
U
, ûw =

4L

aU
uw, P̂i =

Pi − Patm
P ∗

, P ∗ =
µaUws
4Lk

,

where L is the characteristic length, T is the characteristic time, U is the charac-
teristic velocity. Mass balance of the flow results in:

∂u1
∂x

= −uw,
∂u2
∂x

= uw, (3)

Momentum balance gives:

∂P1
∂x

+B1
∂u1
∂t

+B2u1
∂u1
∂x

+B3
∂2u1
∂x2

= 0, (4)

∂P2
∂x

+B1
∂u2
∂t

+B2u2
∂u2
∂x

+B3
∂2u2
∂x2

= 0. (5)

The hated quantities are replaced for simplicity by non-hated ones. Abbreviations
used are: B1 = 4L2k/(µawsT ), B2 = 4kLRe/(awwa), B3 = 4k/aws with the
Reynolds number Re.

To simplify system (3) we added both equations and integrated the result.
After applying the initial conditions u1(0) = 1, u2(0) = 0 we get

u1 + u2 = 1. (6)

Subtracting the second from the first of equation (4) and applying (6) we find:

∂

∂x
(P1 − P2)− 2B1

∂u2
∂t
−B2

∂u2
∂x
− 2B3

∂u2
∂x2

= 0. (7)
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3 Modelling the Pressure Term

In the literature we find a large number of models describing the pressure difference
in equation (7) (see [6] and the papers cited therein). The question here is which
of these models are most appropriate to describe a real situation.

The first consideration is based on Darcy’s law [6]:

∆P = U
e

k
, (8)

where U is the velocity, e is the thickness of the substrate (sand) and ∆P is the
pressure difference. Darcy’s law assumes that:

• an incompressible fluid will be treated;

• an isothermic situation is considered;

• a Newtonian creeping flow will be discussed which means that the flow
velocity is very small;

• a quite long uniform and isotropic medium with low hydraulic conductivity
k will be treated.

At this point it should be mentioned that k depends on the fluid properties and
is related with the porous medium.

Due to the fact that no viscosity effects were taken into account by Darcy
expression (8) was changed by Hazen to

∆P = U
µ

K
e, (9)

where K is the specific permeability of the material which is assumed to be inde-
pendent of fluid properties, and µ is the dynamic viscosity. Relations (9) is called
the Hazen–Darcy equations.

The next step to improve Darcy’s law was suggested done by Dupuit in 1863.
He established the equation

0 =
∆P

∆x
− αU − βU2. (10)

We note, that in the derivation of equation (10) weight effects are neglected
and the polynomial form of the expression of the velocity represents only a fit of
experimental data.

In 1947 Brinkman compared the multidimensional differential form of the
Hazen–Darcy law [6]

0 = −∇P − µ

K
U (11)

with Stokes flow for creeping motion of the fluid. This flow is related to the
Navier–Stokes equation:

0 = −∇P + µ∇2U. (12)
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It was suggested by Brinkman that the equation (11) should be modified by adding
the Laplacian term equation to (12). Brinkman also recognized that a number of
viscous terms are motivated by the physical properties such as viscous shear stress
and solid viscous drag. In the limited case of low permeability the first effect is
smaller compared with the second one and can be neglected here.

By using the argumentation of Brinkmanm, we have to replace the Hazen–
Dupuit–Darcy equation by

0 = −∇(ΦP ) + µe∇2U− µ

K
φU− C%φ2|U |U, (13)

with the effective fluid viscosity µe, a function of the fluid and the geometry of
the permeable medium and the surface porosity Φ = Af/Am. Here Af and Am
represent the values of volumes occupied by the fluid and by the solid.

A more formal model was presented by Vafai/Tien and Hsu/Cheng [6], which
dealt with a general equation for the flow through an isotropic rigid homogenous
medium. Their final equation reads

%

[
∂U

∂t
+ (U∇)U

]
= −∇(ΦP ) + µe∇2U− µ

K
φU+ C%φ2|U |U. (14)

There are six main physical parameters characterising the fluid: the fluid den-
sity %, the fluid dynamic viscosity µ, the effective viscosity µe, permeablility K,
porosity Φ and the form coefficient C. The values %, µ, Φ can be measured inde-
pendently but the other three, µe, K, C depend on the geometry of the permeable
medium and can not be measured directly, nor calculated analytically because of
the absence of a model in which they might be bounded with measurable data in
porous media.

4 Group Analysis of Filtration Processes

In the previous part we have demonstrated several ways to model the pressure
term. In accordance with these considerations, we deal with the following ex-
pression for the gradient of pressure by taking into account the approximation
∇P ≈ P1 − P2 := ∆P : ∇P = f(uw,∇2uw).Using the second of equations (3) we
find ∇P = g(∂u2/∂x, ∂

3u2/∂x
3). From equation (7) it follows

∂u2
∂t

+
1

2
β
∂u2
∂x

+

(
γ − 1

2B1

∂g

∂u2x

)
∂2u2
∂x2

− 1

2B1

∂g

∂u2xxx

∂4u2
∂x4

= 0.

By substituting
(
γ − 1

2B1

∂g

∂u2x

)
=

∂K

∂u2x
, − 1

2B1

∂g

∂u2xxx
=

∂K

∂u2xxx
,

we gain

∂u2
∂t

+
1

2
β
∂u2
∂x

+
∂K

∂(u2)x

∂2u2
∂x2

+
∂K

∂(u2)xxx

∂4u2
∂x4

= 0. (15)
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We applied modern group analysis methods to equation (15). The methods for
calculating the equivalence algebra and the classification of the arbitrary function
are described in [7–12]. By applying these methods to equation (15) and the
additional equations Kt = 0, Kx = 0, Ku = 0, Kut = 0, Kutt = 0, Kutx = 0,
Kuxx = 0, Kuttt = 0, Kuttx = 0, Kutxx = 0 coming from the extension of the
considered space [10]. The result is an Abelian algebra of translations. The
related infinitesimals are ξ1 = k1, ξ

2 = k2, η
1 = k3, µ = k4. Here ξ1, ξ2, η1, µ are

the coordinates of the generator

Y = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η1

∂

∂u
+ ζ1

∂

∂ut
+ ζ2

∂

∂ux
+ ζ11

∂

∂utt
+ ζ12

∂

∂utx

+ζ22
∂

∂uxx
+ ζ111

∂

∂uttt
+ ζ112

∂

∂uttx
+ ζ122

∂

∂utxx
+ ζ222

∂

∂uxxx
+ µ

∂

∂K
.

From the largest symmetry group we get for the case K = const Darcy’s law.
The related equation of motion can be transformed to the diffusion equation.

5 Discussion of the Special Cases

The first case is given by applying Darcy’s law in the following form: ∆P =
−(µ/K)∂u2/∂x, which leads to the equation

∂u2
∂t

+
1

2
β
∂u2
∂x
− α∂

2u2
∂x2

= 0, (16)

with coefficients β = B2/B1, α = (1− 2B3)/(2B1). This kind of equation was
investigated in [13] and is directly related to the diffusion equation.

The law of Hazen–Dupuit–Darcy leads to the second case: ∆P = α∂u2/∂x +
β(∂u2/∂x)

2, from which follows

α
∂2u2
∂x2

+ 2β
∂u2
∂x

∂2u2
∂x2

− 2B1
∂u2
∂t
−B2

∂u2
∂x
− 2B3

∂2u2
∂x2

= 0. (17)

Applying group analysis methods to (17) a five-dimensional algebra is found:

V1 = ∂u2 , V2 = ∂t, V4 = ∂x,

V3 = t∂t +

(
2u2 +

B2B3

2B1β
− B3

β
− B2tα

4B1β
+
xα

2β

)
∂u2 + x∂x,

V5 =
2B1t

B2
∂t +

(
−2B1u2

B2
− B3t

β
+

2B1B3x

B2β
+
tα

2β
− B1xα

B2β

)
∂u2 + t∂x,

with the nontrivial commutator relations:

[V1, V3] = 2V1, [V1, V5] =
2B1

B2
V1, [V2, V3] = −

2B2B3 +B2α

4B1β
V1 − V2,

[V2, V5] = −
2B3 − α

2β
V1 +

2B1

B2
V2 + V4, [V3, V4] =

2B3 − α
2β

V1 − V4,

[V4, V5] = −
−2B1B3 +B1α

B2β
V1,
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representing a non semisimple, solvable and non nilpotent algebra. The investi-
gation of this case can be found in [13].

The third case will appear by using Stoke’s flow with pressure difference in the
following form: ∆P = µ∇3u2. The related equation is:

µ
∂4u2
∂x4

− 2B1
∂u2
∂t
−B2

∂u2
∂x
− 2B3

∂2u2
∂x2

= 0.

In this case we found infinite dimensional algebra with the coordinates ξ1 = k1,
ξ2 = k2, η

1 = u2k3 + F(t, x), where F has to satisfy the equation

B2
∂F(t, x)
∂x

+ 2B3
∂F(t, x)
∂x

− ∂4F(t, x)
∂x4

+ 2B1
∂F(t, x)

∂t
= 0.

The discrete part of the symmetry group contains the generators V1 = ∂t, V2 = ∂x
and V3 = u2∂u2 which are also Abelian.

The fourth case deals with Brinkman–Hazen–Dupuit–Darcy law: ∇(φP ) =
µe∇3u2 − µK−1φ∇u2 + C%φ2(∇u2)2, which gives the following equation:

−B2
∂u2
∂x
− 2B3

∂2u2
∂x2

−B5
∂2u2
∂x2

+ 2B6
∂u2
∂x

∂2u2
∂x

+B4
∂4u2
∂x4

− 2B1
∂u2
∂t

= 0.

The symmetry group of this equation contains generators belonging to translations
in t, x, and u2-direction and the generator

V4 =
8B1

3B2
t∂t −

(
2B3

3B6
t− B5

3B6
t− 2B1

3B2
u2 +

4B1B3

3B2B6
x+

2B1B5

3B2B6
x

)
∂u2

+ t∂x +
2B1

3B2
x∂x.

This algebra is not semisimple, not solvable and not nilpotent.

Finally, we consider the general case with pressure difference ∇P of the follow-
ing representation

∇P =
µe
φ
∇2∂u2

∂x
− µ

K

∂u2
∂x

+ C%φ(
∂u2
∂x

)2 − %

φ

(
∂

∂t

∂

∂x
u2 +

∂u2
∂x

∂2u2
∂x

)
,

resulting to the equation:

µe
φ

∂4u2
∂x4

− µ

K

∂2u2
∂x2

+ 2C%φ
∂u2
∂x

∂2u2
∂x2

− ρ

φ

(
∂3u2
∂t∂x2

+

(
∂2u2
∂x2

)2

+
∂u2
∂x

∂3u2
∂x3

)

−2B1
∂u2
∂t
−B2

∂u2
∂x
− 2B3

∂2u2
∂x2

= 0.

The algebra of this equation is an Abelian one which is generated by translations
in time, space and velocity.
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6 Conclusions

In our presentation we have seen that there are several ways to model the pressure
difference in a pipe. Most of these models are based on empirical considerations
which are only valid in a small range of hydrodynamics. A general model and some
submodels were investigated by the method of modern group analysis. From view-
point of symmetries one can say that the general model allows only translations.
The variety of transformations leaving the equations invariant is missing and con-
nected with them the existence of conservation laws. That means that in this
context an improvement of the model is necessary. Especially the empirical laws
must be substituted by physical ones deriving from basic physical laws.
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In this paper we discuss a system of reaction–diffusion equations which have ap-
plication in mathematical biology. The Weiss algorithm used in Painlevé analy-
sis is applied to systems of two reaction–diffusion equations whose sources terms
may be expressed in terms of cubic polynomials. It is shown how Bäcklund
transformations may be constructed and these give rise to new solutions of
particular reaction–diffusion systems.

1 Introduction

In recent years there has been much interest in of systems reaction diffusion equa-
tions which occur in many applications for example mathematical biology in-
cluding models for multi-spaces chemical reactions and predictor prey systems.
In particular, Gierer and Meinhardt [1] present models for morphological pattern
formation based upon coupled reaction diffusion models of the type

ut = uxx + a00 + a10u+ a01v + c1u
mF (v),

vt = kvxx + b00 + b10u+ b01v + c2u
mG(v),

where u, v are functions of x and t and a suffix means a derivative. Also F (v)
and G (v) have numerous specifications, for example the case F (v) = v , G (v) = v
with m = 2, was used by Prigogene and Lefever [2] to describe the ‘Brusselator’
reaction mechanism. It is our aim to discuss coupled one dimensional reaction
diffusion equations in the general form

ut = uxx + f (u, v) , vt = kvxx + g (u, v) , k 6= 0 (1)

and to consider some conditions under which these equations may become inte-
grable. In a recent paper Archilla et. al. [3] demonstrated how a classical symme-
try analysis of the ‘λ− ω’ reaction system gave rise to an example of integrable
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systems. However in general, [4–6], classical symmetry analysis gives little insight
into conditions of integrability (1). For example the primitive predator prey model
where f = uv = −g does not produce an integrable system.

It is for this reason that we consider an alternative approach based upon
the Painlevé property Ablowitz et. al. [7] for the integrability of partial differ-
ential equations and use the related Weiss algorithm [8–10] to construct solutions
of (1). Such solutions have the form

u = φλ
∞∑

j=0

Ujφ
j , v = φµ

∞∑

j=0

Vjφ
j ,

where λ, µ < 0 and φ, Uj , Vj are functions of x and t and where the condition φ = 0
determines a movable singularity manifold. Our analysis uses Bäcklund transfor-
mations to construct new solutions and extends the analysis of Vani et. al. [11]
and Larsen [12] who focussed on a particular reaction diffusion system.

2 Equations with Cubic Sources

2.1 Introduction

We begin by considering the particular system

ut = ∆u+
3∑

i,j=0

aiju
ivj , vt = k∆v +

3∑

i,j=0

biju
ivj , (2)

where i+ j ≤ 3 and i+ j 6= 0. The first step in the Weiss-algorithm is to look for
the dominant behaviour about a movable singular manifold φ (x, t) = 0. So we
write

u = Uφλ, λ < 0, v = V φµ, µ < 0 (3)

and substitute these relationships into the system (2). On equating highest order
singular terms it may be shown that

λ = −1, µ = −1 (4)

and further

φ2x = −a03V
3 + a12UV

2 + a21U
2V + a30U

3

2U
=

− b03V
3 + b12UV

2 + b21U
2V + b30U

3

2kV
.

The latter equations may be solved simultaneously for U and V and we consider
here the particularly straight forward case when

U = αnφx, V = αφx, (5)
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where α2 > 0 satisfies

α2 = − 2n

a30n3 + a21n2 + a12n+ a03
= − 2k

b30n3 + b21n2 + b12n+ b03
. (6)

Note that (6) not only defines α but also defines a relationships between polyno-
mial coefficients of the source terms that are strictly cubic in nature. Those that
are strictly quadratic are considered separately later. The results (3), (4) and (5)
may be taken together to form the following Bäcklund transform (also known as
Hopf–Cole transformation)

u =
αnφx
φ

, v =
αφx
φ

and substituted into the system (2). Equating coefficients of the respective sin-
gular terms gives the following set of over determined equations

φt = 3φxx −
αφx
n

(
a20n

2 + a11n+ a02
)
= 3kφxx − αφx

(
b20n

2 + b11n+ b02
)

⇒ 3 (1− k)φxx + α
(
b20n

2 − a20n+ b11n−
a02
n
− a11 + b02

)
φx = 0,

− 2φxxx + α
(
a20n+

a02
n

+ a11

)
φxx +

(a01
n

+ a10

)
φx = 0,

− 2kφxxx + α
(
b20n

2 + b11n+ b02
)
φxx + (b10n+ b01)φx = 0.

These equations may be solved in three cases:

(i) k 6= 1, B =
(
b20n

2 − a20n+ b11n− a02
n − a11 + b02

)
6= 0, φ = l1(t)e

Bx
3(k−1)+l2(t);

(ii) k 6= 1, B =
(
b20n

2 − a20n+ b11n− a02
n − a11 + b02

)
= 0, φ = l1(t)x+ l2(t);

(iii) k = 1, B =
(
b20n

2 − a20n+ b11n− a02
n − a11 + b02

)
= 0, b10n

2+(b01 − a10)n−
a01 = 0 and φ(x, t) satisfies the equation

φxxx − α(b02 + b11n+ b20n
2)φxx − (b01 + b10n)φx = 0.

Here we consider two examples of the above cases. The complete solution of
the problem will be consider elsewhere.

2.2 Example 1: φ = px+ qt+ c

We find that the solution of the determining equations is

φ = px+ qt+ c,
q

p
= −α

(
a20n+

a02
n

+ a11

)
, 0 =

a01
n

+ a10,

0 = b10n+ b01, 0 = b20n
2 − a20n+ b11n−

a02
n
− a11 + b02,

where α is defined by (6). Thus

u =
αnp

px+ qt+ c
, v =

αp

px+ qt+ c
.
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Hence for the particular system

ut = ∆u− 2u2v

α2n
+ bnuv, vt = k∆v − 2ku2v

α2n2
+ buv, a > 0 (7)

we find

φ = p(x− bαnt) + c, u = nv, v =
α

x− bαnt+ c̄
.

2.3 Example 2: φ = c0 + eqt(c1e
p1x + c2e

p2x), k = 1

In this example, which falls into case (iii) we have further solutions. For example
when b10n+ b01 6= 0, a10n+ a01 6= 0 then

φ = c0 + eqt(c1e
p1x + c2e

p2x),

where p1 and p2 are solutions of the quadratic:

−2p2 + αp
(
a20n+

a02
n

+ a11

)
+
a01
n

+ a10 = 0

and q satisfies

q − 3p2 + αp
(
a20n+

a02
n

+ a11

)
= 0,

where

0 = b20n
3 − (b11 − a20)n2 + (b02 − a11)n− a02,

0 = b10n
2 + (b01 − a10)n− a01

and additionally (6) applies. The corresponding solution is thus

u = nv, v =
α
(
c1p1e

p1x+q1t + c2p2e
p2x+q2t

)

c0 + c1ep1x+q1t + c2ep2x+q2t
.

So when

ut = ∆u+
2u2v

α2
+ bu, vt = ∆v − 2u2v

α2
− bu, a > 0

we have n = −1 and

φ = e3p
2t
(
c1e

px + c2e
−px
)
+ c0, b = −2p2,

φ = e−3p
2t (c1 sin (px) + c2 cos (px)) + c0, b = 2p2.

However in example (7) we have b10n+ b01 = 0 = a10n+ a01 and so if k = 1 then

φ = c0 + c1 (x− 2pt) + c2e
px+p2t, p =

αbn

2
.
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3 Determination of Resonances

3.1 Introduction

We may find additional solutions of the reaction diffusion equation by writing
a Bäcklund transform of the type

u =
αnφx
φ

+ rφN , v =
αφx
φ

+ sφN , (8)

where r = r (x, t) and s = s (x, t). Now we substitute (8) into (2) and equate the
singular terms of the highest order we see that (6) must again be imposed and
additionally there is the matrix condition

Ωr = 0, Ω =

[
Z + 3a30n

2 + 2a21n+ a12 a21n
2 + 2a12n+ 3a03

3b30n
2 + 2b21n+ b12 kZ + b21n

2 + 2b12n+ 3b03

]
,

where r = [r s]T and

α2Z = N2 −N. (9)

In other words solving det (Ω) = 0 and substituting (9) we find four solutions
for N . Two of these are N = 3, N = −2 whilst two further values may be found
by solving:

N2 −N +
n
(
6b30n

3 + (4b21 − 6a30k)n
2 + (2b12 − 4a21k)n− 2a12k

)

k (a30n3 + a21n2 + a12n+ a03)
. (10)

3.2 A Particular Solution Employing Resonances

We consider the system

ut = uxx + a12uv
2 + a21u

2v + (b10n
2 + (b01 − a10)n)v + a10u,

vt = vxx +
a12
n
uv2 +

a21
n
u2v + b01v + b10u, (11)

so that (6) becomes α2 = −2/(a21n+ a12) > 0 and the solutions of (10) are N = 0
and N = 1. Thus in the case N = 0 we write

u = r +
αnφx
φ

, v = s+
αφx
φ

and substitute into (11). Following the equating of singular terms find the four
over-determined equations

φx

(
a21α (r − ns)− 4s

α
− 2r

αn

)
− 3φxx + φt = 0,

φx

(
a21

(
r2

n
− ns2

)
− 2s2

α2
− 4rs

α2n
+ b10n+ b01

)
+ φxxx − φxt = 0,

rxx + a12rs
2 + a21r

2s+ (b10n
2 + (b01 − a10)n)s+ a10r = rt,

sxx +
a12
n
rs2 +

a21
n
r2s+ b01s+ b10r = st. (12)
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The third and fourth of these are replicas of the original system (11).
When both r and s are constant then the solution of (12) is

r = ±nαω, s = ±αω, ω =

√
b10n+ b01

2
.

The positive solutions give rise to

φ = c0 + c1e
−2ωx + c2e

−ωx−3ω2t

and so:

u = nv, v = αω

[
1− 2c1e

−2ωx + c2e
−ωx−3ω2t

c0 + c1e−2ωx + c2e−ωx−3ω
2t

]
,

whilst the negative solutions give

φ = c0 + c1e
2ωx + c2e

ωx−3ω2t

which result in

u = nv, v = αω

[
−1 + 2c1e

2ωx + c2e
ωx−3ω2t

c0 + c1e2ωx + c2eωx−3ω
2t

]
.

4 Equations with Quadratic Sources

Consider now the particular system

ut = uxx +
2∑

i,j=0

aiju
ivj , vt = vxx +

2∑

i,j=0

biju
ivj , (13)

where i+j ≤ 2 and i+j 6= 0. On this occasion applications of the substitutions (3)
reveals that singular terms of the highest order may be equated by writing

λ = −2, µ = −2 (14)

and further

φ2x = −a02V
2 + a11UV + a20U

2

6U
= −b02V

2 + b11UV + b20U
2

6V
. (15)

Using equation (3) together with (14) and (15) implies that we may write

u = αn

(
φx
φ

)2

, v = α

(
φx
φ

)2

, (16)

where α 6= 0 is

α = − 6n

a20n2 + a11n+ a02
= − 6

b20n2 + b11n+ b02
. (17)
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Note that (17) not only defines α but also defines a relationship between the quad-
ratic coefficients of the source terms. Substitution of (16) into (13) and equating
coefficients of respective singular terms gives the following set of over determined
equations

φt = 5φxx, 0 = 2
φxxx
φ

+ 2

(
φxx
φx

)2

− 2
φxt
φx

+ b10n+ b01,

0 = b10n+ b01 − a10 −
a01
n
.

The first two of these equations may be solved simultaneously to give

φ = c1e
mx+5m2t + c0, m2 =

b10n+ b01
6

> 0.

Hence finally

u = αnm2Ψ, v = αΨ, Ψ =

(
c1

c1 + c0e−mx−5m
2t

)2

. (18)

To determine any resonances we now consider solutions of the type

u = r + αn

(
φx
φ

)2

, v = s+ α

(
φx
φ

)2

and on substitution into the reaction system (13) and equating singular terms of
the highest order gives the matrix equation

Ωr = 0, Ω =

[
αZ + 2a20n+ a11 a11n+ 2a02

2b20n+ b11 αZ + b11n+ 2b02

]
,

where r = [r s]T and α2Z = N2 − N . On solving det (Ω) = 0 and substitut-
ing (17) we find four solutions for N . Two of these are N = −3, 4 whilst two
further values may be found by solving

N2 −N +
6
(
2b20n

2 − 2a20n+ b11n− a11
)

b20n2 + b11n+ b02
= 0.

4.1 Example

Consider the particular system

ut = uxx −
6uv

α
+ 6mu, vt = vxx −

6uv

αn
+ 6mv, α > 0.

The solution is given by (18) with additional resonances N = 0, 1. With m = −p2
a solution for N = 0 is

u = nv, v = −αp2

1−

(
c1e

px+5p2t

c1epx+5p2t + c0

)2

 .
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5 Discussion

In this paper we have constructed new solutions of certain reaction diffusion equa-
tions by applying the Weiss algorithm with and without consideration of reso-
nances. Our consideration of resonance solutions has been confined to the simple
example N = 0 and clearly more work is necessary to evaluate other cases. In
addition there is further need to a complete a full Painlevé analysis incorporating
all possible resonances to determine the integrability of the cubic and quadratic
sourced reaction diffusion equations considered here. Finally the analysis begun
needs to be extended to source terms that may written as a Laurent series in
either u or v. These matters will be considered elsewhere.
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