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Paper 1

Lie groups in some problems of
mathematical physics

N. H. Ibragimov∗

Doctor of Science Thesis
[Doktorskaia dissertatsia]

Delivered as lectures for students of
Novosibirsk State University

Novosibirsk, 1972

Abstarct. This course of lectures is dedicated to applications of Lie groups
to various problems of mathematical physics. One of basic topics is develop-
ment of a general theory of invariants of arbitrary continuous transformation
groups in Riemannian spaces. Then we deal with Hadamard’s problem on
finding differential equations satisfying the Huygens principle. A solution
to Hadamard’s problem is given in the class of equations possessing a non-
trivial conformal group. Finally, we discuss the questions on derivation of
conservation laws for differential equations.

In addition to the traditional course of equations of mathematical physics
the reader is supposed to be acquainted with foundations of the theory of
Lie group analysis of differential equations.

Preface

About a hundred years ago Sophus Lie started to investigate continuous
transformation groups. One of the reasons that incited him to develop this

∗Author’s note to the English translation: I edited the translation of Chapters 1, 2
and 5. I also made small changes in these chapters.

1
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new field of mathematics was an attempt to extend the Galois theory for
algebraic equations to differential equations. Another reason was to dwell
upon properties of transformations in geometry and mechanics.

In the beginning (1869–1871) S. Lie investigated known at the time
examples of continuous groups, namely, groups of motions (translations,
rotations) and projective transformations in geometry, tangent transforma-
tions, etc. He introduced the general notion of continuous transformation
groups in 1871, and by 1884 he developed the well-known theory of con-
tinuous local groups for the most part. This theory together with its most
important applications was represented in the fundamental work of Lie and
Engel [91], [92], [94].

From the very beginning the initiation and development of the theory of
continuous groups was encouraged by its successful application in various
fields of mathematics and mechanics. Already in 1869 Lie noticed that the
majority of ordinary differential equations with known methods for their
integration admit certain continuous transformation groups. Then he dis-
covered that similar relations exist for partial differential equations of the
first order. Later on, together with elaborating the general theory of contin-
uous groups, S. Lie took up systematic investigation of differential equations
admitting continuous transformation groups. The results obtained in this
field ([89], [90], [95], [91], [92], [94], [131], [137], [109], [110], [111] etc.) led
to the modern theory of group properties of differential equations.

Our prime interest will be the following two applications of Lie group
theory. The first one is the theory of continuous groups of motions in
Riemannian spaces; developed by Killing [82], the theory proved to be ex-
tremely efficient both in geometry and in related interdisciplinary issues.
The second one is the Noether theorem [107] on existence of conservation
laws for the Euler-Lagrange equations of functionals, invariant with respect
to continuous transformation groups.

The present lecture notes are devoted to further consideration of issues
related to application of Lie group theory in Riemannian geometry and
theory of differential equations. The basic problems considered below focus
on the following topics:

1. Theory of invariants of arbitrary continuous transformation groups in
Riemannian spaces;

2. Group properties of linear and nonlinear differential equations of the
second order;

3. The Huygens principle for linear hyperbolic differential equations of the
second order;

4. Connections between invariance and conservation laws for differential
equations.
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We take the notions of groups of isometric motions (often called briefly
motions) and conformal transformations in Riemannian spaces as a starting
point of our investigation of the first topic. These notions can be formu-
lated as follows. A continuous group G of point transformations in an
n-dimensional Riemannian space Vn is called a group of isometric motions
in the space Vn if transformations of the group G keep the values of all the
components

gij, i, j = 1, . . . , n,

of the metric tensor of the space Vn unaltered. Likewise, a group G of trans-
formations in Vn is called a group of conformal transformations if transfor-
mations of the group G preserve the values of all ratios

gij
gpq

of the components of the metric tensor of the space Vn. These definitions
lead to the following formulation of the problem of invariants of continuous
transformation groups in Riemannian spaces.

Given an arbitrary continuous point transformation group G in a Rie-
mannian space Vn. Determine which functions of components of the metric
tensor gij of the space Vn are invariant with respect to all transformations
of the group G.

In connection with this problem I introduce the following two basic no-
tions: the defect δ = δ(Vn, G) and the invariant family of spaces G(Vn).

The defect serves to determine the number of all functionally indepen-
dent invariant functions for the group G of transformations in the space Vn;
this number equals to

1

2
n(n+ 1)− δ.

The invariant family of spaces G(Vn) is the smallest set of n-dimensional
Riemannian spaces which is invariant with respect to transformations of the
“extended” group G (see § 6) and contains the space Vn.

For instance, if G is a group of isometric motions in Vn, then δ = 0 and
the invariant family of spaces consists of one space Vn, i.e. G(Vn) = Vn.
It is also manifest that for groups of conformal transformations δ = 1 and
the invariant family of spaces G(Vn) coincides with the family of all spaces
conformal to Vn.

Let us turn to the second topic. Although the problem of group classifi-
cation of partial differential equations of the second order has been repeat-
edly considered in literature, it is not solved completely yet. At the same
time, different problems of geometry and mathematical physics prompt
some classes of second-order equations which are of particular interest to
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researchers. One of these classes consists of equations with two independent
variables. Group properties of these equations were investigated by Lie [89]
(linear equations) and Medolaghi [104] (linear equations admitting an infi-
nite group). Another important class is composed by linear homogeneous
second-order equations

gij(x)uij + bi(x)ui + c(x)u = 0

with n ≥ 2 independent variables x = (x′, . . . , xn). Group properties of
these equations were investigated by L.V. Ovsyannikov [110], [111].

We will dwell upon group properties of semi-linear partial differential
equations of the second order

gij(x)uij + bi(x)ui + ψ(x, u) = 0

with an arbitrary number n ≥ 2 of independent variables. Coefficients of the
equation are supposed to be analytic functions of x. Equations of this type,
occurring in relativistic quantum mechanics [124], have been considered by
several authors (Jörgens [80], Strauss [128], Lions [99]). In these works, an
exceptional role in various respects plays the nonlinear wave equation

¤u+ u3 = 0

which is invariant, like the usual linear wave equation

¤u = 0,

with respect to the group of conformal motions in the flat space Vn. Equa-
tions of the second order invariant with respect to the conformal transfor-
mations in the space Vn with the metric tensor gij(x) (where gijg

jk = δki )
will play a significant part in what follows. Therefore, together with in-
vestigating group properties of general equations, we will dwell upon these
“conformally invariant” equations in different spaces Vn.

Group invariance properties of second-order equations are closely re-
lated to the Huygens principle which is understood here in the sense of
Hadamard’s “minor premise” [41], [42], [43], [44]. Namely, a linear hyper-
bolic differential equation of the second order is said to satisfy the Huygens
principle if the solution of the arbitrary Cauchy problem for this equation
is defined at every point x by the Cauchy data at the intersection of the
initial manifold with the characteristic conoid outgoing from x. The notion
of the Huygens principle in the above sense appeared in works of Kirch-
hoff [83], Beltrami [15], [16], who demonstrated on the basis of the explicit
formula for the solution of the Cauchy problem that the wave equation
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¤u = 0 satisfies the Huygens principle. Hadamard formulated the problem
of finding all linear hyperbolic equations of the second order satisfying the
Huygens principle. Until recently only separate examples of such equations
have been known [126], [127], [39], [71]. According to Hadamard [41], [42],
[43], [44], [45], the Huygens principle holds only for an even number n ≥ 4
of independent variables. In this connection, the case n = 4, having a di-
rect physical meaning, is of special interest. An important result for this
case was obtained by Mathisson [102]. Approximately at the same time
and independently of M. Mathisson the same result was obtained by L. As-
geirsson [6], A. Douglis [28] but published much later. Another proof of the
same result was given by Hadamard [46]. He demonstrated that in the four-
dimensional flat space V4 (this corresponds to the case of equations whose
principal part has constant coefficients) only the wave equation satisfies the
Huygens principle. This solves Hadamard’s problem for the flat space V4.

We will also consider the case n = 4 and demonstrate that in any Rie-
mannian space V4, having a “non-trivial” conformal group (i.e. the con-
formal group which is not a group of motions in any space conformal to
the space V4), only the conformally invariant equation satisfies the Huygens
principle.

Further, issues related to the well-known Noether theorem [107] on con-
servation laws for differential equations are considered. The theorem states
that if a functional

l[u] =

∫

Ω

L(x, u, u′, . . .)dx

is invariant with respect to an r-parameter continuous transformation group
Gr in the space of variables

x = (x′, . . . , xn), u = (u1, . . . , um),

then there exist r independent conservation laws for the Euler-Lagrange
equations of the functional l[u]. Meanwhile a definite formula is given for
calculating the conserved quantities via the Lagrange function L and co-
ordinates of infinitesimal generators of the group Gr. In what follows we
will deal with conservation laws given only by these formulae. Keeping in
mind that the Euler-Lagrange equations in this case are also invariant with
respect to the group Gr, one can see that the Noether theorem provides
the sufficient condition for the group Gr, admitted by the Euler-Lagrange
equations of the functional l[u], to correspond to r conservation laws. Such
condition is the invariance of the value of the functional l[u] on all (smooth)
functions u = u(x) with respect to the group Gr. Examples demonstrate
that such invariance of the functional is not a necessary condition for exis-
tence of the mentioned conservation laws, and hence, all these conservation
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laws can be derived from the Noether theorem. This leads to the problem
under consideration on finding the necessary and sufficient conditions of
existence of conservation laws.

The whole material is divided into five chapters. The first chapter intro-
duces the basic notions of the theory of continuous groups, group symmetry
properties of differential equations and Riemannian geometry.

The second chapter considers the problem of invariants of continuous
transformation groups in Riemannian spaces. The most significant result
for the theory is formulated in Theorem 1.12 of Section 8.2. It allows one
to calculate the defect δ(Vn, G) via components of the metric tensor of the
space Vn and coordinates of basic infinitesimal generators of the group G.
In particular cases it is possible to construct explicitly an invariant family
of spaces G(Vn), which allows to construct all invariants. This is illustrated
in a number of examples in § 9 and § 10.

The third chapter deals with symmetries of second-order linear and semi-
linear partial differential equations with several variables. Upon obtaining
the determining equations for symmetries in the general case, we turn to
considering conformally invariant equations. The theorem on uniqueness
of conformally invariant equations in spaces V4 with nontrivial conformal
group (see § 14) proved here is used in the following chapter.

The fourth chapter presents the solution of Hadamard’s problem for dif-
ferential equations with four independent variables when the corresponding
spaces V4 have a nontrivial conformal group. In particular, the chapter in-
cludes the case considered by M. Mathisson, because any flat space V4 has
a nontrivial conformal group.

The fifth chapter tackles the problem on conservation laws. The proof of
the following statement (see Theorem 1.22 in Section 22.2) holds a central
position in this chapter: when the Euler-Lagrange equations of the func-
tional l[u] admit a group Gr, then this group furnishes r conservation laws
if and only if the extremal values of the functional l[u] are invariant with
respect to the group Gr.

Further we mostly use standard notation. In case if a new notation
is introduced it is explained in the text. The functions occurring in the
text are sufficiently smooth, unless otherwise stated. Note also that all
considerations are local.

The author is grateful to L.V. Ovsyannikov for discussing of basic results
of the present work in different times.
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Chapter 1

Preliminaries

This chapter gives the fundamental notions from the theory of continu-
ous groups, symmetry properties of differential equations and Riemannian
geometry.

Literature: Pontryagin [117], Ovsyannikov [109, 110], Eisenhart [31, 29].

§ 1 Continuous groups of transformations

1.1 Local groups

Let us consider a Hausdorff topological space G. The system of local coordi-
nates in space G is the pair (u, ϕ), consisting of the open set U ⊂ G and of
a topological mapping of ϕ of the set u on the open set of the r-dimensional
Euclidian space Rr. The open set U is referred to as a coordinate vicin-
ity, and the real numbers xi, (i = 1, . . . , r), being coordinates of the point
ϕ(x) ∈ Rr, are called coordinates of the point x ∈ G in the system of
coordinates under consideration.

Definition 1.1. A topological space G is called a local group if there exist
an element (unity) e ∈ G, the neighborhoods U, V (where V ⊂ U) of the
element e and if the group operation U × U → G is defined so that

1) (a · b) · c = a · (b · c) for all a, b, c ∈ V.
2) e · a = a · e = a for all a ∈ U.
3) For any a ∈ V there exists an inverse element a−1 ∈ U such that

a · a−1 = a−1 · a = e.

4) The mapping (a, b)→ a · b−1 is continuous on U × V.

Let us consider a local group G and assume that it has a known system of
local coordinates (U,ϕ), where e ∈ U, and ϕ is such a topological mapping of
the coordinate vicinity U on the open sphere R2 with the center at the point
0 ∈ R2, that ϕ(e) = 0. Let W ∈ V be such a vicinity of the unity e that the
mapping W ×W → U is known and it is analytical, i.e. the coordinates ci

of the element c = a · b are analytical functions ci = ψi(a, b) (i = 1, . . . , r)
of the coordinates ai, bi for the elements a, b ∈ W. Then, one can say that
analytical coordinates are introduced in the local group G.

Definition 1.2. A local group G where analytical coordinates are intro-
duced is called an r-dimensional local Lie group and is denoted by Gr.
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1.2 Local transformation groups

Consider a mapping

f : Rn ×B → Rn, (1.1)

where B ⊂ R2 is an open sphere with the center 0 ∈ Rr, and define the
mapping Ta of the space Rn into itself by the equation

Tax = f(x, a); x ∈ Rn, a ∈ B. (1.2)

Definition 1.3. The set Gr of transformations (1.2) is called a continuous
r-parameter local transformation group in R2 if Gr is a local Lie group with
respect to the group operation defined by

(Ta · Tb)x = Ta(Tbx).

For the sake of simplicity we assume that the mapping (1.1) meets the
condition f(x, 0) = x so that T0 is a unity of the group Gr. In what follows,
continuous local transformation groups will be simply referred to as groups
and will be considered in canonical coordinates.

1.3 Lie’s theorem for one-parameter groups

Let the mapping (1.1) determine a one-parameter transformation group G1

in the space Rn. Let us define the vector field ξ : Rn → Rn by the formula

ξ(x) =
∂f(x, a)

∂a

∣∣∣∣
a=0

. (1.3)

Theorem 1.1. (Lie’s theorem). The function f(x, a) satisfies the equation

∂f

∂a
= ξ(f).

Conversely, for any continuously differentiable vector field ξ : Rn → Rn, the
solution f of the system of first-order ordinary differential equations

df

da
= ξ(f) (1.4)

with the initial condition

f |a=0 = x (1.5)

determines a one-parameter group.
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The definition of the vector ξ(x) yields

Tax = x+ aξ(x) + o(a).

Therefore, the increment of function F : Rn → Rm ubnder the transforma-
tions of the group G1 is

∆F (x) ≡ F (Tax)− F (x) = aF ′(x) · ξ(x) + o(a),

where

F ′ =
∣∣∣
∣∣∣
∂F k

∂xl

∣∣∣
∣∣∣

is the derivative of the mapping F. Let us introduce the infinitesimal gen-
erator (or simply the generator, for the sake of brevity) of the group G1 :

X = ξi(x)
∂

∂xi
, (1.6)

acting on functions F = F (x) by the rule

XF (x) = ξi(x)
∂F (x)

∂xi
≡ F ′(x) · ξ(x),

and write

∆F = aF (x) + o(a).

It follows from this equations that

∂F (Tax)

∂a

∣∣∣∣
a=0

= XF (x). (1.7)

1.4 Manifolds in Euclidean spaces

Let us accept the following geometrically illustrative definition of a manifold
in the Euclidian space consistent with the general definition of a manifold.

Definition 1.4. A set M ⊂ Rn is called a p-dimensional manifold in the
space Rn (p ≤ n) if for any point x ∈M there exist an open manifold U ⊂ R
containing x, the open manifold V ⊂ R and a diffeomorphism ϕ : U → V
such that

ϕ(U ∩M) = {x ∈ V : xp+1 = . . . = xn = 0}.

It follows from this definition that for any point x of the manifold M
there exist an open set U ⊂ Rn containing x, an open set W ⊂ Rp, and a
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one-to-one differentiable mapping g : W → Rn (a coordinate system in the
vicinity of the point x) such that

g(W ) = U ∩M (1.8)

and
rank g′(y) = p for all y ∈ W.

Definition 1.5. Let g : W → Rn be a coordinate system in the vicinity of
the point x = g(y) of the p-dimensional manifold M in the space Rn. Let
us denote by V m

z the m-dimensional vector space of m-dimensional vectors
dz ∈ Rm with the origin at the point z ∈ Rm. The condition (1.8) guarantees
that the set

Mx = {dx ∈ V n
x : dx = g′(y)dy, dy ∈ V p

y }
is a p-dimensional subspace of the space V n

x and does not dependent on the
choice of a coordinate system. The vector space Mx is called the tangent
space to the manifold M at the point x. Elements of Mx are termed tangent
vectors to the manifold M at the point x.

The following theorem will be useful.

Theorem 1.2. Let ψ : Rn → Rn−p be a differentiable mapping such that

rankψ′(x) = n− p
for all x ∈ Rn satisfying the equation

ψ(x) = 0. (1.9)

Then the set M = ψ−1(0) of all solutions of the equation (1.9) is a p-
dimensional manifold in the space Rn.

1.5 Invariant manifolds

Definition 1.6. A manifoldM ⊂ Rn is referred to as an invariant manifold
for the transformation group Gr in the space Rn if Tx ∈ M for any point
x ∈M and any transformation T ∈ Gr.

Theorem 1.3. Let G1 be a one-parameter group of transformations in Rn

with the vector field ξ defined by Eq. (1.3). A manifold M ⊂ Rn is an
invariant manifold for the group G1 if and only if the vector ξ(x) belongs,
at every point x ∈M, to the space Mx tangent to M at the point x, i.e.

ξ(x) ∈Mx for all x ∈M. (1.10)

Corollary 1.1. The manifold M defined by Eq. (1.9) is invariant with
respect to the group G1 with the generator (1.6) if and only if

X(ψ)
∣∣
M

= 0. (1.11)
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1.6 Invariants

A simpler notion of group invariants plays an important part in the study
of invariant manifolds.

Definition 1.7. A function J : Rn → R is referred to as an invariant of
the transformation group Gr in R

n if

J(Tx) = J(x)

for any point x ∈ Rn and for any transformation T ∈ Gr.

Theorem 1.4. The necessary and sufficient condition for the function J to
be an invariant of the group G1 with the operator (1.6) is

XJ = 0. (1.12)

Thus, in order to find the invariants of the group G1 one should solve
the linear homogeneous partial differential equation of the first order

ξi(x)
∂J

∂xi
= 0.

This equation has n− 1 functionally independent solutions and the general
solution is their arbitrary function.

§ 2 Lie algebras

2.1 Definition of an abstract Lie algebra

Definition 1.8. A Lie algebra is a vector space L with a given bilinear
multiplication law (the product of the elements a, b ∈ L is usually denoted
by [ab] and is termed the commutator of these elements) which satisfies the
skew symmetry property

[ab] = −[ba]
and the Jacobi identity

[[ab]c] + [[bc]a] + [[ca]b] = 0.

If the vector space L is finite-dimensional and its dimension is dimL = r,
then the corresponding Lie algebra is called an r-dimensional Lie algebra
and is denoted by Lr. If e1, . . . , er is a basis of the vector space L of the Lie
algebra Lr then

[eiej] = ckijek,

where ckij(i, j, k = 1, . . . , r) are real constants called structure constants of
the Lie algebra Lr.

In what follows only finite-dimensional Lie algebras will be considered,
unless otherwise stated.
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2.2 Lie algebras of r-parameter groups

Let us consider Lie algebras corresponding to continuous transformation
groups. Let G1 be a one-parameter subgroup of the group Gr of transfor-
mations (1.2) in the space Rn and assume that ξ is the vector (1.3) corre-
sponding to this one-parameter subgroup. Selecting various one-parameter
subgroups of Gr one obtains an r-dimensional vector space Lr of the vectors
ξ with usual summation and multiplication by real numbers. The vectors

ξα(x) =
∂f(x, a)

∂aα

∣∣∣∣
a=0

, α = 1, . . . , r, (2.1)

where a = (a1, . . . , ar) is the parameter of the group Gr, can be taken as
the basis of the vector space Lr.

Theorem 1.5. The set Gr of transformations (1.2) is an r-parameter con-
tinuous local group if and only if the vector space Lr of the vector fields ξ
is a Lie algebra with respect to the product defined by the formula

[ξη](x) = η′(x)ξ(x)− ξ′(x)η(x), (2.2)

where ξ′ and η′ are derivatives of the maps ξ and η, respectively.

This theorem simplifies the study of continuous transformation groups
by reducing the problem to the study of Lie algebras.

Often it is more convenient to consider a Lie algebra of the corresponding
linear operators (1.6) instead of a Lie algebra of the vectors (1.3). In this
case, the linear combination λX + µY of the operators

X = ξi
∂

∂xi
, Y + ηi

∂

∂xi

corresponds to the linear combination λξ + µη of the vectors ξ and η with
real constant coefficients λ and µ. The commutator of the operators,

[XY ] = XY − Y X, (2.3)

where XY is the usual composition of linear operators, corresponds to the
multiplication (2.2). In coordinates, the commutator (2.3) is written

[XY ] = (Xηi − Y ξi) ∂
∂xi
· (2.4)
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§ 3 Defect of invariance

3.1 Definition of the defect

Let us assume that G is a group of transformations in the space Rn, and
M ⊂ Rn is a p-dimensional manifold. Consider the problem of a (local)
variation of the manifold M under transformations of the group G.

We denote the manifold obtained form M via the transformation T ∈ G
by T (M), and the manifold obtained form M via all transformations of the
group G by G(M). Thus:

T (M) = ∪
x∈M

Tx, G(M) = ∪
T∈G

T (M). (3.1)

Definition 1.9. (By L.V. Ovsyannikov [112], §17). The number

δ = dimG(M)− dimM (3.2)

is called the invariance defect (or simply defect) of the manifold M with
respect to the group G.

In order to specify the dependence of the invariance defect δ on the
manifold M and the group G we use the notation δ = δ(M,G).

Let us assume that the manifold M is given by Eq. (1.9) and the group
Gr has generators

Xα = ξiα(x)
∂

∂xi
, α = 1, . . . , r. (3.3)

The following theorem provides a convenient method for calculating the
invariance defect of the manifold M with respect to the group Gr.

Theorem 1.6. The invariance defect of the manifold M with respect to
the group Gr is given by [113]

δ(M,Gr) = rank ||XαΨ
σ||M . (3.4)

Here the index M means that the rank of the matrix ||XαΨ
σ|| is calculated

at points of the manifold M, and the rank is considered as the general rank.

3.2 Partially invariant manifolds

The following theorem extends Theorem 1.3 to r-parameter groups.
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Theorem 1.7. A manifold M ⊂ Rn is an invariant manifold of the group
Gr if and only if that vectors ξ(x) of the corresponding Lie algebra Lr are
contained in the tangent space Mx at every point x ∈M :

ξ(x) ∈Mx for all ξ ∈ Lr, x ∈M.

Corollary 1.2. The manifold M given by Eq. (1.9) is invariant under the
group Gr with generators (3.3) if and only if

XαΨ|M = 0 (α = 1, . . . , r). (3.5)

Then we also say that Eq. (1.9) is invariant under the group Gr.

By virtue of Eq. (3.4), one can write the invariant manifold test (3.5)
in the form

δ(M,Gr) = 0.

If this condition is not satisfied and if 0 < δ(M,Gr) < n − dimM, then
the manifold M is called a partially invariant manifold of the group Gr. In
this case the defect δ is the codimension of the manifold M in the small-
est invariant manifold of the group Gr containing M. The latter invariant
manifold is Gr(M) by construction.

3.3 Nonsingular invariant manifolds

Theorem 1.8. A function J : Rn → R is an invariant of the group Gr with
generators (3.3) if and only if

XαJ = 0, α = 1, . . . , r. (3.6)

Furthermore, if (locally)

rank ||ξiα(x)|| = R,

then the group Gr has t = n − R functionally independent invariants
J1, . . . , J t (a complete set of invariants), and any other invariant of the
group Gr is a function of these basic invariants.

Definition 1.10. An invariant manifold M of the group Gr is said to be
nonsingular if (locally)

rank ||ξiα||M = rank ||ξiα||.

In what follows, only nonsingular invariant manifolds given by Eq. (1.9)
are considered.



1: LIE GROUPS IN MATHEMATICAL PHYSICS (1972) 15

Theorem 1.9. Any nonsingular invariant manifold can be given by an
equation of the form

Φ(J1, . . . , J t) = 0, (3.7)

where J1, . . . J t is a basis of invariants of the group Gr.

Proof. See [112], Theorem 31 in §14.
Theorem 1.9 allows one to construct all invariant manifolds of the group

Gr. To this end, it is sufficient to find a basis of invariants of the group Gr by
solving the characteristic systems for Eqs. (3.6) and to consider the general
equation of the form (3.7). This procedure for obtaining invariant manifolds
is used when basic generators of the group Gr are given. If, vice versa, a
manifold M is given then the group Gr leaving invariant the manifold M is
is obtained from Eqs. (3.5).

§ 4 Symmetries of differential equations

4.1 Prolongations of groups and their generators

Let x = (x1, . . . , xn) and u = (u1, . . . um) be independent and dependent
variables, respectively, and Rn+m be the space of all variables (x, u).We use
the usual notation for partial derivatives:

uki =
∂uk

∂xi
(i = 1, . . . , n; k = 1, . . . ,m),

so that the derivative of a map

u : Rn → Rm

is the matrix

u′ = ||uki ||.
We will also identify u′ with the set of all partial derivatives. If

Φ : Rn+m → Rl

and the map

F : Rn → Rl

is defined by the equation

F (x) = Φ(x, u(x)),
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then Φ′x stands for the “partial” derivative of Φ with respect to x when u is
fixed, and Φ′u denotes the “partial” derivative of Φ with respect to u when
x is fixed. In this notation, denoting Φ′ ≡ F ′, we have:

Φ′ = Φ′x + Φ′u · u′. (4.1)

In coordinates, Eq. (4.1) is written

Di(Φ) =
∂Φ

∂xi
+ uki

∂Φ

∂uk
·

Hence, Di is the differential operator (“total differentiation” in xi)

Di =
∂

∂xi
+ uki

∂

∂uk
·

Let Gr be a continuous transformation group

x̄ = f(x, u, a), f(x, u, o) = x,

ū = ϕ(x, u, a), ϕ(x, u, o) = u
(4.2)

in the space Rn+m. The transformation (4.2) will also affect the derivatives
uki . This yields a continuous transformation group of the points (x, u, u′)
which is called the “first prolongation” of the group Gr and is denoted by
G̃r. If G1 is a one-parameter subgroup of the group Gr with the generator

X = ξi(x, u)
∂

∂xi
+ ηk(x, u)

∂

∂uk
, (4.3)

where

ξi =
∂f i(x, u, a)

∂a

∣∣∣∣
a=0

, ηk =
∂ϕk(x, u, a)

∂a

∣∣∣∣
a=0

, (4.4)

then the generator of the corresponding one-parameter subgroup G̃1 of the
group G̃r has the form

X̃ = X + ζki
∂

∂uk
, (4.5)

where ζ = ||ζki || is given by

ζ = η′ − u′ · ξ′. (4.6)

According to Equation (4.1), the “prolongation formula” (4.6) is written:

ζ = η′x + η′u · u′ − u′(ξ′x + ξ′u · u′),
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and in the coordinate notation it has the form:

ζki =
∂ηk

∂xi
+ uli

∂ηk

∂ul
− ukj

(
∂ξj

∂xi
+ uli

∂ξj

∂ul

)
, (4.7)

or
ζki = Di(η

k)− ukjDi(ξ
j),

where i = 1, . . . , n; k = 1, . . . ,m. If one considers derivatives up to the order
q instead of the first-order derivatives, one obtains a continuous transfor-
mation group referred to as a q-th prolongation of the group Gr.

4.2 Groups admitted by differential equations

Let u(σ) be the set of all partial derivatives of the order σ of the variables
u1, . . . , um with respect to x1, . . . , xn.

Definition 1.11. A system of differential equations

F ν(x, u, . . . , u(q)) = 0 (ν = 1, . . . , N) (4.8)

is said to admit a group Gr of transformations (4.2) or to be invariant with
respect to the group if the manifold in the space of variables (x, u, . . . , u(q))
determined by Eqs. (4.8) is invariant with respect to the qth-order prolon-
gation of the group Gr.

The basic property of the group Gr admitted by equations (4.8) is that
any transformation of the group Gr maps every solution of Eqs. (4.8) into
a solution of the same equations.

Let us consider the problem of finding a group admitted by a given
system of differential equations restricting ourselves to the case of first-order
equations

F ν(x, u, u′) = 0 (ν = 1, . . . , N). (4.9)

The condition of invariance for equations (4.9) with respect to the group
G1 with the infinitesimal generator (4.3) has the form

X̃F ν
∣∣
(4.9)

= 0 (ν = 1, . . . , N),

or, in in the expanded form:
(
ξi
∂F ν

∂xi
+ ηk

∂F ν

∂uk
+ ζki

∂F ν

∂uki

) ∣∣∣∣
(4.9)

= 0. (4.10)

Substituting the values of ζk form (4.7) in Eqs. (4.10) one obtains a system
of linear homogeneous differential equations with respect to the unknown
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functions ξi(x, u) and ηk(x, u) which is called the determining equations for
the group G1 admitted by Eqs. (4.9).

An important property of determining equations is that the complete set
of their solutions generates a Lie algebra with respect to the product (2.2).
Therefore, as it follows from Theorem 1.5, the family of the corresponding
transformations (4.2) is a continuous local group. The resulting group Gr

is the widest transformation group of the form (4.2) admitted by the system
of equations (4.10).

Likewise, one can obtain the determining equations for the group ad-
mitted by systems of higher-order differential equations. The procedure
requires the qth-order prolongation of the group G1.

Remark 1.1. The solution of determining equations can lead to an infinite-
dimensional Lie algebra L. Then, the system of differential equations under
consideration is said to admit an infinite group.

§ 5 Riemannian spaces

5.1 Metric tensor and the Christoffel symbols

Let gij be a symmetric tensor defined on an n-dimensional differentiable
manifold M. The manifold M together with the quadratic form

ds2 = gij(x)dx
idxj (5.1)

given in a neighborhood of every point of M is called an n-dimensional
Riemannian space and is denoted by Vn. The tensor gij is called the metric
tensor of the space Vn and the form (5.1) is referred to as the metric form
of the space. The quadratic form (5.1) is independent on the choice of the
system of coordinates and defines the “length ” ds of the tangent vector
dx = (dx1, . . . , dxn) to the manifold M at x.

We will be particularly interested in Riemannian spaces Vn of the signa-
ture (− · · ·−+). The latter means that there exists a system of coordinates
in a vicinity of every point x ∈ Vn in which the metric form (5.1) at x is
written

ds2 = −(dx1)2 − . . .− (dxn−1)2 + (dxn)2.

Such spaces Vn are known as spaces of a normal hyperbolic type [41], for in
this case linear differential equations of the second order

gij(x)uij + bi(x)ui + c(x)u = 0,

where gij is defined by the equations gikg
kj = δji , have the normal hyperbolic

type.
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Let us interpret the metric form (5.1) as the square of the distance
between the infinitesimally close points x and x + dx with the coordinates
xi and xi + dxi, respectively. Then the length of the curve

xi = xi(t), t0 ≤ t ≤ t1 (i = 1, . . . , n), (5.2)

in the space Vn is given by the integral

s =

t1∫

t0

Ldt, (5.3)

where

L =
√
gij(x)ẋiẋj, ẋi =

dxi(t)

dt
(i = 1, . . . , n).

If the curve (5.2) is an extremal of the integral (5.3), i.e. is a solution of
the Euler-Lagrange equations

d

dt

(
∂L
∂ẋi

)
− ∂L
∂xi

= 0 (i = 1, . . . , n), (5.4)

it is called a geodesic curve connecting the points x0 = x(t0) and x1 =
x(t1) of the space Vn. If we parametrize the curve (5.2) by its arc length
s measured from the point x0, i.e. we set t = s, we obtain from (5.4) the
following equations of geodesics in the space Vn :

d2xi

ds2
+ Γijk(x)

dxj

ds

dxk

ds
= 0 (i = 1, . . . , n). (5.5)

The reckoning shows that the coefficients of these equations are given by

Γijk =
1

2
gim
(
∂gmj
∂xk

+
∂gmk
∂xj

− ∂gjk
∂xm

)
, i, j, k = 1, . . . , n. (5.6)

They are known as the Christoffel symbols.

5.2 The Riemann tensor

By means of Christoffel symbols one can determine the covariant differenti-
ation in the Riemannian space Vn which maps any tensor again to a tensor.
We denote the covariant differentiation by a lower index after the comma.
In this notation, the covariant derivatives, e.g. of scalars and covariant and
contravariant vectors are written as follows:

a,i =
∂a

∂xi
;
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ai,j =
∂ai
∂xj
− akΓkij ;

ai,j =
∂ai
∂xj

+ akΓikj .

In what follows, we write only one comma in case of a repeated covariant
differentiation, e.g.

ai,jk ≡ (ai,j), k .

For scalars a the repeated covariant differentiation does not depend on
the order of differentiation:

a,ij = a,ji (i, j = 1, . . . , n).

However, repeated differentiation for tensors depends on the order of differ-
entiation, namely

ai,jk = ai,kj + alR
l
ijk,

ai,jk = ai,kj − alRl
ljk,

etc, where

Rl
ijk =

∂Γlik
∂xj
−
∂Γlij
∂xk

+ ΓλikΓ
l
λj − ΓλijΓ

l
λk (5.7)

are the components of a tensor called the Riemann tensor and known also
as the Riemann-Christoffel tensor.

It follows from the above formulae of repeated differentiation that suc-
cessive covariant differentiations of tensors are permutable if and only if the
Riemannian space Vn is flat, i.e

Rl
ijk = 0 (i, j, k, l = 1, . . . , n). (5.8)

Contracting the indices l and k in the Riemann tensor Rl
ijk one obtains

the Ricci tensor

Rij = Rk
ijk (i, j = 1, . . . , n). (5.9)

Multiplying the Ricci tensor by gij and contracting both indices, one obtains
the scalar curvature of the space Vn :

R = gijRij. (5.10)

Note, that in what follows Riemannian spaces are considered locally.
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Chapter 2

Generalized motions in Riemannian spaces

This chapter is dedicated to the problem of invariants of continuous
transformation groups in Riemannian spaces. Groups that have at least one
invariant will be called groups of generalized motions. The most significant
result for the theory is encapsulated in Theorem 1.12.

Literature: Killing [82], Eisenhart [29], Petrov [116], Ibragimov [50, 51,
53, 54].

§ 6 Transformations in Riemannian spaces

6.1 Representation of a metric by a manifold

The following interpretation of the metric tensor of a Riemannian space Vn
is convenient for our purposes.

Let xi and yij be real variables. Consider real valued functions gij(x)
defined on an open set of the space Rn and satisfying the conditions

det||gij(x)|| 6= 0, gij(x) = gji(x) (i, j = 1, . . . , n).

Let G be the n-dimensional manifold in the space of the variables xi, yij
defined by the equations

yij = gij(x) (i, j = 1, . . . , n). (6.1)

Definition 1.12. The manifold G given by equations

yij = ḡij(x) (i, j = 1, . . . , n)

is said to be equivalent to the manifold G and written G ∼ G if the system
of differential equations

ḡkl(f)
∂fk

∂xi
∂f l

∂xj
= gij(x) (i, j = 1, . . . , n) (6.2)

has a continuously differentiable solution

f = (f 1, . . . , fn),

satisfying the condition det f ′ 6= 0, where f ′ is a derivative of f.
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According to Definition 1.12, the set of all manifolds G determined by
equations (6.1) is separated into classes of equivalent manifolds. Every class
of equivalence is termed a metric tensor and is denoted by gij. If G ∼ G,
then the manifold G (or Eqs. (6.1) which is the same) is said to define the
metric tensor of the Riemannian space Vn in the system of coordinates {x},
and the manifold G in the system of coordinates {x̄} with x̄ = f(x), where
f is the solution of Eqs. (6.2). When a coordinate system is fixed, a point
x = (x1, . . . , xn) can be identified with a point of the Riemannian space Vn.

Let us determine the extent of arbitrariness to which one defines a co-
ordinate system in a Riemannian space Vn by specifying a manifold G (i.e.
the functions gij(x); i, j = 1, . . . , n). Let us assume that a change of coordi-
nates x̄ = f(x) leaves the function gij(x) defining the manifold G unaltered.
According to Eqs. (6.2), it means that the function f satisfies the equations

gkl(f)
∂fk

∂xi
∂f l

∂xj
= gij(x) (i, j = 1, . . . , n). (6.3)

We will see further (see Lemma 1.4 in Section 8.1) that Eqs. (6.3) define
transformations preserving the metric form of the Riemannian space Vn with
the metric tensor gij, i.e. the isometric motions in the space Vn. Thus, we
have the following result.

Theorem 1.10. A manifold G given by Eqs. (6.1) defines a system of
coordinates in a Riemannian space up to isometric motions.

From a local viewpoint, specifying a Riemannian space is equivalent to
specifying its metric tensor. Hence, functions gij(x) define a Riemannian
space Vn in a certain system of coordinates. Therefore, a Riemannian space
Vn in a given coordinate system can be identified with a manifold G.

6.2 Transformations of the metric

Let G1

x̄i = f i(x, a) (i = 1, . . . , n) (6.4)

be a group of transformations in Rn and let Vn be a Riemannian space with
a metric tensor gij(x). We will consider (6.4) as a group of transformations
of points in the space Vn in a given system of coordinates {x}. Namely, any
point x ∈ Vn with the coordinates xi is mapped to the point x̄ ∈ Vn with
the coordinates x̄i in the coordinate system {x}.

Transformations of the group G1 will also affect vectors tangent to the
space Vn. Let us find the corresponding transformation of the lengths of
tangent vectors. Let

dx = (dx1, . . . , dxn)
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be the tangent vector at the point x ∈ Vn, and

dx̄ = (dx̄1, . . . , dx̄n)

be the corresponding tangent vector at the point x̄ = f(x). The components
of the vector dx̄ are

dx̄i =
∂f i(x, a)

∂xk
dxk.

The length of the vector dx in the space Vn is given by

ds2 = gij(x)dx
idxj,

and the length of dx̄ is given by

ds̄2 = gij(x̄)dx̄
idx̄j. (6.5)

In order to compare the quantities ds2 and ds̄2 one should express them
through components of the differential at one and the same point, e.g. at
x̄. Due to the invariance of the metric form with respect to a change of
coordinates we have:

ds2 = ḡij(x̄)dx̄
idx̄j, (6.5′)

where ḡij(x̄) are components of the metric tensor in the system of coordi-
nates {x̄}, defined by Eqs. (6.2). The equations (6.5) and (6.5′) yield that
the change of the length ds of the tangent vector dx is completely deter-
mined by the difference of the functions gij(x̄) and ḡij(x̄), (i, j = 1, . . . , n).

6.3 Extension of group actions on metric manifolds

Thus, investigation of the change of the tangent vector length is reduced to
investigation of the corresponding transformation of functions gij(x) under
the action of (6.4). It is even more convenient to consider the transformation
of the manifold G given by Eqs. (6.1) rather than that of the functions
gij(x) themselves. It is clear from the previous section that transformations
of xi sould be accompanied by the transformations of the variables yij(i, j =
1, . . . , n) as components of a covariant tensor of the second order. Therefore
it is convenient to introduce the group G1 of extended transformations

x̄i = f i(x, a),

yij = ȳkl
∂fk(x, a)

∂xi
∂f(x, a)

∂xj
(6.6)

in the space of the variables xi, yij(i, j = 1, . . . , n). (It is suggested to verify
that the transformations (6.6) corresponding to the group of transforma-
tions (6.4) form a local group).



24 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

Let us find the generator X of the group G1.We will write the generator
of the group G1 in the form

X = ξi(x)
∂

∂xi
, (6.7)

where

ξi(x) =
∂f i(x, a)

∂a

∣∣∣∣
a=0

, i = 1, . . . , n.

According to Eqs. (6.6), the generator X of the group G1 has the form

X = ξi
∂

∂xi
+ ηij

∂

∂yij
,

where

ηij =
∂ȳij
∂a

∣∣∣∣
a=0

(i, j = 1, . . . , n).

It is assumed here that the expressions for the quantities ȳij are obtained
from Eqs. (6.6) via xi, yij and the group parameter a. Let us assume that
these expressions are substituted into Eqs. (6.6). Then, differentiating the
resulting identities with respect to the parameter a at a = 0 and using the
notation (6.7) and the conditions ȳij|a=0 = yij we obtain

ηklδ
k
i δ

l
j + ykl

∂ξk

∂xi
δlj + yklδ

k
i

∂ξl

∂xj
= ηij + ykj

∂ξk

∂xi
+ yik

∂ξk

∂xj
= 0,

whence

ηij = −
(
yik
∂ξk

∂xj
+ ykj

∂ξk

∂xi

)
(i, j = 1, . . . , n).

Thus, the group G1 of the extended transformations (6.6) has the generator

X = ξi(x)
∂

∂xi
−
(
yik
∂ξk(x)

∂xj
+ ykj

∂ξk(x)

∂xi

)
∂

∂yij
· (6.8)

The equation (6.8) implies that if X and Y are generators of two one-
parameter groups, then

[X Y ] = [X,Y ].

Hence, if Gr is a group of transformations (6.4) with a Lie algebra Lr, then
Eqs. (6.6) furnish a group Gr of transformations with an isomorphic Lie
algebra Lr. Indeed, if the commutators of a basis Xα(α = 1, . . . r) of Lr are

[XαXβ] = cγαβXγ (α, β = 1, . . . r),

then the operators Xα given by (6.8) span a Lie algebra Lr with the same
structure constants cγαβ because

[Xα Xβ] = [Xα, Xβ] = cγαβXγ (α, β = 1, . . . , r).
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§ 7 Transformations preserving harmonic co-

ordinates

7.1 Definition of harmonic coordinates

Before considering the issue of invariants of continuous groups of trans-
formations in Riemannian spaces let us demonstrate that the viewpoint,
accepted in the above paragraph, on the Riemannian space and groups of
transformations in it can be used in investigating transformations preserv-
ing harmonic systems of coordinates in Riemannian spaces. Here harmonic
coordinates are considered locally [87] omitting conditions on the infinity
accepted by Fock [32] in connection with the problem of uniqueness of har-
monic coordinates.

Let us consider a simplest problem leading to the notion of harmonic
coordinates. Let the scalar function u(x) be defined in the Riemannian
space Vn, and

∆2u = giju,ij ≡ gijuij − gjkΓijkui
be the second differential Beltrami parameter. If Vn is a flat space, then
Γijk = 0 in the Cartesian system of coordinates, so that the first derivatives
of u are not included into ∆2(u). In a general case, the conditions eliminating
the first derivatives of u from ∆2u have the form

Γi ≡ gjkΓijk = 0 (i = 1, . . . , n). (7.1)

The values Γi, as well as Christoffel symbols Γikl, are not tensor compo-
nents. Therefore, equations (7.1) represent some conditions selecting special
systems of coordinates. Systems of coordinates that meet these conditions
are referred to as harmonic. It is known [87], that harmonic coordinates
exist in any Riemannian space.

Let us write conditions (7.1) in terms of the manifold G of the space Vn
in a more convenient form. Let us transform expressions for Γi invoking
that covariant derivatives of the metric tensor equal to zero:

gij,k ≡
∂gij

∂xk
+ gilΓjlk + gjlΓilk = 0.

Assuming that k = j here and summing over j from 1 to n, one obtains

∂gij

∂xj
+

1√
|g|
gij
∂
√
|g|

∂xj
+ Γi = 0, (i = 1, . . . n).

Here we applied the equalities

Γjij =
∂ ln

√
|g|

∂xi
(i = 1, . . . , n)
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where g = det ||gij||. Thus,

Γi = − 1√
|g|

∂(
√
|g|gij)
∂xj

(i = 1, . . . , n),

and equations (7.1) take the form

∂(
√
|g|gij)
∂xj

= 0 (i = 1 . . . n). (7.2)

Consequently, a system of coordinates {x} in the Riemannian space Vn
is said to be harmonic if and only if functions gij(x)(i, j = 1, . . . , n) deter-
mining the manifold G (see § 6) satisfy the system of differential equations
(7.2).

7.2 Definition of a group conserving harmonic coor-
dinates

Let us assume that G is a continuous transformation group in the Rieman-
nian space Vn, {x} is a harmonic system of coordinates in the space Vn and
the manifold G is defined by equations (6.1) in this system of coordinates.
Transformation T ∈ G takes the manifold G over to a manifold T (G) ∼ G
with a system of coordinates {x̄} corresponding to it. The resulting system
of coordinates {x̄} is not harmonic in general, for both equations (7.1) and
equations (7.2) are not covariant (i.e. not invariant with respect to arbitrary
transformations of coordinates). It may occur further, that if there exist
two harmonic systems of coordinates in the space Vn, then transformations
of the group G leave one of the systems of coordinates harmonic and turn
the other one into a nonharmonic system of coordinates. Therefore, among
all transformation groups in the space Vn we single out those groups that
preserve harmonic coordinates as follows.

Definition 1.13. A group G of transformations in the space Vn is called
a group preserving harmonic coordinates if with all transformations T ∈ G
any harmonic system of coordinates in Vn goes into a harmonic system of
coordinates again.

In what follows, we find the most extended group G in every space Vn
preserving a harmonic system of coordinates. First, let us prove several
auxiliary statements.
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7.3 First lemma

Lemma 1.1. Let us assume that a manifold M in the space Rn is defined
by equations

ψσ(x) = 0 (σ = 1, . . . p),

let N ⊂M, and and Gr be a continuous transformation group in the space
Rn. If Ty ∈M for all T ∈ Gr and all y ∈ R, then

Xψσ|N = 0 (σ = 1, . . . , p) (7.3)

for all infinitesimal generators X of the group Gr.

Proof. It is sufficient to consider a case with a one-parameter group G1

with the operator X. According to the lemma conditions

ψσ(Ty) ≡ 0 (σ = 1, . . . , p)

for all points y ∈ N and all transformations T ∈ G1. Therefore, according
to (1.7),

Xψσ(y) =
∂(Tay)

∂a

∣∣∣∣
a=0

= 0 (σ = 1, . . . , p)

for every y ∈ N.

7.4 Second lemma

Lemma 1.2. The most extended group G of transformations in an ar-
bitrary Riemannian space Vn, with the extended group G admitted by a
system of differential equations

∂(
√
|y|yij)
∂xj

= 0 (i = 1, . . . n), (7.4)

where y = det ||yij||, ||yij|| = ||yij||−1, yij = yji, consists of linear transforma-
tions

x̄i = aikx
k + bi (i = 1, . . . n), (7.5)

where aik, b
i(ik = 1, . . . n) are arbitrary constants.

Proof. Let us introduce the notation

zij =
√
|y|yij (i, j = 1, . . . n),

θijk =
∂zij

∂xk
(i, j, k = 1, . . . , n),
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and write Equation (7.4) in the form

θijj = 0 (i = 1, . . . , n). (7.6)

Transformations (6.6) of the extended group G in variables zij take the form

x̄i = f i(x, a), (7.7)

J
( x̄
x

)
z̄kl = zkl

∂f i(x, a)

∂xk
∂f j(x, a)

∂xl
,

where J
(
x̄
x

)
is a Jacobian of the transformation x̄i = f i(x, a).

Let us find operators of the group G of transformations (7.7). Write
these operators in the form

X = ξi
∂

∂xi
+ ηij

∂

∂zij
,

where

ηij =
∂z̄ij

∂a

∣∣∣∣
a=0

ξi =
∂x̄i

∂a

∣∣∣∣
a=0

.

Acting by the operator ∂
∂a

∣∣
a=0

on equalities (7.7), one obtains

ξi =
∂f i(x, a)

∂a

∣∣∣∣
a=0

, ηij = zik
∂ξj

∂xk
= zjk

∂ξi

∂xk
− zij ∂ξ

k

∂xk
,

so that

X = ξi(x)
∂

∂xi
+

(
zik
∂ξj(x)

∂xk
+ zjk

∂ξi(x)

∂xk
− zij ∂ξ

k(x)

∂xk

)
∂

∂zij
· (7.8)

Let

X̃ = X + ζ ijk
∂

∂θijk
be an operator of a group obtained by dilating the group G to values
θijk (i, j, k = 1, . . . , n). The invariance conditions for equations (7.6) with
respect to the group G have the form

X̃θijj
∣∣
(6)

= ζ ijj
∣∣
(6)

= 0 (i = 1, . . . , n).

According to the prolongation formulae of operators to the first deriva-
tives and by virtue of (7.8) one has

ζ ijk = zil
∂2ξj

∂xl∂xk
+ zjl

∂2ξi

∂xl∂xk
− zij ∂2ξl

∂xl∂xk
+ (7.9)

+θilk
∂ξj

∂xl
+ θjlk

∂ξi

∂xl
− θijk

∂ξl

∂xl
θijl

∂ξl

∂xk
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so that the invariance conditions for equations (7.6) take the form

zjk
∂2ξi

∂xj∂xk
= 0 (i = 1, . . . , n). (7.10)

The values xi, zij(i, j = 1, . . . , n) in equations (7.10) play the part of inde-
pendent variables. Therefore, these equations are equivalent to equations

∂2ξi

∂xj∂xk
= 0 (i, j, k = 1, . . . , n),

determining an n(n+ 1)-parameter group of linear transformations (7.5).

7.5 Third lemma

Lemma 1.3. It is necessary and sufficient that equations (7.4) are invariant
with respect to the group G for the group G of transformations in the space
Vn to preserve the harmonic coordinates.

Proof. Let equations (7.4) be invariant with respect to the group G. Then,
any transformation T ∈ G takes any solution of equations (7.4) into a
solution of the same equations § 4. Thus, if the manifold G, defined by
equations yij = gij(x) (ij = 1, . . . , n), determines a harmonic system of
coordinates in the space Vn so that the functions gij(x) satisfy equations
(7.2), then a manifold T (G) ∼ G for any T ∈ G will be derfined by equations
ȳij = ḡij(x̄), where functions ḡij(x̄) satisfy equations (7.2) in variables x̄i.
It follows that the resulting system of coordinates {x̄} is harmonic for any
T ∈ G, i.e. the group G preserves harmonic coordinates in the space Vn.

Let us assume now that the group G preserves harmonic coordinates
in the space Vn. We apply Lemma 1.1 and take a manifold in the space
of variables xi, zij, θijk (i, j, k = 1, . . . , n) given by equations (7.6) as M,
and take the class of all representatives of the metric tensor of the space
Vn (i.e. of manifolds G equivalent to each other) governed by equations
(6.1) where gij(x) satisfy equations (7.2) as N ⊂ M. According to our
assumption, the group of transformations in the space of variables xi, zij, θijk
(i, j, k = 1, . . . , n), resulting from prolongation of the group G to the first
derivatives θijk , translates any point of manifold N to a point of M so that
we are under the circumstances of Lemma 1.1. Hence, equations (7.3) are
satisfied and have the form

X̃θijj
∣∣
N
= ζ ijj

∣∣
N
= 0 (i = 1, . . . , n), (7.11)

in the given case. Here the quantities ζ ijk are calculated according to Equa-
tion (7.9).
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Note that linear transformations of coordinates translate a harmonic
system of coordinates in the space Vn into a harmonic one. On the other
hand, one can easily see that a manifold resulting from some manifold G
upon various linear transformations (7.5) coincides (locally) with the space
of variables xi, yij (i, j = 1, . . . , n). Therefore, taking a manifold contained
in N as G one can see that the values xi, zij (i, j = 1, . . . , n) play the part of
free variables onN. Therefore, upon substitution of values (7.9) of quantities
G, equalities (7.11) take the form

zjk
∂2ξi

∂xj∂xk

∣∣∣∣
N

= 0 (i = 1, . . . n),

and are equivalent to (7.10). Thus, if a group G preserves harmonic coordi-
nates in space Vn then, equation (7.10) holds, and consequently, equations
(7.4) are invariant with respect to the extended group G.

7.6 Main theorem

Theorem 1.11. The most general group preserving harmonic coordinates
in the space Vn for any Riemannian space Vn, consists of linear transforma-
tions (7.5).

Proof. The theorem follows from Lemma 1.3 and Lemma 1.2.

§ 8 Groups of generalized motions

8.1 Isometric motions

Given a group G of transformations in a Riemannian space Vn. First, let us
find out how to formulate the condition that a group G is a group of motions
in the space Vn in terms of the manifold G in space Vn and the extended
group G. A group G is referred to as a group of motions in the Riemannian
space Vn if all transformations of the group G preserve the value of the basic
metric form of the space Vn : ds̄2 = ds2 [82], [29]. According to formulae
(6.5) and (6.5′), the group of transformations

x̄i = f i(x, a) (i = 1 . . . , n) (8.1)

is a group of motions in the space Vn with the metric tensor gij(x) (i, j =
1, . . . , n) if and only if

gij(x̄) = ḡij(x̄) (i, j = 1 . . . , n) (8.2)
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for all transformations (8.1).
Let us multiply both parts of equations (8.2) by

∂f i

∂xk
∂f j

∂xl

and sum over indices i, j from 1 to n. As a result, invoking equations (6.2)
one obtains equations (6.3). If f ′x 6= 0, then multiplying equations (6.3) by

∂(f−1)i

∂x̄k
∂(f−1)j

∂x̄l

and summing over i, j form 1 to n one obtains equations (8.2), thus proving
the following statement.

Lemma 1.4. A transformation group (8.1) is a group of isometric motions
in the space Vn if and only if the equations (6.3) hold.

Let G1 be a one-parameter group of transformations (8.1) with the in-
finitesimal generator (6.7). If G1 is a group of isometric motions in the
space Vn then by Lemma 1.4 equations (6.3) hold identically with respect
to the parameter a. Differentiating these identities with respect to a when
a = 0 one arrives to Killing equations

ξk
∂gij
xk

+ gij
∂ξk

∂xj
+ gjk

∂ξk

∂xi
= 0 (i, j = 1 . . . , n) (8.3)

with respect to coordinates ξi(x) of the infinitesimal generator X of the
group G1 and components gij(x) of the metric tensor of the Riemannian
space Vn. As it is known in Riemannian geometry, a continuous group Gr of
transformations in the space Vn is called a group of motions in the space Vn
if and only if the Killing equations (8.3) hold for all infinitesimal generators
of the group Gr. These equations are independent of the choice of system
of coordinates. Indeed, taking into account that ξi represent components of
a contravariant vector and using the identities

ξk
∂gij
∂xk

+ gij
∂ξk

∂xj
+ gjk

∂ξk

∂xi
≡ ξi,j + ξj,i (i, j = 1 . . . , n), (8.4)

where ξi = gikξ
k are covariant components of the vector ξk, one can write

equations (8.3) in the tensor form

ξi,j + ξj,i = 0 (i, j = 1 . . . , n). (8.5)
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Lemma 1.5. In order for the group G of transformations in the Rieman-
nian space Vn with the metric tensor gij(x) to be a group of motions in this
space it is necessary and sufficient that the manifold G given by equations
(6.1) is invariant with respect to the extended group G.

Proof. The necessary and sufficient condition of invariance of the manifold
G with respect to the group G consists in satisfaction of equations

X(gij(x)− yij)|G = 0 (i, j = 1, . . . , n)

for all infinitesimal generators (6.8) of the groupG. These equations coincide
with the Killing equations (8.5) by virtue of identities (8.4).

8.2 Generalized motions. Defect

Let us consider the general situation. Given a Riemannian space Vn with
the metric tensor gij(x) in a system of coordinates {x} and a group Gr of
transformations (8.1) in the space Vn. Let us check how the corresponding
manifold G varies with transformations of the extended group G. Every
transformation T ∈ G leads to the manifold T (G) (see § 3) equivalent to
the manifold G. This follows from the definition of equivalence (6.1) and
from construction of the group G. If the group G is a group of motions in
the space Vn, then according to Lemma 1.5, T (G) = G for any T ∈ G.

In the general case, the set

G(G) = ∪
T∈G

T (G)

of all images T (G) of the manifold G is a manifold in the space of variables
xi, yij(i, j = 1, . . . , n), containing the manifold G. As it is mentioned above
in § 3, G(G) is the smallest invariant manifold of the group G containing
the manifold G.

Let us obtain a formula for the defect δ = δ(G, G) of the manifold G
with respect to the group G. Since dimG = n, definition of the invariance
defect of the manifold G with respect to the group G in the given case is as
follows:

δ = dimG(G)− n.
Infinitesimal operators of the group Gr are written in the form

Xα = ξiα(x)
∂

∂xi
(α = 1, . . . , r), (8.6)

and ||ξαi,j(x) + ξαj,i(x)|| indicates a matrix with columns numbered by the
index α and rows numbered by the double subscript ij. Here, indices i and
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j after the comma indicate covariant differentiation in the space Vn like in
the Killing equations (8.5). The following lemma provides the unknown
formula of the defect.

Lemma 1.6.
δ(G, Gr) = rank ||ξαi,j(x) + ξαj,i(x)||. (8.7)

Proof. According to Theorem 1.6

δ(G, Gr) = rank ||Xα(gij(x)− yij)||G.
Substituting the values (6.8) of operators Xα here and applying equations
(8.4) we arrive to formula (8.7).

Corollary 1.3. If G ≈ G, then
δ(G, Gr).

In other words, the defect δ is independent of the choice of system of coor-
dinates in the space Vn.

Proof. Every column of the matrix ||ξαi,j + ξαj,i|| is a covariant tensor of
the second rank ξαi,j + ξαj,i (α is fixed). Therefore, with the change of
coordinates in space Vn, all columns of the matrix undergo linear transfor-
mation independent of the number α of the column. Obviously, this does
not change the rank of the matrix. According to the formula (8.7) this
implies that transformation of the manifold G to the equivalent manifold G
leaves the defect δ unaltered.

Thus, the invariance defect δ of the manifold G with respect to the group
Gr, being initially set in some system of coordinates, depends only on the
space Vn and the groupGr and not on the choice of the system of coordinates
indeed. Hence, we can write δ = δ(Vn, Gr) and discuss the defect δ of the
space Vn with respect to the group Gr of transformations in the space Vn.

Invoking that the metric tensor gij of the space Vn, as well as the in-
finitesimal generators (8.6) of the group Gr, are independent of the choice
of system of coordinates and applying Lemma (1.6) with its Corollary, one
arrives to the following result.

Theorem 1.12. Let a group Gr of transformations in the space Vn with
the metric tensor gij have a Lie algebra spanned by infinitesimal generators

Xα = ξiα
∂

∂xi
, α = 1 . . . , r.

Then the defect δ of the space Vn with respect to the group Gr is governed
by the following formula:

δ(Vn, Gr) = rank ||ξαi,j + ξαj,i||. (8.8)
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In particular, this theorem together with the Killing equations (8.5)
leads to the conclusion that a group Gr is called a group of motions in the
space Vn if and only if δ(Vn, Gr) = 0. If

δ(Vn, Gr) <
1

2
n(n+ 1).

Then, the group Gr is referred to as a group of generalized motions in the
space Vn.

8.3 Invariant family of spaces

Let us assume that G is a group of generalized motions in the Riemannian
space Vn, and δ = δ(Vn, G) is the corresponding defect. We suppose that a
definite system of coordinates {x}, with the metric tensor of the space Vn
that includes components gi,j(x) (i, j = 1, . . . , n) and with the manifold G
defined by equations (6.1), is introduced into the space Vn. According to
Section 8.2, the smallest invariant manifold of the group G, containing the
manifold G, is the manifold G(G) with the dimension

dimG(G) = n+ δ. (8.9)

Let us consider a manifold G∗ ⊂ G(G) given by equations

yij = g∗ij(x) (i, j = 1, . . . , n).

Here, the manifold G∗ is not necessarily equivalent to G. According to 6.1,
the manifold G∗ defines the vector Riemannian space V ∗n in the system
of coordinates {x}. Choosing various manifolds G∗ ⊂ G(G) we obtain a
δ-parameter family of n-dimensional Riemannian spaces. The family is
independent of the choice of system of coordinates in space Vn by the con-
struction and is referred to as an invariant family of spaces for the pair
(Yn, G) and is denoted by G(Vn).

The invariant family of spaces G(Vn) is characterized by the following
properties resulting directly from its definition.

1. Vn ∈ G(Vn).

2. If V ∗n ∈ G(Vn), then G(V ∗n ) ⊂ G(Vn).

3. G(Vn) is the smallest family of n-dimensional Riemannian spaces with
the properties 1 and 2.

The property 2 provides that δ(V ∗n , G) ≤ δ(Vn, G) for all V ∗n ∈ G(Vn). In
some cases, the following possibilities of a particular interest are realized.
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I. There exist such V ∗n ∈ G(Vn) that δ(V ∗n , G) = 0. In other words, a
group G of generalized motions in space Vn is a group of motions in
some space V ∗n ∈ G(Vn). In this case, the group G is called a trivial
group of generalized motions in Vn.

II. For any V ∗n ∈ G(Vn), one has δ(V ∗n , G) = δ(Vn, G), so that G(V ∗n ) =
G(Vn) for all V

∗
n ∈ G(Vn).

The second case plays an important part when one has to consider the
whole family G(Vn) at once rather than one separate space Vn.We will have
to deal with such a situation in sections 10.5 and 14.5, where the group G
will be represented by a group of conformal transformations in the space
Vn, which naturally emerges when on considers differential equations of the
second order.

8.4 Invariants of generalized motions

Let us consider the problem of finding invariants of the group G of trans-
formations in a Riemannian space Vn. According to (6.2), investigation of
the change of infinitesimal elements of the space Vn (or, in other word, el-
ements of spaces tangent to Vn) under transformations of the group G is
reduced to the investigation of the change of components gij of the metric
tensor. Invariants of the group G of transformations in the space Vn are
such functions

J = J(gij)

of 1
2
n(n + 1) components gij (gij = gji; i, j = 1, . . . , n) of the metric tensor

of space Vn, that satisfy the condition

J [gi,j(x̄)] = J [ḡij(x̄)] (8.10)

for all transformations (8.1) of the group G. For example, there are exactly
1
2
n(n + 1) functionally independent invariants Jij = gij (i, j = 1, . . . , n) for

groups of motions, for groups of conformal transformations such invariants
are 1

2
n(n+1)−1 relations of gij/gkl of components of the metric tensor (see

below).
Equation (8.10) has a simple geometric meaning. It signifies that the

value of function J at the point x̄ ∈ Vn obtained from the point x ∈ Vn upon
group transformation (8.1) coincides with the value of the same function at
the point x. In this case the value at the point x (the right-hand side of
equation (8.10)) is written in the system of coordinates {x̄} according to
considerations above in Section 6.2.
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It is convenient to investigate invariants in terms of the manifold G of
the space Vn and the extended group G of transformations (6.6. Let us
consider a function J = J(yij) and a point p on the manifold G with the
coordinates xi, yij = gij(x) (i, j = 1, . . . , n). Transformation G ∈ G takes
the point p into the point p̄ ∈ T (G) with the coordinates x̄i, ȳij = ḡij(x̄)
(i, j = 1, . . . , n). Equation (8.10) indicates that the value of the function J
on the projection of the point p̄ into the space of variables yij(i, j = 1, . . . , n)
coincides with the value of the same function on the projection of the point
Q ∈ G with the coordinates x̄i, yij = gij(x̄) (i, j = 1, . . . , n). This holds for
all x ∈ Vn and all T ∈ G. Therefore, identifying the projection of a cut of
the manifold G(G) by a hyperplane x = const. on the space of variables yij
(i, j = 1, . . . , n) with the cut itself, one can define the invariant of the group
G of transformations in the Riemannian space Vn as such function J(yij),
that takes one and the same value at all points of the manifold G(G) when
x ∈ Vn is fixed. This yields the following procedure for finding invariants.
According to § 3, the invariant family of spaces G(Vn) represents a family
of Riemannian spaces depending on δ = δ(Vn, G) of arbitrary functions.
Eliminating these arbitrary functions, one finds 1

2
n(n + 1) − δ correlations

between components of the metric tensor which are the same for all spaces
of the family G(Vn). Meanwhile, the number of these invariant correlations
cannot be more than 1

2
n(n+1)−δ, forG(G) is the smallest invariant manifold

of the group G containing the manifold G. The resulting correlations are the
unknown invariants. Thus, a group G of transformations in the space Vn has
1
2
n(n + 1) − δ(Vn, G) functionally independent invariants J(gij), by means

of which one can express any other invariant.
Let us demonstrate the above procedure for obtaining invariants by

means of a group of conformal transformations. Given a group of con-
formal transformations G in space Vn with the metric tensor gij. As it will
be shown in § 9 in the given case, the invariant family of spaces G(Vn)
coincides with the family of all spaces V ∗n conformal to the space Vn, and
the defect δ(Vn, G) = 1, so that G(Vn) depends on one arbitrary function.
This arbitrary function appears in the given case as follows. Let us assume
that the space Vn in the system of coordinates {x} is determined by the
manifold G, governed by the equation yij = gij(x) (i, j = 1, . . . , n), and that
the space V ∗n is conformal to the space Vn. Then, one can find such a mani-
fold G∗ determining the space Vn which is defined by equations yij = g∗ij(x),
where

g∗ij(x) = σ(x)gij(x), σ(x) 6= 0 (i, j = 1, . . . , n). (8.11)

Arbitrary choice of the function σ provides the invariant class G(Vn).
Now let us eliminate the arbitrary function σ from equations (8.11)

that determine the invariant class G(Vn). We suppose that, for example,
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g11 6= 0. Then, equations (8.11) yield σ(x) = g∗11(x)/g11(x) when i = j = 1.
Substituting this value of σ into the remaining equations (8.11) one arrives
to the equations

g∗ij(x)

g∗11(x)
=
gij(x)

g11(x)
(i, j = 1, . . . , n).

Hence, the values gij/g11 remain unaltered upon transformation of the space
Vn to any conformal space V ∗n and in the given case we have the following
invariants, well known in Riemannian geometry:

Jij =
gij
g11

(i ≤ j; i = 1, . . . , n; j = 2, . . . , n).

In the following two paragraphs we will dwell upon several examples of
groups of generalized motions.

§ 9 Groups of conformal transformations

9.1 Conformal transformations as generalized motions

A group Gr of transformations (8.1) in the space Vn with a basic metric
form (5.1) is called a group of conformal transformations in the space Vn
if equation ds̄2 = ν(x, a)ds2 holds with all transformations of the group Gr

when the function ν(x, a) 6= 0. According to 6.2, this equation is equivalent
to the fact that

gij(x̄) = ν(x, a)ḡij(x) (i, j = 1, . . . , n)

for every transformation (8.1) of the group Gr. Multiplying these equalities

by ∂f i

∂xk
∂fj

∂xl
and summing over i, j, one obtains

gij[f(x, a)]
∂f i(x, a)

∂xk
∂f j(x, a)

∂xl
= ν(x, a)gkl(x)(k, l = 1, . . . , n).

by virtue of equations (6.2). Now let us differentiate the resulting equalities
with respect to parameters aα (α = 1, . . . , r) when a = 0. Finally, we denote

µα(x) =
∂ν(x,a)
∂aα

∣∣
a=0

and obtain the generalized Killing equations

ξαi,j + ξαj,i = µαgij (9.1)

(α = 1, . . . , r; i, j = 1, . . . , n)

with respect to infinitesimal generators (8.6) of the group Gr of conformal
transformations in the space Vn. Here the same notation as in 8.1 is used.



38 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

In the same way as Killing equations (8.5) characterize a group of motions,
the generalized Killing equations (9.1) give a necessary and sufficient con-
dition in terms of infinitesimal generators for the group Gr to be a group of
conformal transformations in space Vn.

Let us find the defect δ(Vn, Gr) of a group of conformal transformations.
We assume that at least one of the functions µα(x) in equations 9.1 is not
vanishing (if all µα(x) = 0, then the group Gr is a group of motions, for in
this case equations (9.1) coincide with the Killing equations (8.5)). Then,
we have δ = rank ||ξαi,j + ξαj,i|| = rank ||µαgij|| = 1 according to the formula
(8.8). Therefore, according to 8.3, the invariant family of spaces Gr(Vn)
represents a one-parameter family of n-dimensional Riemannian spaces in
the given case.

Let us demonstrate that the family Gr(Vn) is governed by equations

yip
y11

=
gip(x)

g11(x)
(i = 1, . . . , n; p = 2, . . . n), (9.2)

where gij(x) is the metric tensor of the space Vn (it is assumed that g11(x) 6=
0). One can take y11 as an arbitrary parameter of the family Gr(Vn). The
family of Riemannian spaces determined by equations (9.2) contains the
space Vn, for equations (9.2) hold when yij = gij(x). Therefore, in order to
proof that the invariant lass Gr(Vn) is given by equations (9.2) it is sufficient
to show that equations (9.2) determine the invariant manifold of the group
Gr.

Let G1 be a one-parameter group Gr, X be an infinitesimal generator
(6.8) of the extended group G1 so that functions ξi(x) (i = 1, . . . , n) satisfy
the generalized Killing equations (9.1). Let us write equations (9.2) in the
form

ψip ≡
gip(x)

g11(x)
y11 − yip = 0 (i = 1, . . . , n; p = 2, . . . , n).

The invariance conditions of the manifold given by these equations with
respect to the group G1 have the form

Xψip
∣∣
(9.2)

= 0 (i = 1, . . . , n; p = 2, . . . , n).

First, let us consider these conditions for i = 1. We have

Xψ1p

∣∣
(9.2)

=

(
y1k

∂ξk

∂xp
+ ypk

∂ξk

∂x1
− 2

g1p(x)

g11(x)
y1k

∂ξk

∂x1

) ∣∣∣∣
(9.2)

+

+
y11

g11(x)

(
ξk
∂g1p(x)

∂xk
− g1p(x)

g11(x)
ξk
∂g11(x)

∂xk

)
.
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The right-hand expression in the first braces can be rewritten by means of
equation (9.2) in the form

y11
g11

(
g1k

∂ξk

∂xp
+ gpk

∂ξk

∂x1
− 2

g1p
g11

g1k
∂ξk

∂x1

)
.

Therefore, using the identities (8.4) and equations (9.1) one obtains

Xψ1p

∣∣
(9.2)

=
y11
g211

[g11(ξ1,p + ξp,1)− 2g1pξ1,1] =

=
y11
g211

[g11 · µg1p − g1p · µg11] = 0 (p = 2, . . . , n).

Likewise, one obtains equations

Xψip|(9.2) =
(
yik

∂ξk

∂xp
+ ypk

∂ξk

∂xi
− 2

gip
g11

y1k
∂ξk

∂x1

) ∣∣∣∣
(9.2)

+

+
y11
g11

(
ξk
∂gip
∂xk
− gip
∂xk
− gip
g11

ξk
∂g11
∂xk

)
=

=
y11
g211

[g11(ξi,p + ξp,i)− 2gipξ1,1] = 0

for values i = 2, . . . , n.
Thus,

Xψip|(9.2) = 0.

It means that equations (9.2) determine the invariant manifold of the group
G1. Since this is true for any one-parameter subgroup of the group Gr,
equations (9.2) set the invariant manifold of the group Gr.

Let us assume that V ∗n is a space of the family Gr(Vn) determined by
equations (9.2). If we write equations determining the corresponding man-
ifold G∗ of the space V ∗n in the form

yij = g∗ij(x) (i, j = 1, . . . , n)

and introduce the notation

σ(x) =
g∗11(x)

g11(x)
,

equations (9.2) yield
g∗ij(x) = σ(x)gij(x). (9.3)

Thus, the metric tensor g∗ij(x) of any space V ∗n ∈ Gr(Vn) satisfies equations
(9.3). On the contrary, if any Riemannian space V ∗n has a metric tensor
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g∗ij(x) determined by equations (9.3), then the manifold yij = g∗ij(x) lies in
the manifold defined by equations (9.2). At the same time, an arbitrary
function σ(x) 6= 0 in equations (9.3) corresponds to a one-parameter arbi-
trariness in equations (9.2). Since equations (9.3) determine the family of
all spaces conformal to Vn when an arbitrary function σ(x) 6= 0, the invari-
ant family of spaces Gr(Vn) for the group Gr of conformal transformations
in the space Vn coincides with the family of all spaces conformal to Vn.

9.2 Spaces with trivial and nontrivial conformal group

The invariance defect for a group of conformal transformations in the space
Vn is δ = I (see 9.1). Therefore, in the given case, one of the two possibilities
mentioned above at the end of 8.3 is carried out by all means.

If Gr is a group of conformal transformations in the space Vn and the
condition (I) in 8.3 holds, then the group Gr is a group of motions in a space
V ∗n conformal to the space Vn. In this case, the group Gr is referred to as
a trivial conformal group in the space Vn. If condition (II) holds, the group
Gr is not a group of motions in any space conformal to Vn. Then, the group
Gr is called a nontrivial conformal group in the space Vn, and the space Vn
is termed as a space with nontrivial conformal group.

In what follows four-dimensional Riemannian spaces of a normal hyper-
bolic type with a non-trivial conformal group are considered. The descrip-
tion of these spaces by R.F. Bilyalov will be given here (see [116], Ch.VII,
where bibliography is also given). We will formulate Bilyalov’s result in
terms of contravariant components gij of the metric tensor, invoking appli-
cation of Riemannian spaces in investigation of differential equations of the
second order with higher coefficients gij(x). The result is as follows: the
space V4 of the signature (−−−+) has a nontrivial conformal group if and
only if a metric tensor of the space is reduced to the form

||gij|| =




0 0 0 1
0 f(x4) ϕ(x4) 0
0 ϕ(x4) h(x4) 0
1 0 0 0


 , (9.4)

where functions f, ϕ, h satisfy the condition fh − ϕ2 > 0, by means of
transformation of coordinates and shift to a conformal space. In this case,
only the values 6, 7, 15 can take the maximum order of the conformal group.

Let us reduce tensors of the form (9.4) to a more convenient form. First,
let us show that instead of the three functions f, ϕ, h one can take only two.
Indeed, noting that h(x4) 6= 0 due to the inequality fh − ϕ2 > 0 and
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introducing the coordinates

x̄1 = x1, x̄2 = x2, x̄3 = x3, x̄4 =

∫
h(x4)dx4

we reduce tensor 9.4 to the form

||gij|| =




0 0 0 h
0 f ϕ 0
0 ϕ h 0
h 0 0 0


 .

Then, if we turn to a conformal space with the metric tensor g∗ij = hgij, we
obtain the space V ∗4 with a tensor in the form (9.4) with the function h = 1
and with arbitrary f(x4) and ϕ(x4) satisfying the condition f − ϕ2 > 0.

If we change the coordinates:

x1 = x̄1 + x̄4, x2 = x̄2, x3 = x̄3, x4 = x̄1 − x̄4

and introduce the individual notation

x̄1 = x, x̄2 = y, x̄3 = z, x̄4 = t,

the above result concerning spaces with a nontrivial conformal group can
be finally formulated as follows.

Theorem 1.13. The space V4 of a normal hyperbolic type has a nontrivial
conformal group if and only if there exists a conformal space V ∗n with a
metric tensor written in a certain coordinate system in the form

||gij|| =




−1 0 0 0
0 −f(x− t) −ϕ(x− t) 0
0 −ϕ(x− t) −1 0
0 0 0 1


 , f − ϕ2 > 0. (9.5)

The maximum order of the conformal group can assume only one of the
three values: 6, 7 or 15.

9.3 Conformally flat spaces

Further, the following theorem will be useful.

Theorem 1.14. [130] The order of the group of conformal transformations
in the space Vn takes its maximum value 1

2
(n+ 1)(n+ 2) if and only if the

space Vn is conformal to a flat space.
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For the sake of brevity we will term Riemannian spaces conformal to a
flat space as conformally flat spaces. For our further reference, let us write
out basis infinitesimal generators of the group of conformal transformations
in conformally flat spaces Vn. Obviously, it is sufficient to consider only a
flat space.

Let us assume that a Cartesian system of coordinates is introduced in
a flat n-dimensional Riemannian space Sn so that the metric tensor of the
space is defined by equations

yij = δij (i, j = 1, . . . , n),

where δij is a Kronecker symbol. (We assume that Sn has a positive defi-
nite metric form (5.1). When the form is indefinite, e.g. Sn has a normal
hyperbolic type, one can obtain a positive definite form by introducing the
corresponding number of imaginary coordinates). In this system of coordi-
nates, all Christoffel symbols Γijk are equal to zero, and ξi = ξi. Therefore,
the generalized Killing equations (9.2) have the form

∂ξi

∂xj
+
∂ξj

∂xi
= µ(x)δij (i, j = 1, . . . , n) (9.6)

for every operator

X = ξi(x)
∂

∂xi

of the group of conformal transformations in the space Sn. The general
solution of these equations is well-known and can be written as follows:

ξi = Aj(2x
ixj − |x|2δij) + aijx

j + bxi + ci (i = 1, . . . , n), (9.7)

where
|x|2 = (x′)2 + . . .+ (xn)2, aji = −aij,

and b, ci, Ai, a
i
j (i < j) are arbitrary constants.

According to the above theorem, the solution of (9.7) depends on 1
2
(n+

1)(n+2) arbitrary constants. If we set consecutively one of these constants
equals to 1 and others equal to 0 we obtain the following generators of the
group of conformal transformations in the flat space Sn :

Xi =
∂

∂xi
, Xij = xj

∂

∂xi
− xi ∂

∂xj
(i < j),

Z = xi
∂

∂xi
, Yi = (2xixj − |x|2δij) ∂

∂xj
, (i, j = 1, . . . , n). (9.8)
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Note that in order to obtain the generators of the group of conformal
transformations in a flat space with an indefinite metric form it is sufficient
to change the corresponding coordinates xi to imaginary ones in the obove
operators. Thus, there is no need to solve Eqs. (9.1) again for spaces with
an indefinite form.

§ 10 Other examples

10.1 Generalized motions with defect 2

Let us assume that the coordinates ξiα(x) (α = 1, . . . , r) of operators (8.6)
of the group Gr (r ≥ 2) of transformations in the space Vn (n ≥ 2) satisfy
the conditions

ξαk,l + ξαl,k = µαgkl (k, l = 1, . . . , n− 1),

ξαi,n + ξαn,i = ναgin (i = 1, . . . , n), (10.1)

for all α = 1, . . . , r.
If µα(x) = να(x)(α = 1, . . . r), then equations (10.1) coincide with the

generalized Killing equations (9.1) for groups of conformal transformations.
Here we consider the case when µα 6= να for at least one value of α.Moreover,
we assume that the vectors µ = (µ1, . . . , µr) and ν = (ν1, . . . , νr) are linearly
independent. One can easily verify that in this assumptions

rank ||ξαi,j + ξαj,i|| = 2,

so that δ(Vn, Gr) = 2 according to Eq. (8.8).

10.2 Examples of generalized motions in the flat space

Let us demonstrate that there exist a group with the properties mentioned
in Section 10.1. Consider a flat n-dimensional space Sn(n > 3) with the
metric tensor gij = δij (i, j = 1, . . . , n). Then, the equations (10.1) for every
value of α are written in the form

∂ξk

∂xl
+
∂ξl

∂xk
= µδkl (k, l = 1, . . . , n), (10.2)

∂ξn

∂xk
+
∂ξk

∂xn
= 0 (k = 1, . . . , n), (10.3)

∂ξn

∂xn
=
ν

2
· (10.4)
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Throughout this section the indices k, l run over the values from 1 to n− 1.
In particular, if the summation is assume in these indices, it is also taken
over the values from 1 to n− 1.

Equations (10.2) for ξ1, . . . , ξn−1 considered as functions of the variables
x1, . . . , xn−1 have the form (9.6). As for the variable xn upon which the func-
tions ξk depend as well, plays the role of a parameter. Therefore, according
to Eqs. (9.7), the general solution to Eqs. (10.2) has the form

ξk = Al(x
n)[2xkxl − ρ2δkl] + akl (x

n)xl + b(xn)xk + ck(xn) (10.5)

(k = 1, . . . , n− 1),

where
ρ2 = (x1)2 + . . .+ (xn−1)2, akl (x

n) = −alk(xn),
and Al, a

k
l (k < l), ck(k, l = 1, . . . , n− 1) and b are arbitrary functions of xn.

The equations (10.3) provide an over-determined system of equations
for the function ξn. The compatibility conditions of this system are written

∂

∂xn

[
∂ξk

∂xl
− ∂ξl

∂xk

]
= 0 (k 6= l; k, l = 1, . . . , n− 1).

Upon substituting the values

∂ξk

∂xl
− ∂ξl

∂xk
= 4(Alx

k − Akxl) + 2akl

obtained from Eqs. (10.5) they become

2(Ȧlx
k − Ȧkxl) + ȧkl = 0 (k, l = 1, . . . , n− 1),

where the dot indicates differentiation with respect to xn. It follows:

Ȧk = 0, ȧkl = 0,

hence all Ak and akl in (10.5) are constants. Equations (10.3) are easily
solved now and yield

ξn = −1

2
b(xn)ρ2 −

n−1∑

k=1

ċk(xn)xk + f(x)n,

where f(xn) is an arbitrary function. Thus, the general solution for equa-
tions (10.2) and (10.3) has the form

ξk = Al(2x
kxl − ρ2δkl) + akl x

l + b(xn) + ck(xn), k = 1, . . . , n− 1,

ξn = −1

2
ḃ(xn)ρ2 −

n−1∑

k=1

ċk(xn)xk + f(xn). (10.6)

The functions µ(x) and ν(x) are obtained from equations (10.2) and
(10.4), respectively. This completes the solution of Eqs. (10.2)-(10.4).
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Remark 1.2. Eqs. (9.1) provide the invariance conditions of the manifold
defined by Eqs. (9.2). Therefore, Eqs. (9.1) are the determining equations.
Hence, the set of all solutions for Eqs. (9.1) is a Lie algebra with respect to
the commutator of the operatorsX. On the contrary, the set of the operators

X = ξi
∂

∂xi

corresponding to the functions (10.6) is not a Lie algebra.

10.3 Particular cases from Section 10.2

Let us extract from the set of solutions (10.6) a subset that spans a Lie
algebra. We will set

akl = 0, ck = 0 (k, l = 1, . . . , n− 1), b = 0,

and assume that the constants Al(l = 1, . . . , n− 1) and the function f(xn)
are arbitrary. The operators

Xf = f(xn)
∂

∂xn

determine an infinite transformation group on a straight line xn. It is well
known from Lie’s theory that the maximum order of a finite subgroup of this
infinite group equals to three. One can take the operators corresponding to
the functions f = 1, f = xn, f = (xn)2 as generators of this three-parameter
subgroup. Taking arbitrary Al(l = 1 . . . , n− 1) and the indicated values of
the function f(xn) one obtains the following (n+2)-parameter group Gn+2

with the generators

X1 =
∂

∂xn
, X2 = xn

∂

∂xn
, X3 = (xn)2

∂

∂xn
,

Yk = (2xkxl − ρ2δkl) ∂
∂xl

(k = 1, . . . , n− 1). (10.7)

These operators have the following commutators:

[X1X2] = X1, [X1X3] = 2X2, [X2X3] = X3,

[XpYk] = 0, [YkYl] = 0 (p = 1, 2, 3; k, l = 1, . . . , n− 1),

so that operators (10.7) provide a basis of a Lie algebra indeed.
Substitution of the operators (10.7) in Eq. (8.8) yields

δ(Sn, Gn+2) = 2.

Hence the group Gn+2 with the generators (10.7) provides an example of a
group satisfying the conditions of Section 10.1.

We will discuss the invariant family of spaces and the invariants of the
resulting group at the end of Section 10.5.
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10.4 More particular cases from Section 10.2

Consider a particular case of equations (10.2)-(10.4) by letting µ = 0. Then
Eqs. (10.5) yield

µ = 4Al(x
n)xl + 2b(xn),

so that the condition µ = 0 provides

Al = 0, (l = 1, . . . , n− 1), b = 0.

Substituting these values of Al, b in Eqs. (10.6) we obtain the following
general solution to Eqs. (10.2), (10.3) when µ = 0 :

ξk = akl x
l + ck(xn), k = 1, . . . , n− 1,

ξn = −
n−1∑

k=1

ċk(xn)xk + f(xn). (10.8)

Here akl , c
k(xn), f(xn) have the same meaning as in Eqs. (10.6).

The set of the generators with the coordinates (10.8) does not span a Lie
algebra (see Remark 1.2 in Section 10.2). One can single out from the set
of solutions (10.8) the subsets that compose three Lie algebras given below.

The algebra of the dimension

r = n+
1

2
(n− 2)(n− 3)

spanned by the operators

X1 = eλx
n ∂

∂x1
− λeλxnx1 ∂

∂xn
(λ = const),

Xi =
∂

∂xi
(i = 2, . . . , n),

Xijx
j ∂

∂xi
− xi ∂

∂xj
(i < j; i, j = 2, . . . , n− 1). (10.9)

The algebra of the dimension r =∞ spanned by the operators

Xk =
∂

∂xk
(k = 1, . . . , n− 1),

Xkl = xl
∂

∂xk
− xk ∂

∂xl
(k < l; k, l = 1, . . . , n− 1),

Xf = f(xn)
∂

∂xn
, (10.10)
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where f(xn) is an arbitrary function.
The algebra of the dimension

r = (n− 1) +
1

2
(n− 2)(n− 3)

spanned by the operators

X1 = h(xn)
∂

∂x1
− h′(xn)x1 ∂

∂xn
,

Xi =
∂

∂xi
(i = 2, . . . , n− 1),

Xkl = xl
∂

∂xk
− xk ∂

∂xl
(k < l; k, l = 1, . . . , n− 1), (10.11)

where h(xn) is a fixed function and h′(xn) is its derivative. Depending on
the choice of the function h(xn) one obtains different Lie algebras.

Furthermore, there are Lie algebras with the bases obtained from the
operators (10.9) and (10.11) by replacing the variable x1 by any of the
variables x2, . . . , xn−1, as well as the Lie algebra of the group of isometric
motions in Sn corresponding to ν = 0.

The defect of groups corresponding to all extracted algebras is equal to
δ = 1. Among these groups there is an infinite group corresponding to an
infinite-dimensional Lie algebra spanned by the operators (10.10). One can
readily verify that the manifold given by equations

yik = δik (i = 1, . . . , n; k = 1, . . . , n− 1)

is the smallest possible invariant manifold of the extended group G∞ corre-
sponding to the group G∞ with the generators (10.10). It means that (see
Section 8.3) the invariant family of spaces G∞(Sn) is the set of the spaces
Vn with the metric tensor

gik = δik (i = 1, . . . , n; k = 1, . . . , n− 1),

gnn = σ(x),

where σ(x) is an arbitrary function of x = (x1, . . . , xn). The components
gik (i = 1, . . . , n; k = 1, . . . , n−1) of the metric tensor provide the invariants
of the group G∞ of transformations in the space Sn. There is no difficulty in
understanding the geometrical meaning of these invariants. If we consider
an n-dimensional sphere with the radius ρ and the center x ∈ Sn :

(dx1)2 + . . .+ (dxn)2 ≤ ρ2,

then the transformations of the group G∞ turn this sphere into an ellip-
soid with the semi axes equal to ρ in the subspace Sn−1 of the variables
x1, . . . , xn−1 and the semi axis of an arbitrary length in the direction of xn.
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10.5 Generalized motions with given invariants

Let us consider an example on finding a group of generalized motions with
given invariants. Consider the flat space Sn with the metric tensor gij = δij
and find a group G of generalized motions with the defect δ = 2, invariants
of which are

Jki = gki (k 6= i; k = 1, . . . , n− 1; i = 1, . . . , n),

Jkk =
gkk
g11

(k = 2, . . . , n− 1).

According to Section 8.4 the invariant family of spaces G(Sn) is determined
by the manifold G(G) defined as follows:

yki = 0 (k 6= i; k = 1, . . . , n− 1; i = 1, . . . , n),

ykk = y11 (k = 2, . . . , n− 1). (10.12)

In order to find the group with the above invariants one has to investigate
the invariance conditions of the manifold defined by Eqs. (10.12) with
respect to an unknown group G with generators X. These conditions are

Xyki
∣∣
(10.12)

= y11
∂ξk

∂xi
+ yii

∂ξi

∂xk
(k 6= i) (10.13)

(there is no summation over the index i in the last term) and

X(y11 − ykk)
∣∣
(10.12)

= 2y11

(
∂ξk

∂xk
− ∂ξ1

∂x1

)
(k = 2, . . . , n− 1) (10.14)

(there is no summation over k in the right-hand side of this equation).
Setting expressions (10.12) and (10.13) equal to zero and invoking that y11
and ynn are free variables, we obtain invariance conditions of the manifold
determined by equations (10.12) with respect to the group G in the form of
the following equations:

∂ξk

∂xl
+
∂ξl

∂xk
= 0 (k 6= l; k, l = 1, . . . , n− 1), (10.15)

∂ξk

∂xn
= 0,

∂ξn

∂xk
= 0 (k = 1, . . . , n− 1), (10.16)

2
∂ξk

∂xk
= µ (k = 1, . . . , n− 1), no summation in k. (10.17)
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The general solution of equations (10.15)-(10.17) generates a Lie algebra
since these equations represent the necessary and sufficient conditions of
invariance of some manifold. One can see that the system of equations
(10.15), (10.17) coincides with equations (10.2). Therefore, their general
solution is given by the formulae (10.5). Substituting (10.5) into equations
(10.16) we see that all coefficients

Al, akl (k < l), b, ck (k, l = 1, . . . , n− 1) (10.18)

are constants and ξn depends only on xn. Thus, the system of differential
equations (10.15)-(10.17) has the following general solution:

ξk = Al(2x
kxl − ρ2δkl) + akl x

l + bxk + ck (k = 1, . . . , n− 1),

ξn = f(xn). (10.19)

This solution depends on
1

2
n(n+ 1)

arbitrary constants (10.18) and one arbitrary function f(xn). As a result,
we have an infinite group with the generators

Xkl = xl
∂

∂xk
− xk ∂

∂xl
(k < l; k, l = 1, . . . , n− 1),

Xk =
∂

∂xk
, Yk = (2xkxl − ρ2δkl) ∂

∂xl
(k,= 1, . . . , n− 1),

Z = xk
∂

∂xk
, Xf = f(xn)

∂

∂xn
· (10.20)

The groups with the generators (10.7) and (10.10) considered above are
subgroups of the group with the generators (10.20). The groups with the
generators (10.7) and (10.20) have one and the same defect δ = 2 and
consequently the same invariants. Indeed, all invariants of a group G of
transformations in the space Vn are invariants of any subgroup G′ of the
group G. If

δ(Vn, G) = δ(Vn, G
′)

then the groups G and G′ have one and the same invariants.
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Open problems: Classification of Riemannian

spaces according to generalized motions

The following problems on local and global classification are important not
only for better understanding groups of generalized motions and the global
properties of spaces with nontrivial conformal group, but also for geometry
of partial differential equations.

Problem 1.1. Classify Riemannian spaces with respect to their local groups
of generalized motions.

Such problem in case of groups of isometric motions and conformal trans-
formations has been considered in Riemannian geometry for a long time (see
([116]) and the references therein). In these cases the Killing equations and
the generalized Killing equations serve as a starting point in investigation
of groups of isometric motions and conformal transformations, respectively.

In case of generalized motions equation (8.8) containing a higher degree
of arbitrariness than, e.g., generalized Killing equations (9.8), is the ana-
logue of Killing equations. The thing is that according to § 9, generalized
Killing equations (as well as Killing equations for groups of motions) de-
termine not only the defect but also the corresponding invariant family of
spaces. Therefore, beginning to consider problems of classification of Rie-
mannian spaces with respect to groups of generalized motions one comes
across the arbitrariness connected with the choice of an invariant family of
spaces. This complicates the problem to a great extent.

Problem 1.2. Investigate global properties of the Riemannian spaces V4
of normal hyperbolic type having locally a nontrivial conformal group, i.e.
such that there exists a nontrivial local group of conformal transformations
in a neighborhood of every point x ∈ V4. In particular, I think that if V4
is a topologically 1-connected space with locally nontrivial conformal group,
then the dimension of the maximal conformal group is the same at any point
in V4. Clarify if this hypothesis is correct or false.
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Chapter 3

Group analysis of second-order equations

This chapter is dedicated to investigation of symmetry properties of
partial differential equations of the second order. Theorem 1.17 on unique-
ness of linear conformally invariant equations in four-dimensional spaces of
normal hyperbolic type with nontrivial conformal group, proved in Section
14.3, will be used in the next chapter.

Literature: Lie [89], Ovsyannikov [110, 111], Ibragimov [52, 58].

§ 11 Determining equations

11.1 Determining equations for semi-linear equations

Consider the second order semi-linear differential equations

L[u] ≡ gij(x)uij + bi(x)ui + ψ(x, u) = 0 (11.1)

with n > 2 independent variables x = (x1, . . . , xn). We will assume that
their coefficients are analytic functions and the matrix ||gij(x)|| is non-
degenerate in some domain of the variables x. In what follows, the usual
notation for partial derivatives is used:

ui ≡
∂u

∂xi
, uij ≡

∂2u

∂xi∂xj
(i, j = 1, . . . , n).

It is convenient to write Eq. (11.1) in the following covariant form:

L[u] ≡ gij(x)u,ij + ai(x)u,i + ψ(x, u) = 0, (11.2)

where indices after the comma indicate covariant differentiation in the Rie-
mannian space Vn with the metric tensor

gij(x), where ||gij|| = ||gij||−1.

Due to the covariance of Eq. (11.2), the quantities

ai = bi + gjkΓijk (i = 1, . . . , n) (11.3)

behave as the components of a contravariant vector in the space Vn [111].
In what follows, all considerations are made in terms of the Riemannian
space Vn. The space Vn connected with a linear second-order equation was
used by Hadamard [41] in investigation of the Cauchy problem and later
by Ovsyannikov in investigation of group properties of linear second-order
differential equations [110], [111].
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Generators of the group G admitted by equations (11.1) are written in
the form

X = ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
·

Let us denote by
˜̃
X the prolongation of the operator X to the derivatives

of u up to the second order. The invariance condition of Eq. (11.1) with
respect to the group G (i.e. the determining equation, see § 4) is written in
the same form as in the case of a linear second-order equation (cf. [110]):

˜̃
XL[u] = λL[u], (11.4)

where λ is an arbitrary function. Extending to Eq. (11.4) Ovsyannikov’s
analysis of the determining equation for linear equations ([111], § 27) we
arrive at the following statement.

Lemma 1.7. The determining equation (11.4) yields:

λ = λ(x, u), ξi = ξi(x), η = σ(x)u+ τ(x).

Therefore the admitted operator X has the form

X = ξi(x)
∂

∂xi
+ [σ(x)u+ τ(x)]

∂

∂u
, (11.5)

where the unknown functions ξi(x), σ(x), τ(x) are to be found by solving
the determining equation (11.4).

The repeated action of the prolongation procedure given by Eqs. (4.5),
(4.7) provide the following second prolongation of the operator (11.5):

X̃ = X + ζi
∂

∂ui
,

˜̃
X = X̃ + ζij

∂

∂uij
,

where

ζi = Di

(
σ(x)u+ τ(x)

)
− ukDi(ξ

k) = σui + uσi + τi − uk
∂ξk

∂xi

and

ζij = Di(ζi)− uikDj(ξ
k) = σuij + uiσj + ujσi

+ uσij + τij −
(
uik

∂ξk

∂xj
+ ujk

∂ξk

∂xi

)
− uk

∂2ξk

∂xi∂xj
·
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Note that in order to calculate the twice prolonged operator
˜̃
X one has

to apply the prolongation formula (4.7) only to the variables ui and not to

all dependent variables u, ui in the operator X̃.

Substituting the resulting expressions of operators X̃ and
˜̃
X into equa-

tion (11.4) and collecting the like terms one has
(
ξk
∂gij

∂xk
− gkj ∂ξ

i

∂xk
− gki ∂ξ

j

∂xk
+ σgij

)
uij

+

(
2gijσj − gjk

∂2ξi

∂xj∂xk
− bj ∂ξ

i

∂xj
+ σbi + ξj

∂bi

∂xj

)
ui

+(gijσij + biσi)u+X(ψ) + gijτij + biτi

= λgijuij + λbiui + λψ.

All variables xi, u, ui, uij (i ≤ j; i, j = 1, . . . , n) in this equation are inde-
pendent. Therefore Eq. (11.4) is equivalent to the system of equations

ξk
∂gij

∂xk
− gkj ∂ξ

i

∂xk
− gki ∂ξ

j

∂xk
+ σgij = λgij (i, j = 1, . . . , n), (11.6)

2gijσj − gjk
∂2ξi

∂xj∂xk
− bj ∂ξ

i

∂xj
+ σbi + ξj

∂bi

∂xj
= λbi (i = 1, . . . , n), (11.7)

(gijσij + biσi)u+X(ψ) + gijτij + biτi = λψ. (11.8)

This system is obtained by equating the coefficients of uij, ui and the terms
free of ui and uij.

11.2 Covariant form of determining equations

Let us rewrite equations (11.6)-(11.8) in a tensor notation introduced by
writing equations (11.1) in the form (11.2). Equations (11.6) provide that
λ = λ(x). Using the notation

µ(x) = σ(x)− λ(x), ai = gkia
k, ξi = gkiξ

k

and
Kij = ai,j − aj,i (i, j = 1, . . . , n),

one can write equations (11.6) and (11.7) in the covariant form:

ξi,j + ξj,i = µgij (i, j = 1, . . . , n) (11.9)

and

σ,i =
2− n
4

µ,i −
1

2
(ajξ

j),i −
1

2
Kijξ

j (i = 1, . . . , n), (11.10)
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respectively [111].
The compatibility conditions for equations (11.10) have the form

σ,ij = σ,ji (i, j = 1, . . . , n)

and yield the following auxiliary system of equations:

(Kilξ
l),j − (Kjlξ

l),i = 0 (i, j = 1, . . . , n). (11.11)

Upon application of the identity ([111], § 28):

gijσ,ij + aiσ,i ≡ ξiE,i + µE,

where

E = −1

2

(
ai,i +

1

2
aiai +

n− 2

2(n− 1)
R

)
,

and R is a scalar curvature of the space Vn, equation (11.8) is rewritten

(ξiE,i + µE)u+ (X + µ− σ)ψ + gijτ,ij + aiτ,i = 0. (11.12)

Equations (11.9)-(11.12) represent a system of determining equations of
the group G admitted by equation (11.2).

11.3 General discussion of conformal invariance

Suppose that a group G is admitted by equation (11.2). Then, coordinates
ξi(x), σ(x), τ(x) of infinitesimal generators (11.5) of the group G satisfy all
the determining equations (11.9)-(11.12). Since equations (11.9) represent
the generalized Killing equations determining a group of conformal trans-
formations, then the “contraction” G◦ of the group G with the infinitesimal
generators

X◦ = ξi(x)
∂

∂xi
(11.13)

satisfying equations (11.9) is a subgroup of a group of conformal transfor-
mations in the space Vn. One can easily verify that if operators of the form
(11.5) generate a Lie algebra, then the corresponding operators (11.2) gen-
erate a Lie algebra as well. Meanwhile, the group G◦ coincides with all the
group of conformal transformations in the space Vn if and only if equations
(11.11), (11.12) are satisfied identically by virtue of equations (11.9). In case
if the group G◦ coincides with all the group of conformal transformations
in Vn we say that equation (11.2) is conformally invariant.

Given two equations of the form (11.2) with the higher coefficients gij(x),
ḡij(x) where gij(x), ḡij(x) are elements of the corresponding inverse matri-
ces so that gikg

jk = δji and ḡikḡ
jk = δji . If equations (6.2) are solvable for
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functions gij(x) and ḡij(x) then according to 6.1 one and the same Rie-
mannian space Vn corresponds to the considered equations (11.2) whatever
values the coefficients ai(x) and functions ψ(x, u) take. Equations of the
form (11.2), to which one and the same Riemannian space Vn corresponds,
will be further referred to as equations in space Vn.

Note that in every Riemannian space Vn there exists at least one confor-
mally invariant equation (11.2). One can easily verify this fact by taking all
coefficients ai equal to zero and setting the function ψ equal to n−2

4(n−1)Ru.

Then, equations (11.11) and (11.12) are satisfied identically for any oper-
ator (11.5) and for the operator (11.5) with the function τ(x) satisfying
L(τ) = 0, respectively. Therefore, operators (11.13) generate all the group
of conformal transformations in space Vn so that the constructed equation is
conformally invariant. In what follows, we will dwell upon conformally in-
variant equations in various Riemannian spaces and find all these equations
in spaces under consideration Vn.

11.4 Equivalent equations

The problem of group classification of Eqs. (11.2) is simplified if we use the
following transformations preserving the form of Eqs. (11.2):

a) x̄i = f i(x) (i = 1, . . . , n), ū = ϕ(x)u+ h(x),

b) L[u] = ν(x)L[u)], (11.14)

where

ϕ(x) 6= 0, ν(x) 6= 0, det

∣∣∣∣
∣∣∣∣
∂f i

∂xj

∣∣∣∣
∣∣∣∣ 6= 0.

Two equations are said to be equivalent if one of them is obtained from
the other by certain transformations (11.14). Then, all equations of the
form (11.2) (or of the form (11.1), which is the same) split into classes of
equivalence to be considered further.

§ 12 Linear equations with maximal group

12.1 Standard form of Eq. (11.2) with maximal group

According to 11.3 and § 9, conformally invariant equations in conformally
flat spaces Vn are equations (11.2) admitting a group of the maximum order.
Since the equivalence transformation (b) in 11.4 corresponds to the shift to
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a conformal space Ṽn, we arrive to the fact that if equation (11.2) admits a
group of the maximum order it is reduced to the form

∆u+ ai(x)ui + ψ(x, u) = 0 (12.1)

with some coefficients ai(x) and the function ψ(x, u). Here ∆ indicates the
operator

∆ =
n∑

i=1

± ∂2

(∂xi)2
,

where + and − are allocated in correspondence to the signature of the space
Vn. As it was numerously mentioned in the above chapter, one can restrict
oneself to consideration of spaces Vn with the positively defined metric form.
Therefore, we admit that an n-dimensional Euclidian space corresponds to
equation (12.1).

12.2 Determining equations for the linear equation

In the next section, we will be interested in linear equations admitting the
group of maximal order. First we note that the general linear equation of
the second order

gij(x)u,ij + ai(x)u,i + c(x)u+ f(x) = 0

can be reduced to the homogeneous equation

L[u] ≡ gij(x)u,ij + ai(x)u,i + c(x)u = 0 (12.2)

by the equivalence transformation ū = u + h(x), where h(x) is solution of
equation

gij(x)h,ij + ai(x)h,i + c(x)h+ f(x) = 0.

Therefore, in what follows, we will consider Eq. (12.2). In order to preserve
the homogeneity of Eq. (12.2) we will use, as equivalence transformations,
the transformations (11.14) by letting h ≡ 0 in (a).

The determining equations (11.9)-(11.11) are independent of the func-
tion ψ(x, u) and are the same for both linear and nonlinear equations (11.2).
Equation (11.12) contains the function ψ and for the linear equation (12.2)
it takes the form

(ξiH,i + µH)u+ L[τ ] = 0, (12.3)

where

H(x) = E(x) + c(x).
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Variables x and u in equation (12.3) act as independent variables, there-
fore this equation is equivalent to the following two equations

ξiH,i + µH = 0, (12.4)

L[τ ] = 0. (12.5)

Equations (11.9)-(11.11) and (12.4), (12.5) are determining equations
admitted by the linear homogeneous equation (12.2) [110]. Assuming that
ξi = 0 (i = 1, . . . , n) in these equations, we obtain µ = 0, σ =const. Mean-
while, all the determining equations are satisfied. It means that the group
G admitted by (12.2) contains the infinite subgroup G+ with the generators

X = u
∂

∂u
, Xτ = τ(x)

∂

∂u
,

where τ(x) is an arbitrary solution of equation (12.5). This subgroup is an
invariant subgroup of the group G [111]. In what follows, instead of the
group G, its factor-group G/G+ is considered with respect to the invariant
subgroup G+. Correspondingly, the function σ(x) in operators (11.5) is de-
termined with the accuracy up to the constant summand and the function
τ(x) = 0. Therefore, in case of linear equations (12.2), the infinitesimal
generator has the form

X = ξi(x)
∂

∂xi
+ σ(x)u

∂

∂u
· (12.6)

12.3 Conformally invariant equations

Let us find all linear conformally invariant equations of the second order
in the space Vn(n ≥ 3) having a group of conformal transformations of the
maximum order 1

2
(n+ 1)(n+ 2). According to the above reasoning, certain

equivalence transformations take these equations to the form

∆u = ai(x)ui + c(x)u = 0. (12.7)

In order to find all conformally invariant equations among equations (12.7),
one has to determine all coefficients ai, c satisfying the determining equa-
tions.

Equations (11.9) for a flat space have already been considered in § 9.
Their general solution ξi is known and leads to operators (9.8). In order to
find the remaining unknown functions (functions σ in operator (12.6) and
coefficients ai, c of equation (12.7)), one has to investigate the remaining
determining equations (11.10), (11.11) and (12.4).
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First let us consider equations (11.11). By definition of a covariant
derivative 5.2

(Kilξ
l),j =

∂(Kilξ
l)

∂xj
−Kplξ

lΓpij.

Therefore, one can also write equations (11.11) in the form

∂(Kilξ
l)

∂xj
− ∂(Kjlξ

l)

∂xi
= 0 (i, j = 1, . . . , n).

Let us rewrite these equations in a more convenient form for further calcu-
lations using the identities

∂Kij

∂xl
+
∂Kjl

∂xi
+
∂Kli

∂xj
= 0 (i, j, l = 1, . . . , n),

that follow immediately from definition of the tensor Kij. Invoking these
identities, one can write equations (11.11) in the form

ξl
∂Kij

∂xl
+Klj

∂ξl

∂xi
+Kil

∂ξl

∂xj
= 0 (i, j = 1, . . . , n). (12.8)

Since coordinates ξi of the operator (12.6) are known, one can derive coeffi-
cients ai of equation (12.7), which is invariant with respect to the conformal
group, from equation (12.8). With this purpose we substitute values of ξ i

sequentially for operators (9.8) of the conformal group. First let us take the
operators of translation Xl =

∂
∂xl
. For these operators ξkl = δkl , where the

index l under ξkindicates the number of the operator Xl. Therefore, in this
case equations (12.8) have the form

∂Kij

∂xl
= 0 (i, j, l = 1, . . . , n).

Taking into account these conditions and writing equations (12.8) for the
operator

Z = xl
∂

∂xl

with the coordinates ξl = xl(l = 1, . . . , n) we obtain

Kljδ
l
i +Kilδ

l
j = 0,

whence
Kij = 0 (i, j = 1, . . . , n). (12.9)

As it is well known, satisfaction of equations (12.9) is the necessary and
sufficient condition for

ai(x) =
∂ϕ(x)

∂xi
(i = 1, . . . , n).
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On the other hand, the equivalence transformation

L[u] ≡ e−νL[ueν ] = 0

of equation (11.2) transforms coefficients ai of this equation according to
the formula

āi = ai + 2
∂ν

∂xi
(i = 1, . . . , n).

If we take ν = −ϕ
2
, we obtain an equation of the form (12.7) with the

coefficients āi = 0. Suppose that such equivalence transformation has been
already carried out so that in equation (12.7) ai = 0 (i = 1, . . . , n).

Now let us consider equation (12.4) with the translation operators Xi =
∂
∂xi
. One has µ = 0 for these operators by virtue of equations (11.9). There-

fore, equation (12.4) has the form

∂H

∂xi
= 0 (i = 1, . . . , n).

Taking the dilation generator Z = xi ∂
∂xi

and using the resulting conditions,
one obtains from (12.4):

H = 0,

since by virtue of equations (11.9) µ 6= 0 for the operator Z. By definition
of the function H (see 12.2), one has H = c(x) for equation (12.7) with the
coefficients ai = 0(i = 1, . . . , n) so that in equation (12.7) c = 0.

Thus, if equation (12.7) is conformally invariant, it is equivalent to the
equation

∆u = 0. (12.10)

The above reasoning holds for the case of the space Vn of an arbitrary
signature.

It remains to consider equations (11.10) determining the function σ(x)
in operator (12.6). Substitution of the coordinates ξi of operators of trans-
lation Xk, rotation Xij, and dilation Z into equations (11.9) shows that
µ =const. for these operators. Therefore, equations (11.10), that in the
given case have the form

∂σ

∂xi
=

2− n
4

∂µ

∂xi
,

provide that σ =const. for the mentioned operators. This constant can
be chosen arbitrarily for according to 12.2 the function σ(x) is determined
with the accuracy up to the constant summand. Taking into account this
arbitrariness we take σ = 0 for all operators of translation and rotation,
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and σ = 2−n
2

for the dilation generator, respectively. The choice is made
for the sake of uniformity with the case of nonlinear conformally invariant
equations, see the following section. Equations (11.9) provide µ = 4xi for
operators Yi, so that in this case σ = (2 − n)xi+const. Let the arbitrary
constant be equal to zero and σ = (2− n)xi.

Thus, the group G, admitted by equation (12.10), has the following basis
operators

Xi =
∂

∂xi
,

Xij = xj
∂

∂xi
− xi ∂

∂xj
(i < j),

Yi = (2xixj − ||x||2δij) ∂

∂xj
+ (2− n)xiu ∂

∂u
, (i, j = 1, . . . , n)

Z = xi
∂

∂xi
+

2− n
2

u
∂

∂u
· (12.11)

The above result concerning linear differential equations admitting a
maximum order group can be formulated as follows.

Theorem 1.15. Any linear conformally invariant differential equation of
the second order in the space Vn(n ≥ 3) with a conformal group of the
maximum order 1

2
(n + 1)(n + 2) is equivalent to equation (12.10). The

factor group G/G+ of the group G admitted by equation (12.10) over the
infinite invariant subgroup G+ represents 1

2
(n+ 1)(n+ 2)-parameter group

with the basis infinitesimal generators (12.11).

Note that the condition n > 2 is of importance. If n = 2 the conformal
group is infinite, therefore we do not consider this case directly. Group
classification of linear equations of the second order with n = 2 was made
by S. Lie [89].

§ 13 Nonlinear equations with maximal group

13.1 Preliminaries

Let us consider nonlinear equations of the form (11.1) and find among them
all conformally invariant equations in space Vn (n ≥ 3) with a group of
conformal transformations of a maximum order. According to Section 12.1,
we will consider equations of the form (12.1). The reasoning used in Section
12.3 while solving the determining equations (11.11) for the linear equation
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(12.7) holds in the case of the equation (12.1) as well. Therefore one can
assume that ai = 0 (i = 1, . . . , n) in Eq. (12.1) and consider the equation

∆u+ ψ(x, u) = 0 (13.1)

with an arbitrary function ψ(x, u).
Let us find all nonlinear equations (with respect to the function ψ(x, u))

for which equation (13.1) is conformally invariant. In order to determine
such functions ψ one has to investigate equation (11.12) and operators (11.2)
will run all the set of operators of a conformal group of transformations in
a flat space Vn.

Function E (11.2) occurring in equation (11.12) is equal to zero in the
given case. Therefore equation (11.12) has the form

ξi
∂ψ

∂xi
+ (σu+ τ)

∂ψ

∂u
+ (µ− σ)ψ +∆τ = 0, (13.2)

and our problem is reduced to investigation of the latter equation.

13.2 Classifying equations

Let us write equation (13.2) for all infinitesimal generators of the group of
conformal transformations in a flat space Vn. According to formulae (9.8)
and equations (11.9) and (11.10), operators (11.5) have the following form
(there is no need to consider the rotation operators here):

Xi =
∂

∂xi
+ (σiu+ τi)

∂

∂u
,

Yi = (2xixk − |x|2δik) ∂

∂xk
+ [(σn+i + (2− n)xi)u+ τn+i]

∂

∂u
(i = 1, . . . , n),

Z = xi
∂

∂xi
+ (σou+ τo)

∂

∂u
, (13.3)

where σα(α = 0, 1, . . . , 2n) are arbitrary constants and τα are arbitrary
functions of x.

Substituting operators (13.3) into equation (13.2) we obtain

∂ψ

∂xi
+ (σiu+ τi)

∂ψ

∂u
− σiψ +∆τi = 0 (i = 1, . . . n), (13.4)

xi
∂ψ

∂xi
+ (σou+ τo)

∂ψ

∂u
+ (2− σo)ψ +∆τo = 0, (13.5)

(2xixk − |x|2δik) ∂ψ
∂xk

+ [(σn+i + (2− n)xi)u+ τn+i]
∂ψ

∂u
+
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[(2 + n)xi − σn+i]ψ +∆τn+i = 0 (i = 1, . . . , n). (13.6)

If we multiply every equation (13.4) by xi with the corresponding number
i and make summation with respect to i from 1 to n, and then eliminate
xi ∂ψ

∂xi
from the resulting equality and equation (13.5), we arrive to equation

[(xiσi − σo)u+ xiτi − τo]
∂ψ

∂u
+ (σo − xiσi − 2)ψ+

+(xi∆τi −∆τo) = 0. (13.7)

instead of equation (13.5). Further, by virtue of equations (13.5) and (13.4),
one has

(2xixk − |x|2δik) ∂ψ
∂xk

= [|x|2(σiu+ τi)− 2xi(σouτo)]
∂ψ

∂u
+

+(2xi(σo − 2)− |x|2σi)ψ + |x|2∆τi − 2xi∆τo (i = 1, . . . , n).

Therefore equations (13.6) can be written in the form

[(|x|2σi + (2− n− 2σo)x
i + σn+i)u+ |x|2τi − 2xiτ + τn+i]

∂ψ

∂u
− (13.8)

−[|x|2σi + (2− n− 2σo)x
i + σn+i]ψ + |x|2∆τi − 2xi∆τo +∆τn+i = 0

13.3 Separating the classifying equations into two cases

Let us solve equations (13.4), (13.7) and (13.8). Write equations (13.7) and
(13.8) in the form

A
∂ψ

∂u
− (ρ+ 2)ψ +B = 0 (13.9)

Ai
∂ψ

∂u
− ρiψ +Bi = 0 (i = 1, . . . , n), (13.10)

respectively. Here

ρ(x) = xiσi − σo, q(x) = xiτi − τo, B(x) = xi∆τi −∆τo,

ρi(x) = |x|2σi + (2− n− 2σo)x
i + σn+i,

gi(x) = |x|2τ − 2xiτo + τn+i,

Bi(x) = |x|2∆τi − 2xi∆τo +∆τn+i (i = 1, . . . , n), (13.11)

A = ρ(x)u+ q(x),

Ai(x) = ρi(x)u+ gi(x) (i = 1, . . . , n). (13.12)
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One can assume that A 6= 0 in what follows. Indeed, if A = 0, then
by definition (13.12) values A, ρ(x) = 0. Then equation (13.9) provides
ψ = 1

2
B(x), i.e. we arrive to the case of linear equations considered in the

previous section.
Let us consider two cases separately:
1◦. Ai = 0 (i = 1, . . . , n)
2◦. Ai 6= 0 at least for one value of i.

13.4 Solution of classifying equations in the first case

Let us consider the first case. According to formulae (13.12) and equations
(13.10), the following equations hold when Ai = 0 :

ρi = 0, gi = 0, Bi = 0 (i = 1, . . . , n),

or, according to notation (13.10)

|x|2σi + (2− n− 2σo)x
i + σn+i = 0 (i = 1, . . . , n), (13.13)

|x|2τi − 2xiτo + τn+i = 0 (i = 1, . . . , n), (13.14)

|x|2∆τi − 2xi∆τo +∆τn+i = 0 (i = 1, . . . , n). (13.15)

Equations (13.13), by virtue of the constancy σα(α = 0, 1, . . . , 2n), provide

σo =
2− n
2

, σα = 0 (α = 1, . . . , 2n). (13.16)

Therefore, one can write equations (13.4) and (13.9) in the form

∂ψ

∂xi
= − 1

A
τi

(
n+ 2

2
ψ −B

)
−∆τi (i = 1, . . . , n) (13.17)

and
∂ψ

∂u
=

1

A

(
n+ 2

2
ψ −B

)
, (13.18)

respectively. The consistency conditions for equations (13.7) and (13.8)
have the form
(
n+ 2

2
ψ −B

)(
n− 2

2
τi +

∂q

∂xi

)
+A

(
n+ 2

2
∆τi +

∂B

∂xi

)
= 0 (i = 1, . . . , n),

whence, when the function ψ(xu) is nonlinear,

n− 2

2
τi +

∂q

∂xi
= 0 (i = 1, . . . , n) (13.19)
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and
n+ 2

2
∆τi +

∂B

∂xi
= 0 (i = 1, . . . , n)

with respect to functions τi. Introducing the notation

ϕ =
2

2− nq ≡
2

2− n(x
iτi − τo), (13.20)

one can write equations (13.19) in the form

τi =
∂ϕ

∂xi
(i = 1, . . . , n). (13.21)

Equations (13.20) and (13.21) yield

∆ϕ =
2

2− n(2∆ϕ+ xi∆τi −∆τo),

whence

B ≡ xi∆τi −∆τo = −
n+ 2

2
∆ϕ.

Equation (13.18) takes the form

∂ψ

∂u
=
n+ 2

n− 2

ψ +∆ϕ

u− ϕ ·

The general solution of this equation is given by the formula

ψ = K(x)(u− ϕ)n+2
n−2 −∆ϕ, (13.22)

where K(x) is an arbitrary function. Substituting formula (13.22) into
equations (13.17) one obtains

(u− ϕ)n+2
n−2 · ∂K

∂xi
= 0 (i = 1 . . . , n),

whence K =const.
Thus, in the case 1◦ the conformally invariant equation (13.1) is equiv-

alent to equation

∆u+K(u− ϕ)n+2
n−2 −∆ϕ = 0

with the arbitrary function ϕ(x) and the constant K. Finally, the equiva-
lence transformation

ū = u− ϕ(x)
provides the following equation

∆u+Ku
n+2
n−2 = 0. (13.23)

One can easily verify that equation (13.23) admits a group with the basis
operators (12.11).
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13.5 Solution of classifying equations in the second
case

Let us consider the case 2◦. To be specific, it is assumed that Ai 6= 0.
Eliminating ∂ψ

∂u
from equations (13.9) and (13.10) when i = 1 one obtains

[A1(ρ+ 2)− Aρ1]ψ + AB1 − A1B = 0. (13.24)

Differentiation with respect to u yields

(ρ1(ρ+ 2)− ρρ1)ψ + (A1(ρ+ 2)− Aρ1)
∂ψ

∂u
+ ρB1 −Bρ1 = 0.

Substituting here the values of A1
∂ψ
∂u

and A∂ψ
∂u

from equations (13.10) and
(13.9), respectively, one obtains

ρ1ψ −B1 = 0.

Then, equation (13.10) leads to ψ = ψ(x), provided that i = 1 and invoking
the condition A1 6= 0.

Thus, the case 2◦ leads only to a linear function ψ.

13.6 Formulation of the result

Results of § 12, § 13 can be formulated in the following theorem.

Theorem 1.16. Any conformally invariant equation (11.1) in the space
Vn(n ≥ 3) with a conformal group of the maximum order 1

2
(n+1)(n+2) is

equivalent to the equation

∆(K)u ≡ ∆u+Ku
n+2
n−2 = 0, (13.25)

where ∆ is the Laplace operator and K is an arbitrary constant. Equation
(13.25) admits a group with basis infinitesimal generators (12.11).

Remark 1.3. If the constant K 6= 0, then a conformal group with opera-
tors (12.11) is the most extended group admitted by equation (13.25). In
this case, the constant K can be considered equal to either +1 or −1 de-
pending on the sign of K. Indeed, one has only to consider the equation
resulting from transformation ū = |K| n−2

4 u instead of equation (13.25) to
which it is equivalent. When n = 6+ 8l, l = 0, 1 . . . (and only with such n)
the constant K 6= 0 can be reduced to +1 using the corresponding dilation
of u.
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§ 14 Conformally invariant equations

14.1 General conformally invariant equation

It was demonstrated in § 12 that equation (12.10) is the only linear confor-
mally invariant equation of the second order (with the accuracy to equiva-
lence transformation) in a flat space Vn, which is also conformally flat. Let
us find out which equations (12.2) are conformally invariant when the space
Vn is not conformally flat. To this end we have to investigate equations
(11.11) and (12.4) that impose limitations on coordinates ξ i(i = 1, . . . , n),
in addition to generalized Killing equations (11.9), if equation (12.2) is set.
However, we assume that operators of a conformal group are given, i.e. so-
lutions of equation (11.9), and we consider equations (11.11) and (12.4) as
differential equations to determine coefficients ai and c of the conformally
invariant equations (12.2).

Equations (11.11) and (12.4) are linear and homogeneous with respect
to functions Kij and H. Therefore, these equations have a trivial solution

Kij = 0 (i, j = 1, . . . , n), H = 0. (14.1)

As it was mentioned in 12.3, when Kij = 0, equivalence transformations
can reduce coefficients ai of equations (12.2) to zero. On the other hand,
according to 11.2 and 12.2 one has

H = c− 1

2

(
ai,i +

1

2
aiai +

n− 2

2(n− 1)
R

)
, (14.2)

for equation (12.2), so that when ai = 0

H = c− n− 2

4(n− 1)
R.

Thus, the following lemma holds.

Lemma 1.8. If equation (12.2) satisfies conditions (14.1), then it is con-
formally invariant and equivalent to equation

∆u ≡ giju,ij +
n− 2

4(n− 1)
Ru = 0. (14.3)

Remark 1.4. The notation ∆ in equation (14.3) is due to the fact that
this operator, corresponding in case of Euclidian space with the Laplace
operator, is a natural generalization of the Laplace operator (or a wave
operator in case of the space Vn with the signature − . . .−+) on Riemannian
spaces [57].
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14.2 Conformally invariant equations in spaces with
trivial conformal group

In general case, Eq. (14.3) is not the only linear conformally invariant
equation in the space Vn. Let, e.g. the space Vn be a space with a trivial
conformal group. Select a space Ṽn conformal to the space Vn, where the
conformal group coincides with a group of motions so that in equations
(11.9) µ = 0. Consider equation (12.2) in the space Ṽn with the coefficients

ai = 0(i = 1, . . . , n), c =
n− 2

4(n− 1)
R + λ,

where λ is an arbitrary constant. The resulting equation

∆̃u+ λu = 0 (14.4)

is conformally invariant. Indeed, for equation (14.4) H = λ =const., so
that by virtue of condition µ = 0, equation (12.4) holds; equations (11.11)
obviously hold as well.

Let us assume that the spaces Vn and Ṽn have metric tensors gij(x),
and g̃ij(x) = σ(x)gij(x) where σ(x) 6= 0, respectively. Multiplying equation
(14.4) by the function σ(x) and writing the resulting equation as equation
(12.2) in space Vn (in this case only coefficients ai change), one obtains a
conformally invariant equation in space Vn. When λ 6= 0 this equation is
not equivalent to equation (14.3) in space Vn. Indeed, equivalence trans-
formations modify the values Kij as tensor components, and function H is
multiplied by a nonzero function. Therefore, one has

H 6= 0, Kij = 0,

for the resulting equation in space Vn, so that conditions (14.1) do not hold
for this equation though they hold for equation (14.3).

Thus, in any space Vn with a trivial conformal group, there exist a linear
conformally invariant equation of the second order, other than equation
(14.3).

14.3 Conformally invariant equations in spaces with
nontrivial conformal group

One has a different situation for spaces with nontrivial conformal group. In
particular, the following theorem holds.

Theorem 1.17. Any linear conformally invariant equation in every Rie-
mannian space V4 of normal hyperbolic type with nontrivial conformal group
is equivalent to equation (14.3).
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Proof. We have to prove that if equation (12.2) in space V4 with nontrivial
conformal group is conformally invariant, then conditions (14.1) hold for
this equation. As it was mentioned in 14.2, equations (14.1) are invariant
with respect to all equivalence transformations. Therefore, according to
Theorem 1.14, it is sufficient to consider spaces V4 with a metric tensor gij

of the form (9.5). Let us introduce the coordinates

x1 = x+ t, x2 = y, x3 = z, x4 = x− t.

One can easily verify that infinitesimal generators of a group of conformal
transformations in the indicated spaces include the following four operators
(the remaining operators are not required here):

Xi =
∂

∂xi
(i = 1, 2, 3), X4 = 2x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
· (14.5)

Let us solve equations (11.11), written in the form (12.8), for operators
(14.5). Taking operators Xi(i = 1, 2, 3) one obtains

∂Kij

∂xl
= 0 (i, j = 1, . . . , 4; l = 1, 2, 3) (14.6)

By virtue of equations (14.6), operator X4, for which ξ
4 = 0, yields

Klj
∂ξl

∂xi
+Kil

∂ξl

∂xj
= 0 (i, j = 1 . . . , 4)

or, upon substituting the values of coordinates ξ l of the operator X4,

2(K1j + δ1i +Ki1δ
1
j ) +

3∑

α=2

(Kαjδ
α
i +Kiαδ

α
j ) = 0.

These equations can be also written in the form

2Kij +K1jδ
1
i +Ki1δ

1
j −K4jδ

4
i −Ki4δ

4
j = 0 (i, j = 1, . . . , 4),

whence, invoking the skew symmetry of the tensor Kij, one has

Kij = 0 (i, j = 1, . . . , 4).

Now let us solve equation (12.4). We have µ = 0 for operators Xi(i =
1, 2, 3), therefore equation (12.4) for these operators takes the form

∂H

∂xi
= 0 (i = 1, 2, 3).
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Using these equations we write equations (12.4) for operator X4 in the form

µH = 0.

Substituting coordinates ξi of the operator X4 into generalized Killing equa-
tions one obtains that µ 6= 0. Therefore,

H = 0.

Thus, conditions (14.1) hold for any conformally invariant equation
(12.2) in the considered spaces Vn.

14.4 Relationship between conformally invariant equa-
tions in conformal spaces

The relations between operators ∆ in spaces conformal to each other can
be of help in investigating equation (14.3). These relations are given by the
following theorem.

Theorem 1.18. Let us assume that the two spaces Vn and Ṽn are conformal
to each other and have metric tensors

gij(x) and g̃ij(x) = e2θ(x)gij(x) (i, j = 1, . . . , n),

respectively, and operators ∆ and ∆̃ are calculated in spaces Vn and Ṽn by
formula (14.3). Then,

∆̃u = e−
n+2

2
θ∆(ue

n−2
2
θ). (14.7)

Proof. We have
e−

n+2
2
θ∆
(
ue

n−2
2
θ
)
≡

e−
n+2

2
θgij

(
ue

n−2
2
θ
)
,ij

+
n− 2

4(n− 1)
e−2θRu =

e−2θgij
{
uij + (n− 2)uiθj +

1

2
(n− 2)uθij +

1

4
(n− 2)2uθiθj −

−Γkijuk −
1

2
(n− 2)uΓkijθk

}
+

n− 2

4(n− 1)
e−2θRu. (14.8)

Using the formulae ([29], § 28)

gij = e2θg̃ij,
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Γkij = Γ̃kij − δki θj − δkj θi + g̃ij g̃
klθl, (14.9)

R = e2θ[R̃− 2(n− 1)g̃ij(θij − Γ̃kijθk)+

(n− 1)(n− 2)g̃ijθiθj],

connecting the corresponding values in spaces Vn and Ṽn, one can write the
right-hand side of equation (14.8) in the following form:

g̃ij{uij − Γ̃kijuk + nuiθj − g̃ij g̃klukθl+

+
1

2
(n− 2)u(θij +

1

2
(n− 2)θiθj − Γ̃kijθk + 2θiθj − g̃ij g̃klθlθk)}+

n− 2

4(n− 1)

{
R̃− 2(n− 1)g̃ij(θij − Γ̃kijθk) + (n− 1)(n− 2)g̃ijθiθj

}
u.

The resulting expression equals

g̃ij(uij − Γ̃kijuk) +
n− 2

4(n− 1)
R̃u ≡ ∆̃u,

so that equation (14.7) holds.

14.5 Nonlinear conformally invariant equations

The nonlinear equation

∆(K)u ≡ giju,ij +
n− 2

4(n− 1)
Ru+Ku

n+2
n−2 = 0, (14.10)

generalizing equation (13.25) to an arbitrary Riemannian space, as well as
linear equation (14.3), is conformally invariant for any space Vn.Meanwhile,
infinitesimal generators of the group admitted by equation (14.10) have the
form (12.6) with the function

σ =
2− n
4

µ,

where µ is determined by equations (11.9). One can readily verify that de-
termining equations (11.10)–(11.12) are satisfied, i.e. that equation (14.10)
is conformally invariant. The constant K in equation (14.10) can be re-
garded to take one of the following three values 0, 1,−1, similarly to the
case of equation (13.25).

Operators ∆(K) in spaces conformal to each other are also connected by
equation of the form (14.7). Indeed, using equation (14.7) and definition of
operator ∆(K) in equation (14.10), we obtain

∆̃(K)u = e−
n+2

2
θ∆(K)

(
ue

n−2
2
θ
)
.
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Open problem: Semi-linear conformally

invariant equations

Problem 1.3. Find all semi-linear conformally invariant equations of the
form (11.1) in every Riemannian space V4 of normal hyperbolic type with
nontrivial conformal group.

Solution of this problem would be an addition to results concerning
conformally invariant equations given in § 13 and § 14.

Chapter 4

The Huygens principle

In this chapter, the emphasis on a connection between the conformal
invariance and the Huygens principle on existence of a rear wave front in the
light propagation in curved space-times. Using this connection, Hadamard’s
problem on the Huygens principle is solved in four-dimensional Riemannian
spaces with nontrivial conformal group. An explicit solution to the Cauchy
problem is given for conformally invariant equations.

Literature: Hadamard [41, 46], Mathisson [102], Asgeirsson [6], Douglis
[28], Stellmacher [126, 127], Günther [38, 39], Ibragimov and Mamontov
[71], Ibragimov [57, 58, 59].

§ 15 Hadamard’s criterion

15.1 Definition of the Huygens principle

Let us consider the following Cauchy problem for a linear hyperbolic equa-
tion of the second order

L[u] ≡ gij(x)u,ij + ai(x)u,i + c(x)u = 0 (15.1)

with n independent variables x = (x1, . . . , xn). Find the solution u = u(x)
of equation (15.1) that satisfies given values

u
∣∣
M
, uν

∣∣
M

(15.2)

on an (n− 1)-dimensional space-like manifold M. I use here the notation

uν =
∂u

∂ν
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for the derivative of u in the direction of the normal ν to the manifold
M, while u|M and uν |M indicate the values of the corresponding functions
on the manifold M. The functions (15.2) are called the initial data, or
the Cauchy data, and the manifold M is termed an initial manifold or a
manifold bearing the initial data.

As in the previous chapter, Vn indicates an n-dimensional Riemannian
space with the metric tensor gij(x), where gij are elements of the matrix
||gij|| = ||gij||−1. Equation (15.1) will be called an equation in the space Vn.
Since in this chapter only hyperbolic equations (15.1) are considered, the
corresponding spaces Vn are spaces of a normal hyperbolic type.

Hadamard’s theory [41] of the Cauchy problem for equation (15.1) is
called a local theory meaning that it is limited by consideration of such
domain U of points x, that any two points of the domain U can be connected
by a unique geodesic (in the space Vn) totally belonging to the domain U. In
what follows, all considered points x belong to such domain U by default.

Hadamard’s formula for solving the Cauchy problem provides that in a
general case the value of the solution u of an arbitrary Cauchy problem for
equation (15.1) at the point xo depends on the values of initial data in that
part Mo of the manifold M which lies inside the characteristic conoid with
the apex at the point xo.

Definition 1.14. If solution of an arbitrary Cauchy problem for equation
(15.1) at every point xo depends on initial data only on the intersection of
the characteristic conoid with the apex at the point xo with the initial man-
ifold M (i.e. on the border Mo), then equation (15.1) is said to satisfy the
Huygens principle or that the Huygens principle holds for equation (15.1).

15.2 Formulation of Hadamard’s criterion

Hadamard [41] proved that when n is odd, the Huygens principle does
not hold for any equation of the form (15.1). This principle can not hold
also when n = 2 [42]. In this connection, note that equations with two
independent variables, considered by Hörnich [49] as equations satisfying
the Huygens principle, have peculiarities in the initial manifold. Therefore,
the Cauchy problem for these equations cannot be considered with arbitrary
initial data. Thus, the Huygens principle does not hold in the above sense.

For even n ≥ 4, Hadamard [41] derived the necessary and sufficient
condition of validity of the Huygens principle in terms of an elementary
solution of equation

L∗[v] ≡ gijv,ij + a∗iv,i + c∗v = 0 (15.3)
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conjugate to equation (15.1). The elementary solution (in Hadamard’s
sense) of equation (15.3) when n ≥ 4 is even and the pole is at the point
xo = (x1o . . . , x

n
o ) has the form

v =
V

Γn−2
2

−W lg Γ. (15.4)

Here V (xo, x) and W (xo, x) are analytical functions with respect to x,
Γ(xo, x) is the square of the geodesic distance between the points xo, x ∈ Vn.
The Hadamard’s criterion of validity of the Huygens principle consists in
fulfilment of the equation

W (xo, x) = 0 (15.5)

for all points xo, x.

Further we consider the case n = 4. Therefore, let us write the Hadamard
criterion for this case more explicitly using the formula that determines func-
tion V in elementary solution (15.4). For n = 4 this function is determined
by the following formula ([41] § 62-68):

V = exp



−

1

4

x∫

xo

(L∗[Γ]− c∗Γ− 8)
ds

s



 , (15.6)

where integration is made along the geodesic connecting the point xo and
x, and Γ(xo, x) is considered as a function of x. Equations expressing the
functionW via the function V [41] provide that, when n = 4, equation (15.5)
is equivalent to the condition that V (xo, x), being a function of x, satisfies
the conjugate equation (15.3) at all points x lying on the characteristic
conoid with the apex at xo. However, the characteristic conoid with the
apex at the point xo for equation (15.1) consists of all points x satisfying
equation

Γ(xo, x) = 0. (15.7)

Thus, the Hadamard criterion of validity of the Huygens principle for
equation (15.1) with n = 4 is written in the form of the equality

L∗[V ]

∣∣∣∣
Γ(xo,x)=0

= 0, (15.8)

which must hold for all points xo.

In what follows, the Hadamard criterion is used in the form of equation
(15.8).
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§ 16 Geodesic distance

16.1 Introduction

According to formula (15.6), in order to use the Hadamard criterion in the
form (15.8) one has to know the function Γ(x0, x) which is the square of
the geodesic distance between the points xo, x ∈ V4. We intend to use the
Hadamard criterion in case when the space V4, corresponding to equation
(15.1), has a nontrivial conformal group. We can limit our consideration to
spaces V4 with the metric tensor gij of the form (9.5) because the Huygens
principle is invariant with respect to equivalence transformations (see 12.2)
of equation (16.1) [41], [46]. In this section the function Γ(xo, x) is calculated
for spaces V4 with the metric tensor (9.5).

16.2 Outline of the approach

The general approach for computing the geodesic distance is as follows. Let
us assume that the point xo ∈ Vn is fixed, and the geodesic line passing
through the fixed point xo and an arbitrary point x ∈ Vn is parametrized
by means of the length of the arc s counted from the point xo. Note that
we consider such vicinity of the point xo where any point is connected with
xo by the only geodesic. Then coordinates xi of the point x are functions
xi = xi(s) (i = 1, . . . , n) satisfying the system of differential equations (see
5.1)

d2xi

ds2
+ Γijk(x)

dxj

ds

dxk

ds
= 0 (i = 1, . . . , n) (16.1)

and the initial conditions

xi|s=0 = xio,
dxi

ds

∣∣∣∣
s=0

= αi (i = 1, . . . , n). (16.2)

Here Γijk are Christoffel symbols of the space Vn and the constant vector
α = (α1, . . . , αn) satisfies the condition

gij(xo)α
iαj = 1, (16.3)

resulting from definition (5.1) of the arc length in the space Vn. Indeed, one
has

dxi =
dxi(s)

ds
ds (i = 1, . . . , n)

along the geodesic parametrized by means of the arc length. Substituting
these vales of differentials into formula (5.1), reducing the resulting equality
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by ds2 and then assuming that s = 0, one obtains equation (16.3) by virtue
of conditions (16.2).

Let
xi = xi(s;xo, α) (i = 1, . . . , n) (16.4)

be the solution of the problem (16.1), (16.2). The values αi can be obtained
(see, e.g., de Rham [25], § 27) as functions

αi = ψi(s;xo, x) (i = 1, . . . , n) (16.5)

from equations (16.4) when |α| are sufficiently small. Substituting the val-
ues (16.5) of quantities αi into condition (16.3) and solving the resulting
equation

gij(xo)ψ
i(s;xo, x)ψ

j(s;xo, x) = 1 (16.6)

with respect to s, one obtains the square of the geodesic distance

Γ(xo, x) = [s(xox)]
2

between the points xo and x in the space Vn.

16.3 Equations of geodesics in spaces with nontrivial
conformal group

Let us turn back to spaces V4 with the metric tensor (9.5). The following
notation is used further:

xo = (ξ, η, ζ, τ), x = (x, y, z, t), α = (α, β, γ, δ),

fo = f(ξ − τ), f = f(x− t), . . . , (16.7)

∆ = det ||gij|| = ϕ2 − f.
According to formulae (5.6) the following non-zero Christoffel symbols

(and symbols that differ by interchange of lower indices) are obtained

Γ1
22 =

1

2

(
1

∆

)′
, Γ1

23 = −
1

2

(ϕ
∆

)′
, Γ1

33 =
1

2

(
ϕ2

∆

)′
,

Γ2
12 = −Γ2

24 =
1

2

[
∆

(
1

∆

)′
+
ϕϕ′

∆

]
, Γ2

13 = −Γ2
34 = −ϕΓ2

12 −
ϕ′

2
,

Γ3
12 = −Γ3

24 =
ϕ′

2∆
, Γ3

13 = −Γ3
34 = −

ϕϕ′

2∆
,

Γ4
ij = Γ1

ij (i, j = 2, 3), (16.8)
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where the prime indicates differentiation with respect to the argument
ϕ′(σ) = dϕ(σ)

dσ
etc. By virtue of formulae (16.8), one can write equations

(16.1) in the form

d2x

ds2
+

1

2

(
1

∆

)′(
dϕ

ds
− ϕdz

ds

)2

+
ϕ′

∆

(
dϕ

ds
− ϕdz

ds

)
dz

ds
= 0,

d

ds

[
1

∆

(
dϕ

ds
− ϕdz

ds

)]
= 0,

d2z

ds2
+

1

∆

(
dϕ

ds
− ϕdz

ds

)
dϕ

ds
= 0,

d2(x− t)
ds2

= 0, (16.9)

where
dϕ

ds
= ϕ′

d(x− t)
ds

etc.

16.4 Solution of equations of geodesics

Let us solve the system of equations (16.9). Using the initial conditions
(16.2) and notation (16.7) one obtains

x− t = ξ − τ + (α− δ)s, (16.10)

ϕ
dz

ds
− dy

ds
=
γϕo − β

∆o

∆ (16.11)

from the second and the fourth equations of the system (16.9). Thus

d2z

ds2
=
γϕo − β

∆o

dϕ

ds
,

so that
ds

dz
=

1

∆o

[(γϕo − β)ϕ+ βϕo − γfo] (16.12)

and
dϕ

ds
=

1

∆o

[(γϕo − β)f + (βϕo − γfo)]. (16.13)

Due to equality (16.10), solutions of equations (16.13) and (16.12) have
the form

y = η + a(F − Fo) + b(Φ− Φo) (16.14)

and
z = ζ + a(Φ− Φo) + b(α− δ)s, (16.15)
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respectively, where

a =
γϕo − β
(α− δ)∆o

, b =
βϕo − γfo
(α− δ)∆o

, (16.16)

and F,Φ are primitives for functions f and ϕ, respectively. Here, as well as
in § 3, the following notation is used: Fo = F (ξ − τ), F = F (x− t) etc.

By virtue of equations (16.11) and (16.12) the first equation of the sys-
tem (16.9) takes the form

d2x

ds2
+
γϕo − β

∆2
o

[
1

2
(γϕo − β)f ′ + (βϕo − γfo)ϕ′

]
= 0,

whence,

x = ξ + (α + βa− α− δ
2

a2fo)s−
1

2
a2(F − Fo)− ab(Φ− Φo). (16.17)

Substituting expressions (16.10) for x − t into formulae (16.14), (16.15),
(16.17), and the value of x resulting from (16.17) into equation (16.10), one
arrives at the form (16.4) of solution of the system of equations (16.9) with
the initial conditions (16.2).

16.5 Computation of the geodesic distance

Let us write equation (16.3) now. The inverse matrix for (9.5) has the form

||gij|| =




−1 0 0 0

0 1
∆
− ϕ

∆
0

0 − ϕ
∆

f
∆

0

0 0 0 1



, ∆ = ϕ2 − f.

Therefore, substituting elements gij of this matrix into equation (16.3) and
using the notation (16.16) one obtains

gij(xo)α
iαj = −α2 + δ2 +

1

∆o

(β2 − 2βγϕo + γ2fo) =

= −(α− δ)(α+ δ + βa+ γb),

so that equality (16.3) takes the form

−(α− δ)(α + δ + βa+ γb) = 1. (16.18)
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Equations (16.16) provide

β = (α− δ)(afo + bϕo), γ = (α− δ)(aϕo + b), (16.19)

and formulae (16.14) and (16.15) yield

a =
1

A
[(y − η)(α− δ)s− (z − ζ)(Φ− Φo)],

b =
1

A
[(z − ζ)(F − Fo)− (y − η)(Φ− Φo)], (16.20)

where
A = (F − Fo)(α− δ)s− (Φ− Φ0)

2. (16.21)

When s is small formula (16.21) provide

A = −∆o(α− δ)2s2 + o(s2). (16.22)

On the other hand, equation (16.18) provides that α − δ 6= 0, and non-
degeneracy of the matrix ||gij|| entails that ∆o 6= 0. Thus, formula (16.22)
demonstrates that function A is non-vanishing when s 6= 0 is sufficiently
small.

Equalities (16.19) provide that

βa+ γb = (α− δ)(a2fo + 2abϕo + b2),

and equations (16.17) and (16.19) yield

2α = 2
x− ξ
s
− (α− δ)(a2fo + 2abϕo) +

1

s
[a2(F − Fo) + 2ab(Φ− Φo)].

Therefore writing α + δ = 2α− (α− δ), one has

α + δ + βa+ γb =

=
1

s
[2(x− ξ)− (α− δ)s+ a2(F − Fo) + 2ab(Φ− Φo) + b2(α− δ)s].

Substitute the values of (α − δ)s from formula (16.10) and the values of a
and b from formula (16.20) into the resulting expression for α+ δ+βa+γb.
One has

α + δ + βa+ γb =
1

s

{
x− ξ + t− τ + 1

A
[(y − η)2(x− ξ − t+ τ)−

−2(y − η)(z − ζ)(Φ− Φo) + (z − ζ)2(F − Fo)]
}
.
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Substitute this value α+ δ+ βa+ γb and the value for α− δ resulting from
(16.10) into equation (16.18) and multiply the latter by s2. Finally we arrive
to the following formula of the geodesic distance Γ = s2 :

Γ(xo, x) = x− τ)2 − (x− ξ)2

− x− ξ − t+ τ

(x− ξ − t+ τ)(F − Fo)− (Φ− Φo)2

[
(x− ξ − t+ τ)(y − η)2

− 2(Φ− Φo)(y − η)(z − ζ) + (F − Fo)(z − ζ)2
]
. (16.23)

§ 17 Conformal invariance and the Huygens

principle

17.1 Validity of Huygens’ principle in spaces with
nontrivial conformal group

Let us demonstrate that the Huygens principle holds for the equation (14.3)
in every space V4 with the metric tensor (9.5), which means in every space
V4 of normal hyperbolic type with nontrivial conformal group. In doing so
we will verify the Hadamard criterion in the form (15.8).

First let us rewrite equation (14.3) in spaces under consideration V4 in
a convenient form. Find the scalar curvature of these spaces. One has

R = gijRij = R44 −R11 − fR22 − 2ϕR23 −R33.

Let us calculate the Ricci tensor (5.9) by formula

Rij =
∂Γkik
∂xj
−

Γkij
∂xk

+ ΓlikΓ
k
jl − ΓlijΓ

k
lk

and using the relations (see (16.8))

Γi4j − Γi1j
∂Γkij
∂x4

= −
∂Γkij
∂x1

(i, j, k = 1, . . . , 4),

one has

R11 = R44, R22 = R23 = R33 = 0.

Therefore

R = 0
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and equation (14.3) in the spaces V4 has the form

giju,ij ≡ gijuij − gijΓkijuk = 0. (17.1)

Equations (16.8) provide the following components of values Γk = gijΓkij (k =
1, . . . , 4):

Γ1 = Γ4 =

−1

2
f

(
1

∆

)1

+ ϕ
(ϕ
∆

)1
− 1

2

(
ϕ2

∆

)1

=
1

2
(ϕ2 − f)

(
1

∆

)1

=

= −1

2

∆′

∆
= [ln(−∆)−1/2]1,

Γ2 = Γ3 = 0.

According to 12.3, upon equivalence transformation

L[u] = e−νL[ueν ]

with the function
ν = ln(−∆)1/4,

equation (17.1) with the coefficients ai = 0(i = 1, . . . , 4) turns into an
equivalent equation with the coefficients

āi = Γi (i = 1, . . . , 4),

i.e. into equation
giju,ij + āiu,i = gijuij = 0.

If we substitute here the values (9.5) of coefficients gij and use Theorem
(1.17), the following lemma holds.

Lemma 1.9. Every linear conformally invariant equation of the second or-
der in space V4 of a normal hyperbolic type having a nontrivial conformal
group is equivalent to equation

L[u] ≡ utt − uxx − f(x− t)uyy − 2ϕ(x− t)uyz − uzz = 0. (17.2)

In what follows coefficients f and ϕ of equation (17.2) are considered to
be smooth functions satisfying the hyperbolic condition f − ϕ2 > 0.

Theorem 1.19. Let us assume that a Riemannian space of normal hy-
perbolic type has a nontrivial conformal group and that equation (15.1)
is conformally invariant in this space. Then equation (15.1) satisfies the
Huygens principle.
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Proof. According to Lemma 1.9 it is sufficient to consider equation (17.2).
Let us find the function V in an elementary solution (15.4) according

to formula (15.6). As one can easily verify, operator L in equation (17.2) is
self-adjoint (L∗ = L), and c∗ = 0. Therefore,

L∗[Γ]− c∗Γ− 8 = L[Γ]− 8.

Note that the function Γ, determined by formula (16.23), has the form

Γ = (t− τ)2 − (x− ξ)2 + g(x− t, y, z).

Thus,
Γtt − Γxx = 4.

Invoking this equality, one has

L[Γ] = 8 = 2
x− ξ − t+ τ

(x− ξ − t+ τ)(F − Fo)− (Φ− Φo)2
×

[(x− ξ − t+ τ)f − 2(Φ− Φo)ϕ+ (F − Fo)]− 4.

Making use of the function A, defined by formula (16.21), one can write
the resulting equation for L[Γ]− 8 along the geodesic line in the form

L[Γ]− 8 = 2s
d lnA

ds
− 4.

Hence,

−1

4

x∫

xo

(L[Γ]− 8)
∂σ

σ
= −1

2

s∫

0

(
d lnA

dσ
− 2

σ

)
dσ = ln

σ√
A

∣∣∣∣
s

0

,

where the parameter s corresponds to the variable point x = (x, y, z, t).
According to the formula (16.22)

lim
σ→0

√
A(σ)

σ
= lim

σ→0

√
−∆o(α− δ)2σ2 + o(σ)2

σ
= (α− δ)

√
−∆o.

Therefore,

ln
σ√
A

∣∣∣∣
s

0

= ln
s√
A(s)

+ ln[(α− δ)
√
−∆o],

so that

−1

4

x∫

xo

(L[Γ]− 8)
dσ

σ
= ln

[
(α− σ)s

√
−∆o

A(s)

]
.
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Substituting here the values A(s) and (α − δ)s from formulae (16.21) and
(16.10), respectively, and invoking the notation (16.7), according to formula
(15.6) one obtains the unknown function V in the following form:

V = (x− ξ̄ − t+ τ)×
√

f(x− τ)− ϕ2(ξ − τ)
(x− ξ − t+ τ)[F (x− t)− F (ξ − τ)]− [Φ(x− t)− Φ(ξ − τ)]2 · (17.3)

When ϕ = 0, f = 1 this formula naturally leads to the function V = 1
known for the wave equation.

Function V, determined by formula (17.3) has the form V = V (x −
t, ξ− τ). Since equation (17.2) is self-adjoint, the Hadamard criterion (15.8)
holds.

Beginning with Hadamard’s work [41] the following issue has been dis-
cussed in literature over and over again, namely existence of equations of
the form (15.1) with four independent variables not equivalent (see 11.4) to
the wave equation for which the Huygens principle holds. Therefore, it is
of interest to find out with what functions f and ϕ equation (17.2), which
according to Theorem 1.19 satisfies the Huygens principle with any f and
ϕ, is not equivalent to the wave equation. This problem is considered in
the following subsection for equation (17.2) with the function ϕ = 0. In
this case it is possible to single out all functions f(x − t) for which equa-
tion (17.2) is not equivalent to the wave equation. For arbitrary equations
(17.2) it is also possible to obtain the necessary and sufficient conditions
of equivalence of equation (17.2) to the wave equation in the form of some
system of differential equations with respect to the functions f and ϕ. With
this purpose one should act similarly to the case ϕ = 0, see Section 17.2.
However we will limit our consideration with a more simple case mentioned
above. Actually this topic is closely connected with a more general problem
of classification of equations (17.2) formulated in the end of this chapter.

17.2 Discussion of the equivalence to the classical wave
equation

Equivalence transformations (see 11.4) of equation (15.1) take the corre-
sponding Riemannian space Vn to a conformal space at most. Therefore,
equation (17.2) is equivalent to the classical wave equation

2u ≡ utt − uxx − uyy − uzz = 0

if and only if the space V4 with the metric tensor (9.5) is conformally flat.
The necessary and sufficient condition for that is that the tensor of con-
formal curvature of the space V4 equals to zero ([29] § 28). This tensor,
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denoted by C l
ijk, is expressed by means of the tensor of space curvature by

the following formula:

C l
ijk = Rl

ijk +
1

n− 2
(δljRik − δlkRij + gikR

l
j − gijRl

k)+

R

(n− 1)(n− 2)
(δlkgij − δljgik) (i, j, k, l = 1, . . . , n). (17.4)

Let us consider equations (17.2) when ϕ = 0. In this case, according to
formulae (16.8), only the following Christoffel symbols are other than zero
for the corresponding space V4 :

Γ′22 = Γ4
22 = −

1

2

(
1

f

)′
, Γ2

22 = −Γ2
24 =

1

2
f

(
1

f

)′
.

The prime here, as well as in § 16, indicates differentiation with respect to
the argument.

In order to make tensor C l
ijk equal to zero it is necessary to make all

its components equal to zero. First, let us consider one component of the
tensor e.g. C1

212. Using expressions for the Richi tensor and scalar curvature
of the space V4 given in 17.1, one has

C1
212 = R1

212 +
1

2f
R11.

Equations (5.7) and (5.9) in the considered case yield

R1
212 =

1

2f
R11 = h

{
(ln
√
h)11 + (ln

√
h)12

}
,

where h = 1
f
. Therefore, equality C1

212 = 0 has the form of the following
differential equation of the second order for the function h :

(ln
√
h)11 + (ln

√
h)12 = 0.

This equation has the general solution

h(σ) = (a+ bσ)2

with arbitrary constants a and b.
Calculation of all components of the curvature tensor Rl

ijk of the space
V4 demonstrates that when f(σ) = (a + bσ)−2 and ϕ = 0, all components
of the Riemann-Christoffel tensor Rl

ijk are equal to zero. Then, obviously,

C l
ijk = 0 (i, j, k, l = 1, . . . , 4).

Thus, equation (17.2) with the function ϕ = 0 is equivalent to the wave
equation if and only if

f(x− t) = [a+ b(x− t)]−2,
where a and b are arbitrary constants satisfying the condition a2 + b2 6= 0.
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17.3 Solution of Hadamard’s problem

The problem on finding all equations (15.1) satisfying the Huygens principle
was formulated by J. Hadamard [41]. It is known as Hadamard’s problem.
The following theorem proved in [57] (see also [58]) solves Hadamard’s prob-
lem in the spaces V4 with nontrivial conformal group.

Theorem 1.20. Equation (15.1) in every space V4 of a normal hyperbolic
type with a nontrivial conformal group satisfies the Huygens principle if and
only if this equation is conformally invariant, i.e. equivalent to equation
(17.2).

Proof. We have already proved that every conformally invariant equation
(15.1) in spaces V4 with nontrivial conformal group satisfies the Huygens
principle (Theorem 1.19). Therefore, we have only to prove that if the space
V4 of normal hyperbolic type has a nontrivial conformal group, and equa-
tion (15.1) in this space satisfies the Huygens principle, then this equation
is conformally invariant. According to Lemma 1.8, for this purpose it is suf-
ficient to prove that if equation (15.1) in the space V4 satisfies the Huygens
principle, then conditions (14.1) hold for this equation.

Let us proceed from the Hadamard criterion (15.8). Let us assume that
it holds for equations (15.1) with four independent variables. Then, this
equation satisfies the following conditions:

H = 0.

Function H is determined via coefficients of equation (15.1) by formula
(14.2) and

gpq(Rjip,q + Cm
ijqLmp) =

=
5

2
gpq
(
KpiKqj −

1

4
gijg

mlKpmKql

)
(i, j = 1, . . . , 4), (17.5)

where

Lij = −Rij +
1

6
Rgij, Rjip = Ljp,i − Lji,p,

and Cijq, Rij and R are a tensor of conformal curvature (17.4), the Richi
tensor (9.5), and a scalar curvature (5.10) of the space V4 corresponding
to equation (15.1), respectively. Let us demonstrate that in case of spaces
V4 with nontrivial conformal group equations (17.5) provide that Kij = 0
(i, j = 1, . . . , 4). This will prove the theorem for together with the equality
H = 0, which as it was mentioned before is one of necessary conditions for
validity of the Huygens principle, we will have all equations (14.1).
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According to Theorem 1.19 conditions (17.5) for equation (17.2) hold.
On the other hand, all values Kij for equation (17.2) are equal to zero
since equation (17.2) is obtained from equation (14.3), satisfying the condi-
tions (14.1), by equivalence transformations. Hence, the right-hand sides of
equations (17.5) are equal to zero. However, in this case the tensor in the
left-hand side of equations (17.5), independent of minor terms of equation
(15.1), is equal to zero for all spaces V4 with nontrivial conformal group.
Thus, if some equation (15.1) in a space V4 with nontrivial conformal group
satisfies the Huygens principle, then, according to conditions (17.5), the
following equalities hold for this equation:

gpq(KpiKqj −
1

4
gijg

mlKpmKql) = 0 (i, j = 1, . . . , 4),

or, upon substitution of the value (9.5) of the tensor gij, equalities

K1iK1j + fK2iK2j + ϕ(K2iK3j +K3iK2j)+

+K3iK3j −K4iK4j +Ngij = 0 (i, j = 1, . . . , 4). (17.6)

Here, the notation

N =
1

2

{
fK2

12 +K2
13 −∆K2

23 + 2ϕK12K13 −K2
14 − fK2

24 − 2ϕK24K34 −K2
34

}
.

is introduced. Writing equations (17.6) consecutively for values of indices

(i, j) = (1, 2), (2, 2), (2, 3), (3, 3), (4, 4),

one obtains the following system of equations

fK2
12 + 2ϕ̄K12K13 +K2

13 −K2
14 −N = 0, (17.7)

K2
12 +K2

23 −K2
24 +

1

∆
N = 0, (17.8)

K12K13 −K24K34 − ϕK2
23 −

ϕ

∆
N = 0, (17.9)

K2
13 + fK2

23 −K2
34 +

f

∆
N = 0, (17.10)

K2
14 + fK2

24 + 2ϕK24K34 +K2
34 +N = 0. (17.11)

Let us eliminate the value N first from equations (17.8) and (17.9) and
then from equations (17.8) and (17.10). As a result we obtain

K12K13 −K24K34 = ϕ{K2
24 −K2

12} (17.12)
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and
K2

34 −K2
13 = f{K2

24 −K2
12}. (17.13)

Subtracting the left-hand side of equation (17.7) form the left-hand side of
equation (17.11) and invoking equalities (17.12) and (17.13) one obtains

K2
14 −∆ ·K2

23 = 0.

Whence, by virtue of the condition ∆ < 0,

K14 = K23 = 0. (17.14)

Therefore, equality (17.7) takes the form

(K13 + ϕK12)
2 −∆ ·K2

24 = 0,

whence, as above,
K13 = −ϕK12, K24 = 0. (17.15)

Substituting these values K13 and K24 into equation (17.13), one obtains

K2
34 −∆ ·K2

12 = 0,

so that K12 = K34 = 0. Now equations (17.14), (17.15) and the skew-
symmetry condition Kij = −Kji of the tensor Kij provide the necessary
equalities

Kij = 0 (i, j = 1, . . . , 4).

In connection with the proved theorem note the following. Examples
drawn by Stellmacher [126], [127] demonstrate that in case of n > 4 inde-
pendent variable there is no one-to-one connection between the conformal
invariance of an equation and validity of the Huygens principle for this equa-
tion. Namely, the mentioned examples by Stellmacher represent equations
(15.1) in a flat space Vn(n ≥ 6) satisfying the Huygens principle but not
equivalent to the wave equation in Vn, which means that according to The-
orem (12.3) they are not invariant with respect to the group of conformal
transformations in Vn. Nevertheless, one can observe the connection of the
Huygens principle with the invariance properties of the considered equa-
tions in this case either. Thus, when n = 6, the equation considered by
Stellmachr has the form

2u− 8

(1− r2)2u = 0,

where

2u ≡ utt −
5∑

i=1

uii, r2 = t2 −
5∑

i=1

(xi)2,
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i.e. it belongs to the class of equations that are invariant with respect to
groups of motions of the maximum order [111]. Passing over to dimensions
n > 6 one comes across equations satisfying the Huygens principle with even
weaker invariance properties. This is demonstrated by the corresponding
Stellmacher examples.

§ 18 Solution of the Cauchy problem

18.1 Reduction to a particular Cauchy problem

In this section we will solve the Cauchy problem

L[u] = 0, u|t=0 = g(x, y, z), ut|t=0 = h(x, y, z) (18.1)

for equation (17.2) with smooth initial data g and h. As in the case with the
wave equation, we can restrict our consideration by the Cauchy problem in
a particular form

L[u] = 0, u|t=0 = 0, ut|t=0 = h(x, y, z). (18.2)

Indeed, for the operator under consideration

L[u] = utt − uxx − f(x− t)uyy − 2ϕ(x− t)uyz − uzz (18.3)

the following identity holds

L

(
∂

∂t
+

∂

∂x

)
[u] ≡

(
∂

∂t
+

∂

∂x

)
L[u]. (18.4)

Therefore, if v and w are solutions of the Cauchy problem (18.2) with the
data vt|t=0 = g, wt|t=0 = gx − h, respectively, then function

u = vt + vx − w (18.5)

is the solution of the Cauchy problem in a general form (18.1).

18.2 Alternative form of Poisson’s solution for the
classical wave equation

Let us choose f = 1, ϕ = 0 in operator (18.3), i.e. take the classical wave
operator

2u = utt − uxx − uyy − uzz, (18.6)
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and consider the Cauchy problem

2u = 0, u|t=0 = 0, ut|t = h(x, y, z).

It is well known that its solution is given by Poisson’s formula

u(x, y, z, t) =
1

4πt

∫

st

∫
hds, (18.7)

where st is a sphere of the radius t with the center at the point (x, y, z).
Introducing polar coordinates on the plane of variables (y, z) for the points
(ξ, ηζ) lying on the sphere st, one has

ξ = ξ,

η = y + ρ cos θ

ζ = z + ρ sin θ,

where coordinates (ξ, ρ, θ) satisfy the conditions

(ξ − x)2 + ρ2 = t2; x− t ≤ ξ ≤ x+ t, 0 ≤ θ ≤ 2π.

In these coordinates
ds = tdξ dθ,

so that the Poisson formula (18.7) is written in the form

u(x, y, z, t) = (18.8)

1

4π

x+t∫

x−t

dξ

2π∫

0

h
(
ξ, y +

√
t2 − (ξ − x)2 cos θ, z +

√
t2 − (ξ − x)2 sin θ

)
dθ.

We will obtain now a similar formula for the arbitrary operator (18.3).

18.3 Fourier transform and solution of the particular
Cauchy problem

First let us solve the Cauchy problem (18.2) acting formally without any
explanations. Then, we will verify in Sec. 18.5 that the resulting formula
gives the solution of the problem under consideration indeed.

The Fourier transformation

û(x, λ, µ, t) =
1

2π

∫

R2

e−i(λy+µz)u(x, y, z, t)dydz,
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takes the Cauchy problem (18.2) into the Cauchy problem

L̂[û] = 0, û|t=0 = 0, ût|t=0 = ĥ(x, λ, µ) (18.9)

for the operator

L̂[û] = ûtt − ûxx + (fλ2 + 2ϕλµ+ µ2)û (18.10)

with the independent variables x and t. Here λ and µ are considered as
parameters.

Upon change of variables

x̄ = −1

2
[λ2F (x− t) + 2λµΦ(x− t) + µ2(x− t)],

t̄ =
1

2
(x+ t)

equation L̂[û] = 0 turns into equation

ûx̄t̄ + û = 0

with the known Riemannian function

R(ξ̄, τ̄ ; x̄, t̄) = Jo(
√

4(t̄− τ̄)(x̄− ξ̄)),

where Jo is the Bessel function. Here, as well as in previouos sections F
and Φ indicate the primary functions for f and ϕ, respectively. Turning
back to the previous variables x and t, we obtain the following Riemannian
function for equation L̂[û] = 0 :

R(ξ, τ ;x, t) =

Jo(
√

(x− ξ + t− τ)[λ2(Fo − F ) + 2λµ(Φo − Φ) + µ2(ξ − x− τ + t)]),

where
Fo = F (ξ − τ), F = F (x− t) etc.

Having the Riemann function one can solve the Cauchy problem (18.9)
using the formula

û(x, λ, µ, t) =
1

2

x+t∫

x−t

ĥ(ξ, λ, µ)R(ξ, 0;x, t)dξ.

Upon substitution of the value û(ξ, λ, µ), this formula is written in the form

û(x, λ, µ, t) =
1

4π

x+t∫

x−t

R(ξ, 0;x, t)

∫

R2

e−i(λη+µζ)h(ξ, η, ζ)dηdζ. (18.11)
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18.4 Inverse Fourier transform of the solution

The inverse Fourier transformation of the formula (18.11) provides the so-
lution of the initial Cauchy problem (18.2) in the following form

u(x, y, z, t) =
1

4π

x+t∫

x−t

dξ

∫

R2

I · h(ξ, η, ζ)dηdζ, (18.12)

where

I =
1

2π

∫

R2

e−i[λ(η−y)+µ(ζ−z)]Jo(k
√
Q(λ, µ))dλdµ.

Here Q(λ, µ) indicates the quadratic form

Q(λ, µ) = α2λ2 + 2bλµ+ c2µ2

with the coefficients

a2 = F (ξ)− F (x− t), b = Φ(ξ)− Φ(x− t), c2 = ξ − (x− t),

and
k =

√
x+ t− ξ.

Let us reduce the integral I to a more convenient form. The condition

−∆(σ) = f(σ)− ϕ2(σ) > 0

of hyperbolic property of the operator (18.3) entails that the quadratic form
of λ and µ is determined by the formula

q(σ;λ, µ) = f(σ)λ2 + 2ϕ(σ)λµ+ µ2

and−∆(σ) has a discriminant and is positively defined. Hence, the quadratic
form

Q(λ, µ) =

ξ∫

x−t

q(σ;λ, µ)dσ,

contained in the integral I, is also positively defined. Then, the discriminant
of the quadratic form Q(λ, µ) equal to a2c2− b2 is positive. Keeping this in
mind, make the change of variables λ, µ; η, ζ :

λ =
1

a

(
λ̄− b√

a2c2 − b2
µ̄

)
, µ =

a√
a2c2 − b2

µ̄
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and

η̄ − ȳ =
1

a
(η − y),

ζ̄ − z̄ =
1√

a2c2 − b2

[
a(ζ − z)− b

a
(η − y)

]
. (18.13)

In these variables
Q = λ̄2 + µ̄2

and
λ(η − y) + µ(ζ − z) = λ̄(η̄ − ȳ) + µ̄(ζ̄ − z̄),

dη dζ =
√
a2c2 − b2dη̄ dζ̄, dλ dµ =

dλ̄ dµ̄√
a2c2 − b2

·

Let us make use of the well-known formula of Fourier transformation
of spherically symmetric functions and properties of the Bessel function Jo.
Making some standard calculations one obtains

I =
1√

a2c2 − b2

∞∫

0

Jo(kr)Jo(ρr)rdr =
δ(k − ρ)

ρ
√
a2c2 − b2

,

where δ is the delta-function and

ρ =
√

(η̄ − ȳ)2 + (ζ̄ − z̄)2.

Using the resulting value of the integral I, one can readily calculate the
inner integral of formula (18.12). For this purpose it is convenient to shift
to polar coordinates ρ, θ on the plane of variables η̄, ζ̄ :

η̄ − ȳ = ρ cos θ, ζ̄ − z̄ = ρ sin θ.

Substituting here the values (18.13) of the quantities η̄− ȳ and ζ̄− z̄ one ob-
tains the functions η(ρ, θ) and ζ(ρ, θ). Now one can calculate the mentioned
integral. One has ∫

R2

I · h(ξ, η, ζ)dη dζ =

=

2π∫

0

dθ

∞∫

0

I · h(ξ, η(ρ, θ), ζ(ρ, θ))
√
a2c2 − b2ρdρ =

=

2π∫

0

h(ξ, η(k, θ), ζ(k, θ))dθ.
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Determining the values of functions η(k, θ), ζ(k, θ) from formulae (18.13)
one obtains ∫

R2

I · h(ξ, η, ζ)dη dζ =

=

2π∫

0

h(ξ, y + ak cos θ, z +
b

a
k cos θ +

√
a2c2 − b2
a

k sin θ)dθ.

Using this expression and introducing the notation

A =
√

(x+ t− ξ)[F (ξ)− F (x− t)],

B =
x+ t− ξ

A
[Φ(ξ)− Φ(x− t)], C =

√
t2 − (x− ξ)2 −B2, (18.14)

one can write formula (18.12) for solution of the Cauchy problem (18.2) in
the following final form:

u(x, y, z, t) =

T [h] ≡ 1

4π

x+t∫

x−t

dξ

2π∫

0

h(ξ, y + A cos θ, z +B cos θ + C sin θ)dθ. (18.15)

When f = 1, ϕ = 0 formula (18.15) obviously coincides with the Poisson
formula (18.8).

18.5 Verification of the solution

Let us verify now that formula (18.15) determines the solution of the Cauchy
problem (18.2) indeed. One meets no difficulty in verifying the satisfaction
of initial conditions

u|t=0 = 0, ut|t=0 = h(x, y, z)

for the function u determined by formula (18.15) and we will not dwell on
that.

Let us make a preliminary change of variables

α = x− t, β = x+ t

in order to check whether equations

L[u] = 0
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hold. Writing operator (18.3) in these variables one obtains

L[u] = 4uαβ + f(α)uyy + 2ϕ(α)uyz + uzz. (18.16)

The formula (18.15) with the variables α, β takes the form

u(α, y, z, β) =
1

4π

β∫

α

dξ

2π∫

0

h(ξ, y + A cos θ, z +B cos θ + C sin θ)dθ,

where, according to notation (18.14),

A =
√

(β − ξ)[F (ξ)− F (α)],

B =
β − ξ
A

[Φ(ξ)− Φ(α)], C =
√

(β − ξ)(ξ − α)− β2.

One can check that functions A,B, and C satisfy the equations

AαAβ = −1

4
f(α), Bβ =

B

A
Aβ, Cβ =

C

A
Aβ,

AαBβ + AβBα = −1

2
ϕ(α), BαBβ + CαCβ = −1

4
, (18.17)

Aαβ =
AαAβ
A

, Bαβ =
BαBβ

B
, Cαβ =

CαCβ
C
·

Now we can act by operator (18.16) on the function u(α, y, z, β) resulting
from the formula (18.15). One has

uαβ =
1

4π

β∫

α

{S +

2π∫

0

(hyyAαAβ cos
2 θ + hyz[(AαCβ+

AβCα) cos θ sin θ + (AαBβ + AβBα) cos
2 θ] + hzz[BαBβ cos

2 θ+

(BαCβ +BβCα) cos θ sin θ + CαCβ sin
2 θ])dθ}dξ, (18.18)

where

S =

2π∫

0

[hyAαβ cos θ + hz(Bαβ cos θ + Cαβ sin θ)]dθ.

Integrating by parts:

2π∫

0

hy cos θdθ =

2π∫

0

hyd(sin θ) = −
2π∫

0

sin θd(hy) =
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2π∫

0

[hyyA sin2 θ + hyz(B sin2 θ − C sin θ cos θ)]dθ

and doing the same with the second term of the integral S one transforms
the integral S to the form

S =

2π∫

0

{hyyAAαβ sin2 θ + hyz[(ABαβ +BAαβ) sin
2 θ−

−(ACαβ + CAαβ) cos θ · sin θ] + hzz[BBαβ sin
2 θ−

−(BCαβ + CBαβ) cos θ · sin θ + CCαβ cos
2 θ]}dθ.

Substituting the resulting expression of the integral S in (18.18) and
using equalities (18.17), one obtains

4uαβ =
1

4π

β∫

α

dξ

2π∫

0

−(f(α)hyy + 2ϕ(α)hyz + hzz)dθ. (18.19)

The function u(α, y, z, β) is readily differentiated with respect to the vari-
ables y and z. Therefore, acting by the operator (18.16) on the function
u(α, y, z, β) and using Eq. (18.19), one obtains

L[u] = 0.

It should be noted that peculiarities occurring in (18.18) are integrable,
so that all the above operations are true.

Thus, one can see that the function u(x, y, z, t), determined by formula
(18.15), is the solution of the Cauchy problem (18.2) indeed.

18.6 Solution of the general Cauchy problem

The formulae (18.5) and (18.15) demonstrate that solution of the Cauchy
problem (18.1) for equation (17.2) has the form

u =

(
∂

∂t
+

∂

∂x

)
T [q]− T

[
∂q

∂x
− h
]

(18.20)

with the same operator T as in formula (18.15).
The resulting formulae let to find solution of the Cauchy problem for all

equations (15.1) when n = 4, the corresponding space V4 has a nontrivial
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conformal group, and equation (15.1) satisfies the Huygens principle. In-
deed, we have demonstrated (Theorem 1.20) that every such equation is
equivalent to equation (17.2), for which the solution of the Cauchy problem
is known. However, equivalence transformations (see Sec. 11.4) consist of a
change of independent variables, a linear substitution of the function u and
a shift to a conformal space. Therefore, the solution of the Cauchy problem
for indicated equations (15.1) with n = 4, satisfying the Huygens principle,
is provided by formula (18.20) by the corresponding change of variables x
and y and application of Theorem 1.18.

§ 19 Spaces with trivial conformal group

19.1 Example of a space with trivial conformal group

In previous sections we considered equations (15.1) in four-dimensional Rie-
mannian spaces of normal hyperbolic type with nontrivial conformal group.
We could see that in every such space there exists the only linear equation of
the second order satisfying the Huygens principle. Now, let us draw exam-
ples of spaces V4 of a normal hyperbolic type with a trivial conformal group,
where none equation of the form (15.1) satisfies the Huygens principle.

Let us take a space V4 with the metric form

ds2 = −(1 + t)dx2 − dy2 − dz2 + dt2, t ≥ 0. (19.1)

First let us demonstrate that this space has a nontrivial conformal group.
Denoting

x1 = x, x2 = y, x3 = z, x4 = t,

as usually, we write the generalized Killing equations for the operator

X = ξi
∂

∂xi

of a group of conformal transformations in this space in the form of the
following two systems of equations:

∂ξ2

∂z
+
∂ξ3

∂y
=
∂ξ2

∂t
− ∂ξ4

∂y
=
∂ξ3

∂t
− ∂ξ4

∂z
= 0,

∂ξ2

∂y
=
∂ξ3

∂z
=
∂ξ4

∂t
=
µ

2
(19.2)

and

(1 + t)
∂ξ1

∂y
+
∂ξ2

∂x
= (1 + t)

∂ξ1

∂z
+
∂ξ3

∂x
= (1 + t)

∂ξ1

∂t
− ∂ξ4

∂x
= 0,
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∂ξ1

∂x
=
µ

2
− 1

2(1 + t)
ξ4. (19.3)

System (19.2) has the form of generalized Killing equations in a flat
three-dimensional space of variables (y, z, t). Therefore, (see § 9) system
(19.2) has the following general solution

ξ2 = A1(y
2 − z2 + t2) + 2A2yz + 2A3yt+By + C1z + C2t+ k1,

ξ3 = 2A1yz + A2(z
2 − y2 + t2) + 2A3zt+Bz − C1y + C3t+ k2,

ξ4 = 2A1yt+ 2A2zt+ A3(y
2 + z2 + t2) +Bt+ C2y + C3z + k3, (19.4)

where Ai, Ci, ki(i = 1, 2, 3) and B are arbitrary functions of x. One can
determine these functions by means of the system (19.3).

Substituting expressions (19.4) into system (19.3) and investigating the
conditions of convergence of the resulting equations with respect to the
function ξ1, one obtains

Ai = 0 (i = 1, 2, 3), C2 = C3 = 0,

ki = const (i = 1, 2, 3), B = k3.

Using these correlations, one arrives at the general solution of equations
(19.2), (19.3)

ξ1 =
1

2
Bx+ k1, ξ2 = By + Cz + k2,

ξ3 = Bz − Cy + k3, ξ4 = B(1 + t),

depending on the five arbitrary constants B,C, ki (i = 1, 2, 3).
Thus, the space V4 with the metric form (19.1) has a five-parameter

group G5 of conformal transformations. One can take

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
, X4 = z

∂

∂y
− y ∂

∂z
,

X5 =
1

2
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ (1 + t)

∂

∂t
(19.5)

as basis operators of the group. It means that the space V4 is a space with
a trivial conformal group. Indeed, according to § 9, spaces V4 of normal
hyperbolic type with nontrivial conformal group has a conformal group
depending on 6, 7 or 15 parameters.

One can readily indicate the space Ṽ4, conformal to the considered space
V4, where the group G5 with the basis infinitesimal generators (19.5) is a
group of motions. Note that if operator X with the coordinates ξ i(i =



1: LIE GROUPS IN MATHEMATICAL PHYSICS (1972) 97

1, . . . , n) is an operator of a one-parameter subgroup of a group of conformal
transformations in a space Vn with the metric tensor gij(x), so that the
generalized Killing equations with some function µ

ξi,j + ξj,i = µgi,j (i, j = 1, . . . , n)

hold, then operator X, with transition to a conformal space Ṽn with a metric
tensor

g̃ij(x) = eσ(x)gij(x) (i, j = 1, . . . , n), (19.6)

will satisfy the generalized Killing equations in the space Ṽn, and the cor-
responding function µ̃ equals

µ̃ = µ+ ξi
∂σ

∂xi
·

Therefore, the space Vn represents a space with a trivial conformal group if
and only if equations

ξiα(x)
∂σ(x)

∂xi
+ µα(x) = 0 (α = 1, . . . , r) (19.7)

are conjugate for all operators

Xα = ξiα
∂

∂xi
(α = 1, . . . , r)

of the group Gr of conformal transformations in the space Vn. If equations
(19.7) are conjugate, the group Gr is a group of motions in a space Ṽn
with the metric tensor (19.6), where σ(x) is the solution of the system of
equations (19.7).

In our case equation (19.7), written for operators X1, X2, X3 of the set
of operators (19.5), leads to the conditions σ = σ(t). Meanwhile, equation
(19.7) for the operator X4 holds identically and for the operator X5 has the
form

(1 + t)
dσ

dt
+ 2 = 0.

Eliminating the constant addend which is not important here, one can write
the solution of the resulting equation in the form

σ = ln(1 + t)−2.

Thus, the group G5 with the basis infinitesimal generators (19.5) is a group

of motions in the space Ṽ4 with the metric form

ds2 =
1

(1 + t)2
[−(1 + t)dx2 − dy2 − dz2 + dt2].
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19.2 Invalidity of Huygens’ principle

Now, let us demonstrate that there exist no equations of the form (15.1)
satisfying the Huygens principle in space V4 with the metric form (19.1).
With this purpose, we make use of equations (17.5). Calculating the tensor

Sij = gpq(Rijp,q + Cm
ijqLmp) (i, j = 1, . . . , 4) (19.8)

in the left-hand side of equations (17.5) for the metric form (19.1), one
obtains that

S11 = 4τ(1 + t)S44, S22 = S33 =
5

3
S44,

S44 = −
1

48(1 + t)4
· (19.9)

Equations (17.5) for the values of indices

(i, j) = (1, 1), (2, 2), (3, 3), (4, 4),

respectively, will have the form

1

1 + t
(K2

12 +K2
13 −K2

14)−N = −94

5
S44, (19.10)

1

1 + t
K2

12 +K2
23 −K2

24 −N = −2

3
S44, (19.11)

1

1 + t
K2

13 +K2
23 −K2

34 −N = −2

3
S44, (19.12)

1

1 + t
K2

14 +K2
24 +K2

34 +N = −2

5
S44, (19.13)

where

N =
1

2

[
1

1 + t
(K2

12 +K2
13 −K2

14) +K2
23 −K2

24 −K2
34

]
.

Subtracting term by term, one obtains from (19.11) and (19.12)

1

1 + t
K2

12 +K2
34 =

1

1 + t
K2

13 +K2
24. (19.14)

Addition of equations (19.11) and (19.12) term by term and substitution of
the quantities of expressions for N yields

K2
23 +

1

1 + t
K2

14 = −
4

3
S44. (19.15)
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In view of equation (19.14), equations (19.10) and (19.13) provide

1

1 + t
K2

12 +K2
34 = −

48

5
S44. (19.16)

Using equalities (19.10), (19.15), (19.16) and invoking that due to formulae
(19.9) S44 6= 0, one arrives to the contradictory condition 67S44 = 141S44.

Thus, one can see that whatever value of Kij is chosen, the necessary
conditions (17.5) of validity of the Huygens principle for equation (15.1) in
the space V4 with the basic metric form (19.1) do not hold. Hence, none
equation of the second order satisfies the Huygens principle in the space
under consideration V4.

19.3 Schwarzschild space

Let us consider the well-known in physics Schwarzschild space as a next
example. Making the corresponding choice of the system of units, one can
write the metric form of the space in spherical coordinates as follows:

ds2 = −
(
1− 1

r

)−1
dr2 − r2(dθ2 + sin2 θdϕ2) +

(
1− 1

r

)
dt2.

The Schwarzschild space is a space V4 of a normal hyperbolic type with a
trivial conformal group. A group of conformal transformations in the space
corresponds to a four-parameter group of motions generated by rotation in
a three-dimensional space of variables (x, y, z) and translation with respect
to time t = x4.

The Schwarzschild space satisfies equation

Rij = 0 (i, j = 1, . . . , 4).

Therefore, tensor Sij for this space is also equal to zero according to formula
(19.8). Bearing this in mind one can demonstrate that the only solution of
equations (17.5) in this case is Kij = 0 (i, j = 1, . . . , 4). It means that if the
Schwarzschild space contains equation (15.1) satisfying the Huygens princi-
ple then conditions (14.1) should hold for this equation, i.e. this equation
is equivalent to equation (14.3). However, the Hadamard criterion (15.8)
for equation (14.3) in the Schwarzschild space demonstrates that condition
(15.8) does not hold for this equation. This follows also from results of
McLenaghan [103]. Thus, the Schwarzschild space gives us another exam-
ple of the space V4 with a trivial conformal group where equations of the
form (15.1) satisfying the Huygens principle do not exist.
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19.4 General discussion

In case when spaces V4 have a nontrivial conformal group, we know all lin-
ear equations of the second order in these spaces satisfying the Huygens
principle. On the other hand, we do not know any example of the space
V4 with a trivial conformal group containing a second order equation sat-
isfying the Huygens principle. We have already drawn examples of spaces
V4 where such equations do not exist and the number of these examples
can be increased. In this connection the following question is of interest.
Do four-parameter Riemannian spaces of a normal hyperbolic type with a
trivial conformal group containing an equation of the form (15.1) satisfying
the Huygens principle exist?

The negative answer to this question for spaces V4, satisfying the condi-
tion

Rij = 0 (i, j = 1, . . . , 4),

was given by McLenaghan [103]. The question remains open for the general
case.

Open problem: Classification of spaces with

nontrivial conformal group

In 17.2 we have found a family of equations (17.2) equivalent to the wave
equation which also has the form (17.2). Generally speaking, equations
(17.2) contain equations equivalent to each other. In order to find out how
broad the class of known second order equations satisfying the Huygens
principle is it is desirable to exclude from the class of equations (17.2) only
equations not equivalent to each other. Thus, the following classification
problem arises.

Problem 1.4. Divide the family of equations (17.2) into equivalence classes.

Note that there are at least three equations among (17.2) that are not
equivalent to each other. Indeed, let us assume that ϕ = 0 in (17.2) and
choose the function f(σ) equal to 1, eσ, e−σ

2
consecutively. As the solution

of generalized Killing equations demonstrates, the resulting spaces V4 have
conformal groups of the order 15, 7 and 6, respectively. It means that the
resulting spaces V4 are not conformal to each other and hence, the cor-
responding equations (17.2) are not equivalent to each other. Thus, the
number of classes of equivalence is not less than 3.
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Chapter 5

Invariant variational problems and

conservation laws

This chapter is dedicated to the theory of conservation laws for differen-
tial equations admitting continuous transformation groups. Theorem 1.22
(Section 22.2) holds a central position in the theory. It establishes a cor-
respondence between existence of conservation laws for the Euler-Lagrange
equations with a given functional and the invariance of extremal values of
this functional with respect to a continuous transformation group admitted
by the Euler-Lagrange equations.

Literature: Noether [107], Bessel-Hagen [17], Hill [47], Ibragimov [56]
(see also Candotti, Palmieri and Vitale [20]).

§ 20 Conservation laws

20.1 Definition of conservation laws

Consider a system of differential equations

F1(x, u, u
′, . . .) = 0, . . . , FN(x, u, u

′, . . .) = 0, (20.1)

where x = (x1, . . . , xn), u = (u1, . . . , um), and u′ is the collection of the
first-order partial derivatives

uki ≡
∂uk

∂xi
(i = 1, . . . , n; k = 1, . . . ,m).

The dots indicate that Eq. (20.1) can contain derivatives of a higher order.

Definition 1.15. The system of differential equations (20.1) is said to have
a conservation law if there exists an n-dimensional vector A = (A1, . . . , An)
with the components

Ai = Ai(x, u, u′, . . .), i = 1, . . . , n,

that satisfies the condition

divA ≡ Di(A
i) = 0 (20.2)

at any solution u = u(x) of Eqs. (20.1).
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Here and in what followsDi indicates the operator of total differentiation
with respect to the variable xi (see also Section 4.1):

Di =
∂

∂xi
+ uki

∂

∂uk
+ ukij

∂

∂ukj
+ · · · (i = 1, . . . , n).

Let us assume that one of the independent variables, e.g. x1, in Eqs.
(20.1) is time t and write Eq. (20.2) in the form

Dt(A
1) +D2(A

2) + · · ·+Dn(A
n) = 0. (20.2∗)

Proposition 1.1. Eq. (20.2∗) implies existence of a function E(t, u, u′, . . .)
which does not vary with time on any solution u = u(x) of Eqs. (20.1).

Proof. Consider an (n−1)−dimensional tube domain Ω in the n−dimensional
space IRn of the variables x = (t, x2, . . . , xn) given by

Ω =

{
x ∈ Rn :

n∑

i=2

(xi)2 = r2, t1 ≤ t ≤ t2

}
,

where r, t1 and t2 are given constants such that r > 0, t1 < t2. Let S be
the boundary of Ω and let ν be the unit outward normal to the surface
S. Applying the divergence theorem to the domain Ω and using Equation
(20.2) one obtains:

∫

S

A · ν dσ =

∫

Ω

divA = 0. (20.3)

Assuming that the components Ai of the vector A evaluated at solutions of
Eqs. (20.1) decrease rapidly enough at the space infinity and letting r →∞,
we can neglect the integral over the cylindrical surface in the left-hand side
of Eq. (20.3). In order to obtain integrals over the bases of the cylinder Ω
note that at the lower base of the cylinder (t = t1) we have

A · ν = −A1|t=t1 ,

and at the upper base (t = t2) we have

A · ν = A1|t=t2 .

Therefore, Eq. (20.3) entails that the function A1(x, u(x), u′(x), . . .) satisfies
the condition

∫

Rn−1

A1dx2 . . . dxn

∣∣∣∣∣
t=t1

=

∫

Rn−1

A1dx2 . . . dxn

∣∣∣∣∣
t=t2



1: LIE GROUPS IN MATHEMATICAL PHYSICS (1972) 103

for any solution u(x) of the system (20.1). Since t1 and t2 are arbitrary, the
above equation means that the function

E =

∫

Rn−1

A1(x, u(x), u′(x), . . .)dx2 · · · dxn (20.4)

is independent of time for any solution of Eqs. (20.1), i.e.

Dt(E)
∣∣∣
(20.1)

= 0. (20.5)

This completes the proof.
Note that in the one-dimensional case (i.e. n = 1) the equations (20.2)

and (20.5) coincide (see § 24 - § 26). Moreover, a conservation law for Eqs.
(20.1) is often identified with Eq. (20.5) due to a physical significance of
the latter. In what follows we will consider conservation laws in the form
(20.2). If there exist p linearly independent vectors satisfying the condition
(20.2) the system (20.1) is said to have p independent conservation laws.

Remark 1.5. If

A1
∣∣
(20.1)

= Ã1 +D2(h
2) + · · ·+Dn(h

n)

the conservation equation (20.2∗) can be equivalently rewritten in the form

Dt(Ã
1) +D2(Ã

2) + · · ·+Dn(Ã
n) = 0 (20.2∗∗)

with
Ã2 = A2 +Dt(h

2), . . . , Ãn = An +Dt(h
n)

because, e.g.
DtD2(h

2) = D2Dt(h
2).

If Ã1 = 0, the corresponding physical conserved quantity Ẽ defined by Eq.
(20.4) with A1 replaced by Ã1 vanishes. Therefore the conservation law
(20.2∗) is trivial from the physical view point.

20.2 Historical notes

A general constructive method of determining conservation laws for arbi-
trary systems of differential equations (20.1) does not exist∗. Therefore, one
has to make special investigation in each case.

∗Excepting the direct method based on the definition (20.2) of conservation laws. It
was used in 1798 by Laplace. He applied the direct method to Kepler’s problem in
celestial mechanics and found a new vector-valued conserved quantity (see [88], Book II,
Chap. III, Eqs. (P)) known as Laplace’s vector.
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It was observed already in the 19th century that conservation laws in
classical mechanics can be found using symmetry properties of the con-
sidered mechanic system, i.e. group properties of differential equations of
particle motions. On the other hand, it seems quite impossible to develop a
general theory leading to construction of conservation laws proceeding only
from symmetry properties of differential equations∗. It turns out that it be-
comes possible if equations (20.1) are obtained, like equations of mechanics,
from the variational principle.

Klein [84] was the first to pay serious attention to connection between
properties of invariance of variational problems and conservation laws. This
question was investigated in a general form in Noether’ work [107]. Inspect-
ing the condition of the invariance of variational integrals with respect to
local continuous group of transformations of the independent of dependent
variables, E. Noether obtained the conservation laws of the form (20.2) for
corresponding Euler-Lagrange equations. This result is known in the liter-
ature as Noether’s theorem, more specifically, Noether’s first theorem.

Note, that the case when the variational integral is invariant with re-
spect to an infinite group containing one or several arbitrary functions of all
independent variables x1, . . . , xn is singled out specially in Noether’s work.
This case leads to dependence of some Euler-Lagrange equations on the re-
maining equations instead of conservation laws (Noether’s second theorem).
This case is omitted in further consideration.

The next section contains my own proof of Noether’s theorem. It differs
from the proof given by E. Noether and is based essentially on invariance
properties of differential equations rather than on techniques of variations
used by Noether.

§ 21 Noether’s theorem

21.1 Euler-Lagrange equations

For the sake of simplicity, let us limit our consideration by variational inte-
grals involving derivatives of the first order only:

l[u] =

∫

Ω

L(x, u, u′)dx. (21.1)

This limitation is not of a fundamental nature and further results are eas-
ily extended to the general case when the Lagrangian L can depend on

∗Author’s note to this 2008 edition: Such theory has been developed recently in [70].
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derivatives of any finite order. On the other hand, functionals of the form
(21.1) are of special interest for physical applications, for the most part of
equations considered there are deduced from the variational principle with
action integrals of the form (21.1).

Considering extremal values of the functional (21.1) with an arbitrary
area of integration Ω ⊂ Rn one obtains the Euler-Lagrange equations

Di

(
∂L
∂ukl

)
− ∂L
∂uk

= 0 (k = 1, . . . ,m), (21.2)

which is a system of m equations of less than second order with respect to
functions uk(k = 1, . . . ,m) with independent variables xi(i = 1, . . . , n). In
what follows any solution of the Euler-Lagrange equations (21.2) is called
an extremal of the functional (21.1).

21.2 Invariant functionals

Let Gr be an r-parameter local group of transformations

x̄ = f(x, u, a),

ū = ϕ(x, u, a), (21.3)

where
f = (f 1, . . . , fn), ϕ = (ϕ1, . . . , ϕm),

and let the group parameter a = (a1, . . . , ar) be such that

f(x, u, 0) = x, ϕ(x, u, 0) = u.

A basis of generators of the group Gr are written in the form

Xα = ξiα(x, u)
∂

∂xi
+ ηkα(x, u)

∂

∂uk
(α = 1, . . . , r) (21.4)

with

ξiα =
∂f i

∂aα

∣∣∣∣
a=0

, ηkα =
∂ϕk

∂aα

∣∣∣∣
a=0

(i = 1, . . . , n; k = 1, . . . ,m).

An equation
u = u(x), (21.5)

where u(x) is a vector-function function with given components uk(x)
(k = 1, . . . ,m), defines an n-dimensional manifold in the space Rn+m of



106 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

variables (x, u). The transformation (21.3) maps this manifold to an n-
dimensional manifold given by the equation

ū = ū(x̄).

The specific form of the function ū(x̄) can be obtained by substituting the
function (21.5) in Eqs. (21.3), but this orm is not of our interest for the
moment. The integral ∫

Ω̄

L(x̄, ū, ū′)dx̄, (21.6)

is called the transformed value of the functional (21.1). Here the domain
of integration Ω is obtained form the domain Ω by transformations (21.3).
Note that the domain Ω also depends on the choice of the function (21.5)
if the function f in transformations (21.3) depends on u. We will have to
take this into account in our further considerations.

Definition 1.16. The functional (21.1) is said to be invariant with respect
to the groupGr if for all transformations (21.3) of the group and all functions
(21.5) the following equality is fulfilled irrespective of the choice of the
domain of integration Ω :

∫

Ω

L(x, u, u′)dx =

∫

Ω̄

L(x̄, ū, ū′)dx̄. (21.7)

21.3 Alternative proof of Noether’s theorem

The lemma that we are going to prove now sets the necessary and sufficient
condition of invariance of the functional (21.1) with respect to the group of
transformations (21.3) in terms of the generators (21.4) of this group and
the Lagrange function L. It has been proved by Noether [107] using the
technique of variations. An alternative proof of the lemma has been given
in [56]. It is presented below in a modified form.

Lemma 1.10. The functional (21.1) is invariant with respect to the group
Gr with the generators (21.4) if and only if the following equalities hold:

(ηkα − uki ξiα)
δL
δuk

+Di(A
i
α) = 0 (α = 1, . . . , r), (21.8)

where
δL
δuk

=
∂L
∂uk
−Di

(
∂L
∂uki

)
(k = 1, . . . ,m),
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and

Aiα = (ηkα − ukj ξjα)
∂L
∂uki

+ Lξiα (i = 1, . . . , n; α = 1, . . . , r). (21.9)

Proof. By using the change of variables x̄ → x in the integral (21.6)
(formulae (21.3) and (21.5)) we reduce the integration over the domain Ω
to the integration over the domain Ω :

∫

Ω

L(x̄, ū, ū′)dx̄ =

∫

Ω

L(x̄, ū, ū′)J
( x̄
x

)
dx,

where

J
( x̄
x

)
= det ||Dif

j||

is the Jacobian of the change of variables. Then, due to arbitrariness of the
domain Ω, Eq. (21.7) can be written in the following equivalent form:

L(x, u, u′)dx = L(x̄, ū, ū′)J
( x̄
x

)
dx. (21.10)

Let us prolong the group Gr of transformations (21.3) up to the group

G̃r of transformations of the variables (x, u, u′, dx) as follows. The transfor-
mations (21.3) are extended to the first derivatives uki according to the usual
prolongation procedure described in Section 4.1, while the transformation
of the volume element dx is defined by the formula

dx̄ = J
( x̄
x

)
dx.

The generators of the group G̃r are obtained by extending extending the
generators (21.4) of the group Gr,

Xα = ξiα(x, u)
∂

∂xi
+ ηkα(x, u)

∂

∂uk
,

and have the following form:

X̃α = Xα + ζkαi
∂

∂uki
+Di(ξ

i
α)dx

∂

∂dx
(α = 1, . . . , r),

for, according to the rule of differentiation of determinants, we have

∂dx̄

∂aα

∣∣∣∣
a=0

=
∂J
(
x̄
x

)

∂aα

∣∣∣∣
a=0

dx = Di(ξ
i
α)dx.
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The coordinates ζkαi of the operators X̃α are determined by the prolongation
formulae (4.7):

ζkαi = Di(η
k
α)− ukjDi(ξ

j
α).

It is obvious now that Eq. (21.10) indicates that the function

L(x, u, u′)dx

is an invariant of the group G̃r (see 1.6). Therefore, the following infinites-
imal invariance test should be satisfied for this function (see Section 3.3):

X̃α(L(x, u, u′)dx) = 0 (α = 1, . . . , r).

Substituting the expression for operators X̃α and its coordinates ζkαi we have:

ξiα
∂L
∂xi

+ ηkα
∂L
∂uk

+ [Di(η
k
α)− ukjDi(ξ

j
α)]

∂L
∂uki

+ LDi(ξ
i
α) = 0 (α = 1, . . . , r)

It can be verified that the following identities hold:

ξiα
∂L
∂xi

+ ηkα
∂L
∂uk

+
[
Di(η

k
α)− ukjDi(ξ

j
α)
] ∂L
∂uki

+ LDi(ξ
i
α) ≡

(ηkα − ukj ξjα)
δL
δuk

+Di(A
i
α) (α = 1, . . . , r), (21.11)

where Aiα are given by (21.9). These identities lead to Eqs. (21.8).

Theorem 1.21. Let the functional (21.1) be invariant with respect to the
group Gr with the generators (2.4). Then the Euler-Lagrange equations
(21.1) have r linearly independent conservation laws (20.2), where the vec-
tors Aα (α = 1, . . . , r) have the components Ai

α determined by (21.9).

Proof. Eqs. (21.8) yield that
(
div Aα

)∣∣
(21.2)

≡
[
Di(A

i
α)
]
(21.2)

= 0 (α = 1, . . . , r) (21.12)

The linear independence of the operators (21.4) imply that the vectors
Aα (α = 1, . . . , r) are linearly independent (see also [107]).

Remark 1.6. Inspection of the transformed values (21.6) of the functional
(21.1) shows that one can have conservation laws even when Eq. (21.10)
does not hold. Namely, according to Bessel-Hagen [17], it was noticed by
E. Noether that it becomes possible if Eqs. (21.8) are replaced by equaions
of the form

(ηkα − uki ξiα)
δL
δuk

+Di(A
i
α) = Di(B

i
α) (α = 1, . . . , r) (21.13)
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with some vectors Bα = (B1
α, . . . , B

n
α) (α = 1, . . . , r) depending on x, u, u′.

Then one has the conservation equation

[
div (Aα −Bα)

]
(21.2)

= 0 (α = 1, . . . , r) (21.14)

instead of (21.12).
It follows from the proof of Lemma 1.10, that if such a vector B exists

for a given operator

X = ξi
∂

∂xi
+ ηk

∂

∂uk
,

it is obtained from equation
(
X + ζki

∂

∂uki

)
L+ LDi(ξ

i) = Di(B
i). (21.15)

For instance, if condition

L(x̄, ū, ū′)J
( x̄
x

)
=M(a)L(x, u, u′) +N(a;x, u, u′) (21.16)

holds instead of Eq. (21.10), then differentiation of Eq. (21.16) with respect
to the group parameter a at a = 0 leads to the equation

(
X + ζki

∂

∂uki

)
L+ LDi(ξ

i) = µL(x, u, u′) + ν(x, u, u′), (21.17)

where

µ =
dM(a)

da

∣∣∣∣
a=0

, ν(x, u, u′) =
∂N(a;x, u, u′)

∂a

∣∣∣∣
a=0

.

Thus, existence of the vector B satisfying the condition (21.15) in this case
is possible if the right-hand side of Eq. (21.17) has the form of divergence.
This kind of situations are considered in § 28.

§ 22 The basic theorem

22.1 Invariance of functionals is sufficient but not
necessary for conservation laws

If the functional (21.1) is invariant with respect to the group Gr of transfor-
mations (21.3), then the Euler-Lagrange equations (21.2) are also invariant
with respect to this group. Therefore one can say that Noether’s theorem
sets the sufficient condition for validity of conservation laws (21.12) with the
vectors (21.9) for Euler-Lagrange equations (21.2) admitting a group with
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generators (21.4). The invariance of the corresponding functional (21.1) is
this conditions.

Examples show that the invariance of the functional is not a necessary
condition for validity of conservation laws. One of such examples is the
Dirac equation considered in § 29. Hence, the Noether theorem provides
not all the conservation laws (21.12) for Eqs. (21.2) admitting a group Gr

with generators (21.4) because the conservation equation (21.12) for vectors
(21.9) can be satisfied while the functional (21.1) will not be invariant with
respect to the group Gr. The problem question then arises on finding the
necessary and sufficient condition under which the vectors (21.9) satisfy the
conservation equation (21.12). This condition has been found in [56] and is
discussed in the following section.

22.2 Necessary and sufficient condition for
conservation laws

Theorem 1.22. Let the Euler-Lagrange equations (21.2) admit the group
Gr with the generators (21.4). The necessary and sufficient condition for the
vectors Aα with the components (21.9) to satisfy the conservation equation
(21.12) is the invariance of the extremal values of the functional (21.1) with
respect to the group Gr.

Proof. The invariance of the extremal values of the functional l[u] with re-
spect to the group Gr means that Eq. (21.7) is satisfied for all extremals, i.e.
for all functions (21.5) solving the Euler-Lagrange equations (21.2). There-
fore let us write the necessary and sufficient condition for the invariance of
the differential equations (21.2) and the extremal values of the functional
(21.1) with respect to the group Gr in terms of the generators (21.4).

Let us rewrite Eq. (21.10) in the following equivalent form:

L(x, u, u′) = L(x̄, ū, ū′)J
( x̄
x

)
, (22.1)

where J
(
x̄
x

)
is the same Jacobian as in Eq. (21.10).

Since in our case the differential equations (21.2) are, generally speaking,
equations of the second order, we prolong the group Gr of transformations
(21.3) up on the to the second-order derivatives of u = u(x). Then we
introduce an additional variable Λ and extend the action of the group Gr

to the new variable Λ by the equation

Λ̄J
( x̄
x

)
= Λ. (22.2)
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The resulting group is denoted by G̃r. It acts on the space of the variables
(x, u, u′, u′′,Λ). In this notation, the invariance of Eqs. (21.2) and of the
extremal values of the functional (21.1) with respect to the group Gr means
that the system of equations

δL
δuk

= 0 (k = 1, . . . ,m), (22.3)

Λ = L(x, u, u′) (22.4)

define an invariant manifold of the group G̃r in the space of the variables
(x, u, u′, u′′,Λ). Let us write the invariance criterion (3.5) for this manifold.

To this end we have to find the generators of the group G̃r.
In order to reduce calculations in finding the generators, we observe some

peculiarities of the considered manifold. First of all, we see that the variable
Λ is not contained in Eqs. (22.3), and hence Eq. (22.4) does not influence
the invariance conditions for the differential equations (22.3). Therefore the
invariance conditions (3.5) for Eqs. (22.3) can be considered separately from
Eq. (22.4). These conditions are already satisfied because, according to the
conditions of the theorem, the Euler-Lagrange equations (22.3) admit the
group Gr. Hence, the invariance conditions for the simultaneous equations
(22.3), (22.4) with respect to the group G̃r take the following form:

X̃α(L(x, u, u′)− Λ)
∣∣
(22.3),(22.4)

= 0 (α = 1, . . . , r), (22.5)

where X̃α(α = 1, . . . , r) are the unknown generators of the group G̃r.
Now we see the second peculiarity of the situation. It consists in the

fact that there is no need to make the second prolongation of the group Gr

since, according to Eqs. (22.5), it is sufficient to know the first prolongation
only. The second prolongation has been required only for formulating the
invariance condition for the extremal values of the functional (21.1) in terms
of the manifold defined by Eqs. (22.3), (22.4). Using this peculiarity we

write the generators of the group G̃r in the form

X̃α = Xα + ζkαi
∂

∂uki
+ λα

∂

∂Λ
(α = 1, . . . , r),

where ζkαi are given by Eqs. (4.7) for every α = 1, . . . , r. Furthermore, the
coefficients

λα =
∂Λ̄

∂aα
∣∣
a=0

(α = 1, . . . , r)

are obtained by differentiating both parts of Eq. (22.2) with resect to aα at
a = 0. Using the rule for differentiating determinants and noting that only
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the left-hand side of Eq. (22.2) depends on the parameter a we get

[
∂Λ̄

∂aα
J
( x̄
x

)]

a=0

+

[
Λ̄
∂J
(
x̄
x

)

∂aα

]

a=0

= λα + ΛDi(ξ
i
α) = 0.

Thus,
λα = −ΛDi(ξ

i
α) (α = 1, . . . , r),

and the generators of the group G̃r take the following final form:

X̃α = Xα + [Di(η
k
α)− ukjDi(ξ

j
α)]

∂

∂uki
− ΛDi(ξ

i
α)

∂

∂Λ
, (22.6)

where Xα are the generators (21.4) of the group Gr.

Using the expressions (22.6) of the operators X̃α and the identities
(21.11), one has

X̃α(L − Λ)
∣∣
(22.4)

= (ηkα − ukj ξjα)
δL
δuk

+Di(A
i
α). (22.7)

Therefore, the necessary and sufficient conditions (22.5) for the invariance
of the extremal values of the functional (21.1) with respect to the group Gr

take the form
Di(A

i
α)|(22.3) = 0 (α = 1, . . . , r),

i.e. coincide with the conservation equations (21.12). This proves our the-
orem.

Remark 1.7. Independence of conservation laws given by Noether’s theo-
rem follows from the linear independence of the operators (21.4) and from
Eqs. (21.8). Under the conditions of Theorem 1.22, Eqs. (21.8) do not
necessarily hold. As a result, not all conservation laws derived by means
of this theorem have to be independent. However, one can claim that the
number of independent conservation laws in the given case is no less than
in the Noether theorem. Indeed, all conservation laws resulting from the
Noether theorem are also obtained from Theorem 1.22.

§ 23 Inverse Noether theorem

23.1 Degenerate and non-degenerate functionals

Theorem 1.22 answers the question about the nature of conservation laws
(21.12) completely. They arise as a result of invariance of extremal values of
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the functional l[u]. Nevertheless, it is of interest to find out for which func-
tionals (21.1) Theorem 1.22 gives the same conservation laws as Noether’s
theorem. In other words, when the invariance of the functional is not only
sufficient but also necessary for the validity of the conservation equations
(21.12). If this property is met, I will say that the inverse Noether theorem
holds for the corresponding Euler-Lagrange equations (21.2).

Examples of differential equations for which the inverse Noether theorem
holds are equations of a free particle motion in classical mechanics, the wave
equation etc. This can be verified by inspecting all conservation laws of the
form (21.12) for the mentioned equations. However, one can use one general
theorem proved in [56] that gives many equations for which the inverse
Noether theorem holds. First, let us introduce the following definition.

Definition 1.17. The functional (21.1) is said to be non-degenerate if all
equations in the system of Euler-Lagrange equations (21.2) are second-order
equations, and degenerate otherwise.

Remark 1.8. Likewise, functionals are divided into degenerate and non-
degenerate if the corresponding Lagrangian depends on partial derivatives
of the order q > 1. Namely, a functional l[u] is said to be non-degenerate if
all equations in the corresponding system of Euler-Lagrange equations have
the order q + 1, and degenerate if at least one of Euler-Lagrange equations
for the functional l[u] is an equation of order ≤ q.

The equations of mechanics and the wave equation mentioned above are
Euler-Lagrange equations of non-degenerate functionals. An example of a
degenerate functional is given by the Dirac equations (see § 29).

23.2 Inverse Noether theorem in non-degenerate case

The theorem mentioned in the previous section is formulated as follows.

Theorem 1.23. Let l[u] be a non-degenerate functional of the form (21.1)
and let the corresponding Euler-Lagrange equations (21.2) admit a group Gr

with the generators (21.4). Then the functional l[u] is invariant with respect
to the group Gr if and only if the vectors (21.9) satisfy the conservation
equation (21.12).

Proof. Let us use the notation and results obtained when proving Theorem
1.22. As it was demonstrated, the invariance of the functional l[u] with
respect to the group Gr is equivalent to the invariance of the manifold
defined by Eq. (22.4) with respect to the group G̃r with the infinitesimal
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generators (22.6). Therefore, it is sufficient to prove that in case of non-
degenerate functionals the following identities hold:

X̃α(L − Λ)
∣∣
(22.4)

≡ X̃α(L − Λ)|(22.4,22.3) (23.1)

Indeed, vanishing of the left-hand sides of (23.1) is the necessary and
sufficient condition of invariance of the manifold given by equation (22.4)

with respect to the group G̃r. On the other hand, according to equality
(22.7), the right-hand sides of (23.1) are equal to

Di(A
i
α)
∣∣
(21.2)

(α = 1, . . . , r).

Therefore, the validity of the identity (23.1) entails that satisfaction of the
conservation laws (21.12) is the necessary and sufficient condition of invari-
ance of the functional (21.1) with respect to the group Gr.

Let us demonstrate that equalities (23.1) are really satisfied in the con-
sidered case. The formulae (22.7) and identities (21.11) demonstrate that
expressions

X̃α(L − Λ)
∣∣
(22.4)

(α = 1, . . . , r)

can depend only on the variables x, u, u′. On the other hand, the non-
degenerate character of the functional l[u] means that all variables x, u, u′

act as free variables on the manifold defined by the Euler-Lagrange equa-
tions (21.2) in the space of variables (x, u, u′, u′′). This, manifestly ensures
the validity of the identity (23.1), thus proving the theorem.

In the following sections contain a number of examples on finding the
conservation laws by means of the theorems proved above. The majority
of these examples deal with Euler-Lagrange equations of non-degenerate
functionals. A case of a degenerate functional is considered in § 29.

§ 24 Classical mechanics

24.1 Free motion of a particle

Let us begin with the well-known conservation laws in classical mechanics.
The Lagrangian for a freely moving particle with a mass m has the form

L =
1

2
m

3∑

k=1

(ẋk)2. (24.1)

Here, time t is the independent variable, and the coordinates ~x = (x1, x2, x3)
of the particle are the dependent variables. The differentiation with respect
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to t is denoted by the dot, so that we can write vk = ẋk, where the vector
~v = (ẋ1, ẋ2, ẋ3) is the velocity of the particle. The Euler-Lagrange equations
(21.2) in the given case are the second-order equations

mẍk = 0 (k = 1, 2, 3), (24.2)

and hence the functional (21.1) with the Lagrangian (24.1) is non-degenerate.
Writing the generators (21.4) in the form

X = ξ
∂

∂t
+ ηk

∂

∂xk
(24.3)

and substituting in (21.9), we obtain the following expression for computing
conserved quantities:

A = m

3∑

k=1

ẋk(ηk − 1

2
ξ ẋk). (24.4)

Let us consider the group G7 composed by the translations of the coor-
dinates xk (k = 1, 2, 3) and of the time t, as well as by the rotations of the
position vector ~x = (x1, x2, x3) of the particle. The group G7 is obviously
admitted by Eqs. (24.2). The generators of the group G7 are

Xk =
∂

∂xk
(k = 1, 2, 3), X4 =

∂

∂t
,

Xkl = xl
∂

∂xk
− xk ∂

∂xl
(k < l; k, l = 1, 2, 3).

(24.5)

24.2 Computation of conserved quantities

Let us write out the conserved quantities (24.4) for the operators (24.5).

(a) Translations of space coordinates

The translation along the x1 axis is generated by the operator X1. Sub-
stituting its coordinates

ξ = 0, η1 = 1, η2 = η3 = 0

in (24.4) we obtain the conserved quantity

A = mv1.
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Taking the translations along all axes of coordinates we obtain the vector
of the momentum

~p = m~v (24.6)

as a conserved quantity.
Thus, the invariance with respect to translations of coordinates yields

the conservation of the momentum.

(b) Time translation

The time translation has the generator X4 with

ξ = 1, ηk = 0, (k = 1, 2, 3).

Accordingly, the formula (24.4) yields the following conserved quantity:

E =
1

2
m

3∑

k=1

(vk)2, (24.7)

which is the energy of the particle. Here the quantity E = −A is taken
instead of A. Thus, the invariance with respect to the time translation is
connected with the conservation of the energy.

(c) Rotations

First, let us consider the one-parameter group of rotations round the x3

axis. The generator of this subgroup is

X12 = x2
∂

∂x1
− x1 ∂

∂x2
·

The substitution in (24.4) yields the conserved quantity

M3 = x2p1 − x1p2.

Considering the rotations round the remaining axes one can see that the
group of rotations with the generators Xkl (k < l) leads to the conservation
of the angular momentum

−→
M = ~p× ~x, (24.8)

where ~p× ~x is the vector product of the vectors ~p and ~x.
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§ 25 Relativistic mechanics

25.1 Lagrangian of a particle in a curved space-time

It is accepted in theoretical physics that a free particle in a curved space-
time, i.e. in a Riemannian space V4 of normal hyperbolic type moves along
geodesic curves. If the basic metric form of a space V4 has the form

ds2 = gij(x)dx
idxj, (25.1)

and the particle under consideration has the mass m, then a free motion of
the particle in the space V4 corresponds to the Lagrangian

L = −mc
√
gij(x)ẋiẋj, (25.2)

where c is a constant equal to the light velocity in vacuum and the dot in
ẋi indicates the differentiation with respect to the parameter σ of a curve

xi = xi(σ) (i = 1, . . . , 4)

in the space V4. According to Section 5.1, the Euler-Lagrange equations
(21.2) with the Lagrangian (25.2) are the equations of geodesic lines in V4.

The parameter σ taken along the trajectory of the particle is the in-
dependent variable in the given case (so that n = 1), and the coordinates
xi(i = 1, . . . , 4) of the particle are the dependent variables. Like in the
previous section we are dealing with a non-degenerate functional here.

Since in the considered case the functional l[u] is equal to the integral
of the element of the length of the arc ds in the space V4, one should take
a group of motions in the space V4 (see 8.1) as a group Gr with respect to
which the functional is invariant. Therefore, the operators (21.4) are

X = ηi(x)
∂

∂xi
, (25.3)

where the functions ηi(x) (i = 1, . . . , 4) satisfy the Killing equations (8.3).
In this case, the formula (21.9) for determining the conserved quantities

can be also simplified. One has

∂L
∂ẋi

= − mc√
gklẋkẋl

gij ẋ
j (i = 1, . . . , 4).

Parametrizing the curves in the space V4 by means of the arc length s one
has gklẋ

kẋl = 1 according to the Eq. (25.1). Then Eq. (21.9) is written:

A = −mcgijẋiηj. (25.4)
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25.2 Motion of a particle in the Minkowski space-time

Now let us turn to conservation laws of relativistic mechanics. The Minkowski
space-time is the space V4 with the metric form

ds2 = c2dt2 − dx2 − dy2 − dz2. (25.5)

I will use the following notation of variables:

x1 = x, x2 = y, x3 = z, x4 = t.

In what follows, we will use a connection the components

ẋi =
dxi

ds
(i = 1, . . . , 4)

of the four-velocity with the components

vµ =
dxµ

dt
(µ = 1, 2, 3)

of the physical velocity ~v. In order to obtain this connection, let us write
the interval ds determined by Eq. (25.5) in the form

ds = c
√

1− βdt,
where the notation

β =
1

c2

3∑

µ=1

(vµ)2

is introduced. Substituting the expression of the interval ds into the defini-
tion of the four-velocity ẋi one obtains the desired connection:

ẋµ =
vµ

c
√
1− β (µ = 1, 2, 3), ẋ4 =

1

c
√
1− β · (25.6)

The group of motions in the space V4 with the metric form (25.5) is the
10-parameter Lorentz group having the following basis of generators:

Xi =
∂

∂xi
(i = 1, . . . , 4),

Xµν = xν
∂

∂xµ
− xµ ∂

∂xν
(µ < ν),

Xµ4 = x4
∂

∂xµ
+

1

c2
xµ

∂

∂x4
(µ, ν = 1, 2, 3).

(25.7)

Note that here and in what follows the Roman letters i, j, k, . . . run over
the values 1, 2, 3, 4, whereas the Greek letters µ, ν, . . . run over the values
from 1, 2, 3, unless it is otherwise stated.
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25.3 Computation of relativistic conserved quantities

Let us compute the conserved quantities (25.4) corresponding to the oper-
ators (25.7).

(a) Translations of space coordinates

The generators Xµ of the translations of the spacial coordinates have the
coordinates ηjµ = δjµ. Accordingly, the formulae (25.4) provide the following
conserved quantities:

Aµ = −mcgijẋiδjµ = −mcgiµẋi = mcẋµ =
mvµ√
1− β ·

Thus, we have obtained the conservation of relativistic momentum

~po =
m~v√
1− β · (25.8)

(b) Time translation

The generator X4 of the time translations has the coordinates ηj = δj4,
and (25.4) yields the conserved quantity

A = −mcgijẋiδj4 = −mc3ẋ4 = −
mc2√
1− β ·

We have obtained the conservation of relativistic energy

Eo =
mc2√
1− β · (25.9)

(c) Rotations

The generator X12 of the rotations around the z-axis in the space of
variables x, y, z has the coordinates

η1 = x2, η2 = −x1, η3 = η4 = 0.

The substitution in (25.4) yields the conserved quantity

A12 = −mc(−ẋ1x2 + ẋ2x1) = p1ox
2 − p2ox1.

Calculating the conserved quantities (25.4) for all rotations, one obtains
the conservation of the relativistic angular momentum

−→
M o = ~po × ~x, (25.10)

which has the same form as in classical mechanics. Here again

~x = (x1, x2, x3).
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(d) Lorentz transformations

If we substitute the coordinates of the operator X14 in (25.4), we obtain
the conserved quantity

A = −mc(−ẋ1x4 + ẋ4x1) =
m√
1− β (v

1t− x1).

It is manifest that using all generators Xµ4 of the Lorentz transformations
we arrive at following conserved vector:

−→
Q o =

m√
1− β (~x− ~vt). (25.11)

Noting that Eo, and hence the expression

Eo
c2

=
m√
1− β ,

is a constant of motion (i.e. a conserved quantity), we can take the vector

~qo = ~x− ~vt

as the conserved quantity instead of the vector (25.11).
If there are several particles that do not interact, the corresponding con-

servation law is known as the center-of-mass theorem. Thus, the invariance
with respect to the Lorentz transformations leads to the center-of-mass
theorem. As one can see from the expression for the conserved vector ~qo,
in the case of one particle the center-of-mass theorem is equivalent to the
statement on uniformity of the particle motion.

§ 26 Particle in space of constant curvature

26.1 Symmetries

Let us find conservation laws for a free motion of a particle in a space with
a constant curvature K =const. Spaces Vn of constant curvature (and only
such spaces) have group of isometric motions Gr of a maximum order [29]

r =
1

2
n(n+ 1).

Therefore, like in relativistic mechanics, there exist 10 independent conser-
vation laws for a free motion of a particle in the space V4 with a constant
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curvature K. If K = 0, the conservation laws will obviously coincide with
conservation laws of relativistic mechanics.

Let us write the metric of a space V4 of constant curvature of normal
hyperbolic type in Riemann’s form

ds2 =
1

Φ2
(c2dt2 − dx2 − dy2 − dz2), (26.1)

where

Φ = 1 +
K

4
r2, r2 = c2t2 − x2 − y2 − z2.

Denoting x1 = x, x2 = y, x3 = z, x4 = t and ẋi = dxi

ds
, we get from (26.1):

ds =
c

Φ

√
1− βdt,

where

β =
|~v|2
c2

=
1

c2

3∑

µ=1

(vµ)2,

and ~v is the physical velocity with the components

vµ =
dxµ

dt
(µ = 1, 2, 3).

The components ẋi of the four-velocity ẋi and the components vµ of the
three-dimensional physical velocity are connected by the relations

ẋµ =
Φ

c
√
1− β v

µ (µ = 1, 2, 3), x4 =
Φ

c
√
1− β · (26.2)

It is known [82] that the following 10 operators generate the group of
isometric motions in the space V4 with the metric form (26.1):

Xµ =

(
K

2
xµxi + (Φ− 2)δµi

)
∂

∂xi
,

X4 =
K

2
x4xµ

∂

∂xµ
+

1

c2

(
Φ +

K

2
ρ2
)

∂

∂x4
,

Xµν = xν
∂

∂xµ
− xµ ∂

∂xν
(µ < ν),

Xµ4 = x4
∂

∂xµ
+

1

c2
xµ

∂

∂x4
(µ, ν = 1, 2, 3),

(26.3)

where ρ2 = x2 + y2 + z2.
The operators Xi (i = 1, . . . , 4) from (26.3) differ from the generators of

translations given in § 25. Nevertheless, the conserved quantities resulting
due to the generators Xi will be termed the momentum and energy.
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26.2 Conserved quantities

Let us compute the conserved quantities (25.4) corresponding to the oper-
ators (26.3).

(a) Momentum

The conservation of momentum corresponds to the operators Xµ with
the coordinates

ηνµ = (Φ− 2)δµν +
K

2
xµxν , η4µ =

K

2
xµx4.

Using the relations (26.2), one obtains the following conserved quantities
by the formula (25.4):

Aµ =
m

Φ
√
1− β

(
3∑

ν=1

vνηνµ − c2η4µ

)

=
m

Φ
√
1− β

[
(Φ− 2)vµ +

K

2

(
3∑

ν=1

xνvν − c2t
)
xµ

]

=

(
1− 2

Φ

)
pµo +

K

2Φ
(~x · ~po − Eot)xµ,

where ~po and Eo are the relativistic momentum and energy defined by the
equations (25.8) and (25.9), respectively, ~x ·~po is the scalar product of three-
dimensional vectors ~x = (x1, x2, x3) and ~po = (p1o, p

2
o, p

3
o) :

~x · ~po =
3∑

ν=1

xνpνo .

Thus, the momentum of a free particle in the space V4 with the constant
curvature K has the form

~pK =
m√
1− β

[(
2

Φ
− 1

)
~v − K

2Φ
(~x · ~v − c2t)~x

]
(26.4)

or

~pK =

(
2

Φ
− 1

)
~po −

K

2Φ
(~x · ~po − Eot)~x.

If the curvature K = 0, Eq. (26.4) provides the previous relativistic mo-
mentum ~po.
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(b) Energy

The conservation of energy corresponds to the operator X4 with the
coordinates

ηµ =
K

2
x4xµ, η4 =

1

c2

(
Φ +

K

2
ρ2
)
.

The conserved quantity (25.4) in this case has the form

A =
mc

Φ2

(
3∑

µ=1

ẋµηµ − c2ẋ4η4
)

=
m

Φ
√
1− β

[
K

2
~x · ~vt−

(
Φ +

K

2
ρ2
)]

= − m√
1− β

[
1 +

K

2Φ
~x · (~x− ~vt)

]
.

Multiplying A by −c2, one obtains the following formula determining the
energy of the free movement of a particle with the mass m in the space V4
of with the constant curvature K :

EK =

[
1 +

K

2Φ
~x · (~x− ~vt)

]
mc2√
1− β (26.5)

or

EK =

[
1 +

K

2Φ
~x · (~x− ~vt)

]
Eo.

(c) Angular momentum

The conserved quantity (25.4) for the rotation generator X12 has the
form

A =
m

Φ
√
1− β (v

1x2 − v2x1) = 1

Φ
(p1ox

2 − p2ox1).

Using the other rotation generators Xµν we see that the invariance with
respect to the rotations leads to conservation of the angular momentum
defined by

−→
MK =

1

Φ
~Mo,

where the vector ~Mo is given by (25.10). Using Eqs. (26.4) and the equation
~x× ~x = 0, we can also rewrite

−→
MK =

1

2− Φ
(~x× ~pK). (26.6)
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(d) Motion of the center of mass

It was mentioned in the previous section that the Lorentz transforma-
tions with the generatorsXµ4 lead to the relativistic center-of-mass theorem.
Let us compute the similar conservation laws in the space V4 of constant
curvature. The operator X14 has the coordinates

η1 = x4, η2 = η3 = 0, η4 =
1

c2
x1.

Substituting them in (25.4), we obtain the conserved quantity

A =
m

Φ
√
1− β (v

1t− x1).

Hence, we have the following conserved vector:

−→
QK =

m

Φ
√
1− β (~x− ~vt) ≡ 1

Φ

−→
Q o. (26.7)

§ 27 Nonlinear wave equation

27.1 Symmetries, Lagrangian and general form of
conserved quantities

Let us apply Noether’s theorem to the nonlinear wave equation

utt −∆u+ λu3 = 0, λ = const., (27.1)

where
∆u = uxx + uyy + uzz.

In this case the number n of independent variables equals 4, and the number
m of dependent variables equals 1.

If λ = 0, one has the usual linear wave equation. Sometimes, when it is
convenient, the space variables are denoted by xµ(µ = 1, 2, 3) and time t by
x4 as we did before. The three-dimensional vector with the components xµ

is denoted by ~x.
Eq. (27.1) can be represented as the Euler-Lagrange equation (21.2) for

the functional (21.1) with the Lagrangian

L = |∇u|2 − u2t +
λ

2
u4, (27.2)

where ∇u is the gradient of the function u :

∇u = (ux, uy, uz).
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According to Section 13.6, Eq. (27.1) with an arbitrary constant λ is
invariant with respect to the 15-parameter group of conformal transforma-
tions in the flat space V4 of normal hyperbolic type (Minkowski space-time).
The generators (12.11) of this group are written

Xi =
∂

∂xi
(i = 1, . . . , 4), Z = xi

∂

∂xi
− u ∂

∂u
,

Xµν = xν
∂

∂xµ
− xµ ∂

∂xν
(µ < ν),

Xµ4 = x4
∂

∂xµ
+ xµ

∂

∂x4
(µ = 1, 2, 3),

Yµ = [2xµxi − (ρ2 − t2)δµi] ∂
∂xi
− 2xµu

∂

∂u
(µ, ν = 1, 2, 3),

Y4 = 2x4xµ
∂

∂xµ
+ (ρ2 + t2)

∂

∂x4
− 2x4u

∂

∂u
,

(27.3)

where ρ2 = x2 + y2 + z2.
The vectors (21.9) satisfying the conservation equation (21.12) are four-

dimensional and have the coordinates

Aµ = 2(η − uiξi)uµ + ξµL (µ = 1, 2, 3),

A4 = −2(η − uiξi)u4 + ξ4L.
(27.4)

27.2 Computation of several conserved vectors

One can readily evaluate the vectors (27.4) for all generators (27.3) of a
conformal group. I will illustrate the computation only for the operators

X4, Xµ4, Z, Y4.

Writing the operator X4 in the form of (21.4) one obtains

ξµ = 0 (µ = 1, 2, 3), ξ4 = 1, η = 0.

Therefore, introducing the three-dimensional vector ~A = (A1, A2, A3), we
obtain from Eqs. (27.4):

~A = −2ut∇u, A4 = |∇u|2 + u2t +
λ

2
u4.

Let us verify that the four-vector A = ( ~A,A4) with the above components
satisfies the conservation equation (21.12). We have:

Di(A
i) = div ~A+

∂A4

∂t
·
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Using the usual notation ~a · ~b for the scalar product of three-dimensional
vectors and invoking that

div ~A = ∇ · ~A, ∇ · ∇ = ∆,

we obtain for our vector:

div ~A = −2ut∆u− 2∇u · ∇ut,

∂A4

∂t
= 2∇u · ∇ut + 2ututt + 2λu3ut.

Therefore,
Di(A

i)
∣∣
(27.1)

= 2ut(utt −∆u+ λu3)
∣∣
(27.1)

= 0,

i.e., the conservation equation (21.12) is satisfied.
According to Section 20.1, Eq. (20.4), the quantity

E1 =

∫

R3

(
|∇u|2 + u2t +

λ

2
u4
)
dxdydz (27.5)

does not depend on time t for solutions of Eq. (27.1) provided that these
solutions decrease rapidly enough at infinity.

For the operators Xµ4, Z and Y4 I will present only the quantities (20.4)
independent of time.

These quantities provided by the operators Xµ4(µ = 1, 2, 3) compose the
vector

~E =

∫

R3

[~x(|∇u|2 + u2t +
λ

2
u4) + 2tut∇u]dxdydz. (27.6)

Substituting the coefficients of the operator Z in the formula for A4

given in (27.4) and using the equation ~x · ∇u = ρuρ, we obtain:

A4 = 2(u+ xiui)ut + t(|∇u|2 − u2t +
λ

2
u4)

= 2ut(u+ ~x · ∇u) + t(|∇u|2 + u2t +
λ

2
u4)

= 2ut(ρu)ρ + t(|∇u|2 + u2t +
λ

2
u4).

The corresponding quantity (20.4), using E1 defined by (27.5), is written

E2 = tE1 + 2

∫

R3

(ρu)ρutdxdydz. (27.7)
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Similar calculations for the operator Y4 yield:

A4 = 2ut[2t(ρu)ρ + (ρ2 + t2)ut]+

+(ρ2 + t2)(|∇u|2 − u2t +
λ

2
u4)− 2u2 =

4tut(ρu)ρ + (ρ2 + t2)(|∇u|2 + u2t +
λ

2
u4)− 2u2

Using the expressions (27.5) and (27.7), one can write the corresponding
invariant (20.4) in the form

E3 = t(2E2 − tE1) +

∫

R3

[
ρ2(|∇u|2 + u2t +

λ

2
u4)− 2u2

]
dxdydz. (27.8)

§ 28 Transonic gas flow

28.1 Symmetries

The following equation derived in [98] is widely used in investigating the
non-steady-state potential gas flow with transonic velocities:

−ϕxϕxx − 2ϕxt + ϕyy = 0. (28.1)

The group admitted by Eq. (28.1) is infinite and has the generators [101]

Xf = 3f(t)
∂

∂t
+ (f ′(t)x+ f ′′(t)y2)

∂

∂x
+ 2f ′(t)y

∂

∂y

+
[
f ′′(t)x2 + 2f ′′′(t)xy2 +

1

3
f (4)(t)y4 − f ′(t)ϕ

] ∂
∂ϕ

,

Xg = g′(t)y
∂

∂x
+ g(t)

∂

∂y
+
[
2g′′(t)xy +

2

3
g′′′(t)y3

] ∂
∂ϕ

,

Xh = h(t)
∂

∂x
+
[
2h′(t)x+ 2h′′(t)y2

] ∂
∂ϕ

,

Xσ = σ(t)y
∂

∂ϕ
,

Xτ = τ(t)
∂

∂ϕ
,

X0 = 2t
∂

∂t
+ y

∂

∂y
− 2ϕ

∂

∂ϕ
·

(28.2)
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Here f(t), g(t), h(t), σ(t), τ(t) are arbitrary functions, and f ′(t), f ′′(t), etc.
are the first, second, etc. derivatives.

28.2 Conserved vectors

Using the results of § 21, one can verify that all operators (28.2), except
X0, lead to conservation laws. Application of Eqs. (21.9) and (21.15) to
the operators Xf , Xg, Xh, Xσ, Xτ provides the following vectors C = A−B
(see Remark 1.6) satisfying the conservation equation

div C|(28.1) = 0. (28.3)

The components of the vectors C along the t, x and y axes are denoted by
C1, C2 and C3, respectively.

Cf





C1 = −1
2
fϕ3

x + (f ′x+ f ′′y2)ϕ2
x +

3
2
fϕ2

y + 2f ′yϕxϕy

+(f ′ϕ− f ′′x2 − 2f ′′′xy2 − 1
3
f (4)y4)ϕx + 2(f ′′x+ f ′′′y2)ϕ,

C2 = 1
3
(f ′x+ f ′′y2)ϕ3

x + (f ′ϕ+ 3fϕt + 2f ′yϕy − f ′′x2

−2f ′′′xy2 − 1
3
f (4)y4)(ϕt +

1
2
ϕ2
x) +

1
2
(f ′x+ f ′′y2)ϕ2

y

−1
2
f ′′ϕ2 + (f ′′′x2 + 2f (4)xy2 + 1

3
f (5)y4)ϕ,

C3 = −f ′yϕ2
y − 1

3
f ′yϕ3

x − (f ′x+ f ′′y2)ϕxϕy − 2f ′yϕxϕt

−3fϕyϕt + (f ′′x2 + 2f ′′′xy2 + 1
3
f (4)y4 − f ′ϕ)ϕy

−4(f ′′′xy + 1
3
f (4)y3)ϕ.

Cg





C1 = g′yϕ2
x − 2(g′′xy + 1

3
g′′′y3)ϕx + gϕxϕy + 2g′′yϕ,

C2 = −(g′′xy + 1
3
g′′′y3)ϕ2

x +
1
3
g′yϕ3

x +
1
2
gϕ2

xϕy +
1
2
g′yϕ2

y

+gϕtϕy − 2(g′′xy + 1
3
g′′′y3)ϕt + 2(g′′′xy + 1

3
g(4)y3)ϕ,

C3 = −1
6
gϕ3

x − g′yϕxϕy − gϕtϕx − 1
2
gϕ2

y

+2(g′′xy + 1
3
g′′′y3)ϕy − 2(g′′x+ g′′′y2)ϕ.

Ch





C1 = hϕ2
x − 2(h′x+ h′′y2)ϕx + 2h′ϕ,

C2 = −2(h′x+ h′′y2)ϕt +
1
3
hϕ3

x − (h′x+ h′′y2)ϕ2
x

+1
2
hϕ2

y + 2(h′′x+ h′′′y2)ϕ,

C3 = 2(h′x+ h′′y2)ϕy − hϕxϕy − 4h′′yϕ.

Cσ





C1 = −σyϕx,
C2 = −σyϕt − 1

2
σyϕ2

x + σ′yϕ,

C3 = σyϕy − σϕ.
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Cτ





C1 = −τϕx,
C2 = −τϕt − 1

2
τϕ2

x + τ ′ϕ,

C3 = τϕy.

The extracted family of vectors C satisfying the conservation equation (28.3)
depends on five arbitrary functions f(t), g(t), h(t), σ(t), τ(t). Thus, the
nonlinear equation (28.1) has the remarkable property of possessing an in-
finite set of independent conservation laws.

28.3 Computation of one of the conserved vectors

In this section I provide details of computing for one of the above conserved
vectors, namely Cσ. Other vectors are calculated likewise.

The Lagrangian for Eq. (28.1) has the form the function

L = −1

6
ϕ3
x − ϕtϕx +

1

2
ϕ2
y. (28.4)

Substituting in (21.9) the coordinates of the operator Xσ and the La-
grangian (28.4) we obtain

A1 = −σyϕx, A2 = −σyϕt −
1

2
σyϕ2

x, A3 = σyϕy. (28.5)

The first prolongation of the operator Xσ has the form

X̃σ = σ(t)y
∂

∂ϕ
+ σ′(t)y

∂

∂ϕt
+ σ(t)

∂

∂ϕy
·

Noting that Di(ξ
i) = 0 for the operator Xσ, we see that the left-hand side

of Eq. (21.15) equals

X̃σL = −σ′yϕx + σϕy =
∂

∂x
(−σ′yϕ) + ∂

∂y
(σϕ).

Hence, Eq. (21.15) is satisfied if we take the vector B with the components

B′ = 0, B2 = −σ′yϕ, B3 = σϕ. (28.6)

The difference of the vectors with the components (28.5) and (28.6) provides
the vector Cσ from Section 28.2.
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28.4 Three-dimensional case

Proceeding as above, one can obtain an infinite family of conservation laws
for the three-dimensional transonic gas flow described by the equation

−ϕxϕxx − 2ϕxt + ϕyy + ϕzz = 0. (28.7)

The Lagrangian of this equation has the form

L = −1

6
ϕ3
x − ϕtϕx +

1

2
ϕ2
y +

1

2
ϕ2
z. (28.8)

Eq. (28.7) admits an infinite group [86]. Consequently, it has an infinite
number of conservation laws.

I will derive here only the family of conservation laws corresponding to
the operator

Xψ = ψ(y, z)
∂

∂ϕ
,

which is admitted by Eq. (28.7) for an arbitrary solution ψ(y, z) of the
Laplace equation

ψyy + ψzz = 0.

Acting as in Section 28.3, we obtain the vector Cψ with the components

C1 = −ψϕx, C2 = −ψ
(
ϕt +

1

2
ϕ2
x

)
,

C3 = ψϕy − ψyϕ, C4 = ψϕz − ψzϕ.
The validity of the conservation equation (21.12) follows from the equation

∂C1

∂t
+
∂C2

∂x
+
∂C3

∂y
+
∂C4

∂z

= (−ϕxϕxx − 2ϕxt + ϕyy + ϕzz)ψ − (ψyy + ψzz)ϕ = 0.

§ 29 Dirac equations

29.1 Lagrangian

All examples considered in the previous sections deal with non-degenerate
functionals. We will consider now an example where the corresponding
functional is degenerate. The example is provided by the Dirac equations

γk
∂ψ

∂xk
+mψ = 0, m = const. (29.1)
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Here the dependent variables are the components ψk (k = 1, . . . , 4) of the
four-dimensional complex vector ψ. The independent variables are

x1 = x, x2 = y, x3 = z, x4 = ict.

The coefficients γk (k = 1, . . . , 4) are the following complex 4× 4 matrices:

γ′ =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 , γ2 =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 ,

γ3 =




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


 , γ4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

Splitting Eqs. (29.1) into real and imaginary parts, one can deal with
eight real equations instead of four complex differential equations (29.1).
However, it is more convenient to save the complex notation and consider
Eq. (29.1) together with the conjugate equation

∂ψ̃

∂xk
γk −mψ̃ = 0, (29.2)

where
ψ̃ = ψ∗Tγ4. (29.3)

The indices ∗ and T indicate the transition to complex conjugate and trans-
posed values, respectively. It is convenient to assume that ψ is a column
vector and ψT (and consequently ψ̃ too) is a row vector. Hence, the lower
and upper indices are used accordingly: components of the column vector
and the row vector are written with the upper and lower indices, respec-
tively.

Equations (29.1), (29.2) can be derived as the Euler-Lagrange equations
(21.2) of the functional (21.1) with the Lagrange function

L =
1

2

{
ψ̃

(
γk
∂ψ

∂xk
+mψ

)
−
(
∂ψ̃

∂xk
γk −mψ̃

)
ψ

}
(29.4)

The order of derivatives involved in the Dirac equations (29.1), (29.2)
coincides with the order of derivatives contained in the Lagrangian (29.4).
Moreover, it is important that all equations of the system of equations
(29.1), (29.2) are equations of the first order. Therefore, according to Defi-
nition 1.17, we are dealing with the degenerate functional (21.1).
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29.2 Symmetries

Let us discuss the symmetry properties of the Dirac equations. We note
first of all that since these equations linear and homogeneous, they admit
the group G+ with the generators

Xϕ = ϕk(x)
∂

∂ψk
+ ϕ̃k(x)

∂

∂ψ̃k
(29.5)

and

X = ψk
∂

∂ψk
+ ψ̃k

∂

∂ψ̃k
· (29.6)

The column vector ϕ(x) = (ϕ1(x), . . . , ϕ4(x)) in the operator (29.5) is any
solution of Eqs. (29.1). The row vector ϕ̃(x) is obtained from ϕ(x) according
to the formula (29.3) and solves the conjugate equation (29.2). Since Eqs.
(29.1) have infinitely many linearly independent solutions, the group G+ is
infinite. This group, like in the case of linear equations of the second order
(see Section 12.2), is a normal subgroup of the whole group G admitted by
the Dirac equations. In what follows, instead of the group G we consider
its quotient group with respect to the normal subgroup G+.

Below we shall write only transformations of the independent variables
xk and functions ψ, keeping in mind that the transformed value of the
function ψ̃ is derived from the transformed function ψ by the formula (29.3):

ψ̃ = ψ ∗Tγ4. (29.7)

Theorem 1.24. Let G be the widest group G admitted by Eqs. (29.1),
(29.2) with the mass m = 0. Then its quotient group G/G+ with respect
to the normal subgroup G+ is a 22-parameter group. Namely, G/G+ is
composed by the following seven one-parameter groups of transformations:

ψ = ψe−ia, (29.8)

ψ = ψ cosh a+ γ4γ2ψ̃T sinh a, (29.9)

ψ = ψ cosh a+ iγ4γ2ψ̃T sinh a, (29.10)

ψ = ψeiaγ
5

, γ5 = γ1γ2γ3γ4, (29.11)

ψ = ψe−aγ
5

, (29.12)

ψ = ψ cos a+ γ3γ1ψ̃T sin a, (29.13)

ψ = ψ cos a+ iγ3γ1ψ̃T sin a, (29.14)
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and by the 15-parameter group with the generators

X = X0 + (Sψ)k
∂

∂ψk
+ (ψ̃S̃)k

∂

∂ψ̃k
, (29.15)

where the operator

X0 = ξk(x)
∂

∂xk

runs over the set of the generators (9.8) of the group of conformal transfor-
mations in the flat space V4, and

S =
1

8

4∑

k,l=4

∂ξk

∂xl
(γkγl − γlγk − 3δkl), S̃ = γ4S∗Tγ4. (29.16)

If the mass m 6= 0, then the admitted group G/G+ is composed by
the transformations (29.8)-(29.10) and by the 10-parameter group with the
generators (29.15), where Xo runs the set of the generators of the group of
isometric motions in the flat space V4.

Proof. All statements of the theorem were obtained in [55] by solving the
determining equations (Section 4.2) for the Dirac equations (29.1), (29.2).

Remark 1.9. The conformal invariance of Eqs. (29.1) with m = 0, i.e.
the invariance under the 15-parameter group with the generators (29.15)
was established by Dirac [26]. Later Pauli [115] discovered, by consider-
ing the case m = 0, that the Dirac equations (29.1), considered together
with the conjugate equations (29.2) admit, along with the conformal group,
three more symmetries, namely the transformations (29.12)-(29.14). The
transformations (29.12)-(29.14) together with the transformations (29.11)
are often called the 4-parameter Pauli group.

29.3 Invariance of extremal values of the functional

Straightforward verification shows that the extremal values of the functional
(21.1) with the Lagrange function (29.4) are invariant with respect to the
whole groupG admitted by Eqs. (29.1), (29.2). I will illustrate this property
by the one-parameter group of transformations (29.12).

Substituting the expressions of the matrices γk given in Section 29.1 in
the definition of the matrix γ5 (formula (29.11)), one obtains

γ5 · γ5 = I,



134 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

where I is the unit matrix. Therefore,

e−aγ
5

=
(
I − aγ5 + a2

2!
γ5 · γ5 − . . .

)
=
(
1 +

a2

2!
+
a4

4!
+ . . .

)
I

−
(
a+

a3

3!
+
a5

5!
+ . . .

)
γ5 = I cosh a− γ5 sinh a.

Substituting the resulting expression for e−aγ
5
in (29.12) and using the for-

mula (29.7) we obtain the one-parameter group of transformations

ψ = ψ cosh a− γ5ψ sinh a,

ψ̃ = ψ̃ cosh a− ψ̃γ5 sinh a
with the real valued parameter a. Since these transformations do not change
the variables xk, we have to find the transformation of the Lagrangian (29.4)

only. Substituting the transformed functions ψ and ψ̃ in (29.4), we find the
transformed value of the Lagrangian:

L = (cosh2 a+ sinh2 a)L+ cosh a sinh a
(
ψ̃γ5γk

∂ψ

∂xk
+
∂ψ̃

∂xk
γkγ5ψ

)
.

It is manifest that if ψ is an arbitrary function, then

L 6= L,

and hence the functional (21.1) is not invariant with respect to the trans-
formations (29.12).

However, if ψ is the solution of the Dirac equations (29.1) (and conse-

quently ψ̃ solves Eqs. (29.2)) with m = 0, then

γk
∂ψ

∂xk
=

∂ψ̃

∂xk
γk = 0,

and therefore
L = L = 0.

It means that the extremal values of the functional are invariant with respect
to the considered group.

Thus, according to Theorem 1.22, the group G admitted by the Dirac
equations leads to the conservation laws (21.12). It is clear from the trans-
formation of the Lagrangian under the transformation (29.12), that the
Noether theorem (see Section 21.3) is not applicable to the whole symme-
try group G. Specifically, it is not applicable to the subgroup G+ ⊂ G and
to the Pauli transformations (29.12)-(29.14).
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29.4 Conserved vectors

Let us obtain the vectors (21.9) satisfying the conservation equation (21.12).
I will consider the case m = 0 and then indicate which conservation laws
hold when m 6= 0.

The vectors (21.9) provided by the dilation generator (29.6) and by the
Pauli transformations (29.12)-(29.14) are equal to zero, in accordance with
Remark 1.7 from § 22.

The operator (29.5) furnishes the conserved vector with the components

Akϕ = ψ̃γkϕ(x)− ϕ̃(x)γkψ (k = 1, . . . , 4).

Taking all possible solutions ϕ(x) of the Dirac equations (29.1), one obtains
an infinite set of conservation laws.

Let m = 0. Then, substituting in (21.9) the operators (29.15), where
X0 successively equals to the translation generators Xl, rotation generators
Xjl, dilation generator Z and the operators Yl from (9.8), we obtain the
twelve conserved vectors with the following components Ak (k = 1, . . . , 4) :

Akl =
1

2

[ ∂ψ̃
∂xl

γkψ − ψ̃γk ∂ψ
∂xl

+ δkl

(
ψ̃γj

∂ψ

∂xj
− ∂ψ̃

∂xj
γjψ

)]
, (29.17)

Akjl =
1

4

[
ψ̃(γkγjγl + γjγlγk)ψ

]
+ xlAkj − xjAkl , (j < l), (29.18)

Ak = xlAkl , (29.19)

Bk
l = 2xjAkjl + |x|2Akl , (29.20)

where j, l = 1, . . . , 4. In addition, using the one-parameter groups (29.8)-
(29.11), we obtain the following four conserved vectors:

Ck
1 = −iψ̃γkψ, (29.21)

Ck
2 =

1

2
(ψ̃γkγ4γ2ψ̃T − ψτγ4γ2γkψ), (29.22)

Ck
3 =

i

2
(ψ̃γkγ4γ2ψ̃T + ψTγ4γ2γkψ), (29.23)

Ck
4 = iψ̃γkγ5ψ. (29.24)

If m 6= 0, we obtain the conserved vectors with the components

Akϕ, Akl , Akjl, Ck
1 , Ck

2 , Ck
3 , (29.25)

where the vectors (29.17) are replaced by

Akl =
1

2

[ ∂ψ̃
∂xl

γkψ − ψ̃γk ∂ψ
∂xl

+ δkl

(
ψ̃γj

∂ψ

∂xj
− ∂ψ̃

∂xj
γjψ

)]
+mψ̃ψ. (29.26)
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Open problem: Physical significance of new

conservation laws

The above conservation laws, except those that correspond to the vectors
Aϕ, C2, C3, are well known in physics and have a definite physical meaning
(see, e.g. [19]). Conservation laws with the vectors Ak

ϕ, C
k
2 and Ck

3 have not
received the corresponding physical interpretation yet.

Problem 1.5. Find a physical meaning of the conservation laws corre-
sponding to the conserved vectors Aϕ, C2, C3 from Section 29.4.

Institute of Hydrodynamics November 1972
Siberian Branch, USSR Acad. Sci.

Translated by E.D. Avdonina
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Abstarct

The paper develops the theory of approximate group analysis of differen-
tial equations that enables one to construct symmetries that are stable with
respect to small perturbations. Approximate symmetries of nonlinear wave
equations are calculated as well as those of a wide variety of evolutionary
equations, including, e.g. the Korteweg-de Vries and Burgers-Korteweg-de
Vries equations.

Introduction

Methods of classical group analysis allow to single out symmetries with
remarkable properties (see e.g. [97], [114], [61]) among all equations of
mathematical physics. Unfortunately, any small perturbation of an equa-
tion breaks the admissible group and reduces the applied value of these
”refined” equations and group theoretical methods in general. Therefore,
development of methods of group analysis stable with respect to small pertur-
bations of differential equations has become vital. The present work develops
such method based on notions of an approximate transformation group and
approximate symmetries.
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Let us introduce the following notation: z = z1, . . . , zN is the indepen-
dent variable, ε is a small parameter. All functions are considered to be
analytic with respect to the set of their arguments. Together with the no-

tation ξk ∂
∂zk

for expressions of the form
N∑
k=1

ξk ∂
∂zk
, the vector notation ξ ∂

∂z

is also used. In what follows θp(z, ε) indicates the infinitesimal function of
the order εp+1, p ≥ 0, i.e.

θp(z, ε) = o(εp),

and this equality (in case if functions are analytic in the vicinity ε = 0) is
equivalent to satisfaction of any of the following conditions:

lim
ε→0

θp(z, ε)

εp
= 0;

there exists a constant C > 0 such that

|θp(z, ε)| ≤ C|ε|p+1; (0.1)

there exists a function ϕ(z, ε) analytic in the vicinity of ε = 0 such that

θp(z, ε) = ε|p+1ϕ(z, ε). (0.2)

In what follows, the approximate equality f ≈ g indicates that the equality
f(z, ε) = g(z, ε) + o(εp) with a fixed value p ≥ 0 holds.

The following notation is used in section § 6: t, x are independent vari-
ables, u is the differential variable with successive derivatives (with respect
to x) u1, u2, . . . , : uα+1 = D(uα), uo = u, D = ∂

∂x
+
∑
α≥0

uα+1
∂
∂uα

; A is the

space of differential functions, i.e. of analytic functions of an arbitrary finite
number of variables

t, x, u, u1, . . . ; ft =
∂f

∂t
, fx =

∂f

∂x
, fα =

∂f

∂uα
, f∗ =

∑

α≥0
fαD

α.

§ 1 The approximate Cauchy problem

The following interpretation of the theorem on continuous dependence of
solution of the Cauchy problem on parameters is used below.

Theorem 2.1. Let the functions f(z, ε), g(z, ε), analytic in the neighbor-
hood of the point (zo, ε), satisfy the condition

g(z, ε) = f(z, ε) + o(εp), (1.1)
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and let z = x(t, ε) and z̃ = z̃(t, ε) be solutions of the problems

dz

dt
= f(z, ε), z|t=0 = α(ε)

and
dz̃

dt
= g(z̃, ε), z̃|t=0 = β(ε),

respectively. Here α(0) = β(0) = zo, β(ε) = α(ε) + o(εp). Then,

z̃(t, ε) = z(t, ε) + o(εp). (1.2)

Proof. Let us introduce the function u(t, ε) = z(t, ε)−z̃(t, ε). It satisfies
the conditions

u(0, ε) = o(εp), (1.3)
∣∣∣∣
du

dt

∣∣∣∣ ≤ |f(z, ε)− g(z̃, ε)| ≤ |f(z, ε)− g(z, ε)|+ |g(z, ε)− g(z̃, ε)|. (1.4)

Using (1.1) written in the form of inequality (0.1)

|g(z, ε)− f(z, ε)| ≤ Cεp+1, C = const,

and the Lipschiz condition |g(z, ε) − g(z̃, ε)| ≤ K|z − z̃|, K =const. from
(1.4), one obtains ∣∣∣∣

du

dt

∣∣∣∣ ≤ K|u|+ Cεp+1. (1.5)

For every fixed ε there exists such tε, that the function u(t, ε) has a constant
sign on the interval form 0 to tε. One has

d

dt
|u| ≤ K|u|+ Cεp+1

on this interval from (1.5). Dividing the latter inequality by |u| + C
K
εp+1

and integrating from 0 to t when |t| ≤ |tε|, one obtains

|u(t, ε)| ≤ C

K
(eKtε − 1)εp+1 + u(0, ε)eKtε ,

whence, with regard to (1.3), one obtains the condition (1.2). The theorem
is proved.

Let us consider the approximate Cauchy problem

dz

dt
≈ f(z, ε), (1.6)
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z|t=0 ≈ α(ε), (1.7)

determined as follows. The approximate differential equation (1.6) is inter-
preted as a family of differential equations

dz

dt
= g(z, ε) with g(z, ε) ≈ f(z, ε). (1.8)

The approximate initial condition (1.7) is interpreted likewise:

z|t=0 = β(ε) with β(ε) ≈ α(ε). (1.9)

The approximate equality in (1.8), (1.9) has the same accuracy p as in (1.6),
(1.9). According to the theorem 2.1, solutions of all problems of the form
(1.8), (1.9) coincide with the accuracy to o(εp). Therefore, solutions of any
problem (1.8), (1.9), considered with the accuracy up to o(εp) are called
solutions of the approximate Cauchy problem (1.6), (1.7). The uniqueness
of this solution (with the mentioned accuracy) follows from Theorem 2.1.

§ 2 One-parameter approximate groups

Given (local) transformations

z′ = g(z, ε, a),

generating a one-parameter group with respect to a, so that

g(z, ε, 0) = z, g(g(z, ε, a), ε, b) = g(z, ε, a+ b), (2.1)

and depending on the small parameter ε. Let f ≈ g, i.e.

f(z, ε, a) = g(z, ε, a) + o(εp). (2.2)

Together with the points z′, the “close” points z̃, determined by the formula

z̃ = f(z, ε, a), (2.3)

are introduced. Substituting (2.2) into (2.1), one can easily demonstrate
that the formula (2.3) sets the approximate group in the sense of the fol-
lowing definition.

Definition 2.1. Transformations (2.3), or

z′ ≈ f(z, ε, a), (2.4)
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generate an approximate one-parameter group with respect to the parame-
ter a if

f(z, ε, 0) ≈ z, (2.5)

f(f(z, ε, a), ε, b) ≈ f(z, ε, a+ b), (2.6)

and satisfaction of the condition f(z, ε, a) ≈ z for any z entails a = 0.

The basic statements about infinitesimal description of local Lie groups
hold when one starts to consider approximate groups changing the exact
equalities to approximate ones.

Theorem 2.2. (The approximate Lie theorem.) Let us assume that trans-
formations (2.4) generate an approximate group with a tangent vector field

ξ(z, ε) ≈ ∂f(z, ε, a)

∂a

∣∣∣∣
a=0

. (2.7)

Then, the function f(z, ε, a) satisfies the equation

∂f(z, ε, a)

∂a
≈ ξ(f(z, ε, a), ε). (2.8)

Conversely, solution (2.4) of the approximate Cauchy problem

dz′

da
≈ ξ(z′, a), (2.9)

z′
∣∣∣∣
a=0

≈ z (2.10)

for any (smooth) function ξ(z, ε) determines the approximate one-parameter
group with the group parameter a.

Remark 2.1. We will refer to equation (2.9) as the approximate Lie equa-
tion.

Proof. Let us assume that the function f(z, ε, a) sets the approximate
transformation group (2.4). Upon extraction of the dominant terms with
respect to b, the correlation (2.6) takes the form

f(f(z, ε, a), ε, 0) +
∂f(f(z, ε, a), ε, b)

∂b

∣∣∣∣
b=0

· b+ o(b) ≈

f(z, ε, a) +
∂f(z, ε, a)

∂a
· b+ o(b).
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Whence, the approximate equation (2.8) is obtained by means of transform-
ing the left-hand side by (2.5) and (2.7), dividing by b and limit transition
b→ 0.

On the contrary, let the function (2.4) be the solution of the approximate
problem (2.9), (2.10). In order to prove that f(z, ε, a) sets the approximate
group, it is sufficient to verify that the approximate equality (2.6) holds:

f(f(z, ε, a), ε, b) ≈ f(z, ε, a+ b).

Let us designate the left-hand and the right-hand sides of (2.6), considered
(with fixed z, a) as functions of (b, ε), by x(b, ε) and y(b, ε), respectively. By
virtue of (2.9) they satisfy one and the same approximate Cauchy problem

∂x

∂b
≈ ξ(x, ε), x|b=0 ≈ g(z, ε, a),

∂y

∂b
≈ ξ(y, ε), y|b=0 ≈ g(z, ε, a).

Therefore, according to Theorem 2.2, the approximate equality x(b, ε, ) ≈
y(b, ε), i.e. the group property (2.6), holds.

§ 3 The algorithm for constructing an ap-

proximate group

The construction of an approximate group by means of a given infinitesimal
operator is carried out on the basis of the approximate Lie theorem. In
order to illustrate how to solve the approximate Lie equation (2.9), let us
consider the case p = 0 first.

We seek the approximate transformation group

z′ = fo(z, a) + εf1(z, a), (3.1)

determined by the infinitesimal operator

X = (ξo(z) + εξ1(z))
∂

∂z
· (3.2)

Upon extracting the dominant terms with respect to ε, the corresponding
approximate Lie equation

d(fo + εf1)

da
≈ ξo(fo + εf1) + εξ1(fo + εf1)
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can be rewritten in the form of the system

dfo
da
≈ ξo(fo),

df1
da
≈ ξ′o(fo)f1 + ξ1(fo),

where ξ′o(λ) =
∣∣| ∂ξio
∂λj

∣∣| is the derivative of ξo. The initial condition z′|a=0 ≈ z
yields

fo
∣∣
a=0
≈ z, f1

∣∣
a=0
≈ 0.

Thus, according to the definition of solution of the approximate Cauchy
problem (see § 1), in order to construct the approximate (with the accu-
racy up to o(ε)) group (3.1) by the given infinitesimal operator (3.2), it is
sufficient to solve the following (exact) Cauchy problem:

dfo
da

= ξo(fo),
df1
da

= ξ′o(fo)f1 + ξ1(fo),

fo|a=0 = z, f1|a=0 = 0. (3.3)

Example 2.1. Let N = 1, X = (1 + εx) ∂
∂x
. The corresponding Cauchy

problem (3.3)
dfo
da

= 1,
df1
da

= fo,

fo|a=0 = x, f1|a=0 = 0

is readily solved and provides fo = x+ a, f1 = xa+ a2

2
. Hence, the approxi-

mate group is determined by the formula

x′ ≈ x+ a+ (xa+
a2

2
)ε.

This formula is obviously the dominant term of the Taylor expansion of the
exact group

x′ = xeaε +
eaε − 1

ε
=

(x+ a) + a(x+
a

2
)ε+

a2

2
(x+

a2

3
)ε2 + . . . ,

with respect to ε. The latter group is generated by the operator under
consideration

X = (1 + εx)
∂

∂x
·

Example 2.2. Let us construct the approximate transformation group

x′ = f 1o (x, y, a) + εf 11 (x, y, a), y′ = f 2o (x, y, a) + εf 21 (x, y, a)
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on the plane (x, y) determined by the operator

X = (1 + εx2)
∂

∂x
+ εxy

∂

∂y
·

Upon solving the problem (3.3)

df 1o
da

= 1,
df 2o
da

= 0,
df 11
da

= (f 1o )
2,
df 21
da

= f 1o f
2
o ,

f 1o ||a=0 = x, f 2o ||a=0 = y, f 11 ||a=0 = 0, f 21 ||a=0 = 0,

one obtains

x′ ≈ x+ a+ (x2a+ xa2 +
a3

3
)ε, y′ ≈ y + (xya+

ya2

2
)ε.

Transformations of the corresponding exact group in the given case have
the form

x′ =
δx cos δa+ sin δa

δ(cos δa− δx sin δa) , y′ =
y

cos δa− δx sin δa, δ =
√
ε.

In order to construct the approximate group (with the accuracy up to
o(εp)) with the arbitrary p we will need the formula for the dominant (with
respect to ε) part of the function of the form F (yo + εy1 + . . . + εpyp).
According to the Taylor formula, one has

F (yo+εy1+. . .+ε
pyp) = F (yo)+

p∑

|δ|=1

1

δ1
F (δ)(yo)(εy1+. . . ε

pyp)
δ+o(εp), (3.4)

where

F (δ) =
∂|δ|F

(∂z1)δ1 . . . (∂zN)δN
, (εy1 + . . .+ εpyp)

δ =

N∏

k=1

(εyk1 + . . .+ εpykp)
δk . (3.5)

Here δ = (δ1, . . . , δN ) is the multiindex, |δ| = δ1 + . . . + δN , δ! = δ1! . . . δN !,
indices δ1, . . . , δN run the values from 0 to p. Let us extract terms up to the
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order εp from the latter expression:

N∏

k=1

(εyk1 + . . .+ εpykp)
δk =

N∏

k=1




p∑

i1,...,iδk=1

yki1 . . . y
k
iδk
εi1+...+iδk


 ≈

N∏

k=1




p∑

νk=δk

ενk
∑

i1+...+iδk=νk

yki1 . . . y
k
iδk


 ≡

N∏

k=1

p∑

νk=δk

ενkyk(νk) ≈

p∑

j=|δ|
εj

(
∑

ν1+...+νN=j

y1(ν1) . . . y
N
(νN )

)
≡

p∑

j=|δ|
εj
∑

|ν|=j
y(ν). (3.6)

Here, the following notation is used:

yk(νk) ≡
∑

i1+...+iδk=νk

yki1 . . . y
k
iδk
, y(ν) = y1(ν1) . . . y

N
(νN ), (3.7)

where the indices i1, . . . , iδk run the values 1, . . . , p, and ν = ν(δ) = (ν1, . . . , νN)
is the multiindex associated with the multiindex δ so that if the index
δ1 in δ is equal to zero, then the corresponding index ν1 is absent in ν,
while every remaining index νk takes the values from δk to p; e.g. for
δ = (0, δ2, δ3, 0, . . . , 0) with δ2, δ3 6= 0 one has ν = (ν2, ν3), so that y(ν) =
y2(ν2)y

3
(ν3)

.

Substituting (3.6) into (3.4) and changing the order of summation with
respect to δ and j, one obtains the following formula for the principal part:

F (yo+εy1+. . .+ε
pyp) = F (yo)+

p∑

j=1

εj
j∑

|δ|=1

1

δ!
F (δ)(yo)

∑

|ν|=j
y(ν)+o(ε

p), (3.8)

where the notation (3.5), (3.7) is used. For instance,

F (yo + εy1 + ε2y2 + ε3y3) = F (yo) + ε

N∑

k=1

∂F (yo)

∂zk
yky1 + ε2

(
N∑

k=1

∂F (yo)

∂zk
yk2+

1

2

N∑

k=1

N∑

l=1

∂2F (yo)

∂zk∂zl
yk1y

l
1

)
+ ε3

(
N∑

k=1

∂F (yo)

∂zk
yk3 +

1

2

N∑

k=1

N∑

l=1

∂2F (yo)

∂zk∂zl
·

·(yk1yl2 + yl1y
k
2) +

1

3

N∑

k=1

N∑

l=1

N∑

m=1

∂3F (yo)

∂zk∂zl∂zm
yk1y

l
1y
m
1

)
+ o(ε3).

We will also need generalization of the formula (3.8) for the expression

p∑

i=0

εiFi(yo + εy1 + . . .+ εpyp).
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Applying formula (3.8) to every function Fi and introducing the notation

τj,i =

j∑

|δ|=1

1

δ!
F

(δ)
i (yo)

∑

|ν|=j
y(ν)

for the sake of brevity, one obtains

p∑

i=0

εiFi(yo + εy1 + . . .+ εpyp) ≈
p∑

i=0

εi[Fi(yo) +

p∑

j=1

εjτj,i] ≈

p∑

i=0

εiFi(yo) +

p−1∑

i=0

p−i∑

j=1

εi+jτj,i

with the accuracy up to o(εp). In order to sort the latter summand with
respect to degrees of ε let us make the standard transformations

p−1∑

i=0

p−i∑

j=1

εi+jτj,i =

p−1∑

i=0

p∑

l=i+1

εlτl−i,i =

p∑

l=1

εl
l−j∑

i=0

τl−i,i =

p∑

l=1

εl
l∑

j=1

τj,l−j.

As a result one arrives to the following generalization of the formula (3.8):

p∑

i=0

εiFi(yo + εy1 + . . .+ εpyp) ≈

Fo(yo) +

p∑

i=1

εi[Fi(yo) +
i∑

j=1

j∑

|δ|=1

1

δ!
F

(δ)
i−j(yo)

∑

|ν|=j
y(ν)] (3.9)

with the same notation (3.5), (3.7).
Let us turn back to constructing an approximate group with the accuracy

up to o(εp) with the arbitrary p. The approximate transformation group

z′ ≈ fo(z, a) + εf1(z, a) + . . .+ εpfp(z, a) (3.10)

for the infinitesimal operator

X = [ξo(z) + εξ1(z) + . . .+ εpξp(z)]
∂

∂z
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is determined by the following approximate Lie equation

d

da
(fo + εf1 + . . .+ εpfp) ≈

p∑

i=0

εiξi(fo + εf1 + . . .+ εpfp). (3.11)

Transforming the right-hand side of the equation by the formula (3.9) and
equating coefficients of ε with the same powers, one obtains the system of
equations (with notation (3.5),(3.7))

dfo
da

= ξo(fo), (3.12)

df1
da

= ξi(fo) +
i∑

j=1

j∑

|δ|=1

1

δ!
ξ
(δ)
i−j(fo)

∑

|ν|=j
f(ν), i = 1, . . . , p (3.13)

equivalent to the approximate equation (3.11).
Thus, the problem of constructing the approximate group (3.10) is re-

duced to solution of the system (3.12), (3.13) with the initial conditions

fo
∣∣
a=0

= z, fi
∣∣
a=0

= 0, i = 1, . . . , p. (3.14)

Let us write out the first several equations of the system (3.12), (3.13)
for the sake of illustration:

dfo
da

= ξo(fo),

df1
da

=
N∑

k=1

∂ξo(fo)

∂zk
fk1 + ξ1(fo),

df2
da

=
N∑

k=1

∂ξo(fo)

∂zk
fk2 +

1

2

N∑

k=1

N∑

l=1

∂2ξo(fo)

∂zk∂zl
fk1 f

l
1 +

N∑

k=1

∂ξ1(fo)

∂zk
fk1 + ξ2(fo),

df3
da

=
N∑

k=1

∂ξo(fo)

∂zk
fk3 +

1

2

N∑

k=1

N∑

l=1

∂2ξo(fo)

∂zk∂zl
(fk1 f

l
2 + f l1f

k
2 ) (3.15)

+
1

3!

N∑

k=1

N∑

l=1

N∑

m=1

∂3ξo(fo)

∂zk∂zl∂zm
fk1 f

l
1f

m
1 +

N∑

k=1

∂ξ1(fo)

∂zk
fk2

+
1

2

N∑

k=1

N∑

l=1

∂2ξ1(fo)

∂zk∂zl
fk1 f

l
1 +

N∑

k=1

∂ξ2(fo)

∂zk
fk1 + ξ3(fo).
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Example 2.3. Let us write out the system (3.12), (3.13) for the operator

X = (1 + εx2)
∂

∂x
+ εxy

∂

∂y

from Example 2.2. In the given case N = 2, z = (x, y), fk = (f 1k , f
2
k ),

k = 0, 1, . . . , p; ξo = (1, 0), ξ1 = (x2, xy), ξl = 0 for l ≥ 2. Equations (3.15)
provide

df 1o
da

= 1,
df 2o
da

= 0;
df 11
da

= (f 1o )
2,

df 21
da

= f 1o f
2
o ;

df 12
da

= 2f 1o f
1
1 ,

df 22
da

= f 2o f
1
1 + f 1o f

2
1 ;

df 13
da

= 2f 1o f
1
2 + (f 11 )

2;
df 23
da

= f 2o f
1
2 + f 1o f

2
2 + f 11 f

2
1 .

Equation (3.13) is simplified for i > 3 due to the special form of the vector
ξ. Namely, since ξo =const., ξl = 0 for l ≥ 2, one has only terms with
j = i − 1 in the right-hand side of (3.13), and equation (3.13) is rewritten
in the form

dfi
da

=
i−1∑

|δ|=1

1

δ!
ξ
(δ)
1 (fo)

∑

|ν|=i−1
f(ν).

Further reduction of these equations is connected with the form of the vector
ξ1. Since ξ

1
1 = x2, ξ21 = xy, writing the first component of the considered

equations one uses only δ = (1, 0) and δ = (2, 0); and writing the second
component one takes δ equal to (1, 0), (0, 1), and (1, 1). As a result one
obtains the following recurrent system:

df 1i
da

= 2f 1o f
1
i−1 +

∑

i1+i2=i−1
f 1i1f

1
i2

df 2i
da

= f 2o f
1
i−1 + f 1o f

2
i−1 +

∑

i1+i2=i−1
f 1i1f

2
i2
.

These equations hold for every i ≥ 3.

Example 2.4. Let us calculate the approximate transformation group of
the order εp, dilated by the operator

X = (1 + εx)
∂

∂x

from Example 2.1. The system (3.12), (3.13) in the given case takes the
form

dfo
da

= 1,
dfi
da

= fi−1, i = 1, . . . , p,
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and with regard to initial conditions (3.14) it provides

fi =
xai

i!
+

ai+1

(i+ 1)!
, i = 0, . . . , p.

The corresponding approximate transformation group is determined by the
formula

x′ ≈
p∑

i=0

ai

i!
(x+

a

i+ 1
)εi.

Let us verify conditions of Definition 2.1 of the approximate group for the
latter transformation. Condition (2.5)

x′|a=0 = x,

obviously holds. The correlation (2.6), written in the given case as

p∑

i=0

bi

i!

[
p∑

j=0

aj

j!
(x+

a

j + 1
)εj +

bi

i+ 1

]
εi ≈

p∑

i=0

(a+ b)i

i!
(x+

a+ b

i+ 1
)εi,

follows from the chain of approximate equalities (with the accuracy up to
o(εp)):

p∑

i=0

bi

i!

[
p∑

j=0

aj

j!
(x+

a

j + 1
)εj +

bi

i+ 1

]
≈

p∑

i=0

p−i∑

j=0

(
biaj

i!j!
x+

biaj+1

i!(j + 1)!
εi+j +

p∑

i=0

bi+1

(i+ 1)!
εi

)
=

p∑

i=0

p∑

k=i

(
biak−i

i!(k − i)!x+
biak+1−i

i!(k + 1− i)!

)
εk +

p∑

i=0

bi+1

(i+ 1)!
εi =

p∑

k=0

εk

[
k∑

i=0

(
biak−i

i!(k − i)!x+
biak+1−i

i!(k + 1− i)!

)
+

bk+1

(k + 1)!

]
=

p∑

k=0

εk
[
(a+ b)k

k!
x+

(a+ b)k+1

(k + 1)!

]
.
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§ 4 Criterion of approximate invariance

Definition 2.2. The approximate equation

F (z, ε) ≈ 0 (4.1)

is said to be invariant with respect to the approximate transformation group
z′ ≈ f(z, ε, a) if

F (f(z, ε, a), ε) ≈ 0 (4.2)

for all z = (z1, . . . , zN), satisfying (4.1).

Theorem 2.3. Let the function F (z, ε) = (F 1(z, ε), . . . , F n(z, ε)), analytic
with respect to the set of variables z, ε, satisfy the condition

rank F ′(z, 0)|F (z,0)=0 = n, (4.3)

where F ′(z, ε) = ||∂F ν(z,ε)
∂zi

||, ν = 1, . . . , n; i = 1, . . . , N. The invariance of the
approximate equation (4.1)

F (z, ε) = o(εp)

with respect to the approximate transformation group (2.4)

z′ = f(z, ε, a) + o(εp)

with the infinitesimal operator

X = ξi(z, ε)
∂

∂zi
, ξi =

∂f

∂a

∣∣∣∣
a=0

+ o(εp), (4.4)

is provided by the necessary and sufficient condition

XF (z, ε)|(4.1) = o(εp). (4.5)

Proof. Necessity. Let us assume that the condition (4.2) of invariance
of the approximate equation (4.1)

F (f(z, ε, a), ε)
∣∣
(4.1)

= o(εp)

is satisfied. Whence, one obtains the equality (4.5) by means of differenti-
ation with respect to a when a = 0.

Sufficiency. Let the equality (4.5) be satisfied for the function F (z, ε),
satisfying the condition (4.3). Let us prove the invariance of the approxi-
mate equation (4.1). With this purpose we introduce new variables

y1 = F 1(z, ε), . . . , yn = F n(z, ε), yn+1 = H1(z, ε), . . . , yN = HN−n(z, ε)
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instead of z1, . . . , zN , choosing such H1(z, ε), . . . , HN−n(z, ε) that the func-
tions F 1, . . . , F n, H1, . . . , HN−n are functionally independent (this is possi-
ble by virtue of the condition (4.3) when ε is sufficiently small). The original
approximate equation (4.1), operator (4.4) and the condition (4.5) take the
following form in the new variables

yν = θνp(y, ε), ν = 1, . . . , n, (4.6)

X = ηi(y, ε)
∂

∂yi
, where ηi ≈ ξi(x, ε)

∂yi(x, ε)

∂xj
(4.7)

ην(θ1p, . . . , θ
n
p , y

n+1, . . . , yN) = o(εp), ν = 1, . . . , n, (4.8)

where θνp = o(εp) (see 0.2)). According to Theorem 2.2, transformations of
variables y are determined by the approximate Cauchy problem

dy′ν

da
≈ ην(y′1, . . . , y′n, y′n−1, . . . , y′N , ε), y′ν |a=0 = θνp(y, ε),

dy′k

da
≈ ηk(y′1, . . . , y′n, y′n+1, . . . , y′N , ε), y′k|a=0 = yk, k = n+ 1, . . . , N,

where the initial conditions for the first subsystem are written with regard
to (4.1). According to Theorem 2.1, the solution of the problem is unique
(with the accuracy under consideration), and by virtue of (4.8), it has the
form y′ = θ1p, . . . , θ

n
p , y

n+1, yN . Turning back to the initial variables, one
obtains F ν(z′, ε) = o(εp), ν = 1, . . . , n, i.e., the approximate equation (4.2).
The theorem is proved.

Example 2.5. Let N = 2, z = (x, y), p = 1. Consider the approximate
transformation group (see Example 2.2 of § 3)

x′ = x+ a+ (x2a+ xa2 +
a3

3
)ε, y′ = y + (xya+

ya2

2
)ε (4.9)

with the infinitesimal operator

X = (1 + εx2)
∂

∂x
+ εxy

∂

∂y
· (4.10)

Let us demonstrate that the approximate equation

F (x, y, ε) ≡ y2+ε − εx2 − 1 ≈ o(ε) (4.11)

is invariant with respect to transformations (4.10).



152 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

First let us verify the invariance of (4.11) abiding by Definition 2.2. To
this end, it is convenient to rewrite equation (4.11) in the following form:

F̃ (x, y, ε) ≡ y2 − ε(x2 − y2 ln y)− 1 ≈ 0 (4.12)

with the necessary accuracy preserved. Transformation (4.9) provides

F̃ (x′, y′, ε) = y′2 − ε(x′2 − y′2 ln y′)− 1 ≈ y2 − ε(x2 − y2 ln y)− 1+

ε(2xa+ a2)(y2 − 1) = F̃ (x, y, ε) + ε(2xa+ a2)[F̃ (x, y, ε)+

ε(x2 − y2 ln y)] = [1 + ε(2ax+ a2)]F̃ (x, y, ε) + o(ε)

∣∣∣∣
F̃=0

≈ 0,

whence, the necessary equality (4.2): F̃ (x′, y′, ε) follows.
The function F (x, y, ε) satisfies the condition 4.3 of Theorem 2.3. There-

fore, the invariance can be manifested also by means of the infinitesimal
criterion (4.5). One has

XF = (2 + ε)εxy2+ε − 2εx(1 + εx2) = 2εx(y2+ε − 1) + o(ε) = 2εxF + o(ε)

for the operator (4.10), so that the invariance criterion (4.5) obviously holds.
According to Theorem 2.3, the construction of the approximate group,

leaving the equation F (z, ε) ≈ 0 invariant, is reduced to solution of the
determining equation

XF (z, ε)

∣∣∣∣
F≈0
≈ 0 (4.13)

for the coordinates ξk(z, ε) of the infinitesimal operator

X = ξ
∂

∂z
·

In order to solve the determining equation (4.13) with the accuracy up to
o(ε) one has to represent the values z, F, ξk in the form

z = yo+εy1+. . .+ε
pyp, F (z, ε) ≈

p∑

i=0

εiFi(z), ξ
k(z, ε) ≈

p∑

i=0

εiξki (z), (4.14)

substitute them into XF, and single out the principal terms there. One has

XF = ξk
∂F

∂zk
=

[
p∑

i=0

εiξk(yo + εy1 + . . .+ εpyp)

]
−
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[

p∑

j=0

εj
∂

∂zk
Fj(yo + εy1 + . . .+ εpyp)

]
.

Using the formula (3.9) and the notation

Aki = ξki (yo) +
i∑

j=1

j∑

|δ|=1

1

δ!
(ξki−j)

(δ)(yo)
∑

|ν|=j
y(ν), (4.15)

Bj,k =
∂Fj(yo)

∂zk
+

j∑

i=1

i∑

|ω|=1

1

ω!

(
∂Fj−i
∂zk

)(ω)

(yo)
∑

|µ|=i
y(µ), (4.16)

one obtains

XF =

[
ξko (yo) +

p∑

i=1

εiAki

]
·
[
∂Fo(yo)

∂zk
+

p∑

j=1

εjBj,k

]
,

whence,

XF = ξko (yo)
∂Fo(yo)

∂zk
+ ε

[
ξko (yo)B1,k + Ak1

∂Fo(yo)

∂zk

]
+

p∑

s=2

εs

[
ξko (yo)Bs,k + Aks

∂Fo(yo)

∂zk
+
∑

i+j=s

AkiBj,k

]
. (4.17)

Combination of the formulae (4.13), (4.14), (4.15), (4.16), (4.17), and (3.9)
provides the following form of the determining equation

ξko (yo)
∂Fo(yo)

∂zk
= 0, ξko (yo)B1,k + Ak1

∂Fo(yo)

∂zk
= 0, (4.18)

ξko (yo)Bl,k + Akl
∂Fo(yo)

∂zk
+
∑

i+j=l

AkiBj,k = 0, l = 2, . . . , p.

Equations (4.18) hold for the set of all yo, y1, . . . , yp, satisfying the system

Fo(yo) = 0, Fi(yo) +
i∑

j=1

j∑

|δ|=1

1

δ!
F

(δ)
i−j(yo)

∑

|ν|=j
y(ν), i = 1, . . . , p, (4.19)

equivalent to the approximate equation (4.1). Thus, the problem of solv-
ing the approximate determining equation (4.13) is reduced to solving the
system of exact equations (4.18), (4.19).
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Let us write out the determining equations when p = 1. Equations (4.18),
(4.19) provide

ξko (yo)
∂Fo(yo)

∂zk
= 0, (4.20)

ξk1 (yo)
∂Fo(yo)

∂zk
+ ξko (yo)

∂F1(yo)

∂zk
+ yl1

∂

∂zl
(ξko (yo)

∂Fo(yo)

∂zk
) = 0 (4.21)

with the conditions

Fo(yo) = 0, F1(yo) + yl1
∂Fo(yo)

∂zl
= 0. (4.22)

In the latter equations, as well as everywhere in this section, the following
notation is used for the sake of brevity:

yl1
∂

∂zl
(ξko (yo)

∂Fo(yo)

∂zk
) ≡

N∑

l=1

N∑

k=1

yl1
∂

∂zl
(ξko (z)

∂Fo(z)

∂zk
)

∣∣∣∣
z=yo

.

In case if p = 2, equation

ξk2 (yo)
∂Fo(yo)

∂zk
+ ξk1 (yo)

∂F1(yo)

∂zk
+ ξko (yo)

∂F2(yo)

∂zk
+

yl2
∂

∂zl

(
ξko (yo)

∂Fo(yo)

∂zk

)
+

1

2
yl1y

m
1

∂2

∂zl∂zm

(
ξko (yo)

∂Fo(yo)

∂zk

)
+ (4.23)

yl1
∂

∂zl

(
ξko (yo)

∂F1(yo)

∂zk
+ ξk1 (yo)

∂Fo(yo)

∂zk

)
= 0

is added to (4.20), (4.21), and equation

F2(yo) + yk1
∂F1(yo)

∂zk
+ yk2

∂Fo(yo)

∂zk
+

1

2
yk1y

l
1

∂2Fo(yo)

∂zk∂zl
= 0 (4.24)

is added to conditions (4.22).

Remark 2.2. Equations (4.18) and (4.19) (see also the particular cases
(4.20)-(4.24)) manifest the necessity of the condition (4.3) imposed on the
function F (z, ε).

Example 2.6. Let us consider the approximate equation (4.11) of Example
2.5 again:

F (x, y, ε) ≡ y2+ε − εx2 − 1 = o(ε).

In the notation (4.14) (se also (4.12)) one has

Fo(x, y) = y2 − 1, F1(x, y) = y2 ln y − x2.
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Taking into account the condition y > 0, one obtains

yo = 1, y1 =
x2o
2

from equations (4.22); and the determining equations (4.20), (4.21), upon
splitting with respect to the free variable x1 and substituting y1 = x2o/2, is
written in the form

ξ2o(xo, yo) = 0,
∂ξ2o(xo, yo)

∂x
= 0,

yoξ
2
1(xo, yo)− xoξ1o(xo, yo) +

x2o
2

∂ξ2o(xo, yo)

∂y
= 0. (4.25)

Any operator

X = [ξ1o(x, y) + εξ11(x, y)]
∂

∂x
+ [ξ2o(x, y) + εξ21(x, y)]

∂

∂y

with the coordinates satisfying the equations (4.25) when yo = 1 and xo is
arbitrary, dilates the approximate group that leaves equation (4.11) invari-
ant with the accuracy up to o(ε). For example, operators

X = x
∂

∂x
+ 2(y − 1)

∂

∂y
, X = xy

∂

∂x
+ (y2 − 1)

∂

∂y
·

refer to such operators as well as (4.10).

Remark 2.3. If some variables zk are not included into equation F (z, ε) ≈
0, then it is not necessary to represent the variable zk in the form

∑
i≥0

εiyki

in the determining equation (4.18).

§ 5 Equation utt + εut = [ϕ(u)ux]x

Approximate symmetries (by which we mean either admissible approximate
groups or their infinitesimal operators) of differential equations are calcu-
lated according to the algorithm given in § 4 using the ad hoc technic of
dilation of infinitesimal operators to necessary derivatives. In what follows
we consider approximate symmetries of the first order (p = 1) and classify
equations of the second order with the small parameter

utt + εut = (ϕ(u)ux)x, ϕ 6= const, (5.1)
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arising in various applied problems (see, e.g., [4]) according to such symme-
tries. The infinitesimal operator of the approximate symmetry is deduced
in the form

X = (ξ1o + εξ11)
∂

∂t
+ (ξ2o + εξ21)

∂

∂x
+ (ηo + εη1)

∂

∂u
· (5.2)

Coordinates ξ and η of the operator (5.2) depend on t, x, u and are defined
by the determining equations (4.20), (4.21), where

z = (t, x, ut, ux, utt, utx, uxx), Fo = utt − (ϕ(u)ux)x, Fi = ut.

According to Remark (2.3), it is sufficient to dilate z = yo+ε(y1) only for the
differential variable (for t, x are not included into equation (4.1) explicitly):

u = uo + εu1, ux = (uo)x + ε(u1)x etc.

Equation (4.20) is the determining equation for the operator

Xo = ξ1o
∂

∂t
+ ξ2o

∂

∂x
+ ηo

∂

∂u
, (5.3)

admitted by the zero-order approximation of equation (5.1), i.e. by equation

utt = (ϕ(u)ux)x, ϕ 6= const. (5.4)

Hence, the first stage of classification of equations (5.1) with respect to
approximate symmetries is classification of equations (5.4) with respect to
exact symmetries. The second stage is solution of the determining equation
(4.21) with the known Fo and the values of the coordinates ξ1o , ξ

2
o , ηo of the

operator (5.3).
Group classification of equations (5.4) (with respect to point symme-

tries) is carried out in [4] and the result with dilations and shifts applied
can be written in the form of Table1.

Now let us turn to the second stage of constructing approximate sym-
metries. First, let us consider the case of an arbitrary function ϕ(u). Sub-
stituting the values ξ1o = C1t + C2, ξ

2
o = C1x + C3, ηo = 0 into equation

(4.21), one obtains C1 = 0, ξ11 = K1t +K2, ξ
2
1 = K1x +K3, η1 = 0, where

K1 =const. Note that equation (5.1), as well as any admissible (exactly
or approximately) operator X, admits the operator εX. These operators
will be omitted from our consideration as unessential. In particular, the
operators

ε
∂

∂t
, ε

∂

∂x
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Table 1: Group classification of Eq. (5.4)

ϕ(u) ξ1o ξ2o ηo

Arbitrary
function C1t+ C2 C1x+ C3 0

1 kuσ C1t+ C2 C3x+ C4
2
σ (C3 − C1)u

2 ku−
1
3 C1t+ C2 C3x

2 + C4x+ C5 −3
2(2C3 + C4 − C1)u

3 ku−4 C1t
2 + C2t+ C3 C4x+ C5

1
2(2C1t+ C2 − C4)u

4 keu C1t+ C2 C3x+ C4 2(C3 − C1)

k = ±1, σ is an arbitrary parameter, C1, . . . , C5 =const.

ar unessential, and the constants K2, K3 can be considered to be equal
to zero while solving the determining equation (4.21). Thus, when the
function ϕ(u) is arbitrary, equation (5.1) admits three essential operators of
the approximate symmetry meeting the conditions of the constants C2, C3,
K1. Likewise, one can analyze the remaining cases of Table 1. The result is
summarized in Table 2, where operators admitted by equations (5.4), and
(5.1) exactly, and exactly and approximately, respectively are given for the
sake of convenient comparison of approximate symmetries with the exact
ones.

Remark 2.4. Table 2 provides bases of the admissible algebras for exact
symmetries and their generators for approximate symmetries. The basis of
the corresponding algebra is obtained by multiplying the generators by ε
and eliminating the terms of the order ε2. For example, when ϕ(u) = ku−

4
3 ,

equations (5.4), and (5.1) admit a five-dimensional algebra, and a four-
dimensional algebra of exact symmetries with a ten-dimensional algebra of
approximate symmetries with the following basis, respectively:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = (t− 1

4
εt2)

∂

∂t
+ x

∂

∂x
− 3

4
εtu

∂

∂u
,

X4 = 2x
∂

∂x
− 3u

∂

∂u
, X5 = x2

∂

∂x
− 3xu

∂

∂u
, X6 = εX1,

X7 = εX2, X8 = ε(t
∂

∂t
+ x

∂

∂x
), X9 = εX4, X10 = εX5.
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Table 2: Comparative table of exact and approximate symmetries

ϕ(u)
Symmetries for
Eq. (5.4)

Symmetries for Eq. (5.1)
Exact Approximate

Any
Xo

1 =
∂
∂t , X

o
2 =

∂
∂x

Xo
3 = t ∂∂t + x ∂

∂x

Y1 = Xo
1

Y2 = Xo
2

X1 = Xo
1 , X2 = Xo

2

X3 = εXo
3

kuσ Xo
4 = σx ∂

∂x + 2u ∂
∂u Y3 = Xo

4

X̃3 = Xo
3 +

ε
σ+4

(
σ
2 t

2 ∂
∂t − 2tu ∂

∂u

)

X4 = Xo
4

ku−
4
3

Xo
4 = 2x ∂

∂x − 3u ∂
∂u

Xo
5 = x2 ∂

∂x − 3xu ∂
∂u

Y3 = Xo
4

Y4 = Xo
5

X̃3 = Xo
3 − ε

4

(
t2 ∂∂t + 3tu ∂

∂u

)

X4 = Xo
4 , X5 = Xo

5

ku−4
Xo

4 = 2x ∂
∂x − u ∂

∂u

Xo
5 = t2 ∂∂t + tu ∂

∂u

Y3 = Xo
4

Y4 = Xo
5

X4 = Xo
4

X5 = εXo
5

keu Xo
4 = x ∂

∂x + 2 ∂
∂u Y3 = Xo

4

X̃3 = Xo
3 + ε

(
t2

2
∂
∂t − t ∂∂u

)

X4 = Xo
4

§ 6 Equation ut = h(u)ux + εH

The present section considers the class of evolutionary equations of the form

ut = h(u)u1 + εH, H ∈ A (6.1)

containing, in particular, Korteweg-de Vries and Burgers Korteweg-de Vries
equations, etc.

Theorem 2.4. Equation (6.1) inherits approximately (with any degree of
accuracy) all symmetries of equation

ut = h(u)u1. (6.2)

Namely, any canonical Lie-Bäcklund operator [61]

Xo = f o
∂

∂u
+ . . . ,

admitted by equation (6.2), generates an approximate symmetry (of an
arbitrary order p) for (6.1) determined by the coordinate

f =

p∑

i=0

εif i, f i ∈ A (6.3)

of the canonical operator

X = f
∂

∂u
+ . . . .
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Proof. The approximate symmetries (6.3) of the equation (6.1) are
derived from the determining equation (4.18), which in the given case takes
the form

f ot − h(u)f ox +
∑

α≥1
[Dα(hu1)− hα+1]f

o
α − h′(u)u1f o = 0, (6.4)

f it − h(u)f ix +
∑

α≥1
[Dα(hu1)− huα+1]f

i
α − h′(u)u1f i =

∑

α≥0
[Dα(f i−1)Hα − f i−1α Dα(H)], i = 1, . . . , p. (6.5)

Equation (6.4) in f o is the determining equation for deriving the exact group
of transformations admitted by (6.2). Let us assume that f o is an arbitrary
solution of equation (6.4) and that it is a differential function of the order
k ≥ 0, and let H be a differential function of the order n ≥ 1, i.e.

f o = f o(t, x, u, . . . , uko), H = H(t, x, u, . . . , un).

We will be looking for solution f 1 of equation (6.5) in the form of the
differential function of the order k1 = n+ko−1. Then, (6.5) is a linear partial
differential equation of the first order with respect to the function f 1 of k1+3
arguments t, x, u, u1, . . . , uk1 , and therefore, it is solvable. Substitution of
any solution f 1(t, x, u, u1, . . . , uk1) into the right-hand side of equation (6.5)
with i = 2 demonstrates that f 2 can be sought in the form of a differential
function of the order k2 = n+ k1− 1, and the corresponding equation in f 2

is solvable. The remaining coefficients f i, i = 3, . . . , p of the series (6.3) are
determined recurrently from equation (6.5). The theorem is proved.

Theorem 2.4 entails, in particular, that any point symmetry of equation
(6.2) determined by the infinitesimal operator

Y = θ(t, x, u)
∂

∂t
+[ϕ(x+tu, u)−tψ(x+tu, u)−uθ(t, x, u)] ∂

∂x
+ψ(x+tu, u)

∂

∂u

with the arbitrary functions ϕ, ψ, θ or by the corresponding canonical Lie-
Bäcklund operator with the coordinate

f o = [ϕ(x+ tu, u)− tψ(x+ tu, u)]u1 − ψ(x+ tu, u), (6.6)

is approximately inherited by equation (6.1). Let us illustrate the algorithm
for constructing these approximate symmetries by examples.

First, let us consider the Korteweg-de Vries equation

ut = uu1 + εu3 (6.7)
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and find the approximate symmetry (6.3) of the second order (p = 2) with
f p = ϕ(u)u1. For this purpose one has to solve equations (6.5) (equation
(6.4) holds identically) for i = 1, 2 with h(u) = u, H = u3. When i = 1,
equation (6.5) is written in the form

f 1t − uf 1x + f 11u
2
1 + 3f 12u1u2 + f 13 (4u1u3 + 3u21)− f 1u1 =

3ϕ′u1u3 + 3ϕ′u22 + 6ϕ′′u21u2 + ϕ′′′u41. (6.8)

According to the proof of Theorem 2.4, its solution should be sought in the
form of a differential function of the third order, i.e. f 1 = f 1(t, x, u, u1, u2, u3).
Assuming that f 1 is independent of t, x, one finds the following particular
solution of equation (6.8):

f 1 = ϕ′u3 + 2ϕ′′u1u2 +
1

2
ϕ′′′u31 + α(u)u1 + β(u)

u2
u21
,

where α(u), β(u) are arbitrary functions chosen so that α = β = 0 for
the sake of simplicity. Substituting the resulting expression for f 1 into the
right-hand side of equation (6.5) with i = 2, one obtains

f 2 =
3

5
ϕ′′u5 +

9

5
ϕ′′′u1u4 + (3ϕ′′′u2 +

23

10
ϕIV u21)u3+

31

10
ϕIV u1u

2
2 +

8

5
ϕV u31u2 +

1

8
ϕV Iu51.

Thus, equation (6.7) pertains the following approximate symmetry of the
second order

f = ϕ(u)u1 + ε[ϕ′u3 + 2ϕ′′u1u2 +
1

2
ϕ′′′u31] + ε2[

3

5
ϕ′′u5 +

9

5
ϕ′′′u1u4+

(3ϕ′′′u2 +
23

10
ϕIV u21)u3 +

31

10
ϕIV u1u22 +

8

5
ϕV u31u2 +

1

8
ϕV Iu51] + o(ε2). (6.9)

Calculation of further coefficients of the approximate symmetry (6.3) with
f o = ϕ(u)u1 demonstrates that the coefficient f i is a differential function
of the order 2i + 1, and f i contains derivatives of ϕ(u) only of the order
≥ i. Hence, when ϕ(u) is a polynomial in the power of n, all coefficients f i

in (6.3) vanish when i > n+ 1 and the approximate symmetry of the order
p = n is the exact Lie-Bäcklund symmetry of the order 2n+ 1; in this case
one san assume that ε = 1 and obtain the exact symmetries of equation

ut = uu1 + u3. (6.10)
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For example, when ϕ(u) = u2 and p = 2, the formula (6.8) provides the
first non-trivial Lie-Bäcklund symmetry

f = u2u1 + 4u1u2 + 2uu3 +
6

5
u5

of the Kortweg-de Vries equation (6.10) (cf. [61] p. 191).
Let us consider another particular case and find the approximate sym-

metry of the first order for the Korteweg-de Vries equation (6.7), generated
by the function f o = ϕ(x+tu)u1. The determining equation (6.5) with i = 1
yields

f = ϕ(x+ tu)u1 + ε

{
ϕ′
1 + tu1
u1

u3 − ϕ′
u22
u21

+

ϕ′′ · [2(1 + tu1)
2 − 3

2
(1 + tu1)]

u2
u1

+
ϕ′′′

2
(1 + tu1)

3

}
+ o(ε). (6.11)

Approximate symmetries generated by f o = ϕ(x+ tu)u1 never become exact
whatever the function ϕ is.

Let us draw another example of an approximate symmetry generated
by a non-point symmetry. Equation ut = uu1 manifestly pertains the Lie-
Bäcklund symmetry f o = u2

u1
. Solving equation (6.5) with i = 1 when h = u,

H = u3 for the given function f o, one obtains the following approximate
symmetry of the first order of equation (6.7):

f ≈ u2
u21
− ε

(
2
u2u4
u41

+ 2
u23
u41
− 17

u22u3
u51

+ 15
u42
u61

)
. (6.12)

Finally, let us consider the Burgers Kortweg-de Vries equation

ut = uu1 + ε(au3 + bu2), a, b = const,

and find its approximate symmetry of the second order generated by point
symmetry f o = ϕ(u)u1 of equation ut = uu1. The system of determining
equations (6.5) with h = u, H = au3 + bu2, i = 1, 2 provides the unknown
approximate symmetry

f = ϕ(u)u1 + ε(aϕ′u3 + 2aϕ′′u1u2 +
1

2
aϕ′′′u31 + bϕ′u2 + bϕ′′u21)+

ε2
(
3

5
a2ϕ′′u5 +

5

4
abϕ′′u4 +

1

10
abϕ′′

u2u3
u1
− 1

20
abϕ′′

u32
u21

+
2

3
b2ϕ′′u3+

9

5
a2ϕ′′′u1u4 + 3a2ϕ′′′u2u3 +

7

2
abϕ′′′u1u3 +

23

10
abϕ′′u22 +

5

3
b2ϕ′′′u1u2+



162 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

23

10
a2ϕIV u21u3 +

31

10
a2ϕIV u1u

2
2 +

15

4
abϕIV u21u2 +

1

2
b2ϕIV u31+

8

5
a2ϕV u31u2 +

1

2
abϕ5u41 +

1

8
a2ϕV Iu51

)
+ o(ε2). (6.13)

Note that symmetries (6.11), (6.12) and (6.9) with a non-polynomial
function ϕ(u) provide new symmetries of the Korteweg-de Vries equation
that cannot be obtained in the framework of Lie and Lie-Bäcklund group
theory. Symmetry (6.13) is also new for the Burgers-Korteweg-de Vries
equation.

Translated by E.D. Avdonina



Paper 3

Approximate transformation
groups

V.A. Baikov, R.K. Gazizov, N.H. Ibragimov [11]

Differential’nye Uravneniya, Vol. 29, No. 10, 1993, pp. 1712-1732.
English transl., Differential Equations, Vol. 29, No. 10, 1993, pp. 1487-1504.

Reprinted with permission from Plenum Publishing Corporation.

Copyright c© 1994 Plenum Publishing Corporation.

In calculating approximate symmetries of differential equations with
small parameter, Baikov, Gazizov, and Ibragimov [7], [9], [10] found that
equations of the form

F (z, ε) ≡ Fo(z) + εF1(z) + . . .+ εqFq(z) ≈ 0 (0.1)

with small parameter ε, considered with an accuracy of o(εq) (q > 0) can
approximately [with an accuracy of o(εp) (p ≥ q)] admit infinitesimal op-
erators of two types, namely, zero-order operators (referred to as essential
operators in [9])

X = Xo + εX1 + . . .+ εpXp + o(εp), (0.2)

which are obtained by “inheriting” some (not necessarily all) symmetries
Xo of the nonperturbed equation

Fo(z) = 0, (0.3)

and k th-order operators

X = εk(Xo + εX1 + . . .+ εp−kXp−k), k = 1, . . . , p. (0.4)

163
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As shown in [7], any operator (0.2) or (0.4) generates an approximate
one-parameter group, and the composition of these one-parameter transfor-
mations determines a new object, namely, an approximate multi-parameter
transformation group (see Definition 3.2).

The set of all operators Xo admitted by equation (0.3) is a Lie algebra
with respect to the commutator. The zero-order operators (0.2) admitted
approximately by equation (0.1) do not form a Lie algebra by themselves
in general. Even the operators (0.2) and (0.4) are considered together, they
still do not form a Lie algebra from the viewpoint of classical Lie algebras,
but they do form a so-called approximate Lie algebra.

In this paper we study approximate multiparameter transformation groups
(analytic with respect to the small parameter) and the related approximate
Lie algebras. We also prove analogs of the first and second main Lie the-
orems on transformation groups. The third Lie theorem is not considered
here.

We use the following notation. We write θ(z, ε) = o(εp) to indicate
that θ(z, ε) can be represented in the form εp+1ϕ(z, ε) where ϕ(z, ε) is a
series in nonnegative powers of ε. The notation f ≈ g is used if f(z, ε) =
g(z, ε) + o(εp) for some fixed p if the order p is not fixed, then we assume
that the last equation holds for all p.We assume summation with respect to
the repeating indices in expressions like ξiα(z, ε)

∂
∂zi
. All considered functions

are assumed to be as smooth as desired.

§ 1 Illustrative Examples

Here we show that if Eq. (0.1) approximately admits operators X1, . . . Xk

of the form (0.2) and (0.4), then the approximate relation

[Xi, Xj] = ckijXk + o(εp)

holds, where ckij are constants (independent of ε). In this case we say that the
operatorsX1, . . . , Xk generate an approximate Lie algebra [with an accuracy
of o(εp).]

Example 3.1. The ordinary differential equation y′′ = f(y′) with an arbi-
trary function f admits the two-dimension Lie algebra with the basis

Xo
1 =

∂

∂x
, Xo

2 =
∂

∂y
·

The equation

y′′ = f(y′) + ε[yy′2f ′(y′)− 3yy′f(y′)− xf ′(y′)]
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with small parameter ε admits the zero-order infinitesimal operators

X1 =
∂

∂x
+ εx

∂

∂y
and X2 =

∂

∂y
+ εy

∂

∂x

with an accuracy of o(ε). Their commutator [X1, X2] is equal to

X3 = ε2
(
x
∂

∂x
− y ∂

∂y

)
,

i.e., the operators X1 and X2 do not form a precise Lie algebra but form
approximate Lie algebra with an accuracy of o(ε).

Example 3.2. The operators

X1 =
∂

∂x
+ εx

∂

∂y
, X2 =

∂

∂y
+ εy

∂

∂x
, X3 = ε

(
x
∂

∂x
+ y

∂

∂y

)
,

X4 = ε
∂

∂x
, X5 = ε

∂

∂y
(1.1)

do not form a Lie algebra, but form an approximate Lie algebra [with an
accuracy of o(ε)]. Thus, for example,

[X1, X2] = ε2
(
x
∂

∂x
− y ∂

∂x

)
.

If we add the operators

X6 = ε2
(
x
∂

∂x
− y ∂

∂y

)
, X7 = ε2

∂

∂x
, X8 = ε2

∂

∂y
(1.2)

to (1.1), we obtain an eight-dimensional approximate algebra with an ac-
curacy of o(ε2). Considering the commutators of the operators (1.1) and
(1.2) together, we see that additional operators are necessary to obtain an
approximate Lie algebra of higher accuracy. For example, an approximate
[with an accuracy of o(ε3)] Lie algebra is generated by the operators (1.1),
(1.2), and

X9 = ε3x
∂

∂y
, X10 = ε3y

∂

∂x
, X11 = ε3

∂

∂x
, X12 = ε3

∂

∂y
· (1.3)

Remark 3.1. The operators (1.1) and (1.2) form a precise Lie algebra for
ε = 1.

A one-parameter Lie group is associated with each approximate operator
in (1.1)-(1.3). By analogy with the Lie theory, we shall construct approxi-
mate multiparameter groups as compositions of one-parameter subgroups.
By solving the corresponding Lie equations for one-parameter approximate
groups, the following formulas we obtain for the operators X1, . . . , X12 :
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X1 : x′ = x+ a1, y′ = y + εxa1 +
1

2
ε(a1)2;

X2 : x′ = x+ εya2 +
1

2
ε(a2)2, y′ = y + a2;

X3 : x′ = x exp(εa3), y′ = y exp(εa3);

X4 : x′ = x+ εa4, y′ = y;

X5 : x′ = x, y′ = y + εa5;

X6 : x′ = x exp(ε2a6), y′ = y exp(−ε2a6);
X7 : x′ = x+ ε2a7, y′ = y;

X8 : x′ = x, y′ = y + ε2a8;

X9 : x′ = x, y′ = y + ε3a9x;

X10 : x′ = x+ ε3a10y, y′ = y;

X11 : x′ = x+ ε3a11, y′ = y;

X12 : x′ = x, y′ = ε3a12.

The composition of these transformations considered with an accuracy
of o(ε3) yields the approximate transformation

x′ =x+ a1 + ε[xa3 + ya2 + a4 +
1

2
(a2)2 + a1a3]

+ ε2
[
x

(
1

2
(a3)2 + a6 + a1a2

)
+ ya2a3 + a7 +

1

2
(a2)2a3 +

1

2
a1(a3)2 + a1a6 +

1

2
(a1)2a2

]

+ ε3
[
x

(
1

6
(a3)3 + a3a6 + a1a2a3

)
+ y

(
1

2
(a3)2a2 + a2a6 + a10

)
+ a11 + a4a6 + a2a10

+
1

4
(a2)2(a3)2 +

1

2
(a2)2a6 +

1

6
a1(a3)3 + a1a3a6 +

1

2
(a1)2a2a3

]
+ · · · ,

y′ =y + a2 + ε

[
xa1 + ya3 + a5 + a2a3 +

1

2
(a1)2

]
(1.4)

+ ε2
[
xa1a3 + y

(
1

2
(a3)2 − a6

)
+ a8 +

1

2
a2(a3)2 − a2a6 + 1

2
(a1)2a3

]

+ ε3
[
x

(
a9 +

1

2
a1(a3)2 − a1a6

)
+ y

(
1

6
(a3)3 − a3a6

)
+ a12 − a5a6

+
1

6
a2(a3)3 − a2a3a6 + 1

4
(a1)2(a3)2 − 1

2
(a1)2a6 + a1a9

]
+ · · ·

depending on 12 parameters.



3: APPROXIMATE TRANSFORMATION GROUPS (1993) 167

§ 2 Essential parameters of a family of func-

tions depending on a small parameter

Consider a family

f i(z, a, ε) ≡ f i0(z, a) + εf i1(z, a) + · · ·+ εpf ip(z, a) + o(εp) (2.1)

of N functions depending on N variables z = (z1, ..., zN ), r parameters
a = (a1, . . . , ar), and a small parameter ε.

Definition 3.1. The parameters a1, . . . , ar are said to be essential if one
cannot select functions A1(a), . . . , Ar−1(a) such that the following approxi-
mate equation holds:

f i(z, a1, . . . , ar, ε) ≈ F i(z, A1(a), . . . , Ar−1(a), ε). (2.2)

Theorem 3.1. For all r parameters a to be essential in the family of func-
tions (2.1) it is necessary and sufficient that the functions f i satisfy no
approximate equation of the form

∂f i

∂aα
ϕα(a) ≈ 0. (2.3)

Proof. Suppose that not all parameters a1, . . . , ar are essential, i.e.,
that (2.2) is satisfied. Since the functions A1, . . . , Ar−1 depend only on the
parameters a1, . . . , ar in (2.2), it follows that

rang ||∂A
∂a
|| ≤ r − 1.

Consequently, there exists a system of functions ϕα(a) that do not vanish
identically and satisfy the system

∂Aσ

∂aα
ϕα(a) = 0, σ = 1, . . . , r − 1, α = 1, . . . , r. (2.4)

Then any function f of A1(a), . . . , Ar−1(a) satisfies some equation of the
form (2.4), namely,

∂f

∂aα
ϕα(a) = 0. (2.5)

In particular, the functions F i(z, A1(a), . . . , Ar−1(a), ε) satisfy this equa-
tion; the variables z and ε can be considered as parameters in these functions
(since ϕα do not depend on these variables). Therefore, by virtue of (2.2),
the functions f i satisfy the approximate equation (2.3), namely,

∂

∂aα
(f0(z, a) + εf1(z, a) + · · ·+ εpfp(z, a))ϕ

α(a) ≈ 0.
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Equating to zero the coefficients of εs s = 0, . . . , p, we obtain p+1 first-order
equations with the same coefficients. Their general solution is

fk = Fk(z, A
1(a), . . . , Ar−1(a)), k = 0, . . . , p,

where the functions A(a) are the same for all fk. Hence, Eq. (2.2) holds.

Example 3.3. Consider the functions

f1 =x+ a1 + ε

[
xa3 + ya2 + a4 +

1

2
(a2)2 + a1a3

]
(2.6)

+ ε2
[
x

(
1

2
(a3)2 + a6 + a1a2

)
+ ya2a3 + a7

+
1

2
(a2)2a3 +

1

2
a1(a3)2 + a1a6 +

1

2
(a1)2a2

]
,

f 2 =y + a2 + ε

[
xa1 + ya3 + a5 + a2a3 +

1

2
(a1)2

]

+ ε2
[
xa1a3 + y

(
1

2
(a3)2 − a6

)
+ a8 +

1

2
a2(a3)2 − a2a6 + 1

2
(a1)2a3

]
,

which are the right-hand sides of approximate [with an accuracy of o(ε2)]
transformations (1.4) from Section § 1 and depend on the variables x and
y and on the eight parameters a1, . . . , a8. In this case the equations in (2.3)
have the form

[
1 + εa3 + ε2

[
xa2 +

(
1

2
(a3)2 + a6 + a1a2

)]]
ϕ1(a)

+

[
ε(y + a2) + ε2

(
xa1 + ya3 + a2a3 +

1

2
(a1)2

)]
ϕ2(a)

+

[
ε(x+ a1) + ε2

(
xa3 + ya2 +

1

2
(a2)2 + a1a3

)]
ϕ3(a)

+εϕ4(a) + ε2(x+ a1)ϕ6(a) + ε2ϕ7(a) ≈ 0, (2.7)

[
ε(x+ a1) + ε2(xa3 + a1a3)

]
ϕ1(a) +

[
1 + εa3 + ε2

(
1

2
(a3)2 − a6

)]
ϕ2(a)

+

[
ε(y + a2) + ε2

(
xa1 + ya3 + a2a3 +

1

2
(a1)2

)]
ϕ3(a)

+εϕ5(a) + ε2(y − a2)ϕ6(a) + ε2ϕ8(a) ≈ 0.

Equating to zero the coefficients of ε0, ε1 and ε2 we obtain

ε0 : ϕ1(a) = 0, ϕ2(a) = 0,
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ε1 : (x+ a1)ϕ3(a) + ϕ4(a) = 0, (y + a2)ϕ3(a) + ϕ5(a) = 0.

By separating x and y we find that

ϕ3(a) = ϕ4(a) = ϕ5(a) = 0.

Furthermore, we have

ϕ2 : (x+ a1)ϕ6(a) + ϕ7(a) = 0, (y + a2)ϕ6(a) + ϕ8(a) = 0,

whence it follows that

ϕ6(a) = ϕ7(a) = ϕ8(a) = 0.

Thus all coefficients ϕα(a) in (2.7) vanish identically, and hence, according
to Theorem 3.1, all parameters a1, . . . , a8 of the function family (2.6) are
essential.

§ 3 Approximate transformation groups. The

first direct Lie theorem

Consider approximate (local) transformations

z′1 = f 1(z, a, ε) ≡ f 10 (z, a) + εf i1(z, a) + · · ·+ εpf ip(z, a) + o(εp) (3.1)

i = 1, . . . , N,

depending on r essential parameters a = (a1, . . . , ar) and on a small param-
eter ε.

Definition 3.2. The transformations (3.1) form a (local) approximate (of
order p) r-parameter group, if there exists a system of functions ϕα(a, b),
α = 1, . . . , r, such that

f i(f(z, a, ε), b, ε) ≈ f i(z, ϕ(a, b), ε) (3.2)

for sufficiently small a and b, and

f(z, 0, ε) ≈ z. (3.3)

It follows from the definition that

ϕ(a, 0) = a, ϕ(0, b) = b,

∂ϕα

∂aβ

∣∣∣∣
b=0

= δαβ ,
∂ϕα

∂bβ

∣∣∣∣
a=0

= δαβ .
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Let us introduce the auxiliary functions

Aαβ(a) =
∂ϕα

∂bβ

∣∣∣∣
b=0

(α, β = 1, . . . , r). (3.4)

Then
Aαβ(0) = δαβ , (3.5)

and
ϕα(a, b) = aα + Aαβ(a)b

β + o(|b|) as |b| → 0. (3.6)

By condition (3.5), the matrix A(a) is invertible, namely, there exists a
matrix V β

γ (a) such that

Aαβ(a) · V β
γ (a) = δαγ . (3.7)

Just as in the theory of precise local Lie transformation groups, the
study of approximate Lie transformation groups is closely related to the
consideration of the tangent vector fields ξα(z, ε) with coordinates

ξiα(z, ε) ≈
∂f i(z, a, ε)

∂aα

∣∣∣∣
a=0

i = 1, . . . , N, α = 1, . . . , r, (3.8)

or, which is the same, of the differential operators

Xα = ξiα(z, ε)
∂

∂zi
· (3.9)

In this case, the following first direct Lie theorem holds for approximate
transformation groups.

Theorem 3.2. If the transformations (3.1) form an approximate r-parameter
Lie transformation group, then the functions z ′i = f i(z, a, ε) satisfy the sys-
tem of approximate equations

∂z′i

∂aα
≈ ξiβ(z

′, ε) · V β
α (a), α = 1, . . . , r, (3.10)

which are called the approximate Lie equations. The corresponding differ-
ential operators (3.9) are linearly independent in the considered approxima-
tion.

Proof. By differentiating (3.2) with respect to bβ at the point b = 0,
we obtain

∂f i(z′, b, ε)

∂bβ

∣∣∣∣
b=0

≈ ∂f i(z, ϕ, ε)

∂ϕα
∂ϕα

∂bβ

∣∣∣∣
b=0

.
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Hence, taking into account (3.8) and (3.4), we have

ξiβ(z
′, ε) ≈ ∂z′i

∂aα
Aαβ(a). (3.11)

Multiplying (3.11) by V β
γ (a) and taking into account (3.7), we obtain

the system of approximate differential equations (3.10).
It remains to check that the differential operators (3.9) are linearly in-

dependent, namely, that if

CαXα ≡ Cαξiα(z, ε)
∂

∂zi
≈ 0 (3.12)

with constants C1, . . . , Cr independent of ε, then all these constants are
zero. Substituting (3.11) into (3.12), we obtain

CαXα ≡ Cαξiα(z
′, ε)

∂

∂z′i
≈ Cα

[
∂z′i

∂aβ
Aβα(a)

]
∂

∂z′i
≈

∂z′i

∂aβ
[CαAβα(a)]

∂

∂z′i
· (3.13)

Therefore, Eq. (3.12) takes the form

∂z′i

∂aβ
CαAβα(a) = 0, i = 1, . . . , N. (3.14)

Since all parameters a1, . . . , ar in (3.1) are essential, it follows from (3.14),
by virtue of Theorem 3.1. that CαAβα(a) = 0 for all β. Hence, taking into
account (3.5), we have C1 = . . . = Cr = 0. Thus the theorem is proved.

Remark 3.2. The approximate linear independence of the differential op-
erators (3.9) is equivalent, to the approximate linear independence of the
vector-valued functions ξα(z, ε) = (ξ1α(z, ε), . . . , ξ

N
α (z, ε)).

Example 3.4. Let us consider the approximate [with the accuracy o(ε)]
transformations

x′ = x+ a1 + ε

[
xa3 + ya2 + a4 +

1

2
(a2)2 + a1a3

]
+ . . . ,

y′ = y + a2 + ε

[
xa1 + ya3 + a5 + a2a3 +

1

2
(a1)2

]
+ . . . (3.15)

depending on five essential parameters a1, . . . , a5 (see Example § 3). It is
easy to show that these transformations form a local approximate transfor-
mation group, where

ϕ1(a, b) = a1 + b1; ϕ2(a, b) = a2 + b2; ϕ3(a, b) = a3 + b3;
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ϕ4(a, b) = a4 + b4 + a3b1; ϕ5(a, b) = a5 + b5 − a3b2.

The auxiliary functions Aβ
α and V γ

β (a) are given by the matrices

A =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−a3 0 0 1 0
0 −a3 0 0 1



, V =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
a3 0 0 1 0
0 a3 0 0 1




and the vector field (3.8) by

ξ(z, ε) =

(
1 εy εx ε 0
εx 1 εy 0 ε

)
+ o(ε).

Therefore, in this case the approximate Lie equations in (3.10) read

∂x′

∂a1
= 1 + εa3,

∂x′

∂a2
= εy′,

∂x′

∂a3
= εx′,

∂x′

∂a4
= ε,

∂x′

∂a5
= 0; (3.16)

∂y′

∂a1
= εx′,

∂y′

∂a2
= 1 + εa3,

∂y′

∂a3
= εy′,

∂y′

∂a4
= 0,

∂y′

∂a5
= ε.

§ 4 The inverse first Lie theorem

Let us first prove some statements on solutions to systems of approximate
first-order partial differential equations and next use them to analyze Lie
equations.

Consider the system of approximate equations

∂zi

∂aα
≈ ψiα(z, a, ε), i = 1, . . . , N ; α = 1, . . . , r. (4.1)

[From now on we consider approximate equalities with an accuracy of o(εp),
p ≥ 1. We seek the approximate [with an accuracy of o(εp)] solution to
system (4.1) in the form

zi = f i0(a) + εf i1(a) + . . .+ εpf ip(a) + o(εp). (4.2)

For this purpose, we expand the functions ψiα(z, a, ε) in powers of ε :

ψiα(z, a, ε) = ψiα,0(z, a) + εψiα,1(z, a) + . . .+ εpψiα,p(z, a) + o(εp). (4.3)
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Substituting (4.2) and (4.3) into (4.1) and equating the coefficients of the
same powers of ε, we obtain the following system of equations for f i0(a), . . . , f

i
p(a),

i = 1, . . . , N, which is equivalent to (4.1) with an accuracy of o(εp) :

∂f i0
∂aα

= ψiα,0(f0, a), (4.4)

∂f i1
∂aα

= ψiα,1(f0, a) +
N∑

j=1

∂ψiα,0(f0, a)

∂f j0
f j1 ,

..........................................................................................................

∂f ip
∂aα

= ψiα,p(f0, a) +

p∑

ν=1

ν∑

|σ|=1

1

σ!

∂|σ|ψiα,p−ν(f0, a)

(∂f 10 )
σ1 · · · (∂fN0 )σN

∑

|ω|=ν
f(ω).

Here we use the following notation: σ = (σ1, . . . , σN ) is a multiindex, |σ| =
σ1 + . . . + σN , σ! = σ1! . . . σN !, and the indices σ1, . . . , σN run from 0 to p.
Furthermore,

f(ω) = f 1(ω1)
. . . fN(ωN ),

fk(ωk) =
∑

i1+...+iσk=ωk

fki1 · · · f
k
iσk
,

where the indices i1, . . . , iσk run from 1 to p and ω = ω(σ) = (ω1, . . . , ωN)
is the multiindex related to σ as follows: if the index σs is zero in σ, then
the corresponding index ωs is absent in ω, and the remaining indices ωk run
from σk to p; for example, for σ = (0, σ2, σ3, 0, . . .) with σ2, σ3 6= 0, we have
ν = (ν2, ν3), so that f(ω) = f 2(ω2)

f 3(ω3)
.

Definition 3.3. The system of approximate equations (4.1) is said to be
completely integrable if the approximate equations

∂

∂aβ

(
∂zi

∂aα

)
≈ ∂

∂aα

(
∂zi

∂aβ

)
(4.5)

hold by virtue of equations (4.1).

Let us show that system (4.4) obtained from a completely integrable
system of approximate equations (4.1) is completely integrable. To this end,
let us rewrite (4.5) grouping together the coefficients of the same powers of
ε. Taking into account (4.1) and (4.3), we obtain

∂

∂aβ

(
∂zi

∂aα

)
− ∂

∂aα

(
∂zi

∂aβ

)
≈ ∂

∂aβ
(ψiα,0(z, a)+εψ

i
α,1(z, a)+· · ·+εpψiα,p(z, a))−
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∂

∂aβ
(ψiβ,0(z, a) + εψiβ,1(z, a) + · · ·+ εpψiβ,p(z, a)) ≈

{
∂ψiα,0
∂aβ

+
∂ψiα,0(z, a)

∂zj
[ψjβ,0 + εψjβ,1 + · · ·+ εpψjβ,p]+

ε

[
∂ψiα,1
∂aβ

+
N∑

j=1

∂ψiα,1
∂zj

[ψjβ,0 + εψjβ,1 + · · ·+ εp−1ψjβ,p−1]

]
+ · · ·+

εp

[
∂ψiα,p
∂aβ

+
N∑

j=1

∂ψiα,p
∂zj

ψjβ,0

]}
−
{
∂ψiβ,0
∂aα

+
N∑

j=1

∂ψiβ,0
∂zj

[ψjα,0 + εψjα,1 + · · ·+ εpψjα,p]+

ε

[
∂ψiβ,1
∂aα

+
N∑

j=1

∂ψiβ,1
∂zj

[ψjα,0 + εψjα,1 + · · ·+ εp−1ψjα,p−1]

]
+ · · ·+

εp

[
∂ψiβ,p
∂aα

+
N∑

j=1

∂ψiβ,p
∂zj

ψjα,0

]}
,

i.e., the functions ψiα,ν(z, a) satisfy the system

∂ψiα,0
∂aβ

−
∂ψiβ,0
∂aα

+
N∑

j=1

[
∂ψiα,0
∂zj

ψjβ,0 −
∂ψiβ,0
∂zj

ψjα,0

]
= 0, (4.6)

∂ψiα,1
∂aβ

−
∂ψiβ,1
∂aα

+
N∑

j=1

[
∂ψiα,0
∂zj

ψjβ,1 +
∂ψiα,1
∂zj

ψjβ,0 −
∂ψiβ,0
∂zj

ψjα,1 −
∂ψiβ,1
∂zj

ψjα,0

]
= 0, . . . .

Let us check the integrability condition for system (4.4). The equations
for f i0(a) yield

∂

∂aβ

(
∂f i0
∂aα

)
− ∂

∂aα

(
∂f i0
∂aβ

)
=

∂

∂aβ
(ψiα,0(f0, a))−

∂

∂aα
(ψiβ,0(f0, a)) =

∂ψiα,0
∂aβ

−
∂ψiβ,0
∂aα

+
N∑

j=1

[
∂ψiα,0
∂f j

ψjβ,0 −
∂ψiβ,0

∂f j0
ψjα,0

]
,

i.e., the integrability condition holds by virtue of (4.6). As to the equations
for f i1(a), we have

∂

∂aβ

(
∂f i1
∂aα

)
− ∂

∂aα

(
∂f i1
∂aβ

)
=

∂

∂aβ

[
ψiα,1(f0, a) +

N∑

j=1

∂ψiα,0(f0, a)

∂f j0
f j1

]
−
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∂

∂aα

[
ψiβ,1(f0, a) +

N∑

j=1

∂ψiβ,0(f0, a)

∂f j0
f j1

]
=

∂ψiα,1
∂aβ

+
N∑

j=1

∂ψiα,1

∂f j0
ψjβ,0 +

N∑

j=1

∂2ψiα,0

∂f j0∂a
β
f j1 +

N∑

j=1

N∑

k=1

∂2ψiα,0

∂f j0∂f
k
0

ψkβ,0f
j
1+

N∑

j=1

∂ψiα,0

∂f j0

[
ψjβ,1 +

N∑

k=1

∂ψiβ,0
∂fk0

]
−
∂ψiβ,1
∂aα

−
N∑

j=1

∂ψiβ,1

∂f j0
ψjα,0 −

N∑

j=1

∂2ψiβ,0

∂f j0∂a
α
f j1−

N∑

j=1

N∑

k=1

∂2ψiβ,0

∂f j0∂f
k
0

ψkα,0f
j
1 −

N∑

j=1

∂ψiβ,0

∂f j0

[
ψjα,1 +

N∑

k=1

∂ψiα,0
∂fk0

fk1

]
=

∂ψiα,1
∂aβ

−
∂ψiβ,1
∂aα

+
N∑

j=1

[
∂ψiα,0

∂f j0
ψjβ,1 +

∂ψiα,1

∂f j0
ψjβ,0 −

∂ψiβ,0

∂f j0
ψjα,1 −

∂ψiβ,1

∂f j0
ψjα,0

]
+

N∑

j=1

∂

∂f j0

[
∂ψiα,0
∂aβ

−
∂ψiβ,0
∂aα

+
N∑

k=1

[
∂ψiα,0
∂fk0

ψkβ,0 −
∂ψiβ,0
∂fk0

ψkα,0

]]
f j1 = 0

by virtue of (4.6).
The integrability condition for f iν(a), ν = 2, . . . , p, can be checked in a

similar way.
Thus, system (4.4) is completely integrable. Hence, if the right-hand

sides in the equations in (4.4) are continuously differentiable with respect
to all variables, then this system has a unique solution for any initial data
(e.g., [134], Vol. 2, Chap. VIII, Secs. 5 and 6 or [117], Chap. X, Sec. 55).
Thus the following’statement holds.

Lemma 3.1. A completely integrable system of approximate equations
(4.1) [i.e., system (4.1) satisfying the conditions (4.5)] has a unique solution
of the form (4.2) for arbitrary initial data

zi
∣∣∣∣
a=0

≈ zi0.

Multiplying the equations in (4.1) by daα and summing with respect to
α, we obtain the approximate Pfaff equations

dzi ≈ ψiα(z, a, ε)da
α. (4.7)

Lemma 3.2. A function F of the variables (zi, aα, ε) is constant on the
solutions to the system, of approximate Pfaff equations (4.7) (i.e., is an
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integral of this system) if and only if it satisfies the system, of partial dif-
ferential equations

∂F

∂zi
ϕiα +

∂F

∂aα
≈ 0, (4.8)

Proof. Necessity. Let F (z, a, ε) be constant on the solutions to system
(4.7). Then its total differential is identically zero, that is,

0 = dF =
∂F

∂zi
dzi +

∂F

∂aα
daα ≈ ∂F

∂zi
ϕiαda

α +
∂F

∂aα
daα =

[
∂F

∂zi
ϕiα +

∂F

∂aα

]
daα.

Thus F satisfies (4.8) on the solutions to (4.7).
Let us now show that the equations in (4.8) hold identically with respect

to z and a. Let
∂F

∂zi
ϕiα +

∂F

∂aα
= τα(z, a),

where τα(z, a) = 0 on the solutions to (4.7). Then any function z = z(a)
that satisfies the equation

τα(z, a) ≈ Cα 6= 0, Cα = const.,

is also a solution to (4.7). But the differential dF of F has the form

dF ≈ Cαda
α 6= 0

on this solution, which contradicts the condition that F is constant on the
solutions to (4.7). Hence the equations in (4.8) are satisfied for any z and
a.

Sufficiency. Let F = F (z, a, ε) be a solution to (4.8). Then

dF =
∂F

∂aα
daα +

∂F

∂zi
dzi.

By virtue of (4.8), we have

∂F

∂aα
≈ −∂F

∂zi
ϕiα,

and consequently,

dF =
∂F

∂zi
(dzi − ϕiαdaα).

It follows that dF ≡ 0 if z = z(a) satisfies system (4.7). Thus, Lemma 3.2
is proved. In what follows we consider the approximate Lie equations

∂z′i

∂aα
≈ ξiβ(z

′, ε) · V β
α (a) (i = 1, . . . , N ;α = 1, . . . , r) (4.9)
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satisfying the complete integrability conditions (4.5). These conditions can
be rewritten for system (4.9) as

∂ξiγ
∂z′j

∂z′j

∂aβ
V β
α (a) + ξiγ

∂V γ
α

∂aβ
≈ ∂ξ′iσ
∂z′k

∂z′k

∂aα
V σ
β (a) + ξiσ

∂V σ
β

∂aα

or, substituting the derivatives from (4.9), as

∂ξiγ
∂z′j

ξjµV
µ
β V

γ
α + ξiγ

∂V γ
α

∂aβ
≈ ∂ξiσ
∂z′k

ξkνV
ν
α V

σ
β + ξiσ

∂V σ
β

∂aα
·

Hence [
∂ξ′iγ
∂z′j

ξjµ −
∂ξiµ
∂z′j

ξjγ

]
V µ
β V

γ
α ≈ ξiσ

(
∂V σ

β

∂aα
− ∂V σ

α

∂aβ

)
. (4.10)

Multiplying the latter relationship by Aα
qA

β
p and taking into account (3.7),

we obtain [
∂ξ′iγ
∂z′j

ξjµ −
∂ξiµ
∂z′j

ξjγ

]
= ξiσ

(
∂V σ

β

∂aα
− ∂V σ

α

∂aβ

)
AαγA

β
µ. (4.11)

Denote

cσγµ = −
(
∂V σ

β

∂aα
− ∂V σ

α

∂aβ

)
AαγA

β
µ. (4.12)

Then the differentiation of both sides in (4.11) with respect to a yields

ξiσ
∂cσγµ
∂aν

= 0.

Since the vectors ξσ are linearly independent, it follows that

∂cσγµ
∂aν

= 0.

Therefore the cσγµ defined in (4.12) are constants.
In view of (3.7), Eq. (4.12) can be rewritten as

∂V σ
β

∂aα
− ∂V σ

α

∂aβ
= cσγµV

µ
β V

γ
α . (4.13)

Thus we have proved the following statement.

Lemma 3.3. If the system of approximate Lie equations (4.9) is completely
integrable, then the functions V β

α (a) satisfy Eq. (4.13) with constant coef-
ficients cσγµ defined in (4.12).
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Equations (4.13) are known as the Maurer-Cartan equations. They can
be rewritten for the functions Aβ

α(a). By differentiating the relation Aα
βV

β
γ =

δαγ (3.7) with respect to a, we obtain

∂Aαβ
∂aσ

V β
γ = −Aαβ

∂V β
γ

∂aσ
·

Substituting these relations into the equations

cσγµA
ν
σ = Aνσ

(
∂V σ

β

∂aα
− ∂V σ

α

∂aβ

)
AαγA

β
µ,

which follow from (4.12), we obtain

cσγµA
ν
σ = −

(
∂Aνl
∂aα

V l
β −

∂Aνl
∂aβ

V l
α

)
AαγA

β
µ.

Hence, using (3.7), we obtain the Maurer-Cartan equations in the form

−cσγµAνσ =

(
∂Aνµ
∂aα

Aαγ −
∂Aνγ
∂aα

Aαµ

)
. (4.14)

By Lemma 3.2, we can proceed from (4.9) to the equivalent system of
linear homogeneous equations

∂F

∂z′i
ξiβ(z

′, ε)V β
α (a) +

∂F

∂aα
≈ 0, α = 1, . . . , r. (4.15)

Definition 3.4. The system of approximate linear homogeneous equations

XµF ≡ νiµ(z, ε)
∂

∂zi
F ≈ 0, µ = 1, . . . , n,

is said to be complete, if

[Xµ, Xν ] ≈ cσµνXσ,

i.e., if the commutator of any two operators Xµ can be approximately ex-
pressed as a linear combination of the operators X1, . . . , Xn. A complete
system of approximate linear homogeneous equations is said to be Jacobian
if the commutator of any two operators Xµ is approximately zero.

Let us show that system (4.15) is complete and even Jacobian. To this
end, let us calculate the commutator of the operators

Bα =
∂

∂aα
+ ξiβV

β
α

∂

∂z′i
·
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We have

BαBβ −BβBα =

(
∂

∂aα
+ ξiγV

γ
α

∂

∂z′i

)(
∂

∂aβ
+ ξjσV

σ
β

∂

∂z′i

)
−

(
∂

∂aβ
+ ξjσV

γ
β

∂

∂z′i

)(
∂

∂aα
+ ξiγV

γ
α

∂

∂z′i

)
=

ξjσ
∂V σ

β

∂aα
∂

∂z′j
+ ξiγ

∂ξjσ
∂z′i

V γ
α V

σ
β

∂

∂z′j
− ξiγ

∂V γ
α

∂aβ
∂

∂z′i
− ξjσ

∂ξiγ
∂z′j

V σ
β V

γ
α

∂

∂z′i
=

[(
ξiγ
∂ξiσ
∂z′j
− ξjσ

∂ξiγ
∂z′j

)
V γ
α V

σ
β − ξiγ

(
∂V γ

α

∂aβ
−
∂V γ

β

∂aα

)]
∂

∂z′i
·

The expression in the square brackets is zero by (4.10). Hence system (4.15)
is Jacobian.

Let us construct the solution to system (4.9) under the initial conditions

z′i
∣∣
a=0
≈ zi. (4.16)

By Lemma 3.2, solving this problem is equivalent to finding the solution
to (4.15) satisfying an analog of the initial data (4.16). Namely, if the
solution to (4.15) has the form

F = F (z′, a, ε),

then, by Lemma 3.2, this function is constant on the solutions to system
(4.9), i.e.,

F = F (z′, a, ε) ≈ C.

The initial data in (4.16) yields

F (z′, a, ε) ≈ F (z, 0, ε). (4.17)

Lemma 3.4. The system of approximate equations (4.15) with the initial
data (4.17) has N functionally independent solutions, which determine a
solution to problem (4.9), (4.16) of the form

z′ = f0(z, a) + εf1(z, a) + · · ·+ εpfp(z, a) + o(εp), (4.18)

which depends on at most r parameters a1, . . . , ar.

Proof. We seek the solution to (4.15) as the series

F (z′, a, ε) = F0(z
′, a) + εF1(z

′, a) + · · ·+ εpFp(z
′, a) + · · · (4.19)



180 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

in powers of ε. Let us substitute this expression and the representation

ξiβ(z
′, ε) = ξiβ,0(z

′) + εξiβ,1(z
′) + · · ·+ εpξiβ,p(z

′) + · · ·

into Eq. (4.15) and equate to zero the coefficients of the powers of ε. This
results in the system of equations

∂F0

∂aα
+
∂F0

∂z′i
ξiβ,0(z

′)V β
α (a) = 0, (4.20)

∂F1

∂aα
+
∂F1

∂z′i
ξiβ,0V

β
α (a) = −

∂F0

∂z′i
ξiβ,1V

β
α , (4.21)

∂F2

∂aα
+
∂F2

∂z′i
ξiβ,0(z

′)V β
α = −

[
∂F0

∂z′i
ξiβ,2 +

∂F1

∂z′i
ξiβ,1

]
V β
α , (4.22)

.............................................

System (4.20) is Jacobian and has N functionally independent solutions
(see Chebotarev [21], p. 71), namely,

F 1
0 = F 1

0 (z
′, a), . . . , FN

0 = FN
0 (z′, a),

and any other solution is a function of these solutions. By virtue of Lemma
3.2 and of the initial data (4.16), for ε = 0 the solutions to (4.9) have the
form

F 1
0 (z

′, a) = F 1
0 (z, 0),

............. (4.23)

FN
0 (z′, a) = FN

0 (z, 0).

Since the determinant |(∂F i
0)/(∂z

′j)| is not zero [which follows from the form
of system (4.20)], we see that the equations in (4.23) can be solved for z
and we can assume that

F i
0(z

′, a) = zi, i = 1, . . . , N. (4.24)

Moreover, the initial condition (4.17)

F (z′, a, ε) = F (z, 0, ε)

can also be solved for z and we can assume that

F (z′, a, ε) ≈ z. (4.25)

The inversion of (4.24) yields the transformations

z′i = f i0(z, a), i = 1, . . . , N,
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which form a precise group with the number of essential parameters, equal
to the number of zero-order operators.

Substituting each of the obtained functions F i
0(z

′, a) into (4.21), we ob-
tain linear nonhomogeneous equations for F i

1(z
′, a); the corresponding ho-

mogeneous equations have the form (4.20). If F i∗
1 (z′, a) is a particular so-

lution to the nonhomogeneous equation, then the general solution has the
form

F i
1(z

′, a) = F i∗
1 (z′, a) + ϕi(F 1

0 , . . . , F
N
0 ). (4.26)

Substituting (4.26) into (4.19), we obtain an approximate [with the accuracy
of o(ε)] solution to system (4.15):

F i(z′, a, ε) = F i
0(z

′, a) + ε[F i∗
1 (z′, a) + ϕi(F 1

0 (z
′, a), . . . , FN

0 (z′, a))] + · · ·

By virtue of Lemma 3.2 and of the initial data (4.24), the corresponding
solutions to system (4.9) can be determined from the relations

F i
0(z

′, a) + ε[F i∗
1 (z′, a) + ϕi(F 1

0 (z
′, a), . . . , FN

0 (z′, a))] ≈ zi. (4.27)

Then for a = 0 we have

F i∗
1 (z, 0) + ϕi(zi, . . . , ZN ) = 0,

i.e.,

ϕi(zi, . . . , zN) = −F i∗
1 (z, 0).

Thus we have obtained N functionally independent approximate [with an
accuracy of o(ε)] solutions to problem (4.15), (4.17):

F i(z′, a, ε) ≈ F i
0(z

′, a) + εF i
1(z

′, a) ≡ (4.28)

F i
0(z

′, a) + ε[F i∗
1 (z′, a)− F i∗

1 (F 1
0 (z

′, a), . . . , FN
0 (z′, a), 0)], i = 1, . . . , N.

Since |(∂F i
0)/(∂z

′j)| 6= 0, it follows that this approximate equation can be
solved [with an accuracy of o(ε) for z ′ :

z′i = f i0(z, a) + εf i1(z, a). (4.29)

To obtain explicit expressions for the functions f i1(z, a), we substitute
(4.29) into (4.27). We obtain, with an accuracy of o(ε),

F i
0(f0(z, a) + εf1(z, a) + . . . , a)+

ε[F i∗
1 (f0(z, a), a)− F i∗

1 (F 1
0 (f0, a), . . . , F

N
0 (f0, a), 0)] ≈ z′;
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hence, by virtue of the initial data (4.24), we have

ε

[
∂F i

0

∂z′j
(f0, a)f

j
1 (z, a) + F i∗

1 (f0, a)− F i∗
1 (z, 0)

]
= 0.

Since |(∂F i
0)/(∂z

′j)| 6= 0, we see that this system can be solved for f i1(z, a),
namely,

f i1(z, a) = ||
∂F j

0

∂z′i
|| [F i∗

1 (z, 0)− F i∗
1 (f0(z, a), a)]. (4.30)

[Note that the functions f i1(z, a) satisfy the initial data (4.16), i.e., f i1(z, 0) =
0.]

To obtain the approximate [with an accuracy of o(ε2)] solution, we sub-
stitute N independent solutions of (4.28) into (4.22) and obtain a system
of linear nonhomogeneous equations for the functions F i

2(z
′, a). By analogy

with the first-order accuracy, we have

F i
1(z

′, a, ε) = F i
0(z

′, a)+ (4.31)

εF i
1(z

′, a) + ε2[F i∗
2 (z′, a)− F i∗

2 (F 1
0 (z

′, a), . . . , FN
0 (z′, a), 0)].

The inversion of this formula for z ′ with an accuracy of o(ε2), we obtain

z′ = f0(z, a) + εf1(z, a) + ε2f2(z, a).

The functions f2 are determined by substituting z′ into the initial condition
(4.25), namely,

ε2
∂F i

0

∂z′j
(f0, a)f

j
2 + ε2

1

2

∂2F i
0

∂z′j∂z′k
(f0, a)f

j
1f

k
1

+ε2
∂F i

1

∂z′j
(f0, a)f1 + ε2f i∗2 (f0, a) ≈ ε2F i∗

2 (z, 0).

These equations can be solved for f i2 by virtue of the condition |(∂F i
0)/(∂z

′j)| 6=
0.

Similarly, we can construct N independent approximate [with an accu-
racy of o(εp) solutions to problem (4.15), (4.17) and the solution to (4.9),
(4.16) of the form (4.18). Thus Lemma 3.4 is proved.

Let us now state and prove the inverse first Lie theorem for approximate
transformation groups.

Theorem 3.3. Let the system of approximate Lie equations

∂z′i

∂aα
≈ ξiβ(z

′, ε)V β
α (a) (i = 1, . . . , N, α = 1, . . . , r) (4.32)
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be completely integrable, let the functions ξα(z
′, ε) be (approximately) lin-

early independent, and let the rank of the matrix V (a) = (V β
α (a)) be equal

to r. Then the solution to equations (4.32) that satisfies the conditions

z′|a=0 ≈ z (4.33)

has the form

z′ = f0(z, a) + εf1(z, a) + . . .+ εpfp(z, a) + o(εp) (4.34)

and determines an approximate [with an accuracy of o(εp)] r -parameter
transformation group.

Proof. By Lemmas 3.1 and 3.4, the solution to problem (4.32), (4.33)
exists, is unique, and can be represented in the form (4.34). Let us prove
that the transformations (4.34) form a local approximate transformation
group.

First, let us show that the parameters a are essential in the family of
N independent approximate solutions F i = F i(z′, a, ε) to problem (4.15),
(4.17). Indeed, let the following equations of the form (2.3) hold:

∂F i

∂aα
ψα(a) ≈ 0, i = 1, . . . , N. (4.35)

Then from (4.15) and (4.35) we obtain the system of linear homogeneous
equations

∂F i

∂z′j
ξjβV

β
α ψ

α(a) ≈ 0

with the matrix (dF i)/(dz′j), whose determinant is not zero. Therefore, the
expressions ξjβV

β
α ψ

α(a) are approximately zero. Since the vectors ξiβ(z
′, ε)

are linearly independent and the matrix V β
α (a) is nondegenerate, we have

ψα(a) ≡ 0.

This precisely means that the parameters a are essential.
Now let us show that the transformations (4.34) satisfy the group prop-

erty (3.2). Rewriting (3.2) as

z′′ ≈ f(z′, b, ε) ≈ f(z, ϕ(a, b), ε), (4.36)

we see that the approximate Lie equations (4.32) imply

∂z′′i

∂bα
≈ ξiβ(z

′′, ε)V β
α (b) and

∂z′′i

∂ϕα
≈ ξiβ(z

′′, ε)V β
α (ϕ).
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Substituting the right-hand side of (4.36) into the first of these two systems,
we obtain

∂z′′i

∂ϕγ
∂ϕγ

∂bα
≈ ξiβ(z

′′, ε)V β
α (b),

and from the second system we derive the equation

ξµ(z
′′, ε)V µ

γ (ϕ)
∂ϕγ

∂bα
≈ ξiβ(z

′′, ε)V β
α (b).

Since the vectors ξβ(z
′′, ε) are linearly independent, we have

V β
γ (ϕ)

∂ϕγ

∂bα
= V β

α (b)

and hence
∂ϕα

∂bβ
= Aασ(ϕ)V

σ
β (b). (4.37)

Thus if the composition ϕ(a, b) is defined for transformations (4.34),
then it necessarily satisfies system (4.37).

System (4.37) is completely integrable, i.e

∂

∂bγ

(
∂ϕα

∂bβ

)
=

∂

∂bβ

(
∂ϕα

∂bγ

)

Indeed, by virtue of (4.37), the last equation can be rewritten as follows:

∂Aασ
∂ϕν

∂ϕν

∂bγ
V σ
β + Aασ

∂V σ
β

∂bγ
=
∂Aαµ
∂ϕl

∂ϕl

∂bβ
V µ
γ + Aαµ

∂V µ
γ

∂bβ

or (
∂Aασ
∂ϕν

Aνn −
∂Aαn
∂ϕν

Aνσ

)
V n
γ V

σ
β = −Aασ

(
∂V σ

β

∂bγ
−
∂V σ

γ

∂bβ

)
.

Multiplying this equation by Aγ
kA

β
l and using (4.11), we obtain equations

(4.14) for the function Aα
σ(ϕ), namely,

(
∂Aνµ
∂ϕα

Aαγ −
∂Aνγ
∂ϕα

Aαµ

)
= −cσγµAνσ.

These equations follow from the Maurer-Cartan equation, which is equiva-
lent to the integrability of the Lie equations (4.32) and holds by the condi-
tion of the theorem. Thus, system (4.37) is completely integrable.

It follows that the preceding argument concerning the approximate Lie
equations (4.32) is valid for equations (4.37) as well (this has also been
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proved by Eisenkhart [31] and Chebotarev [21]). We see that the solution
to (4.37) with the initial conditions

ϕ|b=0 = a, (4.38)

where the components of a = (a1, . . . , ar) are sufficiently small, gives r
independent integrals, since |Aα

σ(0)| = 1.
Let us check that the transformations (4.34) satisfy property (3.2) with

the functions ϕ(a, b) obtained from problem (4.37), (4.38). Let

z′ = f(z, a, ε), z′′ = f(z′, b, ε), w = f(z, ϕ(a, b), ε).

Clearly, z′′ = z′ and w = z′ for b = 0. By the construction of f we have

∂z′′i

∂bα
≈ ξiβ(z

′′, ε)V β
α (b),

∂wi

∂bα
=
∂wi

∂ϕβ
∂ϕβ

∂bα
≈ ξiγ(w, ε)V

γ
β (ϕ)

∂ϕβ

∂bα
=

ξiγV
γ
β (ϕ)A

β
σ(σ)V

σ
α (b) = ξiγ(w, ε)V

γ
α (b),

where (4.38) was used to derive the last equalities. Thus the functions z ′′

and w satisfy the same Cauchy problem with the same initial conditions at
b = 0. It follows from Lemma 3.1 that z ′′ and w coincide, and consequently,
the group property (3.2) is satisfied.

The existence of the unit element follows from the construction of the
transformations.

The inverse transformations also exist since (4.18) is invertible in the
vicinity of a = 0. They can be obtained from (4.34) by choosing appropriate
values of the parameters. Namely, these values can be determined by solving
the equation

ϕ(a, b) = 0

for b. Thus the theorem is proved.

Example 3.5. Let us illustrate the solution of the Lie equations by the
example of system (3.16). The equivalent system of linear homogeneous
equations [see (4.15)] is

(1 + εa3)
∂F

∂x′
+ εx′

∂F

∂y′
+
∂F

∂a1
≈ 0,

εy′
∂F

∂x′
+ (1 + εa3)

∂F

∂y′
+
∂F

∂a2
≈ 0,
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εx′
∂F

∂x′
+ εy′

∂F

∂y′
+
∂F

∂a3
≈ 0,

ε
∂F

∂x′
+
∂F

∂a4
≈ 0, ε

∂F

∂y′
+
∂F

∂a5
≈ 0.

Substituting
F = F0(x

′, y′, a) + εF1(x
′, y′, a) + · · ·

into these equations and equating the coefficients of ε0 and ε1 to zero we
obtain

∂F0

∂x′
+
∂F0

∂a1
= 0,

∂F0

∂y′
+
∂F0

∂a2
= 0,

∂F0

∂ai
= 0, i = 3, 4, 5, (4.39)

∂F1

∂x′
+
∂F1

∂a1
+ a3

∂F0

∂x′
+ x′

∂F0

∂y′
= 0,

∂F1

∂y′
+
∂F1

∂a2
+ y′

∂F0

∂x′
+ a3

∂F0

∂y′
= 0, (4.40)

∂F1

∂a3
+ x′

∂F0

∂x′
+ y′

∂F0

∂y′
= 0,

∂F1

∂a4
+
∂F0

∂x′
= 0,

∂F1

∂a5
+
∂F0

∂y′
= 0.

System (4.39) has two functionally independent solutions, namely,

F 1
0 = x′ − a1, F 2

0 = y′ − a2. (4.41)

With the initial conditions

x′|a=0 = x, y′|a=0 = y, (4.42)

they determine the (precise) group

x′ = x+ a1, y′ = y + a2.

Substituting the functions (4.41) into (4.40), we obtain the systems for F 1
1 ,

∂F 1
1

∂x′
+
∂F 1

1

∂a1
= −a3, ∂F 1

1

∂y′
+
∂F 1

1

∂a2
= −y′,

∂F 1
1

∂a3
= −x′, ∂F 1

1

∂a4
= −1, ∂F 1

1

∂a5
= 0,
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and for F 2
1

∂F 2
1

∂x′
+
∂F 2

1

∂a1
= −x′, ∂F 2

1

∂y′
+
∂F 2

1

∂a2
= −a3,

∂F 2
1

∂a3
= −y′, ∂F 2

1

∂a4
= 0,

∂F 2
1

∂a5
= −1.

The general solutions to these systems have the form

F 1
1 = −a4 − a3x′ − 1

2
(y′)2 + α1(x′ − a1, y′ − a2)

and

F 2
1 = −a5 − a3y′ − 1

2
(x′)2 + α2(x′ − a1, y′ − a2),

respectively. Hence we have

F 1 = x′ − a1 + ε

[
−a4 − a3x′ − 1

2
(y′)2 + α1(x′ − a1, y′ − a2)

]
,

F 2 = y′ − a2 + ε

[
−a5 − a3y′ − 1

2
(x′)2 + α2(x′ − a1, y′ − a2)

]
.

By virtue of the initial conditions (4.25) and (4.33), which read

F (z′, a, ε) ≈ z, z′|a=0 ≈ z,

we have α1 = y2/2, α2 = x2/2. Therefore, by solving the relationships

x′ − a1 + ε

[
−a4 − a3x′ − a2y′ + 1

2
(a2)2

]
≈ x,

y′ − a2 + ε

[
−a5 − a3y′ − a1x′ + 1

2
(a1)2

]
≈ y

for z′ and y′ [with an accuracy of o(ε)], we obtain the approximate Lie
transformation group

x′ ≈ x+ a1 + ε

[
a4 + a3x+ a2y +

1

2
(a2)2 + a1a3

]
,

y′ ≈ y + a2 + ε

[
a5 + a3y + a1x+

1

2
(a1)2 + a2a3

]

[cf. (1.4)].
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§ 5 The second Lie theorem

Consider the approximate operators with an accuracy of o(εp) :

X = ξi(z, ε)
∂

∂zi
≡ [ξi0(z) + εξi1(z) + · · ·+ εpξip(z)]

∂

∂zi
,

Y = ηi(z, ε)
∂

∂zi
≡ [ηi0(z) + εηi1(z) + · · ·+ εpηip(z)]

∂

∂zi
· (5.1)

It is clear that the addition of operators and multiplication by a number
are well defined on the set of such operators, i.e., the structure of a linear
space is defined.

Definition 3.5. The operator

[X,Y ] ≈ XY − Y X (5.2)

considered with an accuracy of o(εp) is called the approximate [with an
accuracy of o(εp)] commutator of the operators X and Y.

It is clear that the commutation introduced in such a way has all usual
properties, namely,

1) linearity
[αX + βY, Z] ≈ α[X,Z] + β[Y, Z];

2) antisymmetry
[X,Y ] ≈ −[Y,X];

3) the Jacobi identity

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] ≈ 0.

Definition 3.6. A vector space L of approximate operators (5.1) is called
an approximate Lie algebra of operators if for any two operators in L their
approximate commutator (5.2) is also in L.

Theorem 3.4. Let a local r-parameter approximate Lie transformation
group (3.1) be given. Then the linear hull of the operators (3.9)

Xα = ξiα(z, ε)
∂

∂zi
, i = 1, . . . , N, α = 1, . . . , r,

is an approximate Lie algebra of operators with structural constants given
by (4.12) (i.e., coinciding with the structural constants of the approximate
Lie transformation group), namely,

[Xα, Xβ] ≈ cγαβXγ . (5.3)

Conversely, to any r linearly independent operators that satisfy conditions
(5.3) with constant cγαβ there corresponds a local r-parameter approximate
Lie transformations group.
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Proof. Consider the approximate commutator

[Xα, Xβ] =

[
ξiα(z, ε)

∂

∂zi
, ξjβ(z, ε)

∂

∂zj

]
=

[
ξiα
∂ξjβ
∂zi
− ξjβ

∂ξjα
∂zj

]
∂

∂zj
·

By (4.11) and (4.12) this expression has the form (5.3), namely,

[Xα, Xβ] ≈ cσαβξ
j
σ

∂

∂zj
≡ cσαβXσ.

Conversely, let the operators Xα form a basis of an approximate Lie algebra,
and let (5.3) hold. Clearly, the structural constants cσαβ satisfy the usual
conditions

cσαβ = −cσβα cσαβc
τ
σγ + cσβγc

τ
σα + cσγαc

γ
σβ = 0.

According to the third main Lie theorem (for precise groups) (see, for ex-
ample, Eisenkhart [30], Chebotarev [21], and Ovsyannikov [111], [112]),
such structural constants determine a system of functions V α

β (b) satisfying
the Maurer-Cartan equations (4.13). System (4.32) with these functions
is completely integrable by (5.3). According to the first Lie theorem for
approximate groups of transformations (see Theorem 3.3), we obtain an
approximate r-parameter local Lie transformation group.

Example 3.6. Let us construct the auxiliary functions V α
β (a) for the op-

erators

X1 =
∂

∂x
+ εx

∂

∂y
, X2 =

∂

∂y
+ εy

∂

∂x
,

X3 = ε

(
x
∂

∂x
+ y

∂

∂y

)
, X4 = ε

∂

∂x
, X5 = ε

∂

∂y
·

We have

[X1, X3] = −[X3, X1] = X4; [X2, X3] = −[X3, X2] = X5;

all other commutators are zero. Therefore, only the following structural
constants are not zero: c413 = −c431 = 1 and c523 = −c532 = 1. To find
the functions V β

α (b), we should find the integrals of the system of linear
equations [[21], p. 63, Eq. (31)]

∂θβα
∂t

= δβα + cβνµλ
µθνα, (5.4)

vanishing at t = 0. Then

bα = λαt, α = 1, . . . , r, V β
α =

1

t
θβα(λ

1, . . . , λr, r). (5.5)
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In our case the solution to system (5.4) with the initial conditions taken
into account has the form

θαα = t, θ41 =
1

2
λ3t2, θ52 =

1

2
λ3t2,

and θβα = 0 otherwise. Then (5.5) gives

V α
α = 1, α = 1, . . . , 5; V 4

1 =
1

2
b3; V 5

2 =
1

2
b3,

and V β
α otherwise. Replacing b3/2 by a3, we obtain the matrix V (a) from

Example 3.4.
This paper was written under partial financial support of Competition
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The first stage of group classification of differential equations is to find
equivalence transformations. A nonsingular change of dependent and inde-
pendent variables which moves any equation of a given class into an equation
of the same class is called an equivalence transformation of the given class
of equations (the second-order classes of equations are determined by ar-
bitrary parameters or functions). For example, for the class of differential
equations with two independent variables of the form

A(x, y)uxx+2B(x, y)uxy +C(x, y)uyy + a(x, y)ux+ b(x, y)uy + c(x, y)u = 0,

the equivalence transformations are

x̃ = f(x, y), ỹ = g(x, y), ũ = h(x, y)u,

and for a narrower class of hyperbolic equations of the canonical form

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0,

the equivalence transformations are

x̃ = f(x) ỹ = g(y), ũ = h(x, y)u

(see [89] and its English translation in [65]).

191
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In his works Lie calculated finite equivalence transformations. As far as
we know, it was L. V. Ovsyannikov who first used infinitesimal approach
to calculation of equivalence transformations (see [114] or, for details, [1]).
In the present paper we use the infinitesimal approach to calculation of
approximate equivalence transformations taking, for example, three classes
of second-order ordinary differential equations with a small parameter.

§ 1 Equations y′′ = εf (y)

The infinitesimal approach to calculation of exact equivalence transforma-
tions can be applied to the equation

y′′ = f(y) (1.1)

ε = 1. For this purpose, we rewrite it as the system of equations

y′′ = f, fx = 0, (1.2)

where y and f are considered to be functions of the variables x and x, y,
respectively.

We search for the generator of an equivalence group in the form

E = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ µ(x, y, f)

∂

∂f

and found it from the invariance condition for system (1.2):

Ẽ(y′′ − f)|(1.2) = 0, (1.3)

Ẽ(fx)|(1.2) = 0, (1.4)

where Ẽ = E + ζ1
∂
∂y′

+ ζ2
∂
∂y′′

+ µ1
∂
∂fx

is the extended operator. The co-
efficients ζ1 and ζ2 are calculated by usual extension formulas while µ1 is
obtained by extending the function f, which is considered as a fuunction
of the variables x and y, namely, µ1 = D̃x(µ) − fxD̃x(ξ) − fyD̃x(η), where

D̃x = ∂
∂x

+ fx
∂
∂f

+ · · · . Taking into account that µ does not depend on fy,

we derive µx = 0 and ηx = 0 from Eq. (1.4). Therefore the solution of Eq.
(1.3) yields ξ = C1x + C2, η = C3y + C4, and µ = (C3 − 2C1). Setting in
turn one of the constants C equal to 1 and the other constants equal to 0,
we obtain the operators

E1 = x
∂

∂x
− 2f

∂

∂f
, E2 =

∂

∂x
, E3 = y

∂

∂y
+ f

∂

∂f
, E4 =

∂

∂y
, (1.5)
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which generate a 4−parametric group of equivalence transformations for
Eq. (1.1)

A similar algorithm can be used for calculation of approximate (point-
wise) equivalence transformations for the equation

y′′ = εf(y) (1.6)

with the small parameter ε.
We call nonsingular in the zeroth order with respect to ε changes of

variables of the form

x̃ = ϕ0(x, y) + εϕ1(x, y), ỹ = ψ0(x, y) + εψ1(x, y),

which move (with the considered accuracy) Eq. (1.6) into an equation of
the same form, the approximate [with the accuracy o(ε)] equivalence trans-
formations for Eq. (1.6). Thus, taking into account the accuracy of approx-
imation, it suffices to assume that ε does not depend on x. Then Eq. (1.6)
is rewritten as the following system of equations

y′′ = εf, εfx = 0. (1.7)

The generator of the approximate group of equivalence transformations
is sought in the form

E = (ξ0(x, y) + εξ1(x, y))
∂

∂x
+ (η0(x, y) + εη1(x, y))

∂

∂y
+ µ(x, y, f)

∂

∂f

and is found from the approximate conditions of invariance for system (1.7)
(see [8] and [9])

Ẽ(y′′ − εf)|(1.7) = o(ε), (1.8)

Ẽ(εfx)|(1.7) = o(ε). (1.9)

Here Ẽ is calculated in the same way as in the case of the exact group with
the change of ξ and η by ξ0 + εξ1, and η0 + εη1, respectively.

Separation of zeroth-order terms with respect to ε in (1.8) yields defining
equations for the exact symmetries of the equation y′′ = 0. Hence,

ξ0 = (C1x+ C2)y + C3x
2 + C4x+ C5,

η0 = C1y
2 + C3xy + C6y + C7x+ C8.

(1.10)

The appropriate operators become

E0
1 = xy

∂

∂x
+ y2

∂

∂y
E0

2 = y
∂

∂x
E0

3 = x2
∂

∂x
+ xy

∂

∂y
,

E0
4 = x

∂

∂x
, E0

5 =
∂

∂x
E0

6 = y
∂

∂y
, E0

7 = x
∂

∂y
, E0

8 =
∂

∂y ·
(1.11)
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The first-order terms with respect to ε in Eq. (1.9) yield µ0
x = 0, η0x = 0

and those in Eq. (1.8) yield ?????????, η1yy − 2ξ1xy = 0, 2η1xy − ξ1xx − 3fξ0y =
0, µ = η1xx + f(η0y − 2ξ0x). The solution to these equations is

C1 = 0, C2 = 0, C3 = 0, C7 = 0,

ξ1 = (A1x+ A2)y2B1x
3 + A3x

2 + A4x+ A5,

η1 = A1y
2 + 3B1x

2y + A3xy + A6y +B2x
2 + A7x+ A8,

µ = 6B1y + 2B2 + (C6 − 2C4)f.

Thus, the approximate group of equivalence transformations is generated
by

E1 = x
∂

∂x
− 2f

∂

∂f
E2 =

∂

∂x
, E3 = y

∂

∂y
+ f

∂

∂f
, E5 =

∂

∂y
,

E5 = 2εx3
∂

∂x
+ 3εx2

∂

∂y
+ 6y

∂

∂f
E6 = εx2

∂

∂y
+ 2

∂

∂f
,

(1.12)

and by the eight generators obtained from (1.11) by multiplication by ε.
The corresponding 14-parametric approximate group of equivalence trans-
formations is written as

x̃ = a1x+ a2 + ε(2a1a5x
3 + a1aτxy + a8y + a1a9x

2 + a10x+ a11),

ỹ = a3y + a4 + ε(3a3a5x
2y + a6x

2 + a3aτy
2 + a3a9xy + a12y + a13x+ a14),

f̃ = a−21 a3f + 6a−21 a3a5y + 2a−21 a6, a1a3 6= 0,

It should be mentioned that only the transformations generated by the
operators E1, E3, E4, E5, E6 in (1.12) are essentially used for group classifi-
cation of the Eqs. (1.6) with respect to approximate symmetries.

§ 2 Equations y′′ = εf (x, y)

Like in Section § 1, we seek for a generator of the approximate group of
equivalence transformations for the equation

y′′ = εf(x, y) (2.13)

with the small parameter ε in the form

E = (ξ0(x, y) + εξ1(x, y))
∂

∂x
+ (η0(x, y) + εη1(x, y))

∂

∂y
+ µ(x, y, f)

∂

∂f
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and find it from the approximate condition of invariance for Eq. (2.13)

Ẽ(y′′ − εf)|(2.13) = o(ε) (2.14)

Here ξ0 and η0 are defined by (1.10) and separation of first-order terms with
respect to ε in Eq. (2.14) yields

ξ1yy = 0, η1yy − 2ξ1xy = 0, 2η1xy − ξ1xx − 3f(C1x+ C2) = 0,

µ = η1xx + f(−3C3x+ C6 − 2C4),

whence we derive

C1 = 0, C2 = 0, ξ1 = A1xy + A2y + β(x),

η1 = A1y
2+2−1β′(x)yA3y+σ(x), µ2−1β′′′(x)yσ′′(x)+f(−3C3x+C6−2C4).

Thus, the approximate group of equivalence transformations for Eq. (2.13)
is generated by

E1 = x2
∂

∂x
+ xy

∂

∂y
− 3xf

∂

∂f
E2 = x

∂

∂x
− 2f

∂

∂f
, E3 =

∂

∂x
,

E4 = x
∂

∂y
, E5 = y

∂

∂y
+ f

∂

∂f
, E6 =

∂

∂y
, Eτ = εxy

∂

∂x
+ εy2

∂

∂y
,

E8 = εy
∂

∂x
, E9 = εy

∂

∂y
, E10 = εβ(x)

∂

∂x
+
ε

2
β′(x)y

∂

∂y
+

1

2
β′′′(x)y

∂

∂f
,

E11 = εσ(x)
∂

∂y
+ σ′′(x)

∂

∂f
,

where β(x) and σ(x) are arbitrary functions. The approximate transforma-
tions have the form

x̃ =
a2x+ a3

1− a1a3 − a1a2x
+ ε

a2aτxy + a2a8y + a2a10β

(1− a1a3 − a1a2x)2
,

ỹ =
a5y + a4x+ a6
1− a1a3 − a1a2x

+
ε

(1− a1a3 − a1a2x)2
(a1a2a5a8+a5a7−a1a3a5a7)y2+

+a1a2a5a10β(x)y + (2−1a5a10 − 2−1a1a3a5a10)β
′(x)y−

−2−1a1a2a5a10β′(x)xy + (a1a2a6a7 + a4a7 − a1a3a4a7 − a1a2a5a9)xy+
+(a1a2a6a8 + a5a9 + a4a8 − a1a3a5a9 − a1a3a4a8)y + (a1a2a6a10 + a4a10−

−a1a3a4a10β(x)− a1a2a5a11σ(x)x+ (a5a11 − a1a3a5a11)σ(x)),
f̃ = a−22 a5(1− a1a3 − a1a2x)3(f + 2−1a10β

′′′(x)y + a11σ
′′(x)).
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For comparison, here we present the exact group of equivalence trans-
formations for Eq. (2.13) with ε = 1, that is, of the equation y ′′ = f(x, y).
It admits the infinite-dimensional group equivalence transformations gener-
ated by the operators

E1 = α(x)
∂

∂x
+

1

2
α′(x)y

∂

∂y
+

(
1

2
α′′′(x)y − 3

2
α′(x)f

)
∂

∂f
,

E2 = β(x)
∂

∂y
β′′(x)

∂

∂f
,E3 = y

∂

∂y
+ f

∂

∂f
,

where α(x) and β(x) are arbitrary functions. The corresponding transfor-
mations are

x̃ = γ−1(γ(x)+a1), where γ(x) =

∫
dx

α(x)
, γ−1 is the inverse to γ,

ỹ = (α(x̃)/α(x))1/2(a3yβ(x)a2),

f̃ = (α(x)/α(x̃))3/2(a3f + β ′′(x)a2)− (1/2)(α(x̃))−3/2(α(x))−1/2

×[α(x)α′′(x)−(1/2)(α′(x))2−α(x̃)α′′(x̃)+(1/2)(α′(x̃))2](a3y+β(x)a2); a3 6= 0.

§ 3 Equations y′′ = εf (x, y, y′)

In the case of the equation

y′′ = εf(x, y, y′) (3.15)

(with the small parameter ε), a generator of the group of equivalence trans-
formations becomes

E = (ξ0(x, y) + εξ1(x, y))
∂

∂x
+ (η0(x, y) + εη1(x, y))

∂

∂y
+ µ(x, y, y′, f)

∂

∂f
,

where the functions ξ0 and η0 are defined by (1.10). Unlike the two previ-
ous cases, the coefficient µ depends on y′ and, therefore, the approximate
condition of invariance for Eq. (3.15) implies that

µ = η1xx+2y′η1xy+(y′)2η1yy+f(−3C1xy
′−3C2y

′−3C3y
′−2C4+C6)−y′ξ1xx−

−2(y′)2ξ1xy − (y′)3ξ1yy,

where ξ1 and η1 are arbitrary functions.
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Thus, the approximate group of equivalences transformations for Eq.
(3.15) is infinite-dimensional and is generated by the operators

E1 = xy
∂

∂x
+ y2

∂

∂y
− 3xy′f

∂

∂f
, E2 = y

∂

∂x
− 3y′f

∂

∂f
,

E3 = x2
∂

∂x
+ xy

∂

∂y
− 3fx

∂

∂f
, E4 = x

∂

∂x
− 2f

∂

∂f
,

E5 =
∂

∂x
, E6 = y

∂

∂y
+ f

∂

∂f
, E7 = x

∂

∂y
, E8 =

∂

∂y
,

E∞ = εξ1(x, y)
∂

∂x
+ εη1(x, y)

∂

∂y
− ((y′)3ξ1yy + (y′)2(2ξ1xy − η1yy)+

+y′ξ1xx − 2η1xy)− η1xy)
∂

∂f
,

where ξ1(x, y) and η1(x, y) are arbitrary functions. The transformations
corresponding to these generators have the form

E1 : x̃ =
x

1− a1y
, ỹ =

y

1− a1y
, ỹ′ =

y′

1− a1y + a1xy′
,

f̃
fy2(1− a1y)3

(1− a1y + a1xy′)3
;

E2 : x̃ = x+ a2y, ỹ = y, ỹ′ = y′/(1 + a2y
′);

f̃ = f/(1 + a2y
′)3,

E3 : x̃ = x/(1− a3x), ỹ = y/(1− a3x), ỹ′ = y′ + a3(y − xy′),
f̃ = f(1− a3x)3;

E4 : x̃ = a4x, ỹ = y, ỹ′ = y′/a4, f̃ = f/a24;

E5 : x̃ = x+ a5, ỹ = y, ỹ′ = y′, f̃ = f ;

E6 : x̃ = x, ỹ = a6y, ỹ′ = a6y
′, f̃ = a6f ;

E7 : x̃ = x, ỹ = y + a7x, ỹ′ = y′ + a7, f̃ = f ;

E8 : x̃ = x, ỹ = y + a8, ỹ′ = y′, f̃ = f ;

E∞ : x̃ = x+ εaξ1(x, y), ỹ = y + εaη1(x, y),

ỹ′ = y′ + εa(−(y′)2ξ1y + y′(η1y − ξ1x) + η1x),

f̃ = f − a((y′)3ξ1yy + (y′)2(2ξ1xy − η1yy)+
+y′(ξ1xx − 2η1xy)− η1xx).

(3.16)

It should be noted that only in the case of Eq. (3.15), all the symme-
tries of the equation y” = 0 are stable with respect to the perturbations
considered.
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In the case of ε = 1, the obtained differential equation y” = f(x, y, y ′)
preserves its form under an arbitrary pointwise change of variables x̃ =
ϕ(x, y), ỹ = ψ(x, y). The generator of the corresponding equivalence trans-
formations is:

E = ξ(x, y)
∂

∂x
+η(x, y)

∂

∂y
+(ηxx+y

′(2ηxy−ξxx)+(y′)2(ηyy−2ξxy)−(y′)3ξyy)
∂

∂f

[cf. the operator E∞ in (3.16)].
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Lie groups in turbulence: I. Kolmogorov’s invariant and the algebra Lr.

Lie groups and their applications, Vol. 1, No. 2, 1994, pp. 98-103.

The usual application of the group theory to Navier-Stokes equations
deals only with laminar flows, indeed point symmetry group Gϕ of Navier-
Stokes equations leaves unaltered the viscosity ν. In [133] an idea was initi-
ated to use the equivalence group Gε to adopt the Lie theory to turbulent
flows. The equivalence transformation change the viscosity and therefore
lead to a variety of liquids and scales of motions which depend on the vis-
cosity. To identify those equivalence transformations connecting different
scales of a given liquid Kolmogorov’s invariant is used.

Here we employ Kolmogorov’s invariant and determine the subgroup Gr

of the equivalence group Gε such that Kolmogorov’s invariant is the first
order differential invariant of Gr. It follows that the subgroup of Gr leaves
invariant the energy balance equation. We believe that the group Gr plays a
fundamental role in the turbulence theory similar to the heat representation
of the Galilean group in heat conduction [66].

1 Equivalence and symmetry algebras for the

Navier-Stokes equations

We consider the Navier-Stokes equations

ut + (u · ∇)u = −1

ρ
∇p+ ν∆u,∇ · u = 0, (1.1)

199
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where u = (u1, u2, u3),

∇ =

[
∂

∂x1
,

∂

∂x2
,

∂

∂x3

]
, ∆ = ∇ · ∇,

and the density ρ > 0 is constant. Navier-Stokes equations admit the infinite
dimensional equivalence Lie algebra Lε consisting of the operators which are
linear combination of the operators∗

X1 =
∂

∂t
, X2 = f(t)

∂

∂p

X3 = xi
∂

∂xi
+ 2t

∂

∂t
− ui ∂

∂ui
− 2p

∂

∂p

Xij = xj
∂

∂xi
− xi ∂

∂xj
+ uj

∂

∂ui
− ui ∂

∂uj

X4 = h1(t)
∂

∂x1
+ h′1(t)

∂

∂u1
− x1h′′1(t)

∂

∂p

X5 = h2(t)
∂

∂x2
+ h′2(t)

∂

∂u2
− x2h′′2(t)

∂

∂p

X6 = h3(t)
∂

∂x3
+ h′3(t)

∂

∂u3
− x3h′′3(t)

∂

∂p
(1.2)

X7 = t
∂

∂t
+ xi

∂

∂xi
+ ν

∂

∂ν

with arbitrary coefficients depending on ν [133], [78]. For all equations (1.1)
with ν 6= 0, the symmetry algebra is equivalent to the principal Lie algebra
(in the sense defined in [76]) spanned by the X1, . . . , X6 from (1.2) [118].

2 Kolmogorov’s invariant and algebra Lr

Definition 5.1. The algebra Lr is the subalgebra of the equivalence algebra
Lε such that Kolmogorov’s invariant [85], i.e. the energy dissipation rate

ε =
ν

2

∑

r,s

(urs + usr)
2

is its differential invariant.

∗Note to this 2007 edition: Eqs. (1.1) allow the larger equivalence algebra where the
functions f(t), h1(t), h2(t), and h3(t) in the operators X2, X4, X5 and X6 are replaced by
the arbitrary functions of two variables f(t, ν), h1(t, ν), h2(t, ν), and h3(t, ν), respectively.
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Theorem 5.1. The algebra Lr is infinite dimensional and it comprises the
following operators:

X1 =
∂

∂t
, X2 = f(t)

∂

∂p

Xε = xi
∂

∂xi
+

2

3
t
∂

∂t
+

1

3
ui

∂

∂ui
+

2

3
p
∂

∂p
+

4

3
ν
∂

∂ν

Xij = xj
∂

∂xi
− xi ∂

∂xj
+ uj

∂

∂ui
− ui ∂

∂uj

X4 = h1(t)
∂

∂x1
+ h′1(t)

∂

∂u1
− x1h′′1(t)

∂

∂p

X5 = h2(t)
∂

∂x2
+ h′2(t)

∂

∂u2
− x2h′′2(t)

∂

∂p

X6 = h3(t)
∂

∂x3
+ h′3(t)

∂

∂u3
− x3h′′3(t)

∂

∂p
(2.3)

Proof. Since the ε only involves the first order differentials, first pro-
longations of operators X1 and X2 do not comprise differential functions
which appear in ε. These operators leave ε invariant:

X1ε = 0,

∂

∂t
[2(u11)

2 + 2(u22)
2 + 2(u33)

2 + (u12 + u21)
2 + (u13 + u31)

2 + (u23 + u32)
2] = 0,

X2ε = 0,

[
f(t)

∂

∂p
+ f(t)′

∂

∂p

]
ε = 0.

Now we act by the first prolongation the linear combinationX1
3 = αX3+βX7

of the operators X3 and X7 on ε :

X1
3ε = 0,

[
αxi

∂

∂xi
+ (2α + β)t

∂

∂t
+ (α+ β)ui

∂

∂ui
− 2(α + β)p

∂

∂p
− βν ∂

∂ν

−(2α + β)uij
∂

∂uij
− (3α + 2β)uit

∂

∂uit
− (3α + 2β)pm

∂

∂pm

]
ε = 0

to obtain

ν(4α+3β)[2(u11)
2+2(u22)

2+2(u33)
2+(u12+u

2
1)

2+(u13+u
3
1)

2+(u23+u
3
2)

2] = 0.
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Thus we have

α = 1 and β = −4

3

which yields

X1
3 = X3 −

4

3
X7

to be written. Next we act the first prolongation of operators Xij on ε :

Xijε = 0,

[
xj

∂

∂xi
− xi ∂

∂xj
+ uj

∂

∂ui
− ui ∂

∂uj
+ (ujmδi1 − u1i δjm + u1jδim)

∂

∂u1m
+ (−uimδj2

+ujmδi2 − u2i δjm + u2jδim)
∂

∂u2m
+ (−uimδj3 − u3i δjm − u3jδim)

∂

∂u3m
+

(−piδjm + pjδim)
∂

∂pm

]
ε = 0,

to get

4u11(u
j
1δi1−u1i δj1+u1jδi1)+ 4u22(−ui2δj2+uj2δi2−u2i δj2+u2jδi2)+ 4u33(−ui3δj3

−u3i δj3+u3jδi3)+2(u12+u
2
1)(u

j
2δi1−u1i δj2+u1jδi2−ui1δj2+uj1δi2−u2i δj1+u2jδi1)

+2(u13+u
3
1)(u

j
3δi1−u1i δj3+u1jδi3−ui1δj3−u3i δj1+u3jδi1)+2(u23+u

3
2)(−ui3δj2

+uj3δi2 − u2i δj3 + u2jδi3 − u2i δj3 − ui2δj3 − u3i δj2 + u3jδi2 = 0.

Latter vanishes when i = 1, j = 2; i = 1, j = 3 and i = 2, j = 3. Owing
to the fact that the first prolongations of operators X4, X5 and X6 do not
involve the differential functions which appear in ε. These operators leave
the ε. These operators leave the ε invariant.

X4ε = 0,
[
h1(t)

∂

∂x1
+ h′1(t)

∂

∂u1
− x1h′′1(t)

∂

∂p
+ (h′′1 − u11h′1)

∂

∂u1t

−u21h′1
∂

∂u2t
− u31h′1

∂

∂u3t
− h′′1

∂

∂p1
− (x1h′′1 + p1h

′
1)
∂

∂pt

]
ε = 0,

X5ε = 0,
[
h2(t)

∂

∂x2
+ h′2(t)

∂

∂u2
− x2h′′2(t)

∂

∂p
+ (h′′2 − u22h′2)

∂

∂u2t

−u12h′2
∂

∂u1t
− u32h′2

∂

∂u3t
− h′′2

∂

∂p2
− (x2h′′2 + p2h

′
2)
∂

∂pt

]
ε = 0,
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X6ε = 0,
[
h3(t)

∂

∂x3
+ h′3(t)

∂

∂u3
− x3h′′3(t)

∂

∂p
+ (h′′3 − u33h′3)

∂

∂u3t

−u23h′3
∂

∂u2t
− u13h′3

∂

∂u1t
− h′′3

∂

∂p3
− (x3h′′3 + p3h

′
3)
∂

∂pt

]
ε = 0.

These calculation completes the proof.

3 The main property of algebra Lr

Theorem 5.2. The energy balance equation:

∆ = ρururt + ρuru3ur3 + urpr − µurur33 = 0

is invariant with respect to a subgroup of Lr. Here µ is the dynamic viscosity
(ν = µ/ρ).

Proof: Since the ∆ involves second order differentials. The second
prolongations of the operators should be acted on the ∆. The second pro-
longation of X1

3 is given by:

Xε = xi
∂

∂xi
+

2

3
t
∂

∂t
+

1

3
ui

∂

∂ui
+

2

3
p
∂

∂p
+

4

3
ν
∂

∂ν
− 2

3
uij

∂

∂uij
− 1

3
uit

∂

∂uit

−1

3
pm

∂

∂pm
−
[
2

3
uγnm − uγmiδin +

2

3
uγmtδtn

]
∂

∂uγnm
·

The second prolongation of Xij is found to be:

Xij = xj
∂

∂xi
− xi ∂

∂xj
+ uj

∂

∂ui
− ui ∂

∂uj
+ (uimδi1 − u1i δjm + u1jδim)

∂

∂u1m

+(−uimδj2 + ujmδi2 − u2i δjm + u2jδim)
∂

∂u2m
+ (−uimδj3 − u3i δjm

+u3jδim)
∂

∂u3m
+ (−piδjm + pjδim)

∂

∂pm
+ (u2nmδi1δj2 + u3nmδi1δj3

−u1niδjm + u1njδim − u1miδjn + u1mjδin)
∂

∂u1mn
+ (−u1nmδi1δj2 + u3nmδi2δj3

−u2niδjm + u2njδim − u2miδjn + u2mjδin)
∂

∂u2mn
+ (−u1nmδi1δj3 + u2nmδi2δj3

−u3niδjm + u3njδim − u3miδjn + u3mjδin)
∂

∂u3mn
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Now acting by the second prolongation of X1
3 on δ one can obtain:

ρ

3
ururt −

ρ

3
ururt +

2ρ

3
uru3ur3−

2ρ

3
uru3ur3+

1

3
urpr−

1

3
urpr+

1

3
µur33+

4

3
µurur33

−2

3
µurur33 − µurur33 = 0

Finally we act the second prolongation of Xij on ∆ one can obtain:

T1 + T2 + T3 + T4 = 0

where

T1 = ρ[ujurtδri − uiurtδrj + u1ujtδi1 − u2(−uitδj2 + ujtδi2)− u3uitδj3],

T2 = ρ[uju3ur3δir− uiu3ur3δj3 + u1um(ujmδi1− u1i δjm+ u1jδim)+ u2um(−uimδj2
+ujmδi2 − u2i δjm + u2jδim) + u3um(−uimδj3 − u3i δjm + u3jδim)],

T3 = ujprδir − uiprδjr − ujpi + uipj,

T4 = µ[ujui33 − uiuj33 + u1(u233δi1δj2 + u333δi1δj3) + u2(−u133δi1δj2 + u333δi2δj3)

−u3(−u133δi1δj3 + u233δi2δj3)].

T1 − T4 vanish when i = 1, j = 2; i = 1, j = 3 and i = 2, j = 3. It is clear
that the groups generated by X1 and X2 leave the ∆ invariant. Q.E.D.

4 How different scales of motion are gener-

ated by Lr

Let us consider the equivalence group generated by the operator Xε

ūi = eaui, x̄i = e3axi, t̄e
2at, ν̄ = e4aν (4.4)

Since the Lie Groups are infinite groups, starting with constant viscosity
we get different values of ν̄ by changing the group parameter a. What is
physically happening here is the following: different scales of fluid motion
(eddies) are affected differently by the viscosity. The effect of viscosity on
small scale eddies are more severe than the larger ones (the faster the fluid
motion it gets, higher the effect of viscosity becomes). Now we will illustrate
this with an example. The equivalence group (4.4) allows one to write:

ui = e−afi(e
2at, e3axi,e

4aν).
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For the sake of clarity let us take one dimensional periodic flow:

u = e−a sin(e2at)

increasing the value of parameter a increases the frequency of fluid motion
but decreases its amplitude because of viscosity effects (damping). The
correspondence between different incompressible fluid flows (each having
different ν) can also be established through (4.4).

As it has already been shown in [78], the group of projective transfor-
mations:

ν̄ =
ν

1− aν , t̄ =
t

1− aν , x̄i =
xi

1− aν , (4.5)

are also admitted by the Navier-Stokes equations. In this case one can write
the following:

u =
1

(1− aν)1/4 g(t(1− aν)
1/2, x(1− aν)3/4, ν

1− aν ).

In the limit where the parameter a approaches to the 1/ν the amplitude
and the period increases. This type of effect can be interpreted as negative
viscosity effect.
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Paper 6

Integration of third-order
equations admitting L3 by
Lie’s method

Nail H. Ibragimov and Maria Clara Nucci [72]

Abstract. We show how to integrate third order differential equations
which admit a three-dimensional symmetry Lie algebra L3. If L3 is solvable,
then we integrate the equation by quadrature, in accordance with Lie’s
theory. If L3 is not solvable, then we can still integrate the given third order
equation by reducing it to a first order equation, which can be transformed
into a Riccati equation, thanks to the fact that L3 transforms one of the
symmetry of the third order equation into a non - local symmetry of the
first order equation. Some examples are provided.

1 Introduction

Lie showed that an ordinary differential equation of order n with a known n-
dimensional Lie symmetry algebra can be integrated by quadrature provided
that its symmetry algebra is solvable. The general integrating procedure
consists of n successive integrations and leads to quite lengthy calculations.

In the case of second order equations, Lie [93] simplified the integration
procedure by using the canonical representation of two-dimensional algebras
on the (x, y) plane. By this canonical representation, the corresponding
differential equations assume a directly integrable form (e.g. see [64]).

The purpose of the present paper is to apply Lie’s method to the integra-
tion of third order equations which admit a three-dimensional Lie symmetry
algebra L3.

206



6: INTEGRATION OF THIRD-ORDER EQUATIONS (1994) 207

If L3 is solvable then we can reduce the given third order equation to
a first order equation which is integrable by quadrature, and then obtain a
second order equation which can be transformed into a directly integrable
form.

If L3 is not solvable then we can still reduce the given third order equa-
tion to a first order equation; this equation is not integrable by quadrature
but can be easily reduced to a Riccati equation by using a non-local sym-
metry which comes from one of the symmetry of the original third order
equation.

We have used the group classification of third order equations due to
Mahomed [100] and Gat [35] in order to cover all the possible cases.

In the last section, we show some examples of third order differential
equations which admit a three-dimensional Lie symmetry algebra.

We have found those Lie symmetry algebras by using an interactive
REDUCE program developed by M.C.N. [108].

2 Equations admitting solvable Lie algebras

Let us consider a third order differential equation which admits a three-
dimensional solvable Lie algebra L3. First, we reduce it to a first order
equation by using the differential invariants of an ideal L2 ⊂ L3. Then, the
first order equation can be integrated by quadrature, because it admits the
one-dimensional Lie algebra L3/L2. Its general solution becomes a second
order equation in the original variables. This equation admits L2, therefore
it can be integrated by quadrature by using the canonical representation of
L2, as Lie showed [64].

2.1. The algebra L3 with basis

X1 = ∂x, X2 = ∂y, X3 = x∂y (2.1)

and its most general invariant equation:

y′′′ = f(y′′) (2.2)

The commutators of (2.1) are:

[X1, X2] = 0, [X1, X3] = X2, [X2, X3] = 0.

Therefore, X2, X3 span the ideal L2 = L2 < X2, X3 >. A basis of differential
invariants of L2 of order ≤ 2 is given by:

u = x, v = y′′. (2.3)
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Then, equation (2.2) is easily reduced to the following first order equation:

dv

du
= f(v) (2.4)

which admits the operator X1 = ∂u. Therefore, equation (2.4) can be
integrated by quadrature, i.e.:

∫
dv

f(v)
= u+ c1

which yields v = F (u + c1). By introducing the original variables and
integrating twice, we obtain the general solution of (2.2), i.e.:

y =

∫ (∫
F (x+ c1)dx

)
dx+ c2x+ c3 (2.5)

with c1, c2, c3 arbitrary constants. The same result could be obtained by
using the ideal L2 spanned by X1, X2.

2.2. The algebra L3 with basis

X1 = ∂x, X2 = ∂y, X3 = λx∂x + y∂y (λ 6= 1
2
) (2.6)

and its most general invariant equation:

y′′′ = f
(
y′′λ−1y′1−2λ

)
y′′

3λ−1
2λ−1 (2.7)

The commutators of (2.6) are:

[X1, X2] = 0, [X1, X3] = λX1, [X2, X3] = X2.

Therefore, X1, X2 span the ideal L2 = L2 < X1, X2 >. A basis of differential
invariants of L2 of order ≤ 2 is given by:

u = y′, v = y′′. (2.8)

Then, equation (2.7) is reduced to the following first order equation:

dv

du
= f(vλ−1u1−2λ)v

λ
2λ−1 (2.9)

which admits the operator X3 in the space of variables u, v, i.e.:

X3 = (1− λ)u∂u + (1− 2λ)v∂v . (2.10)
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It should be noticed that if λ = 1 then equation (2.9) is integrable by
quadrature. Therefore we assume λ 6= 1. We transform the operator (2.10)
into its canonical form X3 = ∂t by the change of variables:

t = log u, z = vλ−1u1−2λ

which are found by solving the following equations:

u
∂t

∂u
+

1− 2λ

1− λ v
∂t

∂v
= 1,

u
∂z

∂u
+

1− 2λ

1− λ v
∂z

∂v
= 0.

In the variables t, z, equation (2.9) becomes:

dz

dt
= z

[
(λ− 1)z1/(1−2λ)f(z) + 1− 2λ

]
(2.11)

which is integrable by quadrature. Let z = F (t, c1) be its general integral.
Then, by introducing the original variables, we obtain:

y′′
λ−1

y′
1−2λ

= F (log y′, c1)

which is a second order differential equations admitting the symmetry al-
gebra L2 = L2 < X1, X2 >, and can easily be integrated by using Lie’s
approach [64].

2.3. The algebra L3 with basis

X1 = ∂x, X2 = ∂y, X3 = x∂x + 2y∂y (2.12)

and its most general invariant equation:

y′′′ = f(y′′)y′−1 (2.13)

This is the previous case with λ = 1
2
. By using L2, and the variables (2.8),

we obtain:
dv

du
=
f(v)

uv
which is integrable by quadrature.

2.4. The algebra L3 with basis

X1 = ∂y, X2 = x∂y, X3 = (λ− 1)x∂x − y∂y (λ 6= 1
2
, 1) (2.14)

and its most general invariant equation:

y′′′ = f
(
x1−2λy′′1−λ

)
y′′

3λ−2
2λ−1 (2.15)
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The commutators of (2.14) are:

[X1, X2] = 0, [X1, X3] = −X1, [X2, X3] = −λX2.

Therefore, X1, X2 span the ideal L2 = L2 < X1, X2 >. A basis of differential
invariants of L2 of order ≤ 2 is given by (2.3). Then, equation (2.15) is
reduced to the following first order equation:

dv

du
= f(v1−λu1−2λ)v

3λ−2
2λ−1 (2.16)

which admits the operator X3 in the space of variables u, v, i.e.:

X3 = (λ− 1)u∂u + (1− 2λ)v∂v . (2.17)

We transform the operator (2.17) into its canonical form X3 = ∂t by the
change of variables:

t = log u, z = v1−λu1−2λ.

In these variables t, z, equation (2.16) becomes:

dz

dt
= (1− 2λ)z + (1− λ)z

2(λ−1)
2λ−1 f(z) (2.18)

which is integrable by quadrature.

2.5. The algebra L3 with basis

X1 = ∂x, X2 = x∂y, X3 = x∂x + 2y∂y (2.19)

and its most general invariant equation:

y′′′ = f(y′′)x−1 (2.20)

This is the previous case with λ = 1
2
. By using L2, and the variables (2.3),

we obtain:
dv

du
=
f(v)

u
which is integrable by quadrature.

2.6. The algebra L3 with basis

X1 = ∂x, X2 = ∂y, X3 = x∂x + (x+ y)∂y (2.21)

and its most general invariant equation:

y′′′ = e−y
′

y′′f
(
ey

′

y′′
)

(2.22)
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The commutators of (2.21) are:

[X1, X2] = 0, [X1, X3] = X1 +X2, [X2, X3] = X2.

Therefore, X1, X2 span the ideal L2 = L2 < X1, X2 >. A basis of differential
invariants of L2 of order ≤ 2 is given by (2.8). Then, equation (2.22) is
reduced to the following first order equation:

dv

du
= e−uf (euv) (2.23)

which admits the operator X3 in the space of variables u, v, i.e.:

X3 = ∂u − v∂v . (2.24)

We transform the operator (2.24) into its canonical form X3 = ∂t by the
change of variables:

t = u, z = euv. (2.25)

In these variables t, z, equation (2.23) becomes:

dz

dt
= z + f(z) (2.26)

which is integrable by quadrature.

2.7. The algebra L3 with basis

X1 = ∂y, X2 = x∂y, X3 = ∂x − y∂y (2.27)

and its most general invariant equation:

y′′′ = e−xf (exy′′) (2.28)

The commutators of (2.27) are:

[X1, X2] = 0, [X1, X3] = −X1, [X2, X3] = −X1 −X2.

Therefore, X1, X2 span the ideal L2 = L2 < X1, X2 >. A basis of differential
invariants of L2 of order ≤ 2 is given by (2.3). Then, equation (2.28) is
reduced to the first order equation (2.23), and, of course, the operator X3

becomes (2.24) in the space of variables u, v.
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3 Equations admitting non-solvable Lie al-

gebras

Let us consider a third order differential equation which admits a three-
dimensional non-solvable Lie algebra L3. First, we reduce it to a first order
equation by using the differential invariants of a two-dimensional subalgebra
L2 ⊂ L3, which always exists in the complex domain. Then, the third
operator can be used to simplify the obtained first order equation, although
it is non local. Indeed, a Riccati equation is always found. Its general
solution becomes a second order equation in the original variables. This
equation admits L2, therefore it can be integrated by quadrature by using
the canonical representation of L2, as Lie showed [64].

We make use of the following:
Definition. For a given operator of the form

X = ξ∂x + η∂y (3.1)

the variables z, u are called semi-canonical if they transform the operator
(3.1) into the following semi-canonical form

X = F∂u (3.2)

with F an arbitrary coefficient.
Semi-canonical variables exist for any operator (3.1), and they are de-

termined by the equation:
X(z) = 0. (3.3)

3.1. The algebra L3 with basis

X1 = ∂y, X2 = y∂y, X3 = y2∂y (3.4)

and its most general invariant equation:

y′′′ =
3y′′2

2y′
+ f(x)y′ (3.5)

The commutators of (3.4) are:

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3.

Therefore, X1, X2 span a two-dimensional subalgebra L2. A basis of differ-
ential invariants of L2 of order ≤ 2 is given by:

u = x, v = y′′/y′. (3.6)
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Then, equation (3.5) is reduced to the following first order equation:

dv

du
=
v2

2
+ f(u) (3.7)

which admits the non-local operator X3 in the space of variables u, v, i.e.:

X3 = 2y′∂v (3.8)

It is not a surprise that (3.7) is a Riccati equation. In fact, it is well known
[48] that (3.5) can be transformed into the Riccati equation (3.7) by using
the change of variables (3.6).

3.2. The algebra L3 with basis

X1 = ∂y, X2 = x∂x + y∂y, X3 = xy∂x +
y2

2
∂y (3.9)

and its most general invariant equation:

y′′′ =
3y′′2

y′
+ f

(
2xy′′ + y′

2y′3

)
y′4

x2
(3.10)

The commutators of (3.9) are:

[X1, X2] = X1, [X1, X3] = X2, [X2, X3] = X3.

Therefore, X1, X2 span a two-dimensional subalgebra L2. A basis of differ-
ential invariants of L2 of order ≤ 2 is given by:

u = y′, v = xy′′ (3.11)

Then, equation (3.10) is reduced to the following first order equation:

v
dv

du
= v +

3v2

u
+ f

(
2v + u

2u3

)
(3.12)

which admits the non-local operator X3 in the space of variables u, v, i.e.:

X3 = −x
(
u2∂u + (u2 + 3uv)∂v

)
. (3.13)

This operator is non-local, due to the appearance of x. Yet, we can trans-
form (3.13) into its semi-canonical form (3.2), i.e. X3 = −xu2∂u, by intro-
ducing the new variable

z =
2v + u

2u3
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which is obtained by solving ( refsemceq), i.e.:

u2
∂z

∂u
+ (u2 + 3uv)

∂z

∂v
= 0.

It turns out that equation (3.12) becomes a Riccati equation in the variables
z, u, i.e.:

du

dz
=
zu2 − 1/2

f(z)
(3.14)

3.3. The algebra L3 with basis

X1 = ∂y, X2 = x∂x + y∂y, X3 = xy∂x +
x2 + y2

2
∂y (3.15)

and its most general invariant equation:

y′′′ =
3y′′2y′

y′2 − 1
+

(
y′2 − 1

)2

x2
f

(
xy′′

(
1− y′2

)3/2 −
y′

(
1− y′2

)1/2

)
(3.16)

The commutators of (3.15) are:

[X1, X2] = X1, [X1, X3] = X2, [X2, X3] = X3.

Therefore, X1, X2 span a two-dimensional subalgebra L2. A basis of differ-
ential invariants of L2 of order ≤ 2 is given by (3.11). Then, equation (3.16)
is reduced to the following first order equation:

v
dv

du
= v − 3uv2

1− u2 + (1− u2)2f
(
v − u(1− u2)
(1− u2)3/2

)
(3.17)

which admits the non-local operator X3 in the space of variables u, v, i.e.:

X3 = x
(
(1− u2)∂u + (1− u2 − 3uv)∂v

)
. (3.18)

We put (3.18) into its semi-canonical form (3.2), i.e. X3 = x(1− u2)∂u, by
introducing the new variable

z =
v − u(1− u2)
(1− u2)3/2

which is obtained by solving (3.3), i.e.:

(1− u2)∂z
∂u

+ (1− u2 − 3uv)
∂z

∂v
= 0.
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It turns out that in the variables z, u, equation (3.17) becomes:

du

dz
=

(1− u2)z + u(1− u2)1/2
f(z)

. (3.19)

This equation satisfies the Vessiot-Guldberg-Lie theorem (see [64], Chap-
ter IV), i.e. admits a fundamental system of solutions (also known as a
nonlinear superposition principle). This means that equation (3.19) can
be transformed into a Riccati equation by a change of the dependent vari-
able u only. Let us follow the procedure given by the Vessiot-Guldberg-Lie
theorem. First, we consider the following two operators:

Γ1 = (1− u2)∂u, Γ2 = u(1− u2)1/2∂u . (3.20)

Their commutator is equal to

[Γ1,Γ2] = (1− u2)1/2∂u

and is not a linear combination of the operators (3.20). Therefore, we have
to consider a third operator

Γ3 = (1− u2)1/2∂u (3.21)

in order to obtain a Lie algebra. Operators (3.20)-(3.21) span a three-
dimensional Lie algebra with the following commutators:

[Γ1,Γ2] = Γ3 , [Γ1,Γ3] = Γ2 , [Γ2,Γ3] = −Γ1 . (3.22)

Any Riccati equation of the form

dφ

dz
= P (z) +Q(z)φ+R(z)φ2

admits the Vessiot-Guldberg-Lie algebra spanned by

Y1 = ∂φ , Y2 = φ∂φ , Y3 = φ2∂φ (3.23)

with the following commutators:

[Y1, Y2] = Y1 , [Y1, Y3] = 2Y2 , [Y2, Y3] = Y3.

Therefore, we have to transform the operators (3.20)-(3.21) into the form
(3.23) by a change of the dependent variable

φ = h(u) (3.24)
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in order for equation (3.19) to become a Riccati equation. If we consider

Γ1 = Γ3 − Γ2 ≡ Y1 , Γ2 = Γ1 ≡ Y2 , Γ3 = Γ3 + Γ2 ≡ Y3 (3.25)

and introduce the new dependent variable

φ =

(
1 + u

1− u

)1/2

which is obtained by solving the following equation:

(1− u2)dφ
du

= φ

then, equation (3.19) becomes a Riccati equation in the variables z, φ, i.e.:

dφ

dz
=

2zφ+ φ2 − 1

2f(z)
. (3.26)

Recently, Clarkson and Olver [23] have shown that the Lie algebras in
subsections 3.2. and 3.3. are connected by prolongation to the Lie algebra
in subsection 3.1., which gives the theoretical explanation of the appearance
of a Riccati equation in each case.

4 Examples

In this section, we give some examples of third order differential equations,
which admit a three-dimensional Lie symmetry algebra L3.

We remark that each of the following equation is reducible to a Riccati
equation, even in the example with solvable L3.

4.1. Equation

w′′′ = 3w′′ +
w′w′′

w
− w′2

w
− 2w′, w = w(s) (4.1)

This equation was obtained by Whittaker in [139] by embedding the iterates

fn(2 cos u) = 2 cos(2nu)

into a continuously evolving system. He also found the general solution of
(4.1) by “a lucky guess” method. Instead, we apply Lie’s method to find
that (4.1) admits a solvable Lie algebra L3 with basis:

X1 = ∂s, X2 = e−s∂s, X3 = w∂w . (4.2)
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Their commutators are:

[X1, X2] = −X2, [X1, X3] = 0, [X2, X3] = 0.

It is easy to show that (4.1) is a particular case of (2.7) with λ = 0. In fact,
by introducing the change of variables:

x = logw, y = es

equation (4.1) transforms into:

y′′′ =

(
3
y′′

y′
− 2

)
y′′, y = y(x) (4.3)

which is a particular case of (2.7) with λ = 0 and f(∗) = 3/ ∗ −2. In order
to obtain a Riccati equation, we consider the two-dimensional subalgebra
spanned by X1, X2. A basis of its differential invariants of order ≤ 2 is given
by:

u = w, v = (w′′ − w′)w′−2. (4.4)

Then, equation (4.1) is reduced to the following Riccati equation:

dv

du
= −2v2 + v

u
(4.5)

which admits the operator X3 in the space of variables u, v, i.e.:

X3 = u∂u − v∂v . (4.6)

The general solution of (4.5) is easily found to be:

v = − u

c21 − u2
(4.7)

which becomes a second order equation in the original variables, i.e.:

w′′ = w′ − ww′2

c21 − w2

admitting the two-dimensional algebra spanned by X1, X2. Then, we easily
find its general solution to be:

w = c1 cos (c3e
s + c2) .

We leave to the reader the application of the method delineated in subsec-
tion 2.2. to the equation (4.3).
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4.2. Equation

w′′′ = w−2, w = w(s) (4.8)

This equation represents the small-w limit of an equation which is relevant
to fluid draining problems on a dry wall, and the large-w limit to draining
over a wet wall [132]. Its general solution was given in [33] by “a lucky
guess” method. Lie’s method when applied to (4.8) leads to a non-solvable
Lie algebra L3 with basis:

X1 = ∂s, X2 = s∂s + w∂w, X3 = s2∂s + 2sw∂w . (4.9)

It is easy to show that (4.8) is a particular case of (3.10). In fact, by
introducing the change of variables:

x = w, y = s

equation (4.8) transforms into:

y′′′ =
3y′′2

y′
− y′4

x2
, y = y(x) (4.10)

which is a particular case of (3.10) with f(∗) = −1. Let us consider the
two-dimensional subalgebra spanned by X1, X2. A basis of its differential
invariants of order ≤ 2 is given by:

u = w′, v = ww′′. (4.11)

Then, equation (4.8) is reduced to the following first order equation:

v
dv

du
= uv + 1 (4.12)

which admits the non-local operator X3 in the space of variables u, v, i.e.:

X3 = w(∂u + u∂v). (4.13)

We put (4.13) into its semi-canonical form (3.2), i.e. X3 = w∂u, by intro-
ducing the new variable

z = v − u2/2
which is obtained by solving (3.3), i.e.:

∂z

∂u
+ u

∂z

∂v
= 0.
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Then, equation (4.12) becomes a Riccati equation in the variables z, u, i.e.:

du

dz
=
u2

2
+ z. (4.14)

This equation was derived in [33], although it was not explained how the
change of variables which reduces equation (4.8) to the Riccati equation
(4.14) was found. Finally, the general solution of (4.14) is easily found t o
be given in terms of Airy functions [33].

4.3. Equation

w′′′ = −(4ww′′ + 6w2w′ + 3w′2 + w4), w = w(s) (4.15)

This equation is the third order member of the Riccati-chain [3]. Therefore,
(4.15) can be transformed into the linear equation

W (iv) = 0 (4.16)

by the change of variable
w =W ′/W (4.17)

and its general solution is easily found to be

w =
c2 + 2c3s+ 3c4s

2

c1 + c2s+ c3s2 + c4s3
.

Lie’s method when applied to (4.15) leads to a non-solvable Lie algebra L3

with basis:

X1 = ∂s, X2 = s∂s − w∂w, X3 = s2∂s − (2sw − 3)∂w . (4.18)

It is easy to show that (4.15) is a particular case of (3.16). In fact, by
introducing the change of variables:

x = − 3

2w
, y = s− 3

2w

equation (4.15) transforms into:

y′′′ =
3y′′2

y′ − 1
+

6y′y′′

x
+

3(9y′4 − 10y′2 + 1)

8x2
, y = y(x) (4.19)

which is a particular case of (3.16) with f(∗) = −3∗2 + 3/8. Let us con-
sider the two-dimensional subalgebra spanned by X1, X2. A basis of its
differential invariants of order ≤ 2 is given by:

u = w′w−2, v = w′′w−3. (4.20)
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Then, equation (4.15) is reduced to the following first order equation:

dv

du
=

3uv + 4v + 6u+ 3u2 + 1

2u2 − v (4.21)

which admits the non-local operator X3 in the space of variables u, v, i.e.:

X3 = −w−1 (2(3u+ 1)∂u + 3(3v + 2u)∂v) . (4.22)

Operator (4.22) can be transformed into its semi-canonical form (3.2), i.e.
X3 = −2w−1(3u+ 1)∂u, by introducing the new variable

z =
9(3u+ 1)v + 54u2 + 30u+ 4

9(3u+ 1)5/2

which is obtained by solving (3.3), i.e.:

2(3u+ 1)
∂z

∂u
+ 3(3v + 2u)

∂z

∂v
= 0.

Then, in the variables z, u, equation (4.21) becomes:

du

dz
= 2

(3u+ 1)1/2(6u+ 4)− 9z(3u+ 1)

81z2 + 2
(4.23)

This equation satisfies the Vessiot-Guldberg-Lie theorem. In fact, operators

Γ1 = u(3u+ 1)1/2∂u , Γ2 = (3u+ 1)1/2∂u , Γ3 = (3u+ 1)∂u (4.24)

form a three-dimensional Lie algebra, and if we consider

Γ1 =
2

3
Γ2 ≡ Y1 , Γ2 =

2

3
Γ3 ≡ Y2 , Γ3 = 2Γ1 +

2

3
Γ2 ≡ Y3 (4.25)

and introduce the new dependent variable

φ = (3u+ 1)1/2

which is obtained by solving the following equation:

2

3
(3u+ 1)

dφ

du
= φ

then, equation (4.23) becomes a Riccati equation in the variables z, φ, i.e.:

dφ

dz
= 3
−9zφ+ 2φ2 + 2

81z2 + 2
. (4.26)
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Abstract. Lie group theory is applied to differential equations occurring

as mathematical models in financial problems. We begin with the com-

plete symmetry analysis of the one-dimensional Black-Scholes model and

show that this equation is included in Sophus Lie’s classification of linear

second-order partial differential equations with two independent variables.

Consequently, the Black-Scholes transformation of this model into the heat

transfer equation follows directly from Lie’s equivalence transformation for-

mulas. Then we carry out the classification of the two-dimensional Jacobs-

Jones model equations according to their symmetry groups. The classifi-

cation provides a theoretical background for constructing exact (invariant)

solutions, examples of which are presented.

1 Introduction

The works of R.C. Merton [105],[106] and F. Black and M. Scholes [18]
opened a new era in mathematical modelling of problems in finance. Orig-
inally, their models are formulated in terms of stochastic differential equa-
tions. Under certain conditions, some of these models can be rewritten as
linear evolutionary partial differential equations with variable coefficients.
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For example, the widely used one-dimensional model (one state variable
plus time) known as the Black-Scholes model, is described by the equation

ut +
1

2
A2x2uxx +Bxux − Cu = 0 (1.1)

with constant coefficients A,B,C (parameters of the model). Black and
Scholes reduced it to the classical heat equation and used this relation for
solving Cauchy’s problem with special initial data.

Along with (1.1), more complex models aimed at explaining additional
effects are discussed in the current literature (see, e.g. [125]). We will
consider here the two state variable model suggested by Jacobs and Jones
[79]:

ut =
1

2
A2x2uxx + ABCxyuxy +

1

2
B2y2uyy

+
(
Dx ln

y

x
− Ex 3

2

)
ux +

(
Fy ln

G

y
−Hyx 1

2

)
uy − xu, (1.2)

where A,B,C,D,E, F,G,H are arbitrary constant coefficients. Jacobs and
Jones [79] investigate the model numerically. An analytical study of so-
lutions of this equation as well as of other complex financial mathematics
models presents a challenge for mathematicians. This is due to the fact
that, as a rule, these models unlike the Black-Scholes equation (1.1), can
not be reduced to simple equations with known solutions. Here, we demon-
strate this fact for the Jacobs-Jones equation (1.2) by using methods of the
Lie group analysis.

The Lie group analysis is a mathematical theory that synthesizes sym-
metry of differential equations. This theory was originated by a great math-
ematician of 19th century, Sophus Lie (Norway, 1842–1899). One of Lie’s
striking achievements was the discovery that the known ad hoc methods of
integration of differential equations could be derived by means of his the-
ory of continuous groups. Further Lie gave a classification of differential
equations in terms of their symmetry groups, thereby identifying the set of
equations which could be integrated or reduced to lower-order equations by
group theoretic algorithms. Moreover Lie [89] gave the group classification
of linear second-order partial differential equations with two independent
variables and developed methods of their integration. In particular, ac-
cording to his classification all parabolic equations admitting the symmetry
group of the highest order reduce to the heat conduction equation.

An extensive compilation and systematization of the results on sym-
metry analysis and group classification of differential equations obtained
by S. Lie and his followers during the period of over one hundred years is
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presented in the Handbook [65], [68], [68]. The material in the Handbook
is presented in a form convenient for immediate applications by applied
scientists to their own problems.

This paper is aimed at Lie group analysis (symmetries, classification and
invariant solutions) of the Black-Scholes (1.1) and the Jacobs-Jones (1.2)
models.

The contents of the present paper is as follows. Section 2 is designed to
meet the needs of beginners and contains a short account of methods of Lie
group analysis.

The group analysis of the Black-Scholes model is presented in Section
3. It is shown (subsection 3.2) that symmetry group of this model equa-
tion is similar to that of the classical heat equation, and hence the Black-
Scholes model is contained in the Lie classification [89]. However the prac-
tical utilization of Lie’s classification is not trivial. Therefore, we discuss
calculations for obtaining transformations of (1.1) into the heat equation
(subsection 3.3), transformations of solutions (subsection 3.4) and invariant
solutions (subsection 3.5). Moreover, the structure of the symmetry group
of the equation (1.1) allows one to apply the recent method for constructing
the fundamental solution based on the so called invariance principle [63],
[69]. This application is discussed in subsection 3.6.

The Jacobs-Jones model is considered in Section 4. Subsection 4.2 con-
tains the result of the Lie group classification of the equations (1.2) with the
coefficients satisfying the restrictions A,B 6= 0, C 6= 0,±1. It is shown that
the dimension of the symmetry group depends essentially on the parameters
A,B, . . . , of the model and that the equations of the form (1.2) can not
be reduced to the classical two-dimensional heat equation. The algorithm
of construction of invariant solutions under two-parameter groups and an
illustration are given in subsection 4.3.

2 Outline of methods from group analysis

2.1 Calculation of infinitesimal symmetries

Consider evolutionary partial differential equations of the second order,

ut − F (t, x, u, u(1), u(2)) = 0, (2.1)

where u is a function of independent variables t and x = (x1, . . . , xn), and
u(1), u(2) are the sets of its first and second order partial derivatives: u(1) =
(ux1 , . . . , uxn), u(2) = (ux1x1 , ux1x2 , . . . , uxnxn).
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Recall that invertible transformations of the variables t, x, u,

t̄ = f(t, x, u, a), x̄i = gi(t, x, u, a), ū = h(t, x, u, a), i = 1, . . . , n,
(2.2)

depending on a continuous parameter a are said to be symmetry transfor-
mations of the equation (2.1), if the equation (2.1) has the same form in
the new variables t̄, x̄, ū. The set G of all such transformations forms a
continuous group, i.e. G contains the identity transformation

t̄ = t, x̄i = xi, ū = u,

the inverse to any transformation from G and the composition of any two
transformations from G. The symmetry group G is also known as the group
admitted by the equation (2.1).

According to the Lie theory, the construction of the symmetry group G
is equivalent to determination of its infinitesimal transformations:

t̄ ≈ t+ aξ0(t, x, u), x̄i ≈ xi + aξi(t, x, u), ū ≈ u+ aη(t, x, u). (2.3)

It is convenient to introduce the symbol (after S. Lie) of the infinitesimal
transformation (2.3), i.e. the operator

X = ξ0(t, x, u)
∂

∂t
+ ξi(t, x, u)

∂

∂xi
+ η(t, x, u)

∂

∂u
. (2.4)

The operator (2.4) also is known in the literature as the infinitesimal oper-
ator or generator of the group G. The symbol X of the group admitted by
the equation (2.1) is called an operator admitted by (2.1).

The group transformations (2.2) corresponding to the infinitesimal trans-
formations with the symbol (2.4) are found by solving the Lie equations

dt̄

da
= ξ0(t̄, x̄, ū),

dx̄i

da
= ξi(t̄, x̄, ū),

dū

da
= η(t̄, x̄, ū), (2.5)

with the initial conditions:

t̄
∣∣
a=0

= t, x̄i
∣∣
a=0

= xi, ū
∣∣
a=0

= u.

By definition, the transformations (2.2) form a symmetry group G of
the equation (2.1) if the function ū = ū(t̄, x̄) satisfies the equation

ūt̄ − F (t̄, x̄, ū, ū(1), ū(2)) = 0, (2.6)

whenever the function u = u(t, x) satisfies the equation (2.1). Here ūt̄ , ū(1) , ū(2)
are obtained from (2.2) according to the usual formulas of change of vari-
ables in derivatives. The infinitesimal form of these formulas are written:

ūt̄ ≈ ut + a ζ0(t, x, u, ut, u(1)) , ūx̄i ≈ uxi + a ζi(t, x, u, ut, u(1)) ,

ūx̄ix̄j ≈ uxixj + a ζij(t, x, u, ut, u(1), utxk , u(2)) ,
(2.7)
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where the functions ζ0, ζ1, ζij are obtained by differentiation of ξ0, ξi, η and
are given by the prolongation formulas:

ζ0 = Dt(η)− utDt(ξ
0)− uxiDt(ξ

i), ζi = Di(η)− utDi(ξ
0)− uxjDi(ξ

j),

ζij = Dj(ζi)− uxixkDj(ξ
k)− utxiDj(ξ

0). (2.8)

Here Dt and Di denote the total differentiations with respect to t and xi:

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utxk

∂

∂uxk
+ · · · ,

Di =
∂

∂xi
+ uxi

∂

∂u
+ utxi

∂

∂ut
+ uxixk

∂

∂uxk
+ · · · .

Substitution of (2.3) and (2.7) into the left-hand side of the equation
(2.6) yields:

ūt̄ − F (t̄, x̄, ū, ū(1), ū(2)) ≈ ut − F (t, x, u, u(1), u(2))

+a
(
ζ0 −

∂F

∂uxixj
ζij −

∂F

∂uxi
ζi −

∂F

∂u
η − ∂F

∂xi
ξi − ∂F

∂t
ξ0
)
.

Therefore, by virtue of the equation (2.1), the equation (2.6) yields

ζ0 −
∂F

∂uxixj
ζij −

∂F

∂uxi
ζi −

∂F

∂u
η − ∂F

∂xi
ξi − ∂F

∂t
ξ0 = 0, (2.9)

where ut is replaced by F (t, x, u, u(1), u(2)) in ζ0, ζi, ζij.
The equation (2.9) defines all infinitesimal symmetries of the equation

(2.1) and therefore it is called the determining equation. Conventionally, it
is written in the compact form

X
(
ut − F (t, x, u, u(1), u(2))

)∣∣∣
(2.1)

= 0. (2.10)

HereX denotes the prolongation of the operator (2.4) to the first and second
order derivatives:

X = ξ0(t, x, u)
∂

∂t
+ξi(t, x, u)

∂

∂xi
+η(t, x, u)

∂

∂u
+ζ0

∂

∂ut
+ζi

∂

∂uxi
+ζij

∂

∂uxixj
,

and the notation
∣∣
(2.1)

means evaluated on the equation (2.1).

The determining equation (2.9) (or its equivalent (2.10)) is a linear ho-
mogeneous partial differential equation of the second order for unknown
functions ξ0(t, x, u), ξi(t, x, u), η(t, x, u) of the “independent variables” t, x, u.
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At first glance, this equation seems to be more complicated than the orig-
inal differential equation (2.1). However, this is an apparent complexity.
Indeed, the left-hand side of the determining equation involves the deriva-
tives uxi , uxixj , along with the variables t, x, u and functions ξ0, ξi, η of these
variables. Since the equation (2.9) is valid identically with respect to all the
variables involved, the variables t, x, u, uxi , uxixj are treated as “indepen-
dent“ ones. It follows that the determining equation decomposes into a
system of several equations. As a rule, this is an overdetermined system
(it contains more equations than a number n+ 2 of the unknown functions
ξo, ξi, η). Therefore, in practical applications, the determining equation can
be solved analytically, unlike the original differential equation (2.1). The
solution of the determining equation can be carried out either “by hand”
or, in simple cases, by using modern symbolic manipulation programs. Un-
fortunately, the existing software packages for symbolic manipulations do
not provide solutions for complex determining equations, while a group the-
orist can solve the problem “by hand” (the disbelieving reader can try, for
example, to obtain the result of the group classification of the Jacobs-Jones
model (1.2) by computer). The reader interested in learning more about
the calculation of symmetries by hand in complicated situations is referred
to the classical book in this field, L.V. Ovsyannikov [111] containing the
best presentation of the topic.

2.2 Exact solutions provided by symmetry groups

Group analysis provides two basic ways for construction of exact solutions:
group transformations of known solutions and construction of invariant so-
lutions.

Group transformations of known solutions. The first way is based
on the fact that a symmetry group transforms any solutions of the equa-
tion in question into solution of the same equation. Namely, let (2.2) be a
symmetry transformation group of the equation (2.1), and let a function

u = φ(t, x) (2.11)

solve the equation (2.1). Since (2.2) is a symmetry transformation, the
solution (2.11) can be also written in the new variables:

ū = φ(t̄, x̄). (2.12)

Replacing here ū, t̄, x̄ from (2.2), we get

h(t, x, u, a) = φ
(
f(t, x, u, a), g(t, x, u, a)

)
.
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Having solved this equation with respect to u, we arrive at the following one-
parameter family (with the parameter a) of new solutions of the equation
(2.1):

u = ψa(t, x). (2.13)

Consequently, any known solution is a source of a multi-parameter class
of new solutions provided that the differential equation considered admits
a multi-parameter symmetry group. An example is given in subsection 3.4,
where the procedure is applied to the Black-Scholes equation.

Invariant solutions. If a group transformation maps a solution into
itself, we arrive at what is called a self-similar or group invariant solution.
The search of this type of solutions reduces the number of independent
variables of the equation in question. Namely, the invariance with respect to
one-parameter group reduces the number the variables by one. The further
reduction can be achieved by considering an invariance under symmetry
groups with two or more parameters.

For example, the construction of these particular solutions is reduced,
in the case of the equation (1.1), either to ordinary differential equations
(if the solution is invariant under a one-parameter group, see subsection
3.5) or to an algebraic relation (if the solution is invariant with respect to
a multi-parameter group, see subsection 3.6).

The construction of invariant solutions under one-parameter groups is
widely known in the literature. Therefore, we briefly sketch the procedure
in subsection 3.5 by considering one simple example only.

However, since the Jacobs-Jones equation involves three independent
variables, its reduction to, e.g. ordinary differential equations requires an
invariance under two-dimensional groups. Therefore, we discuss some de-
tails of the procedure in subsection 4.3 for the Jacobs-Jones equation.

2.3 Group classification of differential equations

Differential equations occurring in sciences as mathematical models, often
involve undetermined parameters and/or arbitrary functions of certain vari-
ables. Usually, these arbitrary elements (parameters or functions) are found
experimentally or chosen from a “simplicity criterion”. Lie group theory
provides a regular procedure for determining arbitrary elements from sym-
metry point of view. This direction of study is known today as Lie group
classification of differential equations. For detailed presentations of meth-
ods used in Lie group classification of differential equations the reader is
refereed to the first fundamental paper on this topic [89] dealing with the
classification of linear second-order partial differential equations with two
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independent variables.
Lie group classification of differential equations provides a mathematical

background for what can be called a group theoretic modelling (see [68],
Ch. 6). In this approach, differential equations admitting more symmetries
are considered to be “preferable”. In this way, one often arrives at equations
possessing remarkable physical properties.

Given a family of differential equations, the procedure of Lie group clas-
sification begins with determining the so-called principal Lie group of this
family of equations. This is the group admitted by any equation of the
family in question. The Lie algebra of the principal Lie group is called the
principal Lie algebra of the equations and is denoted by LP (see e.g. [67]).
It may happen that for particular choice of arbitrary elements of the family
the corresponding equation admits, along with the principal Lie group, ad-
ditional symmetry transformations. Determination of all distinctly different
particular cases when an extension of LP occurs is the problem of the group
classification.

3 The Black-Scholes model

3.1 The basic equation

For mathematical modelling stock option pricing, Black and Scholes [18]
proposed the partial differential equation

ut +
1

2
A2x2uxx +Bxux − Cu = 0 (1.1)

with constant coefficients A,B,C (parameters of the model). It is shown in
[18] that the equation (1.1) is transformable into the classical heat equation

vτ = vyy , (3.1)

provided that A 6= 0, D ≡ B − A2/2 6= 0. Using the connection between
the equations (1.1) and (3.1), they give an explicit formula for the solution,
defined in the interval −∞ < t < t∗, of the Cauchy problem with a special
initial data at t = t∗.

3.2 Symmetries

For the Black-Scholes model (1.1), n = 1, x1 = x and the symbol of the
infinitesimal symmetries has the form

X = ξ0(t, x, u)
∂

∂t
+ ξ1(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
.
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In this case, the determining equation (2.9) is written:

ζ0 +
1

2
A2x2ζ11 +Bxζ1 − Cη + A2xuxx +Buxξ

1ξ1 = 0, (3.2)

where according to the prolongation formulas (2.8), the functions ζ0, ζ1, ζij
are given by

ζ0 = ηt + utηu − utξ0t − u2t ξ0u − uxξ1t − utuxξ1u,

ζ1 = ηx + uxηu − utξ0x − utuxξ0u − uxξ1x − u2xξ1u,

ζ11 = ηxx + 2uxηxu + uxxηu + u2xηuu

−2utxξ0x − utξ0xx − 2utuxξ
0
xu − (utuxx + 2uxutx)ξ

0
u − utu2xξ0uu

−2uxxξ1x − uxξ1xx − 2u2xξ
1
xu − 3uxuxxξ

1
u − u3xξ1uu.

The solution of the determining equation (3.2) provides the infinite di-
mensional vector space of the infinitesimal symmetries of the equation (1.1)
spanned by following operators:

X1 =
∂
∂t
, X2 = x ∂

∂x
,

X3 = 2t ∂
∂t

+
(
ln x+Dt

)
x ∂
∂x

+ 2Ctu ∂
∂u
,

X4 = A2tx ∂
∂x

+
(
lnx−Dt

)
u ∂
∂u
,

X5 = 2A2t2 ∂
∂t

+ 2A2tx lnx ∂
∂x

+
((

ln x−Dt
)2

+ 2A2Ct2 − A2t
)
u ∂
∂u
,

(3.3)

and

X6 = u
∂

∂u
, Xφ = φ(t, x)

∂

∂u
· (3.4)

Here

D = B − 1

2
A2 (3.5)

and φ(t, x) in (3.4) is an arbitrary solution of Eq. (1.1).
The finite symmetry transformations (see (2.2)),

t̄ = f(t, x, u, a), x̄ = g(t, x, u, a), ū = h(t, x, u, a),

corresponding to the basic generators (3.3) and (3.4), are obtained by solv-
ing the Lie equations (2.5). The result is as follows:
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X1 : t̄ = t+ a1, x̄ = x, ū = u;

X2 : t̄ = t, x̄ = x a2, ū = u, a2 6= 0;

X3 : t̄ = t a23, x̄ = xa3eD(a
2
3−a3)t, ū = ueC(a

2
3−1)t, a3 6= 0;

X4 : t̄ = t, x̄ = xeA
2ta4 , ū = uxa4e(

1
2
A2a2

4−Da4)t;

X5 : t̄ =
t

1− 2A2a5t
, x̄ = x

t
1−2A2a5t ,

ū = u
√
1− 2A2a5t exp

(
[(lnx−Dt)2 + 2A2Ct2]a5

1− 2A2a5t

)
,

and

X6 : t̄ = t, x̄ = x, ū = u a6, a6 6= 0;

Xφ : t̄ = t, x̄ = x, ū = u+ φ(t, x).

Here a1, . . . , a6 are the parameters of the one-parameter groups gener-
ated by X1, . . . , X6, respectively, and φ(t, x) is an arbitrary solution of (1.1).
Consequently, the operators X1, . . . , X6 generate a six-parameter group and
Xφ generates an infinite group. The general symmetry group is the compo-
sition of the above transformations.

Remark. The group of dilations generated by the operator X6 reflects
the homogeneity of the equation (1.1), while the infinite group with the
operator Xφ represents the linear superposition principle for the equation
(1.1). These transformations are common for all linear homogeneous differ-
ential equations. Hence, the specific (non-trivial) symmetries of (1.1) are
given by the operators (3.3) that span a five-dimensional Lie algebra.

3.3 Transformation to the heat equation

Let us recall Lie’s result of group classification of linear second-order partial
differential equations with two independent variables. In the case of evolu-
tionary parabolic equations this result is formulated as follows (see [89]):

Consider the family of linear parabolic equations

P (t, x)ut +Q(t, x)ux +R(t, x)uxx + S(t, x)u = 0, P 6= 0, R 6= 0. (3.6)
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The principal Lie algebra LP (i.e. the Lie algebra of operators admitted
by (3.6) with arbitrary coefficients P (t, x), Q(t, x), R(t, x), S(t, x), see sub-
section 2.3) is spanned by the generators (3.4) of trivial symmetries. Any
equation (3.6) can be reduced to the form

vτ = vyy + Z(τ, y)v (3.7)

by a transformation, Lie’s equivalence transformation:

y = α(t, x), τ = β(t), v = γ(t, x)u, αx 6= 0, βt 6= 0, (3.8)

obtained with the help of two quadratures.
If the equation (3.6) admits an extension of the principal Lie algebra LP

by one additional symmetry operator then it is reduced to the form

vτ = vyy + Z(y)v (3.9)

for which the additional operator is

X =
∂

∂τ
.

If LP extends by three additional operators, the equation (3.6) is reduced to
the form

vτ = vyy +
A

y2
v, (3.10)

the three additional operators being:

X1 =
∂

∂τ
, X2 = 2τ

∂

∂τ
+ y

∂

∂y
, X3 = τ 2

∂

∂τ
+ τy

∂

∂y
− (

1

4
y2 +

1

2
τ)v

∂

∂v
.

If LP extends by five additional operators, the equation (3.6) is reduced to
the heat equation

vτ = vyy (3.11)

the five additional operators being:

X1 =
∂

∂y
, X2 =

∂

∂τ
, X3 = 2τ

∂

∂y
− yv ∂

∂v
, X4 = 2τ

∂

∂τ
+ y

∂

∂y
,

X5 = τ 2
∂

∂τ
+ τy

∂

∂y
− (

1

4
y2 +

1

2
τ)v

∂

∂v
.

The equations (3.9) to (3.11) provide the canonical forms of all linear
parabolic second order equations (3.6) that admit non-trivial symmetries,
i.e. extensions of the principal Lie algebra LP .
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Thus, the Black-Scholes equation (1.1) belongs to the latter case and
hence it reduces to the heat equation (3.11) by Lie’s equivalence transfor-
mation. Let us find this transformation.

After the change of variables (3.8), the heat equation (3.11) becomes

uxx+
[2γx
γ

+
αxαt
β′
− αxx
αx

]
ux−

α2
x

β′
ut+

[γxx
γ

+
αxαtγx
β′γ

− α
2
xγt
β′γ
− αxxγx

αxγ

]
u = 0,

where the ′ denotes the differentiation with respect to t. Comparing this
equation with the Black-Scholes equation (1.1) rewritten in the form

uxx +
2B

A2x
ux +

2

A2x2
ut −

2Cu

A2x2
= 0

and equating the respective coefficients, we arrive at the following system:

α2
x

β′
= − 2

A2x2
, (3.12)

2γx
γ

+
αxαt
β′
− αxx

αx
=

2B

A2x
, (3.13)

γxx
γ

+
αxαtγx
β′γ

− α2
xγt
β′γ
− αxxγx

αxγ
= − 2C

A2x2
. (3.14)

It follows from (3.12):

α(t, x) =
ϕ(t)

A
lnx+ ψ(t), β ′(t) = −1

2
ϕ2(t),

where ϕ(t) and ψ(t) are arbitrary functions. Using these formulas, one
obtains from the equation (3.13):

γ(t, x) = ν(t)x
B
A2− 1

2
+ ψ′

Aϕ
+ ϕ′

2A2ϕ
lnx

with an arbitrary function ν(t). After substitution of the above expressions
into the equation (3.14), one obtains two possibilities: either

ϕ =
1

L−Kt, ψ =
M

L−Kt +N, K 6= 0,

and the function ν(t) satisfies the equation

ν ′

ν
=

M2K2

2(L−Kt)2 −
K

2(L−Kt) −
A2

8
+
B

2
− B2

2A2
− C,
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or
ϕ = L, ψ =Mt+N, L 6= 0,

and
ν ′

ν
=
M2

2L2
− A2

8
+
B

2
− B2

2A2
− C.

Here K,L,M, and N are arbitrary constants.
Thus, we arrive at the following two different transformations connect-

ing the equations (1.1) and (3.11):

First transformation

y =
lnx

A(L−Kt) +
M

L−Kt +N, τ = − 1

2K(L−Kt) + P, K 6= 0,

v = E
√
L−Kt e

M2K
2(L−Kt)

− 1
2(

B
A
−A

2 )
2
t−Ct x

B
A2− 1

2
+ MK
A(L−Kt)

+ K ln x
2A2(L−Kt) u. (3.15)

Second transformation

y =
L

A
lnx+Mt+N, τ = −L

2

2
t+ P, L 6= 0.

v = E e

[
M2

2L2− 1
2(

B
A
−A

2 )
2−C
]
t x

B
A2− 1

2
+ M
AL u. (3.16)

The Black-Scholes transformation (see [18], formula (9) ) is a particular
case of the second transformation (3.16) with

L =
2

A
D, M = − 2

A2
D2, N =

2

A2
D(Dt∗ − ln c), P =

2

A2
D2t∗, E = eCt

∗

,

where t∗, c are constants involved in the initial value problem (8) of [18].
The transformation (3.15) is new and allows one to solve an initial value
problem different from that given in [18].

3.4 Transformations of solutions

Let
u = φ(t, x)

be a known solution of the equation (1.1). According to Section 2.2, one can
use this solution to generate families of new solutions involving the group
parameters. We apply here the procedure to the transformations generated
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by the basic operators (3.3), (3.4). Application of the formulas (2.11) to
(2.13) yields:

X1 : u = F (t− a1, x);

X2 : u = F (t, x a−12 ), a2 6= 0;

X3 : u = eC(1−a
−2
3 )tF

(
t a−23 , xa

−1
3 eD(a

−2
3 −a−1

3 )t
)
, a3 6= 0;

X4 : u = xa4e−(
1
2
A2a2

4+Da4)tF
(
t, xe−A

2ta4
)
;

X5 : u =
exp

(
[(lnx−Dt)2+2A2Ct2]a5

1+2A2a5t

)

√
1 + 2A2a5t

F
( t

1 + 2A2a5t
, x

t
1+2A2a5t

)
;

and

X6 : u = a6F (t, x), a6 6= 0; Xφ : u = F (t, x) + φ(t, x).

Example. Let us begin with the simple solution of the equation (1.1)
depending only on t:

u = eCt. (3.17)

Using the transformation generated by X4 we obtain the solution depending
on the parameter a4:

u = xa4e−(
1
2
A2a2

4+Da4−C)t.

Letting here, for the simplicity, a4 = 1 we get

u = xe(C−B)t.

If we apply to this solution the transformation generated by X5, we obtain
the following solution of the equation (1.1):

u =
xt/(1+2A2a5t)

√
1 + 2A2a5t

exp

(
[(lnx−Dt)2 + 2A2Ct2]a5 + (C −B)t

1 + 2A2a5t

)
. (3.18)

Thus, beginning with the simplest solution (3.17) we arrive at the rather
complicated solution (3.18). The iteration of this procedure yields more
complex solutions.

Note that the solution (3.17) is unalterable under the transformation
generated by X2. This is an example of so-called invariant solutions dis-
cussed in the next subsection.
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3.5 Invariant solutions

An invariant solution with respect to a given subgroup of the symmetry
group is a solution which is unalterable under the action of the transforma-
tions of the subgroup. Invariant solutions can be expressed via invariants of
the subgroup (see, e.g., [67]). Here we illustrate the calculation of invariant
solutions by considering the one-parameter subgroup with the generator

X = X1 +X2 +X6 ≡
∂

∂t
+ x

∂

∂x
+ u

∂

∂u
.

Invariants I(t, x, u) of this group are found from the equation

XI = 0

and are given by
I = J(I1, I2),

where
I1 = t− ln x, I2 =

u

x
are functionally independent invariants and hence form a basis of invariants.
Therefore, the invariant solution can be taken in the form I2 = φ(I1), or

u = xφ(z), where z = t− lnx.

Substituting into the equation (1.1) we obtain the ordinary differential equa-
tion of the second order :

A2

2
φ′′ + (1−B − A2

2
)φ′ + (B − C)φ = 0, where φ′ =

dφ

dz
.

This equation with constant coefficients can be readily solved.
The above procedure can be applied to any linear combination (with

constant coefficients) of the basic generators (3.3) - (3.4). Here we apply it
to the generators (3.3). We have:

X1 : u = φ(x),
1

2
A2x2φ′′ +Bxφ′ − Cφ = 0,

this equation reduces to constant coefficients upon introducing the new
independent variable z = lnx;

X2 : u = φ(t), φ′ − Cφ = 0, whenceu = KeCt;

X3 : u = eCtφ
( ln x√

t
−D
√
t
)
, A2φ′′ − zφ′ = 0, z =

lnx√
t
−D
√
t,
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whence

φ(z) = K1

∫ z

0

eµ
2/(2A2) dµ+K2;

X4 : u = exp

(
(ln x−Dt)2

2A2t

)
φ(t), φ′ +

( 1
2t
− C

)
φ = 0,

whence

φ =
K√
t
eCt,

and hence

u =
K√
t
exp

(
(lnx−Dt)2

2A2t
+ Ct

)
;

X5 : u =
1√
t
exp

(
(lnx−Dt)2

2A2t
+ Ct

)
φ
( lnx

t

)
, φ′′ = 0,

hence

u =
(
K1

lnx

t3/2
+
K2√
t

)
exp

(
(lnx−Dt)2

2A2t
+ Ct

)
.

In the above solutions K,K1, K2 are constants of integration and D is given
by Eq. (3.5), i.e.

D = B − 1

2
A2.

The operators X6 , Xφ do not provide invariant solutions.

3.6 The fundamental solution

Investigation of initial value problems for hyperbolic and parabolic linear
partial differential equations can be reduced to the construction of a particu-
lar solution with specific singularities known in the literature as elementary
or fundamental solutions (see, e.g. [41], [24] and [22]). Recently, it was
shown [63] that for certain classes of equations, with constant and variable
coefficients, admitting sufficiently wide symmetry groups, the fundamental
solution is an invariant solution and it can be constructed by using the
so-called invariance principle.

Here we find the fundamental solution for the equation (1.1) using the
group theoretic approach presented in [69].

We can restrict ourselves by considering the fundamental solution

u = u(t, x; t0, x0)
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of the Cauchy problem defined as follows:

ut +
1

2
A2x2uxx +Bxux − Cu = 0, t < t0, (3.19)

u
∣∣∣
t→−t0

= δ(x− x0). (3.20)

Here δ(x− x0) is the Dirac measure at x0.
According to the invariance principle, we first find the subalgebra of the

Lie algebra spanned by the operators (3.3) and the dilation generator

X6 = u
∂

∂u

(for our purposes it suffices to consider this finite-dimensional algebra ob-
tained by omitting Xφ) such that this subalgebra leaves invariant the initial
manifold (i.e. the line t = t0) and its restriction on t = t0 conserves the ini-
tial conditions given by x = x0 and by the equation (3.20). This subalgebra
is the three-dimensional algebra spanned by

Y1 = 2(t− t0) ∂∂t +
(
ln x− ln x0 +D(t− t0)

)
x ∂
∂x

+
(
2C(t− t0)− 1

)
u ∂
∂u
,

Y2 = A2(t− t0)x ∂
∂x

+
(
lnx− lnx0 −D(t− t0)

)
u ∂
∂u
,

Y3 = 2A2(t− t0)2 ∂∂t + 2A2(t− t0)x lnx ∂
∂x
+

+
((

lnx−D(t− t0)
)2 − ln2 x0 + 2A2C(t− t0)2 − A2(t− t0)

)
u ∂
∂u
.

Invariants are defined by the system

Y1I = 0, Y2I = 0, Y3I = 0.

Since

Y3 = A2(t− t0)Y1 +
(1
2
A2(t− t0)−B(t− t0) + lnx+ lnx0

)
,

it suffices to solve only first two equations. Their solution is

I = uxσ(t)
√
t0 − teω(t,x),

where

σ(t) =
D
A2
− ln x0
A2(t0 − t)

, (3.21)

ω(t, x) =
ln2 x+ ln2 x0
2A2(t0 − t)

+
( D2

2A2
+ C

)
(t0 − t).
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The invariant solution is given by I = K = const., and hence has the
form

u = K
x−σ(t)√
t0 − t

e−ω(t,x), (3.22)

where σ(t), ω(t, x) are defined by (3.21). One can readily verify that the
function (3.22) satisfies the equation (3.19). The constant coefficient K is
to be found from the initial condition (3.20).

We will use the well-known limit,

lim
s→+0

1√
s
exp

(
− (x− x0)2

4s

)
= 2
√
πδ(x− x0), (3.23)

and the formula of change of variables z = z(x) in the Dirac measure (see,
e.g. [24], p. 790):

δ(x− x0) =
∣∣∣∣
∂z(x)

∂x

∣∣∣∣
x=x0

δ(z − z0). (3.24)

For the function (3.22), we have

lim
t→−t0

u = lim
t→−t0

K√
t0 − t

e−ω(t,x)−σ(t) lnx

= lim
t→−t0

K√
t0 − t

exp

(
−(lnx− lnx0)

2

2A2(t0 − t)
− D lnx

A2

)
,

or, setting s = t0 − t, z =

√
2

A
lnx,

lim
t→−t0

u = K exp
(
− D
A2

lnx
)

lim
s→+0

1√
s
exp

(
− (z − z0)2

4s

)

= 2
√
πK exp

(
− D
A2

lnx
)
δ(z − z0).

By virtue of (3.24),

δ(z − z0) =
Ax0√

2
δ(x− x0),

and hence

lim
t→−t0

u =
√
2πAKx0 exp

(
− D
A2

ln x0

)
δ(x− x0).

Therefore the initial condition (3.20) yields:

K =
1√

2πAx0
exp

( D
A2

ln x0

)
.
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Thus, we arrive at the following fundamental solution to the Cauchy prob-
lem for the equation (1.1):

u =
1

Ax0
√

2π(t0 − t)
exp

[
−(ln x− lnx0)

2

2A2(t0 − t)
−
( D2

2A2
+C
)
(t0−t)−

D
A2

(lnx−lnx0)
]
.

Remark. The fundamental solution can also be obtained from the
fundamental solution

v =
1

2
√
πτ

exp
[
− y2

4τ

]

of the heat equation (3.11) by the transformation of the form (3.16) with

M = −L
A
D, N =

L

A
Dt0 −

L

A
ln x0, P =

L2

2
t0, E =

Ax0
L

eCt0 ,

i.e. by the transformation

τ =
L2

2
(t0 − t), y =

L

A
D(t0 − t) +

L

A
(lnx− lnx0), v =

Ax0
L

eC(t0−t)u.

4 A two factor variable model

Methods of Lie group analysis can be successfully applied to other math-
ematical models used in mathematics of finance. Here we present results
of calculation of symmetries for a two state variable model developed by
Jacobs and Jones [79].

4.1 The Jacobs-Jones equation

The Jacobs-Jones model is described by the linear partial differential equa-
tion

ut =
1

2
A2x2uxx + ABCxyuxy +

1

2
B2y2uyy+

(
Dx ln

y

x
− Ex 3

2

)
ux +

(
Fy ln

G

y
−Hyx 1

2

)
uy − xu (1.2)

with constant coefficients A,B,C,D,E, F,G,H.

4.2 The group classification

The equation (1.2) contains parameters A,B, . . . , H. These parameters
are “arbitrary elements” mentioned in subsection 2.3. According to subsec-
tion 2.3, it may happen that the Lie algebra of operators admitted by (1.2)
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with arbitrary coefficients (i.e. principal Lie algebra) extends for particular
choices of the coefficients A,B, . . . , H. It is shown here that the dimension
of the symmetry Lie algebra for the model (1.2), unlike the Black-Scholes
model, essentially depends on choice of the coefficients A,B,C, . . . , H.

Result of the group classification

The principal Lie algebra LP is infinite-dimensional and spanned by

X1 =
∂

∂t
, X2 = u

∂

∂u
, Xω = ω(t, x, y)

∂

∂u
,

where ω(t, x, y) satisfies the equation (1.2).
We consider all possible extensions of LP for non-degenerate equations

(1.2), namely those satisfying the conditions

AB 6= 0, C 6= ±1. (4.1)

Moreover, we simplify calculations by imposing the additional restriction

C 6= 0. (4.2)

Extensions of LP

The algebra LP extends in the following cases:

1. D = 0,

X3 = eFty
∂

∂y
.

Subcase: AH −BCE = 0 and F = 0. There is an additional extension

X4 = 2AB2(1− C2)ty
∂

∂y
+
(
2BC ln x− 2A ln y + (B − AC)ABt

)
u
∂

∂u
.

2. D 6= 0, F = − BD

2AC
, H = 0,

X3 = exp
( BD
2AC

t
)
y
∂

∂y
+
( D

ABC
ln
G

y
+ 1
)
exp

( BD
2AC

t
)
u
∂

∂u
.

3. D 6= 0, F is defined from the equation

A2F 2 − A2D2 + 2ABCDF +B2D2 = 0,
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and the constants E and H are connected by the relation

BE(ACF + ACD +BD) = AH(AF + AD +BCD),

X3 = e−Dty
∂

∂y
−
(ACF + ACD +BD

A2B(1− C2)
lnx− AF + AD +BCD

AB2(1− C2)
ln y

+
A2CF + A2CD −B2CD − ABF

2ABD(1− C2)

+
F lnG(BCD + AF + AD)

AB2D(1− C2)

)
e−Dtu

∂

∂u
.

Subcase: B = 2AC, F = −D, H = 0. There is an additional extension

X4 = eDty
∂

∂y
+
( D

2A2C2
ln
G

y
+ 1
)
eDtu

∂

∂u
.

Remark 1. Most likely, the restriction (4.2) is not essential for the
group classification. For example, one of the simplest equations of the form
(4.1), namely

ut = x2uxx + y2uyy − xu,
admits two additional operators to LP and is included in the subcase of the
case 1 of the classification.

Remark 2. The classification result shows that the equation (1.2) can
not be transformed, for any choice of its coefficients, into the heat equation

vτ = vss + vzz.

Indeed, the heat equation admits an extension of LP by seven additional
operators (see, e.g. [67], Section 7.2) while the equation (1.2) can admit an
extension maximum by two operators.

4.3 Invariant solutions

The above results can be used for the construction of exact (invariant) so-
lutions of Eq. (1.2). We consider here examples of solutions invariant under
two-dimensional subalgebras of the symmetry Lie algebra. Then a solu-
tion of Eq. (1.2) is obtained from a linear second-order ordinary differential
equations and hence the problem is reduced to a Riccati equation. The
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examples illustrate the general algorithm and can be easily adopted by the
reader in other cases.

To construct a solution invariant under a two-dimensional symmetry
algebra, one chooses two operators

Y1 = ξ01(t, x, y, u)
∂

∂t
+ ξ11(t, x, y, u)

∂

∂x
+ ξ21(t, x, y, u)

∂

∂y
+ η1(t, x, y, u)

∂

∂u
,

Y2 = ξ02(t, x, y, u)
∂

∂t
+ ξ12(t, x, y, u)

∂

∂x
+ ξ22(t, x, y, u)

∂

∂y
+ η2(t, x, y, u)

∂

∂u

that are admitted by the equation (1.2) and obey the Lie algebra relation:

[Y1, Y2] = λ1Y1 + λ2Y2, λ1, λ2 = const.

The two-dimensional Lie subalgebra spanned by Y1, Y2 will be denoted by

< Y1, Y2 > .

It has two functionally independent invariants, I1(t, x, z, u) and I2(t, x, z, u),
provided that

rank

(
ξ01 ξ11 ξ21 η1

ξ02 ξ12 ξ22 η2

)
= 2.

Under these conditions, the invariants are determined by the system of
differential equations

Y1I = 0, Y2I = 0.

The invariants solution exists if

rank

(
∂I1
∂u

,
∂I2
∂u

)
= 1.

Then the invariant solution has the form

I2 = φ(I1). (4.3)

Substituting (4.3) into the equation (1.2), one arrives at an ordinary differ-
ential equation for the function φ.

Example. Consider the equation

ut =
1

2
A2x2uxx+ABCxyuxy+

1

2
B2y2uyy−Ex

3
2ux−

BCE

A
yx

1
2uy−xu. (4.4)
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According to the above group classification, the equation (4.4) admits the
operators

X1 =
∂

∂t
, X2 = u

∂

∂u
, X3 = y

∂

∂y
, (4.5)

X4 = 2AB2(1− C2)ty
∂

∂y
+
[
2BC lnx− 2A ln y + (B − AC)ABt

]
u
∂

∂u
,

and

Xω = ω(t, x, y)
∂

∂u
, where ω(t, x, y) solves Eq. (4.4).

Here we consider invariants solutions with respect to three different two-
dimensional subalgebras of the algebra (4.5).

1. The subalgebra < X1, X3 > has the independent invariants I1 = x and
I2 = u. Hence, the invariant solution has the form

u = φ(x), (4.6)

and is determined by the equation

1

2
A2x2φ′′ − Ex 3

2φ′ − xφ = 0. (4.7)

It reduces to the Riccati equation

ψ′ + ψ2 − 2E

A2
√
x
ψ − 2

A2x
= 0

by the standard substitution

ψ = φ′/φ. (4.8)

2. The subalgebra < X1 +X2, X3 > has the invariants

I1 = x, I2 = ue−t.

The corresponding invariant solution has the form

u = etφ(x). (4.9)

The substitution into Eq. (4.4) yields:

1

2
A2x2φ′′ − Ex 3

2φ′ − (x+ 1)φ = 0. (4.10)
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It reduces to a Riccati equation by the substitution (4.8).

3. The subalgebra < X1, X2 +X3 > has the invariants

I1 = x, I2 =
u

y
·

The invariant solution has the form

u = yφ(x) (4.11)

with the function φ(x) defined by the equation

1

2
A2x2φ′′ +

(
ABCx− Ex 3

2

)
φ′ −

(BCE
A

x
1
2 + x

)
φ = 0. (4.12)

It reduces to a Riccati equation by the substitution (4.8).

4.4 Infinite ideal as a generator of new solutions

Recall that the infinite set of operators Xω does not provide invariant so-
lutions by the direct method (see the end of subsection 3.5). However, we
can use it to generate new solutions from known ones as follows. Let

u = ω(t, x, y)

be a known solution of Eq. (1.2) so that the operator Xω is admitted by
(1.2). Then, if X is any operator admitted by Eq. (1.2), one obtains that

[Xω, X] = Xω, (4.13)

where ω(t, x, y) is a solution (in general, it is different from ω(t, x, y)) of
Eq. (1.2). The relation (4.13) means that the set Lω of operators of the
form Xω is an ideal of the symmetry Lie algebra. Since the set of solutions
ω(t, x, y) is infinite, Lω is called an infinite ideal.

Thus, given a solution ω(t, x, y), the formula (4.13) provides a new so-
lution ω(t, x, y) to the equation (1.2). Let us apply this approach to the
solutions given in the example of the previous subsection by letting X = X4

from (4.5).

1. Starting with the solution (4.6), we have

ω(t, x, y) = φ(x),

where φ(x) is determined by the differential equation (4.7). Then

[Xω, X4] =
(
2BC lnx− 2A ln y + (B − AC)ABt

)
φ(x)

∂

∂u
.
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Hence, the new solution u = ω(t, x, y) is

ω(t, x, y) =
(
2BC lnx− 2A ln y + (B − AC)ABt

)
φ(x) (4.14)

with the function φ(x) determined by Eq. (4.7). Now we can repeat the
procedure by taking the solution (4.14) as ω(t, x, y) in Eq. (4.13). Then

[Xω, X4] =
[(
2BC ln x− 2A ln y + (B − AC)ABt

)2
φ(x)

+ 4A2B2(1− C2)tφ(x)
] ∂
∂u
·

Hence, we arrive at the solution

u =
[(
2BC ln x− 2A ln y + (B − AC)ABt

)2
+ 4A2B2(1− C2)t

]
φ(x),

where φ(x) is again a solution of (4.7). By iterating this procedure, one
obtains an infinite set of distinctly different solutions to Eq. (4.4). Further
new solutions can be obtained by replacing X4 by any linear combination
of the operators (4.5).

2. For the solution (4.9), ω(t, x, y) = etφ(x), where φ(x) is determined by
the equation (4.10). In this case,

[Xω, X4] =
(
2BC lnx− 2A ln y + (B − AC)ABt

)
etφ(x)

∂

∂u
,

and the new solution u = ω(t, x, y) has the form

ω(t, x, y) =
(
2BC lnx− 2A ln y + (B − AC)ABt

)
etφ(x) (4.15)

with the function φ(x) determined by Eq. (4.10). One can iterate the pro-
cedure.

3. For the solution (4.11) we have

ω(t, x, y) = yφ(x),

where φ(x) is determined by the equation (4.12). In this case,

[Xω, X4] =
(
2BC lnx− 2A ln y + (2BC2 −B − AC)ABt

)
yφ(x)

∂

∂u
,

and the new solution is

u =
(
2BC ln x− 2A ln y + (2BC2 −B − AC)ABt

)
yφ(x), (4.16)

where the function φ(x) is determined by Eq. (4.12). The iteration of the
procedure yields an infinite series of solutions.
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5 Conclusion

The Lie group analysis is applied to the Black-Scholes and Jacobs-Jones
models. The approach provides a wide class of analytic solutions of these
equations. The fundamental solution to the Black-Scholes equation is con-
structed by means of the invariance principle. It can be used for general
analysis of an arbitrary initial value problem.

For the Jacobs-Jones model, we present the group classification which
shows that the dimension of the symmetry Lie algebra essentially depends
on the parameters of the model. It also follows from this classification re-
sult that the Jacobs-Jones equation can not be transformed into the classical
two-dimensional heat equation.
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Abstract. Exact solutions for a class of nonlinear partial differential equa-

tions modelling soil water infiltration and redistribution in irrigation systems

are studied. These solutions are invariant under two-parameter symmetry

groups obtained by the group classification of the governing equation. A

general procedure for constructing invariant solutions is presented in a way

convenient for investigating numerous new exact solutions.

1 Introduction

Differential equations occurring in the science and engineering, as math-
ematical models, often involve undetermined parameters and/or arbitrary
functions of certain variables. Usually, these arbitrary elements (param-
eters or functions) are found experimentally or chosen from a “simplicity
criterion”. Lie group theory provides a regular procedure for determining
arbitrary elements from symmetry point of view. This direction of study,
originated by a great mathematician of 19th century Sophus Lie (Norway,
1842–1899), is known today as Lie group classification of differential equa-
tions. For detailed presentations of methods used in Lie group classification
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of differential equations the reader is refereed to the first fundamental paper
on this topic [89] dealing with the classification of linear second-order partial
differential equations with two independent variables. Modern approach to
the problem is clearly presented in the classical book [111], Chapter 4, con-
taining classification of several nonlinear equations and systems occurring
in gasdynamics. See also [1], Sections 4 to 5, on the classification of heat
conduction type equations, and [67], Chapter 2.

Lie group classification of differential equations provides a mathemati-
cal background for what can be called a group theoretic modelling (see [68],
Chapter 6). In this approach, differential equations admitting more sym-
metries are considered to be “preferable”. In this way, one often arrives at
equations possessing remarkable physical properties.

An extensive compilation and systematization of the results on sym-
metry analysis and group classification of differential equations obtained
by S. Lie and his followers during the period of over one hundred years is
presented in the Handbook [65], [67], [68]. The material in the Handbook
is presented in a form convenient for immediate applications by applied
scientists and engineers to their own problems.

This paper is aimed at Lie group analysis (symmetries and invariant
solutions) of the mathematical model suggested in [136] (see also [135]) to
simulate soil water infiltration and redistribution in a bedded soil profile irri-
gated by a drip irrigation system. The paper is closely related to the results
of the authors on Lie group classification of nonlinear (2 + 1)-dimensional
heat conduction type equations briefly presented in [67], Section 9.8.

The model discussed is described by the class of equations

C(ψ)ψt = (K(ψ)ψx)x + (K(ψ) (ψz − 1))z − S(ψ) (1.1)

with three “arbitrary elements” represented by the functions C(ψ) 6= 0,
K(ψ) 6= 0, and S(ψ). Here ψ is a soil moisture pressure head, C(ψ) is a
specific water capacity, K(ψ) is a unsaturated hydraulic conductivity, S(ψ)
is a sink or source term, t is a time, x is a horizontal and z is a vertical axis,
which is considered positive downward. A discussion, based on analysis of
numerical solutions, clarifying a validity of the model and its use in applied
agricultural sciences is to be found in [135].

The contents of the present paper is as follows. Chapter 2 contains for-
mulae for linking Eq. (1.1) with nonlinear heat conduction type equations.
These formulae are necessary for a symmetry analysis of Eq. (1.1) using the
group classification of heat conduction type equations given in Chapter 3
(see also [67], Section 9.8). Enumeration of all symmetries of equations (1.1)
is given in Chapter 4. Following S. Lie [89] and L.V. Ovsyannikov [111],
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we present in Chapter 5 a simple algorithm for constructing invariant solu-
tions in the case of the invariance under two-parameter groups. Examples
of invariant solutions are given analytically and graphically.

2 Relation to heat conduction type equations

Theorem. There is a correspondence between the family of soil water
motion equations (1.1) and the family of heat conduction type equations

ut = (k(u)ux)x + (k(u)uz)z + l(u)uz + p(u). (2.1)

Namely, given an equation of the form (1.1), one can introduce a new vari-
able u = u(ψ) (depending on coefficients of the equation (1.1)) satisfying
an equation of the form (2.1). Conversely, any equation of the form (2.1) is
linked with an equation of the form (1.1).

Proof. Given an equation (1.1) with the coefficients C(ψ), K(ψ), S(ψ),
the new variable u is defined by

u =

∫
C(ψ) dψ + A1, (2.2)

where A1 is a constant of integration. The coefficients of the corresponding
equation (2.1) are obtained by the formulae

k(u) =
K(ψ)

C(ψ)
, l(u) = −K

′(ψ)

C(ψ)
, p(u) = −S(ψ) , (2.3)

where ψ is expressed, from (2.2), as a function ψ = ψ(u).
Note that the mapping given by the equation (2.2) is not single valued

because of its depends on the arbitrary constant A1. Therefore, we let A1

to be any fixed constant. However, the inverse to (2.2) may be not a single
valued function even when the constant A1 is fixed. In these cases, we
assume in Eqs. (2.3) any fixed branch ψ = ψ(u) of the inversion to the
mapping (2.2).

To prove that any equation of the form (2.1) is linked with an equation
of the form (1.1), let us consider the equations (2.2)-(2.3) as a system of
functional-differential equations for K(ψ), C(ψ), S(ψ) with known functions
k(u), l(u), p(u). Then, integrating the second equation in (2.3) with respect
to ψ taking into account Eq. (2.2) and denoting

∫
l(u) du = L(u), (2.4)
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we get
L(u) = A2 −K(ψ), A2 = const. (2.5)

The equation (2.2) yields
du = C(ψ) dψ

or
dψ

du
=

1

C(ψ)
.

The first equation in (2.3) together with (2.5) yields

1

C(ψ)
=

k(u)

K(ψ)
=

k(u)

A2 − L(u)
.

Whence

dψ =
du

C(ψ)
=

k(u) du

A2 − L(u)
. (2.6)

Hence, the dependence of ψ upon u is given by

ψ =

∫
k(u)

A2 − L(u)
du+ A3, (2.7)

where A3 is a constant of integration. Denoting by

u = U(ψ)

the inversion of (2.5), we obtain from Eqs. (2.2)-(2.3):

C(ψ) =
∂U

∂ψ
, K(ψ) = k(U(ψ))

∂U

∂ψ
, S(ψ) = −p(U(ψ)). (2.8)

Thus, the equation (2.1) with the given coefficients k(u), l(u), p(u) is linked
with the equation of the form (1.1) with the coefficients C(ψ), K(ψ) and
S(ψ) by the formulae (2.7) and (2.8). This completes the proof.

Remark. Applying both of the described transformations to a single
equation (1.1), one obtain a family of equations of the form (1.1) depending,
in general, upon three parameters A1, A2, A3. The family obtained contains
the initial equation (1.1) for an appropriate choice of the parameters.

Example. Consider Eq. (1.1) with the coefficients

C(ψ) = 1, K(ψ) = eψ, S(ψ) = 0,

i.e. the equation
ψt = (eψψx)x + (eψψz)z − eψψz . (2.9)
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The transformation (2.2) is written

u = ψ + A1,

and the formulae (2.3) yield:

k(u) = a1e
u, l(u) = −a1eu, p(u) = 0, a1 = e−A1 .

Hence, Eq. (2.9) is linked with the equation (2.1) of the form

ut = (a1e
uux)x + (a1e

uuz)z − a1euuz . (2.10)

In this example the formula (2.7) yields

ψ = ln |A2 + a1e
u|+ A3,

whence

u = U(ψ) ≡ ln |a3e
ψA2

a1
|, a3 = e−A3 .

Applying the formulae (2.8) we arrive at the following family of equations
of the form (1.1):

eψ

a3eψ − A2

ψt = (eψψx)x + (eψ(ψz − 1))z ,

depending, in this case, on two arbitrary parameters A2, a3 (cf. the above
remark). The initial equation (2.9) is obtained by letting A2 = 0, a3 = 1.

3 Symmetries of equations (2.1)

One can consider transformations of the variables t, x, z, u leaving invariant
every equation of the form (2.1) independently on a choice of the coefficients
k(u), l(u), p(u). These transformations form a Lie group known as the prin-
cipal Lie group of the equations (2.1). The Lie algebra of the principal Lie
group is called the principal Lie algebra of symmetries of Eq. (2.1) and is
denoted by LP (see, e.g., [67]).

It may happen that for particular choice of the coefficients Eq. (2.1)
admits, along with the principal Lie group, additional symmetry transfor-
mations. Determination of all distinctly different particular cases of an
extension of the principal Lie group is a problem of the group classification.
This approach applied to problems of mathematical modelling is called a
group theoretic modelling (see the reference in Introduction).
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This section contains the result of the complete group classification of
the equations (2.1). For the particular case l(u) ≡ 0, the symmetry of
Eqs. (2.1) were investigated in [27] (see also [34] and [129]). Application of
the transformations given in Section 2 provides equations of the form (1.1)
with extended symmetries. The symmetries for Eq. (1.1) are denoted by
Y1, Y2, . . .. These symmetries, together with the coefficients of the corre-
sponding equation (1.1), are presented in small font.

Classification result

Equivalence transformations

The result of group classification of the equations (2.1) is given up to
the equivalence transformations

t̄ = α1t+ α2, x̄ = βx+ γ1, z̄ = βz + γ2t+ γ3,

ū = δ1u+ δ2, k̄ =
β2

α1

k, l̄ =
β

α1

l − γ2
α1

, p̄ =
δ1
α1

p , (3.1)

where αi, β, γi, and δi are arbitrary constants, α1βδ1 6= 0.

The principal Lie algebra

The principal Lie algebra LP (i.e. the Lie algebra of the Lie transforma-
tion group admitted by Eq. (2.1) for arbitrary k(u), l(u) and p(u)) is the
three-dimensional Lie algebra spanned by the following generators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂z
.

The operators X1, X2, and X3 generate groups of translations along the t, x,
and z - axes, respectively. Hence the principal Lie group of the equation
(2.1) is the three-parameter group of translations.

The principal Lie algebra LP of (1.1) (i.e. the Lie algebra of the Lie transformation group admitted
by Eq. (1.1) for arbitrary C(ψ), K(ψ) and S(ψ)) is the three-dimensional Lie algebra spanned by the
following generators:

Y1 =
∂

∂t
, Y2 =

∂

∂x
, Y3 =

∂

∂z
.

Extensions of the principal Lie algebra

The algebra LP extends in the following cases:

I. k(u) and p(u) are arbitrary functions, l(u) = 0

X4 = z
∂

∂x
− x ∂

∂z
.
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C(ψ) and S(ψ) are arbitrary functions, K(ψ) = A (A is an arbitrary constant)

Y4 = z
∂

∂x
− x ∂

∂z
.

Subcase: For p(u) = 0, there is a further extension

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
.

S(ψ) = 0

Y5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
.

II. k(u) = eu

1. l(u) = Aeu, p(u) = Beu +D (A, B, and D are arbitrary constants,
A 6= 0)

X4 =





exp(−Dt) ∂
∂t

+D exp(−Dt) ∂
∂u

if D 6= 0,

t ∂
∂t
− ∂

∂u
if D = 0.

C(ψ) = A
(
MeAψ − 1

)−1
,K(ψ) = e−Aψ , S(ψ) = −D+(B/A)

(
e−Aψ −M

)
, ψ = −(1/A) ln (M −Aeu)

Y4 =





exp(−Dt) ∂
∂t

+ D
A

exp(−Dt)
(
MeAψ − 1

)
∂
∂ψ

if D 6= 0,

t ∂
∂t
− 1
A

(
MeAψ − 1

)
∂
∂ψ

if D = 0.

Subcase: For B =
A2

4
there is a further extension:

X5 = sin

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂x
− cos

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂z

+
A

2
cos

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂u
,

X6 = cos

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂x
+ sin

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂z

−A
2
sin

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂u
,
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Y5 = sin

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂x
−cos

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂z
+
1

2
cos

(
A

4
x

)
exp

(
−A

4
z

) (
MeAψ − 1

) ∂

∂ψ
,

Y6 = cos

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂x
+sin

(
A

4
x

)
exp

(
−A

4
z

)
∂

∂z
−1

2
sin

(
A

4
x

)
exp

(
−A

4
z

) (
MeAψ − 1

) ∂

∂ψ
.

2. l(u) = Aeσu, p(u) = Be(2σ−1)u

(A, B, and σ are arbitrary constants, A 6= 0, σ 6= 0).

X4 = (1− 2σ)t
∂

∂t
+ (1− σ)x ∂

∂x
+ (1− σ)z ∂

∂z
+

∂

∂u
.

C(ψ) = e−u(M − (A/σ)eσu), K(ψ) =M − (A/σ)eσu, S(ψ) = −Be(2σ−1)u ,

ψ =

expu∫
dw(M − (A/σ)wσ)−1

Y4 = (1− 2σ)t
∂

∂t
+ (1− σ)x ∂

∂x
+ (1− σ)z ∂

∂z
+

eu

M − (A/σ)eσu
∂

∂ψ
.

3. l(u) = Au, p(u) = Be−u (A and B are arbitrary constants, A 6= 0)

X4 = t
∂

∂t
+ x

∂

∂x
+ (z − At)

∂

∂z
+

∂

∂u
.

C(ψ) = e−u
(
M − (A/2)u2

)
, K(ψ) =M − (A/2)u2, S(ψ) = −Be−u,

ψ =
1√
2AM

[
e−
√

2M/A li
(
eu+

√
2M/A

)
− e
√

2M/A li
(
eu−

√
2M/A

)]
,

where li(x) =

x∫

0

dy

ln y
is a logarithm integral.

Y4 = t
∂

∂t
+ x

∂

∂x
+ (z −At)

∂

∂z
+ eu

(
M − A

2
u2

)−1 ∂

∂ψ
.

4. l(u) = 0, p(u) is an arbitrary function

X4 = z
∂

∂x
− x ∂

∂z
.

C(ψ) = (1/ψ), K(ψ) =M , S(ψ) is an arbitrary function, ψ = (1/M)eu

Y4 = z
∂

∂x
− x ∂

∂z
.



8: SOIL WATER MOTION EQUATIONS (1996) 255

For each of the following functions p(u) (and S(ψ)) there is a further
extension:

(i) p(u) = ±eu + λ, λ = ±1.

X5 = exp(−λt) ∂
∂t

+ λ exp(−λt) ∂
∂u

.

S(ψ) = ∓Mψ + λ, λ = ±1 .

Y5 = exp(−λt) ∂
∂t

+ λ exp(−λt)ψ ∂

∂ψ
.

(ii) p(u) = ±eσu, σ is an arbitrary constant, σ 6= 0.

X5 = 2σt
∂

∂t
+ (σ − 1)x

∂

∂x
+ (σ − 1)z

∂

∂z
− 2

∂

∂u
.

S(ψ) = ∓(Mψ)σ , σ is an arbitrary constant, σ 6= 0.

Y5 = 2σt
∂

∂t
+ (σ − 1)x

∂

∂x
+ (σ − 1)z

∂

∂z
− 2ψ

∂

∂ψ
.

(iii) p(u) = δ, δ = 0,±1.

X5 = x
∂

∂x
+ z

∂

∂z
+ 2

∂

∂u
,

X6 =





exp(−δt) ∂
∂t

+ δ exp(−δt) ∂
∂u

if δ 6= 0,

t ∂
∂t
− ∂

∂u
if δ = 0.

S(ψ) = −δ, δ = 0,±1.

Y5 = x
∂

∂x
+ z

∂

∂z
+ 2ψ

∂

∂ψ
,

Y6 =





exp(−δt) ∂
∂t

+ δ exp(−δt)ψ ∂
∂ψ

if δ 6= 0,

t ∂
∂t
− ψ ∂

∂ψ
if δ = 0.

III. k(u) = uσ, σ is an arbitrary constant, σ 6= 0, −1
1. l(u) = Auσ, p(u) = Buσ+1 −Du
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(A, B, and D are arbitrary constants, A 6= 0)

X4 =





exp(Dσt) ∂
∂t
−Du exp(Dσt) ∂

∂u
if D 6= 0,

σt ∂
∂t
− u ∂

∂u
if D = 0.

C(ψ) = (A/(σ + 1))e−Aψ
(
(M/A)(σ + 1)− e−Aψ

)−σ/(σ+1)
, K(ψ) = (A/(σ + 1))e−Aψ ,

S(ψ) = D
(
(M/A)(σ + 1)− e−Aψ

)1/(σ+1) −B
(
(M/A)(σ + 1)− e−Aψ

)
,

ψ = −(1/A) ln((σ + 1)(M/A)− uσ+1) .

Y4 =





exp(Dσt) ∂
∂t
− (σ+1)D

A
exp(Dσt)

(
M
A
(σ + 1)eAψ − 1

)
∂
∂ψ

if D 6= 0 ,

σt ∂
∂t
− (σ+1)

A

(
M
A
(σ + 1)eAψ − 1

)
∂
∂ψ

if D = 0 .

2. l(u) = Auµ, p(u) = Bu1+2µ−σ

(A,B, σ, and µ are arbitrary constants, A 6= 0, µ 6= 0)

X4 = (2µ− σ)t ∂
∂t

+ (µ− σ)x ∂
∂x

+ (µ− σ)z ∂
∂z
− u ∂

∂u
.

C(ψ) =
(
M − (A/(µ+ 1))uµ+1

)
u−σ , K(ψ) =

(
M − (A/(µ+ 1))uµ+1

)
, S(ψ) = −Bu(1+2µ−σ),

ψ =
1

σ + 1

uσ+1∫
dw
(
M − (A/(µ+ 1))w(µ+1)/(σ+1)

)−1
.

Y4 = (2µ− σ)t ∂
∂t

+ (µ− σ)x ∂

∂x
+ (µ− σ)z ∂

∂z
− uσ+1

M − (A/(µ+ 1))uµ+1

∂

∂ψ
.

3. l(u) = 0, p(u) is an arbitrary function

X4 = z
∂

∂x
− x ∂

∂z
.

C(ψ) =M((σ + 1)Mψ)−σ/(σ+1),K(ψ) =M , S(ψ) is an arbitrary function, ψ = (1/((σ + 1)M)uσ+1

Y4 = z
∂

∂x
− x ∂

∂z
.

For each of the following functions p(u) (and S(ψ)) there is a further
extension:

(i) p(u) = ±uν , ν is an arbitrary constant, ν 6= 0, 1.

X5 = 2(1− ν)t ∂
∂t

+ (σ − ν + 1)x
∂

∂x
+ (σ − ν + 1)z

∂

∂z
+ 2u

∂

∂u
.
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S(ψ) = ∓((σ + 1)Mψ)ν/(σ+1), ν is an arbitrary constant, ν 6= 0, 1

Y5 = 2(1− ν)t ∂
∂t

+ (σ − ν + 1)x
∂

∂x
+ (σ − ν + 1)z

∂

∂z
+ 2(σ + 1)ψ

∂

∂ψ
.

(ii) p(u) = ±uσ+1 + λu, λ = ±1.

X5 = exp(−λσt) ∂
∂t

+ λ exp(−λσt)u ∂
∂u

.

S(ψ) = ∓(σ + 1)Mψ − λ((σ + 1)Mψ)1/(σ+1).

Y5 = exp(−λσt) ∂
∂t

+ λ exp(−λσt)(σ + 1)ψ
∂

∂ψ
.

(iii) p(u) = δu, δ = 0,±1.

X5 = σx
∂

∂x
+ σz

∂

∂z
+ 2u

∂

∂u
,

X6 =





exp(−δσt) ∂
∂t

+ δ exp(−δσt)u ∂
∂u

if δ 6= 0,

σt ∂
∂t
− u ∂

∂u
if δ = 0.

S(ψ) = −δ((σ + 1)Mψ)1/(σ+1)

Y5 = σx
∂

∂x
+ σz

∂

∂z
+ 2(σ + 1)ψ

∂

∂ψ
,

Y6 =





exp(−δσt) ∂
∂t

+ δ exp(−δσt) (σ + 1)ψ ∂
∂ψ

if δ 6= 0,

σt ∂
∂t
− (σ + 1)ψ ∂

∂ψ
if δ = 0.

IV. k(u) = u−1, l(u) = 0, p(u) is an arbitrary function

X4 = z
∂

∂x
− x ∂

∂z
.

C(ψ) =MeMψ , K(ψ) =M, S(ψ) is an arbitrary function, ψ = (1/M) lnu

Y4 = z
∂

∂x
− x ∂

∂z
.
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For each of the following functions p(u) (and S(ψ)) there is a further
extension:

(i) p(u) = ±uν , ν is an arbitrary constant, ν 6= 1.

X5 = 2(ν − 1)t
∂

∂t
+ νx

∂

∂x
+ νz

∂

∂z
− 2u

∂

∂u
.

S(ψ) = ∓eMνψ , ν is an arbitrary constant, ν 6= 1.

Y5 = 2(ν − 1)t
∂

∂t
+ νx

∂

∂x
+ νz

∂

∂z
− 2

M

∂

∂ψ
.

(ii) p(u) = λu± 1, λ = ±1.

X5 = exp(λt)
∂

∂t
+ λ exp(λt)u

∂

∂u
.

S(ψ) = −λeMψ ∓ 1, λ = ±1.

Y5 = exp(λt)
∂

∂t
+ (λ/M) exp(λt)

∂

∂ψ
.

(iii) p(u) = δu, δ = 0,±1 .

X5 =





exp(δt) ∂
∂t

+ δ exp(δt)u ∂
∂u

if δ 6= 0,

t ∂
∂t

+ u ∂
∂u

if δ = 0,

X∞ = α(x, z)
∂

∂x
+ β(x, z)

∂

∂z
− 2uαx(x, z)

∂

∂u
,

where the functions α(x, z) and β(x, z) satisfy the system

αx = βz, αz = −βx.

S(ψ) = −δeMψ , δ = 0,±1 .

Y5 =





exp(δt) ∂
∂t

+ (δ/M) exp(δt) ∂
∂ψ

if δ 6= 0,

t ∂
∂t

+ (1/M) ∂
∂ψ

if δ = 0,

Y∞ = α(x, z)
∂

∂x
+ β(x, z)

∂

∂z
− 2

M
αx(x, z)

∂

∂ψ
,
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where the functions α(x, z) and β(x, z) satisfy the system

αx = βz , αz = −βx.

V. k(u) = 1.

1. l(u) = A exp(σu), p(u) = B exp(2σu)
(A, B, and σ are arbitrary constants, A 6= 0, σ 6= 0).

X4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− 1

σ

∂

∂u
.

C(ψ) = K(ψ) =M−(A/σ) exp(σu), S(ψ) = −B exp(2σu), ψ = (1/σM) [−σu+ ln(−σ(M/A) + exp(σu))] .

Y4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− 1

σM −A exp(σu)

∂

∂ψ
.

2. l(u) = A lnu, p(u) = u(B lnu+D)
(A, B, and D are arbitrary constants, A 6= 0).

X4 =





exp(Bt) ∂
∂z
− B

A
exp(Bt)u ∂

∂u
if B 6= 0,

t ∂
∂z
− u

A
∂
∂u

if B = 0.

C(ψ) = K(ψ) =M −Au(lnu− 1), S(ψ) = −u(B lnu+D), ψ =

∫
du

M −Au(lnu− 1)
.

Y4 =





exp(Bt) ∂
∂z
− B

A
exp(Bt) u

M−Au(lnu−1)
∂
∂ψ

if B 6= 0,

t ∂
∂z
− u
A(M−Au(lnu−1))

∂
∂ψ

if B = 0.

3. l(u) = A lnu, p(u) = Bu+
1

4
A2uln2u− 1

4
A2u lnu+Du ln u

(A, B, and D are arbitrary constants, A 6= 0).

X4 = exp

(
Dt− A

2
z

)
u
∂

∂u
.

C(ψ) = K(ψ) =M −Au(lnu− 1), S(ψ) = −Bu− 1

4
A2uln2u+

1

4
A2u lnu−Du lnu,

ψ =

∫
du

M −Au(lnu− 1)
.

Y4 = exp

(
Dt− A

2
z

)
u

M −Au(lnu− 1)

∂

∂ψ
.
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4. l(u) = Auσ, p(u) = Bu2σ+1

(A, B, and σ are arbitrary constants, A 6= 0, σ 6= 0, 1)

X4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− u

σ

∂

∂u
.

C(ψ) = K(ψ) =M−(A/(σ+1))uσ+1, S(ψ) = −Bu2σ+1, ψ = (σ + 1)

∫
du(M(σ + 1)−Auσ+1)−1

Y4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− u

σM − (Aσ/(σ + 1))uσ+1

∂

∂ψ
.

5. l(u) = Au, p(u) = Bu3 (A and B are arbitrary constants, A 6=
0, B 6= 0)

X4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− u ∂

∂u
.

(i) C(ψ) = K(ψ) = −Msinh−2

(√
MA

2
ψ

)
, S(ψ) = −B(2M/A)3/2coth3

(√
MA

2
ψ

)
,

ψ =
1√
2MA

ln

(
u+

√
2M/A

u−
√

2M/A

)

Y4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
+

1√
2MA

sinh
(√

2MAψ
) ∂

∂ψ

(ii) C(ψ) = K(ψ) =Mcosh−2

(√
MA

2
ψ

)
, S(ψ) = −B(2M/A)3/2tanh3

(√
MA

2
ψ

)
,

ψ =
1√
2MA

ln

(
u+

√
2M/A

−u+
√

2M/A

)
.

Y4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− 1√

2MA
sinh

(√
2MAψ

) ∂

∂ψ
.

6. l(u) = Au, p(u) = Bu (A and B are arbitrary constants, A 6=
0, B 6= 0)

X4 = exp(Bt)
∂

∂z
− B

A
exp(Bt)

∂

∂u

(i) C(ψ) = K(ψ) = −Msinh−2

(√
MA

2
ψ

)
, S(ψ) = −B(2M/A)1/2coth

(√
MA

2
ψ

)
,

ψ =
1√
2MA

ln

(
u+

√
2M/A

u−
√

2M/A

)

Y4 = exp(Bt)
∂

∂z
+

B

MA
exp(Bt) sinh2

(√
MA

2
ψ

)
∂

∂ψ



8: SOIL WATER MOTION EQUATIONS (1996) 261

(ii) C(ψ) = K(ψ) =Mcosh−2

(√
MA

2
ψ

)
, S(ψ) = −B(2M/A)1/2tanh

(√
MA

2
ψ

)
,

ψ =
1√
2MA

ln

(
u+

√
2M/A

−u+
√

2M/A

)

Y4 = exp(Bt)
∂

∂z
− B

MA
exp(Bt) cosh2

(√
MA

2
ψ

)
∂

∂ψ
.

7. l(u) = Au, p(u) = B (A and B are arbitrary constants, A 6= 0)

X4 = 2t
∂

∂t
+ x

∂

∂x
+

(
z − 3

2
ABt2

)
∂

∂z
+ (−u+ 3Bt)

∂

∂u
,

X5 = t
∂

∂z
− 1

A

∂

∂u
.

(i) C(ψ) = K(ψ) = −Msinh−2

(√
MA

2
ψ

)
, S(ψ) = −B, ψ =

1√
2MA

ln

(
u+

√
2M/A

u−
√

2M/A

)

Y4 = 2t
∂

∂t
+ x

∂

∂x
+

(
z − 3

2
ABt2

)
∂

∂z
+

(
1√
2MA

sinh
(√

2MAψ
)
− 3Bt

M
sinh2

(√
MA

2
ψ

))
∂

∂ψ
,

Y5 = t
∂

∂z
+

1

MA
sinh2

(√
MA

2
ψ

)
∂

∂ψ
.

(ii) C(ψ) = K(ψ) =Mcosh−2

(√
MA

2
ψ

)
, S(ψ) = −B, ψ =

1√
2MA

ln

(
u+

√
2M/A

−u+
√

2M/A

)

Y4 = 2t
∂

∂t
+ x

∂

∂x
+

(
z − 3

2
ABt2

)
∂

∂z
+

(
− 1√

2MA
sinh

(√
2MAψ

)
+

3Bt

M
cosh2

(√
MA

2
ψ

))
∂

∂ψ
,

Y5 = t
∂

∂z
− 1

MA
cosh2

(√
MA

2
ψ

)
∂

∂ψ
.

8. l(u) = 0, p(u) is an arbitrary function ,

X4 = z
∂

∂x
− x ∂

∂z
.

C(ψ) = K(ψ) =M, S(ψ) is an arbitrary function, ψ = u/M

Y4 = z
∂

∂x
− x ∂

∂z
.
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For each of the following functions p(u) (and S(ψ)) there is a further
extension:

(i) p(u) = ±eu.

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− 2

∂

∂u
.

S(ψ) = ∓eMψ .

Y5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− 2

M

∂

∂ψ
.

(ii) p(u) = ±uσ, σ is an arbitrary constant, σ 6= 0,±1.

X5 = 2(σ − 1)t
∂

∂t
+ (σ − 1)x

∂

∂x
+ (σ − 1)z

∂

∂z
− 2u

∂

∂u
.

S(ψ) = ∓(Mψ)σ , σ is an arbitrary constant, σ 6= 0,±1.

Y5 = 2(σ − 1)t
∂

∂t
+ (σ − 1)x

∂

∂x
+ (σ − 1)z

∂

∂z
− 2ψ

∂

∂ψ
.

(iii) p(u) = δu lnu, δ = ±1.

X5 = exp(δt)u
∂

∂u
, X6 = exp(δt)

∂

∂x
− δ

2
x exp(δt)u

∂

∂u
,

X7 = exp(δt)
∂

∂z
− δ

2
z exp(δt)u

∂

∂u
.

S(ψ) = −δMψ ln(Mψ), δ = ±1.

Y5 = exp(δt)ψ
∂

∂ψ
, Y6 = exp(δt)

∂

∂x
− δ

2
x exp(δt)ψ

∂

∂ψ
, Y7 = exp(δt)

∂

∂z
− δ

2
z exp(δt)ψ

∂

∂ψ
.

(iv) p(u) = δu, δ = 0,±1.

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
+ 2δtu

∂

∂u
,

X6 = 4t2
∂

∂t
+ 4tx

∂

∂x
+ 4tz

∂

∂z
+ (4δt2 − 4t− x2 − z2)u ∂

∂u
,

X7 = u
∂

∂u
, X8 = 2t

∂

∂x
− xu ∂

∂u
, X9 = 2t

∂

∂z
− zu ∂

∂u
,
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X∞ = α(t, x, z)
∂

∂u
,

where α satisfies the equation

αt = αxx + αzz + δα .

S(ψ) = −δMψ , δ = 0,±1.

Y5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
+ 2δtψ

∂

∂ψ
,

Y6 = 4t2
∂

∂t
+ 4tx

∂

∂x
+ 4tz

∂

∂z
+ (4δt2 − 4t− x2 − z2)ψ ∂

∂ψ
,

Y7 = u
∂

∂u
, Y8 = 2t

∂

∂x
− xψ ∂

∂ψ
, Y9 = 2t

∂

∂z
− zψ ∂

∂ψ
,

Y∞ = α(t, x, z)
∂

∂ψ
,

where α satisfies the equation

αt = αxx + αzz + δα .

(v) p(u) = ±1.

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
+ 2u

∂

∂u
,

X6=4t2
∂

∂t
+ 4tx

∂

∂x
+ 4tz

∂

∂z
+
[
−(4t+ x2 + z2)u+ 8t2 + tx2 + tz2

] ∂
∂u
,

X7 = (u− t) ∂
∂u

, X8 = 2t
∂

∂x
+ x(t− u) ∂

∂u
, X9 = 2t

∂

∂z
+ z(t− u) ∂

∂u
,

X∞ = α(t, x, z)
∂

∂u
,

where α satisfies the equation

αt = αxx + αzz .

S(ψ) = ∓1.
Y5 = 2t

∂

∂t
+ x

∂

∂x
+ z

∂

∂z
+ 2ψ

∂

∂ψ
,

Y6 = 4t2
∂

∂t
+ 4tx

∂

∂x
+ 4tz

∂

∂z
+

[
−(4t+ x2 + z2)ψ +

1

M
(8t2 + tx2 + tz2)

]
∂

∂ψ
,

Y7 = (ψ − t/M)
∂

∂ψ
, Y8 = 2t

∂

∂x
− x(ψ − t/M)

∂

∂ψ
, Y9 = 2t

∂

∂z
− z(ψ − t/M)

∂

∂ψ
,

Y∞ = α(t, x, z)
∂

∂ψ
,

where α satisfies the equation

αt = αxx + αzz .
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4 Symmetries of equations (1.1)

The group classification of Eqs. (2.1) given in Section 3 does not provide,
strictly speaking, the group classification of Eqs. (1.1). Indeed, the transfor-
mation (2.2) linking Eqs. (1.1) and (2.1) depends on the choice of coefficients
(1.1) and therefore the transformation (2.2) does not map, in general, an
equivalence transformation of Eqs. (2.1) into that of Eqs. (1.1). Let us il-
lustrate this by the following example.

Example. Consider the particular case of the equivalence transforma-
tion (3.1)

t̄ = t, x̄ = x, z̄ = z + γ2t, ū = u, (4.1)

for which
k̄ = k, l̄ = l − γ2, p̄ = p (4.2)

with an arbitrary constant γ2. Let us construct the image of this equaiva-
lence transformation under the map (2.7), (2.8). Then, in accordance with
(2.4),

L̄(ū) =

∫
l̄(ū) dū,

whence, by using (4.1) and (2.5) we obtain

L̄(ū) =

∫
(l(u)− γ2)du = L(u)− γ2u.

The formula (2.5) is written in the new variables in the form

ψ̄ =

∫
k̄(ū)

A2 − L̄(ū)
dū+ A3.

Since k̄(ū)dū = k(u)du (see (4.1)-(4.2)) and k(u)du = (A2 − L(u))dψ (see
(2.6)), the above formula is written

ψ̄ =

∫
A2 − L(u)

A2 − L(u) + γ2u
dψ + A3,

or

ψ̄ = ψ − γ2
∫

u

A2 − L(u) + γ2u
dψ + A3.

Thus, after the map (2.2), the equivalence transformation (4.1) takes the
form

t̄ = t, x̄ = x, z̄ = z + γ2t, ψ̄ = ψ − γ2
∫

u

A2 − L(u) + γ2u
dψ + A3,
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i.e. it is not an equivalence transformation in the usual sense. Such trans-
formations can be called “quasi-equivalence transformations” for Eqs. (1.1).

Here, we systematize the equations (1.1) with extended symmetry ob-
tained in Section 3.

The principal Lie algebra

The principal Lie algebra LP (i.e. the Lie algebra of the Lie transfor-
mation group admitted by Eq. (1.1) for arbitrary C(ψ), K(ψ) and S(ψ)) is
the three-dimensional Lie algebra spanned by the following generators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂z
.

The operators X1, X2, and X3 generate translations along the t, x, and z -
axes, respectively. Hence the principal Lie group of the equation (1.1) is
the three-parameter group of translations.

Extensions of the principal Lie algebra

The algebra LP extends in the following cases.

I. K(ψ) = 1, C(ψ) and S(ψ) are arbitrary functions.

X4 = z
∂

∂x
− x ∂

∂z
.

For the following functions C(ψ) and S(ψ) there is an additional extension:

1. C(ψ) is an arbitrary function, S(ψ) = 0.

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
.

2. C(ψ) = ψσ, S(ψ) has one of the following forms:

(i) S(ψ) = Bψγ, where B and γ are arbitrary constants, B 6= 0,
γ 6= σ + 1.

X5 = 2(1 + σ − γ)t ∂
∂t

+ (1− γ)x ∂
∂x

+ (1− γ)z ∂
∂z

+ 2ψ
∂

∂ψ
.

(ii) S(ψ) = Bψσ+1 + Dψ, where B 6= 0 and D 6= 0 are arbitrary
constants.

X5 = exp(Bσt)
∂

∂t
+B exp(Bσt)ψ

∂

∂ψ
.
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If D = 0, B 6= 0 there is a further extension:

X6 = σx
∂

∂x
+ σz

∂

∂z
− 2ψ

∂

∂ψ
.

(iii) S(ψ) = 0.

X5 = σt
∂

∂t
+ ψ

∂

∂ψ
,

X6 = σx
∂

∂x
+ σz

∂

∂z
− 2ψ

∂

∂ψ
.

3. C(ψ) = eψ, S(ψ) has one of the following forms:

(i) S(ψ) = Beνψ , ν is an arbitrary constant, ν 6= 1.

X5 = 2(ν − 1)t
∂

∂t
+ νx

∂

∂x
+ νz

∂

∂z
− 2

∂

∂ψ
.

(ii) S(ψ) = Beψ+D, where B 6= 0 andD 6= 0 are arbitrary constants.

X5 = exp(Bt)
∂

∂t
+B exp(Bt)

∂

∂ψ
.

(iii) S(ψ) = Beψ , where B is an arbitrary constant.

X5 =





exp(Bt) ∂
∂t

+B exp(Bt) ∂
∂ψ

if B 6= 0,

t ∂
∂t

+ ∂
∂ψ

if B = 0,

X∞ = α(x, z)
∂

∂x
+ β(x, z)

∂

∂z
− 2αx(x, z)

∂

∂ψ
,

where the functions α(x, z) and β(x, z) satisfy the system

αx = βz, αz = −βx.

4. C(ψ) = 1, S(ψ) has one of the following forms:

(i) S(ψ) = ±eψ.

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− 2

∂

∂ψ
.

(ii) S(ψ) = ±ψσ, where σ is an arbitrary constant, σ 6= 0, 1.

X5 = 2(σ − 1)t
∂

∂t
+ (σ − 1)x

∂

∂x
+ (σ − 1)z

∂

∂z
− 2ψ

∂

∂ψ
.
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(iii) S(ψ) = −δψ ln(Mψ), δ = ±1.

X5 = exp(δt)ψ
∂

∂ψ
, X6 = exp(δt)

∂

∂x
− δ

2
x exp(δt)ψ

∂

∂ψ
,

X7 = exp(δt)
∂

∂z
− δ

2
z exp(δt)ψ

∂

∂ψ
.

(iv) S(ψ) = −δψ , δ = 0,±1.

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
+ 2δtψ

∂

∂ψ
,

X6 = 4t2
∂

∂t
+ 4tx

∂

∂x
+ 4tz

∂

∂z
+ (4δt2 − 4t− x2 − z2)ψ ∂

∂ψ
,

X7 = u
∂

∂u
, X8 = 2t

∂

∂x
− xψ ∂

∂ψ
, X9 = 2t

∂

∂z
− zψ ∂

∂ψ
,

X∞ = α(t, x, z)
∂

∂ψ
,

where α satisfies the equation

αt = αxx + αzz + δα .

(v) S(ψ) = ±1.

X5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
+ 2ψ

∂

∂ψ
,

X6 = 4t2
∂

∂t
+ 4tx

∂

∂x
+ 4tz

∂

∂z
+
[
−(4t+ x2 + z2)ψ

+8t2 + tx2 + tz2
] ∂

∂ψ
,

X7 = (ψ − t) ∂
∂ψ

,

X8 = 2t
∂

∂x
− x(ψ − t) ∂

∂ψ
, X9 = 2t

∂

∂z
− z(ψ − t) ∂

∂ψ
,

X∞ = α(t, x, z)
∂

∂ψ
,

where α satisfies the equation

αt = αxx + αzz .
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II. K(ψ) = C(ψ).

The principal Lie algebra extends for the following functions C(ψ) and S(ψ):

1. C(ψ) = sinh−2(ψ), S(ψ) has one of the following forms:
(i) S(ψ) = Bcoth3(ψ), where B 6= 0 is an arbitrary constant.

X4 = 4t
∂

∂t
+ 2x

∂

∂x
+ 2z

∂

∂z
+ sinh(2ψ)

∂

∂ψ
.

(ii) S(ψ) = B coth(ψ), where B 6= 0 is an arbitrary constant.

X4 = 2 exp(Bt)
∂

∂z
+B exp(Bt) sinh2(ψ)

∂

∂ψ
.

(iii) S(ψ) = B, where B is an arbitrary constant.

X4 = 2t
∂

∂t
+ x

∂

∂x
+ (z − 3Bt2)

∂

∂z
+

(
1

2
sinh(2ψ)− 3Btsinh2(ψ)

)
∂

∂ψ
,

X5 = 2t
∂

∂z
+ sinh2(ψ)

∂

∂ψ
.

2. C(ψ) = cosh−2(ψ), S(ψ) has one of the following forms:

(i) S(ψ) = −Btanh3(ψ), where B 6= 0 is an arbitrary constant.

X4 = 4t
∂

∂t
+ 2x

∂

∂x
+ 2z

∂

∂z
− sinh(ψ)

∂

∂ψ
.

(ii) S(ψ) = −Btanh(ψ), where B 6= 0 is an arbitrary constant.

X4 = 2 exp(Bt)
∂

∂z
−B exp(Bt) cosh2(ψ)

∂

∂ψ
.

(iii) S(ψ) = −B, where B is an arbitrary constant.

X4 = 2t
∂

∂t
+ x

∂

∂x
+ (z − 3Bt2)

∂

∂z
+

(
−1

2
sinh(2ψ) + 3Btcosh2(ψ)

)
∂

∂ψ
,

X5 = 2t
∂

∂z
− cosh2(ψ)

∂

∂ψ
.

3. C(ψ) =M −Au(lnu− 1), where A 6= 0, M are arbitrary constants,
ψ is connected with u by the formula

ψ =

∫
du

M − Au(ln u− 1)
,
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and S(ψ) has one of the following forms:

(i) S(ψ) = −u(B lnu+D), where B and D are arbitrary constants.

X4 =





exp(Bt) ∂
∂z
− B

A
exp(Bt) u

M−Au(lnu−1)
∂
∂ψ

if B 6= 0,

t ∂
∂z
− u

A(M−Au(lnu−1))
∂
∂ψ

if B = 0.

(ii) S(ψ) = −Bu− 1

4
A2uln2u+

1

4
A2u lnu−Du lnu,

where B and D are arbitrary constants.

X4 = exp

(
Dt− A

2
z

)
u

M − Au(ln u− 1)

∂

∂ψ
.

4. C(ψ) = M − A

σ
eσu , S(ψ) = −Be2σu , where A 6= 0, B, M 6= 0, and

σ 6= 0 are arbitrary constants, ψ is connected with u by the formula

ψ =
1

σM
[−σu+ ln(−σ(M/A) + eσu)] .

X4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− 1

σM − A exp(σu)

∂

∂ψ
.

5. C(ψ) =M − A

σ + 1
uσ+1, S(ψ) = −Bu2σ+1, where A 6= 0, B, M 6= 0,

and σ 6= 0,−1 are arbitrary constants, ψ is connected with u by the formula

ψ = (σ + 1)

∫
(M(σ + 1)− Auσ+1)−1du.

X4 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− u

σM − (Aσ/(σ + 1))uσ+1

∂

∂ψ
.

III. K(ψ) = e−ψ, C(ψ) = e−ψ(M − e−ψ)σ, S(ψ) = −D(M − e−ψ)σ+1 +
B(e−ψ −M),
where B,D, and M are arbitrary constants.

X4 =





exp(Dσt) ∂
∂t

+D exp(Dσt) (Meψ − 1) ∂
∂ψ

if D 6= 0,

σt ∂
∂t

+ (Meψ − 1) ∂
∂ψ

if D = 0.
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If σ = −1 and B =
1

4
there is an additional extension:

X5 = sin
(x
4

)
exp

(
−z
4

) ∂

∂x
− cos

(x
4

)
exp

(
−z
4

) ∂

∂z

+
1

2
cos
(x
4

)
exp

(
−z
4

) (
Meψ − 1

) ∂

∂ψ
,

X6 = cos
(x
4

)
exp

(
−z
4

) ∂

∂x
+ sin

(x
4

)
exp

(
−z
4

) ∂

∂z

−1

2
sin
(x
4

)
exp

(
−z
4

) (
Meψ − 1

) ∂

∂ψ
.

IV. K(ψ) =M −Aeσu, C(ψ) = (M −Aeσu)e−u, S(ψ) = Be(2σ−1)u , where
A 6= 0, B,M, σ 6= 0 are arbitrary constants, and ψ is connected with u by
the formula

ψ =

expu∫

u0

dw(M − Awσ)−1.

X4 = (1− 2σ)t
∂

∂t
+ (1− σ)x ∂

∂x
+ (1− σ)z ∂

∂z
+

eu

M − Aeσu
∂

∂ψ
.

V. K(ψ) = M − Au2, C(ψ) = (M − Au2) e−u, S(ψ) = Be−u, where
A 6= 0, B,M 6= 0 are arbitrary constants, and ψ is connected with u by the
formula

ψ =
1

2
√
AM

[
e−
√
M/A li

(
eu+
√
M/A

)
− e
√
M/A li

(
eu−
√
M/A

)]

with li(x) the logarithm integral:

li(x) =

x∫

0

dy

ln y
.

X4 = t
∂

∂t
+ x

∂

∂x
+ (z − 2At)

∂

∂z
+

eu

M − Au2
∂

∂ψ
.

VI. K(ψ) = M − Auµ+1, C(ψ) = (M − Auµ+1)u−σ, S(ψ) = −Bu1+2µ−σ,
where
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A 6= 0, B,M, σ 6= 0,−1, µ 6= −1 are arbitrary constants, and ψ is connected
with u by the formula

ψ =
1

σ + 1

uσ+1∫

u0

(
M − Aw(µ+1)/(σ+1)

)−1
dw .

X4 = (2µ− σ)t ∂
∂t

+ (µ− σ)x ∂
∂x

+ (µ− σ)z ∂
∂z
− uσ+1

M − Auµ+1

∂

∂ψ
.

5 Invariant solutions

Here, the above results are used for the construction of exact (invariant)
solutions of Eq. (1.1). Namely, we consider two particular equations of
the form (1.1) when the principal Lie algebra LP is extended by three and
two operators, respectively. For each case, we look for solutions invari-
ant under two-dimensional subalgebras of the symmetry Lie algebra. Then
Eq. (1.1) reduces to second-order ordinary differential equations. The latter
are solved in a closed form, and the solutions are also represented graphi-
cally. These examples illustrate the general algorithm due to Lie [89] and
Ovsyannikov [111] for constructing invariant solutions and can be easily
adopted by the reader in other cases.

Let the operators

X1 = ξ01(t, x, z, u)
∂

∂t
+ ξ11(t, x, z, u)

∂

∂x
+ ξ21(t, x, z, u)

∂

∂z
+ η1(t, x, z, u)

∂

∂u
,

X2 = ξ02(t, x, z, u)
∂

∂t
+ ξ12(t, x, z, u)

∂

∂x
+ ξ22(t, x, z, u)

∂

∂z
+ η2(t, x, z, u)

∂

∂u
be admitted by the equation (1.1). Let they span a two-dimensional Lie
algebra, i.e.

[X1, X2] = λ1X1 + λ2X2, λ1, λ2 = const,

and they satisfy the condition

rank

(
ξ01 ξ11 ξ21 η1

ξ02 ξ12 ξ22 η2

)
= 2.

Then the system
X1I = 0, X2I = 0

has exactly two functionally independent solutions I1(t, x, z, u), I2(t, x, z, u).
The invariant solution has the form

I2 = φ(I1). (5.1)
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After substitution of (5.1) into the corresponding equation (1.1), we obtain
an ordinary differential equation for the function φ.

Note that all invariant solutions of the equations (1.1) can be obtained
from the corresonding solutions of the equations (2.1) by transformations of
the form (2.2). Numerous invariant solutions of Eqs. (2.1) with l(u) ≡ 0 are
presented in [129]. According to the formula (2.3), l(u) = 0 corresponds to
Eqs. (1.1) with a constant coefficient K(ψ). Here we will consider examples
of invariant solutions of Eqs. (1.1) with K(ψ) 6= const.

Example 1 (Invariant solution under an Abelian subalgebra). Consider
Eq. (1.1) of the form

4

Me4ψ − 1
ψt =

(
e−4ψψx

)
x
+
(
e−4ψψz

)
z
+ 4e−4ψψz +M − e−4ψ. (5.2)

This equation is obtained by a simple scaling of independent and dependent
variables from the equation given in the above group classification in the case
III with σ = −1, B = 1/4. According to the classification result, Eq. (5.2)
admits an six-dimensional Lie algebra L6 obtained by an extension of the
principal Lie algebra LP by the following three operators:

X4 = t
∂

∂t
− 1

4
(Me4ψ − 1)

∂

∂ψ
,

X5 = sinx e−z
∂

∂x
− cos x e−z

∂

∂z
+

1

2
cos x e−z(Me4ψ − 1)

∂

∂ψ
,

X6 = cos x e−z
∂

∂x
+ sinx e−z

∂

∂z
− 1

2
sinx e−z(Me4ψ − 1)

∂

∂ψ
.

Let us construct invariant solutions under the operators X4, X5. These
operators span a two-dimensional subalgebra L2 of the algebra L6 and have
two functionally independent invariants. First, we calculate a basis of invari-
ants I(t, x, z, ψ) by solving the following system of linear first-order partial
differential equations:

X4I = 0, X5I = 0.

The subalgebra L2 is Abelian ([X4, X5] = 0). Therefore, we can solve the
equations of the above system successively in any order.

The first equation provides three functionally independent solutions

J1 = x, J2 = z, J3 = t(e−4ψ −M).

Hence the common solution I(t, x, z, ψ) of our system is defined as a function
of J1, J2, J3 only. Therefore we rewrite the action of X5 on the space of
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J1, J2, J3 by the formula

X5 = X5(J1)
∂

∂J1
+X5(J2)

∂

∂J2
+X5(J3)

∂

∂J3

to obtain

X5 = sin J1 e−J2
∂

∂J1
− cos J1 e−J2

∂

∂J2
+ 2 cos J1 e−J2J3

∂

∂J3
.

Consequently, we easily obtain the following two functionally independent
solutions (invariants) of the second equation of the system in discussion:

I1 = eJ2 sin J1 ≡ ez sin x, I2 = J3 e2J2 ≡ (te−3ψ −Mt) e2z.

Thus, according to (5.1), the invariant solution is given by

(te−3ψ −Mt) e2z = φ(ez sinx).

Solving this equation with respect to ψ,

ψ = −1

4
ln
∣∣M +

e−2z

t
φ(ξ)

∣∣, where ξ = ez sinx, (5.3)

and substituting into Eq. (5.2), we arrive at the following linear second-order
ordinary differential equation:

φ′′(ξ) = 4.

Hence,
φ(ξ) = 2ξ2 + C1ξ + C2,

and Eq. (5.3) yields

ψ = −1

4
ln

∣∣∣∣M +
e−2z

t

(
2e2z sin2 x+

C1

e

z

sinx+ C2

)∣∣∣∣ ,

where C1 and C2 are arbitrary constants.
The same solution can be obtained from the solution of the correspond-

ing equation (2.1) (see [67], Section 9.8 ).
The dynamics of the process described by this solution is illustrated

graphically in the figures.

Example 2 (Invariant solution under a non-Abelian subalgebra). Con-
sider Eq. (1.1) of the form

sinh−2
(√M

2
ψ
)
ψt=

(
sinh−2

(√M

2
ψ
)
ψx

)

x

+

(
sinh−2

(√M

2
ψ
)
ψz

)

z



274 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

+
√
2Mcoth

(√M

2
ψ
)
sinh−2

(√M

2
ψ
)
ψz −

1

M
. (5.4)

This equation is obtained by a simple scaling of independent and dependent
variables from the equation given in the above group classification in the
case II.1(iii) with B = 1. According to the classification result, Eq. (5.4)
admits a five-dimensional Lie algebra L5 with the following two additional
operators:

X4 = 2t
∂

∂t
+x

∂

∂x
+
(
z−3

2
t2
) ∂
∂z

+

(
1√
2M

sinh
(√

2Mψ
)
− 3t

M
sinh2

(√M

2
ψ
)) ∂

∂ψ
,

X5 = t
∂

∂z
+

1

M
sinh2

(√M

2
ψ
) ∂

∂ψ
.

The operators X4, X5 span a two-dimensional subalgebra L2 of the alge-
bra L5. We have [X4, X5] = X5. Hence, the subalgebra L2 is non-Abelian
and X5 spans an ideal of L2. Therefore, in this case, the system

X4I = 0, X5I = 0

for invariants can be solved successively begining with the equationX5I = 0.
Then the first equation X4I = 0 will be represented in the space of three
independent solutions of the equation X5I = 0. Repeating the calculations
described in the previous example, we get the following invariant solution
of the equation (5.4):

ψ =
1√
2M

(
ln
∣∣∣
√
2M+

t

2
−z
t
+C1

x

t
−C2

[ 2√
t
exp

(
−x

2

4t

)
+

√
πx

t
erf
( x

2
√
t

)]∣∣∣

− ln
∣∣∣−
√
2M +

t

2
− z
t
+C1

x

t
−C2

[ 2√
t
exp

(
− x

2

4t

)
+

√
πx

t
erf
( x

2
√
t

)]∣∣∣
)
.

Here C1 and C2 are arbitrary constants and

erf(ξ) =
2√
π

∫ ξ

0

e−µ
2

dµ.

The same solution can be obtained from the solution of the correspond-
ing equation (2.1) (see [67], Section 9.8).
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A priori use of symmetry
groups in nonlinear modelling
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Abstract. Nonlinear mathematical models constructed on the basis of
general physical concepts often have a rather complex form. Therefore, it
is natural to simplify these models for further investigation. Unfortunately,
however, a simplification often leads to the loss of certain symmetries of the
model, and hence to the loss of physically important solutions.

The main idea of an a priori use of symmetries in mathematical mod-
elling, suggested in this paper, is to augment the symmetry properties of
the problem by means of a “reasonable” complication of the mathematical
model. The method is illustrated by applying it to nonlinear acoustics and
finding exact solutions that are of interest for the wave theory.

1 Motivation

The long term experience gained from solving problems of mathematical
physics by means of group analysis furnishes ample evidence that numerous
natural phenomena can be modelled directly in terms of symmetry groups.
Then differential equations, conservation laws and often even solutions to
initial value problems can be obtained as immediate consequences of group
theoretic modelling.

On the other hand, mathematical models of physical processes that are
constructed on the basis of general concepts from first principles) often have
a rather complex form. Examples of such models are the systems of equa-
tions of mechanics of continua or electrodynamics, which are difficult to

275
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solve in the general form by common analytical and numerical methods, es-
pecially if the nonlinearity, inhomogeneity, hereditary and other properties
of real media are taken into account. Therefore, it is natural to simplify
the model equations as much as possible in accordance with the specific
character of the problem under consideration. It is evident, that dealing
with simpler models one can most probably find an appropriate method of
solution. The simplification is achieved by neglecting the less important
features of a given phenomenon and concentrating on its most important
properties. A comprehensive description of ideas underlying this approach
are given by A.A. Andronov, A.A. Vitt, and S.É. Khăikin in their classical
monograph on the theory of oscillations [5]. A historically significant ex-
ample of applying these ideas to the wave theory is the development of the
method of a slowly varying profile by R.V. Khokhlov [81], [2]. This method
considerably extended the possibilities for solving nonlinear wave problems
analytically [121]. Unfortunately, a simplification of a mathematical model
may lead, and often it does, to the loss of a number of symmetries pos-
sessed by the original general model, and hence to the loss of important
exact solutions.

We suggest another approach, namely a complication of the model with
the aim of augmenting symmetry properties of the mathematical model for
finding desired solutions of a given simpler problem. This idea seems to be
logically absurd. However, sometimes a complex model proves to be more
simple to analyze. An example of such a useful complication in acoustics is
the Burgers equation (see, e.g., [121] and the notation accepted there):

∂V

∂z
− V ∂V

∂θ
= Γ

∂2V

∂θ2
·

The presence of the additional viscous term proportional to the higher
(second-order) derivative on the right-hand side of this equation surprisingly
does not complicate the initial first-order equation but, on the contrary, pro-
vides the possibility to solve the problem. With the transformation

V = 2Γ
∂

∂θ
lnU,

the Burgers equation can be linearized and reduced to the heat conduction
equation for U :

∂U

∂z
= Γ

∂2U

∂θ2
·

Expressing the solution of the Burgers equation via the solution of the heat
equations and then performing the limit Γ → 0, one obtains a physically
correct solution to the problem of interest for the non-viscous medium.
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Evidently, this example is accidental and does not provide any general
approach. However, the experience gained from the group classification of
differential equations shows that in many cases a complication of the initial
model supplies it with new symmetries, and hence allows one to find new
physically important solutions.

A well-known regular and effective method of symmetry determination
is the theory of continuous Lie groups [96], [93]. The conventional method
of using Lie groups for finding analytical solutions to differential equations
is as follows. Specific equations or systems of equations are considered.
Symmetry groups are calculated for them. Then, these groups are used to
construct exact particular solutions, conservation laws, and invariants. A
more complicated and interesting problem is the group classification of equa-
tions involving unknown parameters or functions. The group classification
allows one to find such parameters (or functions) at which the admitted
group is wider than the symmetry group of the initial general equation.
Many equations with physically interesting solutions have already been ob-
tained in this way (see, e.g., [111], [114], [60], [65], [67], [68]). The approach
described above can be called an a posteriori one, because it is based on
analyzing given systems of equations.

In this paper, we propose a fundamentally new and simple approach
providing new symmetric models. The approach is based on a reasonable
complication of a given model without any loss of its physical content. A
theoretical basis for our principle of an a priori use of symmetries is N.H.
Ibragimovs theorem on projections of equivalence groups (see Section 4.2).

We begin with describing the standard methods of Lie group analysis of
differential equations, adapting them to evolutionary equations appropriate
to the models of nonlinear wave theory and nonlinear acoustics.

2 Outline of methods from group analysis

2.1 Symmetries of evolution equations

Consider evolutionary partial differential equations of the second order:

ut = F (t, x, u, ux, uxx), ∂F/∂uxx 6= 0. (2.1)

Definition 9.1. A setG of invertible transformations of the variables t, x, u :

t̄ = f(t, x, u, a), x̄ = g(t, x, u, a), ū = h(t, x, u, a), (2.2)

depending on a continuous parameter a is called a one-parameter group
admitted by the equation (2.1), or a symmetry group of the equation (2.1),
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if the equation (2.1) has the same form in the new variables t̄, x̄, ū and if
G contains the inverse to any transformation from G, the identity transfor-
mation

t̄ = t, x̄ = x, ū = u,

and the composition of any two transformations, namely:

t ≡ f(t, x, u, b) = f(t, x, u, a+ b),

x ≡ g(t, x, u, b) = g(t, x, u, a+ b),

u ≡ h(t, x, u, b) = h(t, x, u, a+ b).

Thus, a group G is admitted by the equation (2.1) if the transformations
(2.2) of the group G map every solution u = u(t, x) of the equation (2.1)
into a solution ū = ū(t̄, x̄) of the equation

ūt̄ = F (t̄, x̄, ū, ūx̄, ūx̄x̄), (2.3)

where the function F has the same form in both equations (2.1) and (2.3).
According to the Lie theory, the construction of the symmetry group G

is equivalent to determination of its infinitesimal transformations

t̄ ≈ t+ aτ(t, x, u), x̄ ≈ x+ aξ(t, x, u), ū ≈ u+ aη(t, x, u) (2.4)

obtained from (2.2) by expanding into Taylor series with respect to the
group parameter a and keeping only the terms linear in a. It is convenient
to introduce the symbol (after S. Lie) of the infinitesimal transformation
(2.4), i.e. the differential operator

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(2.5)

acting on any differentiable function J(t, x, u) as follows:

X(J) = τ(t, x, u)
∂J

∂t
+ ξ(t, x, u)

∂J

∂x
+ η(t, x, u)

∂J

∂u
·

The operator (2.5) also is known in the literature as the infinitesimal oper-
ator or generator of the group G. The symbol X of the group admitted by
the equation (2.1) is called an operator admitted by (2.1) or an infinitesimal
symmetry for equation (2.1).

The group transformations (2.2) corresponding to the infinitesimal trans-
formations with the symbol (2.5) are found by solving the Lie equations

dt̄

da
= τ(t̄, x̄, ū),

dx̄

da
= ξ(t̄, x̄, ū),

dū

da
= η(t̄, x̄, ū), (2.6)
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with the initial conditions:

t̄
∣∣
a=0

= t, x̄
∣∣
a=0

= x, ū
∣∣
a=0

= u.

Let us turn now to equation (2.3). The quantities ūt̄ , ūx̄ and ūx̄x̄ in-
volved in (2.3) can be obtained by means of the usual rule of change of
derivatives treating the equations (2.2) as a change of variables. Then, ex-
panding the resulting expressions for ūt̄ , ūx̄ , ūx̄x̄ into Taylor series series
with respect to the parameter a, one can obtain the infinitesimal form of
these expressions:

ūt̄ ≈ ut + a ζ0(t, x, u, ut, ux) , ūx̄ ≈ ux + a ζ1(t, x, u, ut, ux) ,

ūx̄x̄ ≈ uxx + a ζ2(t, x, u, ut, ux, utx, uxx) ,
(2.7)

where the functions ζ0, ζ1, ζ2 are given by the following prolongation formu-
lae:

ζ0 = Dt(η)− utDt(τ)− uxDt(ξ),

ζ1 = Dx(η)− utDx(τ)− uxDx(ξ), (2.8)

ζ2 = Dx(ζ1)− utxDx(τ)− uxxDx(ξ).

Here Dt and Dx denote the total differentiations with respect to t and x:

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
,

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
·

Substitution of (2.4) and (2.7) in equation (2.3) yields:

ūt̄ − F (t̄, x̄, ū, ūx̄, ūx̄x̄) ≈ ut − F (t, x, u, ux, uxx)

+a
(
ζ0 −

∂F

∂uxx
ζ2 −

∂F

∂ux
ζ1 −

∂F

∂u
η − ∂F

∂x
ξ − ∂F

∂t
τ
)
.

Therefore, by virtue of the equation (2.1), the equation (2.3) yields

ζ0 −
∂F

∂uxx
ζ2 −

∂F

∂ux
ζ1 −

∂F

∂u
η − ∂F

∂x
ξ − ∂F

∂t
τ = 0, (2.9)

where ut is replaced by F (t, x, u, ux, uxx) in ζ0, ζ1, ζ2.
The equation (2.9) defines all infinitesimal symmetries of the equation

(2.1) and therefore it is called the determining equation. Conventionally, it
is written in the compact form

X
[
ut − F (t, x, u, ux, uxx)

]
ut=F

= 0, (2.10)
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where X denotes the prolongation of the operator (2.5) to the first and
second order derivatives:

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζ0

∂

∂ut
+ ζ1

∂

∂ux
+ ζ2

∂

∂uxx
·

The determining equation (2.9) (or its equivalent (2.10)) is a linear ho-
mogeneous partial differential equation of the second order for unknown
functions τ(t, x, u), ξ(t, x, u), η(t, x, u). In consequence, the set of all solu-
tions to the determining equation is a vector space L. Furthermore, the
determining equation possesses the following significant and less evident
property. The vector space L is a Lie algebra, i.e. it is closed with respect
to the commutator. In other words, L contains, together with any operators
X1, X2, their commutator [X1, X2] defined by

[X1, X2] = X1X2 −X2X1.

In particular, if L = Lr is finite-dimensional and has a basis X1, . . . , Xr,
then

[Xα, Xβ] = cγαβXγ

with constant coefficients cγαβ known as the structure constants of Lr.
Note that the equation (2.9) should be satisfied identically with respect

to all the variables involved, the variables t, x, u, ux, uxx, utx are treated as
five independent variables. Consequently, the determining equation de-
composes into a system of several equations. As a rule, this is an over-
determined system since it contains more equations than three unknown
functions τ, ξ and η. Therefore, in practical applications, the determining
equation can be solved. The following preparatory lemma due to Lie (see
[89], First part, Section III(10)) simplifies the calculations.

Lemma 9.1. The symmetry transformations (2.2) of Eqs. (2.1) have the
form

t̄ = f(t, a), x̄ = g(t, x, u, a), ū = h(t, x, u, a). (2.11)

It means that one can search the infinitesimal symmetries in the form

X = τ(t)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
· (2.12)

Proof. Let us single out in the determining equation (2.9) the terms con-
taining the variable utx. It is manifest from the prolongation formulae (2.8)
that utx is contained only in ζ2, namely, in its last term utxDx(τ). Since the
determining equation (2.9) holds identically in all variables t, x, u, ux, uxx, utx,
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one concludes that Dx(τ) ≡ τx + uxτu = 0, whence τx = τu = 0. Thus,
τ = τ(t), and hence the generator (2.6) reduces to the form (2.12).

For the operators (2.12), the prolongation formulae (2.8) are written as
follows:

ζ0 = Dt(η)− uxDt(ξ)− τ ′(t)ut, ζ1 = Dx(η)− uxDx(ξ),

ζ2 = Dx(ζ1)− uxxDx(ξ) ≡ D2
x(η)− uxD2

x(ξ)− 2uxxDx(ξ). (2.13)

2.2 Invariant solutions

Group analysis provides two basic ways for construction of exact solutions:
construction of group invariant solutions (or simply invariant solutions) and
group transformations of known solutions.

If a group transformation maps a solution into itself, we arrive at what
is called a self-similar or group invariant solution. Given an infinitesimal
symmetry (2.5) of equation (2.1), the invariant solutions under the one-
parameter group generated by X are obtained as follows. One calculates
two independent invariants J1 = λ(t, x) and J2 = µ(t, x, u) by solving the
equation

X(J) ≡ τ(t, x, u)
∂J

∂t
+ ξ(t, x, u)

∂J

∂x
+ η(t, x, u)

∂J

∂u
= 0,

or its characteristic system:

dt

τ(t, x, u)
=

dx

ξ(t, x, u)
=

du

η(t, x, u)
· (2.14)

Then one designates one of the invariants as a function of the other, e.g.

µ = φ(λ), (2.15)

and solves equation (2.15) with respect to u. Finally, one substitutes the
expression for u in equation (2.1) and obtains an ordinary differential equa-
tion for the unknown function φ(λ) of one variable. This procedure reduces
the number of independent variables by one.

Further reductions, in the case of differential equations with many inde-
pendent variables, can be achieved by considering invariant solutions under
two or more infinitesimal symmetries.
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2.3 Group transformations of known solutions

This application of symmetry groups is based on the fact that the trans-
formations of this group map any solutions of the equation in question into
solution of the same equation. Namely, let (2.2) be a symmetry transfor-
mation group of the equation (2.1), and let a function

u = Φ(t, x)

solve the equation (2.1). Since (2.2) is a symmetry transformation, the
above solution can be also written in the new variables:

ū = Φ(t̄, x̄).

Replacing here ū, t̄, x̄ from (2.2), we get

h(t, x, u, a) = Φ
(
f(t, x, u, a), g(t, x, u, a)

)
. (2.16)

Having solved equation (2.16) with respect to u, one obtains a one-parameter
family (with the parameter a) of new solutions to the equation (2.1). Con-
sequently, any known solution is a source of a multi-parameter class of new
solutions provided that the differential equation considered admits a multi-
parameter symmetry group. An example is given in Section 3, where the
procedure is applied to the Burgers equation.

3 Group analysis of the Burgers equation

We illustrate the methods described in the previous section by considering
the Burgers equation

ut = uxx + uux. (3.1)

3.1 Calculation of symmetries

The determining equation (2.9) has the form

ζ0 − ζ2 − uζ1 − ηux = 0, (3.2)

where ζ0, ζ1 and ζ2 are given by (2.13). Let us single out and annul the
terms with uxx. Bearing in mind that ut has to be replaced by uxx + uux
and substituting in ζ2 the expressions

D2
x(ξ) = Dx(ξx + ξu ux) = ξu uxx + ξuu u

2
x + 2ξxu ux + ξxx,

D2
x(η) = Dx(ηx + ηu ux) = ηu uxx + ηuu u

2
x + 2ηxu ux + ηxx (3.3)



9: A PRIORI USE OF SYMMETRY GROUPS (2004) 283

we arrive at the following equation:

2ξu ux + 2ξx − τ ′(t) = 0.

It splits into two equations, namely ξu = 0 and 2ξx − τ ′(t) = 0. The first
equation shows that ξ depends only on t, x, and integration of the second
equation yields

ξ =
1

2
τ ′(t)x+ p(t). (3.4)

It follows from (3.4) that D2
x(ξ) = 0. Now the determining equation (3.2)

reduces to the form

u2xηuu +

[
1

2
τ ′(t)u+

1

2
τ ′′(t)x+ p′(t) + 2ηxu + η

]
ux + uηx + ηxx − ηt = 0

and splits into three equations:

ηuu = 0,
1

2
τ ′(t)u+

1

2
τ ′′(t)x+p′(t)+2ηxu+η = 0, uηx+ηxx−ηt = 0. (3.5)

The first equation (3.5) yields η = σ(t, x)u+µ(t, x), and the second equation
(3.5) becomes:

(
1

2
τ ′(t) + σ

)
u+

1

2
τ ′′(t)x+ p′(t) + 2σx + µ = 0,

whence

σ = −1

2
τ ′(t), µ = −1

2
τ ′′(t)x− p′(t).

Thus, we have

η = −1

2
τ ′(t)u− 1

2
τ ′′(t)x− p′(t). (3.6)

Finally, substitution of (3.6) in the third equation (3.5) yields

1

2
τ ′′′(t)x+ p′′(t) = 0,

whence τ ′′′(t) = 0, p′′(t) = 0, and hence

τ(t) = C1t
2 + 2C2t+ C3, p(t) = C4t+ C5.

Invoking (3.4) and (3.6), we ultimately arrive at the following general solu-
tion of the determining equation (3.2):

τ(t) = C1t
2+2C2t+C3, ξ = C1tx+C2x+C4t+C5, η = −(C1t+C2)u−C1x−C4.
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It contains five arbitrary constants Ci. It means that the infinitesimal sym-
metries of the Burgers equation (3.1) form the five-dimensional Lie algebra
spanned by the following linearly independent operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂x
− ∂

∂u
,

X4 = 2t
∂

∂t
+ x

∂

∂x
− u ∂

∂u
, X5 = t2

∂

∂t
+ tx

∂

∂x
− (x+ tu)

∂

∂u
· (3.7)

3.2 Invariant solutions

Example 9.1. One of the physically significant types of solutions is ob-
tained by assuming the invariance under the time translation group gener-
ated by X1. This assumption provides the stationary solutions

u = Φ(x)

for which the Burgers equation yields

Φ′′ + ΦΦ′ = 0. (3.8)

Integrate it once:

Φ′ +
Φ2

2
= C1,

and integrate again be setting C1 = 0, C1 = ν2 > 0, C1 = −ω2 < 0 to
obtain:

Φ(x) =
2

x+ C
, Φ(x) = ν th

(
C +

ν

2
x
)
, Φ(x) = ω tg

(
C − ω

2
x
)
. (3.9)

Note that the Galilean transformation t̄ = t, x̄ = x + at, ū = u − a
generated by X3 maps X1 to X1+cX2. Consequently, it maps the stationary
solutions to travelling waves u = u(x− ct) which can also be obtained from
the solutions (3.9).

Example 9.2. Let us find the invariant solutions under the projective
group generated by X5. The characteristic system (2.14) is written:

dt

t2
=
dx

tx
= − du

x+ tu

and provides the invariants λ = x/t and µ = x + tu. Hence, the general
expression (2.15) for invariant solution takes the form

u = −x
t
+

1

t
Φ(λ), λ =

x

t
· (3.10)
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Substituting this expression in the Burgers equation (3.1), one obtains for
Φ(λ) precisely the equation (3.8). Hence, its general solution is obtained
from (3.9) where x is replaced by λ. The corresponding invariant solutions
are obtained by substituting in (3.10) the resulting expressions for Φ(λ). For
example, using for Φ(λ) the second formula (3.9) by letting there ν = π,
one obtains the solution

u = −x
t
+
π

t
th
(
C +

πx

2t

)
(3.11)

derived by R.V. Khokhlov in 1961 by physical reasoning (see, e.g. [138],
Chapter IX, §4, equation (4.15)).

Remark. The solution (3.11) can be obtained from the second solution
(3.21) by setting ν = −πa and letting a→∞.
Example 9.3. The invariant solutions under the group of dilations with
the generator X4 lead to what is often called in the physical literature sim-
ilarity solutions because of their connection with the dimensional analysis.
In this case the characteristic system

dt

2t
=
dx

x
= −du

u

provides the following invariants: λ = x/
√
t, µ =

√
t u. Consequently, one

seeks the invariant solutions in the form

u =
1√
t
Φ(λ), λ =

x√
t
,

and arrives at the following equation for the similarity solutions of the Burg-
ers equation:

Φ′′ + ΦΦ′ +
1

2
(λΦ′ + Φ) = 0. (3.12)

Integrating once, one has:

Φ′ +
1

2
(Φ2 + λΦ) = C,

Letting C = 0, one obtains the following similarity solution (see [138], Chap-
ter IX, §4, equation (4.11), or [65], Section 11.4):

u =
2√
πt

e−x
2/(4t)

B + erf(x/(2
√
t)
,

where B is and arbitrary constant and

erf(z) =
2√
π

∫ z

0

e−s
2

ds

is the error function.
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Example 9.4. Construction of exact solutions can be based not only on the
basic infinitesimal symmetries (3.7), but also on their linear combinations.
Consider an example based, e.g. on the operator

X1 +X5 = (1 + t2)
∂

∂t
+ tx

∂

∂x
− (x+ tu)

∂

∂u
· (3.13)

The characteristic system

dt

1 + t2
=
dx

tx
= − du

x+ tu

provides the invariants

λ =
x√

1 + t2
, µ =

tx√
1 + t2

+ u
√
1 + t2.

Hence, invariant solution have the form

u = − tx

1 + t2
+

1√
1 + t2

Φ(λ), λ =
x√

1 + t2
·

Substituting this expression in the Burgers equation (3.1), one obtains for
Φ(λ) the following equation:

Φ′′ + ΦΦ′ + λ = 0, (3.14)

or integrating once:

Φ′ +
1

2
(Φ2 + λ2) = C.

3.3 Group transformations of solutions

One can find the group transformations (2.11) admitted by the Burgers
equation by solving the Lie equations for the basic infinitesimal symmetries
(3.7). In the case of the generators (3.7), the Lie equations (2.6) have the
triangular form:

dt̄

da
= τ(t̄),

dx̄

da
= ξ(t̄, x̄),

dū

da
= η(t̄, x̄, ū). (3.15)

Eqs. (3.15) and the initial conditions

t̄
∣∣
a=0

= t, x̄
∣∣
a=0

= x, ū
∣∣
a=0

= u (3.16)

are convenient for the consecutive integration. As an example, consider the
generator X5 from (3.7). The Lie equations (3.15) are written

dt̄

da
= t̄ 2,

dx̄

da
= t̄ x̄,

dū

da
= −(x̄+ t̄ ū).
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Integration of the first equation yields

t̄ = − 1

a+ C1

·

We evaluate the constant of integration C1 from the first initial condition
(3.15) and obtain C1 = −1/t. Hence,

t̄ =
t

1− at · (3.17)

Substituting (3.17) in the second Lie equation, we have

dx̄

x̄
=

tda

1− at ≡ −
d(1− at)
1− at ,

whence

x̄ =
C2

1− at ·

Using the second initial condition (3.15) we obtain C2 = x, and hence

x̄ =
x

1− at · (3.18)

The equations (3.17) and (3.18) determine the special projective transforma-
tion group (the Möbius map) on the plane. Substituting (3.17) and (3.18)
in the third Lie equation, one obtains a first-order non-homogeneous linear
equation for ū :

dū

da
+

t

1− at ū+
x

1− at = 0.

Integrating this equation and evaluating the constant of integration from
the third initial condition (3.15), one obtains:

ū = u(1− at)− ax. (3.19)

Using the projective transformations (3.17)-(3.19) and applying the equa-
tion (2.16) to any known solution u = Φ(t, x) of the Burgers equation, one
can obtain the following one-parameter set of new solutions:

u =
ax

1− at +
1

1− at Φ
( t

1− at ,
x

1− at
)
. (3.20)

Example 9.5. One can obtain many examples, by choosing as an initial
solution u = Φ(t, x), any invariant solution. Let us take, e.g. the invariant
solution under the space translation generated by X2 from (3.7). In this
case the invariants are λ = t and µ = u, and hence Eq. (2.15) is written
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u = φ(t). Substitution in the Burgers equation yields the obvious constant
solution u = k. It is mapped by (3.20) into the following one-parameter set
of solutions:

u =
k + ax

1− at ·

Example 9.6. If one applies the transformation (3.20) to the stationary
solutions (3.9), one obtains the following new non-stationary solutions:

u =
ax

1− at +
2

x+ C(1− at) ,

u =
1

1− at

[
ax+ ν th

(
C +

νx

2(1− at)

)]
, (3.21)

u =
1

1− at

[
ax+ ω tg

(
C − ωx

2(1− at)

)]
.

4 Method of the a priori use of symmetries

In Section 3, we described examples of using symmetry groups. However,
in many problems, a symmetry group is absent or is insufficiently wide to
solve the given model equation. The method proposed below is aimed at
constructing models with a higher symmetry without loss of the physical
contents of the initial model. The essence of the method is as follows.

If the model contains arbitrary elements and has a sufficiently wide
equivalence group (see further Definition 9.2 in Section 4.2), the symme-
try group is determined as a suitable subgroup of the equivalence group.
Otherwise the nonlinear model under consideration is generalized by means
of its immersion into a wider model in a reasonable way, i.e. without losing
the initial physical meaning but, at the same time, achieving the desired
expansion of the equivalence group. In this case, the nonlinearity of the
model is essential, because it provides the necessary flexibility in choosing
the model and ensures the generality and efficiency of the method.

4.1 Immersion and application of Laplace’s invariants

Consider Earnshow’s equation (see, e.g., [40])

vtt − c2 (1 + vξ)
−(γ+1) vξξ = 0 (4.1)

describing the one-dimensional motion of a compressible gas in terms of
Lagrange’s variables. The physical meaning of the variables is as follows:
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v is a shift of particles in the medium, γ is the adiabatic exponent in the
equation of state, c is the acoustic velocity.

Equation (4.1) can be linearized by the “hodograph transform”

x = vξ, y = vt, ξ = X(x, y), t = u(x, y), (4.2)

where Lagrange’s coordinate ξ and time t are considered as functions of new
independent variables x, y which are the first derivatives of the dependent
variable v. The corresponding linearized equation has the form

uxx − c2 (1 + x)−(γ+1) uyy = 0. (4.3)

If the acoustic Mach number |vξ| = |x| is small, Eq. (4.3) can be
approximated by a simpler equation

uxx − c2 [1− (γ + 1)x]uyy = 0. (4.4)

However, neither Eq. (4.3) nor its simplified version (4.4) are solvable be-
cause they do not possess sufficiently wide symmetry groups. Thus, the
simplification (4.4) does not achieve the objective.

Therefore, we choose an approximating equation not for the simplicity
of its form but for the presence of symmetry sufficient to make it solvable.
Namely, let us consider a hyperbolic equation of the form

uxx − c2 ψ2(x)uyy = 0, (4.5)

generalizing the equations (4.3), (4.4), and undertake a search for such a
function ψ(x) that, first, coincides with the corresponding function in Eq.
(4.3) (or, equivalently, in Eq. (4.4)) at small |x| and, second, opens up a
possibility to find a general solution to (4.5). We will satisfy the second
property by choosing the function ψ(x) so that Eq. (4.5) has the widest
possible symmetry group.

It is well known from the theory of group analysis that a hyperbolic
equation written in characteristic variables in the form

uαβ + A(α, β)uα +B(α, β)uβ + P (α, β)u = 0 (4.6)

admits a widest possible symmetry group and therefore can be solved by
reducing it to a wave equation if the Laplace invariants [88]

h = Aα + AB − P, k = Bβ + AB − P (4.7)

for Eq. (4.6) vanish. Therefore, let us calculate the Laplace invariants for
Eq. (4.5) by rewriting it in the characteristic variables

α = c

∫
ψ(x)dx− y, β = c

∫
ψ(x)dx+ y. (4.8)
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In these variables Eq. (4.5) takes the standard form (4.6):

uαβ +
ψ ′(x)

4cψ2(x)
(uα + uβ) = 0, (4.9)

with the coefficients

A = B =
ψ ′(x)

4cψ2(x)
, P = 0, (4.10)

where x is expressed through α and β by solving the equations (4.8):

x = Ψ−1(z), z =
α + β

2c
= Ψ(x) ≡

∫
ψ(x)dx. (4.11)

Let us write Aα = Ax · xα and invoke that

xα = xz · zα =
zα
zx

=
1

2cψ(x)
.

Then equations (4.7) and (4.8), yield

Aα =
ψ′′

8c2ψ3
− ψ′2

4c2ψ4
·

It is transparent that Bβ = Aα. Therefore, we get from (4.7) the following
Laplace invariants for Eq. (4.9):

h = k =
1

8c2ψ4

(
ψψ′′ − 3

2
ψ′2
)
.

Hence, the conditions h = 0, k = 0 are reduced to the single equation

ψψ′′ − 3

2
ψ′2 = 0,

which is easily solved and yields:

ψ(x) = (l + sx)−2, l, s = const.

Thus, Eq. (4.5) with a widest possible symmetry group has the form

uxx − c2 (l + sx)−4 uyy = 0.

Comparing it with Eq. (4.4), we see that the constants l, s should be set as
l = 1, s = (γ + 1)/4. As a result, we obtain the desired solvable equation

uxx − c2
(
1 +

ε

2
x
)−4

uyy = 0, ε =
γ + 1

2
, (4.12)
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which approximates Eq. (4.3) with satisfactory accuracy when |εx| ¿ 1.
In order to solve Eq.(4.12), we rewrite it in the standard form (4.9) and

obtain:

uαβ +
uα + uβ
α + β

= 0. (4.13)

According to the general theory, Eq. (4.13) is reduced to the wave equation
wαβ = 0 by the substitution w = (α+β)u. Therefore, the general solution
of (4.12) is given by the formula

u(α, β) =
Φ1(α) + Φ2(β)

α + β
(4.14)

with two arbitrary functions Φ1 and Φ2. Let us return to the variables x, y
in Eq. (4.14). Since ψ(x) = [1 + (ε/2)x]−1, Eqs. (4.8) yield

α = −y − c

ε(2 + ε x)
, β = y − c

ε(2 + ε x)
, α + β = − 2c

ε(2 + ε x)
·

Substituting these expressions in Eq. (4.14) and changing the inessential
sign in the arbitrary functions Φ1 and Φ2, we obtain the following general
solution to Eq. (4.12):

u(x, y) =
ε(2 + εx)

2c

[
Φ1

(
c

ε(2 + ε x)
+ y

)
+ Φ2

(
c

ε(2 + ε x)
− y
)]
. (4.15)

Summarizing Eqs. (4.1), (4.3), (4.4), (4.5) and (4.15), we conclude that
the solution (4.15) was found by way of “immersion” of the nonlinear model
of our interest (4.1) in a more general model

vtt − c2 ψ2(vξ) vξξ = 0. (4.16)

However, it should be emphasized that the possibility of constructing the
solution (4.15) essentially depends on the incidental fact that Eq. (4.1) and
its generalization (4.12) are linearized by the transformation (4.2). There-
fore, although this example clearly illustrates the idea of immersion and
shows how a generalization of a model can make it solvable, it still does not
provide any practical and simple method for selecting the most symmetric
equations from the generalized model. Such a method is discussed in the
following section using a specific example.

4.2 Utilization of the theorem on projections

The theorem on projections was proved by N.H. Ibragimov in 1987 [62]
and then used in the group classification problems [1] as the basis for the
preliminary group classification (see also [76], [75], [74]).
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We now proceed to the main examples illustrating the essence of our
approach. These examples are of interest by themselves, because new non-
linear equations are considered. Their physical content is discussed in the
concluding Section 5.

We begin with the nonlinear equation

∂

∂t

(
∂u

∂x
− u∂u

∂t

)
= −β u, β = const 6= 0. (4.17)

It admits only the three-dimensional Lie algebra L3 with the basis

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
− x ∂

∂x
+ 2u

∂

∂u
· (4.18)

Hence, Eq. (4.17) is not rich in group invariant solutions. They are limited
to the travelling-wave solutions that are constructed using the translation
generators X1, X2, and the self-similar solutions constructed using the dila-
tion generator X3.

Therefore, we use the immersion approach and consider two types of
models generalizing Eq. (4.17). We will take the equation

∂

∂t

[
∂u

∂x
− P (u)∂u

∂t

]
= F (x, u), (4.19)

as the first generalization, and the equation

∂

∂t

[
∂u

∂x
−Q(x, u)

∂u

∂t

]
= F (x, u) (4.20)

as the second generalized model.
Further calculations show that the second generalization is more ap-

propriate and is the source of a symmetry group much richer than that of
Eqs. (4.17) and (4.19). Therefore, we use the model (4.20) to illustrate the
principle of the a priori use of symmetries.

Definition 9.2. A group of transformations

t̄ = f(t, x, u, a), x̄ = g(t, x, u, a), ū = h(t, x, u, a)

is called an equivalence transformation group for the family of equations
(4.20), or briefly an equivalence group for Eqs. (4.20), if every equation of the
given family (4.20) with any functions Q(x, u) and F (x, u) is transformed
to an equation of the same family, i.e.

∂

∂t̄

[
∂ū

∂x̄
−Q(x̄, ū)

∂ū

∂t̄

]
= F (x̄, ū),
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where the functions Q, F may be different from Q, F. The generators of
the equivalence group have the form

Y = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u
+ µ1

∂

∂Q
+ µ2

∂

∂F
, (4.21)

where

ξi = ξi(t, x, u), η = η(t, x, u), µi = µi(t, x, u,Q, F ), i = 1, 2.

The generators (4.21) of the equivalence group form a Lie algebra which
is called the equivalence algebra for Eqs.(4.20) and is denoted by LE . In
the operator (4.21) and in its coordinates µi, the functions Q and F are
considered as new variables together with the physical variables t, x, u.

As was shown by L.V. Ovsyannikov [114], the equivalence algebra can
be found using Lie’s infinitesimal technique (see Section 2.1). Namely, let
us rewrite Eq. (4.20) in the equivalent form as the system

utx −Qutt −Quu
2
t − F = 0, Qt = 0, Ft = 0 (4.22)

called the extended system. Now one can define the equivalence group for
Eqs. (4.20) as the group admitted by the extended system (4.22). It is
worth noting that despite the obvious similarity to the classical Lie the-
ory, there are considerable technical differences between the calculation of
infinitesimal symmetries and generators (4.21) for the equivalence group.
Detailed calculations can be found in [1], [76].

Using this approach, one can show that the generators (4.21) of the
equivalence group for Eq. (4.20) have the coordinates

ξ1 = C1t+ ϕ(x), ξ2 = ψ(x), η = (C1 + C2)u+ λ(x),

µ1 = −ϕ′(x) + [C1 − ψ′(x)]Q, µ2 = [C2 − ψ′(x)]F,
(4.23)

where ϕ(x), ψ(x) and λ(x) are arbitrary functions. This means that Eq.
(4.20) has an infinite-dimension equivalence algebra LE with the basis

Y1 = ϕ(x)
∂

∂t
− ϕ′(x) ∂

∂Q
, Y2 = ψ(x)

∂

∂x
− ψ′(x)

[
Q
∂

∂Q
+ F

∂

∂F

]
,

Y3 = λ(x)
∂

∂u
, Y4 = t

∂

∂t
+ u

∂

∂u
+Q

∂

∂Q
, Y5 = u

∂

∂u
+ F

∂

∂F
·

(4.24)
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Remark 9.1. Likewise, it can be demonstrated that Eq. (4.19) has a seven-
dimensional equivalence algebra spanned by the operators

Y1 =
∂

∂t
, Y2 =

∂

∂x
, Y3 =

∂

∂u
, Y4 = t

∂

∂t
+ u

∂

∂u
+ P

∂

∂P
, (4.25)

Y5 = u
∂

∂u
+ F

∂

∂F
, Y6 = x

∂

∂t
− ∂

∂P
, Y7 = x

∂

∂x
− P ∂

∂P
− F ∂

∂F
·

Further calculations are based on the theorem on projections, mentioned
at the beginning of Section 4.2. Let us introduce the notation X and Z for
the projections of the operator (4.21) to the physical variables t, x, u and
the variables x, u,Q, F of arbitrary elements, respectively:

X = pr(t,x,u)(Y ) ≡ ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u
, (4.26)

Z = pr(x,u,Q,F )(Y ) ≡ ξ2
∂

∂x
+ η

∂

∂u
+ µ1

∂

∂Q
+ µ2

∂

∂F
· (4.27)

Substituting (4.23) into (4.26) and (4.27), one obtains the following projec-
tions:

X =
[
C1t+ ϕ(x)

] ∂
∂t

+ ψ(x)
∂

∂x
+
[
(C1 + C2)u+ λ(x)

] ∂
∂u

, (4.28)

Z = ψ(x)
∂

∂x
+
[
(C1 + C2)u+ λ(x)

] ∂
∂u

+
[
− ϕ′(x) + [C1 − ψ′(x)]Q

] ∂
∂Q

+ [C2 − ψ′(x)]F
∂

∂F
· (4.29)

The projections (4.28) and (4.29) are well defined in the sense that the
coordinates of X depend on variables t, x, u alone, while the coordinates of
Z depend on variables x, u,Q, F.

As applied to Eq. (4.20), the theorem on projections [62] is formulated
as follows.

Theorem 9.1. (Theorem on projections). The operator X defined by
(4.28) is an infinitesimal symmetry of Eq. (4.20) with the functions

Q = Q(x, u), F = F (x, u) (4.30)

if and only if the system of equations (4.30) is invariant with respect to the
group with the generator Z defined by (4.29), i.e. if

Z[Q−Q(x, u)]
∣∣∣
(4.30)

= 0, Z[F − F (x, u)]
∣∣∣
(4.30)

= 0. (4.31)
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Here the symbol |(4.30) means that the variables Q and F should be replaced
by the functions Q(x, u) and F (x, u) according to equations (4.30). Substi-
tuting the expression (4.29) for Z in Eqs. (4.31), one obtains the followin
system of linear first-order partial differential equations for the functions
Q(x, u) and F (x, u) :

ψ(x)
∂Q

∂x
+
[
(C1 + C2)u+ λ(x)

]∂Q
∂u

+ [ψ′(x)− C1]Q+ ϕ′(x) = 0,

ψ(x)
∂F

∂x
+
[
(C1 + C2)u+ λ(x)

]∂F
∂u

+ [ψ′(x)− C2]F = 0.

(4.32)

Remark 9.2. The similar formulation of this theorem for Eq. (4.19) is
obtained by replacing the operators (4.24) by (4.25) and Eqs. (4.30) by

P = P (u), F = F (x, u).

Example 9.7. Let us choose the constants and functions involved in (4.23)
as follows:

C1 = 1, ϕ(x) = 0, ψ(x) = x− k, C2 = 0, λ(x) = 0

i.e. consider Y ′ ∈ LE of a particular form

Y ′ = t
∂

∂t
+ (x− k) ∂

∂x
+ u

∂

∂u
− F ∂

∂F
· (4.33)

Then, solving the system of equations (4.32), we obtain the functions

Q = Φ
( u

x− k
)
, F =

1

x− kΓ
( u

x− k
)
, (4.34)

where Φ and Γ are arbitrary functions of one and the same argument. Hence,
according to Theorem 9.1, Eq. (4.20) of the form

∂

∂t

[
∂u

∂x
− Φ

( u

x− k
)∂u
∂t

]
=

1

x− kΓ
( u

x− k
)

(4.35)

admits an additional operator

X ′ = t
∂

∂t
+ (x− k) ∂

∂x
+ u

∂

∂u
, (4.36)

together with the evident generator

X0 =
∂

∂t
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of time transformation. One can use the additional symmetry X ′, e.g. for
constructing invariant solutions. Solving the equation

X ′(J(t, x, u
)
= 0

we obtain the invariants

λ =
t

x− k , µ =
u

x− k ·

Hence we search the invariant solution in the form µ = G(λ, i.e.

u = (x− k)G(λ).

The substitution in Eq. (4.35) shows that G(λ) should satisfy the following
second-order ordinary differential equation:

λG′′ +
(
Φ(G)G′

)′
+ Γ(G) = 0.

The particular case of interest is that of Eq. (4.35) with the linear
functions Φ and Γ, when a quadratic nonlinear term appears in the left-
hand side of Eq. (4.35), namely:

∂

∂t

[
∂u

∂x
− α u

x− k
∂u

∂t

]
= −β u

(x− k)2 · (4.37)

This case will be considered in Section 5.

Example 9.8. Let us consider an equation with two additional symmetries.
We will need two equivalence generators that span a two-dimensional Lie
algebra. We again take (4.33) as the first generator and find the second
generator Y ′′ by setting

C1 = 0, C2 = 1, ϕ(x) = ψ(x) = λ(x) = x− k

in (4.23), i.e. we choose

Y ′′ = (x− k)
(
∂

∂t
+

∂

∂x

)
+
(
u+ x− k

) ∂
∂u
−
(
1 +Q

) ∂

∂Q
·

The operators Y ′ and Y ′′ commute, and hence span an Abelian Lie algebra.
Applying the theorem on projections to both operators Y ′ and Y ′′, i.e., in
fact, solving Eqs. (4.32) with the coordinates of the operator Y ′′ and with
the functions Q,F given by Eqs. (4.34), we obtain

Q = −1 + Ae−u/(x−k), F = − B

x− k eu/(x−k)
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where A and B are arbitrary constants.
Theorem 9.1 on projections guarantees that the equation

∂

∂t

[
∂u

∂x
+
(
1− Ae−u/(x−k)

)∂u
∂t

]
= − B

x− k eu/(x−k) (4.38)

has the following two additional symmetries:

X ′ = t
∂

∂t
+ (x− k) ∂

∂x
+ u

∂

∂u
,

X ′′ = (x− k)
(
∂

∂t
+

∂

∂x

)
+
(
u+ x− k

) ∂
∂u
·

(4.39)

In particular, we can find the invariant solution with respect to the two-
parameter symmetry group with two generators (4.39). For this purpose, it
is necessary to solve the system of equations

X ′(J) = 0, X ′′(J) = 0.

The first equation provides two invariants

λ =
x− k
t

, µ =
u

t
·

Then, substituting J = J(λ, µ) in the second equation we obtain the relation

µ = Lλ+ λ ln
∣∣∣

λ

1− λ
∣∣∣, L = const.

Substituting the values µ and λ, we obtain the following form for the in-
variant solution:

u = (x− k)
[
L+ ln

∣∣∣
x− k

t− x+ k

∣∣∣
]
.

Substituting this expression in Eq. (4.38) we determine the the constant L,
namely L = ln |1/B|. Thus, the invariant solution of Eq. (4.38) constructed
by means of its two infinitesimal symmetries (4.39) is given by

u = (x− k) ln
∣∣∣∣

x− k
B(t− x+ k)

∣∣∣∣. (4.40)

Example 9.9. Let us turn to Eq. (4.19) and apply the theorem on projec-
tions to the combination

Y = Y3 + Y5 + Y6 + Y7
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of the operators (4.25), i.e. to the following equivalence generator:

Y = x
∂

∂t
+ x

∂

∂x
+ (1 + u)

∂

∂u
− (1 + P )

∂

∂P
·

Using the projections similar to (4.26) and (4.27) we obtain:

X = x
∂

∂t
+ x

∂

∂x
+ (1 + u)

∂

∂u
, (4.41)

Z = x
∂

∂x
+ (1 + u)

∂

∂u
− (1 + P )

∂

∂P
· (4.42)

Solving the equations (cf. Eqs. (4.31) and see Remark 9.2)

Z(P (u)− P ) = 0, Z(F (x, u)− F ) = 0

which have the form

(1 + u)
dP

du
+ (1 + P ) = 0, x

∂F

∂x
+ (1 + u)

∂F

∂u
= 0,

we obtain

F = Γ

(
x

1 + u

)
, P =

K

1 + u
− 1, K = const.

Hence, the following articular equation of the form (4.19):

∂

∂t

[
∂u

∂x
+

(
1− K

1 + u

)
∂u

∂t

]
= Γ

(
x

1 + u

)
(4.43)

admits, together with

X0 =
∂

∂t
,

an additional operator X defined by (4.41).
Let us use the operator (4.41) for constructing an invariant solution.

Two functionally independent invariants of the operator X are

λ = t− x, µ =
u+ 1

x
,

and hence we have the following form of the invariant solution:

u = xφ(λ), λ = t− x.

Substitution into (4.43) provides an ordinary differential equation

K

(
φ′

φ

)′
+ φ′ = Γ(φ).
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Assuming that K 6= 0 we have

φ′′ − φ′2

φ
+
φφ′

K
=

φ

K
Γ(φ). (4.44)

Note that for small values of |u|, Eq. (4.43) provides a good approxima-
tion with an additional symmetry for the models described by equations of
the type (4.17).

5 Physical discussion of the model (4.20)

The model (4.17),
∂

∂t

[
∂u

∂x
− u∂u

∂t

]
= −β u, (4.17)

appears in several problems. Let us first consider the oscillations of a com-
pressible gas inside a cylinder with a cross section S. The cylinder is closed
with a moving piston of mass m. The bottom of the cylinder is fixed at
(x = 0) (the x coordinate is measured along the generatrix, from the bot-
tom upwards). The piston can oscillate with the displacement ζ relative to
its mean position at x = H. The system of equations describing the motion
of the piston, taking into account nonlinear gas movements, has the form

ρ c
∂ζ

∂t
= p(t−) − p(t+)

m

S

∂2ζ

∂t2
= p(t+) + p(t−). (5.1)

Here, ρ and c are the density of the gas and the sound velocity in it and p(t)
is the form of any of the two acoustic pressure waves propagating towards
each other. The arguments contain the time shift determined by the length
H of the resonator and by the nonlinear properties of the gas:

t± = t± H

c

(
1 − γ + 1

2

p

c2ρ

)
.

Applying the method of transforming functional equations of the type (5.1)
into differential evolution equations, described in [120], for the region near
the acoustic resonance

ωH/c = π +∆,

where ∆ is a small frequency detuning, we obtain (see [119])

∂

∂ξ

[
∂U

∂T
+∆

∂U

∂ξ
− πγ + 1

2
U
∂U

∂ξ

]
= −β U. (5.2)



300 N.H. IBRAGIMOV SELECTED WORKS, VOL. III

Eq. (5.2) is written using the dimensionless quantities

U =
p

c2ρ
, ξ = ω t+ π , T =

ω t1
π

, β =
1

π

mg

m
,

where t1 is the slow” time, describing the setting of steady-state oscillations
in the resonator and

mg = ρSH

is the mass of the gas in the cylinder. It is manifest that by changing the
constants and variables according to

t = ξ −∆T, T = x, u = π
γ + 1

2
U.

we can transform Eq. (5.2) to the form (4.17).
Approximate solutions to Eq. (5.2), related to problems of physical

interest, are obtained in [119]. However, some exact solutions are also of
important physical meaning. For example, let us consider the exact solution
obtained by means of the dilation generator X3 from (4.18). The invariants
of X3 and the form of the corresponding self-similar solution are

λ = xt, µ = ux2, u(x, t) =
1

x2
Φ(λ).

Substitution in Eq. (4.17) leads to the ordinary differential equation

ΦΦ′′ + Φ′2 − λΦ′′ + Φ′ − βΦ = 0.

Its particular solution, which in the limit β → 0 takes the form of the
solution u = x/t for the Riemann waves, is given by

Φ(λ) = −λ+
β

6
λ2, u(x, t) =

β

6
t2 − t

x
· (5.3)

By analogy with the known procedure of constructing a sawtooth signal
[121], in which the periodically continued solution u = x/t is used to de-
scribe smooth linear portions of the profile (see the dashed curves in Fig.
1), we continue the solution (5.3) with the period of 2π. The shock fronts
are localized at the points

tn = (2n+ 1)π +
3

βx
−

√(
3

βx

)2

− π2

3
,

n = 0,±1,±2, . . . ,
whose coordinates are calculated from the condition that the period-average
value of the function u(x, t) vanishes.



9: A PRIORI USE OF SYMMETRY GROUPS (2004) 301

Figure 1: Effect of a low-frequency dis-

persion on the wave distortion process.

The profiles are plotted for the distances

x = (1, 1′) 0.2 and (2, 2′) 0.5. The solid

curves are described by the invariant solu-

tion (5.3) for β = 3. The dashed curves are

plotted taking into account only the non-

linearity (β = 0, the dispersion is absent)

and are presented for the comparison with

the profiles shown by the solid curves.

As shown in Fig. 1, the in-
clusion of a low-frequency disper-
sion (β 6= 0) leads to an asym-
metric distortion of the waveform.
The duration of the compression
phase becomes shorter, and the
duration of the rarefaction phase
longer. The curves shown in Fig.
1 are plotted for β = 3 and two di-
mensionless distances x = 0.2 and
0.5 (curves 1, 1′ and 2, 2′, respec-
tively). Manifestly, the construc-
tion is valid up to the distances
x ≤ 3

√
3/πβ.

The waveform distortion shown
in Fig. 1 is similar to that ob-
served in experiments with high-
intensity diffracted beams. The
same behavior is predicted by the
theory [122], [138]. Therefore the
second physical problem associ-
ated with the model (4.17) belongs
to the theory of nonlinear acous-
tic beams [122]. Let us consider
the Khokhlov-Zabolotskaya equa-
tion in the form (cf. [138], p.346):

∂

∂τ

[
∂p

∂x
− ε

c3ρ
p
∂p

∂τ
− 1

c

∂p

∂τ

(
∂Ψ

∂x
+

1

2

(
∂Ψ

∂r

)2
)

+
∂p

∂r

∂Ψ

∂r
+
p

2
∆⊥Ψ

]
=
c

2
∆⊥p. (5.4)

Eq. (5.4) describes beams, circular in the cross-section, where

∆⊥ =
∂2

∂r2
+

1

r

∂

∂r
, τ = t− x

c
− 1

c
Ψ(x, r),

ε = (γ + 1)/2 is a nonlinear parameter and Ψ is the eikonal. In a homo-
geneous medium, the distance x travelled by a wave is measured along a
straight line. In a nonhomogeneous medium x can be measured along the
ray, which is the axis of the beam [123]. Limiting our consideration to a
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vicinity of the axis, we set in Eq. (5.4)

∂Ψ

∂x
+

1

2

(
∂Ψ

∂r

)2

=
r2

2
f(x) + q′(x), (5.5)

where f and q′ are known functions describing the behavior of the refraction
index in the medium. Determining the eikonal from Eq. (5.5):

Ψ =
r2

2
Φ(x) + q(x), Φ′ + Φ2 = f,

we rewrite Eq. (5.4) in the form

∂

∂τ

[
∂p

∂x
+
f

Φ
ν
∂p

∂ν
− 1

c

∂p

∂τ

(
ν2

2

f

Φ2
+ q′

)
− ε

c3ρ
p
∂p

∂τ
+ Φp

]

=
c

2
Φ2

(
∂2p

∂ν2
+

1

ν

∂p

∂ν

)
, ν = rΦ(x). (5.6)

In the nonlinear geometric acoustics approximation, the right-hand side of
Eq. (5.4) or Eq. (5.6) is assumed to be equal to zero. One can refine this
approximation and take into account the diffraction corrections, if one uses
the following model for the right-hand side of Eq. (5.6):

(
∂2p

∂ν2
+

1

ν

∂p

∂ν

)
→ − 2

a2
p, (5.7)

where a is the initial beam width. Note that, for a transverse structure
described by the Bessel function J0(

√
2ν/a), the representation (5.7) proves

to be exact. Now, varying the right-hand side of Eq. (5.6) according to Eq.
(5.7) and letting ν → 0, we obtain an equation describing the field of an
acoustic beam near its axis:

∂

∂τ

[
∂p

∂x
− q′(x)

c

∂p

∂τ
− ε

c3ρ
p
∂p

∂τ
+ Φ(x)p

]
= − c

a2
Φ2(x)p. (5.8)

In particular, for a focused wave, we set

Φ = (x− k)−1, q′ = 0,

where k is the focal distance, we reduce Eq. (5.8) to Eq. (4.37) with

u = p(x− k), α = ε (c3ρ)−1, β = ca−2.

Using the change of variables

t = c
[
τ +

1

c
q(x)

]
, u =

ε

c3ρ
exp

(∫
Φ(x) dx

)
,
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we reduce Eq. (5.8) to a simpler form

∂

∂t

[
∂u

∂x
− Q(x)u

∂u

∂t

]
= −Φ2(x)

a2
u, (5.9)

where

Q(x) = exp

(
−
∫

Φ(x) dx

)
.

In the general case, when all characteristics of the medium, including the
nonlinearity parameter, may depend on the x coordinate, the generalized
equation can be written in the form (4.20):

∂

∂t

[
∂u

∂x
− Q(x, u)

∂u

∂t

]
= F (x, u). (5.10)

Equation (5.10) also takes into account the possibility of a more complex
nonlinear response of the medium that cannot be described by a common
quadratic nonlinearity.

If in Eq. (5.10) we set

Q = − α

k − x, F = − β

(k − x)2 u,

it takes the form of Eq. (4.37) and describes the focusing of a beam in a
homogeneous medium. The invariant solution corresponding to operator
(4.36) is

u = (k − x)G(λ), λ =
t

k − x ·

The function G(λ) satisfies the equation

λG′′ − α(GG′)′ + βG = 0. (5.11)

When α = 0, the solution to Eq. (5.11) is expressed in terms of the Bessel
functions and has the form

G =
√
λ
[
C1J1(2

√
βλ) + C2Y1(2

√
βλ)
]
.

When β = 0, the solution is given implicitly by the equation

λ = −αC1 + C2(G+ C1)− α(G+ C1) ln |G+ C1|.

It is clear that the models (4.17), (4.19), (4.20) are provided not only
by the two above problems alone. Evidently, any linear distributed system
with a low-frequency dispersion, described by the law

k(ω ) =
ω

c
− β

ω
,
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can be associated with the differential equation

∂2u

∂t ∂x
= −β u. (5.12)

If the nonlinearity is weak, the corresponding term is added to the evolution
equation, and Eq. (5.12) is transformed, e.g. to Eq. (4.17).

Note that the general form (5.10) is still specific enough. Its symmetry
properties reflect the physics of the processes under study with a higher
accuracy than, for example, the symmetries of the reduced model (4.17) or
the most general model

∂2u

∂t ∂x
= G(x, t, u,

∂u

∂t
,
∂2u

∂t2
),

which could be studied by the proposed method without any strong limita-
tions on the class of problems under consideration.

6 Conclusions

The present study is based on the seemingly paradoxical statement that
it is advisable to analyze nonlinear problems by way of their immersion
into the class of more general and, hence, more complex models. The ex-
perience in studying the theory of nonlinear oscillations and waves on the
basis of physically justified simplification of models seems to contradict the
proposed approach based on the a priori use of symmetries. However, be-
hind the external differences, one can discover the single nature of the two
approaches. Evidently, the higher-symmetry model should contain more
exact solutions. How one could obtain a higher symmetry? Of course, one
can follow the conventional simplification method by “cutting off” the ele-
ments of the model that violate its symmetry (neglecting some of the terms
in the equation or modifying them in some way). But one can make the
model more symmetric by complication of the initial model. If the complex
model allows a suitable exact solution, the necessary simplification can be
performed at the last step of calculation, i.e., in the final formulae.
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[133] G. Ünal. Application of equivalence transformations to inertial sub-
range of turbulence. Lie groups and their applications, 1, No. 1:232–
240, 1994.

[134] Ch. J. de la Vallée-Poussin. Analysis of infinitesimals. Moscow,
Leningrad, 1933. Russian translation.

[135] G. Vellidis and A. G. Smajstrla. Modeling soil water redistribution
and extraction patterns of drip-irrigated tomatoes above a shallow
water table. Transactions of the ASAE, 35, No. 1:183–191, 1992.

[136] G. Vellidis, A. G. Smajstrla, and F. S. Zazueta. Soil water redis-
tribution and extraction patterns of drip-irrigated tomatoes above a
shallow water table. Transactions of the ASAE, 33, No. 5:1525–1530,
1990.
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