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Abstract. Interest in nonlinear wave equations has been stimulated by numerous physical applications, such
as telecommunication (e.g. nonlinear telegrapher equation), gasdynamics, anisotropic plasticity and nonlinear
elasticity, etc. Mathematical models of these phenomena can often be reduced to particular types of the equation
urr = f(x,ux)uxxy + g(x, uy). In this paper, the problem of classification of the latter equation with respect

to admitted contact transformation groups is reduced to the investigation of point transformation groups of the
equivalent system of first-order quasi-linear equatigns a(x, v)wy, w; = b(x, v)vy.
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1. Introduction

The problem of group analysis of nonlinear wave phenomena has been discussed in numerous
papers since the 1980s (see [1] and [2] and the references therein). In these papers, several
particular types of so-called nonlinear wave equations were classified from the symmetry
point of view. Recently, an attempt was undertaken in [2] to encapsulate these particular cases
in a general group classification of nonlinear equations of the form

Uy = f(-x’ ux)uxx + g(x, ux)- (1)

Numerous particular types of Equations (1) were identified when the symmetry group is wider
than that of the general equation (1). The approach employed in [2] is based on the so-called
method of preliminary group classificati@and does not solve the problemaafmplete group
classificationof Equations (1).

We propose here to tackle the problem of group classification with respect to point as well
as contact transformations by reducing the second-order equation (1) to an equivalent system
of first-order quasi-linear equations of the form

v =a(x,v)wy, w, =b(x,v)v,. (2

The system (2) admits a large group of equivalence transformations. In particular, the sys-
tem (2), unlike Equation (1), admits an equivalence transformation given by the hodograph
transform. This fact is crucial for the group classification.

* On leave from Institute of Mechanics, Ufa Branch of the Russian Academy of Sciences.
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To rewrite Equation (1) in the form (2), we first introduce two dependent variablesy
andw = u,. Then the integrability conditiop, = w, and Equation (1) yield the following
system of first-order partial differential equations:

pr=wy, w; = f(x,p)ps+gx,p).

It can be reduced to a homogenous system by a change of variables(x, v). Indeed, the
above system is written

hyv, = wy, wy, = f(x,W)h,v, + f(x, h)h, + g(x, h).

Now we choose the functiol(x, v) as a solution of an ordinary differential equation of the
first order with the independent variable

f(x’h)hx +g(-x, l’l) =0.

We assume that depends on being regarded as a parameter and thatt 0. Ultimately,
we arrive at the homogeneous system of the form (2) wigh 1/ 4, andb = fh,,.
Equations (2) considered together with

u; = w, 3)

are equivalent to the original differential equation (1). Furthermore, any infinitesimal contact
(in particular, Lie point) symmetry of Equation (1) (see, e.g., [3])

0 0 0 0
X:_u__u_ - wy — UxQu, ) T w) X xPu s
ugy — Pugy (O~ b —usdu) 5ot Gt -+ (e usda) 5 -
where¢p = ¢ (x, t, u, u,, u,), provides a Lie point symmetry of the system (2-3). Indeed, we
first transformX into a generator of point transformations of the variables u, p, w by
settingu, = p, u; = w, then use the change of variables= i (x, v) and obtain the operator

z=tdint ol el gyl (4)
=8 T e T T T

with the coordinates depending an¢, u, v, w. This operator is obviously admitted by the
system (2-3).

Conversely, given an operator (4) admitted by the system (2-3), it is associated with an
infinitesimal contact symmetr¥ of Equation (1) if and only if the following overdetermined
system for an unknowa is compatible:

é = _(put’ n= _¢ux’ ¢ = ¢ - ut¢u, - ux¢ux’
nhy +¢hy = ¢ +udy, x =¢ +up,. (5)

Note that the system (2) does not involve the variabl€onsequently, in what follows we
will discuss the symmetries

0 d 0 d
Y=E&(x,t,v,w)— +nx,t,v,w)— +¢(x,t,v,w)— + x(x,t, v, w)— (6)
ot 0x ov ow

of the system (2) presupposing that the coordinateg db not explicitly depend upon.
One can associate with the operator (6) a symmetry (4) of the extended system (2-3) by first
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assuming that all arbitrary constants or arbitrary functions occuring depend on:, and
then extending the action &f to the variable: in the form

0
Z=Y 4ok, t,u,v,w)— (7)
ou

with an unknown coefficienp(x, ¢, u, v, w). The functiong and the dependence arof the
coordinates ot are determined from the usual infinitesimal invariance test of the differential
equation (3) with respect t@.

Thus, by the above procedure, one can obtain all point and contact symmetries of Equa-
tion (1) from point symmetries of the system (2). Furthermore, if the operator (7) does not
satisfy the integrability condition of Equations (5), then one obtains ‘non-local’ symmetries
of Equation (1).

2. Equivalence Transformations of the System (2)

In accordance with the general theory of equivalence transformations [4], Equations (2) are
replaced by the following system:

v, =aw,, w;=>bv,, a=a,=>b =b,=0. (8)

We seek the generator of the continuous equivalence group in the general form:

=t ot fo b X o+ fo ©)
whereé&, n, ¢, x, «, and g are unknown functions of all variables involved in the system
(8), i.e. of the variables, x, v, w, a, andb. We extend the action of the operator (9) to the
derivatives occurring in the system (8):
R L R RN L)
ot 0x ov ow da ab

d 0
+ (Dté‘ - LleDIS - vthn)_ + (Dx§ - awxst - UxDxn)—
o, ov

X

0 0
+ (D;x — bvyD/§ — w,D;n) + (Dyx — bveD,§ — wxDxn)a—

ow; Wy
~ ~ ~ 0 ~ ~ ~ d
+(D1a_athn_athé‘)_+(Dwa_awan_ava§)
oa; 0ay,
~ ~ ~ 0 ~ ~ ~ d
+ (DIIB - betn - vaté‘)_ + (Dw,B - bewn - vawé‘)_ s
8b[ abw
where
=25 o p=Sg 9 o O s abw
= <> w = 5 > = T X Uy — vWx vWx 777
Y ow' '8 MM gw N a T g

0 0 0 0 0
Dx = a + Ux% + wx% + (ax +avvx)£ + (bx +bvvx)% .

The infinitesimal invariance test of the system (8) leads to the following result.
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THEOREM 1.The Lie algebra of the most general continuous equivalence group of the system
(2) is spanned by the following operators:

=2 g% g0 0 30 g 9 9 L p2
= T = > =l —wW— — — > = wW— —ad— _—,
! 2 =% T Vaw b A TR PR TA

E, = (o) + /()(iwi) E; = () — ’()(iwi)
p =G E @ agy gy ). Be=tgn s cwaga e )

wheren(x) and ¢(v) are arbitrary functions, and the prime denotes their derivatives. The
group transformations generated by the basic operators have the form

Eq: ?:[+81;

E3: t=te3, wW=we;, E:be;z;

Es: wW=wes, a= ale, b = bey;

E,: X=Fx), aFx),v)=alx,v)F(x), b(F(x),v)=>b(x,v)F (x);

E.: v=H(@), alkx HW)=a(x,v)H (), b, Hw))=b(x,v)/H (v), (10)

wheree, ..., g4 are group parameters, anf(x) and H (v) are arbitrary functions.

The general equivalence group of the system (2) is discontinuous and contains, along with the
continuous transformations (10), thedograph transform

~I
Il

w, w=t, x=v, v=x, a(Xv) =a(x,v), bEX,V)=1/bx,v) (11)

and the following four independent reflections:

T=—t, alx,v)=—alx,v), b(x,v)=—b(x,v); (12)
¥=-x, a@v)=—a(x,v), b, v)=—b(x,v): (13)
T=—v, a7 =—-a(x,v), b, T)=—b(x,v); (14)
w=—w, ax,v)=—a(x,v), b(x,v)=—b(x,v). (15)

3. Determining Equations and the Principal Lie Algebra

The symmetries of the system (2) are obtained from the determining equations
Y[v,—alx,v)w,] =0, Y[w;—bkx,v)v,]=0, (16)

where, in the left-hand sides, and w, are replaced byw, andbuv,, respectively. Herey
is the operator (6) extended to the first derivatives @indw. Since the left-hand sides of
(16) involve the derivatives,, w, regarded as independent variables, Equations (16) yield
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an overdetermined system comprising eight partial differential equations of the first order for
four unknown coefficients of the operator (6):

_(ab). _ (ab), 1 1 1

& = 1x 2ap 1T 2mp & £ = 5 & = Mo &y = 5 (17)
1 b a (b a (b
Xt = bé‘x, Xx = ;{n Xv = ;gw, Xw = é‘v + E <;>x n + % (;)v é‘ (18)

Recall that the maximal Lie algebra admitted by Equations (2) with arbitrary coefficients
a(x,v) andb(x, v) is called theprincipal Lie algebraof the system (2). Assuming in the
determining equations (17-18), that= a(x, v) andb = b(x, v) are arbitrary functions, one
readily obtainsgg = C;,n = 0,¢ = 0, x = C,, whereC; andC, are arbitrary constants.
Hence, the principal Lie algebiay, of the system (2) is a two-dimensional Lie algebra. It is
spanned by

I x,=2 (19)

X, = —.
Y dw

4. Integrability Conditions. The Classifying Relation

Integrability conditions of the system (17-18) yield four equations of the first order:

Z(Gb)v N +a (é> Nw + %gw = 0’ (20)
ab al, a
@D 4 24 (9) Co + = (é) n =0, (21)
ab al, b\a),
a (b (ab), (ab), _
i (0) = () =[] =0 @2

30, e ) 5o

and eight equations of the second order:

(ab), (ab),
2y —abny) = — (ab), n, — (ab), ¢ —ab n—ab g, (24)
ab |, ab |,
(ab)y, a,
Nty — b Nxw = ne — b_nw, (25)
ab a
by
Ntw — A Nxy = —G?UU, (26)
b b,
— N, (27)

Mo — —Nww =
a

b
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$ir — ab &y = aby &y, (28)
b,

Crw — A 8y = a;{m (29)
v b

Gv = bl = a_g‘t +a (_) Cws (30)
a aj.,

2o 50) =~ (@) (D) 22O ] 220 ] ¢

Comparing two expressions fgy;,, calculated from (24) and (26), respectively, and invoking
(20), we arrive at the following basiassifying relation
(ab),, &w=0. (32)

Consequently, we shall consider two alternative cages,, # 0 and(ab),, = 0.

5. The Case(ab),, # 0

It follows from (32) thatz,, = 0 and, hence, Equations (28—30) are written

1
S = a(b é‘x)x =0, (b g‘x)v =0, (;{t) = 0.
Thus, we have the following equations:
1
g‘w :0’ g‘l‘ :aA(t,X), {x — ZB(I’X)’ At :Bx’ Bt :b(aA)x (33)

We will distinguish two different casesy # 0 (or¢, # 0) andA = 0 (or¢ = 0).
Let A £ 0. Then one can readily solve the last equation (32). Namely, writing the equation
B, = b (aA), in the form

2B el (34)
ba T
and invoking that: andb do not depend on one obtains by differentiating (34) with respect
tos:

3 (3), (%),

If we assume thatA,/A), # 0 and, hence(B,/A); # 0, we obtain from the above relation,
invoking thatA and B do not depend om, that

o [(8),/5)] -

The latter relation contradicts the assumptiah)., # 0. Hence(A,/A), = 0and(B;/A); =
0. It follows thatA,/A = u(x) andB,/A); = v(x). Substituting these expressions in (34),
we ultimately arrive at the following equations:

v

Ay =pu@)A, B =v)A, —

=apu(x) + ay. (3%5)
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Furthermore, the functiong(x) andv(x) can be simplified by means of equivalence trans-
formations. Namely, the transformatidf), from (10) reducegi(x) to u = 0. Then the last
relation (35) is writtenba, = v(x). Substituting this relation in equations (33) and using
the equivalence transformations, one can reduce the classification problem Awe®,

to investigation of the three types of equations (2) whose coefficients obey the following
distinctly different relations:

1) a=1 (2) ba, = 1, 3) ba, = *£x. (36)

However, we will not consider here these types of equations. Rather, we provide the complete
investigation of the alternative case, i&£= 0, or, = 0.
WhenA = 0, Equations (33) yiel® = C; = const, and hence

tw=0, =0, b =0Cs. (37)
Furthermore, invoking equations (20—31), we obtain

(b/a)sn, =0, 28, +nlin(b/a)l; + ¢lInb/a)l, = A(x),

nw =0, ny=Cab, 2n,—nlin(ab)]; —¢[In(@b)], = o). (38)

Since we are interested only in nonlinear equations (2), we can replace the first equation (38)
by n, = 0. Indeed, if(b/a), = 0, one can use the equivalence transformation to obtain
a(x,v) = xb(x,v). Then the corresponding equations (2) are linear providedsthet O,
since equation (20) yields, = b, = 0.

Inspecting the integrability conditions of Equations (37—38) and using Equations (22) and
(23), one arrives at the following equations:

C
¢ = 71 2z, = Cz + nlin(a/b)], + ¢[In(a/b)],,
277x = C4 + n[ln(ab)]x + é‘[ln(ab)]vv Ny = CZb (39)

Their compatibility conditions yield:

C C
an+pe = —lnb/a)l, — —n@h)l,
Cs3
yn+68¢ = Coblin(b/a)l, — ?[In(ab)]v , (40)
where
Gy by laf+1bf ﬁ_axv bxv+l ax+bx b, a,
“= a b 2a2  2p?° T a b 2\ a b b al’
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The solution of the non-homogeneous linear system (40) Bord¢ has the form
n=CiI*+ Col? + C3I3 + Cal®, ¢ =CrJ 4 Cod?+ C3J3 + CaJ?. (41)

HereC; are arbitrary constants ardgdandJ; are given by

It = —%[In(ab)]v, I* = —%[In(b/a)]x,

s _ P a_ 98

I} = 2A[In(ab)]v, I* = 2A[|n(b/a)]x
and

7= Lin@b,. 2= %"[In(b/anx,

3 _ @ 4a__V

J? = ZAnnmmh, Jt= ZAUm&mﬂm

respectively, where\ = a8 — By.
Substituting (41) in (39), one obtains four relations:

1
(Jxl - E) C1+ J?Co+ J3C3+ J4Cy =0,

(Jvl — %[In(a/b)]xll — %[In(a/b)]vfl> C1

N

Jc —

+

<

[In(a/b)1, 1% — %[In(a/b)]vﬂ) C,

J° —

[In(a/b)1, I3 — %[In(a/b)]vJ3 - %) Cs

N

Jr—

_+_

_|_
TN N N
< w
NI, NI, NI

<

[Ina/b)11* - %[ln(a/b)]vﬂ) Cs=0,

(1,} - %[In(ab)]xll - %[In(ab)]vﬁ) C1

+ <1x2—

+ (13 - E[In(ab)]x13 - %[In(ab)]vﬂ) Cs

NI -

[In(ab)], I* — %[In(abmﬂ) C,

=

i <’f - %“n(abnxl“ Linaby1, 7t - %) Cs=0,

2
1 2 _ 3 an
I;C1+ (15 —b)Co+ 17C3+ 1;C4 = 0. (42)

Now we are in a position to prove the following classification result.
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THEOREM 2.Let (ab),, # 0. Then the principal Lie algebra (19) of the system (2) may be
extended at most by four additional infintesimal symmetries (6) sucltthatO, provided
that Equations (2) are not linearizadidy the hodograph transform (11). The virtual number
of additional symmetries is defined from Equations (42)

Proof. Provided that the conditions (42) are satisfied, we substitute the expressions (41)
of n and¢ in (17) and (18) to obtain completely integrable systems of first-order partial
differential equations fof andy, respectively. Whence, upon integration, we get the functions
£, x,v, w)andx (¢, x, v, w) containing one additive constant each. These two constants of
integration furnish the basis (19) of the principal Lie algebga Hence, the general solution
of the determining equations (17-18) may depend at most upon four additional constants
Cy, ..., Cqinvolved in (41). This proves the first statement of the theorem.

In order to identify those equations (2) for which the principal Lie algebgacan be
extended by four, three, two or one additional symmetry, we should find the restrictions on
the coefficients: andb of the system (2) under which either all four paramet€rsn (42)
may assume arbitrary values (then equations (2) have four additional symmetries), or this is
possible for three, two, or one independent linear combinatiolds.ofo enumerate all these
possibilities, let us treat (42) as a homogeneous system of linear equatians for, C,.

Four parameter€’; can assume arbitrary values only if the functiesis, v) andb(x, v)
satisfy 16 equations obtained by equating to zero the coefficiedig of ., C4 in the left-hand
sides of Equations (42).

The cases when three linear combinationg§'omay assume arbitrary values, are obtained
by setting in (42)C; = k;151+ki2s2+kizss, wherek;; = const Equating to zero the coefficients
of 51, 52, 53, ONe arrives at 12 equations ofx, v) andb(x, v).

Likewise, by settingC; = k;151 + k;2s2, Oone arrives at 8 equations fofx, v) andb(x, v)
providing conditions for extension df» by two symmetries.

Finally, the conditions for the extension ff, by one symmetry are obtained by setting
C; = k;s. This yields four equations far(x, v) andb(x, v) obtained from (42) by formally
replacing the paramete6 by constant coefficients.

6. The Case(ab),, =0

Consider now the second possibility provided by the classifying relation (32), naaiely,
= 0. Integrating this equation and employing the last two equivalence transformations (10)
with appropriately chosen functiorfs(x) and H (v), one obtains

ab = +1. (43)
Now, assuming that (2) are nonlinear and using Equations (20-31), we obtain
n = Cix + Ca, C,, C, = const, (44)

¢ = ¢, = 0 and the following equations fa@n(x, v):

Go=Ca, & =5+ (Cox 4 C) 2 4K, (45)
a a
1=+ (Cox + C2) (%) +¢ (%) =0, (46)

1 Recall that linearizable equations admit an infinite-dimensional Lie algebra.
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the latter being the consistency condition for Equations (45). Equation (46) yields:
¢ =Cil + CyJ, (47)

where

e @] @)

Substituting (47) in (45), one obtains two relations:
Cil,+CyJ, — Ca =0,
Ci(al, — Ia, — xa,) + Cs(aJ, — Ja, —a,) — Ka = 0. (48)

THEOREM 3.Let(ab),, = 0. Then the principal Lie algebra (19) of the system (2) may be ex-
tended at most by two additional infinitesimal symmetries (6), provided that Equations (2) are
not linearizable. The virtual number of additional symmetries is defined from Equations (48)

Proof. Provided that the conditions (48) are satisfied, we substitute the expressions (44)
and (47) ofp and¢, respectively, in (17) and (18) to obtain completely integrable systems of
first-order partial differential equations férand y, respectively. After integration, we get the
functions& and y containing one additive constant each. These two constants of integration
furnish the basis (19) of the principal Lie algehbts.. Hence, the general solution of the
determining equations (17-18) may depend at most upon two additional conStalts
involved in (44) and (47). This proves the first statement of the theorem.

In order to identify those equations (2) for which the principal Lie algebgacan be
extended by two or one additional symmetry, we adopt the reasoning used in the proof of
Theorem 2. Namely, setting; = k;151 + ki2s2 in (48) and equating to zero the coefficients
of s; ands,, we obtain four equations far(x, v). The latter equations provide the conditions
for the existence of two additional symmetries. Likewise, the conditions for one additional
symmetry are obtained by setti = k;s and equating to zero the coefficientssofThis
yields two equations foti(x, v) formally obtained by replacing in (48), andC, by k; and
k,, respectively.

7. Conclusion

In this paper, the problem of classification of nonlinear wave equations (1) with respect to
admitted contact transformation groups is reduced to the investigatiton of point transform-
ation groups of the equivalent system of first-order quasi-linear equations (2). The main
classification results are formulated in Theorems 2 and 3.
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