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Abstract. Interest in nonlinear wave equations has been stimulated by numerous physical applications, such
as telecommunication (e.g. nonlinear telegrapher equation), gasdynamics, anisotropic plasticity and nonlinear
elasticity, etc. Mathematical models of these phenomena can often be reduced to particular types of the equation
utt = f (x, ux)uxx + g(x, ux). In this paper, the problem of classification of the latter equation with respect
to admitted contact transformation groups is reduced to the investigation of point transformation groups of the
equivalent system of first-order quasi-linear equationsvt = a(x, v)wx , wt = b(x, v)vx .
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1. Introduction

The problem of group analysis of nonlinear wave phenomena has been discussed in numerous
papers since the 1980s (see [1] and [2] and the references therein). In these papers, several
particular types of so-called nonlinear wave equations were classified from the symmetry
point of view. Recently, an attempt was undertaken in [2] to encapsulate these particular cases
in a general group classification of nonlinear equations of the form

utt = f (x, ux)uxx + g(x, ux). (1)

Numerous particular types of Equations (1) were identified when the symmetry group is wider
than that of the general equation (1). The approach employed in [2] is based on the so-called
method of preliminary group classificationand does not solve the problem ofcomplete group
classificationof Equations (1).

We propose here to tackle the problem of group classification with respect to point as well
as contact transformations by reducing the second-order equation (1) to an equivalent system
of first-order quasi-linear equations of the form

vt = a(x, v)wx, wt = b(x, v)vx . (2)

The system (2) admits a large group of equivalence transformations. In particular, the sys-
tem (2), unlike Equation (1), admits an equivalence transformation given by the hodograph
transform. This fact is crucial for the group classification.

* On leave from Institute of Mechanics, Ufa Branch of the Russian Academy of Sciences.
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To rewrite Equation (1) in the form (2), we first introduce two dependent variables,p = ux

andw = ut . Then the integrability conditionpt = wx and Equation (1) yield the following
system of first-order partial differential equations:

pt = wx, wt = f (x, p)px + g(x, p).

It can be reduced to a homogenous system by a change of variablesp = h(x, v). Indeed, the
above system is written

hvvt = wx, wt = f (x, h)hvvx + f (x, h)hx + g(x, h).

Now we choose the functionh(x, v) as a solution of an ordinary differential equation of the
first order with the independent variablex:

f (x, h)hx + g(x, h) = 0.

We assume thath depends onv being regarded as a parameter and thathv 6= 0. Ultimately,
we arrive at the homogeneous system of the form (2) witha = 1/hv andb = f hv.

Equations (2) considered together with

ut = w, (3)

are equivalent to the original differential equation (1). Furthermore, any infinitesimal contact
(in particular, Lie point) symmetry of Equation (1) (see, e.g., [3])

X = −φut

∂

∂t
− φux

∂

∂x
+ (φ − utφut

− uxφux

) ∂

∂u
+ (φt + utφu)

∂

∂ut

+ (φx + uxφu)
∂

∂ux

,

whereφ = φ(x, t, u, ux , ut ), provides a Lie point symmetry of the system (2–3). Indeed, we
first transformX into a generator of point transformations of the variablesx, t, u, p,w by
settingux = p, ut = w, then use the change of variablesp = h(x, v) and obtain the operator

Z = ξ
∂

∂t
+ η

∂

∂x
+ ϕ

∂

∂u
+ ζ

∂

∂v
+ χ

∂

∂w
(4)

with the coordinates depending onx, t, u, v,w. This operator is obviously admitted by the
system (2–3).

Conversely, given an operator (4) admitted by the system (2–3), it is associated with an
infinitesimal contact symmetryX of Equation (1) if and only if the following overdetermined
system for an unknownφ is compatible:

ξ = −φut
, η = −φux

, ϕ = φ − utφut
− uxφux

,

ηhx + ζhv = φx + uxφu, χ = φt + utφu. (5)

Note that the system (2) does not involve the variableu. Consequently, in what follows we
will discuss the symmetries

Y = ξ(x, t, v,w)
∂

∂t
+ η(x, t, v,w)

∂

∂x
+ ζ(x, t, v,w)

∂

∂v
+ χ(x, t, v,w)

∂

∂w
(6)

of the system (2) presupposing that the coordinates ofY do not explicitly depend uponu.
One can associate with the operator (6) a symmetry (4) of the extended system (2–3) by first



Group Classification of Nonlinear Wave Equations63

assuming that all arbitrary constants or arbitrary functions occuring inY depend onu, and
then extending the action ofY to the variableu in the form

Z = Y + ϕ(x, t, u, v,w)
∂

∂u
(7)

with an unknown coefficientϕ(x, t, u, v,w). The functionϕ and the dependence onu of the
coordinates ofY are determined from the usual infinitesimal invariance test of the differential
equation (3) with respect toZ.

Thus, by the above procedure, one can obtain all point and contact symmetries of Equa-
tion (1) from point symmetries of the system (2). Furthermore, if the operator (7) does not
satisfy the integrability condition of Equations (5), then one obtains ‘non-local’ symmetries
of Equation (1).

2. Equivalence Transformations of the System (2)

In accordance with the general theory of equivalence transformations [4], Equations (2) are
replaced by the following system:

vt = awx, wt = bvx, at = aw = bt = bw = 0. (8)

We seek the generator of the continuous equivalence group in the general form:

E = ξ
∂

∂t
+ η

∂

∂x
+ ζ

∂

∂v
+ χ

∂

∂w
+ α

∂

∂a
+ β

∂

∂b
, (9)

where ξ, η, ζ, χ, α, and β are unknown functions of all variables involved in the system
(8), i.e. of the variablest, x, v,w, a, andb. We extend the action of the operator (9) to the
derivatives occurring in the system (8):

E = ξ
∂

∂t
+ η

∂

∂x
+ ζ

∂

∂v
+ χ

∂

∂w
+ α

∂

∂a
+ β

∂

∂b

+ (Dtζ − awxDtξ − vxDtη)
∂

∂vt

+ (Dxζ − awxDxξ − vxDxη)
∂

∂vx

+ (Dtχ − bvxDtξ − wxDtη)
∂

∂wt

+ (Dxχ − bvxDxξ − wxDxη)
∂

∂wx

+ (D̃tα − axD̃tη − avD̃tζ )
∂

∂at

+ (D̃wα − axD̃wη − avD̃wζ )
∂

∂aw

+ (D̃tβ − bxD̃tη − bvD̃tζ )
∂

∂bt

+ (D̃wβ − bxD̃wη − bvD̃wζ )
∂

∂bw

,

where

D̃t = ∂

∂t
, D̃w = ∂

∂w
, Dt = ∂

∂t
+ awx

∂

∂v
+ bvx

∂

∂w
+ aavwx

∂

∂a
+ abvwx

∂

∂b
,

Dx = ∂

∂x
+ vx

∂

∂v
+ wx

∂

∂w
+ (ax + avvx)

∂

∂a
+ (bx + bvvx)

∂

∂b
.

The infinitesimal invariance test of the system (8) leads to the following result.
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THEOREM 1.The Lie algebra of the most general continuous equivalence group of the system
(2) is spanned by the following operators:

E1 = ∂

∂t
, E2 = ∂

∂w
, E3 = t

∂

∂t
− w

∂

∂w
− 2b

∂

∂b
, E4 = w

∂

∂w
− a

∂

∂a
+ b

∂

∂b
,

Eη = η(x)
∂

∂x
+ η′(x)

(
a

∂

∂a
+ b

∂

∂b

)
, Eζ = ζ(v)

∂

∂v
− ζ ′(v)

(
a

∂

∂a
+ b

∂

∂b

)
,

whereη(x) and ζ(v) are arbitrary functions, and the prime denotes their derivatives. The
group transformations generated by the basic operators have the form

E1 : t = t + ε1;
E2 : w = w + ε2;
E3 : t = tε3, w = wε−1

3 , b = bε−2
3 ;

E4 : w = wε4, a = aε−1
4 , b = bε4;

Eη : x = F(x), a(F (x), v) = a(x, v)F ′(x), b(F (x), v) = b(x, v)F ′(x);
Eζ : v = H(v), a(x,H(v)) = a(x, v)H ′(v), b(x,H(v)) = b(x, v)/H ′(v), (10)

whereε1, . . . , ε4 are group parameters, andF(x) andH(v) are arbitrary functions.

The general equivalence group of the system (2) is discontinuous and contains, along with the
continuous transformations (10), thehodograph transform

t = w, w = t, x = v, v = x, a(x, v) = a(x, v), b(x, v) = 1/b(x, v) (11)

and the following four independent reflections:

t = −t, a(x, v) = −a(x, v), b(x, v) = −b(x, v); (12)

x = −x, a(x, v) = −a(x, v), b(x, v) = −b(x, v); (13)

v = −v, a(x, v) = −a(x, v), b(x, v) = −b(x, v); (14)

w = −w, a(x, v) = −a(x, v), b(x, v) = −b(x, v). (15)

3. Determining Equations and the Principal Lie Algebra

The symmetries of the system (2) are obtained from the determining equations

Y [vt − a(x, v)wx ] = 0, Y [wt − b(x, v)vx ] = 0, (16)

where, in the left-hand sides,vt andwt are replaced byawx andbvx, respectively. Here,Y
is the operator (6) extended to the first derivatives ofv andw. Since the left-hand sides of
(16) involve the derivativesvx,wx regarded as independent variables, Equations (16) yield
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an overdetermined system comprising eight partial differential equations of the first order for
four unknown coefficients of the operator (6):

ξt = ηx − (ab)x

2ab
η − (ab)v

2ab
ζ, ξx = 1

ab
ηt , ξv = 1

a
ηw, ξw = 1

b
ηv; (17)

χt = bζx, χx = 1

a
ζt , χv = b

a
ζw, χw = ζv + a

2b

(
b

a

)
x

η + a

2b

(
b

a

)
v

ζ. (18)

Recall that the maximal Lie algebra admitted by Equations (2) with arbitrary coefficients
a(x, v) and b(x, v) is called theprincipal Lie algebraof the system (2). Assuming in the
determining equations (17–18), thata = a(x, v) andb = b(x, v) are arbitrary functions, one
readily obtainsξ = C1, η = 0, ζ = 0, χ = C2, whereC1 andC2 are arbitrary constants.
Hence, the principal Lie algebraLP of the system (2) is a two-dimensional Lie algebra. It is
spanned by

X1 = ∂

∂t
, X2 = ∂

∂w
. (19)

4. Integrability Conditions. The Classifying Relation

Integrability conditions of the system (17–18) yield four equations of the first order:

2
(ab)v

ab
ηt + a

(
b

a

)
x

ηw + (ab)v

a
ζw = 0, (20)

(ab)v

ab
ζt + 2a

(
b

a

)
x

ζw + a

b

(
b

a

)
x

ηt = 0, (21)

a

b

(
b

a

)
x

ηv −
(

(ab)x

ab

)
v

η −
[
(ab)v

ab
ζ

]
v

= 0, (22)

[
a

b

(
b

a

)
x

η

]
x

− (ab)v

ab
ζx +

(
a

b

(
b

a

)
v

)
x

ζ = 0, (23)

and eight equations of the second order:

2(ηtt − ab ηxx) = − (ab)x ηx − (ab)v ζx − ab

[
(ab)x

ab

]
x

η − ab

[
(ab)v

ab

]
x

ζ, (24)

ηtv − b ηxw = (ab)v

ab
ηt − b

ax

a
ηw, (25)

ηtw − a ηxv = −a
bx

b
ηv, (26)

ηvv − b

a
ηww = bv

b
ηv, (27)
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ζtt − ab ζxx = abxζx, (28)

ζtw − a ζxv = a
bv

b
ζx, (29)

ζtv − b ζxw = av

a
ζt + a

(
b

a

)
x

ζw, (30)

2
(
ζww − a

b
ζvv

)
= −

(a

b

)
x
ηv −

(a

b

)
v
ζv − a

b

[
b

a

(a

b

)
x

]
v

η − a

b

[
b

a

(a

b

)
v

]
v

ζ. (31)

Comparing two expressions forηttw calculated from (24) and (26), respectively, and invoking
(20), we arrive at the following basicclassifying relation:

(ab)xv ζw = 0. (32)

Consequently, we shall consider two alternative cases,(ab)xv 6= 0 and(ab)xv = 0.

5. The Case(ab)xv 6= 0

It follows from (32) thatζw = 0 and, hence, Equations (28–30) are written

ζtt = a(b ζx)x = 0, (b ζx)v = 0,

(
1

a
ζt

)
v

= 0.

Thus, we have the following equations:

ζw = 0, ζt = a A(t, x), ζx = 1

b
B(t, x), At = Bx, Bt = b (aA)x. (33)

We will distinguish two different cases,A 6= 0 (or ζt 6= 0) andA = 0 (or ζt = 0).
Let A 6= 0. Then one can readily solve the last equation (32). Namely, writing the equation
Bt = b (aA)x in the form

1

b

Bt

A
= ax + a

Ax

A
(34)

and invoking thata andb do not depend ont, one obtains by differentiating (34) with respect
to t :

1

b

(
Bt

A

)
t

= a

(
Ax

A

)
t

.

If we assume that(Ax/A)t 6= 0 and, hence,(Bt/A)t 6= 0, we obtain from the above relation,
invoking thatA andB do not depend onv, that

(ab)v =
[(

Bt

A

)
t

/(
Ax

A

)
t

]
v

= 0.

The latter relation contradicts the assumption(ab)xv 6= 0. Hence,(Ax/A)t = 0 and(Bt/A)t =
0. It follows thatAx/A = µ(x) andBt/A)t = ν(x). Substituting these expressions in (34),
we ultimately arrive at the following equations:

Ax = µ(x)A, Bt = ν(x)A,
ν(x)

b
= aµ(x)+ ax. (35)
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Furthermore, the functionsµ(x) andν(x) can be simplified by means of equivalence trans-
formations. Namely, the transformationEη from (10) reducesµ(x) to µ = 0. Then the last
relation (35) is writtenbax = ν(x). Substituting this relation in equations (33) and using
the equivalence transformations, one can reduce the classification problem, whenA 6= 0,
to investigation of the three types of equations (2) whose coefficients obey the following
distinctly different relations:

(1) a = 1; (2) bax = 1; (3) bax = ±x. (36)

However, we will not consider here these types of equations. Rather, we provide the complete
investigation of the alternative case, i.e.A = 0, orζt = 0.

WhenA = 0, Equations (33) yieldB = C1 = const., and hence

ζw = 0, ζt = 0, b ζx = C1. (37)

Furthermore, invoking equations (20–31), we obtain

(b/a)xηt = 0, 2ζv + η[ln(b/a)]x + ζ [ln(b/a)]v = λ(x),

ηw = 0, ηv = C2b, 2ηx − η[ln(ab)]x − ζ [ln(ab)]v = ω(v). (38)

Since we are interested only in nonlinear equations (2), we can replace the first equation (38)
by ηt = 0. Indeed, if(b/a)x = 0, one can use the equivalence transformation to obtain
a(x, v) = ±b(x, v). Then the corresponding equations (2) are linear provided thatηt 6= 0,
since equation (20) yieldsav = bv = 0.

Inspecting the integrability conditions of Equations (37–38) and using Equations (22) and
(23), one arrives at the following equations:

ζx = C1

b
, 2ζv = C3+ η[ln(a/b)]x + ζ [ln(a/b)]v,

2ηx = C4+ η[ln(ab)]x + ζ [ln(ab)]v, ηv = C2b. (39)

Their compatibility conditions yield:

αη + βζ = C4

2
[ln(b/a)]x − C1

b
[ln(ab)]v ,

γ η + δζ = C2b[ln(b/a)]x − C3

2
[ln(ab)]v , (40)

where

α = axx

a
− bxx

b
− 1

2

a2
x

a2
+ 1

2

b2
x

b2
, β = axv

a
− bxv

b
+ 1

2

(
ax

a
+ bx

b

)(
bv

b
− av

a

)
,

γ = axv

a
+ bxv

b
+ 1

2

(
ax

a
+ bx

b

)(
bv

b
− av

a

)
− 2

bxbv

b2
,

δ = avv

a
+ bvv

b
− 1

2

a2
v

a2
− 3

2

b2
v

b2
.
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The solution of the non-homogeneous linear system (40) forη andζ has the form

η = C1I
1+ C2I

2+ C3I
3+ C4I

4, ζ = C1J
1+ C2J

2+ C3J
3+ C4J

4. (41)

HereCi are arbitrary constants andIi andJi are given by

I 1 = − δ

b1
[ln(ab)]v , I 2 = −bβ

1
[ln(b/a)]x ,

I 3 = β

21
[ln(ab)]v , I 4 = δ

21
[ln(b/a)]x

and

J 1 = γ

b1
[ln(ab)]v , J 2 = bα

1
[ln(b/a)]x ,

J 3 = − α

21
[ln(ab)]v , J 4 = − γ

21
[ln(b/a)]x ,

respectively, where1 = αδ − βγ .
Substituting (41) in (39), one obtains four relations:(

J 1
x −

1

b

)
C1+ J 2

x C2+ J 3
x C3+ J 4

x C4 = 0,(
J 1

v −
1

2
[ln(a/b)]xI 1− 1

2
[ln(a/b)]vJ 1

)
C1

+
(

J 2
v −

1

2
[ln(a/b)]xI 2− 1

2
[ln(a/b)]vJ 2

)
C2

+
(

J 3
v −

1

2
[ln(a/b)]xI 3− 1

2
[ln(a/b)]vJ 3− 1

2

)
C3

+
(

J 4
v −

1

2
[ln(a/b)]xI 4− 1

2
[ln(a/b)]vJ 4

)
C4 = 0,(

I 1
x −

1

2
[ln(ab)]xI 1− 1

2
[ln(ab)]vJ 1

)
C1

+
(

I 2
x −

1

2
[ln(ab)]xI 2− 1

2
[ln(ab)]vJ 2

)
C2

+
(

I 3
x −

1

2
[ln(ab)]xI 3− 1

2
[ln(ab)]vJ 3

)
C3

+
(

I 4
x −

1

2
[ln(ab)]xI 4− 1

2
[ln(ab)]vJ 4− 1

2

)
C4 = 0,

I 1
v C1+ (I 2

v − b)C2+ I 3
v C3+ I 4

v C4 = 0. (42)

Now we are in a position to prove the following classification result.
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THEOREM 2.Let (ab)xv 6= 0. Then the principal Lie algebra (19) of the system (2) may be
extended at most by four additional infintesimal symmetries (6) such thatζt = 0, provided
that Equations (2) are not linearizable1 by the hodograph transform (11). The virtual number
of additional symmetries is defined from Equations (42).

Proof. Provided that the conditions (42) are satisfied, we substitute the expressions (41)
of η and ζ in (17) and (18) to obtain completely integrable systems of first-order partial
differential equations forξ andχ , respectively. Whence, upon integration, we get the functions
ξ(t, x, v,w) andχ(t, x, v,w) containing one additive constant each. These two constants of
integration furnish the basis (19) of the principal Lie algebraLP . Hence, the general solution
of the determining equations (17–18) may depend at most upon four additional constants
C1, . . . , C4 involved in (41). This proves the first statement of the theorem.

In order to identify those equations (2) for which the principal Lie algebraLP can be
extended by four, three, two or one additional symmetry, we should find the restrictions on
the coefficientsa andb of the system (2) under which either all four parametersCi in (42)
may assume arbitrary values (then equations (2) have four additional symmetries), or this is
possible for three, two, or one independent linear combinations ofCi. To enumerate all these
possibilities, let us treat (42) as a homogeneous system of linear equations forC1, . . . , C4.

Four parametersCi can assume arbitrary values only if the functionsa(x, v) andb(x, v)

satisfy 16 equations obtained by equating to zero the coefficients ofC1, . . . , C4 in the left-hand
sides of Equations (42).

The cases when three linear combinations ofCi may assume arbitrary values, are obtained
by setting in (42)Ci = ki1s1+ki2s2+ki3s3, wherekij = const. Equating to zero the coefficients
of s1, s2, s3, one arrives at 12 equations fora(x, v) andb(x, v).

Likewise, by settingCi = ki1s1 + ki2s2, one arrives at 8 equations fora(x, v) andb(x, v)

providing conditions for extension ofLP by two symmetries.
Finally, the conditions for the extension ofLP by one symmetry are obtained by setting

Ci = kis. This yields four equations fora(x, v) andb(x, v) obtained from (42) by formally
replacing the parametersCi by constant coefficientski.

6. The Case(ab)xv = 0

Consider now the second possibility provided by the classifying relation (32), namely(ab)xv

= 0. Integrating this equation and employing the last two equivalence transformations (10)
with appropriately chosen functionsF(x) andH(v), one obtains

ab = ±1. (43)

Now, assuming that (2) are nonlinear and using Equations (20–31), we obtain

η = C1x + C2, C1, C2 = const., (44)

ζt = ζw = 0 and the following equations forζ(x, v):

ζx = Ca, ζv = av

a
ζ +

(
C1x + C2

)ax

a
+K, (45)

C1
ax

a
+ (C1x + C2)

(ax

a

)
x
+ ζ

(ax

a

)
v
= 0, (46)

1 Recall that linearizable equations admit an infinite-dimensional Lie algebra.
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the latter being the consistency condition for Equations (45). Equation (46) yields:

ζ = C1I + C2J, (47)

where

I = −
(
x
ax

a

)
x

[(ax

a

)
v

]−1

, J = −
(ax

a

)
x

[(ax

a

)
v

]−1

.

Substituting (47) in (45), one obtains two relations:

C1Ix + C2Jx − Ca = 0,

C1(aIv − Iav − xax)+ C2(aJv − Jav − ax)−Ka = 0. (48)

THEOREM 3.Let(ab)xv = 0. Then the principal Lie algebra (19) of the system (2) may be ex-
tended at most by two additional infinitesimal symmetries (6), provided that Equations (2) are
not linearizable. The virtual number of additional symmetries is defined from Equations (48).

Proof. Provided that the conditions (48) are satisfied, we substitute the expressions (44)
and (47) ofη andζ , respectively, in (17) and (18) to obtain completely integrable systems of
first-order partial differential equations forξ andχ , respectively. After integration, we get the
functionsξ andχ containing one additive constant each. These two constants of integration
furnish the basis (19) of the principal Lie algebraLP . Hence, the general solution of the
determining equations (17–18) may depend at most upon two additional constantsC1, C2

involved in (44) and (47). This proves the first statement of the theorem.
In order to identify those equations (2) for which the principal Lie algebraLP can be

extended by two or one additional symmetry, we adopt the reasoning used in the proof of
Theorem 2. Namely, settingCi = ki1s1 + ki2s2 in (48) and equating to zero the coefficients
of s1 ands2, we obtain four equations fora(x, v). The latter equations provide the conditions
for the existence of two additional symmetries. Likewise, the conditions for one additional
symmetry are obtained by settingCi = kis and equating to zero the coefficients ofs. This
yields two equations fora(x, v) formally obtained by replacing in (48)C1 andC2 by k1 and
k2, respectively.

7. Conclusion

In this paper, the problem of classification of nonlinear wave equations (1) with respect to
admitted contact transformation groups is reduced to the investigatiton of point transform-
ation groups of the equivalent system of first-order quasi-linear equations (2). The main
classification results are formulated in Theorems 2 and 3.
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