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Abstract

We present here the solution of the problem on linearization of third-order ordinary differential
equations by means of point and contact transformations. We provide, in explicit forms, the necessary
and sufficient conditions for linearization, the equations for determining the linearizing point and
contact transformations as well as the coefficients of the resulting linear equations.
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1. Introduction

Sophus Lie showed [7, Chapter 3, 83, p. 85], that the third-order ordinary differential
equations connected by contact transformations with the simplest linear equétio®
are at most cubic in the second-order derivative. Lie himself did not investigate further the
problem of linearization of third-order equations neither by contact nor by point transfor-
mations. We owe to Shiing-shen Chern [1,2] the first significant result toward the solution
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of the problem on linearization of third-order equations by means of contact transforma-
tions. Using Cartan’s method, he obtained conditions for the equivalence with the equations
u” =0 andu” + u = 0. In his work, the conditions for linearization are given in terms
of geometric invariants of contact transformations and do not provide practical methods
for determining linearizing transformations. Likewise, the conditions for equivalence with
an arbitrary linear equation announced in [8] (see also [3]) are not given explicitly. Guy
Grebot [4] studied the linearization of third-order equations by means of a restricted class
of point transformations, namely= ¢(x), u = ¥ (x, y). However, the problem was not
completely solved (see further Remark 2.4). Recently, we have solved [6] the problem on
linearization by general point transformations.

In the calculations presented here, we used computer algebra packages. The final results
were checked by comparing with theoretical results on invariants as well as by applying to
numerous known and new examples of linearization.

2. Point transformations of third-order equations

This section is dedicated to linearization of the third-order equations

y'=fy " (2.1)
by means of point transformations
t=gx,y), u=1yx,y). (2.2)

We first investigate the necessary conditions for linearization and find the general form of
Eq. (2.1) that can be obtained from linear equations by any point transformation. In conse-
guence, we arrive at two classes of equations providing the candidates for linearization by
point transformations. The first class contains equations that are linear in the second-order
derivative and at most cubic in the first derivative, while the second class is quadratic in the
second derivative with a specific dependence on the first derivative. We write the general
linear third-order equation in Laguerre’s form

" +a(t)u=0. (2.3)
2.1. The candidates for linearization

Using the common rules for the transformations of derivatives under the change of
variables (2.2) and singling out the terms witt and(y”)2, we have

" DX(Q) A / " 1IN\2
= = (ox + " —30,(y"N ]+ - -, 2.4
Di(¢)  (px+ y’cpy)S[ w YOy =30, 0] @4
the omitted terms being at most lineanjifi. The subscripts andy denote the differenti-
ations inx andy, respectively, and
A=pxy —yPx #0 (2.5)

is the Jacobian of the change of variables (2.2). It is manifest from Eqg. (2.4) that the trans-
formations (2.2) withg, = 0 andg, # 0, respectively, provide two distinctly different
candidates for linearization (cf. Eq. (5.5)).
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If ¢, =0, we work out the missing terms in (2.4), substitute the resulting expression
in (2.3) and obtain the following equation:

y" + (A1y' + Ao)y” + B3y + B2y'? + B1y' + Bo =0, (2.6)
where
A= 3W;1Wyya Ao = 3(¢x 1py)_:l'((ﬂ)c ny - 1/’}'(Pxx)» (2.7)
B3 = W}v_lwyyya By = 3(§0x I/fy)_l((waxyy - I/fyyfﬂxx), (28)
-1
By = ((ﬂfl/fy) (3(%%)5 1/fy — OxxxPx 1/fy - 6§0xx‘px I/fxy + 3¢§wxxy)v (29)

Bo= ((pfwy)il(&ofx Vx — Qrxx@xWx — 3Qxx @x Vx + (p;%wxxx + mﬁ(ﬂf) (2.10)

If ¢, # 0, we setr(x, y) = ¢, /e, and arrive at the following equation:

1
7z [—3())//)24- (Czy/Z + Cly/_,’_ Co)y//
Y+

+ Dsy”® 4 Day* + D3y”® + D2y’ + D1y’ + Do] =0, (2.11)
where

Tap 1 opaa 92

Cr=3| 2| 12292 50950 (2.12)
[dy | laydy 9y?
Tap 17X/ aA 8A\d 9 (.

c1=312%2 4 P22 L 08N a0 2,02 (2.13)
L dy | dy dx J dy dy 8y
Tap 17 dpaa 92 3 3 3 9

Co=3|Za| ;2222 2092, o000 o _5. 200 4L (2.14)
L dy | dy 0x 9y2 8y8 dy dy

e [2,4] Yog (ap a3y 3¢ ay

>~ Loy ay \dy ay3  9y3 dy

320 (920 9 3 92 3p\°
+3—ﬁ<—‘§—w——¢—f)+aw<—‘p> } (2.15)
dys dy  Jy 9y ay

ou=[gea] {[ea-s 3515
ad dy dy | dy3

2 2 -1 2
+3l5 3_¢%_5A3_¢ O\ " _g 0907 | 04 3_90
3y2 dy ay ay 8y2 dy | ay2?
293 3 92A 9
45 O 300 sy (22) ] (2.16)
8y 3y3 dy 9y? dy

ap do 0 JdA JdA
D= |2 84 — 5,20 20]2 —+ 6( 22 + 7,24 340"
ay dy dy 0x 8y By
9% d
_2

32 (0 1 dgp 92
+30r WP (b —r—‘p—‘”
ay 3y2 \ 3y dy 9y2 By
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93 92 ardA  92A 92A70
+1or2(8 ) —1//+3[2A3 ’+4—r————3r—]—"’
y

dy3 y2 ' 3y dy  3xdy 9y2 | dy
9 5
+10a¢r2<—(p> } (2.17)
dy
dp 17t dp d 3p\2a3
Do=|22a| l22|124 — 5222V —+1or3<—‘”) Y
dy dy ay ] ay3 dy ) 9y3
dA A dg 92 B ar 02
po|3r 8 gedA _gadedV  jor g ,0r]2%
dx ay 8y ay2 dx dy | dy

9 9 320\ ? 3p\°
+302| 2 a2 T9) 4 10wyrd( ¥
3y dy dy?2 Ay
9 a 82 9 ar 9A
+la= +1ras " aea(?) 4822
dy 8x 9y2 ay ay 0x
ar 9A 92A  92A 92A70
il 7r 10r2—]—¢}

ay ady 0xdy Coax2 ay

-1 3 3
m=[Gra] {5 s () [ (3]

(2.18)

A AA dg 92 B ar 92
+3r|6re= +10:222 53—‘”—‘”—4 I 14 a2
dx dy 8y By dx dy | 9y2
] 9 92 92 92 92
+153] 2V _an(92 LAY I (LAY LA |
dy dy dy?2 9x2 dxdy 9y?2
ar\? ar o ar A ar A ar A
o[ =) 13- a4 t8 45 5000 93 0
ay dx dy dx dx dx Jy ay x
ar dA 5 924 82A 32A70
+1520 02 g2 537 2|2 (2.19)
ay 8 8x8y Bx ay2 | dy
dp 17t dp dy 0 3p\2[ 83 3p\°
Do = —(pA r# 4A—r—(p—w _‘P+r5(_§0> —w—l-ou/f o
dy dy dy | ay3 dy dy3 dy
A 04 30° 9 ar 92
132222 o2 LYYy wy L
dx 9y By dx dy | 9y?

3 3o\ "1/ 929\ 2 32 32 32
+ 3r% r—w —5A %% e + 3r3—r +2r2 . +r—r
By Ay dy2 dy2 xdy  9x2
3 ar\? ar o rdA  dr dA
o) —3( L) —n LT A (322 T
8y ax dx dy dx dx ax 8y
ar oA 82A A 5924 82A>] aw}

+5—— +32———r —r
dy ox 8x ay dy axdy 9y?2

HereA = ¢y, — ¢y ¥, is the Jacobian (2.5).

(2.20)
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Definition 2.1. Equations (2.6) and (2.11) provide two differexaindidates for lineariza-
tion.

Thus, every linearizable third-order equation belongs either to the class of equa-
tions (2.6) with linear dependence on the second derivativer to the class of equa-
tions (2.11) that are at most quadratic)ifi with a specific dependence on. In Sec-
tions 2.2 and 2.3, we formulate the main theorems containing necessary and sufficient
conditions for linearization as well as the methods for constructing the linearizing point
transformations for each candidate. The proofs and illustrative examples are provided in
the subsequent sections.

2.2. The linearization test for Eq. (2.6)

Consider the first candidate for linearization, i.e., Eq. (2.6). In this case, the linearizing
transformations (2.2) have the form

t=9(x), u=y,y). (2.21)
Theorem 2.1. Equation(2.6),

y" + (A1y' + Ao)y” + B3y + B2y'? + B1y' + Bo =0, (2.6)
is linearizable if and only if its coefficients obey the following five equations

Aoy — A1, =0, (3B, — A3 — 3A0X)y =0, (2.22)

3A1, + AgA1 — 3B, =0, 341, + A2 —9B3 =0, (2.23)

(9B1 — 6Ag, — 2A3) A1x + 9(B1y — A1Bo)y + 3B1,Ag — 27Bgy, =0. (2.24)

Provided that the condition§2.22)—(2.24)are satisfied, the linearizing transforma-
tion (2.21)is defined by a third-order ordinary differential equation for the funcigamn),
namely by the Riccati equation

dx

6—= —3x2=3B; — A3 — 3Aq, (2.25)
dx
for
x =2z (2.26)
Px
and by the following integrable system of partial differential equationg/for, y):
3Wyy = Al¢yv 3wxy = (3X + Ao)lﬁy, (227)
1
Vxx = 3X VYax + BOWy - 6(3A0x + A(z) —3B1+ 9X2)1//x — 2, (2.28)

wherey is given by(2.26)and £2 is the following expression:

2 = —(9Aoxx + 1840 Ao + 54Boy — 27B1, + 4A3 — 1840B1 + 1841 Bo). (2.29)

1
4
Finally, the coefficient of the resulting linear equatio(®.3)is given by

a= .Q(p;3. (2.30)
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Remark 2.1. Since the system of Egs. (2.22)—(2.24) provides the necessary and sufficient
conditions for linearization, it is invariant with respect to the transformations (2.21). It
means that the left-hand sides of Eqgs. (2.22)—(2.24)edative invariants(of the second-
order) for the equivalence group (2.21).

Remark 2.2. Using (2.22) and (2.23), one can replace Eq. (2.24) by
£2,=0. (2.31)
Equation (2.31) follows from (2.30) singg, = 0 and hencéu(¢)), = (a(¢(x)), = 0.

Remark 2.3. Let us assume tha® # 0. Then one can find the expressions ¢t and
oxxx from Eq. (2.30) and substitute them in (2.25) to obtain

a 83283 (6aa” — 7(a)?) = 62,2 — 722 — 9B 22, (2.32)

whereg = (3B1 — Ag — 3Aqy)/3 ando’ is the derivative of the functioa ().

Remark 2.4. If £2 =0, the necessary and sufficient conditions for linearization given by
our four equations (2.22), (2.23) together with the fifth equatibe- 0 are equivalent to
the five equations given by (22), (23), (24) and (21) from [4].

If 2 #0, the conditions (22), (23), (26) and (21) are given in [4] as the necessary and
sufficient conditions for linearization. However, upon examining simple examples (e.g., the
equationy” + y? = 0, see [6]) this statement appears false. To complete the linearization
test, our Eq. (2.24) or the equivalent Eq. (2.31) should be added. Note that our Eq. (2.32)
is equivalent to the equation (26) from [4] after substituting the factor 7 which is missing
in [4].

2.3. The linearization test for Eq. (2.11)

Theorem 2.2. Equation(2.11)is linearizable if and only if its coefficients obey the follow-
ing equations

9 9
Co=6rL — 62 4 rCy—r2c,, (2.33)
ay ax
%r 9Cy oC aC
or _9%%2 9941, .9%2 CZ (2.34)
ay2  ax dy y dy’
2 2
18D = 32| p 2L _ 901 _ [ 0C2 | 520C2 15 07 gy (OF
d ax d ay dxady ax
92r or or 3r\ 2 ar
6r|3 15———6r( — 3C1—rCo)—
+ r[ o2 T 15 5 r(ay> +@C1—r 2)3x:|

r2[9(rC2 - ch)a_ —2C2 4+ 2rC1C2 + 4r%C5 + 182Dy — 72r3D5j|,
y

(2.35)

aC aC aC aC 92
2001 19,021 57,2072 | 33,8022 35 %7

18D, =9r
dy ox ax ay 0x0dy
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9%r or ar ar\?
+ 18— +6(3C1+4rCo)— — 3r(6C1+ 7rCo)— + 18| —
9x2 0x ay 0

ar d
- 188—r 8—’ — 4rC} — 27%C1C2 + 20r°C3 + 723Dy — 270 D5, (2.36)
x dy
aC1  _aC aC aC 9
9D, = 3r —1 3%l 0102 09272 +15c72—r
ay ax ax dy
- 15rC28— — C? —5rC1Co + 14r2C2 + 542Dy — 180 Ds, (2.37)
y
3C, _aC
3D3=3r —2 —3—2 — C1C2+ 2rC3 +12r Dy — 30r2Ds, (2.38)
dy
aD. 92 92 3
54704 _10°C1 | 30,001 9597C2  5q0,0C2
dx 9y2 dy axdy dx
3%C aC dC 3
18 S Cza—z + (72—2 + 33c2> - +108Ds 5
dy
aD ar
+ 270052 1378205 _ 1082905 _ 540 ps 2"
ax ax dy dy
+36rC1Ds5 — 8rC3 — 36rC2D4 + 108-2CoDs + 54r H, (2.39)
and
9H or  oH
7 —3p 2T (2.40)
ox dy ay’
where
9Dy 3D 9D 9
H="72 2275 3,975 5pc®  2rcyDs
ay dx dy dy
1[9°C2 aC> 4
2022 — 2C1Ds + 2C2D 2.41
+3[82+ 2%, 1Ds + 24}4—27 (2.41)

Provided that the condition@.33)—(2.40)re satisfied, the transformatid.2) mapping
Eq.(2.11)to a linear equatior(2.3)is obtained by solving the following compatible system
of equations for the functions(x, y) and v (x, y):

oy _ 0 3 3 3
bp o0 W Yoy Y (2.42)
ox 8y ax 8y dy’
3 33 320\ ? 3C2 7[99 \?
62" % —9(22) +|15Ds—3Ds—C2-32|(%2) (2.43)
dy 9y3 dy2 dy [\ dy
33 dg 1 3C2 70
—1'/’ — WD + 2|15 D5 — 304—3—2 w
dy3 ay 6 8y ay
1 329 0%y (9 3 2
PP X s A 2 i , (2.44)
2 dy2 9y2 \ 9y 2 By ay By
where the functiorW is defined by the equations
oW 3 EN%
32 _lci—rcat6l|\w,  3ZL —cow. (2.45)
ax ay ay
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The coefficien& of the resulting linear equatio(®2.3)is given by(cf. (2.30))
_ H
o= W,
whereH is the function defined i(2.41)

(2.46)

Remark 2.5. Equations (2.33)—(2.40) define eighktative invariantsof the second-order
for the general point transformation group (2.2) (cf. Remark 2.5).

3. Proof of thelinearization theorems

The proof of the linearization theorems formulated above requires investigation of inte-
grability conditions for the equations given in Section 2.1. We will consider the problem for
the candidates (2.6) and (2.11) separately. The problem is formulated as follows. Given the
coefficientsA; (x, y), B; (x, y) andC; (x, y), D; (x, y) of Egs. (2.6) and (2.11), respectively,
find the integrability conditions of the respective equations for the functicensd .

3.1. Proof of Theorem 2.1

Let us turn to the proof of Theorem 2.1 on linearization of Eqg. (2.6). Namely, given
the coefficientsA; (x, y), B; (x, y) of Eq. (2.6), we have to find the necessary and sufficient
conditions for integrability of the over-determined system (2.7)—(2.10) for the unknown
functionse(x) andyr (x, y).

We first rewrite the expressions (2.7) fag and Ag in the following integrable form
(cf. (3.14)):

ao=3"r 4= 3
w H

whereW =y, /¢, and

H=1,. (3.1)
Equation (3.1) and the definition & yield:

o =HW™. (3.2)
Differentiation of Eq. (3.2) with respect tpyields:

Wy=H,WH™L (3.3)
Now Egs. (2.8) and (2.9) are written in the form

B3=H 'H,,, By =3W 'H %(H,yHW — H.H,W + H,W, H)

and
B1=(HW) ?(2H,  HW? — 3H?W? + 2H, W, HW + Wy  H*W + W2H?),
respectively. Furthermore, Eq. (2.10) fB§ becomes
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S = (H?W Wy — HW?Hyx +3W2HZ — AHW H W, + H*W2) W,
+3(HWy — WH)HW? Yo + H* WY — H3W3Bo+ aHy =0.  (3.4)

One can determine from Eqg. (3.4). Namely, the reckoning shows that it is convenient
to use, instead of = 0, the equation

HS, —5H,S=0.
It follows:

W
@=—g [H3W?Boy — Hyxy H*W? + 4H,  HcHW? — 3H, W, H*W

— 3H3W? + 4HZW HW — H, Wy H*W — H.W2H? + H,BoH*W?]. (3.5)
Sincey = ¢(x), we haver, =0 and Eq. (3.5) yields:
H®Bo,, + H?H, Boy + H3(H_1Hy)y Bo — [3HyyH? — HHyyHy
+ H?Hyyry — HHyxx Hy — 3HHyyyHy + 4H, H Hy — 3H *H3H, |
—~ W AH?H,W, — HH, HyWy, — 4H Hy H: Wy — 3H Hyy Hy W,

+ H?Hoy W + 3H?Hy oy W, | — HW 2W2[H Hy, — HyH,] = 0. (3.6)
Rewriting Eq. (3.2) in the form
H=Wop, 3.7)

and invoking thaty = ¢(x), the representations fd» and B3 can be written as
By =3W'W,,,  Bz=WlW,,.
The representation faB1, upon denoting; = (px_l(pxx, leads to Eq. (2.25):
A
3(2x — x?) =3B1— 33—0 — A2 (3.8)
y

Using Eqg. (3.3) and the expressions fay and A1, one determines the first-order deriv-
atives of w:
1 1

Wx = éWAO, Wy = §WA]_ (39)

Hence, Egs. (2.23):
dA dA

3By =3""1 4 ApA1,  9B3=3""1 4 A2

ax ay

Equating the mixed derivative®,, and W,, obtained from Egs. (3.9), one arrives at the
first equation (2.22):
0Ap _ 0A1
dy  ox
Sinceg, and hence does not depend oy, differentiation of Eq. (3.8) with respect to
yields the second equation (2.22):

924, 9A1 _0B1
2A0— —3——==0. 3.11
ax2 0% dy (3.11)

(3.10)

3
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Furthermore, invoking Egs. (3.1), (3.9), we elimin&feand W, together with their deriv-
atives, from Eq. (3.6) and arrive at Eq. (2.24).

Equations (2.27) are provided by (3.9) whereas Eq. (2.28) is obtained from Eq. (3.4).
Thus, we can obtain all third-order derivatives/ofNamely Eq. (2.28) give# .., and the
remaining derivatives, .y, ¥x,, andy,,, are obtained from Egs. (2.27) by differentiat-
ing. The reckoning shows that all mixed fourth-order derivatives found from these different
expressions for the third-order derivatives are equal. It means that Egs. (2.27)—(2.28) for
¥ (x, y) are in involution. Finally, we obtain Egs. (2.29)—(2.30) from (3.5) and complete
the proof of Theorem 2.1.

3.2. Proof of Theorem 2.2

The problem is formulated as follows. Given the coefficie@t$x, y), D;(x,y) of
Eqg. (2.11), find the necessary and sufficient conditions for integrability of the over-
determined system (2.12)—(2.20) for the unknown functip@s y) and v (x, y). Recall
that, according to our notation, the following equations hold:

Vypx — A
P =roy,  Yp=——— (3.12)
Py
and
ay = Xy, (3.13)
Py

Let us simplify the expressions (2.12)—(2.14) for the coefficigntsWe rewrite the
right-hand side of Eq. (2.12) in the form

2
3 3 9 (A ¥y 0 (A
——(Aypy = 24¢y)) = Ao. €03—< ) =3— —<—)

Ag, gy 9y \¢? A oy \¢?
and, setting
W
Cr=3—2, 3.14
2=35, (3.14)
rewrite Eq. (2.12) as follows:
Wy 92 8

A
W A 3y (pyz ’
The integration yields

A
Wi(x,y) =h(x)—.
y
Since the coefficierfi(x) will not appear in the expression (3.14) 6g, we will leth =1
without loss of generality and get

A=Wg?. (3.15)
Then Egs. (3.14), (2.13) and (2.14) yield:
w W, +rW, -2
cr=32 o =aWetWe g gt We— 2 (3.16)
w w w
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Substituting the expression (3.15) farin (2.15) and (2.16), one arrives at the following
equations:

‘Pyzvlpyyy = (0yy @y ¥y — 3‘P;2vy¢y + 30y0yy Yy —agy Y+ W‘/’3D5) (3.17)
2W oy @yyy = (3W3, — 39 Wyy, — We’ D4 + 5¢2r W Ds). (3.18)
Furthermore, the expressions (2.17)—(2.20)Bar . .., Dg become:

[ ar oW 2w 92w
D3=W

6—— —3 +35 77 +4DarW - 10Dsr?W |, (3.19)
ay ady dx0dy

82 ar OW 32 9 ar ow
Do=W 2l w4 a2l 0 o0 Ly 4 W+4l—
dxdy dx dy 9y?2 ay dy ox

ar oW A A A L4 174
+100- 22— r— +8——-r2+6D4r?W — 20Dsr3W |,
ay dy dxdy dx2 9y?
(3.20)
92 92 ar 9 ar oW
Di=w 2w+ w7 Ly 320
dxdy dx2 dx dy dx dx
ar aw 32 ar\2 ar oW ar aw
BSLUACALUE i e SR (0 W LA L L e
dx Jy dy? ay dy ox ay ay
2w 2w 32W
-5 r2— r r3 4+ 4Dgr®W — 15Dsr4W |, (3.21)
dxdy 9x2
9% ar\%  oror ar oW
Do=W—rw-3 W———rW+3——r
dx2 ax dx dy dx 0x
ar oW 32 ar ow ar ow
oW 2 0T 3y r 2+_V_r3
dx dy 9y2 3y ax dy dy
2w 2w W
r3— r2 4+ 2——r% + Dar*W — 4Dsr®W |. (3.22)
8x8y dx2 ay2

Let us turn now to the integrability problem. One can find all third-order derivatives of
the functionsp andvyr by using Egs. (3.12), (3.17) and (3.18). Then, calculating the cross
derivatives, one obtains from the equati@ny, ), = (@yyy)x:

D aD aD 3 a3
9Ds _ D4 | 5,005 52005  gp (97 5, 07) 507 | op, O
ax ay ax ay ox ay dy3 ay

ar 92w ¥W 3w PWI oW aW
3w-12— — 3w—2
* [ oy 9y axay2 " ay3}+ ayz[ ]

ox 8y

(3.23)
Furthermore, we consider the equati@n.,), = (¥,,), and write it in the form
S=2apl— H=0, (3.24)
where (cf. (2.41))
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+ W—l[% -~ 21)52—‘;‘/ - (21)4 — 8 Ds+ 3W—1%§> z—ﬂ
Sincegp, # 0, Eq. (3.24) yields (2.46):
o H
= 2()0;,

Now the equatiom, — ray, = 0 leads to Eq. (2.40):

oH oH ar
H—
ox dy dy

=0.

The reckoning shows that the above equations for the functignsy) andg(x, y) are in
involution. Namely, all mixed fourth-order derivatives found from different equations are
equal. EliminatingW from the above relations, one arrives at the linearization conditions
summarized in Section 2.3. For example, using the expressiorG;fand C> given in
(3.16) one can find the first derivatives @f:

1 1
Wy=3WC,  Wi=ZW(CL—rCa+6r)). (3.25)
Equating the mixed derivative®,, andW,,, one obtains (2.35):

(C2)x — (C)y + Cary +7(C2)y — bryy =0.

Other equations from Section 2.3 are obtained by invoking Eqgs. (3.25) in the expressions
for the functionsDg, D1, D2, D3, (D4),, and(D4),. This completes the proof of Theo-
rem2.2.

4. Illustration of thelinearization theorems
4.1. Examples on Theorem 2.1

Example 4.1. The equation

" 6 /3 6 12 ’ y

6 3 6
y”/—(—y’+—)y + =Y+ =Y+ 5y +65=0 (4.)
y X y Xy X X
is an equation of the form (2.6) with the coefficients
6 3 6 6 6 6
Al=——, Ap=—-—, 332—2, By=—, Bl=—2, BOZ_);- (4.2)
y X y Xy X X

One can readily verify that the coefficients (4.2) obey the conditions (2.22)—(2.24). We
have

3B1 — A3 —3Ag, =0, (4.3)
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and Eq. (2.25) is written
2-= —x“=0.
dx X
Let us take its simplest solutiop = 0. Then, invoking (2.26), we lep = x. Now
Egs. (2.27) are written

alnjy,| 2 anjyy| 1

dy y’ dx X
and yield
K
x_yzs

l/fy = K =const

Hence
K
Y=+ f0).
Xy

Since one can use any particular solution, wekset —1, f(x) = 0 and take

1
V==
Xy
Invoking (4.3) and noting that (2.29) yield3 = 0, one can readily verify that the function
¥ = 1/(xy) solves Eq. (2.28) as well. Singe = 0, Eq. (2.30) givesx = 0. Hence, the
transformation

1
t=x, U=— (4.4)
Xy
maps Eq. (4.1) to the linear equation

u/// — O.

Example 4.2. Consider the following equation of the form (2.6):

3 3
y/// + _y/y// _ 3y// _ _y/2 + 2y/ —y= 0. (45)
y y
Its coefficients
3 3
Al:—, A0:_3’ B3=03 32:__7 B].=23 BOZ_Y
y y

obey the linearization conditions (2.22)—(2.24). Furthermore,
3B; — A3 —3Aq, = -3
and Eq. (2.25) is written
dX 2
6— —3x“=-3.
dx X
We take its evident solutiop = 1 and obtain from (2.26) the equatigfi = ¢’, whence

p==g".
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Equations (2.27) have the form
anfyyl 1
= -, = 0
dy y Ve
and can be readily solved. We take the simplest solufica y? and obtain the following
change of variables (2.21):
t=¢", u=y>. (4.6)

Substitutings2 = —2 andg, = e* =1t in (2.30), we obtainx(r) = —2¢ 3. Thus, Eq. (4.5)
is mapped by the transformation (4.6) to the linear equation

u — —u=0. 4.7)

Remark 4.1. In the previous examples, the calculations for determining the linearizing
transformations were confined to particular solutions of Eqgs. (2.25)—(2.28). The reason
was that, by considering the general solutions to Egs. (2.25)—(2.28), we would add only
the symmetry and equivalence transformations for the original and linearized equations,
respectively.

4.2. An example on Theorem 2.2
Consider the nonlinear equation
It has the form (2.11) with the following coefficients:
r=0, Co=C1=C2=0,

Do=D1=D2=D3=D4=0, Ds = —x. (4.9)

Let us test Eq. (4.8) for linearization by using Theorem 2.2. It is manifest that the coef-
ficients (4.9) satisfy Eqgs. (2.33)—(2.39). Furthermore, Eq. (2.40) also holds since (2.41)
yields

H=2. (4.10)
Thus, Eq. (4.8) is linearizable, and we can proceed further. Equations (2.45) are written
ow ow
— 0 —

— = — =0
dax dy
and yieldW = const Therefore, Eqgs. (2.42) have the form
0
do_o W _ 0
ox ax ay

and hence:

@ =9(y), v =—-Wx¢'(y) +w(y). (4.11)
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Now the third-order equations (2.43) and (2.44) yield the ordinary differential equation

3(p//2
"= 4.12
v =3y (4.12)
for ¢(y) and the partial differential equation
83 " 32 3 "2 9
OV g 8V 3¢ "W _ ) way (4.13)

ay3 T 9y2  2¢'2 9y

for ¢ (x, y), respectively. Using the expression forgiven in (4.11) and Eq. (4.12) far,
we reduce Eq. (4.13) to

(p_//a)// B §¢//2
(,0/ 2 (,0/2
Hence, one can satisfy Eq. (4.13) by lettiagy) = 0. Then the construction of the lin-
earizing transformation requires integration of Eq. (4.12) known in the literature as the
Schwarzian equation. Its general solution is provided by the straight lines

/ 1
o —w—w =0.

o=ky+1, k,l=const, (4.14)
and the hyperbolas
1
p=a+-—— a,b,c=const (4.15)
b—cy

Let us take the simplest solutian= y of the form (4.14). Then (2.46) yields = 1.
Now we setW = —1, w =0 in (4.11) and arrive at the change of variables

t=y, u=x, (4.16)
reducing (4.8) to the following linear equation:
u" +u=0. (4.17)
Taking the solution to Eq. (4.12) in the form (4.15), one obtains from (2.46):
yo L=e®
===

Thus, eliminatings — ¢y by using Eq. (4.15) written as= a + (b — cy)~%, one obtains
a(t) = [c(t — a)?]~3. Hence, the change of variables

t=a+

, u=x (4.18)
b—cy

maps Eq. (4.8) to the following alternative linear equation:
u J—

St—a)b 7

It is known, however, that the two equations (4.17) and (4.19) are equivalent. Therefore,

Eqg. (4.17) and the change of variables (4.16) can be regardedtasdard linearization
of Eq. (4.8).

"

(4.19)
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5. Linearization by contact transformations

A transformation

t=9(x,y,p), u=1vyx,y,p), g=g(x,y,p) (5.1)

of the variables;, y andp = y' = dy/dx is called acontact transformatioif it obeys the
contact conditiory = u’ = du/dt, i.e., if

Dy (x.y, p)
x,y,p)=—""—"—""-. 5.2
80y P = D) (5.2)
Equation (5.2) implies that the functiops andg are related by
Vp=8¢p,  Yxt+p¥y= (¢« +ppyg. (5-3)

Furthermore, the functiong, ¢ and g should be functionally independent, i.e., should
have the nonvanishing Jacobian. The latter condition, invoking (5.3), is written as follows:
(0yg — ¥y [(gx + Pey)9p — (9 + Pey)gp] #0.

It follows, in particular, that ifp, = 0 theny, =0, and hence (5.1) is a point transfor-
mation considered in the previous sections. Therefore, we assume in what follows that

¢p #0.
One can verify that if one applies the contact transformation (5.1) to the general linear
equation, e.g., taken in Laguerre’s form

" +a(t)u=0, (5.4)

one arrives at nonlinear equations that are at most cubic in the second-order derivative, i.e.,
at the following equations indicated by Lie (see Introduction):

Y +alx,y, )R+ b, y, )y 2+ elx, y, ¥)y +d(x,y,y) =0. (5.5)

5.1. Second-order relative invariants of contact transformations

It was mentioned in the previous sections (Remarks 2.1 and 2.5) that the second-order
relative invariants of point transformations play a central part in the linearization problem.
Therefore, let us investigate relative invariants for Eq. (5.5) with respect to the contact
transformations. The search for second-order invariants of the equivalence group leads to
the following result.

Lemma 5.1. The contact transformation.1) have two distinctly different systems of
invariant equations. The first system has the form
J1=0, Jo=0, J3=0, Jy =0, (5.6)
whereJ1, Jo, J3, J4 are the second-order relative invariants defined by
J1=27a, + 27a,y p — 18a,c — 18a,b — 18a,bp + 81a, + 18b,b — 9,
+18b,a + 18b,ap — 36¢,a — 54a’d + 18abc — 4b°,
Jo=—18a,d — 18ayc + 9ayx — 18aycp + 18ay, p + ayy p? + 6bpc + 3b,y
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+ 3b,y p 4 6byb + 6bybp + 24by — ¢, — 36d,a — 18abd + 12ac? — 2b?c,
J3 = 36a,d + 36aydp — 6byy — 12by, p — 6byy p? — 6¢pc + 3¢y + 3cpy p — 6eyb
— 6cybp — 21cy + 18d,b + 9dp,, + 18dca + 18dyap — 18acd
+12h%d — 2bc?,
Ja = —36b,d — 36b,dp + 18¢,d + 18¢,¢ + 9cyy + 18cycp + 18¢y. p + 9cyy p?
— 18d,¢ — 27d ), — 27d,yy p — 18d,b — 18dybp + 54d, + 54ad?
— 18bcd + 4¢3,
The second invariant system has the form
J5=0,  Jg=0, (5.7)

whereJs, Jg are the following second-order relative invariants

1 J32 J1  JsJ3 ]33
Js=-|J2—— ), Jo=—=+—+—).
> 3(2 J4> ® <9+J4+913

Proof. The generator of the group of contact transformations has the form
X= §—+nai+§—+c“ +c +§ —+§ i
where
§=—-W,, n=W—pW,), ¢ =Wx+pW,)
and
{4 ==3W,ypa —3Wpra— Wypp + Wppb —2Wya,
¢b =Wy pb —3W,y — Wyib — 3Wpyp — 3Wppr + 2Wppc — 6Wyy pa
— 3Wyyp2a — Wyb — 3Wyqa,
6= —6Wpy p — 3Wpyy p? + Wpype — 3Wper + Wpie + 3Wpd — AWy, pb
— 3Wyy — 2Wyy p%b — 3Wyy p — 2Wy b,
¢? =3W,ypd + 3Wped — 3Wyyi p — 2Wyu pe — Wyyy p° — 3Wyy0 p?
— Wyyp2c + Wyd — Wy — Wyxe.

Here W (x, y, p) is an arbitrary function known as the characteristic function of the con-
tact transformation group. The reckoning shows that the invariant test yields the following
equations:

S1(F) = —35 25 | g, 08 L5, 0F g
! N AT VA I
oF oF oF
So(F 31— +J3— + 20— =0,
2(F) = 181+38J3+ 28J2
oF JIF or
S3(F)=3J4— +2J3— + J,— =0,

0Ja dJ3 aJ2
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S4(F) =3 aF-I—ZJ oF JaF—O
4 - 38]4 23]3 18.]2_’

whereJi, Jo, J3 and J, are the quantities used in (5.6). The above equations have only the
trivial solution F' = const, and hence there are no absolute invariants. Therefore, we look
for relative invariants defined by equations

Fi(J1,J2,J3,J4) =0, i=1...k, (@)
such that
Sj(Fi)|(<p)=0, j=l,2,3,4; i=1,...,k.

Let J4|(@) = 0. Then, settingF1 = J4 and considering the equatidf(F) = 0, one
obtainsJz = 0. This impliesS4(J3) = 2J2 = 0, whenceSs(J2) = —J1 = 0. Hence, the
equationJs = 0 impliesJ; =0, J> =0, J3 =0. Likewise,J3 = 0 impliesJ; =0, J» =0,
J4 = 0. Thus, we arrive at the invariant system (5.6).

Now we letJs|(s) # 0. In this case, the general solution to the equasipa: 0 has the
form

F = F(Ja, Js, Js)
with Js and Jg used in (5.7). The remaining equations become:
oF oF oF oF

So(F) =3—J 2—Js5 =0, S3(F) = —Ji 3—Js4=0,
2(F) 8166+ 8J55 3(F) 8]55+ 8J44

oF 2 0F
J4S4(F) + J382(F) — J3S3(F) = 3| JaJe— — 2J5— | =0.
dJs 0Js

The equatiors3(F) = 0 yields

F=F(J7,Je),
whereJ7 = 914‘1J53. The remaining two equations become:

88—216 + 23—57J7 =0, J52<—2§—2 + 273—2]7) =0.
If J5# 0, thenJ7 # 0 and there are no invariant equations. On the other hand,= 0
the invariance conditions reduce to one equation, namely:

Jsﬂ =

dJs

Thus, we arrive at the invariant system (5.7) thus completing the praof.

0.

5.2. Equations equivalent tg” =0
In Sections 5.2 and 5.3, we use the following operataauhi-total differentiation
.9 9
D=—+p—. (5.8)

In the casex = 0, after running the program, we obtain the following result.
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Theorem 5.1. Equation(5.5)is linearizable to the equatiom” = 0 if and only if its coef-
ficients obey Eqg5.6):

J1=0, Jo=0, J3=0, Js=0. (5.6)

Provided that the four condition&.6) are satisfied, the transformatig®.1) linearizing
Eqg. (5.5)to u” = 0 is obtained by solving the following compatible system of equations

ox,y,p), ¥(x,y,p),gx,y, p) k(x,y, p)andH(x, y, p):
Dy =Hg,  Yy=pyg+k.  Vp=0pg.
¢pDg=Hgp —k, 3gy¢§:3¢ppk+3aHk+§0p(3§0ygp_bk)s
©p8pp = (Qpp&p + ak),
393 Dk = 3¢, Hk + 3aH?k — Hp,bk + 3p,¢yk,
p3ky = 180,y @pk — 9,peyk + 3a Hk(2p,c — 3¢,) — Qa5 dk
—9DaHkgp + 3Dbke5 + Hppk(3b, — 2b%)
+ @pk(—=3cppp + @pbe + 3pyb),
3ppkp = 3¢ppk +3aHk — @bk,
54050,y = 10800, @y — 54p,p9% + 6aH (3¢5bd — 2¢5¢% + 3¢5 Dc
+6¢,0,c — 9¢§) + 18a9012,(2<ppcd - 3¢Pbd —3p,d)
+18DaH g, (2ppc — 3py) — 108Dag3d — 18DbH p3b
+ GDbgoi(fppc +3¢y) + Hop (—6bp(ppc +18b,¢y — 27bypp
+ 6c,0,b + 9(ﬁb)p<pp + Z(ppbzc - 27<ppbza - 12@,[92)
+2¢, (9bpg0§d —9cp0p0y + 27cyg0§ — Q(ﬁc)pwp 9dp(pp
2,2 24 2 21 N 2”2
— 12p5b°d + 2¢,bc” + 69, b D + 99, Db + 3¢, ¢y be + 9<pyb),
54§0127§0ppy =108,y ¢ppep + % pyaHe, — 18(va(p[27b - 27‘/7%17‘.0}1
— 54p,,aHpy + 180,,0,0yb + 9 H*(—2¢p ¢ — 3p,) + 54a° Hp5d
+27aDaH?p, — 18aDbH¢? + 3aHp,(—3b, + 2b%)
+6aHp,(3cpp, — ppbe + 3pyb) + 9ag, (—3d,05 — 4p5bd + 295
— (plz,Dc — 2¢ppyc — 3(,03) + 9Dag012,(—4<ppc + 3py) + 18Dbg0§b
— 54Hay 5 + ¢ (6bpg,c — 9bp@y + 45byp), — 6c,0pb — A(Db) pg,
— 2p,b%c + 279, D%a + 3¢,b?),
6¢pQppp = 9(,012,[, —94°H? + 6aHyppb —12a¢,¢, — 313a<p§
—6Happ, + ¢5(3b, — b7),
3p2DH =3¢,, H* + 3aH> — H?p,b+ Hp,(—¢pc + 3py) + 3p3d.
189, Hy = (18p,yH + 6a H?c — 18aH¢,d — 9Da H?
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+6DbHg), + H?(3b, — 2b%) + 2H g, (—3c) + be) + 9dp¢5
2 2 2 2 A 2
+ 6¢3,bd — 2¢7,c” — 3¢ De + 9(py),
3p,Hy =3p,pH +3aH? = 2Hp,b + ¢, (9pc + 39y),
where

H =@, + poy, k=9¢pgx +9pg&yp — ©x8p — ¥ygpp # 0.

5.3. Equations equivalent t8” + a/(1)u =0

The test for linearization by contact transformation by reducing to equations of the form

u” + a(t)u = 0 with a(r) # 0 is given by the following theorem.

Theorem 5.2. Equation (5.5) is reducible to a linear equatiom” + a(f)u = 0 with
a(t) # 0if and only if J1 #£ 0 and the following eight equations hold
Ja=—J2/J1, Ja=J3)IE,
JDJ1 = J1pJ2 +3alf — 2bJ1 )2+ JPc,
JED 2 = Jop 1z +2aJ3 — bJ1JF + J3d,
9JL Jopp = 9apJ1J5 — 6, JL Jo+ OJ1py 12 — 1517, Ty + 15]1, J2p )1
+ J1p (=150 + AbJ1Jo + JEc) + 3J1, JE
+ 6J2pJ1(3aJ2 — bJ1) + 3¢, 7,
18J3 Jor = —3b, J21Zp — 9J2, 12 p + 1811, J2p J1 J2p
+6J1J2p(—3at5 + 2bJ1J2 — Jic) — 18J1,Jf Jap — 915, JZp
+6J2,J1(3aJZp — 2bJ1Jop + Jicp +3J102) — 9d, I p
+6c,J302p — 9a2J3 p + 12abJ1J3p + 18aJ3 Jpdp — 12072 J2cp
+36aJ1J3 — 2b%J2JZp — 6bJydp + 2bJ3 Jocp — 180 J2JZ + Jic?p
+ 3Jfbcp + 18de — 6J13J2ﬁbp + 9J12J22ﬁap,
1873 Jay = 3b, JLJ5 + 9J7, 15 — 1811, Jop J1J2 + 61, J2(3a 15 — 2bJ1.J2 + Jfc)
+ 181y J2 T2 + 9J3, JF + 62, J1(—3at + 2bJ1J2 — Jfc)
+9d,J} — 6cpJ 202 +9a% Ty — 12abJ1J3 — 18a 3 Jod
+12aJ2J2c + 2% J2 3 4+ 6bJPd — 2b I3 Jac — Jjc? — 3J7 De
+6J2J2Db —9J2J2Da,
54a, 1y J1J3 — 54ay Jop J 22 + 18, J1J2(3a 03 — 2bJ1J2 + JEc)
— 36y, J1pJ T2 + 36D, J2p J2 4 3b, JE(—9aF + 8bJ1 T2 — 6JFc)
+ 18J1,pJ1pJ1d2 — 181,y J2p JE + 6J1pp J1(3aTZ — 2bJ1J2 + JEC)
— 2413, J2 + 24J5 Jop J1 + JF, (122005 + 22bJ1J2 — 8Jfc)
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— 2401 J1yJE + 6102, J1(30aJ — bJ1) + 2J1 (—63a% T3 + 45abJ1 3
— 3% J2Jpc +4b2J2Jp 4+ bJ3c + 2102 J2Da) + 6J1, JE(—3ad2 + bJy)

— 81J5,alf + 6J2,J1(18°JF — 12abJ1J2 + 12aJfc — 2b7 I — 9Jf Da)
+27d,aJ} + 54ay J3J; — 45by I3 + 18J1py JP — 18cpaJPJp + 6c,b I3
+9(Db) I — 27a 73 + 36a?bJ1J3 — 54a® I3 Jod — 36a®IEI3c

— 6ab®J2JZ + 36abJid + 42abJ3 Joc — 33aJ)c® 4+ 9aJ} De
+18aJ302Db + 27aJ?J2Da — 8b3J3 15 + 6b%Jc — 18bJ7 Db
—36bJ32Da + Ji 2+ 54J ¢ Da — 27J} D% =0,

81Qu, J1,J1J2d — 81Quy JppJ 2 Jod + 270, J1J2d (303 — 2bJ1Jp + JEc)

— 54, J1p JE J2d + 540, J2, J3d + b, JE(—45a JZd + 40bJ1J2d
—30J2cd — 6J2Dd) + 27001, J1p J1J2d — 27001, J2p J2d

+ 901, J1d(3aJ5 — 2bJ1J2 + Jfc) — 360J3, Jod + 36077, Jop Jrd
+15J5,d(—~123aJ5 + 22b J1J2 — 8J7c) — 36QJ1, J1, J7d

+90J1, J2, J1d (302 — bJ1) + 3J1, (—6302J3d + 45bJ1JZd

— 39 J 2 Jocd + 4002 JETod + 100 J3cd + 27002 J2Dad — J1J3)
+90J1, JZd(—3aty + bJ1) — 121572 aJfd + 92, J1 (182 J5d

— 12WbJ1J2d + 12 JEcd — 2002 JEd — 90J2Dad + J1J2)
+9d,J}(45ad — 2bc 4 6Db) + 81Qu, J; Jod — 486h J 1 d + 2701, J3d
— 270 paJJod + 108 ,bJd — 90cy Jic + 54 Db) , J7d + 18(Dc) , J1e
— 243(Dc)y J3 + 54 D%c) p I} + 81d,,, J1 + 1624,bJ7 — 405313 d

+ 540i2b J1J3d — 8102 I3 Jpd? — 5402 J 2 T2 cd — 90ab? 2 J2d + 594ab J d?
+63bJ3Jocd — 495 Jc?d — 54atlcDd — 27a ) Ded + 162077 D?d
+27J312Dbd + 4051 J2J2Dad + 9aJ1J3 — 12062 J2 Jod + 7202 cd
+ 36027 Dd + 4bJ{c® — 144 I} Dbd — 18077 D?c — 543 J2Dad

— 4bJ2J3 + 247} Jod — 18J1c? Db + 702)}c Dad — 367 ¢ D?b
+486J;DaDd — 54J} DbDc — 54J} D3 — 3J313¢ = 0.

Note that the first two equations of this systeg= —Jzz/Jl, Ja= J23/J12, are equivalent
to the invariant systerfb.7). The other equations define relative invariants up to the fourth-

order.

The coefficient(z) of the resulting linear equation is given by

o =J1/(5493) #0.
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Furthermore, the linearizing contact transformation is obtained by solving the following
compatible system dfl equations for four functiong(x, y, p), ¥ (x, v, p), g(x, y, p) and
k(x,y, p):

IDo=0,02,  3J%0y = ¢,(—=3J1pJ2+ 3J2pJ1 — 3adZ + 2bJ1Jr — JEc),
6700 ppp = 905, J% + @5 (1211pa 02 — 1212paJy — 6ap J1J2 + 3b, Jf + 3a® T3
—2abJ1J2 + 4atic — b*J? — 3JDa),
0p1Dg = ppgpJ2 — ik,
3p3JEgy =3ppp Tk + @pJ1k(3as — bJ1)
+ 028y (—3J1pJ2 + 3JopJ1 — 3aJZ + 2bJ1 ]2 — JEc),
540, 8pp = 54 ppgp + Sdak — J1,
Vp=0pg. 1DV =0,z
3JYy = —3J1,0pJ2g + 3J2p0p J18 + 3IFk + @pg(—3alZ + 2bJ1Jr — JEc),
3¢, JZDk = —3J1,0, Jok + 3J2p0p Jik + 3ppp 102k + @, J1k(bJ2 — Jic),
108p, J 1 ky = 54 J1(20ppJ1 — ap@pJ2p) (J2pJ1 — J1pJ2)
+ 360, JEk(—3a g + 2bJ1J2 — JEc)
+ ¢pk[18a, J1J2p(3adZ — 2bJ1Jp + JEC) — 36D, 1,02 Jop
+36b, 2, J2p + 3b, JE(—9adZp + 8bJ1J2p — 6JEcp + 12J1.2)
+ 18J1ppJ1pJ1J2p — 18J1pp J2p I p
+6J1ppJ1p(3aJF — 2bJ1J2 + Jfc) — 24)3, Jap
+ 2472, Jop Jip + I, (—123a03 p + 22b 1 Jop — 8JFcp + T211)2)
— 24J1,J1y JEp + 6J1)J2p J1(30a2p — bJ1p — 12J7)
+ 271, (632 I3 p + 45ab J1JZp — 3% Jocp + 90aJ1 3
+4b2J2Jap + bJiep — 42bJ 2T + 1205¢ + 2702 )2 Dap)
+6J1y J3(—3atap + bJrp +12J1) — 8LIF a i p
+6J2,J1(18a2JZp — 12abJ1Jop + 12aJZcp — 18aJ1J>
— 20242 p + 6bJE — 9JZDap) + 27d,aJip
+54a, J3Iop — 45by J{p + 1871,y I3 p — 18c,aJ 3 Jap + 6¢,b I} p
—36¢,Ji 4+ 9(Db) , i p — 27033 p + 36a®bJ1 3 p — 54a® I3 Jodp
—36a2J2JZcp + 1082 J1J3 — 6ab®J?JZ p + 36abJydp
+42abJ3 Jocp — 108abJ2 I — 33atic?p + 9aJiDep — 1087 d
+ 108 J32 Joc + 18aJ2 S Dbp + 2TaJZJ2 Dap — 8b3 I3 12p
+ 6b2chp — 18bebbp — 36le3Jzﬁap + Jszp + 54chbap
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+36J7Db — 27J} D?ap — 108/ J,Dal,
3ppJ1kp = 3ppp ik + @pk(3a 2 — bJ1).

5.4. Examples

Example5.1. Itis known [7] (see also [5, Section 8.3.3]) that the equations

, 3 2 3 "2
describing the families of circles and hyperbolas, respectively, are connected by a complex
transformation, and that Eq. (5.9)(H) can be linearized to the equatioa 0 by a con-

tact transformation (specifically, by the Legendre transformation). One can readily check
that Eq. (5.9)(C) also satisfies the conditions (5.6), and hence can be reducée=to

by a (real valued) contact transformation. The reckoning yields the following linearizing
transformation:

¢__w1+dp2+1)_
p
) ik
> .

© (5.9)

1+p?+1

An alternative transformation is

p=—(p+1+p?), v=px—y(p+y1+p?).
g:y—x(p—l—\/l—i—pz).

Remark 5.1. It is stated in [10] that the contact transformation

t=_2xg(x’yvp)v “=)’+x19, M/=g(X,y,P),
whereg? = —p, (5.10)

maps the equatiom” = 0 to the equation for circles (5.9)(C). However, the transformation
(5.10) relates the equatiori’ = 0 with Eq. (5.9)(H) but not with (C).

Example 5.2. Consider again the equations of the form (2.6). One can readily verify that
two of the conditions for linearization by a contact transformation are satisfied, namely
J1 =0 andJ> = 0. Equating to zero two other invariantg and J4, we conclude that

Eq. (2.6) can be mapped by a contact transformation to the equétien0 if and only if

the following equations hold:

2(3B2 — 3A1, — AgA1) = T(Agy — Ay), 9B3 =341, + A2,
3(Agy — A1)y — A1(Agy — A1) =0,
6(Agy — A1c)x + 2A0(Agy — A1c) —3(3B1 — A5~ SAOX)), =0,

9Aqvx + 1840, Ao + 54Boy — 27B1, + 4A3 — 1849B1 + 1841 By = 0. (5.11)
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The last equation (5.11) yield8 = 0, wheres2 is defined by (2.29). Invoking Theorem 2.1
and noting that Egs. (2.22)—(2.23) imply the first four equations (5.11), we conclude that
Eq. (2.6) is linearizable simultaneously by contact and point transformations if and only if
its coefficients satisfy the equatiga = 0 and Egs. (2.22)—(2.23).
For example, the equation
3 3
y/// + _y/y// _ 3y// _ _y/2 + 2y/ —y= 0
y y
is linearizable by a point transformation, but it is not linearizable by a contact transforma-
tion.
On the other hand, the equation
"

1
4
Yy oty +54

can be linearized by a contact transformation, but cannot be linearized by a point transfor-
mation sincedg, — A1, # 0.

(63p2 + 24y%p +y*) =0

Example5.3. The equation
y/// +yy// “Fﬁ(l_ y/Z) -0

widely used in hydrodynamics (it is called the Blasius equation when0, the Hiemenz
flow wheng = 1, and also known as the Falkner—Skan equation [9]) is linearizable neither
by point nor contact transformation.
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