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Abstract

Some 10 years ago, we considered the equations v, = f(x, v,)vy, + g(x,v,) with the intention of their
group classification. We found, for the above equations, the equivalence group & generated by an infinite-
dimensional Lie algebra L, involving two arbitrary functions of the variable x. We utilized the method of
preliminary group classification suggested earlier by one of the authors (NHI), and applied it to a finite-
dimensional subalgebra of the equivalence Lie algebra Ls. Consequently, we found 33 types of nonlinear
wave equations admitting an extension by one of the principal Lie algebra, i.e. of the maximal Lie algebra
admitted by our equation with arbitrary functions f(x,v,) and g(x, v,).

Recently, an infinitesimal technique was developed by NHI that allows one to find invariants of families
of differential equations possessing finite or infinite equivalence groups. It is worth noting that the method
does not depend on the assumption of linearity of equations. Here, we apply this method for calculation of
invariants for the family of nonlinear equations formulated in the title. We show that the infinite-dimen-
sional equivalence Lie algebra Ls has three functionally independent differential invariants of the second
order. Knowledge of invariants of families of equations is essential for identifying distinctly different
equations and therefore for the problem of group classification.
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1. Introduction

The paper of Ames et al. [1], dealing with the group properties of the nonlinear equation

Uy = [f(”)“x]x

gave rise to numerous publications on symmetry analysis of nonlinear wave phenomena. In this
framework Torrisi and Valenti, in [2] and [3], generalizing the above equation, investigated the
symmetries of the equations

we=f (], and w, = [f (), + g0,

The above equations, after introducing the potential v defined by the equation u = v,, can be
written, respectively as follows:

Ve = f(Ux) Uxrs (1)
Ve = £ (X, 0c) Vs, (2)
Ve = f(0x) 0 + (X, 1) (3)

In [4] we attempted to perform a unified group classifications of a reasonably general class of
nonlinear one-dimensional wave equations

Uy :f(x7 Ux)vxx +g(x7 Ux)a (4>

in order to encapsulate the previous results and possibly to find new classes of equations inter-
esting from group point of view. We showed that the Lie algebra admitted by (4) for arbitrary f
and g, i.e. the principal Lie algebra, is three-dimensional. Then by using the so-called method of
preliminary group classification [5] we found 33 types of equations (4), admitting an extension by
one of the principal Lie algebra.

Eq. (4) was studied successively in [6,7].

In [8] and later in [9] the following special type of equations (4)

Uy = f(0:) Ve + g(01) (5)

was investigated in some details.

In [10], Eq. (4) was discussed from point of view of classification with respect to contact
transformation groups.

In this paper we calculate the differential invariants of equivalence transformations of equations
(4) by using the infinitesimal method for calculation of invariants of families of equations de-
veloped in [11,12]. For the general theory of differential invariants of Lie groups, see, e.g. [13].

We recall that an equivalence transformation of (4) is an invertible transformation of the
variables ¢, x and v,

= (t,x,v), X =y,(t,x,v), v =stxv),
mapping every equation of the form (4) into an equation of the same form,
U;’t’ - f/(x/, U;’)Ux’x’ + gl(xl7 U;’)7

where the transformed functions f” and g’ can, in general, be different from the original functions
f and g. The set of all equivalence transformations forms a group denoted by &.
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An invariant of equations (4) is a function

J(t,x,v,v,,vx,f,g) (6)
that is invariant with respect to the equivalence group &. Likewise, differential invariants of &,
J(t7x7 U7 Ut7 UX7f7g7ﬁcagxaﬁx7gvx7ﬁva gxxaf:Wx?ngﬂ . ')7 (7)

are termed differential invariants of equations (4). The invariant (6) is also called a differential
invariant of order zero, whereas (7) is termed a differential invariant of order s if it involves de-
rivatives of f and/or g whose maximal order is s.

Knowledge of invariants of families of equations is essential for their group classification.

2. Algebra L. Absence of differential invariants of order zero

Our goal is to find the differential invariants for the family of equations

Vst :f(x7 Ux)v)ac + g(x7 vx)> f 75 0. (8)

In [4], in order to obtain the continuous group of equivalence transformations of equations (4)
by means of the Lie infinitesimal invariance criterion [13], we search for the equivalence operator
Y in the following form:

, 0 0 0 0 0

d d
_ 1_ -~ -~ _ a | 2 ¥
V=T e o, T oa, Tt F g ©)

where &', ¢ and n are depending on ¢, x and v, while ! and p?> depend on ¢, x, v, v, v, f and g,
while {; and {, are given by

Cl = Dt(’?) - UtDt(él) - Uth(éz)y (10)

(o = Dy(n) — vD.(E') — 1,D(&). (11)
The operators D; and D, denote total derivatives with respect to ¢ and x:
0 0 oJ 0

D8, ,0 ¥ 0O 12
' aﬁ”’au””az),”’xaﬂ ’ (12)

0 0 0 0
Dx_a"i_vxa"i_vtxa_vt"i_vxxa_vx"i_'”‘ (13)

In [4], we found that the class of equations (4) has an infinite continuous group & of equivalence
transformations generated by the Lie algebra L, spanned by the operators:

0 0
Y =—. YV, =— 14
T P (14)
0 0 o 0
Vimt—t=—\ Yi=x—+— 15
. av+av,’ ! x@u+avx’ (15)
0 0 0
),S_t6_+x6_x+206_v+vt6,+vx6_x’ (16)
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o=ty —vig ~ U 5r - 25 (17)
Y7—t§+2ta%t+2§g (18)
n:F%+F£;FV%, (19)
n—¢%—¢m544¢ff+¢WJ%, (20)

where ¢ = ¢(x) and F = F(x) are two arbitrary functions of x. Here, the prime denotes the dif-
ferentiation with respect to x.
Now we seek for differential invariants of order zero, i.e. invariants of the form

J:J(t,x,U,U,,Ux,f,g). (21)

Applying the invariant test Y(J) = 0 to the operators Y, Y5, Y3, ¥, and Y, with ¢ = 1, one can
verify that the invariant (21) does not depend on ¢, x, v, v, and v,:

S =J(f8)- (22)
Then, applying the invariant test to the operators ¥; and ¥, one obtains

oJ oJ

— =0 — =0. 23

Hence, equations (8) do not have differential invariants of order zero.

3. Differential invariants of the first order

In order to obtain differential invariants of the first order,

J:J(f7gafxvaxvgmgvx)a (24)
we consider the first prolongation of the operator Y (9):

yWw 25
i a fk (25)
Here we use the local notation /! = f, f? =g, ff = f¥, f = fF and set
of = Di(u) = fiD(&) = /3Di(&), i k=12, (26)
where 5- (j = 1,2) denote the total derivatives with respect to x and v,:
_Y . 27
+fi afk—f—f‘llaf*l +f126f‘2 ) ( )

~ 9 L0 L2 0
D= g+ figmt g+ gt (28)
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The equations Y1 ( ) 0,. 1)(J ) = 0 are satisfied identically. Moreover, if one keeps in
the first prolongation Y DV of the operator Y; only those terms needed in further calculations, one
can readily see that thls prolongation coincides with ¥; itself, and hence

oJ
Y _v_ 29
0) =5, 29)
It follows that
J= J(fvf)mfvﬂgmgvx)' (30)

Likewise, keeping in the first prolongation of the operator Y5 only the terms required for our
purposes, we have
0 0 0

W) = —figr - sig i@ G1)

where fi = fv, 2 = fu., &1 = & 82 = &u.-
Applying operator Ys ) to differential invariant given by (30), we have
oJ

— 815

Y( (/) = fl@f gla fzaf gzagzzo- (32)
The characteristic equations
dfi _dgi _dfp _den (33)
foa A &
yield that J = J(f, p1,p2, p3), Where
n _& pz:f2 p3:g2 (34)

fi’ S S
provided that f; # 0 (see the Note below).
The first prolongation of the operator Ys, in the form which we need, is

6
ff+f1 f f-i-gz (35)

Acting by this operator on the invariants (34), one obtains that

Y () = ¥ () = ¥ (ps) = 0,

+g1 +f2

and hence
oJ
Wy =
W) =rgp=0 (36)
It follows that the quantities (34) provide a basis of invariants (24) for V,..., V5
J =J(p1,p2,P3)- (37)

Now we carry on the first prolongation of the operator Y and write it, as in the previous cases,
in the following form:

0 0
(F///f + F//f _|_ F//gz) - F// (38)

(1) 7
Y, = —F
d 0g agz

3
*ofi
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The invariant test Y;”(J ) = 0 is written:

oJ oJ oJ
F// . F/// F// F// T F//
37, +(F"f+F"'fi + gz)ag e T

Since F(x) is an arbitrary function, its derivatives F” and F” are functionally independent. In
consequence, Eq. (39) splits into the following two equations:

0 f

= 0. (39)

— = =0, 40
g1 f1 0p ( )
oJ oJ oJ
=+t + =0. 41
f2 < ofi 0g» ) S [pz (p3 ) ops ( )
It follows that
J=J(q) (42)
with
p—1_go—f
= = , 43
12 S ( )

provided that f; # 0.
Finally, we consider the first prolongation of the operator Y, keeping only the necessary terms:

1 " / 6
(@"f + o"vefa + @'g2) =—

1) _ 20" / " 3¢
((pf+</>f1+(pvxz)af+ szf o
Invoking the Eqs. (42) and (43), one has:
oJ
YOU) = — 2 [(¢"f = 2 0.
D)= =20 20 -5, =
Treating ¢” and ¢’ as independent functions and assuming that f; # 0 one obtains:
oJ
—=0.
Y (44)
When the condition f, = 0 holds, the corresponding Egs. (8), viz.
Uy = l(x)vxx+g(x7 Ux)7 1#07 (45)

should be considered separately because of the following lemma.
Lemma. The equation f, = 0 is invariant with respect to the group &.

Proof. Indeed, it is evident that the invariance test Y(f2)[,_, = 0 is satisfied for the first prolon-
gation of ¥}, 1>, 13, Y3, and Y3, since they do not contaln dlﬂerentlatlon with respect to f;. One can
readily verify, using the expressions for Y5 , Yé(l), YF , and Y , that the invariance test is satisfied
for the remaining operators as well:
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) =0, 1 =0, 1" =0, ¥ =0. O
5 (f2) =0 ) 6 (f2) =0 ) F (f2) =0 ) 0 (f2) =0

Note. The equation f; = 0 is not invariant with respect to the group &.
The above lemma and Eq. (44) prove the following statement.

Theorem 1. Eq. (8) have no differential invariants of the first order, but they have one invariant
equation, namely

=1, =0. (46)

4. Differential invariants of the second order

Here, we search for differential invariants involving second-order derivatives,

J = J(fk>ﬂk’f2k7flklvflkzvfzkz)a k=12 (47)
The second prolongation of the operator Y is written in the form
0 0
@ _ k k
Y _Y+Gi6ﬁk+ai16i’]‘. (48)
with
k= Di(a") — f*D;(&) — LD, k=12 49
0y i(07) — faDi (&) — f2Di(&), 1], ) & (49)
The second prolongation Y7(2) of the operator Y; coincides with Y;. Therefore,
oJ
Y<2> J) =~ — O7 50
) =5, (50)
and hence
J=J(f S S ), k=1,2. (51)
The action of the second prolongation of the operator Ys is defined by
0 0 0 0 0 0
YO — e o 2 Df
T A TR T
0 0 0 0
—2fp=———2g811— — 28— — 28— 52
[ 3fn g11 g1 g12 3212 822 g ) (52)
and the equation Y (J) = 0 yields
J:J(ﬂplaPZaP3aP4ap5,P671977178,]79)7 (53)
where p;, p», p3 are defined by Eq. (34), and
Py = Ju ps = Ji2 D = E2) = g1 = 812 po = 82 (54)
(") (") (h)? (h) (n?* (fi)°
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Likewise, we have

0 0 0
+ + —I— + + +
f@f fl@f gl f26f2 gz f11af“ f126ﬁ2
+ £ + 6 —l— c + 6
by 6f22 gn glza 2 8= 32n
0 6 0 0 0 0
=/ (55)

af‘p“ap P P Mo P Py
and the equation Y6 ( ) = 0 yields J = J(p1, p2, p3, Pn), Where
Ph :fphv h :4,5a"-593 (56)

with p, defined in (54).
The second prolongation of the operator Y has the form

0 0 0 0
Y(z — _F// F/// F// F// _ Fll _ F/// 2Fl/
F 26f (F"f +F"fi + gz)—agl 2—6g2 (F"f> + 12) —6f11
/! 6 " /! " s a
—-F 22—af —(FYf +2F"fi + F'fi + F g2+2Fg12)@
i ! /! a ! a
—(F ]F2+Ff12+Fg22)@_Ff22@~ (57)

Invoking that ¥\ (J ) = 0, because F'V, F” and F” are independent functions, one obtains from
the invariance test Y ( ) = 0 the following three equations:

2
of o _o, (58)
agn (1) opr
oJ oJ oJ f [ oJ ( oJ oJ >]
ip( ) =L ()| =0, 59
U f<6fn agu> filam TP\ T 9)
aoJ aoJ oJ oJ oJ aoJ
Y+ + gt + + (fia + + fz—=0. 60
fz T (i gz)ag fz 2f1a5— I S T (f12 gzz)ag12 S 32 (60)
Eq. (58) and the characteristic equatlons for (59) yield:
J:J<p27p37p57p67p97q17q2)7 (61)
with
q=pi-p =t = 8S ‘flfz : (62)
(f1)° (f1)
Now Eq. (60) takes the form
oJ oJ oJ oJ oJ
—pr = —1)——(2pyp -2 2popy — Pg) —
P s P2(p3 )6p3 (2paps — )a_ P2P6 ~— Ps — (2pspo — Ps) s
oJ oJ
= (2pg1 —ps + o) = — [P2(2¢2 + p3s + 1) — 2ps| — =0, (63)
g, 9g>
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and its the characteristic equations yield:
J:J(;L17j~27/137)"47}~57j’6>7 <64)
where

P3—1:g2—f1 . P JIn

, M =—

A=

P f> %o(h)
_Pe—pps L Jifn— fofi
3 — 3 _f 3 )
(p2) (f2)
Ao _P —1;35 :ffIZ —i,.’zz’
(p2) (f2)
ds = DPs — Do — qi1p2 _f(flz—gzz)fl (/i1 — gu2)f2
(p2)’ (5
2 = (p2)*(a2 4+ p3) = 20205 + s _ [(Fo)'fir = (o)’ + /()& = 2f i /oS + f (/1) fon
()’ (5!
(65)
Let us consider the second prolongation of operator Y,,, keeping only the necessary terms:
0
] +(20"f + o' f + ”Ux +3 ///x + Ux ‘o 4 //Ux v
qofaf 20"+ o' fito j”z)@f qofzaf (@"vf +@"vfi —@'gi + ¢ gz)ag1
0
+(@"f + @"vefa+ ¢’gz)@+ 20" f + 3c0”f 9" 02+ 20" v/ 1) 5 f
11
+ G0 2420 12+ 0 v n) 57 f 40 g f +(@"f+ 0" v o+ 0" fi + ¢ vif1
1 " a a
+0"g+ ¢"0:g0) =—+ (20" o + ¢"vif0 + 2¢0'g0) (66)
0gn2 0g2n

Since ¢', ¢” and ¢" are independent functions, the operator (66) furnishes the following three
independent operatorS'

0 0 0 0
=2f f+f16f1+ fzafz_glag -ng6 +2flzaf12+4fzzaf22+2gzz . (67)
0 0 0
(2f+vf2) f (f1+g2)ag (f + oy 2)ag2 (3f1 + 20, 12)%
+ O+ o) 5 [l gl 5 (2 nfi) s (68)
Y5 = v f —+ (2f + Uxfz) -+ (f + Uxfz) : (69)

The invariant test

Y2 ) =0, (70)

¢
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yields
oJ oJ
——2—=0.
04s 06 0
Thus,

J = J(/ll,j,z, 13, ;L4,H0)

with

fo = 24s + Ag =

(£2)" (2)°
The reckoning shows that invariant test
) _

Y (J) =0,
yields, i.e.

oJ oJ oJ oJ

—+B3-20)——— -4+ 4+ 4)—=0.

o, T2 g, m At g
Hence,

J = J(/l% Hys By, :u3)7

where the invariants y,, u, and p, are given by

= I+ _ f&— )+ e —gzz),

()’

Hy = },3 — (3 — 2&2)11 =

Qe — f) — fhfie = 3(6) (8 — fi)

()’

= o+ 2270 — () + 42 + A4) A
_ ffl (fifor + 2/282) + 42[f2(82 — i) — f282]

(f2)"
C20(A) + (2))] +f(fir — 2g1) + fo&1 — 5fig
(2)’
Finally, the invariant test
) _
Y, (J) =0,

after tedious calculations yields

1a.ul 26.“2 36#3 .

Upon solving this equation, we arrive at the following result.

Ml = 2fgn)  fUfn —2810) + /28 —fig2

Y

(71)

(72)

(73)

(74)

(75)

(76)

(80)

(81)
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Theorem 2. The general form of the second-order differential invariants of Egs. (8) is

J = J()“a K, V)> (82)
where 2, 1 and v are three independent invariants defined by
h=1y= (f;)zz, (83)
ot _ S22 — f1) = [~ 3(£) (8 ~ f) (84)
1y folf2(g2 = 1) + f(fi2 — g22)] 7
y= o _ N0+ 2gn) +aplfn(e2 = 1) — S22

[f2(g2 = fi) + f(fi — g22)]z
220()° + (82))] + £ (fu1 — 2812) + fog1 — 5f1g2.
(g2 — 1) + [ (fi — g2)]*

(ﬂ1)2

- ()

5. Some applications

Previous invariants can be used, for example, in order to identify subsets of equations (8) that
remain unaltered under the action of the equivalence group &. The following examples clarify this
application.

1. Eq. (8) with f; = f,. = 0 are semilinear equations of the form (45):
vy = 1(x)0 + g(x,0,).

Since the equation f, = 0 is invariant with respect to &, any semilinear equation (45) is trans-
formed by the equivalence group & into an equation of the same form.
2. Likewise, the subset of Egs. (8) defined by the conditions f; # 0 and

1 S

)

is also invariant under &. The equations of this subset have the form:
Uy = [k(X)vy + (X))o + g(x, v,),  k(x) #O.

J =0
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