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a b s t r a c t

The article is devoted to the solution of the invariants problem for the one-dimensional
parabolic equations written in the two-coefficient canonical form used recently by N.H.
Ibragimov:
. All righ

x: +46
ut � uxx þ aðt; xÞux þ cðt; xÞu ¼ 0:
A simple invariant condition is obtained for determining all equations that are
reducible to the heat equation by the general group of equivalence transforma-
tions.

The solution to the problem of invariants is given also in the one-coefficient canonical
ut � uxx þ cðt; xÞu ¼ 0:
One of the main differences between these two canonical forms is that the equivalence
group for the two-coefficient form contains the arbitrary linear transformation of the
dependent variable whereas this group for the one-coefficient form contains only a special
type of the linear transformations of the dependent variable.

� 2008 Elsevier B.V. All rights reserved.
1. Two-coefficient representation of parabolic equations

Any one-dimensional linear homogeneous parabolic equation can be reduced by an appropriate change of the indepen-
dent variables to the following form:
ut � uxx þ aðt; xÞux þ cðt; xÞu ¼ 0: ð1Þ
This form has been used in [4] (see also Preprint in [3]) for obtaining a simple criteria for identifying the parabolic equations
reducible to the heat equation by the linear transformation of the dependent variable, without changing the independent vari-
ables. The present paper is a continuation of the work [4] and contains, inter alia, a criteria (Theorem 1) for reducibility to the
heat equation by the general group of equivalence transformations including changes of the independent variables.

1.1. Equivalence transformations

The equivalence algebra for Eq. (1) is spanned by the generator
Yr ¼ ru
o

ou
þ 2rx

o

oa
þ ðrxx � rt � arxÞ

o

oc
ð2Þ
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of the usual linear transformation of the dependent variable and by the generators
Ya ¼ a
o

ox
þ a0

o

oa
; Yc ¼ 2c

o

ot
þ c0x

o

ox
þ ðxc00 � ac0Þ o

oa
� cc0

o

oc
ð3Þ
of the corresponding transformations of the independent variables. Here c ¼ cðtÞ; a ¼ aðtÞ and r ¼ rðt; xÞ are arbitrary func-
tions, the prime denotes the differentiation with respect to t:

1.2. Invariants

The semi-invariant obtained in [2] is written for Eq. (1) as follows (see [3]):
K ¼ aax � axx þ at þ 2cx: ð4Þ
The problem of invariants reduces to calculation of invariants of the form
J ¼ JðK;Kx;Kt ;Ktt ;Kxt;Kxx; . . .Þ ð5Þ
for the operators (3). The generators (2) and (3) become
Yr ¼ ru
o

ou
; Ya ¼ a

o

ox
þ a00

o

oK
; Yc ¼ 2c

o

ot
þ c0x

o

ox
þ ðxc000 � 3c0KÞ o

oK
ð6Þ
We use the prolongations of the generator
X ¼ n
o

ot
þ g

o

ox
þ f

o

ou
þ fKt

o

Kt
þ fKx

o

Kx
þ fKtt

o

Ktt
þ fKxt

o

Kxt
þ fKxx

o

Kxx
þ fKttt

o

Kttt
þ fKxtt oKxtt þ fKxxt

o

Kxxt
þ fKxxx oKxxx þ � � �
and consider invariants of order N (the maximal order of the derivatives involved in the invariant). It is better to use the
notation
Kkl ¼
okþlK
oxkotl

:

Then the form of the generator becomes
X ¼ n
o

ot
þ g

o

ox
þ f

o

ou
þ fK o

oK
þ fKt

o

Kt
þ fKx oKx þ

Xkþl6N

k;l

fKkl
o

Kkl
Let us use the operator Ya. Its first three prolongations have the coefficients
fKt ¼ að3Þ � Kxa0; fKx ¼ 0;

fKtt ¼ að4Þ � Kxa00 � 2Kxta0; fKxt ¼ �Kxxa0; fKxx ¼ 0;

fKttt ¼ að5Þ � Kxað3Þ � 3Kxta00 � 3Kxtta0;
fKxtt ¼ �Kxxa00 � 2Kxxta0; fKxxt ¼ �Kxxxa0; fKxxx ¼ 0;
and other prolongations of kth order give
fKk0 ¼ 0; fK0k ¼ aðkþ2Þ þ akaðkÞ þ � � � ; fKls ¼ bsaðsÞ þ � � � ; ðl P 1; lþ s ¼ kÞ
with some functions ak and bs which do not depend on a and its derivatives.
Let us use the operator Yc. Then the first and the second prolongations are defined by the coefficients:
Yc ¼ 2c
o

ot
þ c0 x

o

ox
þ ðxc000 � 3c0KÞ o

oK
fKt ¼ xcð4Þ � 3c00K � 5c0Kt � c00xKx;

fKx ¼ cð3Þ � 4c0Kx;

fKtt ¼ xcð5Þ � 3c000K � 8c00Kt � c000xKx � 7c0Ktt � 2c00xKxt;

fKxt ¼ cð4Þ � 4c00Kx � 6c0Kxt � c00xKxx;

fKxx ¼ �5c0Kxx;
Notice that other prolongations give that
fKs0 ¼ �ðsþ 3Þc0; ðs P 3Þ:
Let us assume that an invariant J does not depend on the derivatives Kkl, where l P 1. Then the equation YaJ ¼ 0 is identically
satisfied, and the equation YcJ ¼ 0 becomes
�cð3Þ
oJ

oKx
þ c0 4Kx

oJ
oKx
þ 5Kxx

oJ
oKxx

þ
X
lP3

ðlþ 3ÞKl0
oJ

oKl0

 !
¼ 0:
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This gives that oJ
oKx
¼ 0, and any solution of the equation
5Kxx
oJ

oKxx
þ
X
lP3

ðlþ 3ÞKl0
oJ

oKl0
¼ 0
gives an invariant. The characteristic system of this equation is
d Kxx

5Kxx
¼ dKxxx

6Kxxx
¼ d Kxxxx

7Kxxxx
¼ � � �
Further we use the following statements that can be easily proved by using the above prolongations of the generators (6).
Lemma.
The equation
Kxx ¼ 0 ð7Þ
is invariant under equivalence transformations with the generators (2) and (3).

Proof. Since the coefficients fKxx in the prolongations of the generators Yr and Ya vanish, the transformations corresponding
to these operators do not change the derivative Kxx. Furthermore, the transformation of Kxx corresponding to the generator
Yc is defined by two terms:
Yc ¼ 2c
o

ot
fKxx � 5c0Kxx

o

oKxx
. . .
Hence, the transformation corresponding to the generator Yc just scales the derivative Kxx with some function depending on
t. This also does not change the property (7). This completes the proof.

Theorem 1. Eq. (1) can be mapped to the heat equation by the general group of equivalence transformations with the generators
(2) and (3) if and only if the semi-invariant K of Eq. (1) satisfies the Eq. (7).

Proof. According to (2) and (3), the equivalence transformations comprise the linear transformation of the dependent
variable:
v ¼ Vðx; tÞu ð8Þ
with an arbitrary function Vðx; tÞ– 0 and the change of the independent variables
s ¼ HðtÞ; y ¼ x u1ðtÞ þu0ðtÞ; ð9Þ
where u1ðtÞ – 0 and HðtÞ is defined by the equation
H0ðtÞ ¼ u2
1ðtÞ: ð10Þ
The requirement that the transformations (8) and (9) map the equation
vs � vyy þ b2ðy; sÞvy þ b3ðy; sÞv ¼ 0 ð11Þ
into the heat equation
ut � uxx ¼ 0 ð12Þ
yields the following equations:
2H0Vxu1 þ ðxu01 þu00 � H0b2Þu2
1V ¼ 0;

H0Vxxu1 � H0Vxu2
1b2 � H0u3

1b3V � Vtu3
1 þ ðxu01 þu00ÞVxu2

1 ¼ 0:
ð13Þ
The problem is to find the conditions for the coefficients b2ðs; yÞ, b3ðs; yÞ that guarantee existence of the functions
Vðt; xÞ;HðtÞ;u0ðtÞ and u1ðtÞ. To solve this problem, we have to investigate the compatibility of the overdetermined system
of partial differential Eq. (13). To this end, we note that Eq. (13) yield
Vx ¼ u1V
2H0 ð�u00 �u01xþ H0b2Þ;

Vt ¼ V
4H0u1

½�u01
2u1x2 þ 2u01u1xðH0b2 �u00Þ þu1ðH

02ð2b2y � b2
2 � 4b3Þ �u00

2 þ 2u00H0b2Þ � 2u01H0�:
Equating the mixed derivatives, ðVtÞx ¼ ðVxÞt ; we find
H03K ¼ u000H0 �u00H00 þ xðu001H0 �u01H00Þ ¼ 0
or
K ¼ u�6
1 yðu001u1 � 2u021 Þ þu000u

2
1 � 2u00u

0
1u1 �u001u0u1 þ 2u01

2u0

� �
:



2554 N.H. Ibragimov, S.V. Meleshko / Commun Nonlinear Sci Numer Simulat 14 (2009) 2551–2558
Thus, the semi-invariant K of the equations that are equivalent to the heat equation has to be linear with respect to y, i.e.
satisfy the equation Kyy ¼ 0.

Conversely, let us assume that the condition Kyy ¼ 0 is satisfied for Eq. (11), i.e.
K ¼ y/1ðsÞ þ /0ðsÞ: ð14Þ
Choosing HðtÞ;u0ðtÞ and u1ðtÞ satisfying the Eq. (9) and
u001 ¼ 2
u021
u1
þu5

1/1; u000 ¼ 2u00
u01
u1
þu4

1ð/1u0 þ /0Þ ð15Þ
one can transform Eq. (11) into the heat equation. This completes the proof.
Example. Consider the equation
vs � vyy þ
y

3svy ¼ 0: ð16Þ
It has the form (11) with
b2 ¼
y

3s
; b3 ¼ 0:
The semi-invariant (4) for Eq. (16) is
K ¼ � 2y
9s2 �
It has the form (14) with
/1 ¼ �
2

9s2 ; /2 ¼ 0: ð17Þ
Let us investigate reducibility of Eq. (16) to the heat Eq. (12) by the change of the independent variables (9) without changing
the dependent variable, i.e. by letting V ¼ 1 in (8). Then Eq. (13) reduce to one equation
xu01 þu00 � H0b2 ¼ 0:
Substituting here the expression of b2 and using Eqs. (9) and (10), we obtain:
xu01ðtÞ þu00ðtÞ �u2
1

xu1ðtÞ þu0ðtÞ
3HðtÞ ¼ 0:
Upon separating the variables, this equations splits into two equations:
u01 �
u3

1

3H
¼ 0
and
u00 �
u0u2

1

3H
¼ 0:
We rewrite the first equation in the form
HðtÞ ¼ u3
1ðtÞ

3u01ðtÞ
ð18Þ
and satisfy the second equation by letting u0 ¼ 0: Differentiating (18) and using (10), we obtain
u3
1

3u01
u001 ¼ 0;
whence u001 ¼ 0: Thus, u1ðtÞ ¼ pt þ q We take for the simplicity q ¼ 0 and obtain
u1ðtÞ ¼ pt; p ¼ const:
Then Eqs. (18), (9) and (17) yield:
s ¼ HðtÞ ¼ p2t3

3
; /1 ¼ �

2
p4t6 �
Now one can readily verify that Eq. (15) are satisfied for arbitrary p: We take p ¼ 1 and obtain the following change of vari-
ables transformation Eq. (16) to the heat equation:
s ¼ 1
3

t3; y ¼ tx; v ¼ u: ð19Þ
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Remark. In the case of three-coefficient representation of parabolic equations the test for reduction to the heat equation is
more complicated, see, e.g. [5].

Further we will consider Eq. (1) that are not equivalent to the heat equation. In other words, taking into account Lemma 2,
we will assume that Kxx – 0. This assumption allows us to obtain the invariants
1 Her
Kl0K�ðlþ3Þ=5
xx ; ðl P 3Þ: ð20Þ
The reckoning shows the following operator is an invariant differentiation:
D ¼ 1
K1=5

xx

Dx ð21Þ
Moreover, we can easily see that applying the invariant differentiation (21) to the invariant corresponding to l ¼ 3:
J� ¼
Kxxx

K6=5
xx

; ð22Þ
we obtain all invariants (20). Hence (22), provides a basis of these invariants.

Theorem 2. The operator (21), D ¼ K�1=5
xx Dx; is an invariant differentiation.

Proof. Let J be a differential invariant, i.e.
XJ ¼ 0:
Recall that the coefficients of the generator X are
n ¼ aþ c0x; g ¼ 2c; fKxx ¼ �5c0Kxx:
Notice also that
XðK�1=5
xx Þ � K�1=5

xx Dxn ¼ 0: ð23Þ
Using the identity (see [6])
DxðXFÞ ¼ XðDxFÞ þ DxnDxF þ DxgDtF
valid for any function F one has
XðK�1=5
xx DxJÞ ¼ ðDxJÞXðK�1=5

xx Þ þ K�1=5
xx ðDxðXJÞ � DxnDxJ � DxgDtJÞ: ð24Þ
Note that XJ ¼ 0 because J is an invariant, and Dxg ¼ 0 because g ¼ 2cðtÞ: Therefore Eq. (24) becomes
XðK�1=5
xx DxJÞ ¼ ðXðK�1=5

xx Þ � K�1=5
xx DxnÞDxJ:
Now we use Eq. (23) and obtain the proof of the theorem:
XðK�1=5
xx DxðJÞÞ ¼ 0:
1.3. Fourth-order invariants

Splitting the equations YaJ ¼ 0 and YcJ ¼ 0 with respect to the functions a, c, and their derivatives, one obtains that1
JðK;Kx;Kxx;Kxxx;Kxxt;Kxxxx;Kxxxt;KxxttÞ
and these equations are
oJ
oK
� Kxxx

oJ
oKxxtt

¼ 0;
oJ

oKx
� 5Kxx

oJ
oKxxtt

¼ 0;

7Kxxxx
oJ

oKxxxx
þ 6Kxxx

oJ
oKxxx

þ 5Kxx
oJ

oKxx
þ 4Kx

oJ
oKx
þ 3K

oJ
oK
þ 8Kxxxt

oJ
oKxxxt

þ 7Kxxt
oJ

oKxxt
þ 9Kxxtt

oJ
oKxxtt

¼ 0;

6Kxxx
oJ

oKxxxt
þ 12Kxxt

oJ
oKxxtt

þ 5Kxx
oJ

oKxxt
¼ 0; Kxxxx

oJ
oKxxxt

þ 2Kxxxt
oJ

oKxxtt
þ Kxxx

oJ
oKxxt

¼ 0:
This system of equations is a complete system. Solving the first four equations, this system becomes
ð5J2 � 6J2
1Þ

oJ
oz2
þ 10z2

oJ
oz1
¼ 0;
e the order is the maximal order of derivatives of K involved in the invariant.
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where JðJ1; J2; z1; z2Þ and
J1 ¼ K�6=5
xx Kxxx; J2 ¼ K�7=5

xx Kxxxx; z1 ¼ K�14=5
xx KxxðKxxtt þ KKxxx þ 5KxKxxÞ �

6
5

K2
xxt

� �
; z2 ¼ K�13=5

xx KxxKxxxt �
6
5

KxxtKxxx

� �
:

Notice that
5J2 � 6J2
1

� �
¼ K�12=5

xx 5KxxKxxxx � 6K2
xxx

� �
:

If it is assumed that
5KxxxxKxx � 6ðKxxxÞ2 – 0; ð25Þ
then the invariants are
J1; J2; 5J2 � 6J2
1

� �
z1 � 5z2

2:
If one assumes that
5KxxxxKxx � 6ðKxxxÞ2 ¼ 0; ð26Þ
then the invariants are defined by the equation
z2
oJ
oz1
¼ 0:
This means that: (a) if z2 ¼ 0, then the invariants are
J1; J2; z1;
(b) if z2 – 0, then the invariants are
J1; J2; z2:
The invariants which do not depend on any conditions are only the invariants (20). Notice that the properties (25), (26) and
z2 ¼ 0 or z2 – 0 are invariant.

The obtained result confirms solutions obtained in [7] for invariants with three coefficients in a linear parabolic equation.
2. One-coefficient representation of parabolic equations

One can transform Eq. (1) to the equation (this representation was already known in the classical literature, see, e.g. [1])
ut � uxx þ cðt; xÞu ¼ 0 ð27Þ
with one-coefficient c ¼ cðx; tÞ by using the linear transformation
v ¼ ueqðx;tÞ
of the dependent variable, where qðt; xÞ is defined by (see Eq. (3.7) in [3])
2qþ aðx; tÞ ¼ 0:
2.1. Equivalence transformations

The equivalence group for Eq. (27) is defined by the generator
8c
o

ot
þ 4ðc0xþ 2aÞ o

ox
þ uð2b� c00x2 � 4a0xÞ o

ou
þ ðc000x2 � 2c00 þ 4a00x� 2b0 � 8c0cÞ o

oc
spanned by the following three generators:
X3 ¼ 8c o
ot þ 4c0x o

ox� uc00x2 o
ouþ ðc000x2 � 2c00 � 8c0cÞ o

oc ;

X2 ¼ 2a o
ox� ua0x o

ouþ a00x o
oc ;

X1 ¼ bu o
ou� b0 o

oc ;

ð28Þ
where c, a and b are arbitrary functions of t.
We use the prolongations of the generator
X ¼ n
o

ot
þ g

o

ox
þ f

o

ou
þ fc o

oc
þ fct

o

oct
þ fcx

o

ocx
þ fctt

o

octt
þ fcxt

o

ocxt
þ fcxx

o

ocxx
þ fcttt

o

octtt
þ fcxtt

o

ocxtt
þ fcxxt

o

ocxxt
þ fcxxx

o

ocxxx
þ � � �
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It is better to use the notation
ckl ¼
okþlc
oxkotl

:

Then the form of the generator becomes
X ¼ n
o

ot
þ g

o

ox
þ f

o

ou
þ fc o

oc
þ fct

o

oct
þ fcx

o

ocx
þ
X

k;l

fckl
o

ockl
:

2.2. Invariants

Let us use the operator X1. Then the first prolongation is defined by the coefficients
fct ¼ �bð2Þ; fcx ¼ 0;
and other prolongations of kth order give
fc0k ¼ �bðkþ1Þ; fcls ¼ 0; ðl P 1; lþ s ¼ kÞ:
Splitting with respect to the derivatives of the function bðtÞ the equation for invariants
XðkÞ1 J ¼ 0;
we immediately come to the conditions that the invariant J does not depend on the derivatives
c0k; ðk P 1Þ:
Hence, further the coefficients fc0k are not necessary to be calculated. Splitting with respect to b0 also excludes c from the
invariant J. Let us use the operator X2. Then the first and the second prolongations are defined by the coefficients:
fcx ¼ a00; fcxt ¼ að3Þ � 2a0cxx; fcxx ¼ 0; fcxtt ¼ að4Þ � 2a00cxx � 4a0cxxt ; fcxxt ¼ �2a0cxxx; fcxxx ¼ 0:
In the kth prolongation the maximal order of the derivative aðkþ1Þ will be in the coefficient fcðk�1Þ1 . Hence, the invariant J does
not depend on the derivatives
cðk�2Þ1; cðk�1Þ1:
If one assumes that the invariant J does not depend on
csl; ðl P 1; sþ l ¼ k P 2Þ;
then the term with a00 in the equation X2J ¼ 0 gives oJ
ocx
¼ 0. Hence, the invariant can only depend on
cxx; cxxx; cxxxx; . . . ; ck0:
Let us use the operator X3. The prolongations are defined by the coefficients:
fcx ¼ 2xc000 � 12c0cx; fct ¼ x2cð4Þ � 2cð3Þ � 4c00xcx � 8c00c � 16c0ct ;

fcxx ¼ 2c000 � 16c0cxx; fcxt ¼ 2xcð4Þ � 4c00xcxx � 12c00cx � 20c0cxt ;

fc30 ¼ �20c0cxxx; fc40 ¼ �24c0c40; fc50 ¼ �28c0c50; . . .
Splitting the equation X3J ¼ 0 with respect to the derivative c000, one obtains oJ
ocxx
¼ 0. The equation X3J ¼ 0 becomes
5cxxx
oJ

ocxxx
þ
X
kP4

ðkþ 2Þck0
oJ

ock0
¼ 0:
For solving this equation one needs to solve the characteristic system of equations
dcxxx

5cxxx
¼ dcxxxx

6cxxxx
¼ dcxxxxx

7cxxxxx
¼ � � �
Note that the Eq. (27) with the coefficient cðt; xÞ satisfying the condition cxxx ¼ 0 are equivalent to the heat equation. Hence,
for the equations that are not equivalent to the heat equation all invariants not depending on ckl ðl P 1Þ are given by
ck0c�ðkþ2Þ=5
30 ; k P 4: ð29Þ
Thus, the basis of differential invariants (29) consists of the invariant
J ¼ cxxxx

ðcxxxÞ6=5 ð30Þ
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and the operator of invariant differentiation is
D ¼ c�1=5
xxx Dx: ð31Þ
Proceeding as in the case of two-coefficients, we arrive at the following statement.

Theorem 3. The operator D given by (31) is an operator of invariant differentiation. Hence, all invariants (29) are obtained from
the invariant (30) by the invariant differentiation (31).
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