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type of the linear transformations of the dependent variable.
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1. Two-coefficient representation of parabolic equations
Any one-dimensional linear homogeneous parabolic equation can be reduced by an appropriate change of the indepen-
dent variables to the following form:
U — Uy + a(t, X)uy + c(t,x)u = 0. (1)

This form has been used in [4] (see also Preprint in [3]) for obtaining a simple criteria for identifying the parabolic equations
reducible to the heat equation by the linear transformation of the dependent variable, without changing the independent vari-
ables. The present paper is a continuation of the work [4] and contains, inter alia, a criteria (Theorem 1) for reducibility to the
heat equation by the general group of equivalence transformations including changes of the independent variables.

1.1. Equivalence transformations
The equivalence algebra for Eq. (1) is spanned by the generator

0 ) )
Yazou@+20'x@+(am—m—aax)§ (2)
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of the usual linear transformation of the dependent variable and by the generators

0 d o, 0 PN 0
Yafoca—Jroc@ Y},:Zya+yx&+(x,1 a/)aa cyac (3)

of the corresponding transformations of the independent variables. Here y = y(t), « = «(t) and o = o (t,x) are arbitrary func-
tions, the prime denotes the differentiation with respect to t.

1.2. Invariants

The semi-invariant obtained in [2] is written for Eq. (1) as follows (see [3]):

K = aay — Gy + a; + 2¢,. (4)
The problem of invariants reduces to calculation of invariants of the form

J=JK, K, Ke, Kee, Kot Ko, - - ) (5)
for the operators (3). The generators (2) and (3) become

0 6 0 0 .0 " ,

Y(,_:Ju@, Y, = a +a K Y},:Zya-kyx& (xy 3yl<) (6)

We use the prolongatlons of the generator
_ .0 ke O 1<x ke O ke Ok O Km a Kt 1<m a K
X*Qaﬁ”ax“ +¢ +C +¢ K. +¢ K. +¢ K. +¢ +C Oy + & +e Ot T

and consider invariants of order N (the maximal order of the derivatives involved in the 1nvarlant). It is better to use the
notation

ak+lK
<I<l = kAl
oxkot
Then the form of the generator becomes
d < k+ISN ‘ d
— _ _ . Rx CRk
X=¢ ”’ax“ + ¢ 6K+£ +{ aKX+%jg Ke

Let us use the operator Y,. Its first three prolongations have the coefficients

Cl([ _ 06(3) _ I( <x/ CKX _ 0,

o= o® — Koo' = 2K, (0= —Kyo!, (=0,

e = o3 — Kyo® — 3Kt — 3Ky,

CKX” = *Kxxa” - 21()()(1'0(,1 éKW = *Kxxxa/, CKW = 07
and other prolongations of kth order give

o =0, Koo = q®2 L quo® ... Ko =t ... (I1=1, I+5= k)
with some functions a, and bs; which do not depend on « and its derivatives.

Let us use the operator Y,. Then the first and the second prolongations are defined by the coefficients:
a / a /1 / a

Y, = 2y&+y Xot (xy 731/1()&

(= xy® — 3y"K — 5y'K, — y"xK4,

ng _ y(3) _ '))/K

e = x"/ —39"K — 8Y"K; — V"xKyx — 7Y Ky — 27"XKy,,

e = 9@ — 497K, — 67Ky — 7'XKxx,

VKXX = _5')) KXX7
Notice that other prolongations give that

o= ~(s4+3)y, (s> 3).

Let us assume that an invariant J does not depend on the derivatives Ky, where | > 1. Then the equation Y,J = O is identically
satisfied, and the equation Y,/ = 0 becomes

5 O y g _
—y® 5K y( +51<XX +Z 1+31<106K10>_0.
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This gives that =L = 0, and any solution of the equation

oKx
o J
%+Z (1+3)1<,0%_ 0

=3

5K«

gives an invariant. The characteristic system of this equation is
d Ky dKux  dKex

5K  6Kux 7Ky

Further we use the following statements that can be easily proved by using the above prolongations of the generators (6).
Lemma.
The equation

Ky =0 (7)
is invariant under equivalence transformations with the generators (2) and (3).

Proof. Since the coefficients (= in the prolongations of the generators Y, and Y, vanish, the transformations corresponding
to these operators do not change the derivative K,y. Furthermore, the transformation of Ky, corresponding to the generator
Y, is defined by two terms:

0 Kxx / i
Y, = Z’Va(, — 5y Ky Ky

Hence, the transformation corresponding to the generator Y, just scales the derivative K, with some function depending on
t. This also does not change the property (7). This completes the proof.

Theorem 1. Eq. (1) can be mapped to the heat equation by the general group of equivalence transformations with the generators
(2) and (3) if and only if the semi-invariant K of Eq. (1) satisfies the Eq. (7).

Proof. According to (2) and (3), the equivalence transformations comprise the linear transformation of the dependent
variable:

v=V(x,t)u (8)
with an arbitrary function V(x,t) # 0 and the change of the independent variables

T=H(t), y=x@i(t)+@o(t), )
where ¢, (t) # 0 and H(t) is defined by the equation

H'(t) = ¢i(t). (10)

The requirement that the transformations (8) and (9) map the equation

v — Uy +by(y,T)vy + b3(y,T)v =0 (11)
into the heat equation

U — Uy =0 (12)
yields the following equations:

2HVyp, + (X + @ — Hby) 9V =0, (13)
HViupy = HVy by — H'@ibsV — Vegp? + (x) + ) Vip = 0.

The problem is to find the conditions for the coefficients b,(t,y), bs(t,y) that guarantee existence of the functions
V(t,x),H(t), @y(t) and ¢, (t). To solve this problem, we have to investigate the compatibility of the overdetermined system
of partial differential Eq. (13). To this end, we note that Eq. (13) yield

Vi =57 (=% — ¢'x + H'by),
Vi = gt [ 047 0122 + 20,0, X(H'by — @) + @ (H* (2byy — b — 4bs) — 9 + 2¢,H'by) — 2, H.
Equating the mixed derivatives, (V;), = (Vy),, we find
H?K = g4H — goH' +x(g{H - @, H") = 0
or

K = 0:°(y(@101 —207) + 950} 2000101 — P10e, + 2017 0y).
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Thus, the semi-invariant K of the equations that are equivalent to the heat equation has to be linear with respect to y, i.e.
satisfy the equation K,, = 0.
Conversely, let us assume that the condition Ky, = 0 is satisfied for Eq. (11), i.e.

K'=y:1(t) + ¢o(1)- (14)
Choosing H(t), @, (t) and ¢, (t) satisfying the Eq. (9) and

//:2(/)/12 5 11:2 ’([)7/1 4 15

P , + @101, Qo =20 ?, + @7(9100 + do) (15)

one can transform Eq. (11) into the heat equation. This completes the proof.
Example. Consider the equation

vf—vyy—&—%vy:o. (16)
It has the form (11) with

by =2 by=0.

=30
The semi-invariant (4) for Eq. (16) is
2y
K=-gp
It has the form (14) with
2
¢1=*w7 d’z:O- (17)

Let us investigate reducibility of Eq. (16) to the heat Eq. (12) by the change of the independent variables (9) without changing
the dependent variable, i.e. by letting V = 1 in (8). Then Eq. (13) reduce to one equation

X\ + @y —Hby, = 0.

Substituting here the expression of b, and using Eqgs. (9) and (10), we obtain:

, , X, (£) + @yt
R ]
Upon separating the variables, this equations splits into two equations:
3
¢y — ;D—,; =0
and
o (pO(p% _
(pO 3H =0.
We rewrite the first equation in the form
Pi(0)
H(t) = 18
Y30, e
and satisfy the second equation by letting ¢, = 0. Differentiating (18) and using (10), we obtain
(A
=0,
30,71

whence ¢/ = 0. Thus, ¢, (t) = pt + q We take for the simplicity ¢ = 0 and obtain
@,(t) =pt, p=const.
Then Eqgs. (18), (9) and (17) yield:
243
T=H(t) :1%7 ¢ = —1%'
Now one can readily verify that Eq. (15) are satisfied for arbitrary p. We take p = 1 and obtain the following change of vari-
ables transformation Eq. (16) to the heat equation:

r=1t3, y=tx, v=u 19
3
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Remark. In the case of three-coefficient representation of parabolic equations the test for reduction to the heat equation is
more complicated, see, e.g. [5].

Further we will consider Eq. (1) that are not equivalent to the heat equation. In other words, taking into account Lemma 2,
we will assume that Ky, # 0. This assumption allows us to obtain the invariants

KoK PP, (1= 3). (20)
The reckoning shows the following operator is an invariant differentiation:
1
9 =——=Dy (21)
K

Moreover, we can easily see that applying the invariant differentiation (21) to the invariant corresponding to [ = 3

Kyx
J =Ko 22)
K3
we obtain all invariants (20). Hence (22), provides a basis of these invariants.
Theorem 2. The operator (21), & = K,)/°Dy, is an invariant differentiation.
Proof. Let | be a differential invariant, i.e.
X =0.
Recall that the coefficients of the generator X are
E=a+yx, n=2y, *=-5/Kxq.
Notice also that
X(K®) = K" Dyé = 0. (23)

Using the identity (see [6])
Dy(XF) = X(DxF) + DyéDiF + DynDiF
valid for any function F one has
X(Ky”°DyJ) = (D)X (K ) + Koo/ (Dx(X]) — DxéDyJ — DyifDyJ). (24)
Note that X] = 0 because J is an invariant, and Dy# = 0 because 1 = 2y(t). Therefore Eq. (24) becomes
X(Ky’DyJ) = (X(Ke®) — K °Dy)Dy.
Now we use Eq. (23) and obtain the proof of the theorem:

X(KyDy(J)) =0

1.3. Fourth-order invariants

Splitting the equations Y,J = 0 and Y,/ = 0 with respect to the functions o, 7, and their derivatives, one obtains that'
.](I<7 I<X~, I<XX7 I<XXX> KXX[7 Kxxxxv KXXXI7 KXXH)

and these equations are

z?lj< Koo al?i“ =0, a?{x 2K al?{m =0
7K xxx ﬁKax]xxx + 6K I(;j] + 5K« aKJXX + 4K ng + 3K aalj< + 8Kt aKaix + 7Kt aIiJm + QKM% =0,
GI(XXXaKa—fM + 12Kt iﬂ?{m + 5K« 61?{( = 0, Kixxx al?im + 2Kt 61?{m + Kma%{m =0.
This system of equations is a complete system. Solving the first four equations, this system becomes
(5), - 6]1) g + 1022 6] =0,

! Here the order is the maximal order of derivatives of K involved in the invariant.
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where J(J;,J,,21,22) and

_ _ ~ 6 _ 6
J1 =K K, Jo =K PKeox, 71 = K)*° <1<XX (Ktt + KKx + 5KxKy) — §K§X[> z, =K PP (KXXKW[ - EKMKXXX> )

Notice that

(5]2 6]1) K,%® (SKXXKW 61<§xx>.
If it is assumed that

5K oK — 6(Kyx)> # 0, (25)
then the invariants are

Jrd: (51, = 6} )21 = 52,

If one assumes that

5K weKx — 6(Ky)? = 0, (26)
then the invariants are defined by the equation
o
V) a =0.

This means that: (a) if z, = 0, then the invariants are

_]]7]2,Z];

(b) if z; # 0, then the invariants are
]1 7.]2 ,22.

The invariants which do not depend on any conditions are only the invariants (20). Notice that the properties (25), (26) and
2z, = 0 or z; # 0 are invariant.
The obtained result confirms solutions obtained in [7] for invariants with three coefficients in a linear parabolic equation.

2. One-coefficient representation of parabolic equations
One can transform Eq. (1) to the equation (this representation was already known in the classical literature, see, e.g. [1])
U — Uy + C(E,X)u=0 (27)
with one-coefficient ¢ = c(x, t) by using the linear transformation
v =ue’™*H
of the dependent variable, where p(t,x) is defined by (see Eq. (3.7) in [3])
2p +a(x,t) =0.

2.1. Equivalence transformations
The equivalence group for Eq. (27) is defined by the generator
8)} o +4(y'x+ 2a) 0 + u2p — —4u'x) % + (7"x* = 29" +4o'x — 2 — Sy’c)g

spanned by the following three generators:

X3 — 8’)} aE[ +4'V/x [¢) u,y//xz 0 + (,y///XZ _ zy// _ V )aﬁ

_Zaifuozx 4+ o'x L, (28)
- ﬁu u
where ), o and g are arbitrary functions of t.
We use the prolongations of the generator
0 0 0 0 0 0 0
X = . . VCz Cx Crt #Cxt Cxx Cret #Cxtt #Cxxt Cxxx .
e gt o +C “ tee T oo Tt T e T Bt T B0
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It is better to use the notation

k+1
Ch=——.
axkat!

Then the form of the generator becomes

.0 o .0 ?
X _ VCt_ VCX_ Ckl
+'7ax+*a et e 6 acx+Z ack,

2.2. Invariants

Let us use the operator X;. Then the first prolongation is defined by the coefficients

(1=-p%, " =0,

and other prolongations of kth order give
(o= =0, (=1, l+s=k).

Splitting with respect to the derivatives of the function j(t) the equation for invariants

k

X1 =0,

we immediately come to the conditions that the invariant J does not depend on the derivatives
Cok, (k= 1).

Hence, further the coefficients {“* are not necessary to be calculated. Splitting with respect to ' also excludes ¢ from the
invariant J. Let us use the operator X5. Then the first and the second prolongations are defined by the coefficients:

(=" (=0 —20Cy, (™ =0, (=0o® 20 Cox — 40 Cpr, (™ = -20Coxx, (™ =0.

In the kth prolongation the maximal order of the derivative o*+" will be in the coefficient {“*', Hence, the invariant J does
not depend on the derivatives

Cik-2)15 Ck—1)1-
If one assumes that the invariant J does not depend on
G, =21, s+1=k > 2),
then the term with «” in the equation X,J = 0 gives 3 (f = 0. Hence, the invariant can only depend on
Cxxy Cxxxy Cxxxxs - -+ Cko-
Let us use the operator X3. The prolongations are defined by the coefficients:
(& =2xy" —12y'cy, (= x2p@ — 293 — 4y"xc, — 8y'c — 16Y'cy,
(™ =29" —16YCe, (™ = 2xX9W — 4y"XCyy — 129"y — 20Y'Cye,
(%0 = =20YCo, (™ =—-24Y'cqo, (™ =-28)csp,...

Splitting the equation X3] = O with respect to the derivative y”, one obtains a’ = 0. The equation X3 = 0 becomes

0 5]
J +Zk+26koaj =0.

5Cx ——
0Cxxx k>4

For solving this equation one needs to solve the characteristic system of equations

dCyx _ ACyox Ao _

5 CXXX 6CXXXX 7 CXXXXX

Note that the Eq. (27) with the coefficient c(t, x) satisfying the condition ¢, = O are equivalent to the heat equation. Hence,
for the equations that are not equivalent to the heat equation all invariants not depending on ¢ (I > 1) are given by

oG NP5 k> 4 (29)
Thus, the basis of differential invariants (29) consists of the invariant

I .
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and the operator of invariant differentiation is

9 = c 5D, (31)

XXX

Proceeding as in the case of two-coefficients, we arrive at the following statement.

Theorem 3. The operator & given by (31) is an operator of invariant differentiation. Hence, all invariants (29) are obtained from
the invariant (30) by the invariant differentiation (31).
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