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Abstract. New identities relating the Euler—-Lagrange, LiéeRlund and Noether operators are obtained. Some
important results are shown to be consequences of these fundamental identities. Furthermore, we generalise an
interesting example presented by Noether in her celebrated paper and prove that any Noether symmetry is equivalent
to a strict Noether symmetry, i.e. a Noether symmetry with zero divergence. We then use the symmetry based
results deduced from the new identities to construct Lagrangians for partial differential equations. In particular,
we show how the knowledge of a symmetry and its corresponding conservation law of a given partial differential
equation can be utilised to construct a Lagrangian for the equation. Several examples are given.
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1. Introduction

The Euler-Lagrange, Lie-&klund and Noether operators play a central role in the study of
invariances in the calculus of variations and differential equations. ldeklBnd symmetries

are an important generalisation of Lie point symmetries. For example, they have application
in accounting for the hidden symmetry associated with the Laplace vector of the well-known
Kepler problem. Noether symmetries form the basis of a simple systematic way of determin-
ing conservation laws for systems of Euler-Lagrange equationsNokéher identityis a
fundamental identity that connects the Euler—Lagrange, LagkBind and Noether operators.

In this paper, weinter alia, present new identities relating these basic operators. Moreover,
in the following sections we discuss the fundamental identities and point out their applica-
tions. In particular, we determine necessary conditions, using symmetries and associated
conservation laws, for the construction of Lagrangians, both for ordinary and partial differ-
ential equations. Furthermore, it is well known that Noether’'s fundamental theorem gives a
constructive way of determining conservation laws for Euler—Lagrange equations once their
symmetry properties are known. We generalise an interesting example presented by Noether
in her celebrated paper. Namely, we prove that any Noether symmetry is equivalent to a strict
Noether symmetry, i.e., a Noether symmetry with zero divergence.

In more detail, the outline of the paper is as follows. In Section 2, we outline the nomen-
clature used in the paper. Section 3 reviews the Noether identity. In Section 4 we present
a new representation of the LieaBklund operator. Section 5 deals with two new operator
identities which are given in terms of commutator relations. These identities have applications
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in classical mechanics and variational calculus and are investigated in the latter sections. In
Section 6, Noether symmetries are considered. Here it is proved that any Noether symmetry
is equivalent to a strict Noether symmetry. In the following Section 7, examples of this result
are given. The application of the identities of Section 5 to inverse problems in mechanics and
variational calculus are deduced in Section 8. In particular, the relationship between Noether
symmetries and the Noether conserved vector is presented. In Section 9, we pursue aspects in
inverse problems. The results of Section 8 whioker alia, are applied to various examples

are given in Section 10. Finally, in Section 11, a utilization of a conservation law in the
construction of an alternative Lagrangian for a system is given.

2. Main Operators

We first remind the reader of the universal spatef differential functions introduced by
Ibragimov [1] (see also [2, p. 56]). The summation convention is adopted throughout.
Let

= (z1,..., 2"
be the independent variable with coordinatésand
w=(ul,... u™)

the dependent variable with coordinatés The derivatives of with respect tar are

u? = Di(ua), U%’ = DjDi(ua), ey (1)
where
0 0 0 )
Di:awiﬁ-u?%‘*‘u%a—u?"i"'“a i=1...,n ©)

is theoperator of total differentiationThe collection of all first derivatives is denoted by
u(yy. Similarly, the collections of all higher-order derivatives are denoted by us), .. . .
Following Lie, in group analysis it is expedient to consider all variables v 1), u (), . - -
as functionally independent connected only by the differential relations (1). Consequently, the
u®s are referred to atifferential variables
Intrinsic to modern group analysis of differential equations is the universal spdeéned
as follows:
We denote by the sequence

Z = (Ia U, U1y, U(2)y-- ) (3)

with elements”, v > 1, where, e.g.,

Z=gt 1<i<n, 2"T*=4u% 1<a<m,
with the remaining elements representing the derivativas éfowever, in applications one
invariably utilizes only finite subsequences:ofvhich are denoted bjg].

A locally analytic functionf (z, u, u(yy, - - ,u(,)) of afinite number of variables is called
a differential function of orderk and for brevity is written ag([z]). The spaceA is the
vector space of all differential functions of all finite orders. A total derivative (2) converts any
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differential function of ordek to a differential function of ordek + 1. Hence, the spacé is
closed under total derivatiors;.

The main operators introduced below are correctly defined in the spaeescisely, this
means that the operators defined as formal sums truncate when they act on differential func-
tions.

DEFINITION 1. TheEuler-Lagrangeperator is defined by

) 0
Su® 8ua+z Diy--- D, B I

i1+l

a=1...,m. 4)

The operator (4) is sometimes referred to asHuer operator named after Euler (1744)

who first introduced it in a geometrical manner for the one-dimensional case. Also, it is called
the Lagrange operatgrbearing the name of Lagrange (1762) who considered the multi-
dimensional case and established its usevarétional sense (see, e.g., [3] for a history of

the calculus of variations). Following Lagrange, Equation (4) is frequently referred to as a
variational derivative In the modern literature, the terminology Euler—Lagrange and varia-
tional derivative are used interchangeably as (4) usually arises in considering a variational
problem.

DEFINITION 2. The Lie-Backlund operator is given by
0 0 ;
X:€3z+773a’ £, n™ e A. %)
This operator is in fact an abbreviated form of the following infinite formal sum:

0 0 0 0

+n +C7, +C11228a +ey (6)

X = fl ) «
ox 8 i

where the additional coefficients are determined uniquely by the prolongation formulae

¢ = Di(W*) +&uf,
Cirip = DiyDi,(W*) +&ug Ujirins
(7
In (7), W< is the Lie characteristic function given by
We =n%— fju;?‘. (8)
One can write the Lie—&cklund operator (6) in the form
X:fiDmLWainLD (W”‘)i+Dlei2(W‘l) o .. ©)
ou® du ou?

1152

It should be remarked that in classical Lie theory dealing with point and first-order contact
transformations only, it was natural to indicate the prolongations of the opeYatorfinite
order derivatives of, with respect ta: by another symbol, e.gX/ ;) for the first prolongation.
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Now with the introduction of the universal spagk all Lie point, Lie contact and Lie—
Backlund operators naturally act in the spatafter prolongation. Accordingly, the same
symbolX is used both for the operator and any of its prolongations.

In modern group analysis, there exists a variety of so-cajéteralised symmetrieghich
generalise Lie’s point and contact infinitesimal group generators. However, the problem still
remains whether these generalised symmetries generate, via the Lie equations, a group. The
problem thus far is solved for Lie-&8klund operators (6). Thatis, the Lie equation is uniquely
solvable, in the spaciéA]] of formal power series with coefficients fros (the proof can be
found in [4, 5]), for any Lie—Bcklund operator (6).

In the above sense, Lie-aBklund symmetries are distinguished from all other generalised
symmetries. Furthermore, the corresponding formal transformation group leaves invariant the
contact conditions of any order. The possible existence of higher-order contact transformations
were extensively discussed by Lie andd&lund during the period 1874-1876. In recogni-
tion of their fundamental contribution, the above generalisation of Lie point and first-order
contact transformations was given the name—Backlund transformation®y Ibragimov
and Anderson [6]. The corresponding infinitesimal generator (6) is naturally callddethe
Backlund operatarlt should be noted that the prolongation formulae (7) are obtained as a
direct consequence of the invariance of the infinite-order contact conditions.

The set of Lie—Bicklund operators constitute an infinite dimensional Lie algé&kaiad is
called theLie—Backlund algebralt contains the total derivations (2) as well &s = \'D;
for any A’ € A. Now let L, denote the set of operatofX., }. ThenL, is an ideal ofL, i.e.
the Lie bracketX, X,] € L, forany X € L (see, e.g. [4]).

DEFINITION 3. The Lie—Bicklund operator& andX are said to bequivalenif X — X ¢
L.. Thatis

X —X =\'D;, MNeA.

In particular, a Lie—~Bcklund operator of the forf¥ = 1®d/du® + - - - is called acanon-
ical representation oX .

DEFINITION 4. The Noether operator associated with a LiaelBund operatoX is defined
by
)

«
ous

)
YDy D)

s>1 101l

Ni=¢ +We i=1,...,n, (10)

where the Euler-Lagrange operators with respect to derivatived afe obtained from (4)
by replacingu® by the corresponding derivatives, e.g.,

0 0 0 .
(su—a:%—f—Z(—l)sDﬁ---D}-SW, i=1...,n, a=1...,m. (11
i i e>1 ij1js

The operator (10) was introduced by Ibragimov [7] and the nidioether operatowas given

in recognition of Noether’s contribution [8]. As a consequence of the operator (10), the proof
of Noether’s theorem becomes purely algebraic and independent of variational calculus. The
algebraic proof is based on the identity presented in the next section.
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3. Noether Identity

THEOREM 1.The Euler-Lagrange, Lie-&klund and Noether operators are connected by
the operator identity
: 5 :

X +D;(¢&") = Waéu—a + D;N". (12)
Here,D;(¢%) is a differential function which is a sum of functions obtained by total derivations
D; of differential functions*. That is,D;(£*) is a divergence of the vectgr= (€L, ... €M),
viz., divé whereaspD; N* is an operator obtained as a sum of products of operatpos N*,

i.e., itis a scalar product of vector operatd?s= (Dy,...,D,) andN = (N1, ..., N").

The identity (12) is due to Ibragimov [7] (see also [5]) and is calledNbether identity

because of its close relation to the Noether theorem.

4. A Representation of the Lie—Bicklund Operator

For one independent variahle the Lie—Backlund operator (9) is

0 0 2 0
X=¢D *— +DW*—+D N+ 13
€D +Wogs + DW)gie + DAW ) g+, (13)
whereW® = n® — £u& and from (10),N takes the form
N=¢4+W¢ 0 + D(W®) 0 + D?(W%) i 4. (14)
dul dug, dul,. ’
LEMMA.
iD:O, (15)
ou
' p-9 , k=012,..., (16)
Ouj g uj

whereuj denotes thé-th total derivative ofu® with respect tae.
Proof. For Equation (15):

—g—_D - (_EL___D_51_+_D2_Q___Lﬁ_éL_+.n>

ou ou® ouf oug ou§

(29 80 L
oz = toub zauf
0 0 5 0 5 0 3 0 3 0
_8WD D&ﬂ D3W+D8W+D8@ Da@
_ 9 5 p 9
- Oun ou®
However,
9 p_p?

ou® ou®
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Hence,
)
&L—CM _D —_— 0.
For Equation (16):
) 0 0 5 0 3 0
— D=|——-D— 4+D> = _ D3 4...
dug <8u§‘ ouy + oug ouy + )
0 3 0 g 0 53 0 g 0
X (%"‘Ulw"—uza—uf‘i‘@t?’a—ug"‘uéla—ug‘i‘
0 0 0 5 0 5 0 53 0 3 0
 Quo + Dauf ouf b oug +D ou$ +D ou§ ou§
_ 9
- Oue
) (0 0 5 0 3 0
dug ( ug ou§ +D ouy Jug + )
0 3 0 g 0 3 0 3 0
0 0 0 0 0 0 0
= D— — D— — D? D? D3 — —D3 — —
ou§ + ouy ouy oug + oug + ouy ouy
_ 9
duf
In a similar manner, one can easily verify (16) fop 2. O
THEOREM 2.The following operator equality holds:
X =ND, (7)

whereX is an arbitrary Lie—Backlund operator anav is the Noether operator (14).
Proof. We have

oD oD oD
ND =¢D @ 4 DWY) —— 4+ D* (W) 4 -- -
ED+W 6u‘f+ (W)éug+ (W)dug+
Invoking (16), we obtain
0 0 0
ND = ¢D o 2 L D(WY— + D*(W%)—— + ...
ED+W 8u0‘+ (W)au(er (W)au%Jr

= X.
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5. New ldentities

In this section, we present another new identity relating two of the main operators, viz., the
Lie—Backlund and the Noether operators. This operator identity is expressed in terms of a
commutator relation.

We first consider, in Section 5.1, the one-dimensional case (one independent variable
x) because of its importance in classical mechanics. We then generalise the result to the
multi-dimensional case in Section 5.2.

5.1. ONE-DIMENSIONAL CASE
THEOREM 3.The following operator commutator relation holds:

[X,N] = ND(¢), (18)
where[X, N] = XN — NX.

Note that in (18), N D(¢) is the product of the multiplication operatbx(¢) and the operator
N. That s, it acts on any differential functighe A as follows:

ND(&)(f) = N(D(&)[)-

The relation (18) is proved by straightforward, albeit tedious, computation. It would certainly
be a useful exercise for the interested reader to verify identity (18), e.g., in the case of
differential functions of first-order. One could, e.g., tgkandn in X to depend omx, u, v’

(v' = du/dx) and act by the left and right-hand sides of the operator identity (18) on a function
f(z, u, u'). To encourage the reader, note that it is useful to wxitie the form

0 0
X_§D+W%+D(W)W+---,
whereW = n — &' and from (10)NV in the form

0 0
N=E+Wos+ [D(W) — W D] S

5.2. MuLTI-DIMENSIONAL CASE

In the case ofi > 1 independent variableg, the equivalent of identity (18) display features
that differ from the point of view of applications. This will be pointed out later in Section 8.

THEOREM 4.The Lie—Ecklund and Noether operators are related by the operator identity
[X + Di(€"), N'] = Di(¢")N*. (19)

The proof is similar to the one of Theorem 3 and is by direct computation.

6. Noether Symmetries

Consider &-th order differential equation

Eo‘(x,u,u(l),u(z),...,u(k)) :O, azl,...,fn. (20)
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DEFINITION 5. A conserved vectaf (20) is atuplel’ = (T, ..., T"), T9 = T9(z, u,uy),
uk—1)) €A, 7 =1,...,n, such that

D;(T") =0 (21)
is satisfied for all solutions of (20).

REMARK. When Definition 5 is satisfied, (21) is called@anservation lawor (20).

We now discuss conservation lawdafler—Lagrangequations. That is, differential equations
of the form

oL
(Su—azo, azl,...,m, (22)
whereL = L(z,u,wqy,---,uq) € A, 1 < k,k being the order of (22), is a Lagrangian and

d/du® is theEuler—Lagrangeperator defined by (4).

DEFINITION 6. A Lie—Backlund operatoX of the form (6) is called dNoether symmetry
corresponding to a Lagrangidne A if there exists a vectoB = (B,...,B"), B’ € A,
such that

X(L) + LD;(¢") = Di(B"). (23)

Ifin Equation (23)B* = 0,i = 1,...,n, thenX is referred to as strict Noether symmetry
corresponding to a Lagrangidne A.

THEOREM 5.For any Noether symmetr¥ corresponding to a given Lagrangia € A,
there corresponds a vect@t = (T%,...,T"), T® € A, defined by

T'=NYL)-B', i=1,...,n, (24)

which is a conserved vector of Equation (22), ig;(T"%) = 0 on the solutions of (22).

The above Theorem 5 is due to Noether [8] and is called\ibether Theorem

In her famous fundamental paper on symmetries and conservation laws, Noether [8, sec-

tion Ill] presented an example of a symmetry

u 0 u, 0
of the Lagrangiard, = u'2/2 corresponding to the second-order ordinary differential equation
u” = 0. The symmetnX is a strict Noether symmetry, i.e. a Noether symmetry with zero
divergence, of sinceX (L) = 0.

It should be noted thaX is not a Lie point nor a Lie contact symmetry. It is what is today
termed a Lie—Bcklund symmetry (see Equation (6)). Howev&iis equivalentto a Lie point
symmetryX = z9/du in the sense that = X +¢(z, u, ') D, (see Editor’s footnote in [9]),
whereD, = 0/0z + u'd/0u + - - - is the operator of total differentiation a@z, u, v') D,
is admitted by any ordinary dlfferentlal equation (see also Editor’s footnote in [9]) The point
symmetryX is a Noether symmetry (L) = D,.(u), albeit not a strict one. Thus, it is seen
that for the example considered that on the one h&nd a strict Noether symmetry (zero
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divergence term) and on the other hakids a Noether symmetry (non-zero divergende

even thoughX andX are equivalent symmetries in the sense mentioned above. The question
then arises whether this applies in general. That is, is any Noether symmetry equivalent to a
strict Noether symmetry? The answer is in the affirmative and this constitutes the following
theorem. Also, examples are presented.

THEOREM 6.Let two Lie—Bicklund operators{ andj( be equivalent, ieX = X + \eD;,
At € A. ThenX is a Noether symmetry if and onlyAf is.
Proof. Let X be a Noether symmetry, i.e.

X(L) + LD;(¢") = D;y(B")
for a Lagrangiarl € A and some vectaB = (B, ..., B"), whereB’ € A. Let

X = X+XND;, Ned

=+ Ai)% + (n™ +”\i“?)a%a +oee
We substituteX = X — A\‘D; into (23). This yields
XL — ND;L + LD;(¢") = D;(BY),
XL+ LD;(€) + LD;(\') = ND;L + LD;(\') + D;(B"),
XL+ LD;(¢" + \') = D;(\'L + BY). (25)

Hence,X is a Noether symmetry of € A, namelyX satisfies (23) withB* = \:L + B".
The steps of the above calculation are reversible and thus proves the theorem.

COROLLARY 1.Any Noether symmetry is equivalent to a strict Noether symmetry.

Indeed, it follows from (25) thak = X + \’D; with \* = —(1/L) B’ being a strict Noether
symmetry ofL € A, i.e.,

XL+ LD;(¢" — %Bi) =0 (26)
holds with no divergence. Thus the operator

. 1N\ 9 1 . 0
— T _ 1) 7 o lQ -
= (e 8) g (- g B gt

equivalent toX is a strict Noether symmetry.

COROLLARY 2.X is a Noether symmetry, if and only if the canonical oper&associated
with X is also Noether.

Indeed, if one putd’ = —¢*in (25), one gets
XL = D;(B" — L¢&Y).

Hence X = (n®—¢'uf)(8/0u®)+- - - is aNoether symmetry with divergensé = B'— L¢".
Thus,X is a Noether symmetry, if and only if the canonical oper&oassociated withX is
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also Noether. This corresponds to a result in [10].

REMARK. If ¢ = B'/L in Equation (26), therX is a symmetry of the Lagrangian (i.e.,
X (L) = 0) given by the canonical operator

7. Examples on Theorem 6
7.1. SALAR DIFFERENTIAL EQUATIONS
7.1.1. One-Dimensional Free Particle Equation
The one-dimensional free particle equation
miu = 0,
wherem is the mass of the particle ang- d/dt¢, has the usual Lagrangian

1
L= Emuz

It is well known that there are five Noether point symmetries associatedwithey are (see,
e.g., [11])

9 9 9 9
X1 =2, Xp=—, Xg=2to fu—+--
L= g0 2T, AsTdg tugide,
P 9
—2_ - e iy e
Xo = o btz oo, Ko =t b,

The symmetries(4 and X5 are not strict Noether symmetries whereas the others are Noether.
It is simple to check thak4(L) + LD(t?) = D(mu?/2) andXs(L) = D(mu), whereD is
the total differentiation operator with respectto

We now obtain the operators equivalenfig and Xs which are strict Noether symmetries
of L. Corollary 1 is invoked.

Firstly, we considerX;. We set\ = —(B/L) = —(u?/u?), whereB is the divergence
term. The operataKy, is then

. 0 0

X, = (2 — 2/ 2 29
4= (t u/u)at—i-(tu u/u)au—i-

which is a strict Noether symmetry éf equivalent taX,4. Note that

X4:(tu—t2u)§+---
u

is the canonical operator associated wkh and by the above Corollary 2 it is a Noether
symmetry with divergenc® = mu?/2 — mt%i?/2.

For X5 we have that = —2u/%? and the strict Noether symmetry equivalentigis

~ u 0 u, 0

Xe=-—229 2L,
5 u23t+(t u)au+
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Here it should be pointed out thats which is a canonical operator is not a strict Noether
symmetry whereas its equivaleX is a strict Noether symmetry and is clearly not canonical.
7.1.2. Stationary Transonic Gas Flow Equation
The second-order partial differential equation

Uglgy + Uyy = 0

describing stationary transonic gas flow has a Lagrangian
13, 15
L= g Ua + 5 Uy

The point symmetries admitted by this equation are known and given in, e.g., [5]. The Lie
algebraLg is six-dimensional and spanned by

0 0 0
S 27 oy 37 ou’
0 0 0 0 0
Xp = o e Xe—p— G Xe=my— _ou 4.
4 y8u+ ’ > $8x+3u8u+ ’ 6 y@y u8u+

The Lie algebra of the Noether point symmetries is a subalgebed Lg and is generated by
the three translations4 and 5X5 + 7Xg. The only non-strict Noether symmetry i, since
X4(L) = Dy(u), whereD, is the operator of differentiation with respectgoWe utilise
Corollary 1 to construct the strict Noether symmetry equivaled4oThis is manifest once
we knowA! and 2. We find that\* = 0 (B* = 0) andA? = —B?/L = —6u/(3u2 + u3).
Hence

Yo 6w 0 [ = buu )9
TR rwd oy \Y T BHwd) ou

It is seen thatX, is canonical. Its equivaledh which we have shown to be a strict Noether
symmetry is evidently not canonical. The only symmetry that is both canonical and strict is
X3 = 0/0u. As further examples, one can verify by Corollary 2 that the canonical oper-
ators associated witl(s, Xg and indeed the translations inandy are non-strict Noether
symmetries.

7.2. SYSTEMS OFDIFFERENTIAL EQUATIONS

7.2.1. Three-Dimensional Free Particle Equation

The free particle motion of a point in three-dimensional space is (cf. Section 7.1.1)
mii = 0,

wherem is the mass of the particle, = (u!,u?,+3) and’ = d/dt. This equation has the
Lagrangian
1,

Lzému
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which admits Noether symmetries that generate the Galilean group [5]. Among these symme-
tries there are only the canonical operators

0
Xa:t%—i-, a:1,2,3
that are non-strict Noether symmetries sinkg(L) = D(mu®), « = 1,2,3 (cf. Sec-
tion 7.1.1). If we set\, = (—B./L) = (—2u“/u?), where B, is the divergence for
a = 1,2, 3, then the strict Noether symmetry equivalenkig is

u® 0

X,=-2— —
u2 Ot

AT AN A _
+—<t 255 ) 5, a=123

7.2.2. Kepler Problem
The classical two-body or Kepler problem which models the gravitational interaction of two
bodies is described by the equation of motion (see, e.g. [12] for a review)

wherem is the reduced mass of the two bodigsjs a physical constant; = |u| and

u = (ut,u?,v3). A Lagrangian for this equation is

1
L:Emﬁ—%.

The canonical Lie—Bcklund symmetries of the equation of motion which is at most linear in

the velocity components® are given in [5]. They are

X@z@ﬂﬁ—u%a—Wﬂﬁ@é%+nq a=1,23.
These are Noether symmetries with respect to the Lagrargand via the Noether theorem
give rise to the three components of the Laplace vector [5]. Indeed, itis not difficult to verify that
Xo(L) = D(—2u(u®/r)). Thus the canonical operatoXs, are not strict Noether symmetries.
However, there are corresponding equivalent operators which are strict Noether symmetries.
To see this we invoke Corollary 1. We obtaip = — B, /L = 4uu®/(mri? — 2u). Hence,
the strict Noether symmetries equivalentXg are

~ 0 .5 0
Xa:Aaa—i—(nﬂ—{—)‘auﬁ)W—*—"'a O{:1,2,3,

where),, is as given above ang = 2u®i8 — ufu® — (u - )62 fora =1,2,3.

7.2.3. Newton—Cotes Potential

Finally, we consider the two body problemn( 11, v andr are as described in Section 7.2.2
above) given by the equation

U
mu = 2Uu—
MT4
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which describes the motion of a particle in the Newton—Cotes potential. This equation is
invariant under the projective transformations (see, e.g., [5]) with operator

0 0
—_— 2 a— DR
X =t ‘t—i-tu fua—i_

which is a Noether symmetry [5] corresponding to the Lagrangian

1 .2 4

It is rather straightforward to verify tha (L) + LD(t?) = D(mr?/2). By Corollary 1 we
have that the strict Noether symmetry equivalenXtcs

~ mr® 0 mr? 0
X=|tP+—ms |+t o
( + 2u — mra2 | ot Tt 2u — mr2i2" | gue +
By Corollary 2, the canonical operator (cf. Section 7.1.1)
9
ou®

is a Noether symmetry with divergenge= mr?/2 — mt?u?/2 + t?u/r2.
This concludes our examples.

X = (tu® — t?0%) 4+

8. Application of the Identities

The identities stated in Sections 3-5 have important applications, e.g., in the inverse problem
in the Calculus of Variations and in the reduction of order in differential equations.
In particular, for the inverse problem, we show below how necessary conditions, using sym-
metries and associated conservation laws, can be deduced for the construction of Lagrangians.
We first discuss the one-dimensional case (one independent varjalidg Theorem 3,
invoking Equation (18) and operating the left-hand and right-hand sides of (18) on a Lagrangian
L € A, we have

X(NL) = N(XL) + N(D(¢)L)
= N(XL+ D(&)L).

If X is a Noether symmetry, the above relation becomes

X(NL) = ND(B), (27)
whereB € A. Moreover, the Noether conserved vector associated with the Noether symmetry
X is

T =NL - B. (28)
Substituting Equation (28) into (27) implies

X(T) = ND(B) — X(B),
which by Theorem 2, operator identity (17), yields

X(T) =0.
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We have in fact generalised a result of Sarlet and Cartrijn [13] to any ldekiBnd operatok .

THEOREM 7.The Noether conserved quantifygiven by (28) is a differential invariant of
the Lie—Backlund operatotX which is a generator of a Noether symmetry, i.e.,

X(T)=0. (29)
Thus, a necessary condition for a Lagrangian for a system of ordinary differential equations to
existis that relation (29) holds, whekeis a generator of a symmetry afidts corresponding
invariant.

We now consider the multi-dimensional case, i.e., the situation for independent variables

#'. Invoking the identity of Theorem 4, viz. (19), and applying it on a Lagrangian.A, we
obtain

X(N’L) = N'(X + Dy(¢*))L + Dy(€)N*L — D(€*)N'L.
For X a Noether symmetry, this relation becomes
X(N'L) = NY(Dy,(B*)) + D (¢ )N*L — Dy, (¢€F)N'L, (30)

where eachB’ € A. The components of the Noether conserved vector associated with the
Noether symmetnX are given by (see Equation (24))

T' = N'L — B". (31)
Inserting Equation (31) into (30) yields
X(T?) + Dy (€")(T") — Di(€)(T")
= N'(Dy(B")) + Di(¢")(B*) — Dy (€")(B") — X (BY).
Hence, we have the following theorem:

THEOREM 8.The components of the Noether conserved vé&tagiven by (31), associated
with the Lie—Bicklund operatorX which is a generator of a Noether symmetry, satisfy

X(T*) + Dy(€)(T*) — Dy(€')(T*)
= N'(Dy(B")) + Dy(€")(B*) — Dy(¢")(B") — X (B"). (32)

The relation (32) is by far more complicated in form than (29). However, a particular case of

(32) was consideredin [14] and [15] to construct conservation laws for some physical systems.
Finally, we mention that a necessary condition for a Lagrangian for a system of partial

differential equations to existis that relation (32) be satisfied, where the hekhind operator

X is a generator of a symmetry afitl its associated conserved vector components.

9. Aspects in Inverse Problems

Thelnverse problenin the calculus of variations involves the determination of a Lagrangian,
L € A if it exists, which corresponds to a given differential equation. That is, given Equa-
tion (20), find a Lagrangiah € A4 such that the Euler—Lagrange equation (22) is equivalent
to the given Equation (20).
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We provide the following definition of alternative Lagrangians [16].

DEFINITION 7. Two Lagrangiand, € A andL € A, are said to balternative Lagrangians
for a given differential equation if their respective Euler-Lagrange equations imply each other,
i.e.,0L/ou* =0ifandonly ifoL/éu® = 0.

The strong requirementf the inverse problem amounts to the determination of.ap A
suchthat L/ou® = E*, « = 1,...,m. In general, a given Equation (20) is equivalent to the
Euler-Lagrange equation (22) for sothe A if there exists an invertible matrik such that

oL o
(su—a:fﬂEﬁ, oz:].,...,m, (33)
wherefg = fg(x,u,u(l), o Uk—1)), o, B =1,...,m. This is theweak requirement

Investigations in the area of inverse problems in mechanics and variational calculus are
extensive. For example, we refer the reader to [17] and the references therein. This paper
contains results on the Lagrangian formulation of quasi-linear second-order partial differen-
tial equations. A complete classification of Lagrangians for scalar second-order differential
equations according to Noether point symmetries was solved in [11].

It is well known that many equations do not admit a Lagrangian. This is even true in the
case of the weak requirement.

In the scalar case, (33) is

L _ g (34)
ou
Let us consider the following example:
Uty + Uy + u?> =0 (35)
which arises in the description of Maxwellian tails (see, e.g., [18]). Equation (34) becomes
oL
ﬁzfutx*Ffo‘i‘fuz- (36)

Expanding)L/ju and equating the coefficients of, andu,, in (36) give rise to
L = c(t,z,u)upuy + d(t, z, u)uy + e(t, z,u)u, + g(t, z,u).
The coefficient ofu;,, in (36) then implies
f=-2c
The remaining terms of (36) are
—CuUply — Cilly — Coliy — dy — eg + gy = fug + fu?. (37)

The strong requirement is equivalent to the constructiohfofr (35) with f = 1. Itis easy to

verify that this requirementimposed on (37) gives rise o —1/2 andc; = —1 which is not

possible. Therefore, Equation (35) does not admit a Lagrangian in the absence of a multiplier.
For the same problem (35) witfi as yet arbitrary in (37), we obtain = aexp2 («

constant) and; + e, — g, = 2a€?u?. We can, without loss of generality, set= ¢ = 0 so

thatd = au? exp(2t). Hence (35), with multiplief = —2a€*, has a Lagrangian

L= ant(utux + uzut).
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Another Lagrangian, for example, can be obtained by seftiag: = 0 andg = —2/3ae?uS.
This gives

2
L = o€ (uju, — gu?’)

In a similar manner, one can obtain more Lagrangians.

Next we consider two examples in which one can utilise the the invariance condition (23)
with B* = 0 in conjunction with (33).

The following equation

=0, = Ty "),
V20 =0, V= (9/0z* d/dz" (38)

wherez” (v = 1,...,n) are space variables andtakes on values 1,2 and 3 for one-
dimensional, plane and three-dimensional motions, respectively, arises in the study of perfect
compressible fluids, where(t, x) is the potential. A Lagrangian (see [5]) for (38) is

1
L=+ Vo (39)

A well-known symmetry of (38) is the scaling symmetry
0 n—-2_0

92 Tan

In fact, X is a Noether symmetry of (39), viz.,

X =2a" (40)

X(L) + Dy(¢')L = D, (8; ”@) +D, (3_T%vq>>

on the solution of the Laplace equation (38). One can also construct a Lagrangian for which
the operator (40) is a strict Noether symmetB} = 0 in Equation (23)). In this manner one
obtains an alternative Lagrangian [5]

L = |z|~("+2/2p, 4 Vo2 (41)

We further consider the following example which is the potential form of the perfect polytropic
gas equation,

1

In [4], the Lagrangian

v/(v=1)
L= <<I>t + % |V<I>|2>

was constructed using the strict form of (23) (i.e., with zero divergence) with known symme-
tries X and (33). This yields the multiplier
7 1 ) (2-7)/(v-1)
/= (7_1)2<<I>t+2|vq>|> '

For two space variableg,= 1 and hencd. satisfies the strong requirement.
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We use another symmetry based approach in the following section. This is based on
Theorems 5 and 8.

10. Applications to Inverse Problems

In this section, we apply Theorems 5 and 8 to the algorithmic construction of Lagrangians for
some physically important problems.

The examples presented here are restricted to scalar second-order partial differential equa-
tions and serve as prototype examples. The reader can try other examples. Also, we take
(z1, z2,23,24) = (t,z,y,2z) and the derivatives are denoted by the appropriate subscripts
ug, ug, €tc. The total derivative operator will be denotedby D, etc.

EXAMPLE 1. It is easy to see that
Uty + UgUgy — Uyy = 0, (42)

which arises in the study of two-dimensional non-steady state transonic gas flow, can be
written in the conserved form

D,T* + D,T? + D,T° =0, (43)

whereT* = u,, T? = (1/2)u? andT?® = —u,. The necessary condition (32) is satisfied
with X = 9/0u provided thatN?(Dy(B*)) = X(B'), i = 1,2,3 for someB's. Then
Equation (31) becomes

Uy = oL _ Bl (44a)
8ut
1, 0L )
2% = g, 5 (44b)
OL
—u, = — — B®. 44
u?/ auy ( C)

Assume tha3! is independent ofi; and solve (44a). This yields
L = upu, + Blut + A,
whereA is independent ofi;. Then (44b) and (44c) are

oBL 0A 5 1,
it — B -
U + aux U + 8ux + 2 Uy
oB1 0A 4
=+ = B 45
y Ouy vt Ouy (45)
We take B! = —(1/2)u, and B> = (1/2)u,; from which other differential consequences
imply
1 13 15, 3
L= 5 Ut + g Uz~ 5 Uy +a(t,z,y,u) + B(t, z,y, u)u,. (46)
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Note that the constraints

NYD;B' + D,B? = X(BY),

N%(DyB' + D,B? = X(B?)
are satisfied for the above choices®¥f and B2. It can be shown, by determining the Euler—
Lagrange equation associated withthat Equation (46) is a Lagrangian for (42pif = BS.
EXAMPLE 2. The nonlinear equation

Uty + Ugllgy — Uyy — Uzz =0 (47)

is the three-dimensional version of non-steady state transonic gas flow (cf. Example 1) and
as such is not different to the first example. However, in this example we chooggdhe
differently. It is easily verifiable that (47) can be written in the conserved form

DT+ D, T? + D, T3+ D,T* = 0, (48)
where
1 1 1

1 _ 2 2

T = _E Uy + 6 E U,,
1

T? = —uf =5 Ul
T3 = Uty

4 _

= -

T U (49)

One can easily check that the necessary condition (32) is satisfied for (49Y witly / 0t.
Once again, by substitution in (31), fbe 1, 2, 3, we get

oL

T = —B'—w— + 1L, (50a)
3ut

T? = — B> —u oL , (50b)
Ooug

78 = 8y, 2L (500)
Ouy

T4 = —B4—ut§f . (50d)

For this example, we assume that fBes are independent of derivatives. Then, differentiating
the four equations of (50) with respect 9, u,, u, andu,, respectively, and solving we
obtainL to be

L = Ruyuzuyu, + Sutuxuy + Tuguzu, + Uuguy + Vuguyu, + Wuguy,

+ Xugu, + Yuy + 34 Auguyu, + Buguy + Cugu,

GCE

1 1
+ Dug, — §u§ + FEuyuy + Fuy + —éug + Ou, + P, (52)
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where the unknown coefficients are all constants. Then, the differentiation of (50a) with respect
to u,, and the substitution of (51), givé = 1 andV = 0 when (50c) is differentiated with
respect tau,. Proceeding in this manner, one can show that all the remaining constants are
zero. Hence, a Lagrangian for (47) is

1 1 1
L= éu% + Uy — 5“5 — éug

EXAMPLE 3. We now consider the form of the BBM (Benjamin—Bona—Mahony) equation
(see, e.g. [19, ch. 11] and references therein)

Ugt + Ugy + UgUpy — Uzt = O. (52)
It is easy to check that Equation (52) can be written in the conserved form
D, T* + D, T? =0,

whereT? = u; — Uy, andT? = u, + 3u2. The operatoX = 9/9u is a symmetry of the
component$T™, T2) if the necessary condition (32) is satisfied. We haVE* = 0 = X T2,
Now, Equation (31) becomes

oL oL oL
™m="_D—-D ~ B!
8ut ¢ autt o 8um ’ (533.)
oL oL oL oL
2 _ o o 2 _ n2
T = e " D Dy By + D;, B B-. (53b)

Supposd. is independent ofi;; andu,, and takeB* = —(1/2)u,. Then (53a) simplifies to
1 oL

E Uy — Ugpgpr = 8—Ut )
so that
1

L= E UgpUt — UggprUt + f(ta Ty Ug, Ugy, U:L‘t)- (54)

The insertion of Equation (54) into (53b), choosig = (1/2)u;, and the comparison of the
coefficients of the derivatives af (the calculations are routine and are left out) give rise to

1 1 1
f:—iummm+§ui+éu% (55)
We get the third-order Lagrangian
L = = uguy — Ulgpy — = Ugtll +—u2+}u3 (56)
2 x Ut tWrxe 2 xtWrx 2 T 6 T

which is a Lagrangian of Equation (52).

REMARK. By makingL independent ofi;; andu,, and choosing3* = u,, — (1/2)u, and
B? = (1/2)u; — uget, ONe can show that the following second-order Lagrangian arises for
Equation (52), viz.,
1 1 1
L = - upuy + 5 Ugglz + 5 u?

1 3
2 2 2 Ue T g Y
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Here too, the necessary condition (32) is satisfied.

In the next section we will consider an example in which the Lagrangian and the equation is
of second-order. Also, thB’s are set to be zero.

EXAMPLE 4. To conclude this section, we obtain a Lagrangian for

1
Uty — (U )y — Uyy + > ui =0. (57)
The components of a conserved vector for (57) are
1
T = 5 Ug Uy,

2 _
T = uugpuy — > Ut Uy

1 1 1
3 2 2
T° = S utug + 5 uy U (58)

The necessary condition (32) is satisfied #or= 9/9y andB* = 0. Then Equation (31) is
1 oL

—E /U/ny = —Uya—ut )
oL
5 Uglhy + UlhgUy = —Uy D0,
1 1 1 oL
Eutux—{—éuf/—éuui:L—uya—%. (59)
A solution of (59) is straightforward and gives
1 1 1
LZEUtUx—EUU;%—EU;

11. Conservation Laws and Alternative Lagrangians

Here we consider an example that highlights the utility of conservation laws for alternative
Lagrangians. Here again, we use the method of Section 10.
We discuss the following interesting equation

Uty — u2y + kz~4? (ﬂ) — 0. (60)
x
This equation is considered in [21] (see also [20, ch. 9]) and is a special case of the Monge—
Ampére equation. A Lagrangian for (60) is
L= uium + Uty — 2b(2,Y) Uy, (61)

whereb,, = 2kz *¢?(y/z). Noether's theorem [3] implies the conserved vector=
(T, T2) defined by

1 _
T = Ug Ugyy s

T? = —Uplyy + kx>0 (%) , @ <g> = ¢? <g> : (62)

T T
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This corresponds to the operatdr= 9/0du. In fact, the application of Noether’s theorem
givesrise to

T = duguy, + 2Dy, (b — uguy),

T? = —AupUgy + Az 3D <g> — 2Dy (b — uguy). (63)
X
The conservation laws corresponding to (62) and (63) are equivalent.
We now construct an alternative Lagrangian for (60) corresponding to (62} / du.
The method of the previous section is used. It is easy to verify that condition (32) is satisfied
for (62) with X = 9/0u. Equation (31), withB* = 0,7 = 1, 2, yields

oL oL oL
T = = _D —
Ouy ¥ Mgy Y Ougy
oL oL oL
T? = Z—— —-D -D : 4
Ouy yauyy f”auyx (64)

The subtraction a2 from T yields a first-order equation ihif we suppose that the algebraic
sum of the higher derivative terms invanish. This gives rise to

1 1
L= > uiuyy + > ugumy — kz Pu,® + Y(ug + uy) , (65)
wherevy is obtained from the solution of
oL oL oL oL
D D, -Dy——-D,— =0. 66
Y Oty + Oy OUgy v gy (66)

This results inL having the form

1 1 _ Y
L= > Uy + > U gy + k3w, (;) . (67)

It should be noted thak is independent o, and, thus, the tern,0L/du,, in (64)
vanishes. This comment is also applicable to the Euler—Lagrange equation (22).
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