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Abstract. New identities relating the Euler–Lagrange, Lie–Bäcklund and Noether operators are obtained. Some
important results are shown to be consequences of these fundamental identities. Furthermore, we generalise an
interesting example presented by Noether in her celebrated paper and prove that any Noether symmetry is equivalent
to a strict Noether symmetry, i.e. a Noether symmetry with zero divergence. We then use the symmetry based
results deduced from the new identities to construct Lagrangians for partial differential equations. In particular,
we show how the knowledge of a symmetry and its corresponding conservation law of a given partial differential
equation can be utilised to construct a Lagrangian for the equation. Several examples are given.
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1. Introduction

The Euler–Lagrange, Lie–B̈acklund and Noether operators play a central role in the study of
invariances in the calculus of variations and differential equations. Lie–Bäcklund symmetries
are an important generalisation of Lie point symmetries. For example, they have application
in accounting for the hidden symmetry associated with the Laplace vector of the well-known
Kepler problem. Noether symmetries form the basis of a simple systematic way of determin-
ing conservation laws for systems of Euler–Lagrange equations. TheNoether identityis a
fundamental identity that connects the Euler–Lagrange, Lie–Bäcklund and Noether operators.

In this paper, we,inter alia, present new identities relating these basic operators. Moreover,
in the following sections we discuss the fundamental identities and point out their applica-
tions. In particular, we determine necessary conditions, using symmetries and associated
conservation laws, for the construction of Lagrangians, both for ordinary and partial differ-
ential equations. Furthermore, it is well known that Noether’s fundamental theorem gives a
constructive way of determining conservation laws for Euler–Lagrange equations once their
symmetry properties are known. We generalise an interesting example presented by Noether
in her celebrated paper. Namely, we prove that any Noether symmetry is equivalent to a strict
Noether symmetry, i.e., a Noether symmetry with zero divergence.

In more detail, the outline of the paper is as follows. In Section 2, we outline the nomen-
clature used in the paper. Section 3 reviews the Noether identity. In Section 4 we present
a new representation of the Lie–Bäcklund operator. Section 5 deals with two new operator
identities which are given in terms of commutator relations. These identities have applications



116 N. H. Ibragimov et al.

in classical mechanics and variational calculus and are investigated in the latter sections. In
Section 6, Noether symmetries are considered. Here it is proved that any Noether symmetry
is equivalent to a strict Noether symmetry. In the following Section 7, examples of this result
are given. The application of the identities of Section 5 to inverse problems in mechanics and
variational calculus are deduced in Section 8. In particular, the relationship between Noether
symmetries and the Noether conserved vector is presented. In Section 9, we pursue aspects in
inverse problems. The results of Section 8 which,inter alia, are applied to various examples
are given in Section 10. Finally, in Section 11, a utilization of a conservation law in the
construction of an alternative Lagrangian for a system is given.

2. Main Operators

We first remind the reader of the universal spaceA of differential functions introduced by
Ibragimov [1] (see also [2, p. 56]). The summation convention is adopted throughout.

Let

x = (x1; : : : ; xn)

be the independent variable with coordinatesxi, and

u = (u1; : : : ; um)

the dependent variable with coordinatesu�. The derivatives ofu with respect tox are

u�i = Di(u
�); u�ij = DjDi(u

�); : : : ; (1)

where

Di =
@

@xi
+ u�i

@

@u�
+ u�ij

@

@u�j
+ � � � ; i = 1; : : : ; n (2)

is theoperator of total differentiation. The collection of all first derivativesu�i is denoted by
u(1). Similarly, the collections of all higher-order derivatives are denoted byu(2); u(3), : : : .

Following Lie, in group analysis it is expedient to consider all variablesx; u; u(1), u(2); : : :
as functionally independent connected only by the differential relations (1). Consequently, the
u�s are referred to asdifferential variables.

Intrinsic to modern group analysis of differential equations is the universal spaceA defined
as follows:

We denote byz the sequence

z = (x; u; u(1); u(2); : : :) (3)

with elementsz� , � � 1; where, e.g.,

zi = xi; 1� i � n; zn+� = u�; 1� � � m;

with the remaining elements representing the derivatives ofu. However, in applications one
invariably utilizes only finite subsequences ofz which are denoted by[z].

A locally analytic functionf(x; u; u(1); : : : ; u(k)) of a finite number of variables is called
a differential function of orderk and for brevity is written asf([z]). The spaceA is the
vector space of all differential functions of all finite orders. A total derivative (2) converts any
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differential function of orderk to a differential function of orderk+ 1. Hence, the spaceA is
closed under total derivationsDi.

The main operators introduced below are correctly defined in the spaceA. Precisely, this
means that the operators defined as formal sums truncate when they act on differential func-
tions.

DEFINITION 1. TheEuler–Lagrangeoperator is defined by

�

�u�
=

@

@u�
+
X
s�1

(�1)sDi1 � � �Dis

@

@u�i1���is
; � = 1; : : : ;m: (4)

The operator (4) is sometimes referred to as theEuler operator, named after Euler (1744)
who first introduced it in a geometrical manner for the one-dimensional case. Also, it is called
the Lagrange operator, bearing the name of Lagrange (1762) who considered the multi-
dimensional case and established its use in avariational sense (see, e.g., [3] for a history of
the calculus of variations). Following Lagrange, Equation (4) is frequently referred to as a
variational derivative. In the modern literature, the terminology Euler–Lagrange and varia-
tional derivative are used interchangeably as (4) usually arises in considering a variational
problem.

DEFINITION 2. The Lie–B̈acklund operator is given by

X = �i
@

@xi
+ ��

@

@u�
; �i; �� 2 A: (5)

This operator is in fact an abbreviated form of the following infinite formal sum:

X = �i
@

@xi
+ ��

@

@u�
+ ��i

@

@u�i
+ ��i1i2

@

@u�i1i2
+ � � � ; (6)

where the additional coefficients are determined uniquely by the prolongation formulae

��i = Di(W
�) + �ju�ij;

��i1i2 = Di1Di2(W
�) + �ju�ji1i2;

: : : (7)

In (7),W� is the Lie characteristic function given by

W� = �� � �ju�j : (8)

One can write the Lie–B̈acklund operator (6) in the form

X = �iDi +W� @

@u�
+Di(W

�)
@

@u�i
+Di1Di2(W

�)
@

@u�i1i2
+ � � � : (9)

It should be remarked that in classical Lie theory dealing with point and first-order contact
transformations only, it was natural to indicate the prolongations of the operatorX to finite
order derivatives ofuwith respect tox by another symbol, e.g.,X(1) for the first prolongation.
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Now with the introduction of the universal spaceA, all Lie point, Lie contact and Lie–
Bäcklund operators naturally act in the spaceA after prolongation. Accordingly, the same
symbolX is used both for the operator and any of its prolongations.

In modern group analysis, there exists a variety of so-calledgeneralised symmetrieswhich
generalise Lie’s point and contact infinitesimal group generators. However, the problem still
remains whether these generalised symmetries generate, via the Lie equations, a group. The
problem thus far is solved for Lie–Bäcklund operators (6). That is, the Lie equation is uniquely
solvable, in the space

�
[A]
�

of formal power series with coefficients fromA (the proof can be
found in [4, 5]), for any Lie–B̈acklund operator (6).

In the above sense, Lie–Bäcklund symmetries are distinguished from all other generalised
symmetries. Furthermore, the corresponding formal transformation group leaves invariant the
contact conditions of any order. The possible existence of higher-order contact transformations
were extensively discussed by Lie and Bäcklund during the period 1874–1876. In recogni-
tion of their fundamental contribution, the above generalisation of Lie point and first-order
contact transformations was given the nameLie–Bäcklund transformationsby Ibragimov
and Anderson [6]. The corresponding infinitesimal generator (6) is naturally called theLie–
Bäcklund operator. It should be noted that the prolongation formulae (7) are obtained as a
direct consequence of the invariance of the infinite-order contact conditions.

The set of Lie–B̈acklund operators constitute an infinite dimensional Lie algebraL and is
called theLie–Bäcklund algebra. It contains the total derivations (2) as well asX� = �iDi

for any�i 2 A. Now letL� denote the set of operatorsfX�g. ThenL� is an ideal ofL, i.e.
the Lie bracket[X;X�] 2 L� for anyX 2 L (see, e.g. [4]).

DEFINITION 3. The Lie–B̈acklund operators~X andX are said to beequivalentif X � ~X 2

L�. That is

X � ~X = �iDi; �i 2 A:

In particular, a Lie–B̈acklund operator of the form~X = ��@=@u� + � � � is called acanon-
ical representation ofX.

DEFINITION 4. The Noether operator associated with a Lie–Bäcklund operatorX is defined
by

N i = �i +W� �

�u�i
+
X
s�1

Di1 � � �Dis(W
�)

�

�u�ii1���is
; i = 1; : : : ; n; (10)

where the Euler–Lagrange operators with respect to derivatives ofu� are obtained from (4)
by replacingu� by the corresponding derivatives, e.g.,

�

�u�i
=

@

@u�i
+
X
s�1

(�1)sDj1 � � �Djs

@

@u�ij1���js

; i = 1; : : : ; n; � = 1; : : : ;m: (11)

The operator (10) was introduced by Ibragimov [7] and the nameNoether operatorwas given
in recognition of Noether’s contribution [8]. As a consequence of the operator (10), the proof
of Noether’s theorem becomes purely algebraic and independent of variational calculus. The
algebraic proof is based on the identity presented in the next section.
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3. Noether Identity

THEOREM 1.The Euler–Lagrange, Lie–B̈acklund and Noether operators are connected by
the operator identity

X +Di(�
i) = W� �

�u�
+DiN

i: (12)

Here,Di(�
i) is a differential function which is a sum of functions obtained by total derivations

Di of differential functions�i. That is,Di(�
i) is a divergence of the vector� = (�1; : : : ; �n),

viz., div� whereas,DiN
i is an operator obtained as a sum of products of operatorsDi onN i,

i.e., it is a scalar product of vector operatorsD = (D1; : : : ;Dn) andN = (N1; : : : ; Nn).
The identity (12) is due to Ibragimov [7] (see also [5]) and is called theNoether identity

because of its close relation to the Noether theorem.

4. A Representation of the Lie–B̈acklund Operator

For one independent variablex, the Lie–B̈acklund operator (9) is

X = �D +W� @

@u�
+D(W�)

@

@u�x
+D2(W�)

@

@u�xx
+ � � � ; (13)

whereW� = �� � �u�x and from (10),N takes the form

N = � +W� �

�u�x
+D(W�)

�

�u�xx
+D2(W�)

�

�u�xxx
+ � � � : (14)

LEMMA.

�

�u�
D = 0; (15)

�

�u�k+1
D =

@

@u�k
; k = 0;1;2; : : : ; (16)

whereu�k denotes thek-th total derivative ofu� with respect tox.
Proof. For Equation (15):

�

�u�
D =

 
@

@u�
�D

@

@u�1
+D2 @

@u�2
�D3 @

@u�3
+ � � �

!

�

 
@

@x
+ u

�
1

@

@u�
+ u

�
2

@

@u
�
1

+ � � �

!

=
@

@u�
D �D

@

@u�
�D2 @

@u�1
+D2 @

@u�1
+D3 @

@u�2
�D3 @

@u�2
� � �

=
@

@u�
D �D

@

@u�
:

However,

@

@u�
D = D

@

@u�
:
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Hence,

�

�u�
D = 0:

For Equation (16):

�

�u�1
D =

 
@

@u�1
�D

@

@u�2
+D2 @

@u�3
�D3 @

@u�4
+ � � �

!

�

 
@

@x
+ u

�
1

@

@u�
+ u

�
2

@

@u
�
1

+ u
�
3

@

@u
�
2

+ u
�
4

@

@u
�
3

+ � � �

!

=
@

@u�
+D

@

@u�1
�D

@

@u�1
�D2 @

@u�2
+D2 @

@u�2
+D3 @

@u�3
�D3 @

@u�3
� � � �

=
@

@u�

�

�u�2
D =

 
@

@u�2
�D

@

@u�3
+D2 @

@u�4
�D3 @

@u�5
+ � � �

!

�

 
@

@x
+ u

�
1

@

@u�
+ u

�
2

@

@u
�
1

+ u
�
3

@

@u
�
2

+ u
�
4

@

@u
�
3

+ � � �

!

=
@

@u�1
+D

@

@u�2
�D

@

@u�2
�D2 @

@u�3
+D2 @

@u�3
+D3 @

@u�4
�D3 @

@u�4
� � � �

=
@

@u�1
:

In a similar manner, one can easily verify (16) fork � 2. 2

THEOREM 2.The following operator equality holds:

X = ND; (17)

whereX is an arbitrary Lie–B̈acklund operator andN is the Noether operator (14).
Proof. We have

ND = �D +W� �D

�u�1
+D(W�)

�D

�u�2
+D2(W�)

�D

�u�3
+ � � � :

Invoking (16), we obtain

ND = �D +W� @

@u�
+D(W�)

@

@u�1
+D2(W�)

@

@u�2
+ � � �

= X:

2
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5. New Identities

In this section, we present another new identity relating two of the main operators, viz., the
Lie–Bäcklund and the Noether operators. This operator identity is expressed in terms of a
commutator relation.

We first consider, in Section 5.1, the one-dimensional case (one independent variable
x) because of its importance in classical mechanics. We then generalise the result to the
multi-dimensional case in Section 5.2.

5.1. ONE-DIMENSIONAL CASE

THEOREM 3.The following operator commutator relation holds:

[X;N ] = ND(�); (18)

where[X;N ] = XN �NX.

Note that in (18),ND(�) is the product of the multiplication operatorD(�) and the operator
N . That is, it acts on any differential functionf 2 A as follows:

ND(�)(f) = N(D(�)f):

The relation (18) is proved by straightforward, albeit tedious, computation. It would certainly
be a useful exercise for the interested reader to verify identity (18), e.g., in the case of
differential functions of first-order. One could, e.g., take� and� in X to depend onx; u; u0

(u0 = du=dx) and act by the left and right-hand sides of the operator identity (18) on a function
f(x; u; u0). To encourage the reader, note that it is useful to writeX in the form

X = �D +W
@

@u
+D(W )

@

@u0
+ � � � ;

whereW = � � �u0 and from (10)N in the form

N = � +W
@

@u0
+
�
D(W )�WD

� @

@u00
+ � � � :

5.2. MULTI-DIMENSIONAL CASE

In the case ofn > 1 independent variablesxi, the equivalent of identity (18) display features
that differ from the point of view of applications. This will be pointed out later in Section 8.

THEOREM 4.The Lie–B̈acklund and Noether operators are related by the operator identity�
X +Dk(�

k); N i� = Dk(�
i)Nk: (19)

The proof is similar to the one of Theorem 3 and is by direct computation.

6. Noether Symmetries

Consider ak-th order differential equation

E�
�
x; u; u(1); u(2); : : : ; u(k)

�
= 0; � = 1; : : : ; ~m: (20)
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DEFINITION 5. A conserved vectorof (20) is a tupleT = (T 1; : : : ; T n), T j = T j(x; u; u(1),
: : : , u(k�1)) 2 A, j = 1; : : : ; n, such that

Di(T
i) = 0 (21)

is satisfied for all solutions of (20).

REMARK. When Definition 5 is satisfied, (21) is called aconservation lawfor (20).

We now discuss conservation laws ofEuler–Lagrangeequations. That is, differential equations
of the form

�L

�u�
= 0; � = 1; : : : ;m; (22)

whereL = L(x; u; u(1); : : : ; u(l)) 2 A, l � k; k being the order of (22), is a Lagrangian and
�=�u� is theEuler–Lagrangeoperator defined by (4).

DEFINITION 6. A Lie–Bäcklund operatorX of the form (6) is called aNoether symmetry
corresponding to a LagrangianL 2 A if there exists a vectorB = (B1; : : : ; Bn), Bi 2 A,
such that

X(L) + LDi(�
i) = Di(B

i): (23)

If in Equation (23)Bi = 0, i = 1; : : : ; n, thenX is referred to as astrict Noether symmetry
corresponding to a LagrangianL 2 A.

THEOREM 5.For any Noether symmetryX corresponding to a given LagrangianL 2 A,
there corresponds a vectorT = (T 1; : : : ; T n), T i 2 A, defined by

T i = N i(L)�Bi; i = 1; : : : ; n; (24)

which is a conserved vector of Equation (22), i.e.,Di(T
i) = 0 on the solutions of (22).

The above Theorem 5 is due to Noether [8] and is called theNoether Theorem.
In her famous fundamental paper on symmetries and conservation laws, Noether [8, sec-

tion III] presented an example of a symmetry

X = �2
u

u02
@

@x
+ (x� 2

u

u0
)
@

@u
+ � � �

of the LagrangianL = u02=2 corresponding to the second-order ordinary differential equation
u00 = 0. The symmetryX is a strict Noether symmetry, i.e. a Noether symmetry with zero
divergence, ofL sinceX(L) = 0.

It should be noted thatX is not a Lie point nor a Lie contact symmetry. It is what is today
termed a Lie–B̈acklund symmetry (see Equation (6)). However,X is equivalent to a Lie point
symmetry~X = x@=@u in the sense that~X = X+�(x; u; u0)Dx (see Editor’s footnote in [9]),
whereDx = @=@x + u0@=@u + � � � is the operator of total differentiation and�(x; u; u0)Dx

is admitted by any ordinary differential equation (see also Editor’s footnote in [9]). The point
symmetry ~X is a Noether symmetry,~X(L) = Dx(u), albeit not a strict one. Thus, it is seen
that for the example considered that on the one handX is a strict Noether symmetry (zero
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divergence term) and on the other hand~X is a Noether symmetry (non-zero divergenceu)
even thoughX and ~X are equivalent symmetries in the sense mentioned above. The question
then arises whether this applies in general. That is, is any Noether symmetry equivalent to a
strict Noether symmetry? The answer is in the affirmative and this constitutes the following
theorem. Also, examples are presented.

THEOREM 6.Let two Lie–B̈acklund operatorsX and ~X be equivalent, i.e.~X = X + �iDi,
�i 2 A. ThenX is a Noether symmetry if and only if~X is.

Proof. LetX be a Noether symmetry, i.e.

X(L) + LDi(�
i) = Di(B

i)

for a LagrangianL 2 A and some vectorB = (B1; : : : ; Bn), whereBi 2 A. Let

~X = X + �iDi; �i 2 A

= (�i + �i)
@

@xi
+ (�� + �iu�i )

@

@u�
+ � � � :

We substituteX = ~X � �iDi into (23). This yields

~XL� �iDiL+ LDi(�
i) = Di(B

i);

~XL+ LDi(�
i) + LDi(�

i) = �iDiL+ LDi(�
i) +Di(B

i);

~XL+ LDi(�
i + �i) = Di(�

iL+Bi): (25)

Hence, ~X is a Noether symmetry ofL 2 A, namely ~X satisfies (23) with~Bi = �iL + Bi.
The steps of the above calculation are reversible and thus proves the theorem.

COROLLARY 1.Any Noether symmetry is equivalent to a strict Noether symmetry.

Indeed, it follows from (25) that~X = X + �iDi with �i = �(1=L)Bi being a strict Noether
symmetry ofL 2 A, i.e.,

~XL+ LDi(�
i �

1
L
Bi) = 0 (26)

holds with no divergence. Thus the operator

~X =

�
�i �

1
L
Bi

�
@

@xi
+

�
�� �

1
L
Biu�i

�
@

@u�
+ � � �

equivalent toX is a strict Noether symmetry.

COROLLARY 2.X is a Noether symmetry, if and only if the canonical operator�X associated
withX is also Noether.

Indeed, if one puts�i = ��i in (25), one gets

�XL = Di(B
i � L�i):

Hence,�X = (����iu�i )(@=@u
�)+� � � is a Noether symmetry with divergence�Bi = Bi�L�i.

Thus,X is a Noether symmetry, if and only if the canonical operator�X associated withX is
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also Noether. This corresponds to a result in [10].

REMARK. If �i = Bi=L in Equation (26), then~X is a symmetry of the Lagrangian (i.e.,
~X(L) = 0) given by the canonical operator

~X =

�
�� �

1
L
Biu�i

�
@

@u�
+ � � � :

7. Examples on Theorem 6

7.1. SCALAR DIFFERENTIAL EQUATIONS

7.1.1. One-Dimensional Free Particle Equation

The one-dimensional free particle equation

m�u = 0;

wherem is the mass of the particle and_ = d=dt, has the usual Lagrangian

L =
1
2
m _u2:

It is well known that there are five Noether point symmetries associated withL. They are (see,
e.g., [11])

X1 =
@

@t
; X2 =

@

@u
; X3 = 2t

@

@t
+ u

@

@u
+ � � � ;

X4 = t2
@

@t
+ tu

@

@u
+ � � � ; X5 = t

@

@u
+ � � � :

The symmetriesX4 andX5 are not strict Noether symmetries whereas the others are Noether.
It is simple to check thatX4(L) + LD(t2) = D(mu2=2) andX5(L) = D(mu), whereD is
the total differentiation operator with respect tot.

We now obtain the operators equivalent toX4 andX5 which are strict Noether symmetries
of L. Corollary 1 is invoked.

Firstly, we considerX4. We set� = �(B=L) = �(u2= _u2), whereB is the divergence
term. The operator~X4 is then

~X4 = (t2 � u2= _u2)
@

@t
+ (tu� u2= _u)

@

@u
+ � � �

which is a strict Noether symmetry ofL equivalent toX4. Note that

�X4 = (tu� t2 _u)
@

@u
+ � � �

is the canonical operator associated withX4 and by the above Corollary 2 it is a Noether
symmetry with divergence�B = mu2=2�mt2 _u2=2.

ForX5 we have that� = �2u= _u2 and the strict Noether symmetry equivalent toX5 is

~X5 = �2
u

_u2

@

@t
+ (t� 2

u

_u
)
@

@u
+ � � � :
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Here it should be pointed out thatX5 which is a canonical operator is not a strict Noether
symmetry whereas its equivalent~X5 is a strict Noether symmetry and is clearly not canonical.

7.1.2. Stationary Transonic Gas Flow Equation

The second-order partial differential equation

uxuxx + uyy = 0

describing stationary transonic gas flow has a Lagrangian

L =
1
6
u3
x +

1
2
u2
y:

The point symmetries admitted by this equation are known and given in, e.g., [5]. The Lie
algebraL6 is six-dimensional and spanned by

X1 =
@

@x
; X2 =

@

@y
; X3 =

@

@u
;

X4 = y
@

@u
+ � � � ; X5 = x

@

@x
+ 3u

@

@u
+ � � � ; X6 = y

@

@y
� 2u

@

@u
+ � � � :

The Lie algebra of the Noether point symmetries is a subalgebraL5 of L6 and is generated by
the three translations,X4 and 5X5 + 7X6. The only non-strict Noether symmetry isX4 since
X4(L) = Dy(u), whereDy is the operator of differentiation with respect toy. We utilise
Corollary 1 to construct the strict Noether symmetry equivalent toX4. This is manifest once
we know�1 and�2. We find that�1 = 0 (B1 = 0) and�2 = �B2=L = �6u=(3u2

y + u3
x).

Hence

~X4 = �
6u

3u2
y + u3

x

@

@y
+

 
y �

6uuy
3u2

y + u3
x

!
@

@u
+ � � � :

It is seen thatX4 is canonical. Its equivalent~X4 which we have shown to be a strict Noether
symmetry is evidently not canonical. The only symmetry that is both canonical and strict is
X3 = @=@u. As further examples, one can verify by Corollary 2 that the canonical oper-
ators associated withX5, X6 and indeed the translations inx andy are non-strict Noether
symmetries.

7.2. SYSTEMS OFDIFFERENTIAL EQUATIONS

7.2.1. Three-Dimensional Free Particle Equation

The free particle motion of a point in three-dimensional space is (cf. Section 7.1.1)

m�u = 0;

wherem is the mass of the particle,u = (u1; u2; u3) and_ = d=dt. This equation has the
Lagrangian

L =
1
2
m _u2
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which admits Noether symmetries that generate the Galilean group [5]. Among these symme-
tries there are only the canonical operators

X� = t
@

@u�
+ � � � ; � = 1;2;3

that are non-strict Noether symmetries sinceX�(L) = D(mu�), � = 1;2;3 (cf. Sec-
tion 7.1.1). If we set�� = (�B�=L) = (�2u�= _u2), whereB� is the divergence for
� = 1;2;3, then the strict Noether symmetry equivalent toX� is

~X� = �2
u�

_u2

@

@t
+

�
t� 2

u�

_u2 _u�
�

@

@u�
+ � � � ; � = 1;2;3:

7.2.2. Kepler Problem

The classical two-body or Kepler problem which models the gravitational interaction of two
bodies is described by the equation of motion (see, e.g. [12] for a review)

m�u = �
u

r3 ;

wherem is the reduced mass of the two bodies,� is a physical constant,r = juj and
u = (u1; u2; u3). A Lagrangian for this equation is

L =
1
2
m _u2 �

�

r
:

The canonical Lie–B̈acklund symmetries of the equation of motion which is at most linear in
the velocity components_u� are given in [5]. They are

X� = (2u� _u� � u� _u� � (u � _u)���)
@

@u�
+ � � � ; � = 1;2;3:

These are Noether symmetries with respect to the LagrangianL and via the Noether theorem
give rise to the three components of the Laplace vector [5]. Indeed, it is not difficult to verify that
X�(L) = D(�2�(u�=r)). Thus the canonical operatorsX�are not strict Noether symmetries.
However, there are corresponding equivalent operators which are strict Noether symmetries.
To see this we invoke Corollary 1. We obtain�� = �B�=L = 4�u�=(mr _u2 � 2�). Hence,
the strict Noether symmetries equivalent toX� are

~X� = ��
@

@t
+ (�� + �� _u�)

@

@u�
+ � � � ; � = 1;2;3;

where�� is as given above and�� = 2u� _u� � u� _u� � (u � _u)��� for � = 1;2;3.

7.2.3. Newton–Cotes Potential

Finally, we consider the two body problem (m, �, u andr are as described in Section 7.2.2
above) given by the equation

m�u = 2�
u

r4



Lie–Bäcklund and Noether Symmetries with Applications127

which describes the motion of a particle in the Newton–Cotes potential. This equation is
invariant under the projective transformations (see, e.g., [5]) with operator

X = t2
@

@t
+ tu�

@

@u�
+ � � �

which is a Noether symmetry [5] corresponding to the Lagrangian

L =
1
2
m _u2 �

�

r2 :

It is rather straightforward to verify thatX(L) + LD(t2) = D(mr2=2). By Corollary 1 we
have that the strict Noether symmetry equivalent toX is

~X =

 
t2 +

mr4

2��mr2 _u2

!
@

@t
+

 
tu� +

mr4

2��mr2 _u2u
�

!
@

@u�
+ � � � :

By Corollary 2, the canonical operator (cf. Section 7.1.1)

�X = (tu� � t2 _u�)
@

@u�
+ � � �

is a Noether symmetry with divergence�B = mr2=2�mt2 _u2=2+ t2�=r2.
This concludes our examples.

8. Application of the Identities

The identities stated in Sections 3–5 have important applications, e.g., in the inverse problem
in the Calculus of Variations and in the reduction of order in differential equations.

In particular, for the inverse problem, we show below how necessary conditions, using sym-
metries and associated conservation laws, can be deduced for the construction of Lagrangians.

We first discuss the one-dimensional case (one independent variablex). By Theorem 3,
invoking Equation (18) and operating the left-hand and right-hand sides of (18) on a Lagrangian
L 2 A, we have

X(NL) = N(XL) +N(D(�)L)

= N(XL+D(�)L):

If X is a Noether symmetry, the above relation becomes

X(NL) = ND(B); (27)

whereB 2 A. Moreover, the Noether conserved vector associated with the Noether symmetry
X is

T = NL�B: (28)

Substituting Equation (28) into (27) implies

X(T ) = ND(B)�X(B);

which by Theorem 2, operator identity (17), yields

X(T ) = 0:
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We have in fact generalised a result of Sarlet and Cartrijn [13] to any Lie–Bäcklund operatorX.

THEOREM 7.The Noether conserved quantityT given by (28) is a differential invariant of
the Lie–B̈acklund operatorX which is a generator of a Noether symmetry, i.e.,

X(T ) = 0: (29)

Thus, a necessary condition for a Lagrangian for a system of ordinary differential equations to
exist is that relation (29) holds, whereX is a generator of a symmetry andT its corresponding
invariant.

We now consider the multi-dimensional case, i.e., the situation for independent variables
xi. Invoking the identity of Theorem 4, viz. (19), and applying it on a LagrangianL 2 A, we
obtain

X(N iL) = N i(X +Dk(�
k))L+Dk(�

i)NkL�Dk(�
k)N iL:

ForX a Noether symmetry, this relation becomes

X(N iL) = N i
�
Dk(B

k)
�
+Dk(�

i)NkL�Dk(�
k)N iL; (30)

where eachBi 2 A. The components of the Noether conserved vector associated with the
Noether symmetryX are given by (see Equation (24))

T i = N iL�Bi: (31)

Inserting Equation (31) into (30) yields

X(T i) +Dk(�
k)(T i)�Dk(�

i)(T k)

= N i(Dk(B
k)) +Dk(�

i)(Bk)�Dk(�
k)(Bi)�X(Bi):

Hence, we have the following theorem:

THEOREM 8.The components of the Noether conserved vectorT i, given by (31), associated
with the Lie–B̈acklund operatorX which is a generator of a Noether symmetry, satisfy

X(T i) +Dk(�
k)(T i)�Dk(�

i)(T k)

= N i(Dk(B
k)) +Dk(�

i)(Bk)�Dk(�
k)(Bi)�X(Bi): (32)

The relation (32) is by far more complicated in form than (29). However, a particular case of
(32) was considered in [14] and [15] to construct conservation laws for some physical systems.

Finally, we mention that a necessary condition for a Lagrangian for a system of partial
differential equations to exist is that relation (32) be satisfied, where the Lie–Bäcklund operator
X is a generator of a symmetry andT i its associated conserved vector components.

9. Aspects in Inverse Problems

TheInverse problemin the calculus of variations involves the determination of a Lagrangian,
L 2 A if it exists, which corresponds to a given differential equation. That is, given Equa-
tion (20), find a LagrangianL 2 A such that the Euler–Lagrange equation (22) is equivalent
to the given Equation (20).
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We provide the following definition of alternative Lagrangians [16].

DEFINITION 7. Two Lagrangians,L 2 A and�L 2 A, are said to bealternative Lagrangians
for a given differential equation if their respective Euler–Lagrange equations imply each other,
i.e.,�L=�u� = 0 if and only if� �L=�u� = 0.

The strong requirementof the inverse problem amounts to the determination of anL 2 A

such that�L=�u� = E�, � = 1; : : : ;m. In general, a given Equation (20) is equivalent to the
Euler–Lagrange equation (22) for someL 2 A if there exists an invertible matrixf�� such that

�L

�u�
= f��E

� ; � = 1; : : : ;m; (33)

wheref�� = f�� (x; u; u(1); : : : ; u(k�1)), �; � = 1; : : : ;m. This is theweak requirement.
Investigations in the area of inverse problems in mechanics and variational calculus are

extensive. For example, we refer the reader to [17] and the references therein. This paper
contains results on the Lagrangian formulation of quasi-linear second-order partial differen-
tial equations. A complete classification of Lagrangians for scalar second-order differential
equations according to Noether point symmetries was solved in [11].

It is well known that many equations do not admit a Lagrangian. This is even true in the
case of the weak requirement.

In the scalar case, (33) is

�L

�u
= fE: (34)

Let us consider the following example:

utx + ux + u2 = 0 (35)

which arises in the description of Maxwellian tails (see, e.g., [18]). Equation (34) becomes

�L

�u
= futx + fux + fu2: (36)

Expanding�L=�u and equating the coefficients ofutt anduxx in (36) give rise to

L = c(t; x; u)utux + d(t; x; u)ut + e(t; x; u)ux + g(t; x; u):

The coefficient ofutx in (36) then implies

f = �2c:

The remaining terms of (36) are

�cuutux � ctux � cxut � dt � ex + gu = fux + fu2: (37)

The strong requirement is equivalent to the construction ofL for (35) withf = 1. It is easy to
verify that this requirement imposed on (37) gives rise toc = �1=2 andct = �1 which is not
possible. Therefore, Equation (35) does not admit a Lagrangian in the absence of a multiplier.

For the same problem (35) withf as yet arbitrary in (37), we obtainc = � exp 2t (�
constant) anddt + ex � gu = 2�e2tu2. We can, without loss of generality, sete = g = 0 so
thatd = �u2 exp(2t). Hence (35), with multiplierf = �2�e2t, has a Lagrangian

L = �e2t(utux + u2ut):
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Another Lagrangian, for example, can be obtained by settingd = e = 0 andg = �2=3�e2tu3.
This gives

L = �e2t(utux �
2
3
u3):

In a similar manner, one can obtain more Lagrangians.
Next we consider two examples in which one can utilise the the invariance condition (23)

with Bi = 0 in conjunction with (33).
The following equation

r2� = 0; r = (@=@x1; : : : ; @=@xn); (38)

wherex� (� = 1; : : : ; n) are space variables andn takes on values 1,2 and 3 for one-
dimensional, plane and three-dimensional motions, respectively, arises in the study of perfect
compressible fluids, where�(t; x) is the potential. A Lagrangian (see [5]) for (38) is

L = �t +
1
2
jr�j2: (39)

A well-known symmetry of (38) is the scaling symmetry

X = x�
@

@x�
�
n� 2

2
�

@

@�
: (40)

In fact,X is a Noether symmetry of (39), viz.,

X(L) +Di(�
i)L = Dt

�
8� n

2
�

�
+D�

�
3� n

2
�r�

�

on the solution of the Laplace equation (38). One can also construct a Lagrangian for which
the operator (40) is a strict Noether symmetry (Bi = 0 in Equation (23)). In this manner one
obtains an alternative Lagrangian [5]

L = jxj�(n+2)=2�t + jr�j2: (41)

We further consider the following example which is the potential form of the perfect polytropic
gas equation,

�tt + 2r� � r�t +r� � (r� � r)r�+ (
 � 1)
�
�t +

1
2
jr�j2

�
r2� = 0:

In [4], the Lagrangian

L =

�
�t +

1
2
jr�j2

�
=(
�1)

was constructed using the strict form of (23) (i.e., with zero divergence) with known symme-
triesX and (33). This yields the multiplier

f = �



(
 � 1)2

�
�t +

1
2
jr�j2

�(2�
)=(
�1)

:

For two space variables,f = 1 and henceL satisfies the strong requirement.
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We use another symmetry based approach in the following section. This is based on
Theorems 5 and 8.

10. Applications to Inverse Problems

In this section, we apply Theorems 5 and 8 to the algorithmic construction of Lagrangians for
some physically important problems.

The examples presented here are restricted to scalar second-order partial differential equa-
tions and serve as prototype examples. The reader can try other examples. Also, we take
(x1; x2 ; x3 ; x4) = (t; x; y; z) and the derivatives are denoted by the appropriate subscripts
ut, ux, etc. The total derivative operator will be denoted byDt, Dx, etc.

EXAMPLE 1. It is easy to see that

utx + uxuxx � uyy = 0; (42)

which arises in the study of two-dimensional non-steady state transonic gas flow, can be
written in the conserved form

DtT
1 +DxT

2 +DyT
3 = 0; (43)

whereT 1 = ux, T 2 = (1=2)u2
x andT 3 = �uy. The necessary condition (32) is satisfied

with X = @=@u provided thatN i(Dk(B
k)) = X(Bi), i = 1;2;3 for someBis. Then

Equation (31) becomes

ux =
@L

@ut
�B1; (44a)

1
2
u2
x =

@L

@ux
�B2; (44b)

�uy =
@L

@uy
�B3: (44c)

Assume thatB1 is independent ofut and solve (44a). This yields

L = utux +B1ut +A;

whereA is independent ofut. Then (44b) and (44c) are

ut +
@B1

@ux
ut +

@A

@ux
= B2 +

1
2
u2
x;

�uy =
@B1

@uy
ut +

@A

@uy
�B3: (45)

We takeB1 = �(1=2)ux andB2 = (1=2)ut from which other differential consequences
imply

L =
1
2
utux +

1
6
u3
x �

1
2
u2
y + �(t; x; y; u) +B3(t; x; y; u)uy : (46)
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Note that the constraints

N1(DtB
1 +DxB

2) = X(B1);

N2(DtB
1 +DxB

2) = X(B2)

are satisfied for the above choices ofB1 andB2. It can be shown, by determining the Euler–
Lagrange equation associated withL, that Equation (46) is a Lagrangian for (42) if�u = B3

y.

EXAMPLE 2. The nonlinear equation

2utx + uxuxx � uyy � uzz = 0 (47)

is the three-dimensional version of non-steady state transonic gas flow (cf. Example 1) and
as such is not different to the first example. However, in this example we choose theBis
differently. It is easily verifiable that (47) can be written in the conserved form

DtT
1 +DxT

2 +DyT
3 +DzT

4 = 0; (48)

where

T 1 = �
1
2
u2
y +

1
6
u3
x �

1
2
u2
z;

T 2 = �u2
t �

1
2
u2
xut;

T 3 = utuy;

T 4 = utuz: (49)

One can easily check that the necessary condition (32) is satisfied for (49) withX = @=@t.
Once again, by substitution in (31), fori = 1;2;3, we get

T 1 = �B1 � ut
@L

@ut
+ L; (50a)

T 2 = �B2 � ut
@L

@ux
; (50b)

T 3 = �B3 � ut
@L

@uy
; (50c)

T 4 = �B4 � ut
@L

@uz
: (50d)

For this example, we assume that theBis are independent of derivatives. Then, differentiating
the four equations of (50) with respect tout, ux, uy anduz, respectively, and solving we
obtainL to be

L = Rutuxuyuz + Sutuxuy + Tutuxuz + Uuxut + V utuyuz +Wutuy

+Xutuz + Y ut +
1
6
u3
x +Auxuyuz +Buxuy + Cuxuz

+Dux �
1
2
u2
y +Euzuy + Fuy +�

1
2
u2
z +Ouz + P; (51)
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where the unknown coefficients are all constants. Then, the differentiation of (50a) with respect
to ux and the substitution of (51), giveU = 1 andV = 0 when (50c) is differentiated with
respect touz. Proceeding in this manner, one can show that all the remaining constants are
zero. Hence, a Lagrangian for (47) is

L =
1
6
u3
x + utux �

1
2
u2
y �

1
2
u2
z:

EXAMPLE 3. We now consider the form of the BBM (Benjamin–Bona–Mahony) equation
(see, e.g. [19, ch. 11] and references therein)

uxt + uxx + uxuxx � uxxxt = 0: (52)

It is easy to check that Equation (52) can be written in the conserved form

DtT
1 +DxT

2 = 0;

whereT 1 = ux � uxxx andT 2 = ux + 1
2u

2
x. The operatorX = @=@u is a symmetry of the

components(T 1; T 2) if the necessary condition (32) is satisfied. We haveXT 1 = 0 = XT 2.
Now, Equation (31) becomes

T 1 =
@L

@ut
�Dt

@L

@utt
�Dx

@L

@utx
�B1; (53a)

T 2 =
@L

@ux
�Dx

@L

@uxx
�Dt

@L

@uxt
+D2

x

@L

@uxxx
�B2: (53b)

SupposeL is independent ofutt andutx and takeB1 = �(1=2)ux. Then (53a) simplifies to

1
2
ux � uxxx =

@L

@ut
;

so that

L =
1
2
uxut � uxxxut + f(t; x; ux; uxx; uxt): (54)

The insertion of Equation (54) into (53b), choosingB2 = (1=2)ut, and the comparison of the
coefficients of the derivatives ofu (the calculations are routine and are left out) give rise to

f = �
1
2
uxtuxx +

1
2
u2
x +

1
6
u3
x: (55)

We get the third-order Lagrangian

L =
1
2
uxut � utuxxx �

1
2
uxtuxx +

1
2
u2
x +

1
6
u3
x (56)

which is a Lagrangian of Equation (52).

REMARK. By makingL independent ofutt andutx and choosingB1 = uxxx� (1=2)ux and
B2 = (1=2)ut � uxxt, one can show that the following second-order Lagrangian arises for
Equation (52), viz.,

L =
1
2
utux +

1
2
uxxuxt +

1
2
u2
x +

1
6
u3
x:
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Here too, the necessary condition (32) is satisfied.

In the next section we will consider an example in which the Lagrangian and the equation is
of second-order. Also, theBis are set to be zero.

EXAMPLE 4. To conclude this section, we obtain a Lagrangian for

utx � (uux)x � uyy +
1
2
u2
x = 0: (57)

The components of a conserved vector for (57) are

T 1 = �
1
2
uxuy;

T 2 = uuxuy �
1
2
utuy

T 3 =
1
2
utux +

1
2
u2
y �

1
2
uu2

x: (58)

The necessary condition (32) is satisfied forX = @=@y andBi = 0. Then Equation (31) is

�
1
2
uxuy = �uy

@L

@ut
;

�
1
2
utuy + uuxuy = �uy

@L

@ux
;

1
2
utux +

1
2
u2
y �

1
2
uu2

x = L� uy
@L

@uy
: (59)

A solution of (59) is straightforward and gives

L =
1
2
utux �

1
2
uu2

x �
1
2
u2
y:

11. Conservation Laws and Alternative Lagrangians

Here we consider an example that highlights the utility of conservation laws for alternative
Lagrangians. Here again, we use the method of Section 10.

We discuss the following interesting equation

uxxuyy � u2
xy + kx�4�2

�
y

x

�
= 0: (60)

This equation is considered in [21] (see also [20, ch. 9]) and is a special case of the Monge–
Ampére equation. A Lagrangian for (60) is

L = u2
yuxx + u2

xuyy � 2b(x; y)uxy; (61)

where bxy = 2kx�4�2(y=x). Noether’s theorem [3] implies the conserved vectorT =

(T 1; T 2) defined by

T 1 = uxuyy;

T 2 = �uxuxy + kx�3�

�
y

x

�
; �0

�
y

x

�
= �2

�
y

x

�
: (62)
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This corresponds to the operatorX = @=@u. In fact, the application of Noether’s theorem
gives rise to

T 1
�

= 4uxuyy + 2Dy(b� uxuy);

T 2
�

= �4uxuxy + 4kx�3�

�
y

x

�
� 2Dx(b� uxuy): (63)

The conservation laws corresponding to (62) and (63) are equivalent.
We now construct an alternative Lagrangian for (60) corresponding to (62) withX = @=@u.

The method of the previous section is used. It is easy to verify that condition (32) is satisfied
for (62) withX = @=@u. Equation (31), withBi = 0, i = 1;2, yields

T 1 =
@L

@ux
�Dx

@L

@uxx
�Dy

@L

@uxy
;

T 2 =
@L

@uy
�Dy

@L

@uyy
�Dx

@L

@uyx
: (64)

The subtraction ofT 2 fromT 1 yields a first-order equation inL if we suppose that the algebraic
sum of the higher derivative terms inL vanish. This gives rise to

L =
1
2
u2
xuyy +

1
2
u2
xuxy � kx�3ux�+ 
(ux + uy) ; (65)

where
 is obtained from the solution of

Dy
@L

@uyy
+Dx

@L

@uyx
�Dx

@L

@uxx
�Dy

@L

@uxy
= 0: (66)

This results inL having the form

L =
1
2
u2
xuyy +

1
2
u2
xuxy + kx�3uy�

�
y

x

�
: (67)

It should be noted thatL is independent ofuyx and, thus, the termDx@L=@uyx in (64)
vanishes. This comment is also applicable to the Euler–Lagrange equation (22).

Acknowledgement

This work was supported in part by a grant from the F.R.D. of South Africa.

References
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