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Abstract

The solution of the problem on linearization of fourth-order equations by
means of point transformations is presented here. We show that all fourth-
order equations that are linearizable by point transformations are contained
in the class of equations which is linear in the third-order derivative. We
provide the linearization test and describe the procedure for obtaining the
linearizing transformations as well as the linearized equation. For ordinary
differential equations of order greater than 4 we obtain necessary conditions,
which separate all linearizable equations into two classes.

PACS number: 02.30.Hq
Mathematics Subject Classification: 34A05, 34A34

1. Introduction

Almost all important governing equations in physics take the form of nonlinear differential
equations, and, in general, are very difficult to solve explicitly. While solving problems related
to nonlinear ordinary differential equations it is often expedient to simplify equations by a
suitable change of variables. The simplest form of a differential equation is a linear form.
The reduction of an ordinary differential equation to a linear ordinary differential equation
besides simplification allows constructing an exact solution of the original equation. Analytical
(explicit) solution has value, firstly, as an exact description of a real process in the framework
of a given model; secondly, as a model to compare various numerical methods; thirdly, as a
basis to improve the models used. Therefore, the linearization problem plays a significant role
in the nonlinear problem. The linearization problem can be stated as follows: find a change of
variables such that a transformed equation becomes a linear equation. If a change of variables
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includes derivatives, this change is called a tangent transformation. The present paper studies
the linearization problem by using point transformations, where the change of variables only
depends on the independent and dependent variables. Point transformations are the simplest
type of transformations compared with tangent transformations.

The problem of linearization of ordinary differential equations has a long history. It
attracted the attention of mathematicians like S Lie and E Cartan. The first solution of the
linearization problem of a second-order ordinary differential equation was given by S Lie
[1]. E Cartan tackled this problem by using differential forms. An application of symbolic
computer calculations allows solving the linearization problem of order greater than 2. In a
series of articles® [4—8] the linearization problem of a third-order ordinary differential equation
with respect to point, contact and generalized Sundman transformations was considered and
solved. The main difficulty in solving the linearization problem is related to voluminous and
extremely complicated calculations. Because of this difficulty there are only a few attempts to
solve this problem for orders higher than 3 even in a particular case, where a transformation can
map a studied equation into the trivial equation y® = 0. These attempts were made recently
and they only considered contact transformations [9] and knowledge of an admitted Lie group
[10]. Itis worth noting that the application of contact transformations is more complicated than
the application of point transformations. Moreover, as shown in [6, 7] for third-order ordinary
differential equations, two sets (the set of equations linearizable by contact transformations
and the set of equations linearizable by point transformations) complement each other. This
is one of the motivations for studying the linearization problem by point transformations.

Another motivation of the study of fourth-order ordinary differential equations is
as follows. Many systems of two second-order ordinary differential equations* can be
reduced to a fourth-order ordinary differential equation. Hence, the linearization criteria
obtained for fourth-order ordinary differential equations can also be applied to such type of
systems.

One can continue studying the linearization problem increasing the order of equations.
The case of fourth-order ordinary differential equations is on the boarder line of applications
of point transformations for the linearization problem. The study of fourth-order equations
allowed us to develop the method for obtaining necessary conditions of linearization of ordinary
differential equations of any order greater than 4. These conditions separate all linearizable
ordinary differential equations into two classes.

The present paper is devoted to obtaining complete criteria for fourth-order ordinary
differential equations to be linearizable by a change of the dependent and independent
variables. Intermediate calculations are obtained using computer algebra system Reduce
[13]. For ordinary differential equations of order greater than 4 necessary conditions were
obtained. The final results were checked by comparing with theoretical results on invariants
as well as by applying to numerous known and new examples of linearization.

The paper is organized as follows. In section 2, the necessary conditions of linearization
of an ordinary differential equation of order greater than 3 are presented. The next sections
of the paper consider fourth-order ordinary differential equations. In section 3, we discuss
the main results of the first class. We state the theorem that yields criteria for a fourth-order
ordinary differential equation to be linearizable via a point transformation. Relations between
coefficients of a linearizable equation and point transformations reducing this equation into
a linear equation are presented in this section. These relations are necessary for proving the
linearization theorem. The proof of this theorem, application of the linearization theorem
3 A historical review can be found in [2], recent references can be seen in [3].

4 A short review of results of solving the linearization problem for a system of two second-order ordinary differential

equations can be found, for example, in [11, 12].
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to one class of systems with two second-order ordinary differential equations and illustrative
examples are provided in the subsequent subsections. The main results of the second class are
studied in section 4 in a similar manner. For the sake of simplicity of reading, cumbersome
formulae from this section are moved into the appendix.

2. Necessary conditions of linearization

Here we consider the ith-order ordinary differential equation

YO =F@,y. ¥,y oy (1
We apply a point transformation
=g, y), u=yx,y) 2)

to equation (1).

We begin with investigating the necessary conditions for linearization. The general form
of equation (1) that can be obtained from a linear ordinary differential equation by any point
transformation (2) is found on this step. Necessary conditions for a linearizable fourth-order
ordinary differential equation are studied here in more detail.

2.1. Necessary form of a linearizable ith-order ordinary differential equation

In 1879, E Laguerre showed that in the linear ordinary differential equation of order i > 3 the
two terms of orders next below the highest can be simultaneously removed by an equivalence
transformation. Therefore, the general linear ith-order ordinary differential equation in
Laguerre’s form is

u + o 3OuTV 4+ ap(tu =0, <)

where ¢ and u are the independent and dependent variables, respectively.
Applying a point transformation (2), the derivatives are changed as follows:

du Dy du = Dy, D*y D¢ — D*¢Dys
&t~ "' Dg’ a? = "?T Dg (Dg)?
dk+ly Dwk

TS A (k> 1),

de*+ Dy

where

b0 T
=—+y —+y —+y"—+yP—
8x ay 8y/ ay// ay///

is the operator of total derivative with respect to x. Note that

Dif =y®f +ky®VUDf +hy(x,y, v, .,y &3 02, (k > 2),
1 i i(i—1) 2 i—2 . oyi—1 i
Y = Doy [D ¥ — 5 (D @)(D@)' ~“Yri_1 — (D' @) (D@)yr, — (D <p)1ﬂ1} +oe,
- =D 4 ...
Vi1 = (D(p)nly + ’

where A = @, — @, # 0 is the Jacobian of the change of variables (2), f = f(x,y)
is an arbitrary function, and i > 3. Here ... means terms with derivatives of order less than
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i — 1. Hence,

. A Dy
i () @i—1) _
D)y =y Do +iy [Dllfy Dy Doy
=D A D*y Dy — Dz<pr]
2 P %~ (e ' @

Calculations show that on the right-hand side of equation (4) the term with the derivative y¢—"
is

Dy i—-1 A D>y Dy — D>¢Dvyr
(Dg)? | DYy — =2 Dy, — (D*¢)——— — g, -
Dy 2 (Do) (Do)
, @+ DA 2 iA (px ¥y + @y¥x)
= - y/ (pyT + y/ (pxy(pyWy - (pny - ¢yy% - wxy§0§

+ 1pyy‘Px‘ﬂy) + y/(_(pxyiA + (Pxx(way - <Pyy§0x% - Wxx(pi + %y(ﬂf)

iA (x ¥y + ¢y ¥)
- <ny(0x¢fx - (pxx7 + goxx% + %yfﬂf - I/Ixxgax(p}'-
Thus, the necessary form of a linearizable ordinary differential equation of ith order is
1 @+ DA 2 iA
1
(i )A_D(p |:_ ” YT +y/ @xy‘pywy _ (pny
(@« Iﬂy + @y V)
w)’)‘f

+ y/(_(nyiA + ‘pxx‘pyWy - ‘pyy(/)xw,v - %xfﬂi + Wyy(p)%)

IA (@xry + @y 1)
—%y(ﬂx% — Qxx—— + wxx% + %yfﬂf - 'thx(px(py +---=0.

2

From this representation we can conclude that for the linearization problem one needs to study
two cases: (a) ¢, = 0, and (b) ¢, # 0. This corresponds to the following two necessary forms
of linearizable ordinary differential equations:

v +iy

- Iﬂxwa + nyy(pxwy)

YOy VA + Al + - =0, )
and
. ) 1 (i +1
y(l) +y(l—]) [_y//l(l ) + Fzy/2 + Fly/+ FO} R 0’ (6)
y +r 2

where F; = F;j(x,y), Aj = Aj(x, y). If ¢, = 0, in the literature this class of transformations
is called a fiber-preserving transformation.

Theorem 1. Any linearizable ith order (i > 4) ordinary differential equation has to be one of
the forms either equation (5) or equation (6).

2.2. The necessary form of a linearizable fourth-order ordinary differential equation

As was obtained in the previous subsection, the transformations (2) with ¢, = 0 and ¢, # 0,
respectively, provide two distinctly different classes for the linearization.

If ¢, = 0 we work out the missing terms in equation (5), substitute the resulting expression
into the linear equation

u® +a ' + B(Hu =0, (7)



J. Phys. A: Math. Theor. 41 (2008) 235206 N H Ibragimov et al

and obtain the following first class for linearization:

Y+ (A1 + Ag)y” + Boy"? + (Coy + C1y' + Co)y”
+ D4y/4 + D3y,3 + Dzylz + Dly/ + Do = 0, (8)

where A; = Aj(x,y),B; = Bj(x,y),C; = C;(x,y) and D; = D;(x,y) are arbitrary
functions of x, y.

If ¢, # 0, we proceed likewise and setting r = %’ arrive at the second class for
linearization

1 1
YO+ ——(=10y" + By + Firy' + Fo)y" + ———[15y"° + (Hoy”? + Hiy' + Hp)y"*
vy +r '+r)
+ (LY + By + Ly ? + Iy + Jo)y + K7y + Ky + Ksy”® + Kuy'™*

+K3y”? + Koy? + K1y + Kol = 0, 9)

where r = r(x,y), F; = Fj(x,y),H; = Hj(x,y),J; = Jj(x,y) and K; = K;(x, y) are
arbitrary functions of x, y.

Thus, we showed every linearizable fourth-order ordinary differential equation belongs
either to the class of equations (8) or to the class of equations (9).

3. The first class of linearizable equations

3.1. The linearization test for equation (8)

In this case, the linearizing transformation (2) must be a fiber-preserving transformation, i.e.,
it has the form

t=g(x), u=vyx,y). (10)

Theorem 2. Equation (8) is linearizable if and only if its coefficients obey the following
equations:

Agy — Aix =0, (11)
4By — 3A; =0, 1241, +3A7 — 8C, = 0, (12)
1241, +340A, —4C, =0, (13)
32Co, + 12A0, A — 16C), +3A%A, —4A,C, =0, (14)
4Cyy + A Cy — 24D, =0, 4C1y + A C) — 12D3 = 0, (15)
16C), — 12A0,A; — 3A2A, +4A¢C1 +8A,Cy — 32D, = 0, (16)

192D, +36A0, AgA; — 4840, C; — 48Co, Ay — 288D, + 9A A — 12A5C
—36A9A1Co +48Ag D, +32CCy = 0, (17)

384D, — [3((3AgA; — 4C1)A2+16(2A, D + CoC1) — 16(A;Co — D2)Ag) Ay
—32(4(C\ Dy —2C2Dy + CoDy) + (341 Dy — C3) A1) — 96Dy, Ag
+384Dg, A + 1536Dq,, — 16(3A9A; — 4C1)Coy
+12((3A9A; — 4C1)Ag — 4(A,Cy — 4D5))Ag, ] = 0. (18)
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Corollary 1.  Provided that the conditions (11)—(18) are satisfied, the linearizing
transformation (10) is defined by a fourth-order ordinary differential equation for the function
©(x), namely by the Riccati equation

dx 2 2
40d_ —20x° =8Cyp —34; — 12A,, (19)
b

for

y = L (20)

Px

and by the following integrable system of partial differential equations for the function ¥ (x, y),

4¢y}' = 1/fyAl» 4wxy = 1»”y(AO‘i'6X), 21
and

16009y = 9600Yryx x + 160, (—1240, — 3A5 — 90x> + 8Cy)
+40yr, (1240, Ag + T2A0, x — 16Co, +3A3 + 18A5x — 12A4,C,
+120)° — 48 Co + 24D — 8Q) + Y (144 A7, + 72A0, Aj — 35240, Co
—160Cqyy — 80Cox Ag — 1600Dy, + 640D, — 802, +9A; — 88A5C,
+160A0D; +30A9Q2 — 4004, Do + 300x 2 + 144C5) + 1600y, Dy, (22)

where x is given by equation (20) and <2 is the following expression:

Q= A) —4A0Cy+8D; — 8Cy, +6A0, Ag +4Aq,.. (23)
Finally, the coefficients o and B of the resulting linear equation (7) are
o= ﬁ, (24)
8¢y
B = (16000*) ™" (—144A2, — 7240, A2 + 35240, Co + 160Co, +80Co, A
+1600Dg, — 640D, + 802, — 9A; +88A3Cy — 160A¢D; — 304,
+400A, Dy — 300x Q2 — 144C3). (25)

Remark 1. Since the system of equations (11)-(18) provides the necessary and sufficient
conditions for linearization, it is invariant with respect to transformations (10). This means
that the left-hand sides of equations (11)—(18) are relative invariants of second order for the
equivalence transformations defined by (10).

3.2. Relations between coelfficients and transformations

For proving the linearization theorem we need relations between ¢(x), ¥ (x, y) and the
coefficients of equation (8). To obtain these relations, we complete equation (5) by adding the
missing terms.

Lemma 1. The coefficients of equation (8) and the functions ¢(x) and ¥ (x,y) in the
transformation (10) are related by the following equations:

AL =40y Wy, Ao = —2(0:¥y) T Boa ¥y — 20:Yy), (26)
Bo=3Wy) "Wy, Ca=6) "y, Ci=—6(0:%y) " Bou ¥y — 20:Vyy),  (27)
CO = _((p)%Wy)_l[(“'@xxx(px - 15(/’,%;;)10,\' + 6(3¢xx1//xy - ‘vafxxy)wx]’ (28)
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Dy = (¥,)" Yypys (29)

D; = —2(%1//)0_1(390“ Iﬂyyy - 2¢x I#)cyyy)v (30)
-1

D2 - —((P)%l/fv) (4§0xxx(px1pyy - 15(p,%x 1//_Vy + 18(pxx(px wxyy - 6¢§Wxxyy)a (31)
—1

D, = _(ﬁoi'(py) [3(5(p,%x¢y — 10@xx @2 Vxy + 6¢§1//xxy)(pxx - (‘Pilpya +4Wxxxy)‘pg
- 2(5§0xx Wy - 4§0x wxy)ﬁoxxxgox + (pxxxxw)%w,v]y (32)
—1

DO = —(%j%) [(15§03x - (p,?a + Qoxxxxgpy%)wx - (IOQDXXXQOXXWX - 4§0xxx(pxwxx
+ 15%%)(%” - 6§0xx(pxwxxx + %?ﬁl/f + @;%I/fxxxx)wx} (33)

3.3. Proof of the linearization theorems

The proof of the linearization theorem requires the study of integrability conditions for the
unknown functions ¢ (x) and v (x, y). The functions ¢(x) and v (x, y) satisfy equations (26)—
(33) with given coefficients A; (x, ), Bi (x, y), C;i(x, y), D; (x, y).
We first rewrite expression (26) for A; and Ay in the following form:
VyA (6@xx + @2 Ao)
w)'y = \4 ’ l[’xy = xx4(px -

Comparing the mixed derivatives (Y,,)x = (Y¥x,),, one arrives at equation (11): Agy, = Aj,.
Then equations (27) become (12) and (13). Furthermore, equation (28) gives

(1240.¢7 — 6097, + 397 A7 — 8¢2Co)
P . (35)
40¢,

Differentiation of equation (35) with respect to y yields equation (14). Equations (29), (30)
and (31) become in the form of equations (15) and (16), respectively.
One can determine « from equation (32):

_ 4Agx + 640, Ag — 8Co, + A} —4A¢Co + 8D
B 83 '
Since ¢ = ¢(x), then ay, = 0, which yields equation (17). From equation (33) one finds

Uy. (34)

(36)

o

Vienr = [3240:: 03 0x — T2A0:@xr @iy + 48 A0 @) ik

4093
+36A0c0i s Ao — 48C0r @V — 12003 Ve + 36007, ¢ i
— 2400, 03 Vcxr — 1800 @iV AG + 480,01 Co + 400] B
+ 120390 A§ — 32039, Co + 593, Ay — 20931, Ao Co
+40¢; . Dy — 4092 ¥, Dy | (37)

Forming the mixed derivative (¥, yxx)y = (¥xy)xxx ONE Obtains

B (02 (320 A0y +360A0cx Ag + 336A7, — 1240, A]

1
= L0053

—480C ., + 1600Dg, — 3947 +32A¢,Co

+208A5Cy — 4004, D +400A, Dy — 144C})

— 300, (4A0xx +6A0: Ag — 8Co, + Ay — 440Co +8D))]. (38)
Differentiation of 8 with respect to y (18). This completes the proof of theorem 2
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3.4. Application of the first linearization theorem to a system of two second-order
ordinary differential equations

In this subsection we give some sufficient conditions of linearization for a system of two
second-order ordinary differential equations with two dependent variables y,z and one
independent variable x

Y= fitx,y, ¥, 2), "= falx, .Y, 2). 39)

Assuming that f1, # 0, by virtue of the inverse function theorem the first equation of (39)
can be solved with respect to z = g(x, y, ¥’, y”). Substituting this into the second equation
of (39), one obtains that system (39) is equivalent to the fourth-order ordinary differential
equation
y(4)gy” + y///2gy”y” + y///(zgy,y”y// +gy + 2gy”x " zgy”yy/) " gy’y’y//z

+(28yx +28yyY + 807" + 81y + 281, + 8xx — 2 = 0. (40)
Applying linearization theorems to equation (40) one can obtain conditions for the functions
f2(x, v,y ,z) and g(x, y, ', z) which are necessary and sufficient for equation (40) to be
linearizable. It is worth noting that, in general, these linearizing transformations, which
are point transformations for equation (40), are not point transformations for system of
equations (39).

Since one of the necessary conditions for the linearization of equation (40) requires that
this equation has to be a linear equation with respect to the third-order derivative y’, one
obtains that gy, = 0, 1.e., g = go+g1y", where g; = g;(x, y,y’), (i =0, 1). Since g, # 0,
the function g, # 0. Equation (40) becomes
Y+ [(goy +381yy" + 2815 + 2815305 + 81y " + 2815 + Soyry + 28155 +81,)Y"

+ (zg()y’x + 8lxx t 8oy + z(gOy/y + glxy)y/ + glyyy/2)y”

+ 80wy Y'? + 2800 Y + goex — f2] /81 = 0. (41)
Considering the coefficient related to the product y”y’, for a linearizable equation one obtains
either g1,» = 0 or 3(y' +7)g1y + 10g; = 0, where r = r(x, y). In the present paper we study
the case g,» = 0. Since the coefficients with the derivative y’ have to be linear with respect
to the first-order derivative y’, one obtains go,, v = 0, that is

g0 = goo + go1y' + 802y’

where go; = goi(x,y), (i =0, 1, 2). Hence, the coefficients A; and Ay in equation (8) are
Ay =2(81y +802)/81, Ag = (281x + 801)/8&1-

Proceeding to compare coefficients of equation (40) with equation (8) we obtain that
fo= [+ (fao+ foury + oy Dz + faoo + frorY + fooy? + fr03y” + froay'™

where fo = fo(x,y), fori = f21i(x, ), (i =0,1,2), froi = fa0i(x,y), (i =0,1,2,3,4)
and

By = (g1y — 8 +2802) /81,

Cy = (5802y + 81yy — 21281 — 2f080281)/81,

C1 = (3go1y +4802x +281xy — f21181 — 2 f2280181)/81,

Co = (gooy +2801x + g1xx — f21081 — 2f2280081)/81-

Dy = (802yy — fros — 12802 — 22852) /&1

D3 = (go1yy +2802xy — f203 — 211802 — f212801 — 2 f22801802)/81,
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D> = (8ooyy +2801xy + &02ex — f202 — f210802 — fo11801 — f212800
— 2 fn80080 — f2801)/81
Dy = (2800xy + 8o1xx — 201 — f210801 — f211800 — 2 f22800801)/ 81,
Do = (go0xx — f200 — f210800 — f228%0)/ 81-
For the sake of simplicity we present here the linearization conditions for the case f, = 0.

One can verify that in the case f>; = 0 the found coefficients A;, B;, C; and D; satisfy the
linearization conditions (11)—(18) if and only if

801y = (f210ygl3 + 800y80281 + g02xxg12 —2802x81x81 + 802x 80181

—81ex 80281 + 281,802 — glxgmgoz)/glz, (42)
g1y = fa2/81, (43)
8ooyy = (f210ygf + 8ooy80281 + gozxng —2802:81x81 + 802180181

— 81::80281 + 287,800 — g1x801802)/8f, (44)
210y = f202/81, (45)
Jaoty = (2 f202081 + f201802 — f202801)/815 (46)
Frooyy = (200580281 + Fro2xx87 — F202580081 — 2800y 20281

+802¢ 20181 — 814 f201802 — f202 21087 + 2 f202800802) / 7 47)
and

J203 = fa04 = fou1 = f212 = 0.

One type of the functions f>(x, y, ¥, z) and g(x, y, y’, y”) satisfying conditions (42)—(47)

is

fo=zua+usH + s, g =y"Hy+2y Hey+y*Hyy + 11 H + s,
where u; = ;i (x), (i =1,2,3,4,5) are arbitrary functions, and the function H (x, y) satisfies

the equation
H, Hq\?
=) 42 =0.
H, ). \ H,
y

System (39) corresponding to these functions is

' =2/Hy — 2y Huy + Y Hyy + pa)/H — 1, 2= zpa+ 3 H + pis.

3.5. Illustration of the linearization theorems

Example 1. Consider the nonlinear ordinary differential equation

22y Q2y@ +y) +8x2y'y" + 16xyy” + 6x2y"* + 48xy'y" + 24yy" +24y"* = 0. (48)
It is an equation of the form (8) with the coefficients
4 8 3 24 12
A]Z;, Aoz;v B():;v C2:0a Cl:;’ 0:;7
12 y 49)
D, =0, D; =0, Dy = —, D, =0, Dy = =-
x2y 2
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One can check that the coefficients (49) obey the conditions (11)—(18). Thus, equation (48) is
linearizable. We have

8Co — 3A5 — 1240, =0 (50)
and equation (19) is written as
dyx 2
2= — x-=0.
dx X

Let us take its simplest solution y = 0. Then invoking equation (20), we let
©=x.
Now equations (21) are rewritten as

Yoy _ 1 Yoy _ 2

k]

Wy B y I//y X
and yield
Yy = Kx2y, K = const.
Hence
2.2
V=K== + f0).
Since one can use any particular solution, we set K = 2, f(x) = 0 and take
¥ =x7y.

Invoking equation (50) and noting that equation (23) yields = 0, one can readily verify

that the function ¢ = x? y2 solves equation (22) as well. Hence, one obtains the following
transformations:

t=x, u:xzyz. oy
Since 2 = 0, equations (24) and (25) give

a =0, B = fpii! =1
Hence, equation (48) is mapped by the transformation (51) to the linear equation

u® +u=0.

Example 2. The third-order member of the Riccati hierarchy is given by Euler er al [14] as
V" +4yy" +3y?% +6y*y +4y* = 0. (52)
Applying [7] and [8] one checks that the equation cannot be linearized by a point transformation

or contact transformation or generalized Sundman transformation. Under the Riccati
transformation y = ¢ equation (52) becomes [15]

w

>0 +4(a — DNo*0'0"” +3(a — Do’ o
+6(a — D(a —2)wo*o" + (@ — 1)(a —2)(a -3 =0. (53)
It is an equation of the form (8) with the coefficients
4(a —1 3a—1
A =Me=b oy g =@
w w
6(a®> —3a+2
o= 2o =0, (54)
w
a’—6a>+1la—6
Dy = 3 , D;=0, D,=0, D =0, Dy=0.
Pk

10
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One can verify that the coefficients (54) obey the linearization conditions (11)-(18).
Furthermore,

8Cy — 34% — 1240, =0 (55)
and equation (19) is written as
dy 2
2= —x-=0.
dx X

We take its simplest solution x = 0 and obtain from equation (20) the equation ¢” = 0,
whence

@ =X.
Equations (21) have the form

% _a ; 1 ’ Vo =0
and yield

Vo = Ko“™, K = const.
Hence

a)a
V=Kot f().
Since one can use any particular solution, we set K = a, f(x) = 0 and take
¥ = .

Invoking equation (55) and noting that equation (23) yields 2 = 0, one can readily verify that
the function ¥ = w” solves equation (22) as well. One obtains the following transformation:

t=ux, u=w". (56)
Since 2 = 0, equations (24) and (25) give
a =0, B =0.

Hence, equation (53) is mapped by the transformations (56) to the linear equation
(G
u” =0.

Example 3. Let us consider the Boussinesq equation
Uspp + U + uf + Uy = 0. 67

Of particular interest among the solutions of the Boussinesq equation are traveling wave
solutions:

u(x,t) = H(x — Dt).
Substituting the representation of a solution into equation (57), one finds
HY +(H+D»H"+H"* =0. (58)
It is an equation of the form (8) with the coefficients
A=0, Ap=0, By=0, C,=0, C; =0 Co=D>+H,
Dy=0, D3=0, D=1, D; =0, Dy=0.

Since the coefficients (59) do not satisfy the linearization conditions (14), (16) and (18), hence,
the Boussinesq equation (58) is not linearizable.

(59)
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4. The second class of linearizable equations

4.1. The linearization test for equation (9)

The following theorem provides the test for the linearization of the second class.

Theorem 3. Equation (9) is linearizable if and only if its coefficients obey equations’ (A.1)—
(A.18).

The necessary and sufficient conditions comprise 18 differential equations (A.1)—(A.18)
for 21 coefficients of equation (9).

Corollary 2. Provided that the conditions (A.1)—(A.18) are satisfied, the transformation (2)
mapping equation (9) into a linear equation (7) is obtained by solving the compatible system
of equations for the functions ¢(x,y) and ¥ (x,y) (A.19)—(A.22). The coefficients o and B
are given by equations (A.23) and (A.24).

Remark 2. Equations (A.1)-(A.18) define eighteen relative invariants of third order of point
transformations (2).

4.2. Relations between coefficients and transformations

Lemma 2. The coefficients of equation (9) and the functions ¢(x,y) and ¥ (x,y) in the
transformation (2) are related by equations ° (A.26)—(A.44).

4.3. Proof of the linearization theorems

The problem is: for the given coefficients F; (x, y), H;(x, y), Ji(x, y), K;(x, y) of equation (9)
find the integrability conditions for the functions ¢ (x, y) and ¥ (x, y).

Recall that, according to our notations, the following equations hold ., = ra, B, = rB,,
and

— wyﬁox - A

Ox =TIy, Wx (60)
@y
From equations (A.26) and (A.27) one finds
Pyy = [(4Ay — F2A)p,]/(10A),
VY y y 1)

Ay = (20ryA+4A,r + FIA —2FrA) /4.
Comparison of the mixed derivatives (¢,)y, = (¢,y)x gives equation (A.1). Then equations
(A.28)—(A.32) become (A.2)—(A.5) and

Ay = —(20Fyy A* —48A7 +4A F A +TF; A* — 20J,A%) [ (40A).

The equation (A,,), = (A,),, leads to equation (A.6). Equations (A.33)—(A.36) yield
equations (A.7)—(A.10), and from equation (A.37) one finds

Vyyyy = [300%,5, 0y A (4Ay — F>A) + 5y, 0y A(—120F5, A* — 144A2
+72A, Fy A — 39F; A* + 80J4A%) + Yy, (—500@ A’

5 Since equations (A.1)—(A.18) and (A.19)—(A.22) are cumbersome, they are presented in the appendix.
6 Equations (A.26)—(A.44) are presented in the appendix.

12
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—150F,, A +360F5, Ay A* — 165F, F, A* + 1004, A
+96A% — T2AT Fy A+ 108A F A* — 240A , J,A* — 24F; A

+60F, JuA°) — 5009 ¢ BA° +500K7A%] / (5000, AY). (62)
Equation (A.38) defines «:
a = (4Fyyy +6F F, — 814+ F; —4F,J; — 8K +56K+r) / (8¢3). (63)

The equation «, — ray, = 0 leads to equation (A.11). Furthermore, considering (¥y)yyyy —
(¥yyyy)x = 0, one obtains

B = 120A,(—4Fy, — 6F>,F> +8Js, — F; +4F,Jy + 8K — 56K7r)
+ A(320Fayyy +480F,yy Fy + 336 F3, + 168 Fy, F; +32F5,J4
— 4804y, — 240J4y F> — 1600K7, + 1600K7,r — 400F; K7
—9F; +88F; J, + 160F, K¢ — 320F,K7r — 144J]) / (1600A¢5). (64)

The equation B, — rB, = 0 leads to equation (A.12). Equations (A.39)—(A.44) become
equations (A.13)—(A.18), respectively. Hence, we complete the proof of theorem 3.

4.4. lustration of the linearization theorems

Example 4. Consider the nonlinear equation
10 " mn 1 " 7 /
y——y"y +ﬁ(15y3—xy7—y6)=0- (65)

It has the form of equation (9) with the following coefficients:

I‘ZO, FzZO, F]ZO, F():O, HzZO, H1:0, H():O,

J4 = 0, J3 = 0, J2 = 0, J] = 0, J() = 0, K7 = —X, (66)
K¢e=—-1, Ks5=0, K4y=0, K3=0, K,=0, K =0, Kyz=0.

Let us test equation (65) for linearization by using theorem 3 It is manifest that equations
(A.1)—(A.18) are satisfied by the coefficients (66). Thus, equation (65) is linearizable, and we
can proceed further.

Let us take its simplest solution ¢ = y and ¥ = x which satisfy the compatible system
of equations (A.19)—-(A.22). So that one obtains the following transformations:

t=y, u=x. 67)
Since ® = 8 , equations (A.23) and (A.24) give
a=1, B =1

Hence, equation (65) is mapped by the transformations (67) into the linear equation
u® +u' +u=0.

This example shows that as for second-order ordinary differential equations [16]” the
Riccati substitution can map a third-order ordinary differential equation into a linearizable
fourth-order ordinary differential equation. Using the obtained in this paper criteria of
linearization, one can obtain complete criteria for third-order ordinary differential equations
linearizable by the Riccati substitution.

7 1In [16] the complete study of second-order ordinary differential equations linearizable by the Riccati substitution
is presented.



J. Phys. A: Math. Theor. 41 (2008) 235206 N H Ibragimov et al

Appendix

In this section we present equations which were used in previous sections.

A.l. Equations for theorem 3 in section 4.1

107,y = —(Fiy + Fax + Foyr +1,F), (A.1)
10r, = 10r,r — Fy + Fir — Far?, (A.2)
Hy = —3F, (A.3)
4H; = —3(5F; — 2F>r), (A4)
4Hy = —3(6Fy — Fir), (A.5)

10F1yy = —(F1yF> — 40F5,, — 16F3, F> + 20 Fayyr + 40F,1y, + 14F>, For + 204,

—20J4yr + 14r, F} — 40r, Js), (A.6)
12F, = 12Fr — 3F\ F> + 6 Ffr + 4J5 — 16,7, (A7)
60F, = 60F,r —36FyF> — ISF{ + 66F; For — 36 F5r? +40J, — 80J3r +80J4r%,  (A.8)

60 Fo, = 60Fo,r — S1FyFy + 66Fy Far + 36 Ffr — 12F; For? + 36 F3r +60J,

— 80Jar +80J3r% — 80477, (A.9)
20Jo = 9F; — 18FyFir + 18FyFor® + 9F{r? — 18F Far® + 9F;r* + 2047

—20J5r% + 2031 — 20454, (A.10)
12073, = 216F;, Fay + 54F  F5 — 48Fy,Jy + 360y, 1y + 90F2y, Fi — 180F,,, Faor

—432F; r +324Fy,r F + 189F,  F| Fy — 486 F5, Fyr — 192F5, J3

+864Fsy Jur — 60J3, F> +720J4,y + 180J4, Fy — 240J4,,7

— 12004, 7y + 60J4y For + 720K, — 720K 4,1 — 5040K7,r

+5040K7,r* + 361, F; — 432r, F>Js — 2160r, Kg + 15120r, K77

+504FyK7 +36F, F; — 102F, FyJy — S04F, K7r — 12F,'r

—48FF J3 + 396 F7 Jur + 504 F, K7r? + 136J3J, — 544777, (A.11)
24045y = — (36 F1y Fayy + 162F, F> F> — T2Fy, Jay + 36 F\ F; — 168F,, F>Jj4

—72F1, K¢ — 168F 1y K71 — T2Fy, Fayr + 144 F> 1, F>

+54F,yy Fi Fy — 108 Fay, F5r — T2F,y, J5 + 288 Fyyy Jur + 432F5

+108F;, F — 540F; Fyr — 144F,, I3, + 528 Fyy Jy, + 192 F5 Juyr

+324F5,ryF; — 1008 Foyry Jy + 162Fy Fi Fy — 132F5, F Jy

—396F, F5r — 180Fs, FaJs + 1320Fs, Fa Jyr + 144 F5, Ker

—336F2y K7r® — 36J3, F; + 1763, Jy + 1204,y F> + 132J4, F

— 4324, Jy — 2404y, — 960Jayy 1y — 12004y For — 768 J4y1, F

14
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— 1384y Fi F> + 2884, Fir + 184J4, J3 — 10084, Jyr + 960K,

+240K¢, F> — 960K, 1 — 3840K¢,ry — 240K¢, For — 1920K7,,r
—2400K 7, +2880K 7,7y — 600K 7, Fy — 480K 7, Far +4320K 7,1

+24 000K 7,7y + 432K 7, Fy + 168K7, Fir + 912K7, For?

+20160r; K7 + 1728ry F1 K7 + 36r, Fy — 264r, F; J, — 1248r, F,K

+5280r, Fy K77 + 160r, J7 + 408 Fy F, K7 + 150 F K7 + 27F, F

—120F, F}Jy — 168F, F,Kg + 168 F F,K7r — S4F;r — 36F; J3

+384F; Jur + 336 F5 Kor — 1344 F} K7r? + 160 F>J3Jy — 640 F> J 7 r
—400J,K7 +224J3K¢ — 368J3K7r — 896J,Ker + 3872J, K71
+672F),K7), (A.12)

4dse = ddayr — FiJs+2F Jyr — 4Ks +24Ker — 84K7r?, (A.13)

60Fyyy = —(30Foy F> + 36 F|, F| — 36 Fy For — 60F,,,r* + 24F,Fy — 36 F>, Fir
— 54Fy, For? — 40J5y + 4051 + 80Juyr* — 361, Fy F> + 361, Fir
+40r, J3 — 80r, Jyr + 6 FgF} — 6FyJy + 9F Fy — 18F| F}r
—12F1J3 + 24F  Jyr — 6F51r* — 10F,J5 + 22F, J3r + 26 Fy Jyr?
— 60K 4 + 180Ksr — 180K¢r* — 420K77°), (A.14)

20J2x = 20.]2},7' + 20J3xr — 20]3},}"2 — 14F0.]3 + 28F0J4r — 5F1 Jr+ 19F1 J3r
—28F, Jur? + 10Fy Jor — 24F, J3r% + 28 Fo Jur® — 120K5 + 360K 4r
— 640K s> + 840K — 840K7r4, (A.15)

60J1, = 60J1,r — 403,72 + 403, — 42FyJo + 42Fy Jsr — T0FyJar® — 15F J,
+42F, Jor — 52F, J3r? + 10F, Jur® + 30Fy J1r — 42F, Jor?
+62F, J3r> — TOF, Jur* — 600K, + 1080K 37 — 1380K 412
+1700K5r> — 2100Ker* + 2100K77°, (A.16)

80K, = 3F3F, — 6F§ For — 6FgFir + 18FyFy For® — 12FF3r® — 8FyJ,
+16FyJor — 24FyJ3r? + 32FyJyr® + 3F}r? — 12F Far® + 15F F5r*
+8F Jir — 16F  Jor? + 24F 35> — 32F, Jur* — 6F;r° — 8 Fy Jyr?
+16F, Jor® — 24F, J3r* + 32F> Jur> + 160K — 240K 3r% + 320K,4r°
— 400K sr* + 480K e — 560K7r°, (A.17)

400Ky = —(6F; — 33F, Fir +48F; For® + 48FyF{r* — 126 Fy F) For® + T8 FyF5r
+40FyJyr — 80FyJor? + 120 Fy J3r® — 160 Fy Jyr* — 21 F}'r?
+78F} For* — 93F, F3r® — 40F, J1r* + 80F, Jor® — 120F, J3r*
+160F; Jur° + 36 F51° + 40F, J,r° — 80F Jor* + 120 Fy J3r°
— 160F, Jyr® — 400K,r? + 800K3r° — 1200K,4r* + 1600K 51
—2000K¢r® +2400K777). (A.18)
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A.2. Equations for corollary 2 in section 4.1

Px = TPy,

oV =reyy — A,

10A¢y, = @, (4A, — FLA),

5000, Yryyyy A = 3009y, A (4Ay — FA) + 5,0y A(—120F5, A” — 144A7
+72A, Fy A — 39F; A% + 80J,A%) + Yy, (—50007 A
—150F5y, A’ +360F2, Ay A” — 165F5, F, A* + 100J4, A + 96 A}
—T2A5Fy A+ 108A F7 A* — 240A, J4A* = 24F5 A° + 60F, J, A’)

— 5009 ¢ BA° + 500K, A,
¢}
o= —:,
Sgoy

B = (1600A<p;‘)*‘ [A(—144F7, — T2Fyy F5 +352Fyy Jy + 1604y, + 80J4, F,

+640K¢, — 1600K7, — 2880K7,r + 800, — 4480r, K7 — 400F K7

—9F; +88F; Jy + 160F, K¢ — 320F,K7r — 144J7) — 120A,6],

where O is the following expression:
© = (F} — 4J4)F> — 8(Kg — TK7r) — 8Jay + 65\ F> + 4Fy,.

A.3. Equations for lemma 2 in section 4.2

F = _2(‘PyA)71(5‘pyyA - 2(pyAy)7
Fi = 4(py, A) 7' [(Ay + Ayr — 51y A, — 59y, Al
Fo = —2(gy A)'[((5ry A = 2A)7 + 51, M)y + 59,72 Al
Hy = 6(p,0) 7 (50,0 A =29, A),
H; = =3(p, A) 7' [(5A, +3A,r —25r,A) g, — 20¢,,r Al
Hy = 3(py A) ' [(53ry +2r,r) A — (5A, — Ayr)r)g, + 109,,r* Al
-1
Jy = —((piA) (10¢).),y<pyA — 45g0§yA +30¢,,0, A, — 6<p§Ayy),
B =2(02A) 7 [3(2(Axy + Ayyr — 5ryAy) — 51y, A)g?
—5((Ax +3A,r — 4ry Ay — 60y,r N)yy) — 200y, @yr Al
Iy = 6(92A) " [(Awe + Ayyr? + 40,7 — SQAL +3A,r — 5r,A)ry
—10r,,rA — 5r Ay — SerA)gpi —=5((B(Ay + Ayr) — 10r,A)r
—2r:A)gy, — 9<pyyr2A)g0yy — 10g0yyyg0yr2A],
J = —2(¢§A)“ [(BBBAL+ Ayr) — 14r,A)ry — 6(Ayyr + Ayy)
+20ry,r M)+ 5B(Ax + Ayr) — 167, A)ry + 55 A+ 20r,r A) )

+15((BA, + Ayr — 8ryA)r — dr, A)p, — 69, 1> A) @y r
+20<py_\,_,,<pyr3A],

16
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(A.23)
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(A.25)
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(A.34)

(A.35)
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Jo = —(@28) T [(QUGryyr A = 3807 + 570 A +5r,,r A)
=5(TryA — 6A )ryr)r —5Q(TryA —3A)r + 9rxA)rx)<p)2,
—53Q(Q2ryA — A1 +2r, Mgy + 30,72 M)y,
— 20y, A)r?], (A.36)

—1
K7 = —((p}z,A) [(pyyy}’(piw)’ - IO‘Pyyy%'yﬁOy% +4(pyyy(p§wyy + 15(/%%
- 15(p§y(p}’w_w + 6(pyy(p§'(pyyy - (,0;,3'(# - (0?1//)'0‘ - (Piwyyyy]a (A.37)

Ko = (go;A)_l[3(5((7<pywyyr —0Ay)py — Ty Yyr — A)gyy)@yy
—2(TQy¥ryyyr — SA},y)(pi)%y + (7903,31//r + 7(p§1/fyozr — (piaA
+TQyYyyyyr — 4Ayyy)¢’3 + 2(35€0>’Y‘/’y Yyr — 30@yy A — 14‘»"5‘1”}‘}"’
+100, A)@yyy0y — (Toy¥yr — SA)‘/’yyyy‘/’i]’ (A.38)

Ks = —(@30) ' [(2G(Aayy + 38,51 = 5ryAyy — 51y, Ay) = 57y, A)
- 3(7(,03/31#;" + 7<p§1pyar — 2<p§otA + 71//_\,yyyr)g0yr)(p3
—3Q(5(Axy + 50y — Ary Ay — 2ry, A) — 2@y Yy 77V 03
—I5((As + 11Ayr = 3ry A = Ty, ey
+T(@y ¥y — 20)Qy, 1) 0yy) Py — 2((5(Ax + 11Ar — 31, A)
— 42(py1ﬂyyr2)(py + 15T ryr — 128) @y, 1)@y, 0,
+3(TpyYryr — 10A) @y, 0or ], (A.39)

Ky = —(@30) ' [(2(45ryyry A — 107y, A, — 557y, Ayr +50r2A,
— 207y Ayy — S0Py Ayyr + T1A 7 +2A 0y + 1TA 17
=207y, r A =51 Ay — 107, Ay — SeryA)
— 5(7<p§fﬂwr + 7<p)3,1//yotr — 3<p)2,ozA + 71/fyyyyr)(pyr2)<p)3,
+15(B((5(A, +5A,r) — 14r,A)r — 1 A) — 35g0y1pyyr3)<py
+35(0y Yy — 30)@yy )@y, — 10(Ary +31A 5% + 13A 7
—8(A, +6Ar —2r,A)ry, — 261y, r A —4r, A, —4r A
— 21y Py )pyy @y — 10(((5(Ay + 5Ayr) — 14r, A)r — r A
— 149,10, 1)y + 570, Y,r — 188)0y, 1)@y, 0y
+5(09y9yr — 158) @, 05r° ], (A.40)

K3 = —(@30) T [((13 D0y + 358,77 + A + 318,477
—50@A + 26Ayyr2 +23Ar — (15A, +49A,r — 251, A)ry)ry,
—5(13A +32A,r — 50r, A)ryyr — 65ryyyr2A —50@A +5A,,r
—16r Ay —TryyA)ry — Srex Ay — 51y A
—5B A+ 1Ay — 157, A)ryy — 307y, r A — 5(T03 By + 793 Yryar
— 492 A + Ty, )9y )3 — 52(2Q2A + 1787 + 11Ayr)
—(29A, +T75Ar — 51ryA)ry — 45r,, r A)r — BA, +13A,r — 131, A)r,
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—ree A — 14ryr A = 219, Yyy,r ey — 3((6((5(Ax +3Ayr) — 13r,A)r

- erA) - 35(py1//yyr3)(py + 35(%%? - 4A)(pyyr2)(pyyr)(pyy

—10Q2((5(A, +3A,r) — 13r,A)r — 2r A — 7(py1/fyyr3)(py

+5(TpyYryr — 280)@yy ) pyyy@yr + 5(Tpyyr — 200) @07, (A41)

Ky = —(030) T [(B5 Ay + Ty r + Ay + 1Ay
— (B(13A,, +28A,,r% +39A 1) + (204r, A — 161A, — 21TA r)r)ry
— (7190, + 116A 1 — 2641, A)ryyr — 547y, r* A)r
—(BQRA L +TA 2 + 11A,r) + (1717, A — 64A, — 140A,1)r,
—T12ryyr A — 181  Ay)ry — (4A, + 11A r — 21ry A)ryy — 12, r A
—Feaxr A — ((B7A, +53A,r — 150, A)r — 33r, A)ryy — 337,72 A
- 3(7g0;‘/3x[fr + 7<p31/fyar - 5<p§aA + 71/fyyyyr)cpyr4)<pi
—3Q2(5(QA +TA 2 +6A,,r — (13A, + 19A 1 — 20r,A)r,
— 137, r A)r? — (BA, +5A,r — LlryA)r — 1 A)ry — 1 r A
— 6ry 2 A) = 219y Py )@y — 15(R((5(Ax +2Ayr) — 121, A)r
—3rcA) = Ty YNy + 1@y ¥yr — SA) @y ) gy )@y
—2Q(5((5(Ax +2A,r) — 127, A)r — 31, A) — 219,07,
+ 15Ty ryr — 30A)<pyyr2)g0yyyg0yr2 +3(T @y ryr — 25A)¢yy),y(p}2,r4],

(A.42)

Ki = —(@30) T [((T(Daxy + Byyyr®r 43800 + T Ay
— (33A,, +28A,,r? +49A 1 +2(597, A — 56A, — 42A,7)r,)ry
— (43A, + 4271 — 1287, A)ryyr — 231y, 12 A)r?
— (1244, +TAyr? + 21 A7 +2(86ry A — 49A, — 35A,7)r,
— 497y r A)r + (85ry A — 15A, — 21A r)ry)ry
—(BA +TA 7 —32ry A)r — 10, A)ryy — Iy 2 A — 27k A
—((Q9A, +21A;r — 95ry A)r — 461 A)ryyr — 16rxyyr3A
- (7<p§/31/fr + 7(p;1/fy0lr — 6(p§oeA + 71pyyyyr)<pyr5)<p§
— 2(5((AA +TA 2 +TAyr — (23A, +21A,r — 31r,A)r,
— 17ryyrA)r2 —(OA +TAyr —2TryA)r — 6r  A)ry — 3 r A
— 107, r*A) — 21¢y1//y),),r5)¢§ — 15(B((5A +7Ar — 11ryA)r
—4r A) = Toy Py )@y + 1@y Wyr — 68)@yyr*) @y, r )@y r
—2((5((5A, +TAr — 111, A)r — 4r, A) — ldp, ¥, 1) g,
+5(T0yYryr — 360)@yy ) pyyypyr” + (T0yyr — 30M)@yyy07r° ], (A43)

Ko = (gD;A)_l [((((Z(r“y + Zryyyrz)r + T + 3rxyyr2)A
+30GA +2A,r — SryA)ryyrz)r — ((10ry + 11ryr)A
—(4A, + Ayr)r)ree — ((13r, +20ryr) A — (TAL +3A,1)P)ryyr
+ (5 BY + @3 0ya + Yy )r — o A)@yr” + (OA . +4Ayr°

18
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+TAr —2(13A, + 6A,r — 127, A)ry)ryr? — (Agxy + Ay rHr

+ Apex + Ay PP — (2((T A, +5A,r — 237, A)ry + 61y, r A)

— (6Ayx + Ayyr? +3A,, )t — (5Gry +8ryr) A

=350 + Ayr)rr)r) @y — (R((5(ray +3ryyr? +2rgyr) A

+30y Yy + 5(5A, +3A,7 — 6ry A)ryr — 5(Ayx + Ayyr? + Ay r)r)r
—=5(@ry +Tryr)A — BA + Ayr)r)rx)(pi — I5(@B(ry +2ryr)A

+ ¥’ = 3(As + ANy — (9 = TN @)@y,

+2((5(ry +2r,r) A + 20,07 — S(AL + Ayr)r)gy

= 5(pyYryr — 60) @y ) Pyyy + (9yUyr — SN @y @y )pyrr’]. (A44)
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