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Abstract. Classical Lie group theory provides a universal tool for calculating symmetry groups for systems of
differential equations. However Lie’s method is not as much effective in the case of integral or integro-differential
equations as well as in the case of infinite systems of differential equations.

This paper is aimed to survey the modern approaches to symmetries of integro-differential equations. As an
illustration, an infinite symmetry Lie algebra is calculated for a system of integro-differential equations, namely
the well-known Benny equations. The crucial idea is to look for symmetry generators in the form of canonical
Lie–Bäcklund operators.
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1. Introduction

The major obstacle for the application of Lie’s infinitesimal techniques to integro-differential
equations or infinite systems of differential equations is that the frames (see, e.g. [1] or [2]) of
these equations are not locally defined in the space of differential functions. In consequence,
the crucial idea of splitting of determining equations into over-determined systems, commonly
used in the classical Lie group analysis, fails.

1.1. DIFFERENT FORMS OF THE BENNY EQUATIONS

The Benny equations referred to by the name of the author of a pioneering work [3] appear
in long wavelength hydrodynamics of an ideal incompressible fluid of a finite depth in a
gravitational field. From the group theoretical point of view they are of particular interest due
to the existence of an infinite set of conservation laws obtained in [3]. The latter property of
the Benny equations emphasizes their significance that goes far beyond an interesting example
of an integrable system of hydrodynamic equations.

In practice, the Benny equations are used in various representation. One of them is the
kinetic Benny equation (a kinetic equation with a self-consistent field):

ft + vfx − A0
xfv = 0, A0(t, x) =

+∞∫
−∞

f (t, x, v) dv. (1)
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This equation appears as a unique representative of a set of hierarchy of kinetic equations of
Vlasov-type [4]. A detailed study of its group properties will lead to better understanding of
the symmetry properties of kinetic equations of collisionless plasma, viz. the Vlasov–Maxwell
equations that have both theoretical and practical interest, e.g. while dealing with controlled
nuclear fusion programme.

Another form of the Benny equations is an infinite set of coupled equations

Ai
t + Ai+1

x + iA0
xA

i−1 = 0, i ≥ 0 (2)

for a countable set of functions Ai of two independent variables, time t and the spatial coordin-
ate x. In terms of hydrodynamics these functions appear as averaged values (with respect to
the depth) of integer powers i ≥ 0 of the horizontal component of the liquid flow velocity. The
corresponding integrals that describe this averaging are taken over the vertical coordinate in
the limits from the flat bottom up to the free liquid surface. Solutions, Hamiltonian structure
and conservation laws for Equations (2) were discussed in detail in [5, 6].

From the kinetic point of view the system (2) can be treated as a system of equations for
moments of the distribution function f that obeys the kinetic Benny equation (1)

Ai(t, x) =
+∞∫

−∞
vif dv, i ≥ 0. (3)

This fact with the explicit formulation of the Benny equation (1) was first stated independently
in [7, 8]. The Lagrangian change of the Euler velocity v,

v = V (t, x, u) (4)

yields one more representation for Benny equations (1):

ft + Vfx = 0, Vt + VVx = −A0
x, A0(t, x) =

∫
Vuf (t, x, u) du. (5)

Equations (5) are readily converted into the hydrodynamic-type form

nt + (nV )x = 0, Vt + VVx = −A0
x, A0 =

∫
n(t, x, u) du, (6)

if one employs the ‘density’ n depending on the Lagrangian velocity u:

n = f (t, x, u)Vu. (7)

Using the form (6) of the Benny equations an infinite set of conservation laws were constructed
in [7] with the densities regarded as functions of the Lagrangian velocity u.

Furthermore, we will rewrite the integro-differential Benny equations (1) in the form of
differential equations by introducing the following nonlocal variables:

g =
v∫

−∞
f dv, h =

+∞∫
v

f dv. (8)

In terms of the latter variables Equations (1) are written as

ft + vfx − (gx + hx)fv = 0, gv = f, hv = −f. (9)
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The knowledge of the complete Lie–Bäcklund symmetry for the Benny equations in dif-
ferent representations (1), (2), (5), (6) and (9) can clarify the question of structure of solutions
and conservation laws for these equations. This statement is partially confirmed by the fact that
one of the main results of the works [5, 6], namely the higher order Benny equations, can be
re-formulated in terms of the first order Lie–Bäcklund group, admitted by the system (2). Un-
fortunately, the complete description of the Lie–Bäcklund symmetry for Equations (2) is not
available in the literature. The goal of this paper is to contribute to this problem by calculating
an infinite (countable) part of the Lie point symmetries of the moment equations (2).

2. Generalities

Here, we briefly discuss different known approaches to calculating symmetry groups for
integro-differential equations. Loosely speaking, these approaches can be divided into two
large groups: indirect and direct methods.

Algorithms of the first group rest on the possibility to replace in any way input nonlocal
(integro-differential) equations by a system of differential equations. Then the resulting sys-
tem of differential equations is analyzed using standard methods of a classical Lie group
analysis. Here we point on two different ways of reducing nonlocal equations to differential
ones.

2.1. INDIRECT METHODS

2.1.1. Method of Moments
In this approach, the system of basic integro-differential equations for a function f (e.g.,
the kinetic equation (1)), that usually contains nonlocal terms depending on moments (3) of
this function, is reduced to an infinite system of differential equations for these moments
(in our case this is the system (2)). The admitted symmetry group is then calculated using the
traditional methods of Lie group analysis for any finite subsystem of k equations of this general
infinite system. Then an intersection of all admitted groups is defined and a transition to the
limiting case k → ∞ is fulfilled. The resultant algebra of group generators thus obtained is
used to reconstruct the algebra with the original function f directly involved. This procedure
usually employs the explicit form of finite group transformations for moments (3) and the
relations between Ai and the function f . The last step is not trivial in any case as there
may exist different representation for the equations for the moments Ai and the resultant
group depends on the form of this representation. Hence, the transition from the algebra of
group generators for the moments representation back to the symmetry of original equations
formulated in terms of input functions form a special problem which we are going to discuss
in Section 3.2. The above described algorithm was realized to calculate Lie point symmetry
group for Vlasov–Maxwell equations in plasma theory [9–11] and for Benny, Vlasov-type and
Boltzmann-type kinetic equations [4, 12, 13].

2.1.2. Method of Boundary-Differential Equations
The following method was developed in [14, 15] on basis of the concept of covering and
applied to a coagulation kinetic equation. In this case each definite integral in the equation
is replaced by the corresponding difference of values of the antiderivative on a boundary
sets. The integro-differential equation takes the boundary (or functional) differential form. As
shown in [14, 15] a geometric theory of boundary differential equations can be constructed
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in just the same way as the analogous theory of differential equations thus allowing to define
and compute not only classical but higher symmetries as well. It is noted that the elimination
of integrals by introducing potentials depends on the choice of potential variables and can
be executed in different ways. Hence the result of group calculation and its dimension is
influenced by the form of potential variables involved.

2.2. DIRECT METHODS

Direct methods of finding symmetries were developed in [16–21] (see also [28]) and [22, 23]
and applied to find symmetries of kinetic Boltzmann equation, the equations of motion of
viscoelastic medium and Vlasov–Maxwell equations of plasma theory. To extend the classical
Lie algorithm to integro-differential equations it appears necessary to resolve several prob-
lems. First, one should define the local one-parameter transformation group G for the nonlocal
(integro-differential) equations and formulate the invariance criteria that lead to determining
equations.

Let an integro-differential equation under consideration be expressed as a zero equality for
some functional (here we indicate only one argument for a function f )

F [f (x)] = 0, (10)

and let G be a local one-parameter group that transforms f to f̃ (x),

f̃ (x) = f + aæ + o(a2), x̃ = x, (11)

Here we use the canonical group representation hence independent variables x do not vary.
Then the local group G of point transformations (11) is called a symmetry group of integro-
differential equations (10) iff for any a the function F does not vary [17],

F [f̃ (x)] = 0. (12)

Differentiating (12) with respect to group parameter a and assuming a → 0 gives the de-
termining equations. In contrast to the case of input differential equations these determining
equations are in general also integro-differential.

The invariance criterion for F with respect to the admitted group can be expressed in an
infinitesimal form using the canonical group operator Y ,

YF
∣∣
F=0 = 0, where Y ≡

∫
dyæ(y)

δ

δf (y)
. (13)

Here with the goal to generalize the action of a canonical group operator not only on differen-
tial functions but on functionals as well we use variational differentiation in the definition of Y
[23, 24]. One can verify by direct calculation that the action of Y on any differential function
and its derivatives, e.g., f and fx, . . . produces the usual result: Yf = æ, Yfx = Dx(æ) and
so on. Hence, if F describe usual differential equations then formulas (13) lead to standard
local determining equations, while for F having the form of integro-differential equations
formulas (13) can be treated as nonlocal determining equations as they depend both on local
and nonlocal variables.

In order to find solutions of determining equations one can use different approaches, e.g.
expanding coordinates of group generator into formal power series and equating coefficients
of various powers [16, 17]. However there exists a more traditional way. As we treat local
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and nonlocal variables in determining equations as independent it is possible to separate these
equations into local and nonlocal. The procedure of solving local determining equations is ful-
filled in a standard way using Lie algorithm based on splitting the system of over-determined
equations with respect to local variables and their derivatives. As a result we get expressions
for coordinates of group generator that define the so-called group of intermediate symmetry
[23]. In the similar manner the solution of nonlocal determining equations is fulfilled using
the information borrowed from an intermediate symmetry and by ‘variational’ splitting of
nonlocal determining equations using the procedure of variational differentiation. Therefore,
the algorithm of finding symmetries of nonlocal equations appears as an algorithmic procedure
that consists of a sequence of several steps: (a) defining the set of local group variables,
(b) constructing determining equations on basis of the infinitesimal criterion of invariance,
that employs the generalization of the definition of the canonical operator, (c) separating
determining equations into local and nonlocal, (d) solving local determining equations using
a standard Lie algorithm, and (e) solving nonlocal determining equations using the procedure
of variational differentiation.

In the next sections, the above methods are applied to the Benny equations.

3. Lie Subgroup and Lie–Bäcklund Group: Statement of the Problem

3.1. LIE SUBGROUP: DIRECT METHOD OF CALCULATION

A Lie subgroup, admitted by the kinetic Benny equation (1) in the space of four group
variables

t, x, v, f (14)

is defined by five basic infinitesimal operators

X1 = ∂t , X2 = ∂x, X3 = t∂x + ∂v,

X4 = t∂t − v∂v − f ∂f , X5 = x∂x + v∂v + f ∂f . (15)

With the less computation difficulties this group can be obtained using the approach developed
in [22–24] in application to group analysis of Vlasov–Maxwell equations in plasma theory
(see also chapter 16 in [25]).

Here we demonstrate the application of the general scheme to Benny equations (1). The
merit of this direct approach is the possibility to present the criterion of invariance with respect
to local one-parameter point group transformations in a standard infinitesimal form. For the
Benny equations the point symmetry group generator has the form

X = ξ 1∂t + ξ 2∂x + ξ 3∂v + η1∂f + η2∂A0, (16)

where the coordinates ξ and η depend on t , x, v, f and A0.
In the canonical form this operator is written:

Y = æ1∂f + æ2∂A0, (17)

where

æ1 = η1 − ξ 1ft − ξ 2fx − ξ 3fv, æ2 = η2 − ξ 1A0
t − ξ 2A0

x,
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and its action on any function or functional should be understood in generalized sense as in
(13). Applying the canonical group operator to the joint system of basic equations (1) and one
more ‘evident’ equation, that expresses the fact that the moment of f does not depend upon v

A0
v = 0, (18)

gives the system of determining equations

Dt(æ
1) + vDx(æ

1) − A0
xDv(æ

1) − Dx(æ
2)fv = 0, Dv(æ

2) = 0; (19)

æ2 =
∫

æ1 dv, (20)

which should be solved in view of the the complete set of basic equations (1), (18).
In solving determining equations (19), group variables

{f, A0, fx, A
0
x, fv, . . .} (21)

are treated as independent ones. This assumption separates determining equations into local
equations (19) and nonlocal equation (20). Local determining equations are solved in a stand-
ard way using the computational algorithm of Lie group analysis. Then the functions ξ and η

thus obtained define the so-called intermediate symmetry [23]

ξ 1 = ξ 1(t), ξ 2 = x

2
ξ 1
t (t) + αx + β(t), ξ 3 = αv − v

2
ξ 1
t + x

2
ξ 1
t t + βt,

η1 = η1(f ), η2 = γ (t) + (2α − ξ 1
t )A

0 − xβtt − x2

4
ξ 1
t t t . (22)

Here ξ 1(t), β(t), γ (t) and η1(f ) are arbitrary functions of their arguments and α and ν are
constants.

Now let us turn to the solution of the nonlocal determining equation (20) that we rewrite
in the following form

η2 − ξ 1A0
t − ξ 2A0

x =
∫

(η1 − ξ 1ft − ξ 2fx − ξ 3fv) dv. (23)

As in the case of the local determining equations (19), the latter should be solved in view of
the original equations (1), (18). Hence, calculating the derivatives A0

t , A0
x and ft from the basic

equation (1) and inserting them into (23) and in view of the above expressions for coordinates
ξ and η we obtain the following nonlocal determining equation

+∞∫
−∞

[
η1(f ) −

(
α − 1

2
ξ 1
t

)
f

]
dv = γ − xβtt − x2

4
ξ 1
t t t . (24)

As any determining equation, (24) is the equality with respect to all group variables that appear
in this equation. Therefore differentiating it with respect to any group variables also leads to
equalities. Hence, nonlocal determining equation can be split with respect to independent
group variable f using the variational differentiation. Since the right-hand part of (24) does
not depend on f , it reduces after differentiation and the remaining terms are written as

δ

δf (v′)

+∞∫
−∞

[
η1(f ) −

(
α − 1

2
ξ 1
t

)
f

]
dv = 0. (25)
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It is essential that the nonlocal determining equation (23) should be solved simultaneously
with its differential consequence, i.e. any solution of (25) must appear as the solution of (24).
Introducing the variational derivative (δ/δf (v′)) inside the integral over v

+∞∫
−∞

[
η1
f −

(
α − 1

2
ξ 1
t

)]
δf (v)

δf (v′)
dv = 0,

and eliminating integration over v with the help of the Dirac delta-function,

δf (v)

δf (v′)
= δ(v − v′),

one comes to the first order differential equation for η1

η1
f −

(
α − 1

2
ξ 1
t

)
= 0,

which gives the linear dependence of η1 upon f ,

η1 = f

(
α − 1

2
ξ 1
t

)
+ C, (26)

with some constant C. Substituting this result back into (24) yields the zero-value of this
constant provided integral has finite value. As η1 does not depend on t then differentiating
(26) with respect to t gives ξ 1

t t = 0. Differentiating (24) with respect to x gives two more
equations,

γ = βtt = 0.

Solving these equations gives final expressions for coordinates ξ and η:

ξ 1 = c1 + c4t, ξ 2 = c2 + c3t + c5x, ξ 3 = c3 + (−c4 + c5)v,

η1 = (−c4 + c5)f, η2 = 2(−c4 + c5)A0. (27)

These coordinates give rise to the five-dimensional Lie algebra with generators given by (15).
One can see that terms proportional to A0 which come from æ2 are omitted in X4, X5 as they
appear as the result of prolongation [26] of these operators on a nonlocal variable A0. This
procedure for any of operators X4, X5 is described in a concise form in the next section.

3.2. EXTENSION OF LIE POINT SYMMETRY GENERATORS TO NONLOCAL VARIABLES

To fulfill the procedure of prolongation of the Lie point symmetry generators one should first
rewrite the operator, say X5, in a canonical form

Y5 = æ1∂f , æ1 = (−xfx − vfv + f ). (28)

Then formally prolong this operator on the nonlocal variable A0

Y5 + æ2 ≡ æ1∂f + æ2∂A0 . (29)

The integral relation between æ1 and æ2 is obtained by applying the generator (29) to the
second equation in (1) that is treated here as the definition of A0. This relation here coincides
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with nonlocal determining equation (20). Substituting æ1 from (28) in (20) and calculating
integrals obtained (integrating by paths) gives the desired coordinate æ2

æ2 = (2A0 − xA0
x). (30)

Inserting this into (29) and returning back to the noncanonical representation we get the
following generator

X5 = x∂x + v∂v + f ∂f + 2A0∂A0, (31)

that correlates with the result (27).
Prolongation of infinitesimal operators (15) on nonlocal variables (3) extends the set of

group variables (14) up to a countable set

t, x, v, f, A0, . . . , Ai, . . . . (32)

In the latter case infinitesimal operators (15) rewritten in the canonical form [1, sec. 8.4.2.]
and restricted on the sub-manifold

t, x, A0, . . . , Ai, . . . . (33)

are given by the following expressions

X1 =
∞∑
i=0

(Ai+1
x + iAi−1A0

x)∂Ai ; X2 =
∞∑
i=0

Ai
x∂Ai ; X3 =

∞∑
i=0

(iAi−1 − tAi
x)∂Ai ;

X4 =
∞∑
i=0

[(i + 2)Ai − t (Ai+1
x + iAi−1A0

x)]∂Ai ; X5 =
∞∑
i=0

[(i + 2)Ai − xAi
x ]∂Ai . (34)

It can be easily checked that infinitesimal operators (34) are admitted by Benny equations (2)
and it goes without saying that they directly result from the group analysis of Benny equations
(2). Just in this way (i.e., using the method of moments) infinitesimal operators (15) were first
obtained in [4] by using noncanonical form of infinitesimal operators (34) with the subsequent
passage to the representation (15) in the space of variables (32).

3.3. INCOMPLETENESS OF THE POINT GROUP: STATEMENT OF THE PROBLEM

It is evident, however, that the subgroup (34) does not exhaust the complete group symmetry
of Benny equations (2). The incompleteness of the result (34) is obvious form many points of
view. Here we shall only point on the nonconformity of finite dimension of the algebra (34) to
the infinite set of conservation laws for Benny equations, and on the infinite extension of the
point symmetry group for Benny equations in the form of (5), (6) with Lagrangian velocity
(see also in the context chapter 16 in [25] where this extension was outlined for Vlasov kinetic
equation in plasma theory). Here of principle significance for us is the following statement:
the group (34) is incomplete not only from the standpoint of Lie–Bäcklund symmetry for Benny
equations but also from the standpoint of the Lie point symmetry. The validity of the statement
can be proved by direct solving of determining equations for the first order Lie–Bäcklund
group (contact group, that is not reduced to point one)

Dt(æ
i) + Dx(æ

i+1) + iAi−1Dx(æ
0) + iA0

xæi−1 = 0, i ≥ 0, (35)
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where coordinates æi of canonical operator

X =
∞∑
i=0

æi∂Ai , (36)

depend upon the countered set of group variables

t, x; A0, . . . , Aj , . . . ; A0
x, . . . , Aj

x, . . . ; j ≥ 0. (37)

To prove the above statement one can consider only partial solutions of determining equations
(35)

æi = ηi(A0, . . . , Aj , . . .); i, j ≥ 0, (38)

that depend upon moments Aj , j ≥ 0, and does not depend upon t, x. It appears that thanks
to these infinitesimal operators (36), (38) an infinite extension of the group (34) takes place.
Now the problem is to find these operators.

4. Determining Equations and Their Solution

4.1. GENERAL FORM OF THE DETERMINING EQUATIONS

Before proceeding further we write determining equations of first-order Lie–Bäcklund group,
admitted by a more general (as compared to (2)) infinite system of coupling equations for
functions Ai(t, x) with the arbitrary element ϕ(A0)

Ai
t + Ai+1

x + iAi−1[ϕ(A0)]x = 0, i ≥ 0. (39)

For the coordinates æi of canonical infinitesimal operator (36) the following chains of determ-
ining equations are valid which result from splitting (39) with respect to second derivatives:

æi+1
A0
x

+ iϕ1A
i−1æ0

A0
x

=
∞∑
j=0

jϕ1A
j−1æi

A
j
x

, i ≥ 0;

æi+1

A
j
x

+ iϕ1A
i−1æ0

A
j
x

= æi

A
j−1
x

, i ≥ 0, j ≥ 1;
æi

t + æi+1
x + iϕ1A

i−1æ0
x + A0

x(iϕ1æi−1 + iϕ2A
i−1æ0)

+
∞∑
j=0

[iϕ1A
i−1Aj

xæ0
Aj − (Aj+1

x + jϕ1A
0
xA

j−1)æi
Aj + Aj

xæi+1
Aj ]

−
∞∑
j=0

jA0
x(ϕ1A

j−1
x + ϕ2A

0
xA

j−1)æi

A
j
x

= 0, i ≥ 0. (40)

Here ϕ1 and ϕ2 are the first and the second derivatives of the function ϕ with respect to its
argument. From the various standpoints at list three distinct values of the function ϕ are spe-
cified. In case ϕ(A0) = A0 we come to kinetic Benny equations (1), whereas for ϕ = a(A0)2
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extension of the admitted point group takes place thanks to projective transformations in
t, x-plane (see [4]). For ϕ = a lnA0 the corresponding kinetic equation

ft + vfx − a
A0

x

A0
fv = 0, A0 =

+∞∫
−∞

dv f, (41)

that gives rise to the discussed system of equations for moments, is of special interest in
plasma theory. It appears as the equation for the distribution function of plasma ions, while
electrons obey the Boltzmann distribution. More complicated dependencies of ϕ(A0) upon
A0 can also be of interest in plasma physics for non-Boltzmann distribution functions for hot
electrons. Equation (41) was studied in detail in [27].

For the Benny equations (2) the determining equations (40) are rewritten in the following
form

æi+1
A0
x

+ iAi−1æ0
A0
x
−

∞∑
j=0

jAj−1æi

A
j
x

= 0, i ≥ 0;

æi+1

A
j+1
x

− æi

A
j
x

+ iAi−1æ0
A
j+1
x

= 0, i ≥ 0, j ≥ 0;

æi
t + æi+1

x + iAi−1æ0
x + A0

x


iæi−1 −

∞∑
j=0

jAj−1æi
Aj −

∞∑
j=0

(j + 1)Aj
xæi

A
j+1
x




+ iAi−1
∞∑
j=0

Aj
xæ0

Aj +
∞∑
j=0

Aj
xæi+1

Aj −
∞∑
j=0

Aj+1
x æi

Aj = 0, i ≥ 0. (42)

4.2. SOLUTION OF THE DETERMINING EQUATIONS

Under conditions (38) the determining equations (42) are splitted and reduced to two infinite
chains of equalities, namely one-dimensional (vector) and two-dimensional (tensor):

ηi+1
A0 −

∞∑
j=0

jAj−1ηi
Aj + iAi−1η0

A0 + iηi−1 = 0, i ≥ 0;

ηi+1
Ak+1 − ηi

Ak + iAi−1η0
Ak+1 = 0, i ≥ 0, k ≥ 0. (43)

The apparent difficulty in analytical solving of the given system of determining equations (43)
is due to a ‘nonlocal’ nature of the second term in the vector chain in the form of an infinite
sum with respect to index j ≥ 0. The measure of this nonlocality is characterized by a number
of nonzero components of tensor ηi

j . But in fact in case of an overdetermined system (43) we
obtain a finite upper value of the summation index j < ∞, which depends upon the other
index i of this tensor. In order to be sure that it is true we shall first consider the system of
determining equations (43) in two particular cases, namely for i = 0 and i = 1. In case i = 0
we have two coupled determining equations just for two coordinates η0 and η1 of the desired
infinitesimal operator (36), (38):

η1
A0 −

∞∑
j=0

jAj−1η0
Aj = 0, η1

Ak+1 = η0
Ak , k ≥ 0. (44)
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The second determining equation in (44) enables to eliminate the coordinate η0 from the first
determining equation and obtain as a consequence of the system (44) the following isolated
scalar determining equation for the coordinate η1 only

η1
A0 −

∞∑
j=0

jAj−1η1
Aj+1 = 0. (45)

For i = 1 the system (43) yields coupled equations for three coordinates η0, η1 and η2

η2
A0 =

∞∑
j=0

jAj−1η1
Aj − (η0 + A0η0

A0), η2
Ak+1 = η1

Ak − A0η0
Ak+1, k ≥ 0. (46)

Compatibility conditions for determining equations (46)

η2
A0Ak+1 = η2

Ak+1A0 , k ≥ 0, (47)

enables to eliminate the coordinate η2 from (46) and obtain one more closed vector determ-
ining equation for η1 (more precisely, the determining equation that contains the first and the
second derivatives of η1 with respect to Ai):

η1
AkA0 −

∞∑
j=0

jAj−1η1
AjAk+1 − (k + 2)η1

Ak+2 = 0, k ≥ 0. (48)

Differentiating the scalar equality (45) by moments Ak yields one more vector corollary for
the coordinate η1:

η1
A0Ak −

∞∑
j=0

jAj−1η1
Aj+1Ak − (k + 1)η1

Ak+2 = 0, k ≥ 0. (49)

From the compatibility conditions for two determining equations (48) and (49) it follows that
the coordinate η1 does not depend upon the moments Ai which are higher than A1

η1
Ai+2 = 0, i ≥ 0. (50)

This formula arises as a result of mutual subtraction of determining equations (48) and (49) in
view of the equality of terms containing summation over index j ≥ 0, that is the corollary of
the second determining equation in (44)

η1
Aj+1Ak = η1

AjAk+1 , j, k ≥ 0. (51)

The symmetry of the second derivatives of η1 given by (51) results from the tensor form of a
compatibility condition for two vector determining equations from (44), which differ only in
‘sounding’ index

η0
Ak = η1

Ak+1 , η0
Aj = η1

Aj+1 , j, k ≥ 0. (52)

The result (50) is a milestone on the way of solving the system of determining equations
(43). Indeed, in view of (50) the second determining equation of the system (44) yields the
requirement of independence of the coordinate η0 upon all higher moments, that differ from
A0

η0
Ai+1 = 0, i ≥ 0, (53)
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and with (53) in mind the tensor chain from (43) is simplified in such a way

ηi+1
Ak+1 = ηi

Ak , i ≥ 0, k ≥ 0, (54)

that enables to modify the equality (50) in the sense that any coordinate ηi of the desired
operator (36), (38) does not depend upon any moments Aj , higher than Ai

ηi
Ai+k+1 = 0, i ≥ 0, k ≥ 0. (55)

The last equality sets a finite upper limit i ≥ j to the summation index j ≥ 0 in the second
(nonlocal) term of the left hand side of the vector determining equation of the system (43)

ηi+1
A0 −

i∑
j=0

jAj−1ηi
Aj + iAi−1η0

A0 + iηi−1 = 0, i ≥ 0. (56)

The use of one of the equalities (54)

η0
A0 = ηi

Ai , i ≥ 0 (57)

enables to rewrite the chain of determining equations (56) in even a more simple way

ηi+1
A0 −

i−1∑
j=0

jAj−1ηi
Aj + iηi−1 = 0, i ≥ 0, (58)

whereas one of the corollaries of determining equations (54), that results for i = k + 1 in
combination with (53)

ηi+1
Ai = 0, i ≥ 0, (59)

lowers the upper value of the summation index j ≥ 0 in (58) by unit

ηi+1
A0 −

i−2∑
j=0

jAj−1ηi
Aj + iηi−1 = 0, i ≥ 0. (60)

Collecting the arising determining equations (53), (54) and (59), (60) we arrive to a much
more simplified (but equivalent) formulation of the system (43), which really is integrated
below

ηi+1
A0 −

i−2∑
j=0

jAj−1ηi
Aj + iηi−1 = 0, ηi+1

Ai = 0, i ≥ 0;

ηi+1
Ak+1 = ηi

Ak , ηi
Ai+k = 0, i ≥ 0, k ≥ 0. (61)

The last of the four equalities in (61) is strengthened in comparison with (55) thanks to the
condition

ηi
Ai = 0, i ≥ 0, (62)

which can be obtained as follows. For example, the first two equalities (62) for i = 0 and
i = 1 result as a corollary of (57) and compatibility conditions

η3
A0A1 = η3

A1A0 (63)
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for the first derivatives of the coordinate η3 with respect to moments A0 and A1 (see (60) for
i = 1 and i = 2)

η3
A0 = −2η1, η3

A1 = η2
A0 = −η0. (64)

After that, the validity of the remaining equalities (62) becomes obvious thanks to (57).
Before proceeding to enumerating all solutions of the system of determining equations

(61), we present here yet another form of the chain (60)

ηi+1
A0 −

i−2∑
j=0

jAj−1η
i−j

A0 + iηi−1 = 0, i ≥ 0. (65)

This form can be employed to clarify the general structure of these solutions on basis of the
corresponding generating functions.

4.3. DISCUSSION OF THE SOLUTION OF THE DETERMINING EQUATIONS

The integrability procedure in itself for determining equations (61) is of no difficulties. For
example the first six coordinates ηi (0 ≤ i ≤ 5) of the desired infinitesimal operator (36), (38)
are given by the following formulas for the general solutions of determining equations (61)
that depend upon six arbitrary constants Cj (0 ≤ j ≤ 5) and are described by polynomials in
moments Al

η0 = C0, η1 = C1, η2 = C2 − C0A0, η3 = C3 − 2C1A0 − C0A1,

η4 = C4 − 3C2A0 − 2C1A1 + C0[−A2 + (A0)2],
η5 = C5 − 4C3A0 − 3C2A1 + C1[−2A2 + 3(A0)2] + C0(−A3 + 2A0A1). (66)

It appears that the polynomial dependence of any solution ηi of determining equations (61)
upon moments Aj is a general property of components of the vector ηi for any i ≥ 0. The
example (66) demonstrates that the procedure of obtaining solutions of determining equations
(61) is reduced to their enumeration. To be concrete, we assume the following scheme of
indicating of the k-th basic solution ηi

k of determining equations (61) for the coordinate ηi:

ηi
k =




0, i < k;
1, i = k;
0, i = k + 1;

[ηi
k] = i − k, i ≥ k + 2; i, k ≥ 0. (67)

In the solutions (66) this scheme demands quit definite choice of values of integration con-
stants Cj in the form of Kronecker symbols

Cj = δjk; j, k ≥ 0. (68)

The last of the four equalities for ηi
k in (67) (in square brackets) indicates the homogeneity

degree (i − k) of the polynomial ‘tail’ of the solution ηi for i ≥ k + 2 in accordance with the
attributed to any of the moments Ai of the order i the homogeneity degree, which is equal to
positive number (i + 2) (see, e.g., [5])

[Ai] = i + 2, i ≥ 0. (69)
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For instance, the component η5
1 of the basis solution ηi

1 of determining equations (61) in
accordance with (66), (67) and (69) has the homogeneity degree equal to four

η5
1 = −2A2 + 3(A0)2; [η5

1] = 4. (70)

The indexing of the presented infinite (countable) vectors ηi by one more integral number
k ≥ 0 yields the desired representation of all linear independent solutions of determining
equations (61) in the form of tensor of the second rank (matrix) ηi

k, in which the lower index
k ≥ 0 indicates the index of the basis infinitesimal operator in the general element of an
infinite Lie algebra under consideration

X =
∞∑

i,k=0

Ck ηi
k ∂Ai , (71)

Under the conditions (67) the integration of determining equations (61) for the given basis
vector ηi

k for a fixed value k ≥ 0 is carried out with boundary conditions, that are imposed by
requirements (67) in a single way.

The representation of matrix ηi
k for different lines are as follows (i is the column number,

k is the line number)

ηi
k = {0, . . . , 0, 1, 0, −(k + 1)A0, −(k + 1)A1, . . .}. (72)

Here zeroes preceding unity describe matrix elements, which exist only for i < k, i.e. which
are located below the principle diagonal i = k, that contains only units. The first nearest upper
off-diagonal i = k + 1 also contains only zeroes. Expressions for elements from the second
i = k + 2 and the third i = k + 3 upper off-diagonals are given in (72) explicitly: they
contain monomials, the homogeneity degree of which is equal to 2 and 3 respectively, while
the numerical coefficient (k + 1) is defined by the line number.

In general, any one of the nonzero off-diagonals i = k + s with the number s ≥ 2 is
presented by polynomials with the homogeneity degree equal to s. This ‘line scheme’ (72) is
readily illustrated by a pictorial rendition of elements of the high left block of the discussed
matrix (0 ≤ i ≤ 5, 0 ≤ k ≤ 3)

ηi
k =




1 0 −A0 −A1 −A2 + (A0)2 −A3 + 2A0A1 . . .

0 1 0 −2A0 −2A1 −2A2 + 3(A0)2 . . .

0 0 1 0 −3A0 −3A1 . . .

0 0 0 1 0 −4A0 . . .

. . . . . . . . . . . . . . . . . . . . .


 . (73)

As a more illustrative example we present here the element ηi
1 of the matrix (72) with suffi-

ciently high column number i = 10 and the homogeneity degree 9, that is located in the line
with k = 1 (the second from above)

η10
1 = −2A7 + 6A5A0 + 6A4A1 + 6A3A2 − 12A3(A0)2

− 24A2A1A0 − 4(A1)3 + 20A1(A0)3. (74)
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4.4. ILLUSTRATIVE EXAMPLE FOR MATRIX ELEMENTS

A much more comprehensive idea of definite expressions of matrix elements ηi
k is given by the

following list of elements (with the previous result included) of the first 11 columns (0 ≤ i ≤
10) and 4 lines (0 ≤ k ≤ 3) of matrix ηi

k, which define the k-th basic solution of determining
equations (61) for vectors ηi

k of the canonical infinitesimal operator (36), (38). The lower
index ‘k’ is omitted for simplicity.

(0) k = 0; η0 = 1, η1 = 0, [ηi] = i, i ≥ 2.

η2 = −A0,

η3 = −A1,

η4 = −A2 + (A0)2,

η5 = −A3 + 2A0A1,

η6 = −A4 + 2A0A2 + (A1)2 − (A0)3,

η7 = −A5 + 2A0A3 + 2A2A1 − 3A1(A0)2,

η8 = −A6 + 2A0A4 + 2A3A1 + (A2)2 − 3A2(A0)2 − 3A0(A1)2 + (A0)4,

η9 = −A7 + 2A0A5 + 2A4A1 + 2A3A2 − 3A3(A0)2

− 6A0A1A2 − (A1)3 + 4A1(A0)3,

η10 = −A8 + 2A0A6 + 2A5A1 + A4[2A2 − 3(A0)2] + A3[A3 − 6A0A1]
+ A2[−3(A1)2 − 3A0A2 + 4(A0)3] + 6(A1)2(A0)2 − (A0)5. (75)

(1) k = 1; η0 = 0, η1 = 1, η2 = 0, [ηi] = i − 1, i ≥ 3.

η3 = −2A0,

η4 = −2A1,

η5 = −2A2 + 3(A0)2,

η6 = −2A3 + 6A0A1,

η7 = −2A4 + 6A0A2 + 3(A1)2 − 4(A0)3,

η8 = −2A5 + 6A0A3 + 6A2A1 − 12A1(A0)2,

η9 = −2A6 + 6A0A4 + 6A3A1 + A2[3A2 − 12(A0)2] − 12A0(A1)2 + 5(A0)4,

η10 = −2A7 + 6A0A5 + 6A4A1 + 6A3[A2 − 2(A0)2]
− 24A0A1A2 + A1[−4(A1)2 + 20(A0)3]. (76)

(2) k = 2; η0 = 0, η1 = 0, η2 = 1, η3 = 0, [ηi] = i − 2, i ≥ 4.

η4 = −3A0,

η5 = −3A1,
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η6 = −3A2 + 6(A0)2,

η7 = −3A3 + 12A0A1,

η8 = −3A4 + 12A0A2 + 6(A1)2 − 10(A0)3,

η9 = −3A5 + 12A0A3 + 12A2A1 − 30A1(A0)2,

η10 = −3A6 + 12A0A4 + 12A3A1 + 6(A2)2

− 30A0(A1)2 + 15(A0)4 − 30A2(A0)2. (77)

(3) k = 3; η0 = 0, η1 = 0, η2 = 0, η3 = 1, η4 = 0, [ηi] = i − 3, i ≥ 5.

η5 = −4A0,

η6 = −4A1,

η7 = −4A2 + 10(A0)2,

η8 = −4A3 + 20A0A1,

η9 = −4A4 + 20A0A2 + 10(A1)2 − 20(A0)3,

η10 = −4A5 + 20A0A3 + 20A2A1 − 60A1(A0)2. (78)

5. Conclusion

This paper presents a result of calculation of the infinite (countable) part of Lie point group
admitted by the system of Benny equations – moment equations (2). In standard (noncanonical
representation) the point Lie group of Benny equations (2) is described by the infinitesimal
operator

X = ξ 1∂t + ξ 2∂x +
∞∑
i=0

ηi ∂

∂Ai
, (79)

where coordinates ξ and η obey the system of determining equations

ηi+1
A0 −

∞∑
j=0

jAj−1ηi

A
j
x

+ iηi−1 + iAi−1(η0
A0 + ξ 1

t − ξ 2
x ) + (i + 1)Aiξ 1

x − ξ 2
t δi,0 = 0,

ηi+1
Ak+1 − ηi

Ak + iAi−1(η0
Ak+1 + ξ 1

x δ0,k) + (ξ 1
t − ξ 2

x )δi,k + ξ 1
x δi+1,k − ξ 2

t δi,k+1 = 0,

ηi
t + ηi+1

x + iAi−1η0
x = 0, i, k ≥ 0. (80)

Determining equations (80) result from (42) in account of relationships between coordinates
of infinitesimal operators (79) and (36)

æi = ηi + ξ 1(Ai+1
x + iAi−1A0

x) − ξ 2Ai
x. (81)

Infinitesimal operators (34), that were presented above, gives rise to the following coordinates

ξ 1 = K4 + K5t, ξ 2 = K1 + K2t + K3x,

ηi = iAi−1K2 + (i + 2)Ai(K3 − K5). (82)
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The problem of finding coordinates of the operator (79) was first treated in [4], where only
these solutions, namely (15), (34) and (82), were described. The main result of our paper is
that point symmetries of Benny equations (2) are exhausted by formulas (34) and solutions of
determining equations (61), i.e. determining equations (80) do not have any other solutions.
Solutions of determining equations (61) which are responsible for the infinite part of the point
group probably have not been known so far.

As a next step it seems intriguing to generalize the result (81), i.e. to find the first order
Lie–Bäcklund group admitted by Benny equations (2) with coordinates æi of the canonical
infinitesimal operator (36), that has the linear form

æi = ηi +
∞∑
j=0

ηi,jAj
x, i ≥ 0. (83)

Though the unique existence of the linear form (83) as well as the complete solution of
determining equations1 for the tensor ηi,j has not yet been obtained, all known facts are in
agreement with this linear form. In particular, results of [5, 6] mentioned above are consistent
with the following expression for the tensor ηi,j of the linear form

ηi,j
s =

∞∑
k=0

kH s
Akδi+k,j+1 + s

s−j−2∑
k=0

(i + k)Ai+k−1Hs−1
Aj+k+1; i, j, s ≥ 0. (84)

Here s is the number of the basis solution (similar to that used for ηi in (73)), Hs is a
polynomial of the homogeneity degree (s + 2) in moments Ai . Compatibility conditions for
determining equations for the tensor ηi,j give rise to many relationships for Hs , for example

∞∑
j=0

jAj−1Hs
Aj = sH s−1, s ≥ 0. (85)

An explicit form for the polynomial H 7 is presented below just to illustrate the aforesaid

H 7 = A7 + 7A5A0 + 7A4A1 + 7A3A2 + 21A3(A0)2 + 42A2A1A0

+ 7(A1)3 + 35A1(A0)3. (86)

Comparison between formulas (74) and (86) shows that they differ only in numerical values
(and signs) of coefficients. The generating function for polynomials Hs is given in [5, 6]. So
constructing of a recursion operator, which transforms the linear form (81) for point group to
the linear form (83) is of principal interest.

To complete the conclusion we present formulas for the infinite dimensional algebra of a
Lie point group admitted by the system of equations (9)

X1 = ξ(t)∂t + x

2
ξt∂x + 1

2
(xξtt − vξt)∂v − g

2
ξt∂g − 1

4
(2(g + 2h)ξt + x2ξtt t )∂h,

X2 = χ(t)∂x + χt∂v − xχtt ∂h, X3 = x∂x + v∂v + g∂g + (g + 2h)∂h,

X4 = f ∂f + g(∂g − ∂h), X5 = ∂f + v(∂g − ∂h),X6 = µ(t)∂h,

X7 = G(t, x, g + h)(∂g − ∂h). (87)
1 For simplicity these equations are omitted here.
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Here in (87) ξ(t), χ(t), µ(t) and G(t, x, g + h) are arbitrary functions of their arguments.
Using the procedure described in section 3.2 it is easily checked that prolongation of gener-
ators (15) on nonlocal variables g and h produce generators that directly follow from (87).
Namely, the prolongation of X1 from (15) gives X1 provided ξ = 1, and X2 from (15) gives
X2 provided χ = 1. Next, prolongation of X3 from (15) gives X2 provided χ = t , and X4

from (15) gives X1 − X3/2 − X4 provided ξ = t . At last, prolongation of X5 from (15) gives
X3 + X4.

It should be noted that on one hand the transition from nonlocal Benny equations (1) to their
‘potential’ analog does not introduce additional independent variables that relate to restriction
onto the boundary sets (compare with [14, 15]). This fact reflects the property of the fast decay
of the distribution function f in Benny equations at the infinity, f (+∞) = f (−∞) = 0. On
the other hand the generators (87) give one more evidence in favor of constructing symmetry
of nonlocal equations using various representations and different approaches.

Acknowledgements

This work is supported in part by a grant from the National Research Foundation (NRF) of
South Africa and by the Department of Mathematics, IHN, Blekinge Institute of Technology.
One of the authors (VFK) is also supported from the RFBR grant 99-01-00232, 00-15-96691.
We thank our colleagues Sergey Meleshko and Rafail Gazizov for their valuable comments.

References

1. Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, Chichester,
1999.

2. Ibragimov, N. H., Introduction to Modern Group Analysis, Tay, Ufa (Russia), 2000.
3. Benny, D. J., ‘Some properties of long nonlinear waves’, Studies in Applied Mathematics L11(1), 1973,

45–50.
4. Krasnoslobodtzev, A. V., ‘Gas dynamic and kinetic analogies in the theory of vertically inhomogeneous

shallow water’, Transactions of Institute of General Physics, USSR Academy of Sciences 18, 1989, 33–71
[in Russian].

5. Kupershmidt, B. A. and Manin, Yu. I., ‘Long-wave equation with free boundary. I. Conservation laws and
solutions’, Functional Analysis and Its Applications 11(3), 1977, 188–197.

6. Kupershmidt, B. A. and Manin, Yu. I., ‘Long-wave equation with free boundary. II. Hamiltonian structure
and higher equations’, Functional Analysis and Its Applications 12(1), 1978, 20–29.

7. Zakharov, V. E., ‘Benny equation and quasiclassical approximation in the method of the inverse problem’,
Functional Analysis and Its Applications, 14(2), 1980, 89–98.

8. Gibbons, J., ‘Collisionless Boltzmann equations and integrable moment equations’, Physica D 3(3), 1981,
503–511.

9. Taranov, V. B., ‘On the symmetry of high-frequency plasma motions (kinetic theory)’, Preprint KIYaI-74-21,
Kiev, 1974.

10. Taranov, V. B., ‘On the symmetry of one-dimensional high-frequency motions of a collisionless plasma’,
Journal of Technical Physics 46, 1976, 1271–1277 [in Russian].

11. Taranov, V. B., ‘Continuous symmetries of longitudinal motions of a collisionless plasma, invariant solutions
and conservation laws’, Preprint of Institute of Theoretical Physics, ITF-78-161, Kiev, 1979 [in Russian].

12. Bunimovich, A. I. and Krasnoslobodtsev, A. V., ‘Group invariant solutions of kinetic equations’, Mechanics
of Fluids and Gazes 4, 1982, 135–140 [in Russian].

13. Bunimovich, A. I. and Krasnoslobodtsev, A. V., ‘On some invariant transformations of kinetic equations’,
Vestnik, Moscow State University, Series 1, Mathematics-Mechanics 4, 1983, 69–72 [in Russian].

14. Chetverikov, V. N. and Kudryavtsev, A. G., ‘A method for computing symmetries and conservation laws of
integro-differential equations’, Acta Applicandae Mathematicae 41, 1995, 45–56.



Symmetries of Integro-Differential Equations 153

15. Chetverikov, V. N. and Kudryavtsev, A. G., ‘Modeling integro-differential equations and a method for com-
puting their symmetries and conservation laws’, American Mathematical Society Translations 167, 1995,
1–22.

16. Grigor’ev, Yu. N. and Meleshko, S. V., ‘Investigation of invariant solutions of the nonlinear Boltzmann kin-
etic equation and its models’, Institute of Theoretical and Applied Mechanics, Siberian Division of Academy
of Sciences, Novosibirsk, Preprint No. 18-86, 1986.

17. Grigor’ev, Yu. N. and Meleshko, S. V., ‘Group analysis of integro-differential Boltzmann equation’, Doklady
AN SSSR 297(2), 1987, 323–327 [in Russian].

18. Meleshko, S. V., ‘Classification of the solutions with degenerate hodograph of equations of gas dynamics and
plasticity’, Doctor Thesis, Institute of Theoretical and Applied Mechanics, Siberian Division of Academy of
Sciences, Novosibirsk, 1991.

19. Meleshko, S. V., ‘Application of group analysis in gas kinetics’, in Symmetry Analysis and Mathematical
Modelling, Proceedings Joint ISAMM/FRD Inter-Disciplinary Workshop, 8-10 December, N. H. Ibragimov
and E. A. Lottering (eds.), Foundation for Research Development (FRD, South Africa) and International
Institute for Symmetry Analysis and Mathematical Modelling (ISAMM), 1998, pp. 45–60.

20. Grigoryev, Yu. N. and Meleshko, S. V., ‘Group theoretical analysis of the kinetic Boltzmann equation and
its models’, Archives of Mechanics 42(6), 1990, 693–701.

21. Grigoriev, Yu. N. and Meleshko, S. V., ‘Bobylev–Krook–Wu modes for multicomponent gas mixtures’,
Physical Review Letters 81(1), 1998, 93–95.

22. Kovalev, V. F., Krivenko, S. V., and Pustovalov, V. V., ‘Group symmetry of the kinetic equations of a
collisionless plasma’, JETF Letters 55(4), 1992, 256–259.

23. Kovalev, V. F., Krivenko, S. V., and Pustovalov, V. V., ‘Group analysis of the Vlasov kinetic equation’,
Differential Equations 29(10), 1993, 1568–1578; 29(11), 1993, 1712–1721.

24. Kovalev, V. F., Krivenko, S. V., and Pustovalov, V. V., ‘Symmetry group of integro-differential equations’, P.
N. Lebedev Physical Institute Russian Academy of Sciences, Moscow, Preprint No. 60, 1998 [in Russian].

25. Ibragimov, N. H. (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, Volume 2,
Applications in Engineering and Physical Sciences, CRC Press, Boca Raton, FL, 1995, pp. 396–431.

26. Kovalev, V. F., Krivenko, S. V., and Pustovalov, V. V., ‘Symmetry group of Vlasov–Maxwell equations in
plasma theory’, Journal of Nonlinear Mathematical Physics 3(1–2), 1996, 175–180.

27. Gurevich, A. V. and Pitaevski, L. P., ‘Nonlinear dynamics of a rarefied plasma and ionospheric aerodynam-
ics’, in Nonlinear Dynamics, Magnetospheric Instabilities, A. B. Mikhailovskii (ed.), Review of Plasma
Physics, Vol. 10, Atomizdat, Moscow, 1980, pp. 3–86. English transl.: Consultants Bureau, London, 1986.

28. Bobylev, A. V. and Ibragimov, N. H., ‘Relationships between the symmetry properties of the equations of gas
kinetics and hydrodynamics’, Journal of Mathematical Modeling 1(3), 1989, 100–109 (English translation
in Mathematical Modeling and Computational Experiment 1(3), 1993, 291–300).


