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Abstract

Following Krasilshchik and Vinogradov [I.S. Krasilshchik, A.M. Vinogradov, Nonlocal trends
in the geometry of differential equations, Acta Appl. Math. 15 (1989) 161-209], we regard PDEs
as infinite-dimensional manifolds with involutive distributions and consider their special morphisms
called differential coverings, which include constructions like Lax pairs éwkBind transformations.
We show that, similarly to usual coverings in topology, at least for some PDEs differential coverings
are determined by actions of a sort of fundamental group. This is not a group, but a certain system of Lie
algebras, which generalize Wahlquist—Estabrook algebras. From this we deduce an algebraic necessary
condition for two PDESs to be connected by adRlund transformation. We compute these infinite-di-
mensional Lie algebras for the KdV equation, the Krichever—Novikov equation, the equatiomn, .
and prove that the third equation is not connected by agkBind transformation with the other two.

As a by-product, for some class of Lie algebrasve prove that any subalgebra gfof finite
codimension contains an ideal @bf finite codimension.
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1. Introduction

In this paper we study special correspondences cadlgdrential) coverings between
systems of PDEs. Roughly speaking, a covedag— &> is a differential mapping from
one systeng; to another systerfi; such that the preimage of each local solutiogpls a
family of &1 solutions dependent on a finite numbkeof parameters.

For example, ifu(x, ¢) is a solution of the modified KdV equation

VU = Uyyx — GUZUX (1)
then the function
U=V, — v2 2)

satisfies the KdV equation, = uy,, + 6uu,. This is the famous Miura transformation,
which determines a covering from the modified KdV equation to the KdV equation. For a
given local solution(x, ¢) of the KdV equation, a one-parameter family of functio(is r)

is recovered from Eqg2) and (1) That is, we haven = 1 for this covering. In general,
systems£; and&2 may be overdetermined, but must be consistent.

More precisely, following1,8,9], we regardi, &> as submanifolds ininfinite jet spaces.
The (usually infinite-dimensional) submanifold of infinite jets satisfying a system of PDEs
is called theinfinite prolongation of the system and possesses a canonical involutive dis-
tribution called theCartan distribution. This distribution is spanned by the total derivative
operators (regarded as commuting vector fields on the infinite jet space) with respect to the
independent variables. A (differential) covering £&1 — & is a bundle of finite rankm
such that the differential, maps the Cartan tangent subspaceS;dsomorphically onto
the ones of,. Note that even local classification of coverings is highly nontrivial due to
different possible configurations of the distributions.

Itwas shown ifj8] that all kinds of Lax pairs, zero-curvature representations, Wahlquist—
Estabrook prolongation structures, andcklund transformations in soliton theory are
special types of coverings. In particular, adlund transformation between two systems
&1 andé&s is given by another syste#iy and a pair of covering§; < &3 — &o.

The name ‘coverings’ for such bundles is used because they include usual topological
coverings of finite-dimensional manifolds, deeample 3

Recall that for a finite-dimensional manifald its topological coverings are in one-to-
one correspondence with actions of the fundamental gra(#/) on (discrete) sets. The
main result of this paper is that at least for some PBElkfferential coverings are also
determined by actions of a sort of fundamental group. However, this is not a group, but a
certain system of Lie algebras that we callflv@lamental algebras of £. They are arranged
in a sequence of epimorphisms

cor > frrr > fr—> - —> f1— fo. 3)

Differential coverings of rank: are determined by actions of these Lie algebragnen
dimensional manifold$V, that is, homomorphisms frof to the algebraD(W) of vector

1 One can consider also coverings of infinite rghj8], but we study only the case of finite rank.
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fields onW. Two coverings are isomorphic if and only if the corresponding actions are
isomorphic.
More precisely, the following facts hold:

e for each actiorp : f — D(W) we introduce an involutive distribution on the manifold
& x W such that the trivial bundl€ x W — £ becomes a covering denotefp) (here
& is endowed with the fixed Cartan distribution), B

e for any coveringr : £ — £ we define an actiop(z) : fx — D(E) for somek such that
Tp(t) =0,

e for an actionog : fx — D(W) and the covering = 1(pp), the actiorp(z) is equal to the
composition of the natural embeddia W) c D(E€ x W) with the actionog,

e a morphism of coveringg; andt of £ induces a morphism of the actiop$r;) and
p(72), N N

e a coveringE — £ on a neighborhood of each point &fis isomorphic to the covering
7(p) for some actiorp of f; and somé.

The algebrdg is equal to the Wahlquist—Estabrook prolongation algeb¢[8f20,22]

To obtain algebra$;, for k£ > 1, we replace the Wahlquist—-Estabrook ansatz by jets of
arbitrary order and find a canonical form of coverings with respect to the local gauge
equivalence.

Note that some similarity between Wahlquist—Estabrook algebras and the topological
fundamental group was noticed[®]. However, before the present paper this idea was not
developed and did not lead to any applications.

We prove that all finite-dimensional quotients of the fundamental algebras are
coordinate-independent invariants of the system of PDEs. Namely, recall that quotients
of the topological fundamental group;(M) occur as automorphism groups of regu-
lar topological coverings o#f. Similarly, finite-dimensional quotients of the fundamen-
tal algebras occur as Lie algebras of infinitesimal automorphisms of certain coverings
of &.

We conjecture that the fundamental algebras themselves are also coordinate-independent
invariants and hope to prove this elsewhere using the homological techniques of
[5,12,21] We formulate some conditions for a system of PDEs to possess fun-
damental algebras. We check these conditions and compute alg@)rédsr three
PDEs: the KdV equation, the nonsingular Krichever—Novikov equation, and the linear
equation

Ut = Uxxx- (4)

In all three cases eagdhis obtained from a single Lie algebfaapplying several times the
operation of one-dimensional central extension.

For the KdV equation we havg = sl>(C) ®c C[7].

For the nonsingular Krichever—Novikov equation the algebisisomorphic to a certain
subalgebra of the tensor productstf(C) with the algebra of regular functions on an affine
elliptic curve. Note that in this cagg = 0, that is, the Wahlquist—Estabrook ansatz gives
no nontrivial coverings.
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For Eq.(4) the algebraR possesses a filtration by solvable ideals
RO CRIC---CHRC---CHR

such that the quotierst/ U2, & is solvable as well.

The described methods to compute fundamental algebras can be applied to other evolu-
tion equations as well.

In order to develop this theory, we obtain the following results on Lie algebras, which
may be of independent interest. A Lie algebria said to bejuasi-finite if any subalgebra
of g of finite codimension contains an ideal @bf finite codimension. We prove that

e a central extension of a quasi-finite algebra is quasi-finite,

e for afinite-dimensional semisimple Lie algelgrand a commutative associative algebra
A the tensor produgt ® A regarded as a Lie algebra is quasi-finite,

e the algebras of the nonsingular Krichever—Novikov equation is quasi-finite.

Recall that for a connected topological coverifg— M one hasrt1(M) C w1(M).
It turns out that some analog of this property is also valid for differential coverings, see
Theorems 12 and 13

We obtain also a necessary condition for two systems of PDEs possessing fundamen-
tal algebras to be connected by ad&lund transformation: their fundamental algebras
have to be similar in a certain sense, Sdeorem 14 As an example of using this
necessary condition, we prove that Hg) is not connected by any &klund trans-
formation neither with the KdV equation nor with the nonsingular Krichever—Novikov
equation. Note that this is apparently the first rigorous nonexistence resulaéitudd
transformations.

In this paper we consider only complex-analytic PDEs. Generalization of this theory to
smooth PDEs is possible, but is a little more technical, since the analdgopbsition
3 andTheorem 7or smooth manifolds do not hold. However, practically all results will
remain valid in the smooth case if one excludes from considered manifolds a thin subset of
degenerate points.

2. Basics

In this section we review some notions of PDE geometry, actions of Lie algebras on
manifolds and prove auxiliary lemmas needed for further theory.

In Section2.2—-2.6we mainly follow[1,8,10] However, there are certain modifications
because of the fact that we deal with complex-analytic manifolds, whil&,8)10]only
smooth manifolds are considered. In particular, we have to use sheaves instead of globally
defined functions. Besides, the notions of subequations and irreducible equations are new.

Most of the notions of Sectio®.7 are studied in more detail {d].

In order to be more readable, all concepts of PDE geometry are introduced in two ways:
invariant and coordinate.
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2.1. Some terminology

In this paper all manifolds, functions, vector fields, and mappings are supposed to be
complex-analytic.

For a manifold we denote byD(M) the Lie algebra of vector fields a. For a function
fonM and a pointz € M, the differential off ata is denoted byi, f.

The differential of a mapping : M1 — M> of manifolds is denoted by,.

Z4 is the set of nonnegative integers.

For subspaceg;, ..., Vi of a linear space, the spa¢¥,, ..., Vi) is the linear span of
Vi, ..., Vk.

In this paper a surjective submersion is called a bundle. To emphasize its properties that
in Section2.2 will be extended to infinite-dimensional manifolds, we give the following
definition.

Definition 1. A mappingy : M1 — M> of manifolds is called &undie if

e the mappingp is surjective,
e for any pointa € M; there is a neighborhoade U ¢ M1 and a manifold¥ such that
o(U) is open inM> and one has the commutative diagram

&
U——= s o(U)x W

e(U)
where¢ is a complex-analytic diffeomorphism apds the projection to the first factor.
In this case the preimagesi(b) of pointsh € M, are submanifolds i/, and are

called thefibres of ¢. They are not necessarily isomorphic to each other, but have the
same dimension called thenk of ¢.

Forabundley : M1 — M>, avector fieldV € D(M) is said to bep-vertical if (V) =
0

In what follows we say that a certain property haoldsa/ly if it holds on a neighborhood
of each point of the manifold under consideration.

2.2. Infinite-dimensional manifolds

We want to extend the category of finite-dimensional manifolds in order to include certain
type of infinite-dimensional manifolds that occur in PDE geometry.

Definition 2. Define a categorNF as follows.

e First, anelementary object of INF is an infinite chain of bundles

Pi+2,i+1 i Pi+1,i i Pii—1 $1,0
T T TS S MO, (5)

whereM! are finite-dimensional manifolds.
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Two elementary objects

M5 glas) (Mbo?a))

such that
i+ i 1 2 .
3p.qeZ M =M, Pitgilitg = Pivri Yi=Pp

are regarded to be identical.
Denote byM elementary objed). A point of M is a sequence

(a0, a1, ..., ai,...), ai€ M, vit1i(aiv1) =a; Vi=>0. (6)

Let us introduce a topology on the gei#1| of points of M. Let U be an open subset
of someM?. Denote byU;, i > p, the preimage ot/ in M+ under bundle$5). The
subset of point§6) such thaty; € U; foralli > pis called theelementary open subset of
| M| corresponding t@/ and is denoted b§(U). By definition, elementary open subsets
form a base of the topology dmM]|.

Let us define the structure sheaf of functiong.bi|. Each (complex-analytic) func-
tion f : U — C determines the following function af(U)

(a0, a1, ..., ai,...) — flap).
Such functions o (U) are said to belementary. Now letZ be an open subset pi1|.
A functiong : Z — C belongs to the structure sheaf if and only if for each poiat Z
there is an elementary open sub$@t’) such that: € S(U) C Z and the restriction of

to S(U) is an elementary function.
o |f

My =M, gt} Mo={Mb g2,

are two elementary objects BXF then amorphism v : M1 — Mjisgivenbyw, k € Z
and a system of maps

Vit My — My, P>k,
satisfying
Vi>ko? . Vigl = Wi 1 )
VZKPi1,i O Vitl = Vi O Pitatlita

e Now anobject of INF is a topological space with a sheaf of complex-valued functions
that is locally isomorphic to an elementary objecINF. A mapping of objects ofNF
is amorphism if locally it is a morphism of elementary objects.
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Remark 1. Although this definition is rather sketchy, it is sufficient for us, because all
objects ofINF considered in this paper are open subobjects of elementary objects.

Example 1. With each finite-dimensional manifold we associate the following elemen-
tary object ofINF

- M—->M—---— M,

where all arrows are the identity mappings. This construction identifies the category of
finite-dimensional manifolds with a subcategoryidE.

Let M be an object oINF. The sheaf ofector fields on M is defined in the standard
way as the sheaf of derivations of the structure sheaf. It is a sheaf of modules over the
structure sheaf of algebras.

In particular, if M is elementary objed®) then arangent vector at a point(6) of M is
a sequence

(0, V1, -y Vi, . 2), Vi € Ty MY, (pir1,)s(viv1) =v; VYi=0.

The vector space of all tangent vectors at a poiistdenoted by, M.
A distribution on M is a locally free subsheaf of submodules of the vector fields sheaf.
In other words, a distributio® of rankk distinguishes for each poiatof M a subspace

Da C TaM, dlmDa = k,

such that locally there are vector fiel#g, ..., X that span the subspacBs.

For a finite-dimensional manifol## and an objeciM of INF, one defines the object
M x W of INF as follows. It is sufficient to consider the case whietis elementary object
(5). ThenM x W is the elementary object

i ,'Xid ;
LT MW = o> MO X W

- Mt xw
Now one easily extendBefinition 1 of bundles to the case whe;, M» are objects of
INF. However, we always assume the fibi&so be finite-dimensional manifolds.
In what follows, when we speak of functions on an objecINF, we always assume
that the functions belong to the structure sheaf.
For the sake of simplicity, below objectskNF are also called manifolds, and morphisms
of INF are called mappings.

2.3. PDEs as manifolds with distributions
Letx : E — M be a bundle of finite-dimensional manifolds and

0 eE, w(0) =x € M.
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Consider a local sectigfof = whose graph passes through the péirbenote by []* the
class of all local sections whose graphs are tangent to the grapdt 6fwith order> k.
The set

J¥ () = {[f1X| f is alocal section of, x € M }

carries a natural structure of a manifold and is calleditheifold of k-jets of the bundler.
Moreover, the natural projections

e J@) - M, [y, mgen @) - IN@), e 1Y

are bundles. The infinite sequence of bundles

s ) P ) s ) ) = E (7)

determines an object &NF that is called thenanifold of infinite jets of = and is denoted
by J°(x).
For each local sectigfiof = we have the local sections

J(f) M — J5@), x> [f1L

of the bundlesr;, k =0, 1, . ... These sections determine the local section
Joo(f) 1 M — J(m)

of the natural projectiotto, : J*(1r) —> M.
There is a unique distributioi on J°°(;r) such that for any point € M and any local
sectionf of = over a neighborhood of we have

Cin(Nx) = Joo(f)x(TM). (®)

This distribution is of rank dind/ and is called th&arran distribution of J*°(r).

Consider a system of PDEs of ordeimposed on sections of the bundieWe assume
that it determines a submanifofd c J*() of the manifoldJ* (i) such that the mapping
g0 &% — M is abundle. Then a local sectigof r is a solution of the system of PDEs

if and only if the graph ofji(f) is contained ir€®.
For each € Z, thelth prolongation of £° is the set

& = ([f1* e J**!(xr) | the graph ofj(f)is tangent t&° with order
> lat[f]} € &%),

[=0,1,.... Restricting the maps.; k+i—1 to & and preserving the same notation for
these restrictions, we obtain the sequence of maps

I Y 9
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Imposing natural conditions of regularity, we assume tha alte submanifolds af** (),
while mappingg9) are bundles. The obtained obj&odf INF is called thenfinite prolon-
gation of the initial system of PDEs.

In what follows all considered systems of PDEs are supposed to satisfy these regularity
assumptions and, therefore, possess infinite prolongations. Below suchbfddXF is
sometimes simply called aquation.

The distributionC is tangent tct. Its restriction tof is denoted by’s and is called the
Cartan distribution of €. It satisfies {¢, Cg] C Ce. Since€ is infinite-dimensional, this does
not generally imply existence and uniqueness of maximal integral submanifolds.

Definition 3. Let £ be an object oINF andD be a distribution on it. A subsé&t cC £ is
called asubequation of the pair €, D) if £ is a submanifold of codimensidn< oo and
D is tangent tcf’. More precisely, this means the following. We ha&/e# ¢, and for each
pointa € & there are a neighborhoade U c £ and functionsfi, ..., f; on U such that

e ENU={qeU]|filg)="---= filg) =0},

e foranyb e U the differentialsd, f1, .. ., dp fi € T; € are linearly independent,

¢ the ideal of functions o/ generated by, ..., f; is preserved by the action of vector
fields fromD.

In this case’ is also an object dINF with the distributionD|¢ . The numbet is called the
codimension of the subequatio’.

A pair (£, D) is said to bearreducible if £ is connected as a topological space and there
is no subequatiofi’ C £ of finite nonzero codimension.

Let £ be the infinite prolongation of a system of PDEs. Thehequations of £ are
subequations of the pai€(C¢), and€ is calledirreducible if the pair €, C¢) is irreducible.

Remark 2. The term ‘subequation’ is motivated by the fact that a paicg), as we agreed
above, is sometimes called an equation.

2.4. Coordinate description

Considerabundle : E — M. Letxq, ..., x, be local coordinates i andu?, ..., u?

be local coordinates in fibres af For a symmetric multi-index = i1, ..., i, set
: ou/
ul = S — (20)
3)6,'1, ey axl’k

These functions along withy, ..., x, form a system of local coordinates for the infinite-
dimensional spaceé>(r). The topology orv*>°(r) is the following. Choose a finite number
ugs, ..., ul of coordinateg10)and consider the mapping

J®(m) — ¢, ar> (x1(a), ..., x,(a), u{}l(a), ces u{,’r(a))
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The preimages of open subsets@f"”, r € Z,, under such mappings are by definition
open subsets of*°(;r) and form a base of the topology df°(r). Admissible functions on
open subsets of*°(r) may depend onry, ..., x, and a finite number of coordinat€R0).
Below all functions are supposed to be admissible.

Thetotal derivative operators

0 i 0
Dx,-zf"'zuéln‘i-v i=1,...,n, (11)
o, j d

are commuting vector fields aff°(;r) and span the Cartan distribution.
Consider a system of PDEs

Fa(xi,uk,u{;,...)=0, a=1...,s, (12)

in the bundler. The basic idea of the described approach is to {tE3tnot as differential
equations ind®, but as analytic equations in variabld®) and.x;.
Thedifferential consequences of (12) are

Dy, ...Dy, (Fo)=0, ix=1....,n, a=1...,5, r=01,.... (13)

.X'[l
The infinite prolongatiod c J°°(xr) of systen(12)is distinguished by Eq13). The vector

fields D,, are tangent t&, and their restrictions t6 will be denoted by the same symbol
D,,. They span the Cartan distributi@p of £.

Example 2. Consider a scalar evolution equation in two independent variables
_ u

T oaxk?
Its infinite prolongation has the natural coordinates, u, kK > 0, since using differential

consequences @14) all --derivatives are expressed in terms of these. The total derivative
operators are written in these coordinates as follows:

up=F(x, t,u,ug, uz, ..., up), Uy U= ug. (14)

d 0 ad ; ad
D, = — it1—, D, = — D/ (F)—.
=Yg = LYo
j=0 j>0

2.5. Differential coverings

Definition 4. Let& be an object ofNF endowed with a distributiof? such thatD, D] c D.

A (differential) covering of (or over) the pairg, D) is given by a bundle of finite rank
1:E5E (15)

and a distributiorD” on & such that

° [DT,D‘[] C D‘L’1

e for eacha € £ the differentialr, maps the spacéX’), c 7, isomorphically onto the
SpPaceD () C Tr@)€.
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An invertible mappingy : € — & such thatr o ¢ = 7 is called agauge transformation.
The covering given by the same bundland the new distributiop, (D7) on € is said to be
(gauge) equivalent to the initial covering.

Similarly, amorphism between two coverings : & — &, i = 1, 2, over the same pair
(€, D) is amappingp : &1 — &2 such thatr; = 12 0 ¢ andg,(D™) C D™.

A t-vertical vector fieldX € D(€) is called a fauge) symmetry of < if [ X, D7] C DT.
This means that the local flow of (if it exists) consists of automorphisms of The Lie
algebra of symmetries is denoted by Sym .

Covering(15)is said to berreducible if both pairs €, D) and €, DF) are irreducible.

Example 3. Let us show that usual topological coverings are a particular case of this
construction. LeiM be a finite-dimensional manifold arfd be the whole tangent bundle

of M. Coverings of rank 0 overM, D) are just topological coverings: M — M, where
dim M = dim M andD" is the whole tangent bundle 1.

If the distribution or€ is clearly fixed, we speak of coverings od&without mentioning
the distribution).

Let now€ be the infinite prolongation of a system of PDE®). In this case we fiD to
be the Cartan distributio@e.

Let us describe a coverir(@5) in local coordinates. Recall that localfy is spanned by
D,,. Therefore, locally there is a uniquetuple of vector fields

D,eD', i=1,...,n, (16)
on the manifolc€ such that

(D) = Dy, 17)

[Dy. Dyl =0, Vi j=1...n. (18)

Moreover, vector field§16) span the distributio®®.
If X € Symr then we have

[X,D,]=0 i=1....n (19)

Below in this section we consider equations in two independent variatdedt, i.e.,
n = 2. Locally the bundle is trivial

T:EXW—=E dmW=m < oco. (20)

Letw?, ..., w™ be local coordinates if.
From(17)we have

D, =D, + A, D,= D, + B, (21)
where
m 8 m
A= i 22
;a ow/ z:; 8w1 (22)
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aret-vertical vector fields o€ x W. Condition(18)is written as

DB — D,A+[A,B] =0, (23)
where
DB = ZD@W—— DA = Zawy—
j=1

A covering equivalent to the one given By= B = 0 is calledsrivial.
The manifold€ x W is itself isomorphic to the infinite prolongation of the system that
consists of Eq(12) and the following additional equations:
ow/ . ; ow/

e =al(x,t, wk,uﬁ,, R s =bl(x,1, wk,uf,,...), j=1...,m. (24)

This overdetermined system is consistent modR) if and only if (23) holds on&. The
vector fieldsD, + A, D, + B are the restrictions of the total derivative operatoi§ toW.
That is, the distributiorD? is the Cartan distribution of this system.

Gauge transformations correspond to invertible changes of variables

kul, .0, j=1,....m, (25)

XX, tf ul > ul, w! > g/(x, t, w

in (24). A covering is trivial if and only if it is obtained by such change of variables from
the trivial system

dw/  dw/

M o j=1,...m

0x ot

Therefore, classification of coverings ov&up to local isomorphism is equivalent to

classification of consistent modu{@2) systemg24) up to locally invertible changes of
variableq(25).

Example 4. Consider a covering of rank 1

9 0
t = abe fw, i, ), = =b(x,t,w,u,u1, ..., u) (26)
ox ¥
over the infinite prolongation of E¢§14). After a gauge transformation
0
wa(x,t,w,M,ul,...,ur), i#o

system(26) changes to the following system:

ow 1

g:F(a(x,t,ﬁu,ul,...,uk)—Dxf),
w

ow 1

5=V(b(x,t,ﬁu,ul,...,uk)—D,f), f=fl,t,wou,ug, ..., u),
w

which represents an equivalent(&6) covering.
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Recall that in the case of two independent variablesa conserved current of £ is a
pair of functions {; g) on & satisfying

D, f = Dyg. (27)

Two conserved currents{, g1) and (f2, g2) are callecequivalent if there is a functiorh
such that

fo— f1 = D«(h), g2 — 81 = Dy(h). (28)

For a conserved curre(®7) the pair of vector fields

. 0 . 0
A= f(x,1, u;)% B=g(x,1, Mé)@

satisfieg23) and determines a covering of rank 1.

Equivalent conserved current®8) determine equivalent coverings. Indeed, the corre-
sponding gauge transformatiomis— w + A.

2.6. Coverings as transformations of PDEs

Consider two systems of PDEs

gptayJ
1 d1 _ _
F, (x,t,u e, ut, 8xp3t‘1"“> =0, aoa=1,...,s1, (29)
optayJ
1 da _ _
Gy (x,l,v R T ’8xl’8t‘1"“> =0, a=1,...,s7, (30)
and a mapping
. . gptay!
J = ¢/ 1 d2 -
u = ¢ (x,t,v AU TS 8x1’8t‘1"“> , j=1...,d1, (31)
such that the following conditions hold:
(1) For each local solution'(x, 7), . . ., v¥2(x, r) of system(30) functions(31) constitute a
local solution of(29).
(2) For each local solution(x, 1), ..., u%(x, r) of (29) the system that consists of Egs.

(30) and (31)s consistent and possesses locally a general solution
vl(x, B, Cly ey Ci)y v e s vdz(x, t,Cly vy Cm)
dependent on a finite number of complex parametgrs. ., cy,.

Example 5. Miura transformatior{2) satisfies these conditions wiilh = 1.
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Consider the following trivial bundles:
7 CHh2 5 C? (x,tut, . ™) > (x, 1),
7022 52 (x,n0h L v®R) e (x 1),

and their infinite jet spaces™ (r) and J> ().
Denote byD,, D;andD,, D, thetotal derivative operators di°(r) andJ > (7) respec-
tively. One has

+ +q,,J
9P quj _ qu( ) gptay
oxPord oxPord

= DP D} (v/).

Formulas(31) suggest to consider the mapping
T J®(FR) = J®(n) (32)

defined as follows

*(x) = x, ™) =1, ™ u’) = ¢/,
* or+au’ DP D ()
T ( TP ) = DIDj(¢’). (33)

Then we obtain
7.(D,) = Dy, 7(D;) = D;. (34)

Let £ C J°°(xr) and& C J*°(7) be the infinite prolongations of syster{9) and (30)
respectively. Conditions (1) and (2) above need rigorous analytical explanation, which we
do not consider. Instead, followiridy, 8], we say that Conditions (1) and (2) are by definition
equivalent to the fact that(Z) = £ and the mapping

T|z ! £ € (35)

is a bundle of rank:. Then from(34) we obtain tha{35)is a covering.
According to constructio(R4), every covering of a system of PDEs is locally isomorphic
to a covering of this form.

2.7. Actions of Lie algebras on manifolds

Let g be a Lie algebra ovet. Recall that aniction of the Lie algebrgy on a complex
manifold W is a homomorphisny — D(W). Fora € W let ey, : D(W) — T,W be the
evaluation mapping. For an actign: g — D(W) the subalgebrgw € g|ev,p(v) = 0} is
called theisotropy subalgebra of the pointa.

An actionp is said to beransitive if the mapping eyp : g — T, W is surjective for each
a € W. An actionp is calledfree if ker ev,p = 0 for anya € W.

A bundleW — W’ is called theguotient map with respect to an actiop : g — D(W)
if all vector fields fromp(g) are tangent to the fibres and the induced action on each fibre is
transitive.
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A morphism from one actionps : g — D(W1) to another action, : g — D(W>2) is a
mappingy : W1 — W> such that
Yaec Wi Vveg vu(evup1(v)) = eVyp(v). (36)
The following statement is obvious.

Lemma 1. Let v : W1 — Wa be a morphism of transitive actions p; . ¢ — D(W;),i =
1, 2. Then y(W1) is open in Wa.

Let G be a connected complex Lie group associated with a finite-dimensional Lie algebra
g. Forg € G set
Ly:G— G, ar ga, R, : G — G, ar ag.

A vector fieldX € D(G) is said to beight invariant if

Vege G (Ry)«(X)=X, (37)
andX is said to bdeft invariant if

Vge G (Lg«(X)=X. (38)

Denote byDji, Dy € D(G) the subalgebras of left invariant and right invariant vector
fields respectively. It is well known that

Dji = Dy = g. (39)

and the actions of the algebr&g, D;j onG are free and transitive.

By isomorphismg(39), we have the free transitive actien: g — D(G) of g on G
by right invariant vector fields. Lelf ¢ G be a connected Lie subgroup ahd- g be
the corresponding Lie subalgebra. Consider the quotient sgaée with the canonical
projectionp : G — G/H.

Due to Eq(37), all right invariant vector fields are mapped pyto well-defined vector
fields onG/H. Consider the arising transitive action

oy =pxoo:.g— D(G/H)

of gonG/H. The following lemma is easy to prove.

Lemma 2. Let U be a connected open subset of G/H. Let X € D(U) commute with all
vector fields from oy (g). Then there is V € Djj such that X = p4(V).
And vice versa, if V € Dj is projectable to G/ H then p.(V) commutes with all vector
fields from oy(g). An element V € Dy = g is projectable to G/ H if and only if [V, h] C b.
In particular, if U is a connected open subset of G then the algebra

{V.e D(U)I[V,o(g)] =0}

coincides with Dy = g.
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Lemma 3. Let W be a connected finite-dimensional manifold. Suppose that an action
o g — D(W) is free and transitive. Then the Lie algebra

{V.e DIW) [V, p(g)] = 0}

is isomorphic to g and acts on W freely and transitively as well.

Proof. It is well known that in this case the actignis locally isomorphic to the action
o : g — D(G). By Lemma 2 we obtain that for any: € W there is a neighborhoad e
U C W such that

{V e DU)I[V. p(g)] =0} = g,
VbeUVveT,W 3AVeDU): ew,V=uv [Vp@g)]=0.
SinceW is connected, this implies the statement of the lemma@al

Lemmad. Let g be a (possibly infinite-dimensional) Lie algebra, W1 and W2 be connected
finite-dimensional manifolds, and  : W1 — W2 be a morphism of transitive actions p; '
g — D(W;), i = 1, 2. Suppose that v is a bundle with connected fibres and the algebra

s ={V € D(W1) | (V) =0, [V, p2(g)] = O}

acts freely and transitively on each fibre of V. Let i) C g be the isotropy subalgebra of a
point a € Wo with respect to the action py. Then all vector fields from p1(h) are tangent to
the fibre F = y~Y(a) C Wy and the image of the algebra p1(h) in D(F) is isomorphic to s.

Proof. The fact that all vector fields fromy (h) are tangent té'is obvious. Denote bfithe
image ofp1(h) in D(F). The algebrdV € D(F)|[V, s] = 0} includesf and is, byLemma
3, isomorphic tos. Since dimf > dim F = dims, we obtain

f={VeDF)|[V.s]=0=s [O
2.8. Zero-curvature representations

Let g be a Lie algebra ovef. Let £ be an open subset of the infinite prolongation of a
system of PDEs in two independent variabtes such thatD,, D, are well defined o&.
A pair of functions

M,N:&— g (40)
is called ag-valued zero-curvature representation (ZCR in short) if
Dx(N) — D{(M) + [M, N] = 0. (41)

We suppose that all coefficients of the vector-valued funct{@@3 are admissible (i.e.,
belong to the structure sheaf).
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Then each actiom : g — D(W) induces the covering structure in the bundle€ x
W — & given by

Dx:Dx+p(M)v bt:Dx+p(N)-

Eq.(23)for A = p(M) and B = p(N) follows from (41).
For a morphism of actiong : W1 — W, the mapping

dx ¢y:Ex Wy —> Ex Wa
is a morphism of the corresponding coverings.

Example 6. Let g be a finite-dimensional Lie algebra. Clearly-aalued ZCR dependent
polynomially on a parametex can be treated as a ZCR with values in the infinite-
dimensional Lie algebrg®cC[1]. Then by the above construction each actiop®¢ C[A]
determines a covering.

2.9. Translation-invariant coverings

In what follows we mainly consideransiation-invariant PDES(12) such thatF,, do not
depend on the independent variabledn this case it is convenient to exclude the variables
x; from the set of coordinates off°(x) and&. That is, admissible functions may depend on
(10), but not onx;. Besides, in this case we consider total derivative opergtdjsvithout
the terma/dx;.

The obtained manifold and the obtained distribution on it are calledrtilation-
invariant infinite prolongation and thetranslation-invariant Cartan distribution of the
translation-invariant systerfil2) respectively. Differential coverings of the translation-
invariant infinite prolongation are calleghnslation-invariant coverings.

Assume that there are two independent variablesThen a differential coverin@@4)is
translation-invariantifand onlyif/, b/ donotdepend om, ¢ either. Making this restriction,
we in fact do not loose any coverings, since, accordif@towith arbitrary covering24)
of rankm we can associate the following translation-invariant covering of rank2:

1 2 i
81:1, ai:O, 8—w]=aj(vl,vz,wk,ui,...),
ox ox ox °

1 2 j
81: , aizl a—u)jzly-"(l)l Vowk ul L)
ot ot T ot o

(we replaced, 7 by v1, 12 in the right-hand side o24)). The fibres of this covering have
the coordinates?, v2, wl, ..., w™.

Example 7. Consider a translation-invariant evolution equation
oku

= @, u = ugp. (42)

up = F(u,ug, up, ..., up), Uy
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Its translation-invariant infinite prolongation has the coordinates > 0. The total deriva-
tive operators are written in these coordinates as follows:

a
Dx = Z Mj+laj, (43)
j=0 :
D, =Y Di(F) - (44)
- * 314/
j=0 ’

and span the translation-invariant Cartan distribution.

Let us rewrite the translation-invariance condition in coordinate-free terms.

Recall that aconnection in a bundler : E — M is given by a distributiorD on E such
that for anya € E the mappingr, : D, — Tr(,)M is an isomorphism of vector spaces.
Then for each open subsétc M we have the natural linear mapping

V : D(U) — D(x (U))
that is uniquely defined by the following condition:
VYV eDWU)V(V)eD, m(V(V))=V.
The connection is said to bt if
VY V1, V2 € D(U) V([V1, V2]) = [V(V1), V(V2)].
Consider the natural mapping
Too,0: JX(m) > E

arising from(7). Let Z be an open subset @&. Recall[1,9,10]that for any vector field
X € D(Z) there is a unique vector fiel§{X) D(n;ofo(z)) such that

[S(X).C]CC  (7e0,0+(S(X)) = X, (45)

where( is the Cartan distribution o#A*° ().

Fix a flat connection in the bundfe An equatiore C J°°(rr) is said to beransiation-
invariant (with respect to this flat connection) if for any vector fieldv on an open subset of
M the vector fieldS(V(V)) is tangent tcE.

Vector fields of the forn§(V(V)) span another distributic®’ of rank dimM on J* ().
Leta € M. The submanifold’ = €N ngol(a) is the translation-invariant infinite prolonga-
tion. To obtain the translation-invariant Cartan distributignon it, one projects the Cartan
distributionCe¢ to £ parallel to the distributiorD’. The obtained distributioGy is involu-
tive, but may be singular at some pointstbfe.g., the pointa; = 0, i > 1, inExample 7,
and we exclude these singular points from the translation-invariant infinite prolongation. It
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is clear from the next example that locally the structure of the gai€g ) does not depend
Oona e M.

Example 8. As in Section2.4, let

T Cdtn 5 cn, (x1y -0y Xxn, ul, ..., ud) = (X1, ..., Xn). (46)

Consider the flat connection given B¥9/0x;) = 9/dx;. It is well known that locally any
flat connection is isomorphic to this one.

Since we haves(d/dx;) = d/dx;, an equatiorf C J°°(xr) is translation-invariant with
respect to this flat connection if and only if it can be given by a sygte2hsuch thatF,
do not depend on;.

2.10. Wahlquist—Estabrook coverings

Consider a translation-invariant evolution E42) satisfyingdF/ou, # 0. In order to
describe locally all its translation-invariant coverings, one must solvézZ3)for

m
. d
A= J l,..., "ou, ..., —,
E a’(w w™, u uk)awf
j=1
= d
B=Y bWl .. w" .. u)—, 47
R @7)

for arbitraryk, m € Z. If k is less than the orderof (42) then the covering is said to be
of Wahlquist—Estabrook type.
Consider the following example.

Proposition 1 (Wahlquist and EstabrodR2], van Eck{20], Krasilshchik and Vinogradov
[8]). For the KdV equation

_ du
T oxd

any Wahlquist—Estabrook covering

up =ug+uiu, uj : (48)
DiB—DA+[A,Bl=0, A=A ..., w" u,u1up),
B = B(w?', ..., w", u,u, u)

is of the form

A=X1+ %qu + %u2X3, (49)

B = (3uz+ tu?)Xo + (3u® — gu? + Juuz)Xs — X4+ Ju[X1, [X1, X2]]

+ %3“2[)(2: [X1, X2]] + %ul[Xz, X1], (50)
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1

where the vector fields X; depend only on w=, ..., w™ and are subject to the relations

[X1, X3] = [X2, X3] = [X1, X4] = [X2, [X2, [X2, X1]]] =0, (51)

[X1, [X1, [X2, X1]]] = [Xa4, X2],
[X1, [X2, [X2, Xa]l] = [X1, X2] + [X4, X3]. (52)

Remark 3. The KdV equation(48) differs from the one described in the introduction, but
one is obtained from the other by a suitable scaling transformatiencu for somec € C.

Let § be the free Lie algebra generated by the letfés X», X3, X4. Let £ be the
quotient ofg over relationg51) and (52) Then formulag49) and (50determine a ZCR of
(48) with values ing such that every Wahlquist—Estabrook covering arises from an action
of £ by the construction of Sectich8 The algebrat is called theWahlquist—Estabrook
prolongation algebra of (48).

A similar description of Wahlquist—Estabrook coverings is known for many &@9)

(see, e.g2,20,8).

Let us describe the algebfamore explicitly. Below foig € slo(C) and f(1) € C[x] we

write the element

q® f(A) € s(C)®cC[A]
simply asqf ().

Proposition 2 (van Eck[19,20)). The Lie algebra £ is isomorphic to the direct sum of the
Lie algebra slp(C)®@cC[A] and the five-dimensional Heisenberg algebra H. The algebra H
has a basis

r-3, r-i, ro, ri, r3
with the commutator table [r_1, r1] = [r3, r—3] = ro, the other commutators being zero.
The isomorphism is given by
S T — — — a1 1,52
Xi1=r1—5y+3527, Xo=r_1+2, X3 =r_3, Xa=r3— 5yh+ 52A%, (53)

where h, y, 7 is a basis of slp with the relations
[h7 y] = 2_)’7 [hv Z] = _2Z7 [y, Z] == h

Remark 4. One of the main ideas of this paper is to introduce Lie algebras playing similar
role for coveringg23) and (47)with arbitraryk.

The set of coverings of the forif#7) is invariant under gauge transformations of the
form

W s fi(wl’._,,wm,u,”,,uk,p), (54)
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In order to define these Lie algebras, we find for coveri®&® and (47)a canonical
form with respect to the action of gauge transformati¢as.

Since for Wahlquist—Estabrook coverings transformat{®&d3do not depend on;, i >
0, all Wahlquist—Estabrook coverings are automatically in the canonical form.

Coveringg23) and (47with arbitraryk were also studied if8]. However, gauge trans-
formations were not considered there. Because of this, the auth{$ lodd to impose
some additional constraints on vector fie(d3).

3. Analogs of the fundamental group for differential coverings
3.1. An instructive example
To motivate the next constructions, we present a description of some coverings of the
KdV equation
Uy =u3z+uju. (55)
The analogous description of all translation-invariant covering&bj will be given in
Sectionb.
The operator®d,, D, below are given by43) and (44with F = u3 + uqu.
Theorem 1. Any translation-invariant covering (23) of the form
A :A(wl,...,wm,u,ul, uz, us), B=B(wl,.-.,wm,u,ul, up, u3) (56)
is locally equivalent to a covering of the form

A= X1+ 3uXs+ gu’Xs+ f1C, (57)
= (Juz + 3ud)Xo + (§u® — gu? + Juuz)Xs — Xa+ Su[X1, [X1, X2]]
1
+ 18" ?[ X2, [X1. X2ll + Jua[X2, X1] + &1C. (58)

where the vector fields X;, C depend only on w?,

[C,X]=0, i=1234 (59)

., w™ and satisfy

in addition to relations (51) and (52)Here (f1, g1) is a conserved current of (55)

2 1 1
fi=ul— §u3, g1 = 2uquz — u% — uluy + 2uu§ — 71”4’ D; f1 = Dyg1.

Proof. Itis easy to obtain thad does not depend arp, u3 and is a polynomial of degree
2in ui
A=At .. w" u) FutAr(wt, L w™ u) + Aot .. w™ u).  (60)

We want to get rid of the term1A; by switching to a locally gauge equivalent covering.
Namely, consider an arbitrary point = a; € C, w/ = wé € C where vector field¢56)
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are defined. We will find a gauge transformation defined on a neighborhood of this point
that kills the termu A1.

To this end, let

d
ow/

Ar(wt, . w™ ) = ch(wl, o w™ u)
J
Consider the system of ordinary differential equations

d . . .
$fj(wl,...,wm,u)ch(fl,...,fm,u), ]:1’__.’}11,

dependent on the parameterls ..., w™. Consider its local solution on a neighborhood of

the pointu = ag, w/ = w with the initial conditionf’/(w?, ..., w™", ag) = w’/. Then the
formulas
U — U, wj|—>fj(w1,...,u)m,u), k>0, j=1,...,m, (61)

define locally a gauge transformatigrsuch that
@«(Dy + A) = Dy + A, @«(D: + B) = Dy + B,

where the vector fieldt’ is of the form(60) without the linear inz; term (compare with
Example 3.

Now it is straightforward to show that the vector fields B are of the form(57) and
(58) with the relations

[X2, X3] = [X1, Xa] =[C,X] =0, i=123  [C Xa]+ g[X1,X3] =0,
[C. X4] + 3[X1, X3] + §[Xa, [ X1, [X1, X2Il] = fg[X2. [X2, [ X2, X4lll,

[X3, [X2, [X1, X2]]] =0, [X1, [X1, [X2, X1]l] = [Xa, X2],

[X1, [X2, [X2, Xa]]] = [X1, Xo] +[X4, X3]. (62)

From these relations it follows thak}, X3] and (ad®X,)(X1) commute withX1, X».
Now applying ad X to (62) we obtain (adX»)(X1) = 0, which implies(59), (51) and
(52). O

3.2. The definition of the fundamental algebras

Consider a system of PDEs in two independent variahlesThe results of this section
are applicable to the following two situations:

(1) The manifoldf is the infinite prolongation defined in Secti@rB, andC¢ is the Cartan
distribution on it.
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(2) The system of PDEs is translation-invariant, the manifislthe translation-invariant
infinite prolongation defined in Sectich9, andCg is the translation-invariant Cartan
distribution.

However, all examples of this paper belong to the second situation.

Without loss of generality, we can assughi® be connected. Moreover, we assume that
the total derivative operator®,, D, are well defined orf. This is not a big restriction,
because most of our results are local and locally this is always the case.

Remark 5. In fact the mainDefinition 5 can be readily generalized for PDEs in any
number of independent variables. However, since all PDEs considered in this paper are in
two independent variables, for the sake of clarity we prefer to give this simplified version.

Remark 6. Below in this section we use the following notation. For an open sufjst
£ and a finite-dimensional manifold, the mapping

ExW—=¢& (63)

is always the projection to the first factor. For a functfom &, its restriction taf’ is denoted
by the same symbgl

According to Sectior2.5, a covering structure in the trivial bund{€3) is uniquely
determined by a pair of vector fields, B € D(£ x W) that are vertical with respect to
projection(63) and satisfy relatiot(23).

We have the natural embeddid(W) c D(E x W). A vector field X € D(E x W)
belongs toD(W) if and only if it is vertical with respect t¢63) and its coefficients do not
depend on coordinates 6f

Inspired byTheorem 1let us give the following definition.

Definition 5. We say thaf possessefandamental algebras if there are finite setgly, By,
k € Z, of functions or€ satisfying the relations

Ae C Akv1, Br CBra Vk (64)
such that for any connected open sulfedf £ the following conditions hold:
(1) Lett : & — & be a covering of1. Then for any point € Ethereare a ne|ghborhood

a €& c &andk e N such that foré, = (&) C € the coveringrlg, 1 &1 — &2 s
isomorphic to a covering, x W — &> of the followmgcanomcalform

[Dy+ A, D;+ B] =0, (65)
A=) fMy.  B=) gN, (66)
feAx g€B

My, Ny € D(W). (67)
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(2) Any morphismy : £1 x W1 — &1 x W2 between two coverings of the form

S xWi— &, i=12 A=) fM, B =) gNi
fed 8€By

[D.+ A", D,+ B1=0, M} N,eDW), i=12

is of the formg = id x y, where
VWi Wa,  Yu(Mp) = M3, yu(Np) = N;.
(3) LetX € D(&1 x W) be asymmetry of a coveringg x W — &1 given by vector fields
Di+ A, D;+ B e D& x W)
satisfying(65)—(67) ThenX € D(W) and
[X,M;] =[X,N,] =0 VfeA,VgebB.

(4) Considerthe manifolél; x W with the distribution spanned by, + A, D; + B ofthe
form (65)—(67)and letf’ be a subequation of it. Then localfysis of the form&, x W',
whereé, is an open subset ¢ andW’ is a submanifold of¥ such that vector fields
(67) are tangent tav’.

In particular,&y x W isirreducible if and only ifW is connected and the Lie algebra
generated by vector field§7) acts onW transitively.

In this case fundamental algebfaare defined as follows. Lgj, be the free Lie algebra
generated by the letteld s, N, for f € A, g € By. Let us trea{66) as functions orf
with values ing,. Consider the ideal; of q; generated by the elements

D D@@Ng = Y DN@Ms+ Y fl@g@My, Nel, a€é,

gEBk fE.Ak fGAk,gEBk
and sef; = qi/Ix.
Then(66) becomes afy-valued ZCR of. For an action
o5 — D(W) (68)

denote byz(p) the coveringgé x W — & corresponding td68) by the construction of
Section2.8.
From (64) we have the natural epimorphism

Pkt dk = dk-1 (69)
that maps the generators

My, Ng,  f € Ap\ Ak-1, g € B\ Br-1, (70)
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to zero. It is easily seen thaf (1) C Iy—1. Therefore, epimorphism®9) determine the
epimorphisms

..._)fk—)](k_l—)~-~—)f1—)f0. (71)

Example 9. FromTheorem Ifor the KdV equatior{55) we can take
A1 =1{1, u, u?, ub, u%},
By = {uoutu2u i, € Z, 0 < 2ig + 3i1 + 4iz + 5i3 < 8}.
For example, in this case we have
M,z =~3M,3 = 3Nuu; = —N,2 = C,
M, = Ny, = §Xo, Nuuz = Nuyup = 0.

The algebrg; isisomorphic to the quotient of the free Lie algebra generated by the letters
X1, X2, X3, X4, C over relationg51), (52) and (59)Formulas(57) and (58)determine
a ZCR of(55) with values inf; such that each covering of the for(%6) is equivalent to a
covering determined by an actionfaf The algebrdg is isomorphic to the algebr@& from
Section2.10

Fork > 3, coverings of55) of the form

A:A(wl,...,wm,u,ul,...,uk), B:B(wl,...,wm,u,ul,...,uk)

are determined in a similar way by actions of higher algefras which will be studied
in Section5.2

Remark 7. Consider the identity covering§ — £. It has canonical fornf65)—(67)with
My = N, = 0 andW equal to a point. From Condition (4) we see that any connected open
subset of the equatiafitself must be irreducible.
Remark 8. Consider an actio(68) and let/ > k. Consider the epimorphisg: f; — fx
from (71) and the actiopg : f; — D(W). By the construction of epimorphisnigl), we
haver(pyp) = t(p).
Therefore, when we consider a finite number of coverings determined by actions
,Ol':fkl.—>D(Wi), i=1...,s,
we can assume that all the actions are defined on the same algebhere

k = maxka, ..., kg}.

Below in this section we suppose everywhere fhadssesses fundamental algel{izy
and¢&; is a connected open subsetéhf
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Theorem 2. For any covering t : PN &1 each point a € & lies in a locally unique irre-
ducible subequation £, C E. The image t(E,) is open in £1, and t|g, is a covering.

Proof. It is sufficient to prove this statement locally. Then we can assume that one has
&= &1 x Wandr = t(p) for some actiorp : f; — D(W). Let

a=(q,z)€&E1xW, qe&, zeW.

By Proposition 3 locally there is a unique submanifold” ¢ W such thatz € W/, all
vector fields fromp(f) are tangent tdv’, and the induced action o’ is transitive. By
Condition (4) ofDefinition 5 the submanifold, = £ x W' c Eisthe required irreducible
subequation. [

Proposition 3 (Nagand13]). Let g be an arbitrary Lie algebra over C and p : g — D(W)
be an action of g on a complex-analytic manifold W. Then for each point z € W there
is submanifold 7z € W' C W such that all vector fields from p(g) are tangent to W' and
the action of g on W' is transitive. The submanifold W' is locally unique and dimW' =

dimev.(o(g))-

Consider a covering : & — &, where£ is connected. Condition (1) ddefinition 5
determines locally an action ¢f on fibres oft. Due to Condition (2) these local actions
produce a well-defined global action

p(@) : i > D(E)
such that, o p(z) = 0.

Theorem 3. The covering t is irreducible if and only if the action p(t) is transitive on
each fibre of T.

Proof. It is sufficient to prove this locally, which is done similarly to the proof of
Theorem?2 O

Theorem 4. Consider two coverings t; : N &1, i =1,2,and a mapping ¢ . 2’1 — 5'2
such that the diagram

is commutative.
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(1) The mapping ¢ is a morphism of coverings if and only if it is a morphism of the actions
p(t1) and p(t2). ) 5
(2) If 1 and 72 are irreducible and @ is a morphism of coverings then ¢(E7) is open in 2.

Proof. It is sufficient to prove both statements locally.

(1) This follows from Condition (2) oDefinition 5.
(2) This follows from the previous statement dreimma 1 [

Remark 9. Recall that a covering of a connected finite-dimensional manitpid con-
nected if and only if the corresponding actiomg{ M) is transitive Theorem 3uggests that

in PDE geometry irreducible equations play the role of ‘connected’ objects. Tieorem

2 is the analog for PDEs of the decomposition into connected components of a topological
space.

3.3. Regular coverings and their symmetry algebras

In the present form the analogy (f1) with the topological fundamental group is not
sufficiently helpful, because canonical fo(66)and the vector fielddf s, N, € D(W) have
no invariant (coordinate-free) meaning. In order to recover alggpiiasan invariant way,
recall that the topological fundamental group can be expressed in terms of automorphism
groups of coverings. Studying differential coverings, it is more convenient to consider
infinitesimal automorphisms, i.e., symmetries.

From Condition 3 oDefinition 5 for each actior : f — D(W) we obtain

Symz(p) = {v € D(W)|[v, p(fi)] = 0}. (72)

Recall that a connected topological coveriflg— M is said to beregular if the action

of its automorphism group ofif is free and transitive on each fibre. Similarly, we call an
irreducible differential covering : € — & regular if the action or€ of the algebra Sym

is free and transitive on each fibre ofln particular,z is the quotient map with respect to
this action, and dim Sym = rankr.

TheoremS. A coveringt : E— Eris regular if and only if the action on £ of the subalgebra
o(t)(§x) C D(E) is free and transitive on each fibre of T. In this case one has dim p(t)(f¢) =
rankt and Symrt = p(t)(fx)-

Proof. It is sufficient to prove this locally, and the local version follows fr¢i2) and
Lemma3 [

Each ideal of f; with codimi < co determines a regular covering as follows. Consider
the canonical epimorphisn : fy — fi/i. Leto : fx/i — D(G) be the natural action by
right invariant vector fields on the simply connected Lie grampvhose Lie algebra is
the finite-dimensional algebra/i. For any open subséf ¢ G we have the transitive
actionoy : fr — D(U). By Theorem 5the corresponding coveringo) is regular, and
every regular covering is locally isomorphic to a covering of this form.®Bymark 8
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if i, C f,, n > k, is the preimage of under epimorphisif71) thenf, /i, = f;/i and the
corresponding regular coverings are also isomorphiciil b C f; be two ideals of finite
codimension. Consider the simply connected Lie grolps G, associated with the Lie
algebragy /i1, fr/i2. LetU; C G;, i = 1, 2, be connected open subsets.

Suppose that the corresponding regular coverings are connected by a mapphism

Elxl’l—u‘?lxl/

N A

From Condition 2 oDefinition 5it follows thati; C i> andg = id x v, wherey : U; —

U; is a morphism of actions df.. By Theorem 5we have Sym; = f;/i;, i = 1, 2. The
mapping

@& x Uy — ¢(&1 x Ur) = &1 x Y(Us)
is the quotient mapping with respect to the action of the subalggbirac Symz; on the
manifold&, x Us.

Similarly to Theorem 4this local description of regular coverings and morphisms con-
necting them implies the following global result.

Theorem 6. Consider two regular coverings t; - EJ — &1, 1=1,2,and let

&t 14 &2
X %
&

be a morphism of them. Then there is k € N and two ideals i1, i2 of fi of finite codimension
such that

® one has
Symrz; = fi /i, i=12, (73)

® we have i1 C i, the subset (p(z'l) is open in 3’2, and the mapping ¢ - Pl (p(g'l) is the
quotient mapping with respect to the action of the subalgebra i2/i1 C Symrti on the
manifold ?;1,

e the differential @, of ¢ induces an epimorphism of algebras Symt1 — Symto. In terms
of isomorphisms (73) it is the natural epimorphism f /i1 — fi/i2 corresponding to the
inclusion i1 C 1.

In contrast to fundamental algebr@&l), the system of symmetry algebras of regular
coverings is a coordinate-free canonical invariant of a system of PDES, since symmetry alge-
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bras are coordinate-independent objects. Thus we recover in an invariant way not algebras
(71) themselves, but all their finite-dimensional quotients.

3.4. Quasi-finite Lie algebras

We present here some results on Lie algebras.

Definition 6. A Lie algebrag is said to bejuasi-finite if for any subalgebré c g of finite
codimension there is an ideal gthat is of finite codimension and is containedyin

Theorem 7. Let g be a quasi-finite algebra. Then for any transitive action p . g — D(W)
on a connected finite-dimensional manifold W the algebra p(g) is finite-dimensional.

Proof. Leta € W andh C g be the isotropy subalgebra af Sinceg is quasi-finite and
codimh = dimW < oo, there is an idedlof g such thai C h and codini < oo. Itis well
known that in the complex-analytic situation the imag@) of the isotropy subalgebra
cannot contain any nontrivial ideal p{g). Thereforep(i) = 0 and

dim p(g) < codimi < co. O
Theorem 8. Let g be a quasi-finite Lie algebra and p . § — g be an epimorphism such
that

[ker p,g] =0 (74)

(that is, § is a central extension of g). Then § is also quasi-finite.

Proof. Leth C g be a subalgebra of finite codimension. Clearly, the subset

b1 ={a € bl[a. 4] C b} (75)

is also a subalgebra of finite codimension. By assumption, there is ari infgathat is of
finite codimension and is containediff1).

The subspace~1(i) N  is of finite codimension and is containedhinLet us prove that
p~ (i) N pis an ideal ofg.

Leta € p~1(i) N handv € §. Thena = h + z, whereh € h1 andz € ker p. Combining
(74) and (75)we obtain p, a] € h. Besides, sincg~1(i) is an ideal ofg, we have J, a] €
o~ 1(@i). Therefore, §,a] € p~ () Npy. O

Let g be a Lie algebra ovef and.A be a commutative associative algebra delhen
the spacg ®c A has the following natural Lie algebra structure:

[g1®a1, g2 ®az] =[g1,82] ®aiaz, g1, g2 €9, a1, az € A (76)

Theorem 9. If g is finite-dimensional and semisimple then the Lie algebra g Qc A is
quasi-finite.
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Proof. Leth C g ®c A be a subalgebra of finite codimension. Then the subspace
Z={feAlg® fChb} (77)

is of finite codimension ind. Since p, g] = g, the subspac& is a subring ofA. The
subspaceZ’ = {f € Z| fA C Z} is of finite codimension and is an ideal of the ring
Therefore, the subspageR Z’ is an ideal ofg ® A of finite codimension, and frorv7)
wehaveg® Z' c h. O

3.5. Local structure of irreducible coverings

Below we suppose that algebr@d) are quasi-finite.

Consider a subalgebtac f; of finite codimension. Lei(h) be the maximal ideal of;
that is contained ify. Sincefy is quasi-finite, we have codiifh) < oco.

Let G be the simply connected Lie group whose Lie algebr§ j&h) and H C G
be the connected Lie subgroup whose Lie subalgehi#i{§). According to SectioB.7,
the algebrd;, acts onG by right invariant vector fields, which are projected also to the
guotient spac&/H. Denote by (fx, h) the arising transitive action gf on the manifold
Wk, h) = G/H. We have kelo(fx, h) = i(h).

Remark 10. Let G be a Lie group associated with a Lie algepr&enerally, not for every
subalgebrd C g there is a Lie subgroup whose Lie subalgebr. islowever, for us it is
sufficient to consider the local Lie subgroup, which always exists. In this case the symbol
G/H denotes the quotient space not of the whole gréyuput of some neighborhood of

the unity element.

As above, letf; be a connected open subsetéfConsider the manifoldy(fx, ) =
&1 x W(jk, ) and the covering

(fx, b) : E1(fx, ) = &1
corresponding to the actiar(f;, b) of f.
Theorem 10. The following statements hold.

(1) Every irreducible covering t of &1 is locally isomorphic to a covering t(fx, b) for some
ke Nandb C fi.

(2) We have
Symz(fx., h) = n(h)/b, (78)

where
n(h) = {v € fi [ [v. ] C b} (79)

(3) The covering t(fx, b) is regular if and only if Yy is an ideal of fy.
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Proof.

(1) By Conditions 1 and 4 obefinition 5 locally we haver = t(p) for some transitive
actionp : f — D(W). Leta € W and consider the isotropy subalgebra f; of a. By
Theorem 7the actions ando(f, ) are locally isomorphic. Then the covering®)
andzt(fg, h) are locally isomorphic as well.

(2) Formulag78) and (79¥ollow from formula(72) andLemma 2

(3) This follows fromTheorem5 O

Recall that for any connected topological covering — M there is a commutative
diagram of coverings

P ~

M — m
N A
M

wherer is regular ang is the quotient mapping with respect to the action of some automor-
phism subgroup of. Let us construct an analog of diagré8®) for differential coverings.

(80)

Theorem 11. Any irreducible covering t : &> &ris locally included in a commutative

diagram of irreducible coverings
g—r ¢
N A
&

such that the following assertions hold.

(1) The covering r is regular.

(2) The covering p is the quotient morphism with respect to the action on £ of some
subalgebra by of Symr.

(3) The algebra Symrt coincides with the quotient n/Y, where

n={ve Symr|[v, h] C b},
and the action of n/h on & is induced by the action of n on £
Proof. By Theorem 10 ()it is sufficient to prove the statements foe= z(fx, h1), where
b1 is a subalgebra df, of finite codimension.

Recall thati(h1) is the maximal ideal ofy that is contained ify1. By Theorem 10 (3)
the covering- = t(fx, i(h1)) is regular. The inclusion of Lie algebras

i(h1) C b1 C fx
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determines a surjective morphism

Wik, i(b1)) — W(fk., b1)

of actions off;, which determines the surjective morphism

p - &1k, i(h1)) — €10k, b1), (k. b1) o p = (. i(h1)),

of the corresponding coverings.

By formulas(78) and (79) one has Sym = f;/i(h1). By construction, the morphism
p is the quotient map with respect to the actiorhet h1/i(h1) C Symr on the manifold
&1(fk, i(h1)). Finally, the last statement of the theorem follows from formyi&®) and
(79). O

For a subalgebrof f; of finite codimension, denote lyy the preimage df in f;, | > k,
under epimorphisn{g1). By Remark 8 one obtains

&1, b)) = &G, b), (. b)) = (r. ) VI > k.

Ifhchy is a subalgebra of finite codimension then we have the natural surjective mor-
phismW(f;, h) — W(f;, b;) of actions off;, which determines a covering

o(h, b) : E1(51, b) — E1(f1, ba) = Exlfx. ).

Leti be an ideal ofy; with codimi < oo (but not necessarily an ideal fj. By formulas
(78) and (79)the covering

©(h. 1) - &1, ) — E1(fx. b) (81)

is regular and Sym(h, i) = §;/i. The following theorem shows that locally every regular
covering of€1(fx, b) is of this form.

Theorem 12. Consider an irreducible covering t : & — & and the corresponding action
o(T) : fr — DE).Leta € Eand b C fx be the isotropy subalgebra of a.

Then for any connected neighborhood gck of a the symmetry algebra of any regular
covering over Eis isomorphic to a finite-dimensional quotient of §; for some | > k.

And vice versa, for any l > k and any ideal i of §; of finite codimension there is a regular
covering t' over a neighborhood of a such that Symt’ = b;/i.

Proof. Let7 :&" — &bea regular covering. Consider the connected open séipset
(€ of & and the commutative diagram of coverings
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Since the question is essentially local, we can assume that the above diagram is of the form

id
€2XW1H—><¢7€2XEV2

BN N

)

wherep; : f; —> D(W;),i =1, 2, are transitive actions for some- k andy : W1 — Wais
a morphism of actions. The poiatis of the forma = (g, z), ¢ € £2, z € W». The algebra
hy is the isotropy algebra afwith respect to the actiopy. Then the first statement of the
theorem follows fromLemma 4for g = §;.

The second statement of the theorem follows from constru¢dop O

This theorem is the analog of the fact that for a connected topological coverirg M
one hasry(M) C m1(M).

Sinceg in Lemma 4is allowed to be infinite-dimensional, the first statemerfloéorem
12 holds even if algebra& 1) are not quasi-finite.

Theorem 13. In the notation of Theorem 12the symmetry algebra of any regular covering
over & is isomorphic to a finite-dimensional quotient of by for some | > k even if the
fundamental algebras are not quasi-finite.

3.6. Necessary conditions for existence of Bdicklund transformations

Consider two systems of PDEs
. . _gptayi )
gi:{F&()C,l,Mll,...,uldl, axpatq,..,):0,0[:1,...,5[}, l:1,2. (82)

A Biicklund transformation betweer€; and&s is given by another system

optayi
Folxtot . o, 2 )20 a=1...s (83)
axPord
and two mappings
. y gptay!
ij — i 1 d P — N
u’ =g <x,t,v U T axparq"") , Jj=1...,d,i=12, (84)
such that for each= 1, 2 one has
e for each local solution(x, 1), . .., v¥(x, 1) of (83) functions(84) form a local solution
of (82),
e for each local solution'(x, 1), ..., u®(x, 1) of (82) the system that consists of Egs.

(83) and (84)s consistent and possesses locally a general solution
vl(x, LClyee ey Cri)yeees vd(x, L,Cly e ns Cry)

dependent on a finite number of complex parametgrs. ., c;,.
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Similarly to Sectior?.6, these conditions mean by definition that the infinite prolongation
£ of (83) covers botte1 andér

£
N
51 52

where the covering; is of rankr;. We allowé&; to be not the whole infinite prolongation,
but some nonempty open subset of it.

If systems(82) are translation-invariant then we can mgR8) translation-invariant as
well using the trick from Sectio.9: replacex,  in F, and¢” by the new dependent
variablesw!, w? respectively and add @3) the following equations:

(85)

owl  gw? owl  dw?
wr_Mm g T _ oW _
ox ot ot ox

After this substitution covering®@5) become translation-invariant.

Example 10. Consider two different coverings from the modified KdV equation to the KdV
equation

Ut = Ugge |+ OUUL Up = Ug g+ OUUL

This diagram presents @Bklund auto-transformation of the KdV equation. See[&516]
for more examples of &klund transformations.

Theorem 14. Suppose that two systems &;, i = 1, 2, possess fundamental algebras
oo oo o o =12 (86)

and the algebras f,% are quasi-finite. Let g be a finite-dimensional Lie algebra. Suppose that
for any k1, ko € Z4 and any subalgebras

b' C i, codimh’ < oo, i=1,2 (87)
there is an epimorphism h* — g, but there is no epimorphism b% — g. Then there is no

Bcicklund transformation between £1 and&o.

Proof. Suppose that there is adBklund transformation. By the above construction, it
determines a diagra(®5) of coverings. Let: € £. By Theorem 1 2locally there is a unique
irreducible subequatloa‘ c & that contains:. The subset; (5 ) is open in&;, and the
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coverings
‘L’,'|2H : Sa — ‘L’,'(éa), i=1,2,
are irreducible. Consider the action
p(rilz,) : i = D)

and leth! C f{ be the isotropy subalgebra of By Theorem 12an epimorphisnp® — g
implies that over a connected neighborhooduaf &, there is a regular covering with
symmetry algebra equal go Applying Theorem 13o this regular covering and the covering
12|z, we obtain thag is isomorphic to a quotient of some subalgebfeof f,z of finite
codimension. Thus we get a contradiction(]

4. Coverings of scalar evolution equations

In this section we prove some technical results, which will be needed in Sedtam
5. Consider a translation-invariant evolution equation
oF du
up = F(u,uz,up,...,up), — #0, U = —, U =ug. (88)
oup ax!

Let £ be a connected open subset of the translation-invariant infinite prolongation of this
equation described iBxample 7
Let W be a connected open subset®f with coordinatess?, ..., w™ and

u,-:a,-e(C, i=0,1,..., (89)

be a point off. Consider a coverin§ x W — & given by vector fields

“ 9
A =Zaf(wl,...,wm,u,...,uk)f,
= ow/

m
. 3
B=> b . w . uw)—, DB — D;A +[A, B] = 0. (90)
= ow/

Below we sometimes omit the dependence on the coordindtesvector fields orf x W.

Remark 11. Below in this section we say thaically there is a gauge transformation with
certain properties if for anyw € W a gauge transformation with these properties exists on
a neighborhood of the point(w) € £ x W, wherea is the fixed poin{(89) of £.

Lemma 5. We have

0A
— =0 Vs>k—p+1 (92)
Ol
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Moreover, locally there is a gauge transformation

wir—>fi(wl,...,wm,u,...,uk_p), i=1...,m,

such that the transformed vector field Dy + A satisfies for all s > 1

dA
8—(14, ce U1, g, st 1, -, @k) =0 VYu, ..., us 1. (92)
Us
Proof. Differentiating Eq.(90) with respect tas, for s > k and using the forn43) and
(44) of D, and D,, one immediately obtaii§81).
Now suppose thg®2) holds for alls > n, where O< n < k — p + 1. It easily seen that
this property is preserved by any gauge transformation of the form

MU, ., Up—1). (93)

By induction onk — n, it remains to find a gauge transformati(®8) such that the
transformed vector field, + A satisfieq92)for s = n. Let

wi|—>fi(w1,...,w

0A

ouy

. d
(W, ..., upn-1,an, ns1, ..., ar) = Zc/(wl, oW, up1)—.
ow/

J

Similarly to the proof ofTheorem 1consider the system of ordinary differential equations

d .
Flwt, o ow™u, . up—1)
du,—1
— ‘
=c(f ..., fMou,.. . uy1), j=1,...,m,
dependent on the parameters ..., w” andu, . ..., u,_». Its local solution with the initial
condition
fj(wl,...,wm,u, U2, Ap_1) = W’

determines the required transformat{@®3). O

Lemma 6. Consider two coverings

s
~ , 9
DyB; — D;A; + [A;, Bi] =0, Ai = Z“{(w,'l, ceowitu, ...,uk,-)ij,
=1 w;
J= i
mi 5
B = Zb‘i’(wil, cowlMu o ug)—, i=1,2,
j=1 dw!

such that both A1 and A3 satisfy (92) for all s > 1 and some point (89). Let

wé:(pj(w%,...,le,u,ul,...), j=1,...,mo, (94)
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determine a morphism of these coverings, i.e.,

(Dy + Ar)g’ = aé(q)l, cen @MU, upy),

(Di + B! = bi(e%, ... ¢"2 u, .., upy) (95)
forall j =1, ..., m. Then functions (94) do not actually depend on any u;, i > 0.

Proof. Letr > 0 be the maximal integer such that at least one of functiedsdepends
nontrivially onu,. Differentiate(95) with respect tas, 11 and substitute:; = a; for i >

r + 1. Takinginto accour(®2)for s = r + 1, we obtain that the right-hand side is zero, while
on the left-hand side we gép//du,. Therefore g/ /ou, = 0 for all j, which contradicts
to our assumption. O

Lemma 7. Consider covering (90) satisfying (92) for all s > 1 and let

d

m

S = E sj(wl,...,wm,u,ul,...) _
- ow/
j=1

be a symmetry of it. Then S does not actually depend on any u;, i > 0.

Proof. Analyzing the equationl), + A, S] = 0 from (19), this is proved similarly to the
previous lemma. [

Lemma 8. Consider covering (90) satisfying (92)for all s > 1. Let £ be a subequation of
E x W.Then locally £ is of the form £, x W', where E1 is an open subset of £ and W' is a
submanifold of W such that all vector fields

{A(u, ..., ug), Bu,...,ux) € DOW)|u,...,u; € C}

are tangent to W'.

Proof. According toDefinition 3 a subequation of codimensiérs given by functions
f,-(u)l,...,wm,u,ul,...), i=1,....,1,
defined on an open subgétc £ x W such that

* fi(c)=--- = fi(c) = 0 for somec € U,
e the differentials

dpfie TF(EX W), i=1...1,
are linearly independent for eatte U,

e the ideall of functions onU generated byfi, ..., f; is preserved by the action of the
vector fieldsD, + A, D; + B.
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Let z € W be the image of under the projectiod x W — W. To prove the lemma, it is
sufficient to find a set of functions

gt . w™), acA, (96)

defined on a neighborhood pfuch that the ideal of functions on a neighborh@td- U
of ¢ generated by function®6) coincides withi|.

Let r be the maximal integer such that at least one of the functfens ., f; depends
nontrivially onu,. Note thatf; are defined on an open subgebf C"t1 x W with the
coordinates, . .., u,, wh, ..., w™, the subset

M={qeV|filqg) =---= filg) =0}

is a submanifold of codimensiadnn V, and/|y coincides with the ideal of functions on
V that vanish onM. Thus we essentially have a question of finite-dimensional complex
analysis.

Since

0]
Ouri1

(nci (Dx +A)I) C 1,

we have

? (D, + AN = Ui | 04

ouyry our  Oyrg1
Substitutingu; = a;, i > r + 1, to (97), from (92) for s = r + 1 we obtaindf;/ou, € I.
Therefore, the vector field/ou, is tangent toM, which allows to generaté on some
neighborhood of by functions that do not depend apfor i > r. Proceeding by induction
onr, one completes the proof. O

(fi) e L (97)

Applying this lemma to the identity covering— &, we obtain the following.

Theorem 15. Any connected open subset of the translation-invariant infinite prolongation
of any evolution Eq. (88)is irreducible.

Let us introduce some auxiliary notions.

Definition 7. For each € Z_, let V; be a connected open subsetb$uch that for all but
a finite number of we haveV; = C. Set

D = {(uo, u1, ..., u;,...) | u; € Vi}.

Let P be an algebra of functions dnsuch that eaclf € P is a complex-analytic function
dependent on a finite number of the variablgsi > 0. The algebr& is said to beerfect
if for each functionf (uo, ..., u,) € P and anyi € Z. the following conditions hold:
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(1) One has)f/du; € P.
(2) Thereisg(uo, ..., u;) € Psuchthabg/ou; = f.
(3) For anys < r and any fixed numbekg € V;, i > s, we have

f(u()v ceey us—la asa aS"rls LRI ar) e P'
(4) Forallj > 1 we haveu; € P.
Then each functiorf € P is also callegberfect.

Example 11. Let V; = C andP be the algebra of polynomialsin, i > 0. Evidently, the
algebrap is perfect.

Fix open subset®; ¢ C satisfying the assumptions DEfinition 7and a perfect algebra
P.

Definition 8. Consider a vector field

m
. 0
A:Zaf(wl,...,wm,u,ul,...,uk)m (98)
=1

defined on an open subsetWfx Vg x - - - x V.
A vector field

0

owJ (99)

m
S = Zsj(u)l, ow™)
=1

is said to bel-primitive (with respect to A) if [ S, A] = 0. Now by induction ory € N a
vector field(99)is calledg-primitive (with respect to A and P) if the commutator §, A] can
be presented as a squ.Vzl f;iS;, whereS; are ¢ — 1)-primitive fields andf; are perfect
functions. In particular, one has (at))(S) = 0.

A vector field

m
. d

S=§ s, W™ u,ug, ) — 100

j=1v(w w™ u, uq )E)wl (100)

is said to beyrimitive (without any prefix) if one has = Z?’zl fiS;, wheref; are perfect
functions ands; areq-primitive vector fields for some.

Remark 12. Below all primitive vector fields are primitive with respectAandpP, where
P is a fixed perfect algebra andarises from a coverin¢p0).
Evidently, primitive vector fields form a module over the algeBra

Lemma 9. Consider an arbitrary vector field (100)defined on a neighborhood of the point
ui =a; € Vi, i > 0. Consider a covering (90) satisfying (92) for all s > 1.



978 S. Igonin / Journal of Geometry and Physics 56 (2006) 939-998
L I
%(DX(S) +[A,8) =0 Vi>0 (101)
then 0S/0u; = O for all i > 0.

(2) If D<(S) +[A, S] is primitive then S is primitive.
(3) If S is primitive and the function F in (88) is perfect then [ B, S] is primitive.

Proof.

(1) Letr be the maximal integer such thag/ou, # 0. From(92)for s = r + 1 we have

d A
5 (Dx(S) +[A, SD(uy ..., ur, g1y ..y ax) = —.
Ur4+1 ouy

(102)

Combining this with(101)for i = r + 1, we obtaimS/du, = 0.

(2) Again letr be the maximal integer such tha$/du, # 0. Then(102) holds. Since
D.(S) +[A, S] is primitive, vector field(102)is also primitive, by the properties of
perfect functions. Therefore, by Condition (2)@éfinition 7, there is a primitive field
$’'suchthal = S — §' does notdependan, i > r. ThenD.(S) + [A, S]is primitive,
and by induction om one completes the proof.

(3) Applying ads to (90), we obtain

D.([S. B]) +[A. [S. B]] =[S, D:A] —[[S. A B]. (103)

By assumption, for somgone has

S = Z fiSjs f;are perfect S;are g-primitive (104)
J

Let us prove that§, B] is primitive by induction ong. For ¢ = 1 the right-hand side of
(103)is zero. Applying Part 1 of this lemma to the vector fietd B], we obtain that §, B]
is 1-primitive.

Now assume that the statement holds for 1. Consider an arbitrary vector fieki
satisfying(104). Let us prove thaty, B] is primitive.

By formula(44), we have

k
[S. D;A] =) DI(F) [s, ({;A] ) (105)
j=0 !

SinceF is perfect, the function®Z(F) are also perfect. Besides, for any primiti¥ehe
vector fields |, dA/du ;] are also primitive for alf. Therefore(105)is primitive.

Since S, A]is alinear combination off — 1)-primitive fields, the vector field §, A], B]
is also primitive by the induction assumption. Thus the right-hand sifE03)is primitive
and we can apply Part (2) of thislemma® B]. O
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5. Coverings of the KdV equation

In this section we return to the KdV equation
ur = u3z + uiu. (106)

Our final goal here i§heorem 17

5.1. The canonical form of coverings

Theorem 16. For any covering of EQ.((106))
DB— D/A+[A,Bl=0, A=A(u,u1,...,ux), B=Bu,u1,...,u;) (107)

(we omit the dependence on fibre coordinates w/) locally there is an equivalent covering
such that A, B are polynomial in u; and A satisfies (92)for all s > Land a; =0, i > 1.

Proof. Consider an arbitrary point; = a; € C, w/ = wé € C where the vector fields

A and B are defined. All local gauge transformations in this proof will be defined on
a neighborhood of this point. Byemma 5 we can assume thg®2) holds for all
s>1. O

Remark 13. It would be most convenient to take = 0 from the beginning. However,
since we consider coverings over arbitrary open subsets of the translation-invariant infinite
prolongation of(106), we do not know in advance whethdr B are defined around this
point. We will show by induction that after a suitable gauge transformation the vector fields
A, Bbecome polynomial im; and, therefore, are uniquely extended to the whole space of
variablesu, . .., uy.

To clarify further arguments, let us first determine the formAgfB with respect to
the highest derivatives;, i > k — 3. A straightforward analysis of E¢107) shows that
A does not depend ong, ux—1 and is a polynomial of degree 2 uy_», while B is
polynomial inuy, ug_1, up—2. Therefore, following the strategy ¢temark 13 we can
find a gauge transformation such that the transformeshtisfies(92) with a; = 0 for
i>k—2.

Then(92)for s = k — 2 implies

A=u? A, ... up_3)+ Aou, ..., ur_3). (108)
Further analysis shows thab does not depend an,_3 andB is of the form
B = 2up_our A — u,%_lAz + B11(u, ..., up—3)ug—2uir—1
+ Bio(ut, ..., up—3)up—1+ Bo(u, ..., ug—2). (109)

Differentiating(107)with respect ta;, ux_2, we obtain

2D, (A2) + B11+ 2[Ap, A2] =0,



980 S. Igonin / Journal of Geometry and Physics 56 (2006) 939-998
while differentiation with respect to;_1, ux—1 implies
—D,(A2) + B11 —[Ao, A2] = 0.

Therefore,

D,(A2) +[A, A2] =0, (110)
which byLemma 9 (1)says thatd, does not depend ary, i > 0, and A, A2] = 0. That
is, A2 is 1-primitive with respect td.

Definition 9. Letr € Z, andr < k. A vector field

0

m
A:E aj(wl,...,wm,u,ul,...,uk)—.
pat ow/

is said to ber-simple if it satisfies(92) for all s > 1 with a; =0, i > k —r, and some
al, ..., Qk—r—1 € C.

Lemma 10.

(1) For each r < k and any covering (107) there is a locally gauge equivalent covering
with r-simple A.
(2) If a covering (107) has r-simple A then the vector fields

A=A, ...,u)— A, ..., uk_r—1,0,...,0),
B =Bu,...,ut)— B(u, ..., ux_ry1,0,...,0) (111)
are primitive with respect to A and P, where P is the perfect algebra constructed in

Example 11.

Proof. Forr = 2 we proved these statements above. Suppose that the statements of hold
for somer =1 < k — 2 and let us prove them fer= [ + 1.

By assumption, each covering is locally equivalent to a covetiog)with I-simpleA.
Then by Part (2) of the lemma we have

A=A, ... u_2)+ A(u, e Uk—]—1),

B=B(u,...,ux)+ Bu, ..., ug_i+1), (112)
where
A=A, ... up_i-1,0,...,0), B=B(u,... up+1,0,...,0), (113)

and the primitive vector fieldd’, B’ are given by(111)for r = 1.
We can rewritg107)as follows:

D.B—D,A+[A B+ P=0, (114)
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where
P=D,B — DA +[A, B]1+[A, B] (115)

is primitive. Indeed, the fact thdd, B’, D;A’, [A, B'] are primitive follows immediately
from the fact thatA’, B’ are primitive, while JA’, B] is primitive by Lemma 9 (3) In
particular,P is polynomial inu;, i > 0.

From Eq(114)it follows easily thatd, Bare polynomialine,_;_1, ug—;, ug—;+1. There-
fore, A(u, ..., u;) and B(u, ..., u;) are defined fou; = a;, i <k — [ — 2, and arbitrary
values ofu;, j > k — [ — 1. By Lemma 5 after some gauge transformation

m5 u,..., Mk7172)

w > gi(wl,...,w
A becomesi(+ 1)-simple, which proves Part (1) of the lemma fo [ + 1.
To prove Part (2), consider an arbitrary coverid@7) with (I + 1)-simpleA, where
[ <k — 2. Since [+ 1)-simpleA is alsol-simple, we again have representat{@d2) and
Eq. (114), where(115)is primitive. Similarly to formulag108) and (109)from (114)we
obtain

A=Pr+ub | A, ... up13)+ Apu, ..., ux_i_2), (116)
B = Po4 2up_j qup_i31Ay — uZ Ay + Byy(u, ... ug_1_2)ux_1_1up_
+ B/lo(l/l, ey W] —2)Uf—] + BIO(M, ey Uk——1), (117)

where P, P, are primitive. Similarly to(110), this implies thatD, A} +[A, A] is also
primitive. By Lemma 9 (2) the vector fieldd’, is primitive.
Then the vector fields

A, . ..ug) — A(u, .., up—;—2,0,...,0),
B(u,...,u;)— B(u,...,ux—;,0,...,0)
are also primitive, which proves Part (2) of the lemmarfer [ + 1.
By the above lemma for = k — 1, we obtain that after a suitable gauge transformation
one has
A=A"u, ..., ui—2)+ Ag(u), B=B"(u,...,ux) + By(u, u1, uz),

whereA”, B” are primitive andi is (k — 1)-simple. Now it is straightforward to prove that
0 By are polynomial ine, uy, up. 0O

5.2. The fundamental algebras
From the above proof it follows that for eagh> 3 there are finite subsets

My czZEt, N ezZk?
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such that the following statement holds. If a cover{i7) of Eq. (106) satisfieg92) for
all s > 1 withg; =0, i > 1, then itis of the form

A= Z ug -y 5y iy o
(i0,....ik—2)e My

B= Y ud-ufBig.. (118)
(0, ... ik)EN

where the vector fields

A Bi,.i, (119)

10+ ik—22

do not depend on;, i > 0.
Let us show that this canonical form of coverings satidiiefinition 5if we take

A = {u- ~Mf(kZ§ | (io, ..., ix—2) € My}, B = {u - u}t (o, - .., ix) € Nic).
Relation(64) is obvious. Condition (1) oDefinition 5follows from Theorem 16Let

m
. ad
S:Zsj(wlw-,wm,u,ul"“)ﬁ
j=1

be a symmetry of the covering given by vector fig{ti$8), i.e.,
[Di+ A, S1=[D;+ B, S] =0. (120)

By Lemma 7 S does not depend o, i > 0. Then(120)implies thatS commutes with
all vector fields(119), which proves Condition (3) dDefinition 5 Conditions (2) and (4)
follow analogously fromLemmas 6 and 8espectively.

Vector field5(118)satisfy(107)if and only if certain Lie algebra relations hold fir19)
Denote byf,_» the quotient of the free Lie algebra generated by let{&t9) over these
relations. We obtain the system of fundamental algebras

"'_)fk-i—l_)fk_)"'_)fl_)fo (121)

for Eqg.(106). In particular, the algebrgs andfg are described iExample 9
Denote bya;_» the subalgebra df,—> generated by, .

Lemma 11. We have

Biy..i; € ag—2 forig+---+ix > 0. (122)
Proof. For (o, ..., i) € N; set
r(io, ..., i) = max{s|i; > 0}.

Let us provg(122) by induction ork — r(io, . . ., ix)-
For (o, ..., ix) € N with r(io, .. ., ix) = k it follows from (109)
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Suppose thatl22)holds for all §o, .. ., ix) € Ni with r(io, . .., ix) > [ + 1. Differenti-
ate(107)with respect tas;41 and substitute; = O fori > [ 4+ 1. SinceA satisfieq92) for
s = [+ 1 andg; = 0, we obtain(122)for (ig, ..., ix) € Ny with r(ig, ..., ix) =1. O

Combining(122) and (107)one gets

[Bo...0, ax—2] C ax_2. (123)
Substitutingy; = 0 to (107), we obtain also

[Ao...0, Bo..o] = O. (124)

Let us specify the structure (£18). Fork = 3 it was described imfheorem 1 Similarly
to the proof ofTheorem 16one obtains that fat > 4 vector field9118) have the form

2k —3
A=A (u%_z - uu,%_z) + A;C_Zu,%_;; + Ao(u, ..., ug_4), (125)
B = 2ug_purAx—2 + Bo(u, ..., ug—1), (126)
where

Ar—2=A0.02, Ai_5=A¢.020

[Ak—2, A] =0, (127)
[Ax—2, B] = 3[A0, A} _,]. (128)

andAg, Bg are polynomial in;.
Eq.(127)implies

[Ak—2, ax—2] = 0. (129)
Combining this with(122) and (128)we obtain

[Ax—2.Bo..0o] = 3[Ao..0. A} 5] (130)
Moreover, taking into accourii24)and applying atBo...o to (130), we obtain

— (@d*1Bo..0)(Ar_2) = 3[A¢..0. (@dFBo..0)(A}_,)] Vs> 0. (131)

By the definition off, and formulag125) and (126)for eachn > 2 the algebrg,_1 is
isomorphic to the quotient df, over the ideal,, generated bw,,. From(122) and (123),
and (131)we obtain that, C a,. Moreover,(129)implies

[in, an] = 0. (132)
Lemma 12. For each n > 1 we have the relation
— (ad'Bo..0)(A,) =0 (133)

in the algebra f,.
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Proof. Forn = 1 this statement follows frort69). By induction orw, suppose thatl33)
holds forn — 1. By formula(125), the generatoA/, € f, is mapped taA,—1 € f,—1 by
the natural epimorphisfy — f,/i, = f,—1. Therefore, (a’d’lBo..io)(A;,) € i,. Combining
this with (131) and (132)we obtain(133). O

From the above results it follows that the elements
¢i = (@ad'Bo..0)(A,), i=0,....,n—1,

span the ideal,. The element,_1 belongs to the center df. Moreover, for each =
0,...,n — 1the image ot; belongs to the center of the quotient

fn/(ci+la cey Cp—1).

Thus we have the following statement.

Lemma 13. For each n > 2 the algebra f, is obtained from §,_1 applying the operation
of one-dimensional central extension no more than n times.

Let us now prove the main result of this section.

Theorem 17. The KdV EQ.(106)possesses fundamental algebras (121). Each algebra f
is quasi-finite and is obtained from the algebra sl2(C) @c C[A] applying several times the
operation of one-dimensional central extension.

Proof. It was shown above th§t21)are fundamental algebras(@f06) Let us prove that
algebrag121)are quasi-finite.
By Theorem 9the algebra

g =502(C) ®c C[A]

is quasi-finite. Fron{59) it follows thatf; is the trivial central extension of the algela
from Proposition 2

Since the Heisenberg algelffas nilpotent, the algebrf is obtained fromy applying
six times the operation of one-dimensional central extension. Therefoldndnrem 8the
algebraf; is also quasi-finite. Finally, combinirigemma 13andTheorem 8we obtain that
all fundamental algebrg421)are quasi-finite. [

It is well known thatsl>(C) ®c C[A] has no nontrivial central extensions. Combining
this with Theorem 17we obtain the following specification of the structurefof

Theorem 18. Each algebra fi is isomorphic to the direct sum of sl2(C) ® C[A] and a
finite-dimensional nilpotent algebra.
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6. Coverings of the Krichever-Novikov equation

Consider the Krichever—Novikov (KN) equati¢hl,17,18]

3u?  h(u Fu
_8up )

Ur =u3 ) = 7>
2u1 u1 axk

(134)
whereh(u) is a polynomial of degree 3 with coefficientsh If the roots of the polynomial
h(u) are distinct then Eq134)is said to bewonsingular.

The main goal of this section iEheorem 22

6.1. The canonical form of coverings

We want to have an analog ®heorem 16or Eq.(134). The straightforward repetition
of the proof ofTheorem 1@s not possible, becaug&34)is not polynomial iru;.

To overcome this, we need to introduce a perfect algebra that contains the furfation 1
By Condition (2) ofDefinition 7, this algebra must contain algal/u1 du.

To this end, choose a half-line c C from 0 to oo such thatV; = C\ L is simply
connected. Let lm1 be a single-valued branch of the logarithm definedv@nSetV; =
C, i # 1, and letP be the algebra of polynomials in

1
u;, i >0, —, Inuj. (135)
u1
ThenP is a perfect algebra. Indeed, all conditions@éfinition 7 are obvious except
of Condition (2). The latter follows from the fact that for any Z, b € Z there is a
polynomialg in uy, 1/uj, Inuy such thabg/duy = uf In® uy.

Remark 14. Thus for Eq.(134) we study not the whole translation-invariant infinite pro-
longation, but the open dense subset

{(uo,u1,...)|lur € C\L, u; e CVi#1}
of it.

In Theorem 16we proved that every covering of the KdV equation is locally equivalent
to a covering in the canonical form satisfyi(@R) for all s > 1 anda; = 0, i > 1. For Eq.
(134) the pointu; = 0 is also crucial. However, one cannot prove the same statement for
coverings 0{134) because Au1 and Inu; are notdefined at; = 0. Let us make necessary
modifications.

Definition 10. A vector field

m
‘ 9
S = Twh, o w L ug)— 136

j§=ls(w w™, u “k)aw] (136)
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is said to be:1-free if each functions«/(wl, cow™u, L ug) is polynomial in
. 1
ui, 1 >1, —, Inup (137)
ujg
with coefficients dependent an wl, ..., w™ and the coefficient at the monomig{ is

zero. (This coefficient is well defined because the functions
ug In®uy, acZ be Zy,

are linearly independent.)

Definition 11. Letr € Z, andr < k — 2. A vector field

0

m
A =Za/(wl,...,wm,u,ul,...,uk)—.
7 Jw/
j:

is said to beweakly r-simple if it satisfies(92) for all s > 2 witha; =0, i > k —r, and
someao, ..., ar_r_1 € C.

In contrast to-simple vector fields, a weaklysimple vector field does not necessarily
satisfy(92) for s = 1.

Remark 15. In this section perfect functions are elements of the perfect algededined
above.

Lemma 14. Ifin Lemmas 6—9one replaces the condition that A satisfies (92)for all s > 1
by the condition that A is1-free and weakly (k — 2)-simple then the conclusions of these
lemmas remain valid.

Proof. Letus prove thatemma 9 (1yemains valid, since the other statements are proved
analogously.

So assume that(u, ..., u;) is us-free and weakly X — 2)-simple and that Eq(101)
holds. ByDefinition 11, A satisfieq92)for all s > 2. Therefore, the equations

aS
— =0 Vi>1 (138)
314,'

are proved in the same way asliamma 9 (1)
Let us prove thadS/du is also equal to zero. Fro01)for i = 1 we have

aS(u)
ou

122 sw=o. (130)
ouq
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SinceA is u-free and138)holds, the vector fieldjA /du1, S(u)] is either zero or depends
nontrivially on some;, i > 1. Combining this with(138) and (139)we obtain

N 0A
—=|—,8w)| =0. O
du duq

Theorem 19. For any covering of Eq. (134)
DB — D;A+[A, B] =0, (140)
A= A(u,us,...,u), B = B(u,us,...,u) (142)

(we omit the dependence on fibre coordinates w/) locally there is an equivalent covering
such that

(1) A, B are polynomial in (135),

(2) A is (k — 2)-simple and u1-free.

Proof. Let(141)be defined on a neighborhood of a paifit= g;.

Lemma 15.

(1) Foreachr < k — 2and any covering (140)there is a locally gauge equivalent covering

with r-simple A.
(2) If a covering (140) has r-simple A then the vector fields

A=A, ..., u)— A, ..., up—r—1,0,...,0),
B =B(u,...,ut)—B(u,...,ut_,41,0,...,0)

are primitive with respect to A and P.

Proof. This is proved similarly té.emma 10 Formulag116) and (117jor/ < k — 3 are
replaced by
5 up_y_y
A=P1+ ;2_ A/Z + A6(u, ey Ug—]—2),
1

2
~ Uf—]—1Uk—1+1 Up_; f
B=P+2 5 A/Z - — AIZ + Biq(u, .o Ug——2)ug——1Uk—]
u u
1 1
/ /
+ Byo(u, ..., ug—j—2)up—; + Bolu, ..., ug——1),

wherePy, P,, A} are primitive. [
By the above lemma far = k — 2, after a suitable gauge transformation we have

A=A+ Ao(u, uy), B = B’ + Bo(u, u1, uz, us), (142)
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where the vector fields
A'=Au, ..., u;) — A(u,u1,0,...,0),
B =B(u,...,u;)— B(u,uz, u3,0,...,0) (143)
are primitive andi is (k — 2)-simple.
Substituting(142)to (140), it is straightforward to obtain that
Ag=C+ uilAl(u) + u1Az(u) + Az(u), (144)

whereC is primitive.
The vector fieldA remains weakly { — 2)-simple and polynomial iff137) after any
gauge transformation of the form

w' s Flwt . w™, ). (145)
Let us find a gauge transformati¢t45) such thaA becomes:;-free. To this end, let

- B]
E cJ(wl,...,wm,u)—.
- Jw/
J=1

be the coefficient of at the monomiaks and consider the system of ordinary differential
equations

d . . .
af](wly---,wm,u)zcj(fl,...,fm,u), j=1...,m,

dependent on the parametar%, ..., w™. Its local solution with the initial condition
fj(wl,...,w’",ao)z w/, j=1...,m,

determines gauge transformati@d5)that makest u;-free.

By Lemma 14in Lemma 15 (2for r = k — 2 the condition thad is (k — 2)-simple can
be replaced by the condition thatis weakly ¢ — 2)-simple and:1-free. Therefore, after
this gauge transformation vector fields13) remain primitive and we have formu({a44)
with primitive u1-free C and Ao(u) = 0.

Now it is straightforward to show that

A(u,u1,0,...,0), B(u,uz,u3,0,...,0) (146)

are polynomial i(135). Therefore A andB satisfy the conditions of the theorem.[J

6.2. The fundamental algebras
Consider the following set of perfect functions:
Z = {(In* ul)uf)ouillué2 e ui"|i1 €7, a,io, iz, ...,ix € Ly, |i1]

+a+io+iz+---+ix >0}
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Similarly to the case of the KdV equation, from the proofibieorem 19t follows that for
eachk > 3 there are finite subsets

/

/ / / / /
wBcZ  ACAn  BiCBy

such that the following statement holds. If a cover(hg0)of Eq.(134)has & — 2)-simple
uq-freeA then it is of the form

A= " fAs+As B=> gB;+B, (147)
feA, geB,

where the vector fields

do not depend on;, i > 0.
Let us show that the conditions Befinition 5hold, if we set

A=A, U{1),  By=B,U{l.

Indeed, Condition (1) follows fronTheorem 19 Conditions (2)—(4) hold because, by
Lemmas 14, 6, 7 and 8re applicable to the canonical form of coverings described in
Theorem 19

Vector fieldg(147)satisfy(140)if and only if certain Lie algebra relations hold fr19).
Denote byf,fj\’z the quotient of the free Lie algebra generated by lettei®) over these
relations. We obtain the system of fundamental algebras

s fKN S KV s Y BN (149)

for Eq.(134).

Proposition 4 (Sokolov[17]). For each integer n > 2 there is a conserved current D; f, =
D,.g, of the form

2
u ~ UpUn4+2  ~
Ju :;Z+fn(ua~'-7ull—l)7 gn=2 M2 +gn(u,~--7un+l)a
1 1

where }n’ gy are polynomials in 1/uq, u;, i > 0.
Similarly to Lemma 5 we can find equivalent conserved currents

fo = fu+ Da(ln(u, . ..., up—2)), 8w = & + Di(hn(u, ..., un—2))
such that

e the functionsf,, g, are perfect,
e we have
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Un

(,...,us-1,0,...,00=0 Vs>2,
oug

e fis polynomial in(137)with zero coefficient at the monomiaj.

Example 12. We have

2
, o us  2h(u)
=7+775
G T
usu u 4 h(u)u u2u 9ul u?
i IO LRL CRNLL L
ug uy 3 uy uy 4ug uy

dh(u)@ }h(u)2
du u? 3 ul’

+2

Return to algebragl49) Let a; C f,f_Nz be the subalgebra generated &y, f € A,
anda; C f,f_NZ be the subalgebra generateddpy» andA;. Similarly to Lemma 11 we

obtain
Bea2 Vge B,
[B1, ar—2] C ax—2.

Fork > 5 vector field4147)can be rewritten as follows:

2
u ~
A=fi A2+ zg3A"‘2 + Ao, . .., up—a),

1
B = g}c_zAk*2 + Bo(u, ..., ux_1),
where

AF2=A, o AF2=A, o [A¥=2 A] =0,

oty ™’ U3ty "’
[A¥2, B] = 3[A0, A9,
Eqg. (154)implies

[AF2 &0 =0.

Combining this with(150) and (155)we obtain
[A*=2, B1] = 3[A1, A7),
[A*=2 a;_2] = 0.

Taking into accoun157) and (151and applying aéB1 to (156), we obtain

— (ad*'B1)(A* %) = 3[Aq, (adB1)(A*?)] Vs> 0.

(150)
(151)

(152)

(153)

(154)

(155)

(156)
(157)

(158)
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Similarly to Sectiorb.2, the obtained identities imply that for eakl> 5 the algebreﬁk 5 is
obtained from‘ 5 applying several times the operation of one-dimensional central exten-

sion.
Let us describe the algebrgfs" fori =0, 1, 2.

Theorem 20. Any covering of EQ.(134)of the form
DXB - DZA + [Av B] = Os A= A(M, ui, u2,us, I/l4), B = B(M, Ui, u2,us, M4)
is locally equivalent to a covering of the form

, 1
A= f3C+ A1) + Vi,
1

us3 2up 0A1  h(u)
B=g,C— —=A A — - —=A
52 u% 1_‘_23 1t u1 ou 3ui Lt
0A1 92 A1

f[Al, S 4 v

ou

where A1 = Ao+ uA11 + u2A12, the vector fields C, V;, Ay do notdepend onu;, i > 0,
and are subject to the following relations:

[C,Vi]=I[C, Au] =[V1, V2] =[Vi, Al =0 i=12 k=0,12, (159)
0A dh 0A
202 - Py, gpay 1an, Py =0 (160

Proof. This is proved by a straightforward computation following the scheme of the proof
of Theorem 19Relation(160)was obtained if6]. O

Eqg. (160)determines some relations between the vector figigs k = 0, 1, 2. Let us
describe the quotient of the free Lie algebra generatedpyover these relations.
Consider the idedl c C[vs, v2, v3] generated by the polynomials

vP— 5+ 8(ej—e), i j=123, (161)

wheree1, e, es are the roots of the polynomial(u). Set
E = C[vy, v2, v3]/Z.

That is, E is the ring of regular functions on the affine elliptic curveGf defined by
polynomials(161). The image ob; € Clvy, vz, v3]in E is denoted by ;. Consider also a
basisxi, x2, x3 of the Lie algebral>(C) = so3(C) with the relations

[x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2 (162)

and endow the spade = sl; ®¢ E with the Lie algebra structure described#6).
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Proposition 5 (Igonin [6]). Suppose that the roots e, e2, e3 of h(u) are distinct. The
quotient of the free Lie algebra generated by A1y, k = 0, 1, 2, over relations (160)is iso-
morphic to the subalgebra R C L generated by the elements

X1 ® V1, X2 Q@ v2, x3® vz € L.
From(159)we obtain
V=0, HVz=nec? HVNznecd
Theorem 21. The algebra ‘R is quasi-finite.
Proof. Belowwe assume everywherethatk, I} = {1, 2, 3}. Foreacly = 1, 2, 3consider
the subspac&; C C[vy, vz, v3] spanned by the monomiaﬂz?" vfk vf’ satisfying

di=dy+1=d+1 mod2 (163)

Denote byR; the image ofV; in the quotient spack.
The algebrdR was also studied ifil4] in connection with coverings of the Landau—
Lifshitz equation. In the proof of Lemma 3.1 [i4] it is shown that? = @3_, (x;) ® R;.
Let h C R be a subalgebra of finite codimension. Then the subsgace {f <
Rj|x;® f € b} is of finite codimension irR; for eachj = 1, 2, 3. In addition, from the
definition of R; and relationg162) we have

RjRx C R,  HjHy C H,. (164)
This implies that for allj = 1, 2, 3 the subspace

H;={a€ Hj|aRy C H), aR; C Hy} (165)
is also of finite codimension iR ;. From(164) and (165pne gets

HH; C Hj, HiR;RiR; C H. (166)

It is easy to see thakt; = (v;) + Ry R;. Therefore,

R% = (v%) + RjR¢Ry. (167)
For eachj = 1, 2, 3 the subspace

HY = {a € Hj|av; C H}, av; C H}, aRx C H,aR; C Hy) (168)
is of finite codimension irH} and, therefore, irR;. By definitions(168) and (165and
propertieq164), (166) and (167pne gets

RyH] C H/,  RHj C H{,

which implies thaaa?:l(xj) ® H} C his anideal ofR. SinceH} is of finite codimension
in R;, this ideal is of finite codimension #&. [0
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Collecting the results of this subsection and taking into accdhabrems 21 and, ®ne
obtains the following.

Theorem 22. The nonsingular Krichever-Novikov equation (134)possesses fundamental
algebras (149), where f(’)(N = 0. Each f,fN for n > 0 is quasi-finite and is obtained from R
applying several times the operation of one-dimensional central extension.

7. Coverings of the equation u; = u .,

In this section we study the linear equation
Ur = Uxxx- (169)

The following theorem is proved by a straightforward computation.
Theorem 23. Any Wahlquist—Estabrook covering
DyB—D;A+[A,Bl=0, A= A(u,u1,u2), B= B(u,uy, u)

of Eq. (169)is of the form
A =u?As +uA1 + Ao,
B = u3(2uAz + A1) — ujAz + ua[ A1, Ag] — 3u?[A1, [A1, Ad]]
+u[Ao, [Ao, A1]] + Bo,

1

where the vector fields A;, Bg depend only on w=, ..., w™ and are subject to the relations

[Ao, A2] =[A1, A2] =0, (170)
[Ao, Bo] =0, (171)
[A1,[A1, [A1, Ag]]] =0, (172)
[A2, Bo] = 3[Ao. [A1, [A1, Ad]]], (173)
[Bo, A1] = [Ao, [Ao, [Ao, A1]]]. (174)

Denote byt the quotient of the free Lie algebra generatediby By over relationg170)—
(174). Similarly to Sectiorb.10one proves the following.

Theorem 24. Egq. (169)possesses a system of fundamental algebras, which are obtained
from N applying several times the operation of one-dimensional central extension.

Let us present some information on the structur@tof

Theorem 25. There are ideals 'N;, i € Z, of N such that
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e =0, ‘Itic‘ﬁ,url Vi€Z+,
® the quotient N;1/MN; is commutative for all i € Z,
® the quotient N/ U; N; is solvable.

Proof. For a subsef of a Lie algebra we denote k) the ideal generated by this subset.
For simplicity, below the images aod;, Bg € 91 in quotients of)t are denoted by the
same symbolgt;, Bg. From the relations that define the algeBtane easily obtains the
following.

Lemma 16. Let Q be a quotient algebra of N and C be an element of the subalgebra
of Q generated by A;. If [Ag, C] = [A1, C] = O then the ideal (C) C Q is spanned by the
elements (ad* Bo)(C), k € Z., and is commutative.

Let us construct the required idedk. Set9lp = 0 and91t; = (A2). Combining relation
(170) with the above lemma, we see tha§ /9 = 11 is commutative. By induction on
i €N, set

Nir1 = (M, [A1, (@d* T A0)(AD)]). (175)
Lemma 17. For all i > 1in the quotient algebra 1/MN; we have

[(@d¥A)(A1), (@d'Ao)(A1)] =0 VkIleZy k+1<2i—2 (176)

[Ao. [A1. (@d® T Ap)(AD)]] = [A1. [A1. (@d¥ T Ap)(AD)]] = 0. 77

Proof. Let us prove this by induction ain Fori = 1 relation(176)is trivial, and relation
(177)follows from (172) and (173)Suppose that the statement holdsifern > 1 and let
us prove it fori = n + 1. By the induction assumption, relatio(&76) for i = n hold in
I/N,+1. By Definition 175 we have also

[A1, (@d®'*A0)(A1)] = O, (178)
Applying the Jacobi identity t¢178)and taking into accour{fL76)for i = n, we obtain
[(@d*Ag)(A1), (ad'A0)(A1)] =0 Vk le€Zy k+1<2n—1. (179)

By the same argument, we have
[(ad* Ao)(A1). (ad' Ap)(A1)] = —[(ad“ T A)(A1). (ad T Ao)(A1)] Vk+1=2n.
(180)
Using this, we obtain
[(ad* Ao)(A1). (ad' Ap)(A1)] = [(ad' Ao)(A1). (ad* Ap)(A1)] =0 Vk+1=2n.
(181)

Relationg(179) and (181)mply (176)fori = n + 1.
It remains to provél77)fori = n + 1, that is,

[Ao, [A1, (@d® T Ag)(A1)]] = O, (182)
[A1, [A1, (@d* T Ag)(A1)]] = 0. (183)
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Relation (183) follows easily from the Jacobi identity combined witti76) for
i=n+1.
Similarly to (180)we have

[(ad“ A)(A1), (ad’ Ao)(A1)]
= —[(ad“"tAg)(A1), (adtA0)(A1)] Vik+I=2n+1 (184)
Setl = [A1, (ad?*t1Ap)(A1)]. Using (184), one gets
I = (—1)"[(ad" Ag)(A1), (ad" " Ag)(A1)]
= (-1)""(ad" "t A0)(A1), (ad" T2 Ag)(A1)].
Applying adAg to this equality, we obtain
[Ao. 1] = (—1)"[(ad" Ao)(A1). (ad" T2 Ap)(A1)]
= (—1)""([(ad" Ao)(A1), (ad"*?Ag)(A1)]
+[(ad" " Ap)(41), (ad" 3 Ao)(A1))). (185)
On the other hand, applying &3 to [(ad"1Ao)(A1), (ad” Ag)(A1)] = 0 and taking
into accoun{(174) and (113)one gets
[(ad"*2Aq)(A1), (ad" Ao)(A1)] + [(ad"Ag)(A1), (ad" T3 Ag)(A1)] = O.

Combining this with(185), we obtain |g, 7] = 0, which proves relatio(l83) O

By Lemma 16 relation(177) implies thatt,1/9%; is commutative. Relatio(iL76) says
that in the quotient algebfg/ U; 91; we have

[(ad“A0)(A1), (ad'A0)(A)] =0 Ykl € Z, (186)

which implies that this quotient @ft is solvable. O
Theorem 26. The algebra N is not quasi-finite.

Proof. In the quotient algebra@t/ U; M; denotec;, = (ad*Ag)(A1). Consider the subal-
gebrag of 91/ U; M; generated byBy and ¢x. Obviously, for a quasi-finite algebra any
quotient algebra and any subalgebra of finite codimension are also quasi-finite. Therefore,
it is sufficient to prove that the algebgds not quasi-finite.

Relations(186) say that ¢, ¢;] = 0, while relationg174) and (113)mply [Bo, cx] =
cr+3. Letmy, k € Z4, be a sequence of nonzero complex numbers satisfyipg =
—(k + 1)my. Consider the following transitive action gfon the manifoldM = {(x, y) €
C?|x#0, y#0}

. my 0 B> 10
AR dy’ 07 ax
By Theorem 7since the image of in D(M) is infinite-dimensional, the algebggis not
quasi-finite. O
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8. Nonexistence results for Biacklund transformations

Theorem 27. Eq. (169)is not connected by any Bdicklund transformation neither with the
KdV equation nor with the nonsingular Krichever—Novikov equation.

Proof. Below a Lie subalgebra denoted hyh?, or h2 is always supposed to be of finite
codimension. The following lemma is obvious.

Lemma 18. Let g be a finite-dimensional semisimple Lie algebra. Suppose that a Lie
algebra g1 is obtained from a Lie algebra g2 applying several times the operation of one-
dimensional central extension. Then each of the following properties holds for i = 1 if and
only if it holds fori = 2:

® There are a subalgebra by C g; and an epimorphism ) — g.
e For any subalgebra by C g; there is an epimorphism ) — g.

Setg = sl5(C). Letus prove firstthat there is n@Bklund transformation between E#69)
and the nonsingular Krichever—Novikov equation. Combirieghma 18with Theorems
22, 24 and 14we see that it is sufficient to prove that for any subalgebtas R, 2 c N
there is an epimorphisitit — g, but there is no epimorphisti? — g.

There is a natural family of epimorphisr®% — g parameterized by the points of the
affine curve inC3 given by polynomial§161). Namely, for a pointdz, a2, a3) of the curve
the generatox; ® v; of & is mapped ta;x; € g. Sinceh? is of finite codimension ifk,
here are polynomials;(v1, v2, v3) and a point 41, ap, az) of the curve such that; ® f;
belongs toh! and fi(a1, az, a3) # 0 for all i = 1, 2, 3. Then the restriction t§* of the
corresponding homomorphism: )R — g is surjective, since the elements

p(xi ® fi) = filar, az,a3)x;, =123,

spang.

Nonexistence of an epimorphish? — g follows from Theorem 25Indeed, suppose
that there is an epimorphisp: h2 — g. Sinceh? N N; is solvable, we have(h? N N;) = 0
for all i. Therefore, there is an epimorphism

H2/(h% N (UM)) — g,

which is impossible, sincgt/ U; N; is solvable.

Let us now prove that there is naaBklund transformation between H§69) and the
KdV equation. Since, according fbheorem 17 each fundamental algebra of the KdV
equation is obtained fropp® C[1] applying several times the operation of one-dimensional
central extension, it is sufficient to prove that for any subalggbra g ® C[1] there is an
epimorphismh® — g. Consider the natural family of epimorphisms

Pa:g®CA =g, ¢®f(W) > fla)g. acC.
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Sinceh?! is of finite codimension, for some of these epimorphisms its restrictidyt ie
surjective. O
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