
The Diffiety Institute Preprint Series

Preprint DIPS–4/2003 June 16, 2003
Revised May 12, 2005

Available via INTERNET:
http://diffiety.ac.ru; http://diffiety.org

The Diffiety Institute

Coverings and the fundamental group
for partial differential equations

by

Sergei IGONIN



Coverings and the fundamental group
for partial differential equations

SERGEI IGONIN

Abstract. Following I. S. Krasilshchik and A. M. Vinogradov [8], we regard PDEs as
infinite-dimensional manifolds with involutive distributions and consider their special
morphisms called differential coverings, which include constructions like Lax pairs and
Bäcklund transformations. We show that, similarly to usual coverings in topology,
at least for some PDEs differential coverings are determined by actions of a sort of
fundamental group. This is not a group, but a certain system of Lie algebras, which
generalize Wahlquist-Estabrook algebras. From this we deduce an algebraic necessary
condition for two PDEs to be connected by a Bäcklund transformation. We compute
these infinite-dimensional Lie algebras for several KdV type equations and prove non-
existence of Bäcklund transformations.

As a by-product, for some class of Lie algebras g we prove that any subalgebra of
g of finite codimension contains an ideal of g of finite codimension.
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Introduction

In this paper we study special correspondences called (differential) coverings between
systems of PDEs. Roughly speaking, a covering E1 → E2 is a differential mapping from
one system E1 to another system E2 such that the preimage of each local solution of E2

is a family of E1 solutions dependent on a finite number m of parameters.
For example, if v(x, t) is a solution of the modified KdV equation

(1) vt = vxxx − 6v2vx

then the function

(2) u = vx − v2

satisfies the KdV equation ut = uxxx +6uux. This is the famous Miura transformation,
which determines a covering from the modified KdV equation to the KdV equation. For
a given local solution u(x, t) of the KdV equation, a one-parameter family of functions
v(x, t) is recovered from equations (2) and (1). That is, we have m = 1 for this covering.
In general, systems E1 and E2 may be overdetermined, but must be consistent.

More precisely, following [1, 8, 9], we regard E1, E2 as submanifolds in infinite jet
spaces. The (usually infinite-dimensional) submanifold of infinite jets satisfying a sys-
tem of PDEs is called the infinite prolongation of the system and possesses a canonical
involutive distribution called the Cartan distribution. This distribution is spanned by
the total derivative operators (regarded as commuting vector fields on the infinite jet
space) with respect to the independent variables. A (differential) covering τ : E1 → E2

is a bundle of finite rank1 m such that the differential τ∗ maps the Cartan tangent
subspaces of E1 isomorphically onto the ones of E2. Note that even local classification of
coverings is highly nontrivial due to different possible configurations of the distributions.

It was shown in [8] that all kinds of Lax pairs, zero-curvature representations, Wahlquist-
Estabrook prolongation structures, and Bäcklund transformations in soliton theory are
special types of coverings. In particular, a Bäcklund transformation between two sys-
tems E1 and E2 is given by another system E3 and a pair of coverings E1 ← E3 → E2.

The name ‘coverings’ for such bundles is used because they include usual topological
coverings of finite-dimensional manifolds, see Example 3 below.

1One can consider also coverings of infinite rank [1, 8], but we study only the case of finite rank
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Recall that for a finite-dimensional manifold M its topological coverings are in one-
to-one correspondence with actions of the fundamental group π1(M) on (discrete) sets.
The main result of this paper is that at least for some PDEs E differential coverings
are also determined by actions of a sort of fundamental group. However, this is not a
group, but a certain system of Lie algebras that we call the fundamental algebras of E .
They are arranged in a sequence of epimorphisms

(3) · · · → fk+1 → fk → · · · → f1 → f0.

Differential coverings of rank m are determined by actions of these Lie algebras on
m-dimensional manifolds W , that is, homomorphisms from fk to the algebra D(W )
of vector fields on W . Two coverings are isomorphic if and only if the corresponding
actions are isomorphic.

More precisely, the following facts hold:

• for each action ρ : fk → D(W ) we introduce an involutive distribution on the
manifold E × W such that the trivial bundle E × W → E becomes a covering
denoted τ(ρ) (here E is endowed with the fixed Cartan distribution),

• for any covering τ : Ẽ → E we define an action ρ(τ) : fk → D(Ẽ) for some k such
that τ∗ρ(τ) = 0,

• for an action ρ0 : fk → D(W ) and the covering τ = τ(ρ0), the action ρ(τ) is
equal to the composition of the natural embedding D(W ) ⊂ D(E ×W ) with the
action ρ0,

• a morphism of coverings τ1 and τ2 of E induces a morphism of the actions ρ(τ1)
and ρ(τ2),

• a covering Ẽ → E on a neighborhood of each point of Ẽ is isomorphic to the
covering τ(ρ) for some action ρ of fk and some k.

The algebra f0 is equal to the Wahlquist-Estabrook prolongation algebra of E [8, 20,
22]. To obtain algebras fk for k ≥ 1, we replace the Wahlquist-Estabrook ansatz by
jets of arbitrary order and find a canonical form of coverings with respect to the local
gauge equivalence.

Note that some similarity between Wahlquist-Estabrook algebras and the topological
fundamental group was noticed in [9]. However, before the present paper this idea was
not developed and did not lead to any applications.

We prove that all finite-dimensional quotients of the fundamental algebras are coordinate-
independent invariants of the system of PDEs. Namely, recall that quotients of the topo-
logical fundamental group π1(M) occur as automorphism groups of regular topological
coverings of M . Similarly, finite-dimensional quotients of the fundamental algebras
occur as Lie algebras of infinitesimal automorphisms of certain coverings of E .

We conjecture that the fundamental algebras themselves are also coordinate-independent
invariants and hope to prove this elsewhere using the homological techniques of [5, 12,
21].

We formulate some conditions for a system of PDEs to possess fundamental algebras.
We check these conditions and compute algebras (3) for three PDEs: the KdV equation,
the nonsingular Krichever-Novikov equation, and the linear equation

(4) ut = uxxx.
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In all three cases each fk is obtained from a single Lie algebra K applying several times
the operation of one-dimensional central extension.

For the KdV equation we have K = sl2(C) ⊗C C[λ].
For the nonsingular Krichever-Novikov equation the algebra K is isomorphic to a

certain subalgebra of the tensor product of sl2(C) with the algebra of regular functions
on an affine elliptic curve. Note that in this case f0 = 0, that is, the Wahlquist-Estabrook
ansatz gives no nontrivial coverings.

For equation (4) the algebra K possesses a filtration by solvable ideals

K0 ⊂ K1 ⊂ · · · ⊂ Kk ⊂ · · · ⊂ K

such that the quotient K/ ∪∞
k=0 Kk is solvable as well.

The described methods to compute fundamental algebras can be applied to other
evolution equations as well.

In order to develop this theory, we obtain the following results on Lie algebras,
which may be of independent interest. A Lie algebra g is said to be quasi-finite if any
subalgebra of g of finite codimension contains an ideal of g of finite codimension. We
prove that

• a central extension of a quasi-finite algebra is quasi-finite,
• for a finite-dimensional semisimple Lie algebra g and a commutative associative

algebra A the tensor product g ⊗A regarded as a Lie algebra is quasi-finite,
• the algebra K of the nonsingular Krichever-Novikov equation is quasi-finite.

Recall that for a connected topological covering M̃ → M one has π1(M̃) ⊂ π1(M).
It turns out that some analog of this property is also valid for differential coverings, see
Theorems 12 and 13.

We obtain also a necessary condition for two systems of PDEs possessing fundamental
algebras to be connected by a Bäcklund transformation: their fundamental algebras
have to be similar in a certain sense, see Theorem 14. As an example of using this
necessary condition, we prove that equation (4) is not connected by any Bäcklund
transformation neither with the KdV equation nor with the nonsingular Krichever-
Novikov equation. Note that this is apparently the first rigorous non-existence result
for Bäcklund transformations.

In this paper we consider only complex-analytic PDEs. Generalization of this theory
to smooth PDEs is possible, but is a little more technical, since the analogs of Propo-
sition 3 and Theorem 7 for smooth manifolds do not hold. However, practically all
results will remain valid in the smooth case if one excludes from considered manifolds
a thin subset of degenerate points. Detailed exposition for smooth PDEs will be done
elsewhere.

1. Basics

In this section we review some notions of PDE geometry, actions of Lie algebras on
manifolds and prove auxiliary lemmas needed for further theory.

In Subsections 1.2–1.6 we mainly follow [1, 8, 10]. However, there are certain modifica-
tions because of the fact that we deal with complex-analytic manifolds, while in [1, 8, 10]
only smooth manifolds are considered. In particular, we have to use sheaves instead of
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globally defined functions. Besides, the notions of subequations and irreducible equa-
tions are new.

Most of the notions of Subsection 1.7 are studied in more detail in [4].
In order to be more readable, all concepts of PDE geometry are introduced in two

ways: invariant and coordinate.

1.1. Some terminology. In this paper all manifolds, functions, vector fields, and
mappings are supposed to be complex-analytic.

For a manifold M we denote by D(M) the Lie algebra of vector fields on M . For a
function f on M and a point a ∈ M , the differential of f at a is denoted by daf .

The differential of a mapping ϕ : M1 → M2 of manifolds is denoted by ϕ∗.
Z+ is the set of nonnegative integers.
For subspaces V1, . . . , Vk of a linear space, the space 〈V1, . . . , Vk〉 is the linear span of

V1, . . . , Vk.
In this paper a surjective submersion is called a bundle. To emphasize its properties

that in Section 1.2 will be extended to infinite-dimensional manifolds, we give the
following definition.

Definition 1. A mapping ϕ : M1 → M2 of manifolds is called a bundle if

• the mapping ϕ is surjective,
• for any point a ∈ M1 there is a neighborhood a ∈ U ⊂ M1 and a manifold W

such that ϕ(U) is open in M2 and one has the commutative diagram

U
ξ → ϕ(U) × W

�
�

�ϕ � ��
�

�

p
ϕ(U)

where ξ is a complex-analytic diffeomorphism and p is the projection to the first
factor.

In this case the preimages ϕ−1(b) of points b ∈ M2 are submanifolds in M1

and are called the fibres of ϕ. They are not necessarily isomorphic to each other,
but have the same dimension called the rank of ϕ.

For a bundle ϕ : M1 → M2, a vector field V ∈ D(M1) is said to be ϕ-vertical if
ϕ∗(V ) = 0.

In what follows we say that a certain property holds locally if it holds on a neighbor-
hood of each point of the manifold under consideration.

1.2. Infinite-dimensional manifolds. We want to extend the category of finite-di-
mensional manifolds in order to include certain type of infinite-dimensional manifolds
that occur in PDE geometry.

Definition 2. Define a category INF as follows.

• First, an elementary object of INF is an infinite chain of bundles

(5)
ϕi+2,i+1−−−−−→ M i+1 ϕi+1,i−−−→ M i ϕi,i−1−−−→ . . .

ϕ1,0−−→ M0,

where M i are finite-dimensional manifolds.
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Two elementary objects

{M i
1, ϕ

1
i+1,i}, {M i

2, ϕ
2
i+1,i}

such that

∃ p, q ∈ Z M i+q
1 = M i

2, ϕ1
i+q+1,i+q = ϕ2

i+1,i ∀ i ≥ p

are regarded to be identical.
Denote by M elementary object (5). A point of M is a sequence

(6) (a0, a1, . . . , ai, . . . ), ai ∈ M i, ϕi+1,i(ai+1) = ai ∀ i ≥ 0.

Let us introduce a topology on the set |M| of points of M. Let U be an open
subset of some Mp. Denote by Ui, i ≥ p, the preimage of U in Mp+i under
bundles (5). The subset of points (6) such that ai ∈ Ui for all i ≥ p is called the
elementary open subset of |M| corresponding to U and is denoted by S(U). By
definition, elementary open subsets form a base of the topology on |M|.

Let us define the structure sheaf of functions on |M|. Each (complex-analytic)
function f : U → C determines the following function on S(U)

(a0, a1, . . . , ai, . . . ) �→ f(ap).

Such functions on S(U) are said to be elementary. Now let Z be an open subset
of |M|. A function g : Z → C belongs to the structure sheaf if and only if for each
point a ∈ Z there is an elementary open subset S(U) such that a ∈ S(U) ⊂ Z
and the restriction of g to S(U) is an elementary function.

• If

M1 = {M i
1, ϕ

1
i+1,i}, M2 = {M i

2, ϕ
2
i+1,i}

are two elementary objects of INF then a morphism ψ : M1 → M2 is given by
α, k ∈ Z and a system of maps

ψi : M i+α
1 → M i

2, i ≥ k,

satisfying

∀ i ≥ k ϕ2
i+1,i ◦ ψi+1 = ψi ◦ ϕ1

i+α+1,i+α.

• Now an object of INF is a topological space with a sheaf of complex-valued
functions that is locally isomorphic to an elementary object of INF. A mapping
of objects of INF is a morphism if locally it is a morphism of elementary objects.

Remark 1. Although this definition is rather sketchy, it is sufficient for us, because all
objects of INF considered in this paper are open subobjects of elementary objects.

Example 1. With each finite-dimensional manifold M we associate the following ele-
mentary object of INF

→ M → M → · · · → M,

where all arrows are the identity mappings. This construction identifies the category
of finite-dimensional manifolds with a subcategory of INF.
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Let M be an object of INF. The sheaf of vector fields on M is defined in the
standard way as the sheaf of derivations of the structure sheaf. It is a sheaf of modules
over the structure sheaf of algebras.

In particular, if M is elementary object (5) then a tangent vector at a point (6) of
M is a sequence

(v0, v1, . . . , vi, . . . ), vi ∈ TaiM
i, (ϕi+1,i)∗(vi+1) = vi ∀ i ≥ 0.

The vector space of all tangent vectors at a point a is denoted by TaM.
A distribution on M is a locally free subsheaf of submodules of the vector fields

sheaf. In other words, a distribution D of rank k distinguishes for each point a of M a
subspace

Da ⊂ TaM, dimDa = k,

such that locally there are vector fields X1, . . . , Xk that span the subspaces Da.
For a finite-dimensional manifold W and an object M of INF, one defines the object

M× W of INF as follows. It is sufficient to consider the case when M is elementary
object (5). Then M× W is the elementary object

→ M i+1 × W
ϕi+1,i×id−−−−−→ M i × W → · · · → M0 × W.

Now one easily extends Definition 1 of bundles to the case when M1, M2 are objects of
INF. However, we always assume the fibres W to be finite-dimensional manifolds.

In what follows, when we speak of functions on an object of INF, we always assume
that the functions belong to the structure sheaf.

For the sake of simplicity, below objects of INF are also called manifolds, and mor-
phisms of INF are called mappings.

1.3. PDEs as manifolds with distributions. Let π : E → M be a bundle of finite-
dimensional manifolds and

θ ∈ E, π(θ) = x ∈ M.

Consider a local section f of π whose graph passes through the point θ. Denote by [f ]kx
the class of all local sections whose graphs are tangent to the graph of f at θ with order
≥ k. The set

Jk(π) = { [f ]kx | f is a local section of π, x ∈ M }
carries a natural structure of a manifold and is called the manifold of k-jets of the
bundle π. Moreover, the natural projections

πk : Jk(π) → M, [f ]kx �→ x,

πk,k−1 : Jk(π) → Jk−1(π), [f ]kx �→ [f ]k−1
x ,

are bundles. The infinite sequence of bundles

(7) · · · → Jk(π)
πk,k−1−−−→ Jk−1(π) → · · · → J1(π)

π1,0−−→ J0(π) = E

determines an object of INF that is called the manifold of infinite jets of π and is
denoted by J∞(π).

For each local section f of π we have the local sections

jk(f) : M → Jk(π), x �→ [f ]kx,
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of the bundles πk, k = 0, 1, . . . . These sections determine the local section

j∞(f) : M → J∞(π)

of the natural projection π∞ : J∞(π) → M .
There is a unique distribution C on J∞(π) such that for any point x ∈ M and any

local section f of π over a neighborhood of x we have

(8) Cj∞(f)(x) = j∞(f)∗
(
TxM

)
.

This distribution is of rank dimM and is called the Cartan distribution of J∞(π).
Consider a system of PDEs of order k imposed on sections of the bundle π. We

assume that it determines a submanifold E0 ⊂ Jk(π) of the manifold Jk(π) such that
the mapping πk

∣∣
E0 : E0 → M is a bundle. Then a local section f of π is a solution of

the system of PDEs if and only if the graph of jk(f) is contained in E0.
For each l ∈ Z+ the l-th prolongation of E0 is the set

E l = { [f ]k+l
x ∈ Jk+l(π) | the graph of jk(f) is tangent to E0

with order ≥ l at [f ]kx ∈ E0 },

l = 0, 1, . . . . Restricting the maps πk+l,k+l−1 to E l and preserving the same notation for
these restrictions, we obtain the sequence of maps

(9) · · · → E l πk+l,k+l−1−−−−−−→ E l−1 → · · · → E0.

Imposing natural conditions of regularity, we assume that all E l are submanifolds of
Jk+l(π), while mappings (9) are bundles. The obtained object E of INF is called the
infinite prolongation of the initial system of PDEs.

In what follows all considered systems of PDEs are supposed to satisfy these regularity
assumptions and, therefore, possess infinite prolongations. Below such object E of INF
is sometimes simply called an equation.

The distribution C is tangent to E . Its restriction to E is denoted by CE and is
called the Cartan distribution of E . It satisfies [CE , CE ] ⊂ CE . Since E is infinite-
dimensional, this does not generally imply existence and uniqueness of maximal integral
submanifolds.

Definition 3. Let E be an object of INF and D be a distribution on it. A subset
E ′ ⊂ E is called a subequation of the pair (E ,D) if E ′ is a submanifold of codimension
l < ∞ and D is tangent to E ′. More precisely, this means the following. We have
E ′ �= ∅, and for each point a ∈ E ′ there are a neighborhood a ∈ U ⊂ E and functions
f1, . . . , fl on U such that

• E ′ ∩ U = {q ∈ U | f1(q) = · · · = fl(q) = 0},
• for any b ∈ U the differentials dbf1, . . . , dbfl ∈ T ∗

b E are linearly independent,
• the ideal of functions on U generated by f1, . . . , fl is preserved by the action of

vector fields from D.

In this case E ′ is also an object of INF with the distribution D
∣∣
E ′. The number l is

called the codimension of the subequation E ′.
A pair (E ,D) is said to be irreducible if E is connected as a topological space and

there is no subequation E ′ ⊂ E of finite nonzero codimension.
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Let E be the infinite prolongation of a system of PDEs. Then subequations of E
are subequations of the pair (E , CE), and E is called irreducible if the pair (E , CE) is
irreducible.

Remark 2. The term ‘subequation’ is motivated by the fact that a pair (E , CE), as we
agreed above, is sometimes called an equation.

1.4. Coordinate description. Consider a bundle π : E → M . Let x1, . . . , xn be local
coordinates in M and u1, . . . , ud be local coordinates in fibres of π. For a symmetric
multi-index σ = i1 . . . ik set

(10) uj
σ =

∂kuj

∂xi1 . . . ∂xik

.

These functions along with x1, . . . , xn form a system of local coordinates for the infinite-
dimensional space J∞(π). The topology on J∞(π) is the following. Choose a finite
number uj1

σ1
, . . . , ujr

σr
of coordinates (10) and consider the mapping

J∞(π) → C
n+r, a �→

(
x1(a), . . . , xn(a), uj1

σ1
(a), . . . , ujr

σr
(a)

)
.

The preimages of open subsets of Cn+r, r ∈ Z+, under such mappings are by defini-
tion open subsets of J∞(π) and form a base of the topology on J∞(π). Admissible
functions on open subsets of J∞(π) may depend on x1, . . . , xn and a finite number of
coordinates (10). Below all functions are supposed to be admissible.

The total derivative operators

(11) Dxi =
∂

∂xi
+

∑
σ,j

uj
σi

∂

∂uj
σ

, i = 1, . . . , n,

are commuting vector fields on J∞(π) and span the Cartan distribution.
Consider a system of PDEs

(12) Fα(xi, u
k, uj

σ, . . . ) = 0, α = 1, . . . , s,

in the bundle π. The basic idea of the described approach is to treat (12) not as
differential equations in uk, but as analytic equations in variables (10) and xi.

The differential consequences of (12) are

(13) Dxi1
. . .Dxir

(Fα) = 0, ik = 1, . . . , n, α = 1, . . . , s, r = 0, 1, . . . .

The infinite prolongation E ⊂ J∞(π) of system (12) is distinguished by equations (13).
The vector fields Dxi are tangent to E , and their restrictions to E will be denoted by
the same symbol Dxi. They span the Cartan distribution CE of E .

Example 2. Consider a scalar evolution equation in two independent variables x, t

(14) ut = F (x, t, u, u1, u2, . . . , up), uk =
∂ku

∂xk
, u = u0.

Its infinite prolongation has the natural coordinates x, t, uk, k ≥ 0, since using differ-
ential consequences of (14) all t-derivatives are expressed in terms of these. The total
derivative operators are written in these coordinates as follows

Dx =
∂

∂x
+

∑
j≥0

uj+1
∂

∂uj

, Dt =
∂

∂t
+

∑
j≥0

Dj
x(F )

∂

∂uj

.
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1.5. Differential coverings.

Definition 4. Let E be an object of INF endowed with a distribution D such that
[D,D] ⊂ D. A (differential) covering of (or over) the pair (E ,D) is given by a bundle
of finite rank

(15) τ : Ẽ → E
and a distribution Dτ on Ẽ such that

• [Dτ ,Dτ ] ⊂ Dτ ,
• for each a ∈ Ẽ the differential τ∗ maps the space

(
Dτ

)
a
⊂ TaẼ isomorphically

onto the space Dτ(a) ⊂ Tτ(a)E .

An invertible mapping ϕ : Ẽ → Ẽ such that τ ◦ϕ = τ is called a gauge transformation.
The covering given by the same bundle τ and the new distribution ϕ∗(Dτ) on Ẽ is said
to be (gauge) equivalent to the initial covering.

Similarly, a morphism between two coverings τi : Ei → E , i = 1, 2, over the same pair
(E ,D) is a mapping ϕ : E1 → E2 such that τ1 = τ2 ◦ ϕ and ϕ∗(Dτ1) ⊂ Dτ2 .

A τ -vertical vector field X ∈ D(Ẽ) is called a (gauge) symmetry of τ if [X,Dτ ] ⊂ Dτ .
This means that the local flow of X (if it exists) consists of automorphisms of τ . The
Lie algebra of symmetries is denoted by Sym τ .

Covering (15) is said to be irreducible if both pairs (E ,D) and (Ẽ ,Dτ ) are irreducible.

Example 3. Let us show that usual topological coverings are a particular case of
this construction. Let M be a finite-dimensional manifold and D be the whole tangent
bundle of M . Coverings of rank 0 over (M,D) are just topological coverings τ : M̃ → M ,
where dim M̃ = dim M and Dτ is the whole tangent bundle of M̃ .

If the distribution on E is clearly fixed, we speak of coverings over E (without men-
tioning the distribution).

Let now E be the infinite prolongation of a system of PDEs (12). In this case we fix
D to be the Cartan distribution CE .

Let us describe a covering (15) in local coordinates. Recall that locally CE is spanned
by Dxi. Therefore, locally there is a unique n-tuple of vector fields

(16) D̃xi ∈ Dτ , i = 1, . . . , n,

on the manifold Ẽ such that

τ∗(D̃xi) = Dxi ,(17)

[D̃xi, D̃xj ] = 0, ∀ i, j = 1, . . . , n.(18)

Moreover, vector fields (16) span the distribution Dτ .
If X ∈ Sym τ then we have

(19) [X, D̃xi] = 0, i = 1, . . . , n.

Below in this section we consider equations in two independent variables x and t, i.e.,
n = 2. Locally the bundle τ is trivial

(20) τ : E × W → E , dimW = m < ∞.

Let w1, . . . , wm be local coordinates in W .
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From (17) we have

(21) D̃x = Dx + A, D̃t = Dt + B,

where

(22) A =
m∑

j=1

aj ∂

∂wj
, B =

m∑
j=1

bj ∂

∂wj

are τ -vertical vector fields on E × W . Condition (18) is written as

(23) DxB − DtA + [A, B] = 0,

where

DxB =
m∑

j=1

Dx(b
j)

∂

∂wj
, DtA =

m∑
j=1

Dt(a
j)

∂

∂wj
.

A covering equivalent to the one given by A = B = 0 is called trivial.
The manifold E × W is itself isomorphic to the infinite prolongation of the system

that consists of equations (12) and the following additional equations

(24)

∂wj

∂x
= aj(x, t, wk, ui

σ, . . . ),

∂wj

∂t
= bj(x, t, wk, ui

σ, . . . ),

j = 1, . . . , m.

This overdetermined system is consistent modulo (12) if and only if (23) holds on E .
The vector fields Dx + A, Dt + B are the restrictions of the total derivative operators
to E × W . That is, the distribution Dτ is the Cartan distribution of this system.

Gauge transformations correspond to invertible changes of variables

(25) x �→ x, t �→ t, ui
σ �→ ui

σ, wj �→ gj(x, t, wk, ui
σ, . . . ), j = 1, . . . , m,

in (24). A covering is trivial if and only if it is obtained by such change of variables
from the trivial system

∂wj

∂x
=

∂wj

∂t
= 0, j = 1, . . . , m.

Therefore, classification of coverings over E up to local isomorphism is equivalent to
classification of consistent modulo (12) systems (24) up to locally invertible changes of
variables (25).

Example 4. Consider a covering of rank 1

(26)
∂w

∂x
= a(x, t, w, u, u1, . . . , uk),

∂w

∂t
= b(x, t, w, u, u1, . . . , uk)

over the infinite prolongation of equation (14). After a gauge transformation

w �→ f(x, t, w, u, u1, . . . , ur),
∂f

∂w
�= 0,
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system (26) changes to the following system

∂w

∂x
=

1
∂f
∂w

(
a(x, t, f, u, u1, . . . , uk) − Dxf

)
,

∂w

∂t
=

1
∂f
∂w

(
b(x, t, f, u, u1, . . . , uk) − Dtf

)
,

f = f(x, t, w, u, u1, . . . , ur),

which represents an equivalent to (26) covering.

Recall that in the case of two independent variables x, t a conserved current of E is
a pair of functions (f, g) on E satisfying

(27) Dtf = Dxg.

Two conserved currents (f1, g1) and (f2, g2) are called equivalent if there is a function h
such that

(28) f2 − f1 = Dx(h), g2 − g1 = Dt(h).

For a conserved current (27) the pair of vector fields

A = f(x, t, ui
σ, . . . )

∂

∂w
, B = g(x, t, ui

σ, . . . )
∂

∂w

satisfies (23) and determines a covering of rank 1.
Equivalent conserved currents (28) determine equivalent coverings. Indeed, the cor-

responding gauge transformation is w �→ w + h.

1.6. Coverings as transformations of PDEs. Consider two systems of PDEs

Fα

(
x, t, u1, . . . , ud1,

∂p+quj

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , s1,(29)

Gα

(
x, t, v1, . . . , vd2 ,

∂p+qvj

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , s2,(30)

and a mapping

(31) uj = ϕj
(
x, t, v1, . . . , vd2 ,

∂p+qvl

∂xp∂tq
, . . .

)
, j = 1, . . . , d1,

such that the following conditions hold.

(1) For each local solution v1(x, t), . . . , vd2(x, t) of system (30) functions (31) con-
stitute a local solution of (29).

(2) For each local solution u1(x, t), . . . , ud1(x, t) of (29) the system that consists of
equations (30) and (31) is consistent and possesses locally a general solution

v1(x, t, c1, . . . , cm), . . . , vd2(x, t, c1, . . . , cm)

dependent on a finite number of complex parameters c1, . . . , cm.

Example 5. Miura transformation (2) satisfies these conditions with m = 1.
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Consider the following trivial bundles

π : C
d1+2 → C

2, (x, t, u1, . . . , ud1) �→ (x, t),

π̃ : C
d2+2 → C

2, (x, t, v1, . . . , vd2) �→ (x, t),

and their infinite jet spaces J∞(π) and J∞(π̃).
Denote by Dx, Dt and D̃x, D̃t the total derivative operators on J∞(π) and J∞(π̃)

respectively. One has

∂p+quj

∂xp∂tq
= Dp

xD
q
t (u

j),
∂p+qvj

∂xp∂tq
= D̃p

xD̃
q
t (v

j).

Formulas (31) suggest to consider the mapping

(32) τ : J∞(π̃) → J∞(π)

defined as follows

(33) τ∗(x) = x, τ∗(t) = t, τ∗(uj) = ϕj, τ∗
(∂p+quj

∂xp∂tq

)
= D̃p

xD̃
q
t (ϕ

j).

Then we obtain

(34) τ∗(D̃x) = Dx, τ∗(D̃t) = Dt.

Let E ⊂ J∞(π) and Ẽ ⊂ J∞(π̃) be the infinite prolongations of systems (29) and (30)
respectively. Conditions 1 and 2 above need rigorous analytical explanation, which
we do not consider. Instead, following [1, 8], we say that Conditions 1 and 2 are by
definition equivalent to the fact that τ(Ẽ) = E and the mapping

(35) τ
∣∣
Ẽ : Ẽ → E

is a bundle of rank m. Then from (34) we obtain that (35) is a covering.
According to construction (24), every covering of a system of PDEs is locally isomor-

phic to a covering of this form.

1.7. Actions of Lie algebras on manifolds. Let g be a Lie algebra over C. Recall
that an action of the Lie algebra g on a complex manifold W is a homomorphism
g → D(W ). For a ∈ W let eva : D(W ) → TaW be the evaluation mapping. For
an action ρ : g → D(W ) the subalgebra {v ∈ g | evaρ(v) = 0} is called the isotropy
subalgebra of the point a.

An action ρ is said to be transitive if the mapping evaρ : g → TaW is surjective for
each a ∈ W . An action ρ is called free if ker evaρ = 0 for any a ∈ W .

A bundle W → W ′ is called the quotient map with respect to an action ρ : g → D(W )
if all vector fields from ρ(g) are tangent to the fibres and the induced action on each
fibre is transitive.

A morphism from one action ρ1 : g → D(W1) to another action ρ2 : g → D(W2) is a
mapping ψ : W1 → W2 such that

(36) ∀ a ∈ W1 ∀ v ∈ g ψ∗
(
evaρ1(v)

)
= evψ(a)ρ2(v).

The following statement is obvious.

Lemma 1. Let ψ : W1 → W2 be a morphism of transitive actions ρi : g → D(Wi),
i = 1, 2. Then ψ(W1) is open in W2.
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Let G be a connected complex Lie group associated with a finite-dimensional Lie
algebra g. For g ∈ G set

Lg : G → G, a �→ ga, Rg : G → G, a �→ ag.

A vector field X ∈ D(G) is said to be right invariant if

(37) ∀ g ∈ G
(
Rg

)
∗(X) = X,

and X is said to be left invariant if

(38) ∀ g ∈ G
(
Lg

)
∗(X) = X.

Denote by Dli, Dri ⊂ D(G) the subalgebras of left invariant and right invariant vector
fields respectively. It is well known that

(39) Dli
∼= Dri

∼= g.

and the actions of the algebras Dli, Dri on G are free and transitive.
By isomorphisms (39), we have the free transitive action σ : g → D(G) of g on G by

right invariant vector fields. Let H ⊂ G be a connected Lie subgroup and h ⊂ g be
the corresponding Lie subalgebra. Consider the quotient space G/H with the canonical
projection p : G → G/H.

Due to equation (37), all right invariant vector fields are mapped by p∗ to well-defined
vector fields on G/H. Consider the arising transitive action

σh = p∗ ◦ σ : g → D(G/H)

of g on G/H. The following lemma is easy to prove.

Lemma 2. Let U be a connected open subset of G/H. Let X ∈ D(U) commute with
all vector fields from σh(g). Then there is V ∈ Dli such that X = p∗(V ).

And vice versa, if V ∈ Dli is projectable to G/H then p∗(V ) commutes with all
vector fields from σh(g). An element V ∈ Dli

∼= g is projectable to G/H if and only if
[V, h] ⊂ h.

In particular, if U is a connected open subset of G then the algebra

{V ∈ D(U) | [V, σ(g)] = 0}
coincides with Dli

∼= g.

Lemma 3. Let W be a connected finite-dimensional manifold. Suppose that an action
ρ : g → D(W ) is free and transitive. Then the Lie algebra

{V ∈ D(W ) | [V, ρ(g)] = 0}
is isomorphic to g and acts on W freely and transitively as well.

Proof. It is well known that in this case the action ρ is locally isomorphic to the action
σ : g → D(G). By Lemma 2, we obtain that for any a ∈ W there is a neighborhood
a ∈ U ⊂ W such that

{V ∈ D(U) | [V, ρ(g)] = 0} ∼= g,

∀ b ∈ U ∀ v ∈ TbW ∃! V ∈ D(U) : evbV = v, [V, ρ(g)] = 0.

Since W is connected, this implies the statement of the lemma. �
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Lemma 4. Let g be a (possibly infinite-dimensional) Lie algebra, W1 and W2 be con-
nected finite-dimensional manifolds, and ψ : W1 → W2 be a morphism of transitive
actions ρi : g → D(Wi), i = 1, 2. Suppose that ψ is a bundle with connected fibres and
the algebra

s = {V ∈ D(W1) |ψ∗(V ) = 0, [V, ρ1(g)] = 0}

acts freely and transitively on each fibre of ψ. Let h ⊂ g be the isotropy subalgebra of a
point a ∈ W2 with respect to the action ρ2. Then all vector fields from ρ1(h) are tangent
to the fibre F = ψ−1(a) ⊂ W1 and the image of the algebra ρ1(h) in D(F ) is isomorphic
to s.

Proof. The fact that all vector fields from ρ1(h) are tangent to F is obvious. Denote by
f the image of ρ1(h) in D(F ). The algebra {V ∈ D(F ) | [V, s] = 0} includes f and is, by
Lemma 3, isomorphic to s. Since dim f ≥ dimF = dim s, we obtain

f = {V ∈ D(F ) | [V, s] = 0} ∼= s.

�

1.8. Zero-curvature representations. Let g be a Lie algebra over C. Let E be
an open subset of the infinite prolongation of a system of PDEs in two independent
variables x, t such that Dx, Dt are well defined on E .

A pair of functions

(40) M, N : E → g

is called a g-valued zero-curvature representation (ZCR in short) if

(41) Dx(N) − Dt(M) + [M, N ] = 0.

We suppose that all coefficients of the vector-valued functions (40) are admissible (i.e.,
belong to the structure sheaf).

Then each action ρ : g → D(W ) induces the covering structure in the bundle τ : E ×
W → E given by

D̃x = Dx + ρ(M), D̃t = Dx + ρ(N).

Equation (23) for A = ρ(M) and B = ρ(N) follows from (41).
For a morphism of actions ψ : W1 → W2 the mapping

id × ψ : E × W1 → E × W2

is a morphism of the corresponding coverings.

Example 6. Let g be a finite-dimensional Lie algebra. Clearly, a g-valued ZCR de-
pendent polynomially on a parameter λ can be treated as a ZCR with values in the
infinite-dimensional Lie algebra g⊗C C[λ]. Then by the above construction each action
of g ⊗C C[λ] determines a covering.
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1.9. Translation-invariant coverings. In what follows we mainly consider transla-
tion-invariant PDEs (12) such that Fα do not depend on the independent variables xi.
In this case it is convenient to exclude the variables xi from the set of coordinates on
J∞(π) and E . That is, admissible functions may depend on (10), but not on xi. Besides,
in this case we consider total derivative operators (11) without the term ∂/∂xi.

The obtained manifold and the obtained distribution on it are called the translation-
invariant infinite prolongation and the translation-invariant Cartan distribution of the
translation-invariant system (12) respectively. Differential coverings of the translation-
invariant infinite prolongation are called translation-invariant coverings.

Assume that there are two independent variables x, t. Then a differential cover-
ing (24) is translation-invariant if and only if aj, bj do not depend on x, t either. Mak-
ing this restriction, we in fact do not loose any coverings, since, according to [7], with
arbitrary covering (24) of rank m we can associate the following translation-invariant
covering of rank m + 2

∂v1

∂x
= 1,

∂v2

∂x
= 0,

∂wj

∂x
= aj(v1, v2, wk, ui

σ, . . . ),

∂v1

∂t
= 0,

∂v2

∂t
= 1,

∂wj

∂t
= bj(v1, v2, wk, ui

σ, . . . )

(we replaced x, t by v1, v2 in the right-hand side of (24)). The fibres of this covering
have the coordinates v1, v2, w1, . . . , wm.

Example 7. Consider a translation-invariant evolution equation

(42) ut = F (u, u1, u2, . . . , up), uk =
∂ku

∂xk
, u = u0.

Its translation-invariant infinite prolongation has the coordinates uk, k ≥ 0. The total
derivative operators are written in these coordinates as follows

Dx =
∑
j≥0

uj+1
∂

∂uj

,(43)

Dt =
∑
j≥0

Dj
x(F )

∂

∂uj
(44)

and span the translation-invariant Cartan distribution.

Let us rewrite the translation-invariance condition in coordinate-free terms.
Recall that a connection in a bundle π : E → M is given by a distribution D on E

such that for any a ∈ E the mapping π∗ : Da → Tπ(a)M is an isomorphism of vector
spaces. Then for each open subset U ⊂ M we have the natural linear mapping

∇ : D(U) → D(π−1(U))

that is uniquely defined by the following condition

∀V ∈ D(U) ∇(V ) ∈ D, π∗(∇(V )) = V.

The connection is said to be flat if

∀V1, V2 ∈ D(U) ∇([V1, V2]) = [∇(V1),∇(V2)].
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Consider the natural mapping

π∞,0 : J∞(π) → E

arising from (7). Let Z be an open subset of E. Recall [1, 9, 10] that for any vector
field X ∈ D(Z) there is a unique vector field S(X) ∈ D(π−1

∞,0(Z)) such that

(45) [S(X), C] ⊂ C, (π∞,0)∗(S(X)) = X,

where C is the Cartan distribution on J∞(π).
Fix a flat connection in the bundle π. An equation E ⊂ J∞(π) is said to be

translation-invariant (with respect to this flat connection) if for any vector field V on
an open subset of M the vector field S(∇(V )) is tangent to E .

Vector fields of the form S(∇(V )) span another distribution D′ of rank dimM on
J∞(π). Let a ∈ M . The submanifold E ′ = E ∩ π−1

∞ (a) is the translation-invariant
infinite prolongation. To obtain the translation-invariant Cartan distribution CE ′ on
it, one projects the Cartan distribution CE to E ′ parallel to the distribution D′. The
obtained distribution CE ′ is involutive, but may be singular at some points of E ′ (e.g.,
the points ui = 0, i ≥ 1, in Example 7), and we exclude these singular points from
the translation-invariant infinite prolongation. It is clear from the next example that
locally the structure of the pair (E ′, CE ′) does not depend on a ∈ M .

Example 8. As in Subsection 1.4, let

(46) π : C
d+n → C

n, (x1, . . . , xn, u
1, . . . , ud) �→ (x1, . . . , xn).

Consider the flat connection given by ∇(∂/∂xi) = ∂/∂xi. It is well known that locally
any flat connection is isomorphic to this one.

Since we have S(∂/∂xi) = ∂/∂xi, an equation E ⊂ J∞(π) is translation-invariant
with respect to this flat connection if and only if it can be given by a system (12) such
that Fα do not depend on xi.

1.10. Wahlquist-Estabrook coverings. Consider a translation-invariant evolution
equation (42) satisfying ∂F/∂up �= 0. In order to describe locally all its translation-
invariant coverings, one must solve equation (23) for

(47)

A =
m∑

j=1

aj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
,

B =
m∑

j=1

bj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
,

for arbitrary k, m ∈ Z+. If k is less than the order p of (42) then the covering is said
to be of Wahlquist-Estabrook type.

Consider the following example.

Proposition 1 ([22, 20, 8]). For the KdV equation

(48) ut = u3 + u1u, ui =
∂iu

∂xi
,

any Wahlquist-Estabrook covering

DxB − DtA + [A, B] = 0,
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A = A(w1, . . . , wm, u, u1, u2), B = B(w1, . . . , wm, u, u1, u2)

is of the form

A = X1 +
1

3
uX2 +

1

6
u2X3,(49)

B = (
1

3
u2 +

1

6
u2)X2 + (

1

9
u3 − 1

6
u2

1 +
1

3
uu2)X3 − X4+(50)

+
1

3
u[X1, [X1, X2]] +

1

18
u2[X2, [X1, X2]] +

1

3
u1[X2, X1],

where the vector fields Xi depend only on w1, . . . , wm and are subject to the relations

[X1, X3] = [X2, X3] = [X1, X4] = [X2, [X2, [X2, X1]]] = 0,(51)

[X1, [X1, [X2, X1]]=[X4, X2], [X1, [X2, [X2, X1]]]=[X1, X2]+[X4, X3].(52)

Remark 3. The KdV equation (48) differs from the one described in the introduction,
but one is obtained from the other by a suitable scaling transformation u �→ cu for
some c ∈ C.

Let F be the free Lie algebra generated by the letters X1, X2, X3, X4. Let L be the
quotient of F over relations (51), (52). Then formulas (49), (50) determine a ZCR of (48)
with values in L such that every Wahlquist-Estabrook covering arises from an action of
L by the construction of Section 1.8. The algebra L is called the Wahlquist-Estabrook
prolongation algebra of (48).

A similar description of Wahlquist-Estabrook coverings is known for many equa-
tions (42) (see, e.g., [2, 20, 8]).

Let us describe the algebra L more explicitly. Below for q ∈ sl2(C) and f(λ) ∈ C[λ]
we write the element

q ⊗ f(λ) ∈ sl2(C) ⊗C C[λ]

simply as qf(λ).

Proposition 2 ([19, 20]). The Lie algebra L is isomorphic to the direct sum of the Lie
algebra sl2(C)⊗CC[λ] and the 5-dimensional Heisenberg algebra H. The algebra H has
a basis

r−3, r−1, r0, r1, r3

with the commutator table [r−1, r1] = [r3, r−3] = r0, the other commutators being zero.
The isomorphism is given by

(53) X1 =r1−
1

2
y+

1

2
zλ, X2 =r−1+z, X3 =r−3, X4 =r3−

1

2
yλ+

1

2
zλ2,

where h, y, z is a basis of sl2 with the relations

[h, y] = 2y, [h, z] = −2z, [y, z] = h.

Remark 4. One of the main ideas of this paper is to introduce Lie algebras playing
similar role for coverings (23), (47) with arbitrary k.

The set of coverings of the form (47) is invariant under gauge transformations of the
form

(54) wi �→ f i(w1, . . . , wm, u, . . . , uk−p).
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In order to define these Lie algebras, we find for coverings (23), (47) a canonical form
with respect to the action of gauge transformations (54).

Since for Wahlquist-Estabrook coverings transformations (54) do not depend on
ui, i ≥ 0, all Wahlquist-Estabrook coverings are automatically in the canonical form.

Coverings (23), (47) with arbitrary k were also studied in [3]. However, gauge trans-
formations were not considered there. Because of this, the authors of [3] had to impose
some additional constraints on vector fields (47).

2. Analogs of the fundamental group for differential coverings

2.1. An instructive example. To motivate the next constructions, we present a de-
scription of some coverings of the KdV equation

(55) ut = u3 + u1u.

The analogous description of all translation-invariant coverings of (55) will be given in
Section 4.

The operators Dx, Dt below are given by (43), (44) with F = u3 + u1u.

Theorem 1. Any translation-invariant covering (23) of the form

(56) A = A(w1, . . . , wm, u, u1, u2, u3), B = B(w1, . . . , wm, u, u1, u2, u3)

is locally equivalent to a covering of the form

A = X1 +
1

3
uX2 +

1

6
u2X3 + f1C,(57)

B = (
1

3
u2 +

1

6
u2)X2 + (

1

9
u3 − 1

6
u2

1 +
1

3
uu2)X3 − X4+(58)

+
1

3
u[X1, [X1, X2]] +

1

18
u2[X2, [X1, X2]] +

1

3
u1[X2, X1] + g1C,

where the vector fields Xi, C depend only on w1, . . . , wm and satisfy

(59) [C, Xi] = 0, i = 1, 2, 3, 4,

in addition to relations (51), (52). Here (f1, g1) is a conserved current of (55)

f1 = u2
1 −

1

3
u3, g1 = 2u1u3 − u2

2 − u2u2 + 2uu2
1 −

1

4
u4,

Dtf1 = Dxg1.

Proof. It is easy to obtain that A does not depend on u2, u3 and is a polynomial of
degree 2 in u1

(60) A = u2
1A2(w

1, . . . , wm, u) + u1A1(w
1, . . . , wm, u) + A0(w

1, . . . , wm, u).

We want to get rid of the term u1A1 by switching to a locally gauge equivalent covering.
Namely, consider an arbitrary point ui = ai ∈ C, wj = wj

0 ∈ C where vector fields (56)
are defined. We will find a gauge transformation defined on a neighborhood of this
point that kills the term u1A1.

To this end, let

A1(w
1, . . . , wm, u) =

∑
j

cj(w1, . . . , wm, u)
∂

∂wj
.
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Consider the system of ordinary differential equations

d

du
f j(w1, . . . , wm, u) = cj(f 1, . . . , fm, u), j = 1, . . . , m,

dependent on the parameters w1, . . . , wm. Consider its local solution on a neighborhood
of the point u = a0, wj = wj

0 with the initial condition f j(w1, . . . , wm, a0) = wj. Then
the formulas

(61) uk �→ uk, wj �→ f j(w1, . . . , wm, u), k ≥ 0, j = 1, . . . , m,

define locally a gauge transformation ϕ such that

ϕ∗(Dx + A) = Dx + A′, ϕ∗(Dt + B) = Dt + B′,

where the vector field A′ is of the form (60) without the linear in u1 term (compare
with Example 4).

Now it is straightforward to show that the vector fields A, B are of the form (57),
(58) with the relations

[X2, X3] = [X1, X4] = [C, Xi] = 0, i = 1, 2, 3,

[C, X4] +
1

6
[X1, X3] = 0,

[C, X4] +
1

3
[X1, X3] +

1

6
[X3, [X1, [X1, X2]]] =

1

18
[X2, [X2, [X2, X1]]],

[X3, [X2, [X1, X2]]] = 0, [X1, [X1, [X2, X1]] = [X4, X2],

[X1, [X2, [X2, X1]]]=[X1, X2]+[X4, X3].(62)

From these relations it follows that [X1, X3] and (ad 3X2)(X1) commute with X1, X2.
Now applying ad 2X2 to (62) we obtain (ad 3X2)(X1) = 0, which implies (59), (51),
(52). �

2.2. The definition of the fundamental algebras. Consider a system of PDEs in
two independent variables x, t. The results of this section are applicable to the following
two situations.

(1) The manifold E is the infinite prolongation defined in Section 1.3, and CE is the
Cartan distribution on it.

(2) The system of PDEs is translation-invariant, the manifold E is the translation-
invariant infinite prolongation defined in Section 1.9, and CE is the translation-
invariant Cartan distribution.

However, all examples of this paper belong to the second situation.
Without loss of generality, we can assume E to be connected. Moreover, we assume

that the total derivative operators Dx, Dt are well defined on E . This is not a big
restriction, because most of our results are local and locally this is always the case.

Remark 5. In fact the main Definition 5 below can be readily generalized for PDEs in
any number of independent variables. However, since all PDEs considered in this paper
are in two independent variables, for the sake of clarity we prefer to give this simplified
version.
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Remark 6. Below in this section we use the following notation. For an open subset E ′

of E and a finite-dimensional manifold W , the mapping

(63) E ′ × W → E ′

is always the projection to the first factor. For a function f on E , its restriction to E ′

is denoted by the same symbol f .
According to Section 1.5, a covering structure in the trivial bundle (63) is uniquely

determined by a pair of vector fields A, B ∈ D(E ′ × W ) that are vertical with respect
to projection (63) and satisfy relation (23).

We have the natural embedding D(W ) ⊂ D(E ′×W ). A vector field X ∈ D(E ′×W )
belongs to D(W ) if and only if it is vertical with respect to (63) and its coefficients do
not depend on coordinates of E .

Inspired by Theorem 1, let us give the following definition.

Definition 5. We say that E possesses fundamental algebras if there are finite sets
Ak, Bk, k ∈ Z+, of functions on E satisfying the relations

(64) Ak ⊂ Ak+1, Bk ⊂ Bk+1 ∀ k

such that for any connected open subset E1 of E the following conditions hold.

(1) Let τ : Ẽ → E1 be a covering of E1. Then for any point a ∈ Ẽ there are a
neighborhood a ∈ Ẽ1 ⊂ Ẽ and k ∈ N such that for E2 = τ(Ẽ1) ⊂ E the covering
τ
∣∣
Ẽ1

: Ẽ1 → E2 is isomorphic to a covering E2×W → E2 of the following canonical
form

[Dx + A, Dt + B] = 0,(65)

A =
∑
f∈Ak

fMf , B =
∑
g∈Bk

gNg,(66)

Mf , Ng ∈ D(W ).(67)

(2) Any morphism ϕ : E1 × W1 → E1 × W2 between two coverings of the form

E1 × Wi → E1, i = 1, 2,

Ai =
∑
f∈Ak

fM i
f , Bi =

∑
g∈Bk

gN i
g,

[Dx + Ai, Dt + Bi] = 0, M i
f , N i

g ∈ D(Wi), i = 1, 2,

is of the form ϕ = id × ψ, where

ψ : W1 → W2, ψ∗(M
1
f ) = M2

f , ψ∗(N
1
g ) = N2

g .

(3) Let X ∈ D(E1 ×W ) be a symmetry of a covering E1 ×W → E1 given by vector
fields

Dx + A, Dt + B ∈ D(E1 × W )

satisfying (65), (66), (67). Then X ∈ D(W ) and

[X, Mf ] = [X, Ng] = 0 ∀ f ∈ Ak, ∀ g ∈ Bk.
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(4) Consider the manifold E1 ×W with the distribution spanned by Dx +A, Dt +B
of the form (65), (66), (67) and let E ′ be a subequation of it. Then locally E ′ is
of the form E2 × W ′, where E2 is an open subset of E1 and W ′ is a submanifold
of W such that vector fields (67) are tangent to W ′.

In particular, E1 ×W is irreducible if and only if W is connected and the Lie
algebra generated by vector fields (67) acts on W transitively.

In this case fundamental algebras fk are defined as follows. Let qk be the free Lie
algebra generated by the letters Mf , Ng for f ∈ Ak, g ∈ Bk. Let us treat (66) as
functions on E with values in qk. Consider the ideal Ik of qk generated by the elements

∑
g∈Bk

Dx(g)(a)Ng −
∑
f∈Ak

Dt(f)(a)Mf +
∑

f∈Ak , g∈Bk

f(a)g(a)[Mf , Ng], a ∈ E ,

and set fk = qk/Ik.
Then (66) becomes an fk-valued ZCR of E . For an action

(68) ρ : fk → D(W )

denote by τ(ρ) the covering E × W → E corresponding to (68) by the construction of
Section 1.8.

From (64) we have the natural epimorphism

(69) pk : qk → qk−1

that maps the generators

(70) Mf , Ng, f ∈ Ak \ Ak−1, g ∈ Bk \ Bk−1,

to zero. It is easily seen that pk(Ik) ⊂ Ik−1. Therefore, epimorphisms (69) determine
the epimorphisms

(71) · · · → fk → fk−1 → · · · → f1 → f0.

Example 9. From Theorem 1 for the KdV equation (55) we can take

A1 = {1, u, u2, u3, u2
1},

B1 = {ui0ui1
1 ui2

2 ui3
3 | in ∈ Z+, 0 ≤ 2i0 + 3i1 + 4i2 + 5i3 ≤ 8}.

For example, in this case we have

Mu2
1

= −3Mu3 =
1

2
Nu1u3 = −Nu2

2
= C,

Mu = Nu2 =
1

3
X2, Nuu3 = Nu1u2 = 0.

The algebra f1 is isomorphic to the quotient of the free Lie algebra generated by the
letters X1, X2, X3, X4, C over relations (51), (52), (59). Formulas (57), (58) determine
a ZCR of (55) with values in f1 such that each covering of the form (56) is equivalent
to a covering determined by an action of f1. The algebra f0 is isomorphic to the algebra
L from Section 1.10.

For k > 3, coverings of (55) of the form

A = A(w1, . . . , wm, u, u1, . . . , uk), B = B(w1, . . . , wm, u, u1, . . . , uk)
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are determined in a similar way by actions of higher algebras fk−2, which will be studied
in Section 4.2.

Remark 7. Consider the identity covering E → E . It has canonical form (65), (66),
(67) with Mf = Ng = 0 and W equal to a point. From Condition 4 we see that any
connected open subset of the equation E itself must be irreducible.

Remark 8. Consider an action (68) and let l ≥ k. Consider the epimorphism ϕ : fl → fk
from (71) and the action ρϕ : fl → D(W ). By the construction of epimorphisms (71),
we have τ(ρϕ) = τ(ρ).

Therefore, when we consider a finite number of coverings determined by actions

ρi : fki → D(Wi), i = 1, . . . , s,

we can assume that all the actions are defined on the same algebra fk, where

k = max{k1, . . . , ks}.
Below in this section we suppose everywhere that E possesses fundamental alge-

bras (71) and E1 is a connected open subset of E .

Theorem 2. For any covering τ : Ẽ → E1 each point a ∈ Ẽ lies in a locally unique
irreducible subequation Ẽa ⊂ Ẽ . The image τ(Ẽa) is open in E1, and τ

∣∣
Ẽa

is a covering.

Proof. It is sufficient to prove this statement locally. Then we can assume that one has
Ẽ = E1 × W and τ = τ(ρ) for some action ρ : fk → D(W ). Let

a = (q, z) ∈ E1 × W, q ∈ E1, z ∈ W.

By Proposition 3 below, locally there is a unique submanifold W ′ ⊂ W such that
z ∈ W ′, all vector fields from ρ(fk) are tangent to W ′, and the induced action on W ′

is transitive. By Condition 4 of Definition 5, the submanifold Ẽa = E × W ′ ⊂ Ẽ is the
required irreducible subequation.

Proposition 3 ([13]). Let g be an arbitrary Lie algebra over C and ρ : g → D(W ) be
an action of g on a complex-analytic manifold W . Then for each point z ∈ W there
is submanifold z ∈ W ′ ⊂ W such that all vector fields from ρ(g) are tangent to W ′

and the action of g on W ′ is transitive. The submanifold W ′ is locally unique and
dim W ′ = dim evz

(
ρ(g)

)
.

�
Consider a covering τ : Ẽ → E1, where Ẽ is connected. Condition 1 of Definition 5

determines locally an action of fk on fibres of τ . Due to Condition 2 these local actions
produce a well-defined global action

ρ(τ) : fk → D(Ẽ)

such that τ∗ ◦ ρ(τ) = 0.

Theorem 3. The covering τ is irreducible if and only if the action ρ(τ) is transitive
on each fibre of τ .

Proof. It is sufficient to prove this locally, which is done similarly to the proof of The-
orem 2. �
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Theorem 4. Consider two coverings τi : Ẽ i → E1, i = 1, 2, and a mapping ϕ : Ẽ1 → Ẽ2

such that the diagram

Ẽ1 ϕ → Ẽ2

�
�

�τ1 � ��
�

�

τ2

E1

is commutative.

(1) The mapping ϕ is a morphism of coverings if and only if it is a morphism of
the actions ρ(τ1) and ρ(τ2).

(2) If τ1 and τ2 are irreducible and ϕ is a morphism of coverings then ϕ(Ẽ1) is open
in Ẽ2.

Proof. It is sufficient to prove both statements locally.
(1) This follows from Condition 2 of Definition 5.
(2) This follows from the previous statement and Lemma 1. �

Remark 9. Recall that a covering of a connected finite-dimensional manifold M is
connected if and only if the corresponding action of π1(M) is transitive. Theorem 3
suggests that in PDE geometry irreducible equations play the role of ‘connected’ ob-
jects. Then Theorem 2 is the analog for PDEs of the decomposition into connected
components of a topological space.

2.3. Regular coverings and their symmetry algebras. In the present form the
analogy of (71) with the topological fundamental group is not sufficiently helpful, be-
cause canonical form (66) and the vector fields Mf , Ng ∈ D(W ) have no invariant
(coordinate-free) meaning. In order to recover algebras fk in an invariant way, recall
that the topological fundamental group can be expressed in terms of automorphism
groups of coverings. Studying differential coverings, it is more convenient to consider
infinitesimal automorphisms, i.e., symmetries.

From Condition 3 of Definition 5, for each action ρ : fk → D(W ) we obtain

(72) Sym τ(ρ) = {v ∈ D(W ) | [v, ρ(fk)] = 0}.
Recall that a connected topological covering M̃ → M is said to be regular if the

action of its automorphism group on M̃ is free and transitive on each fibre. Similarly,
we call an irreducible differential covering τ : Ẽ → E regular if the action on Ẽ of the
algebra Sym τ is free and transitive on each fibre of τ . In particular, τ is the quotient
map with respect to this action, and dim Sym τ = rank τ .

Theorem 5. A covering τ : Ẽ → E1 is regular if and only if the action on Ẽ of the
subalgebra ρ(τ)(fk) ⊂ D(Ẽ) is free and transitive on each fibre of τ . In this case one
has dim ρ(τ)(fk) = rank τ and Sym τ ∼= ρ(τ)(fk).

Proof. It is sufficient to prove this locally, and the local version follows from (72) and
Lemma 3. �

Each ideal i of fk with codim i < ∞ determines a regular covering as follows. Consider
the canonical epimorphism ψ : fk → fk/i. Let σ : fk/i → D(G) be the natural action by
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right invariant vector fields on the simply connected Lie group G whose Lie algebra is
the finite-dimensional algebra fk/i. For any open subset U ⊂ G we have the transitive
action σψ : fk → D(U). By Theorem 5, the corresponding covering τ(σψ) is regular,
and every regular covering is locally isomorphic to a covering of this form. By Remark 8,
if in ⊂ fn, n ≥ k, is the preimage of i under epimorphism (71) then fn/in ∼= fk/i and the
corresponding regular coverings are also isomorphic.

Let i1, i2 ⊂ fk be two ideals of finite codimension. Consider the simply connected Lie
groups G1, G2 associated with the Lie algebras fk/i1, fk/i2. Let Ui ⊂ Gi, i = 1, 2, be
connected open subsets.

Suppose that the corresponding regular coverings are connected by a morphism ϕ

E1 × U1

ϕ → E1 × U2

�
�

�τ1 � ��
�

�

τ2

E1

From Condition 2 of Definition 5 it follows that i1 ⊂ i2 and ϕ = id×ψ, where ψ : U1 → U2

is a morphism of actions of fk. By Theorem 5, we have Sym τi
∼= fk/ii, i = 1, 2. The

mapping
ϕ : E1 × U1 → ϕ(E1 × U1) = E1 × ψ(U1)

is the quotient mapping with respect to the action of the subalgebra i2/i1 ⊂ Sym τ1 on
the manifold E1 × U1.

Similarly to Theorem 4, this local description of regular coverings and morphisms
connecting them implies the following global result.

Theorem 6. Consider two regular coverings τi : Ẽ i → E1, i = 1, 2, and let

Ẽ1 ϕ → Ẽ2

�
�

�τ1 � ��
�

�

τ2

E1

be a morphism of them. Then there is k ∈ N and two ideals i1, i2 of fk of finite
codimension such that

• one has

(73) Sym τi = fk/ii, i = 1, 2,

• we have i1 ⊂ i2, the subset ϕ(Ẽ1) is open in Ẽ2, and the mapping ϕ : Ẽ1 → ϕ(Ẽ1)
is the quotient mapping with respect to the action of the subalgebra i2/i1 ⊂ Sym τ1

on the manifold Ẽ1,
• the differential ϕ∗ of ϕ induces an epimorphism of algebras Sym τ1 → Sym τ2.

In terms of isomorphisms (73) it is the natural epimorphism fk/i1 → fk/i2 cor-
responding to the inclusion i1 ⊂ i2.

In contrast to fundamental algebras (71), the system of symmetry algebras of regular
coverings is a coordinate-free canonical invariant of a system of PDEs, since symmetry
algebras are coordinate-independent objects. Thus we recover in an invariant way not
algebras (71) themselves, but all their finite-dimensional quotients.
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2.4. Quasi-finite Lie algebras. We present here some results on Lie algebras.

Definition 6. A Lie algebra g is said to be quasi-finite if for any subalgebra h ⊂ g of
finite codimension there is an ideal of g that is of finite codimension and is contained
in h.

Theorem 7. Let g be a quasi-finite algebra. Then for any transitive action ρ : g →
D(W ) on a connected finite-dimensional manifold W the algebra ρ(g) is finite-dimensional.

Proof. Let a ∈ W and h ⊂ g be the isotropy subalgebra of a. Since g is quasi-finite
and codim h = dim W < ∞, there is an ideal i of g such that i ⊂ h and codim i < ∞.
It is well known that in the complex-analytic situation the image ρ(h) of the isotropy
subalgebra cannot contain any nontrivial ideal of ρ(g). Therefore, ρ(i) = 0 and

dim ρ(g) ≤ codim i < ∞.

�

Theorem 8. Let g be a quasi-finite Lie algebra and ρ : g̃ → g be an epimorphism such
that

(74) [ker ρ, g̃] = 0

(that is, g̃ is a central extension of g). Then g̃ is also quasi-finite.

Proof. Let h ⊂ g̃ be a subalgebra of finite codimension. Clearly, the subset

(75) h1 = {a ∈ h | [g̃, a] ⊂ h]}
is also a subalgebra of finite codimension. By assumption, there is an ideal i of g that
is of finite codimension and is contained in ρ(h1).

The subspace ρ−1(i) ∩ h is of finite codimension and is contained in h. Let us prove
that ρ−1(i) ∩ h is an ideal of g̃.

Let a ∈ ρ−1(i) ∩ h and v ∈ g̃. Then a = h + z, where h ∈ h1 and z ∈ ker ρ.
Combining (74) and (75), we obtain [v, a] ∈ h. Besides, since ρ−1(i) is an ideal of g̃, we
have [v, a] ∈ ρ−1(i). Therefore, [v, a] ∈ ρ−1(i) ∩ h. �

Let g be a Lie algebra over C and A be a commutative associative algebra over C.
Then the space g ⊗C A has the following natural Lie algebra structure

(76) [g1 ⊗ a1, g2 ⊗ a2] = [g1, g2] ⊗ a1a2, g1, g2 ∈ g, a1, a2 ∈ A.

Theorem 9. If g is finite-dimensional and semisimple then the Lie algebra g ⊗C A is
quasi-finite.

Proof. Let h ⊂ g ⊗C A be a subalgebra of finite codimension. Then the subspace

(77) Z = {f ∈ A | g ⊗ f ⊂ h}
is of finite codimension in A. Since [g, g] = g, the subspace Z is a subring of A. The
subspace Z ′ = {f ∈ Z | fA ⊂ Z} is of finite codimension and is an ideal of the ring A.
Therefore, the subspace g⊗Z ′ is an ideal of g⊗A of finite codimension, and from (77)
we have g ⊗ Z ′ ⊂ h. �
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2.5. Local structure of irreducible coverings. Below we suppose that algebras (71)
are quasi-finite.

Consider a subalgebra h ⊂ fk of finite codimension. Let i(h) be the maximal ideal of
fk that is contained in h. Since fk is quasi-finite, we have codim i(h) < ∞.

Let G be the simply connected Lie group whose Lie algebra is fk/i(h) and H ⊂ G be
the connected Lie subgroup whose Lie subalgebra is h/i(h). According to Section 1.7,
the algebra fk acts on G by right invariant vector fields, which are projected also to
the quotient space G/H. Denote by σ(fk, h) the arising transitive action of fk on the
manifold W (fk, h) = G/H. We have ker σ(fk, h) = i(h).

Remark 10. Let G be a Lie group associated with a Lie algebra g. Generally, not for
every subalgebra h ⊂ g there is a Lie subgroup whose Lie subalgebra is h. However, for
us it is sufficient to consider the local Lie subgroup, which always exists. In this case
the symbol G/H denotes the quotient space not of the whole group G, but of some
neighborhood of the unity element.

As above, let E1 be a connected open subset of E . Consider the manifold E1(fk, h) =
E1 × W (fk, h) and the covering

τ(fk, h) : E1(fk, h) → E1

corresponding to the action σ(fk, h) of fk.

Theorem 10. The following statements hold.

(1) Every irreducible covering τ of E1 is locally isomorphic to a covering τ(fk, h) for
some k ∈ N and h ⊂ fk.

(2) We have

(78) Sym τ(fk, h) ∼= n(h)/h,

where

(79) n(h) = {v ∈ fk | [v, h] ⊂ h}.
(3) The covering τ(fk, h) is regular if and only if h is an ideal of fk.

Proof. (1) By Conditions 1 and 4 of Definition 5, locally we have τ = τ(ρ) for some
transitive action ρ : fk → D(W ). Let a ∈ W and consider the isotropy subalgebra
h ⊂ fk of a. By Theorem 7, the actions ρ and σ(fk, h) are locally isomorphic. Then the
coverings τ(ρ) and τ(fk, h) are locally isomorphic as well.

(2) Formulas (78) and (79) follow from formula (72) and Lemma 2.
(3) This follows from Theorem 5. �

Recall that for any connected topological covering τ : M̃ → M there is a commutative
diagram of coverings

M ′ p → M̃

�
�

�r � ��
�

�

τ
M

(80)
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where r is regular and p is the quotient mapping with respect to the action of some
automorphism subgroup of r. Let us construct an analog of diagram (80) for differential
coverings.

Theorem 11. Any irreducible covering τ : Ẽ → E1 is locally included in a commutative
diagram of irreducible coverings

E ′ p → Ẽ
�

�
�r � ��

�
�

τ
E1

such that the following assertions hold.

(1) The covering r is regular.
(2) The covering p is the quotient morphism with respect to the action on E ′ of some

subalgebra h of Sym r.
(3) The algebra Sym τ coincides with the quotient n/h, where

n = {v ∈ Sym r | [v, h] ⊂ h},

and the action of n/h on Ẽ is induced by the action of n on E ′.

Proof. By Theorem 10 (1), it is sufficient to prove the statements for τ = τ(fk, h1),
where h1 is a subalgebra of fk of finite codimension.

Recall that i(h1) is the maximal ideal of fk that is contained in h1. By Theorem 10 (3),
the covering r = τ(fk, i(h1)) is regular. The inclusion of Lie algebras

i(h1) ⊂ h1 ⊂ fk

determines a surjective morphism

W (fk, i(h1)) → W (fk, h1)

of actions of fk, which determines the surjective morphism

p : E1(fk, i(h1)) → E1(fk, h1), τ(fk, h1) ◦ p = τ(fk, i(h1)),

of the corresponding coverings.
By formulas (78) and (79), one has Sym r = fk/i(h1). By construction, the morphism

p is the quotient map with respect to the action of h = h1/i(h1) ⊂ Sym r on the manifold
E1(fk, i(h1)). Finally, the last statement of the theorem follows from formulas (78), (79).

�

For a subalgebra h of fk of finite codimension, denote by hl the preimage of h in
fl, l ≥ k, under epimorphisms (71). By Remark 8, one obtains

E1(fl, hl) ∼= E1(fk, h), τ(fl, hl) ∼= τ(fk, h) ∀ l ≥ k.

If h̃ ⊂ hl is a subalgebra of finite codimension then we have the natural surjective
morphism W (fl, h̃) → W (fl, hl) of actions of fl, which determines a covering

τ(h, h̃) : E1(fl, h̃) → E1(fl, hl) ∼= E1(fk, h).
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Let i be an ideal of hl with codim i < ∞ (but not necessarily an ideal of fl). By
formulas (78), (79), the covering

(81) τ(h, i) : E1(fl, i) → E1(fk, h)

is regular and Sym τ(h, i) ∼= hl/i. The following theorem shows that locally every regular
covering of E1(fk, h) is of this form.

Theorem 12. Consider an irreducible covering τ : Ẽ → E1 and the corresponding action
ρ(τ) : fk → D(Ẽ). Let a ∈ Ẽ and h ⊂ fk be the isotropy subalgebra of a.

Then for any connected neighborhood Ẽ ′ ⊂ Ẽ of a the symmetry algebra of any regular
covering over Ẽ ′ is isomorphic to a finite-dimensional quotient of hl for some l ≥ k.

And vice versa, for any l ≥ k and any ideal i of hl of finite codimension there is a
regular covering τ ′ over a neighborhood of a such that Sym τ ′ = hl/i.

Proof. Let τ ′ : E ′′ → Ẽ ′ be a regular covering. Consider the connected open subset
E2 = τ(Ẽ ′) of E1 and the commutative diagram of coverings

E ′′ τ ′
→ Ẽ ′

�
�

�ττ ′ � ��
�

�

τ
E2

Since the question is essentially local, we can assume that the above diagram is of the
form

E2 × W1

id × ψ→ E2 × W2

�
�

�τ(ρ1) � ��
�

�

τ(ρ2)
E2

where ρi : fl → D(Wi), i = 1, 2, are transitive actions for some l ≥ k and ψ : W1 → W2

is a morphism of actions. The point a is of the form a = (q, z), q ∈ E2, z ∈ W2. The
algebra hl is the isotropy algebra of z with respect to the action ρ2. Then the first
statement of the theorem follows from Lemma 4 for g = fl.

The second statement of the theorem follows from construction (81). �
This theorem is the analog of the fact that for a connected topological covering

M̃ → M one has π1(M̃) ⊂ π1(M).
Since g in Lemma 4 is allowed to be infinite-dimensional, the first statement of

Theorem 12 holds even if algebras (71) are not quasi-finite.

Theorem 13. In the notation of Theorem 12, the symmetry algebra of any regular
covering over Ẽ ′ is isomorphic to a finite-dimensional quotient of hl for some l ≥ k
even if the fundamental algebras are not quasi-finite.

2.6. Necessary conditions for existence of Bäcklund transformations. Con-
sider two systems of PDEs

(82) Ei =
{
F i

α

(
x, t, ui1, . . . , uidi ,

∂p+quij

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , si

}
, i = 1, 2,
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A Bäcklund transformation between E1 and E2 is given by another system

(83) Fα

(
x, t, v1, . . . , vd,

∂p+qvj

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , s.

and two mappings

(84) uij = ϕij
(
x, t, v1, . . . , vd,

∂p+qvl

∂xp∂tq
, . . .

)
, j = 1, . . . , di, i = 1, 2,

such that for each i = 1, 2 one has

• for each local solution v1(x, t), . . . , vd(x, t) of (83) functions (84) form a local
solution of (82),

• for each local solution ui1(x, t), . . . , uidi(x, t) of (82) the system that consists of
equations (83) and (84) is consistent and possesses locally a general solution

v1(x, t, c1, . . . , cri), . . . , v
d(x, t, c1, . . . , cri)

dependent on a finite number of complex parameters c1, . . . , cri.

Similarly to Section 1.6, these conditions mean by definition that the infinite prolonga-
tion Ẽ of (83) covers both E1 and E2

Ẽ

��
�

�

τ1

�
�

�τ2 �

E1 E2

(85)

where the covering τi is of rank ri. We allow Ei to be not the whole infinite prolongation,
but some nonempty open subset of it.

If systems (82) are translation-invariant then we can make (83) translation-invariant
as well using the trick from Section 1.9 : replace x, t in Fα and ϕij by the new dependent
variables w1, w2 respectively and add to (83) the following equations

∂w1

∂x
=

∂w2

∂t
= 1,

∂w1

∂t
=

∂w2

∂x
= 0.

After this substitution coverings (85) become translation-invariant.

Example 10. Consider two different coverings from the modified KdV equation to the
KdV equation

vt =vxxx−6v2vx

��
�

�
�

�
u=vx−v2

�
�

�
�

�

u=−vx−v2

�

ut =uxxx+6uux ut =uxxx+6uux

This diagram presents a Bäcklund auto-transformation of the KdV equation. See,
e.g, [15, 16] for more examples of Bäcklund transformations.

Theorem 14. Suppose that two systems Ei, i = 1, 2, possess fundamental algebras

(86) · · · → fik+1 → fik → · · · → fi1 → fi0, i = 1, 2,
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and the algebras f1k are quasi-finite. Let g be a finite-dimensional Lie algebra. Suppose
that for any k1, k2 ∈ Z+ and any subalgebras

(87) hi ⊂ fiki
, codim hi < ∞, i = 1, 2,

there is an epimorphism h1 → g, but there is no epimorphism h2 → g. Then there is
no Bäcklund transformation between E1 and E2.

Proof. Suppose that there is a Bäcklund transformation. By the above construction, it
determines a diagram (85) of coverings. Let a ∈ Ẽ . By Theorem 2, locally there is a
unique irreducible subequation Ẽa ⊂ Ẽ that contains a. The subset τi(Ẽa) is open in Ei,
and the coverings

τi

∣∣
Ẽa

: Ẽa → τi(Ẽa), i = 1, 2,

are irreducible. Consider the action

ρ
(
τ1

∣∣
Ẽa

)
: f1k → D(Ẽa)

and let h1 ⊂ f1k be the isotropy subalgebra of a. By Theorem 12, an epimorphism

h1 → g implies that over a connected neighborhood of a ∈ Ẽa there is a regular covering
with symmetry algebra equal to g. Applying Theorem 13 to this regular covering and
the covering τ2

∣∣
Ẽa

, we obtain that g is isomorphic to a quotient of some subalgebra h2

of f2l of finite codimension. Thus we get a contradiction. �

3. Coverings of scalar evolution equations

In this section we prove some technical results, which will be needed in Sections 4
and 5. Consider a translation-invariant evolution equation

ut = F (u, u1, u2, . . . , up),
∂F

∂up
�= 0,(88)

ui =
∂iu

∂xi
, u = u0.

Let E be a connected open subset of the translation-invariant infinite prolongation of
this equation described in Example 7.

Let W be a connected open subset of Cm with coordinates w1, . . . , wm and

(89) ui = ai ∈ C, i = 0, 1, . . . ,

be a point of E . Consider a covering E × W → E given by vector fields

A =
m∑

j=1

aj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
,

B =
m∑

j=1

bj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
,

DxB − DtA + [A, B] = 0.(90)

Below we sometimes omit the dependence on the coordinates wi in vector fields on
E × W .
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Remark 11. Below in this section we say that locally there is a gauge transformation
with certain properties if for any w ∈ W a gauge transformation with these properties
exists on a neighborhood of the point (a, w) ∈ E × W , where a is the fixed point (89)
of E .

Lemma 5. We have

(91)
∂A

∂us
= 0 ∀ s > k − p + 1.

Moreover, locally there is a gauge transformation

wi �→ f i(w1, . . . , wm, u, . . . , uk−p), i = 1, . . . , m,

such that the transformed vector field Dx + A satisfies for all s ≥ 1

(92)
∂A

∂us

(u, . . . , us−1, as, as+1, . . . , ak) = 0 ∀u, . . . , us−1.

Proof. Differentiating equation (90) with respect to us for s > k and using the form (43), (44)
of Dx and Dt, one immediately obtains (91).

Now suppose that (92) holds for all s > n, where 0 < n ≤ k − p + 1. It easily seen
that this property is preserved by any gauge transformation of the form

(93) wi �→ f i(w1, . . . , wm, u, . . . , un−1)

By induction on k − n, it remains to find a gauge transformation (93) such that the
transformed vector field Dx + A satisfies (92) for s = n. Let

∂A

∂un
(u, . . . , un−1, an, an+1, . . . , ak) =

∑
j

cj(w1, . . . , wm, u, . . . , un−1)
∂

∂wj
.

Similarly to the proof of Theorem 1, consider the system of ordinary differential equa-
tions

d

dun−1
f j(w1, . . . , wm, u, . . . , un−1) = cj(f 1, . . . , fm, u, . . . , un−1),

j = 1, . . . , m,

dependent on the parameters w1, . . . , wm and u, . . . , un−2. Its local solution with the
initial condition

f j(w1, . . . , wm, u, . . . , un−2, an−1) = wj

determines the required transformation (93). �
Lemma 6. Consider two coverings

DxBi − DtAi + [Ai, Bi] = 0,

Ai =

mi∑
j=1

aj
i (w

1
i , . . . , w

mi
i , u, . . . , uki)

∂

∂wj
i

,

Bi =

mi∑
j=1

bj
i (w

1
i , . . . , w

mi
i , u, . . . , uki)

∂

∂wj
i

, i = 1, 2,
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such that both A1 and A2 satisfy (92) for all s ≥ 1 and some point (89). Let

(94) wj
2 = ϕj(w1

1, . . . , w
m1
1 , u, u1, . . . ), j = 1, . . . , m2,

determine a morphism of these coverings, i.e.,

(Dx + A1)ϕ
j = aj

2(ϕ
1, . . . , ϕm2 , u, . . . , uk2),(95)

(Dt + B1)ϕ
j = bj

2(ϕ
1, . . . , ϕm2 , u, . . . , uk2)

for all j = 1, . . . , m. Then functions (94) do not actually depend on any ui, i ≥ 0.

Proof. Let r ≥ 0 be the maximal integer such that at least one of functions (94) depends
nontrivially on ur. Differentiate (95) with respect to ur+1 and substitute ui = ai for
i ≥ r + 1. Taking into account (92) for s = r + 1, we obtain that the right-hand side
is zero, while on the left-hand side we get ∂ϕj/∂ur. Therefore, ∂ϕj/∂ur = 0 for all j,
which contradicts to our assumption. �
Lemma 7. Consider covering (90) satisfying (92) for all s ≥ 1 and let

S =
m∑

j=1

sj(w1, . . . , wm, u, u1, . . . )
∂

∂wj

be a symmetry of it. Then S does not actually depend on any ui, i ≥ 0.

Proof. Analyzing the equation [Dx +A, S] = 0 from (19), this is proved similarly to the
previous lemma. �
Lemma 8. Consider covering (90) satisfying (92) for all s ≥ 1. Let E ′ be a subequation
of E ×W . Then locally E ′ is of the form E1 × W ′, where E1 is an open subset of E and
W ′ is a submanifold of W such that all vector fields

{A(u, . . . , uk), B(u, . . . , uk) ∈ D(W ) | u, . . . , uk ∈ C}
are tangent to W ′.

Proof. According to Definition 3, a subequation of codimension l is given by functions

fi(w
1, . . . , wm, u, u1, . . . ), i = 1, . . . , l,

defined on an open subset U ⊂ E × W such that

• f1(c) = · · · = fl(c) = 0 for some c ∈ U ,
• the differentials

dbfi ∈ T ∗
b (E × W ), i = 1, . . . , l,

are linearly independent for each b ∈ U ,
• the ideal I of functions on U generated by f1, . . . , fl is preserved by the action

of the vector fields Dx + A, Dt + B.

Let z ∈ W be the image of c under the projection E × W → W . To prove the lemma,
it is sufficient to find a set of functions

(96) gα(w1, . . . , wm), α ∈ Λ,

defined on a neighborhood of z such that the ideal of functions on a neighborhood
U ′ ⊂ U of c generated by functions (96) coincides with I

∣∣
U ′.
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Let r be the maximal integer such that at least one of the functions f1, . . . , fl depends
nontrivially on ur. Note that fi are defined on an open subset V of Cr+1 ×W with the
coordinates u0, . . . , ur, w

1, . . . , wm, the subset

M = {q ∈ V | f1(q) = · · · = fl(q) = 0}
is a submanifold of codimension l in V , and I

∣∣
V

coincides with the ideal of functions on
V that vanish on M . Thus we essentially have a question of finite-dimensional complex
analysis.

Since
∂

∂ur+1

(I) ⊂ I, (Dx + A)(I) ⊂ I,

we have

(97)
∂

∂ur+1

(
(Dx + A)(fi)

)
=

∂fi

∂ur
+

∂A

∂ur+1
(fi) ∈ I.

Substituting ui = ai, i ≥ r + 1, to (97), from (92) for s = r + 1 we obtain ∂fi/∂ur ∈ I.
Therefore, the vector field ∂/∂ur is tangent to M , which allows to generate I on some
neighborhood of c by functions that do not depend on ui for i ≥ r. Proceeding by
induction on r, one completes the proof. �

Applying this lemma to the identity covering E → E , we obtain the following.

Theorem 15. Any connected open subset of the translation-invariant infinite prolon-
gation of any evolution equation (88) is irreducible.

Let us introduce some auxiliary notions.

Definition 7. For each i ∈ Z+, let Vi be a connected open subset of C such that for
all but a finite number of i we have Vi = C. Set

D = {(u0, u1, . . . , ui, . . . ) | ui ∈ Vi}.
Let P be an algebra of functions on D such that each f ∈ P is a complex-analytic
function dependent on a finite number of the variables ui, i ≥ 0. The algebra P is
said to be perfect if for each function f(u0, . . . , ur) ∈ P and any i ∈ Z+ the following
conditions hold.

(1) One has ∂f/∂ui ∈ P.
(2) There is g(u0, . . . , ur) ∈ P such that ∂g/∂ui = f .
(3) For any s < r and any fixed numbers ai ∈ Vi, i ≥ s, we have

f(u0, . . . , us−1, as, as+1, . . . , ar) ∈ P.

(4) For all j ≥ 1 we have uj ∈ P.

Then each function f ∈ P is also called perfect.

Example 11. Let Vi = C and P be the algebra of polynomials in ui, i ≥ 0. Evidently,
the algebra P is perfect.

Fix open subsets Vi ⊂ C satisfying the assumptions of Definition 7 and a perfect
algebra P.



COVERINGS AND THE FUNDAMENTAL GROUP FOR PDE 35

Definition 8. Consider a vector field

(98) A =
m∑

j=1

aj(w1, . . . , wm, u, u1, . . . , uk)
∂

∂wj

defined on an open subset of W × V0 × · · · × Vk.
A vector field

(99) S =
m∑

j=1

sj(w1, . . . , wm)
∂

∂wj

is said to be 1-primitive (with respect to A) if [S, A] = 0. Now by induction on q ∈ N a
vector field (99) is called q-primitive (with respect to A and P) if the commutator [S, A]

can be presented as a sum
∑N

j=1 fjSj, where Sj are (q − 1)-primitive fields and fj are
perfect functions. In particular, one has (adqA)(S) = 0.

A vector field

(100) S =
m∑

j=1

sj(w1, . . . , wm, u, u1, . . . )
∂

∂wj

is said to be primitive (without any prefix) if one has S =
∑N

j=1 fjSj , where fj are
perfect functions and Sj are q-primitive vector fields for some q.

Remark 12. Below all primitive vector fields are primitive with respect to A and P,
where P is a fixed perfect algebra and A arises from a covering (90).

Evidently, primitive vector fields form a module over the algebra P.

Lemma 9. Consider an arbitrary vector field (100) defined on a neighborhood of the
point ui = ai ∈ Vi, i ≥ 0. Consider a covering (90) satisfying (92) for all s ≥ 1.

(1) If

(101)
∂

∂ui

(
Dx(S) + [A, S]

)
= 0 ∀ i > 0

then ∂S/∂ui = 0 for all i ≥ 0.
(2) If Dx(S) + [A, S] is primitive then S is primitive.
(3) If S is primitive and the function F in (88) is perfect then [B, S] is primitive.

Proof. (1) Let r be the maximal integer such that ∂S/∂ur �= 0. From (92) for s = r +1
we have

(102)
∂

∂ur+1

(
Dx(S) + [A, S]

)
(u, . . . , ur, ar+1, . . . , ak) =

∂S

∂ur
.

Combining this with (101) for i = r + 1, we obtain ∂S/∂ur = 0.
(2) Again let r be the maximal integer such that ∂S/∂ur �= 0. Then (102) holds.

Since Dx(S) + [A, S] is primitive, vector field (102) is also primitive, by the properties
of perfect functions. Therefore, by Condition 2 of Definition 7, there is a primitive field
S ′ such that S̃ = S−S ′ does not depend on ui, i ≥ r. Then Dx(S̃)+ [A, S̃] is primitive,
and by induction on r one completes the proof.

(3) Applying adS to (90), we obtain

(103) Dx

(
[S, B]

)
+[A, [S, B]] = [S, DtA] − [[S, A], B].
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By assumption, for some q one has

(104) S =
∑

j

fjSj , fj are perfect, Sj are q-primitive.

Let us prove that [S, B] is primitive by induction on q. For q = 1 the right-hand side
of (103) is zero. Applying Part 1 of this lemma to the vector field [S, B], we obtain
that [S, B] is 1-primitive.

Now assume that the statement holds for q − 1. Consider an arbitrary vector field S
satisfying (104). Let us prove that [S, B] is primitive.

By formula (44), we have

(105) [S, DtA] =
k∑

j=0

Dj
x(F )[S,

∂

∂uj

A].

Since F is perfect, the functions Dj
x(F ) are also perfect. Besides, for any primitive X

the vector fields [X, ∂A/∂uj ] are also primitive for all j. Therefore, (105) is primitive.
Since [S, A] is a linear combination of (q−1)-primitive fields, the vector field [[S, A], B]

is also primitive by the induction assumption. Thus the right-hand side of (103) is
primitive and we can apply Part 2 of this lemma to [S, B]. �

4. Coverings of the KdV equation

In this section we return to the KdV equation

(106) ut = u3 + u1u.

Our final goal here is Theorem 17.

4.1. The canonical form of coverings.

Theorem 16. For any covering of equation (106)

DxB − DtA + [A, B] = 0,(107)

A = A(u, u1, . . . , uk), B = B(u, u1, . . . , uk)

(we omit the dependence on fibre coordinates wj) locally there is an equivalent covering
such that A, B are polynomial in ui and A satisfies (92) for all s ≥ 1 and ai = 0, i ≥ 1.

Proof. Consider an arbitrary point ui = ai ∈ C, wj = wj
0 ∈ C where the vector fields

A and B are defined. All local gauge transformations in this proof will be defined on a
neighborhood of this point. By Lemma 5, we can assume that (92) holds for all s ≥ 1.

Remark 13. It would be most convenient to take ai = 0 from the beginning. However,
since we consider coverings over arbitrary open subsets of the translation-invariant
infinite prolongation of (106), we do not know in advance whether A, B are defined
around this point. We will show by induction that after a suitable gauge transformation
the vector fields A, B become polynomial in ui and, therefore, are uniquely extended
to the whole space of variables u, . . . , uk.
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To clarify further arguments, let us first determine the form of A, B with respect to
the highest derivatives ui, i ≥ k−3. A straightforward analysis of equation (107) shows
that A does not depend on uk, uk−1 and is a polynomial of degree 2 in uk−2, while B is
polynomial in uk, uk−1, uk−2. Therefore, following the strategy of Remark 13, we can
find a gauge transformation such that the transformed A satisfies (92) with ai = 0 for
i ≥ k − 2.

Then (92) for s = k − 2 implies

(108) A = u2
k−2A2(u, . . . , uk−3) + A0(u, . . . , uk−3).

Further analysis shows that A2 does not depend on uk−3 and B is of the form

(109) B = 2uk−2ukA2 − u2
k−1A2 + B11(u, . . . , uk−3)uk−2uk−1+

+ B10(u, . . . , uk−3)uk−1 + B0(u, . . . , uk−2).

Differentiating (107) with respect to uk, uk−2, we obtain

2Dx(A2) + B11 + 2[A0, A2] = 0,

while differentiation with respect to uk−1, uk−1 implies

−Dx(A2) + B11 − [A0, A2] = 0.

Therefore,

(110) Dx(A2) + [A, A2] = 0,

which by Lemma 9 (1) says that A2 does not depend on ui, i ≥ 0, and [A, A2] = 0.
That is, A2 is 1-primitive with respect to A.

Definition 9. Let r ∈ Z+ and r < k. A vector field

A =
m∑

j=1

aj(w1, . . . , wm, u, u1, . . . , uk)
∂

∂wj

is said to be r-simple if it satisfies (92) for all s ≥ 1 with ai = 0, i ≥ k − r, and some
a1, . . . , ak−r−1 ∈ C.

Lemma 10. (1) For each r < k and any covering (107) there is a locally gauge
equivalent covering with r-simple A.

(2) If a covering (107) has r-simple A then the vector fields

(111)
A′ = A(u, . . . , uk) − A(u, . . . , uk−r−1, 0, . . . , 0),

B′ = B(u, . . . , uk) − B(u, . . . , uk−r+1, 0, . . . , 0)

are primitive with respect to A and P, where P is the perfect algebra constructed
in Example 11.

Proof. For r = 2 we proved these statements above. Suppose that the statements of
hold for some r = l ≤ k − 2 and let us prove them for r = l + 1.

By assumption, each covering is locally equivalent to a covering (107) with l-simple
A. Then by Part 2 of the lemma we have

(112)
A = A′(u, . . . , uk−2) + Ã(u, . . . , uk−l−1),

B = B′(u, . . . , uk) + B̃(u, . . . , uk−l+1),
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where

(113) Ã = A(u, . . . , uk−l−1, 0, . . . , 0), B̃ = B(u, . . . , uk−l+1, 0, . . . , 0),

and the primitive vector fields A′, B′ are given by (111) for r = l.
We can rewrite (107) as follows

(114) DxB̃ − DtÃ + [Ã, B̃] + P = 0,

where

(115) P = DxB
′ − DtA

′ + [A, B′] + [A′, B]

is primitive. Indeed, the fact that DxB
′, DtA

′, [A, B′] are primitive follows immediately
from the fact that A′, B′ are primitive, while [A′, B] is primitive by Lemma 9 (3). In
particular, P is polynomial in ui, i ≥ 0.

From equation (114) it follows easily that Ã, B̃ are polynomial in uk−l−1, uk−l, uk−l+1.
Therefore, A(u, . . . , uk) and B(u, . . . , uk) are defined for ui = ai, i ≤ k − l − 2, and
arbitrary values of uj, j ≥ k − l − 1. By Lemma 5, after some gauge transformation

wi �→ gi(w1, . . . , wm, u, . . . , uk−l−2)

A becomes (l + 1)-simple, which proves Part 1 of the lemma for r = l + 1.
To prove Part 2, consider an arbitrary covering (107) with (l + 1)-simple A, where

l ≤ k − 2. Since (l + 1)-simple A is also l-simple, we again have representation (112)
and equation (114), where (115) is primitive.

Similarly to formulas (108) and (109), from (114) we obtain

Ã = P1 + u2
k−l−1A

′
2(u, . . . , uk−l−3) + A′

0(u, . . . , uk−l−2),(116)

B̃ = P2 + 2uk−l−1uk−l+1A
′
2 − u2

k−lA
′
2 + B′

11(u, . . . , uk−l−2)uk−l−1uk−l+(117)

+B′
10(u, . . . , uk−l−2)uk−l + B′

0(u, . . . , uk−l−1),

where P1, P2 are primitive. Similarly to (110), this implies that DxA
′
2 + [A, A′

2] is also
primitive. By Lemma 9 (2), the vector field A′

2 is primitive.
Then the vector fields

A(u, . . . , uk) − A(u, . . . , uk−l−2, 0, . . . , 0),

B(u, . . . , uk) − B(u, . . . , uk−l, 0, . . . , 0)

are also primitive, which proves Part 2 of the lemma for r = l + 1. �

By the above lemma for r = k−1, we obtain that after a suitable gauge transformation
one has

A = A′′(u, . . . , uk−2) + A′′
0(u),

B = B′′(u, . . . , uk) + B′′
0 (u, u1, u2),

where A′′, B′′ are primitive and A is (k − 1)-simple. Now it is straightforward to prove
that A′′

0, B′′
0 are polynomial in u, u1, u2. �



COVERINGS AND THE FUNDAMENTAL GROUP FOR PDE 39

4.2. The fundamental algebras. From the above proof it follows that for each k ≥ 3
there are finite subsets

Mk ⊂ Z
k−1
+ , Nk ∈ Z

k+1
+

such that the following statement holds. If a covering (107) of equation (106) satis-
fies (92) for all s ≥ 1 with ai = 0, i ≥ 1, then it is of the form

(118)

A =
∑

(i0,...,ik−2)∈Mk

ui0
0 . . . u

ik−2

k−2Ai0...ik−2
,

B =
∑

(i0,...,ik)∈Nk

ui0
0 . . . uik

k Bi0...ik ,

where the vector fields

(119) Ai0...ik−2
, Bi0...ik

do not depend on ui, i ≥ 0.
Let us show that this canonical form of coverings satisfies Definition 5 if we take

Ak = {ui0
0 . . . u

ik−2

k−2 | (i0, . . . , ik−2) ∈ Mk},
Bk = {ui0

0 . . . uik
k | (i0, . . . , ik) ∈ Nk}.

Relation (64) is obvious. Condition 1 of Definition 5 follows from Theorem 16. Let

S =
m∑

j=1

sj(w1, . . . , wm, u, u1, . . . )
∂

∂wj

be a symmetry of the covering given by vector fields (118), i.e.,

(120) [Dx + A, S] = [Dt + B, S] = 0.

By Lemma 7, S does not depend on ui, i ≥ 0. Then (120) implies that S commutes
with all vector fields (119), which proves Condition 3 of Definition 5. Conditions 2
and 4 follow analogously from Lemmas 6 and 8 respectively.

Vector fields (118) satisfy (107) if and only if certain Lie algebra relations hold
for (119). Denote by fk−2 the quotient of the free Lie algebra generated by letters (119)
over these relations. We obtain the system of fundamental algebras

(121) · · · → fk+1 → fk → · · · → f1 → f0

for equation (106). In particular, the algebras f1 and f0 are described in Example 9.
Denote by ak−2 the subalgebra of fk−2 generated by Ai0,...,ik−2

.

Lemma 11. We have

(122) Bi0...ik ∈ ak−2 for i0 + · · ·+ ik > 0.

Proof. For (i0, . . . , ik) ∈ Nk set

r(i0, . . . , ik) = max{s | is > 0}.
Let us prove (122) by induction on k − r(i0, . . . , ik).

For (i0, . . . , ik) ∈ Nk with r(i0, . . . , ik) = k it follows from (109).
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Suppose that (122) holds for all (i0, . . . , ik) ∈ Nk with r(i0, . . . , ik) ≥ l + 1. Differen-
tiate (107) with respect to ul+1 and substitute ui = 0 for i ≥ l+1. Since A satisfies (92)
for s = l + 1 and ai = 0, we obtain (122) for (i0, . . . , ik) ∈ Nk with r(i0, . . . , ik) = l. �

Combining (122) and (107), one gets

(123) [B0...0, ak−2] ⊂ ak−2.

Substituting ui = 0 to (107), we obtain also

(124) [A0...0,B0...0] = 0.

Let us specify the structure of (118). For k = 3 it was described in Theorem 1.
Similarly to the proof of Theorem 16, one obtains that for k ≥ 4 vector fields (118)
have the form

A = Ak−2

(
u2

k−2 −
2k − 3

3
uu2

k−2

)
+A′

k−2u
2
k−3 + A0(u, . . . , uk−4),(125)

B = 2uk−2ukAk−2 + B0(u, . . . , uk−1),(126)

where

Ak−2 = A0...02, A′
k−2 = A0...020,

[Ak−2, A] = 0,(127)

[Ak−2, B] = 3[A0,A
′
k−2].(128)

and A0, B0 are polynomial in ui.
Equation (127) implies

(129) [Ak−2, ak−2] = 0.

Combining this with (122) and (128), we obtain

(130) [Ak−2,B0...0] = 3[A0...0,A
′
k−2].

Moreover, taking into account (124) and applying adsB0...0 to (130), we obtain

(131) − (ads+1B0...0)(Ak−2) = 3[A0...0, (adsB0...0)(A
′
k−2)] ∀ s ≥ 0.

By the definition of fn and formulas (125), (126), for each n ≥ 2 the algebra fn−1 is
isomorphic to the quotient of fn over the ideal in generated by An. From (122), (123),
and (131) we obtain that in ⊂ an. Moreover, (129) implies

(132) [in, an] = 0.

Lemma 12. For each n ≥ 1 we have the relation

(133) − (adnB0...0)(An) = 0

in the algebra fn.

Proof. For n = 1 this statement follows from (59). By induction on n, suppose
that (133) holds for n−1. By formula (125), the generator A′

n ∈ fn is mapped to An−1 ∈
fn−1 by the natural epimorphism fn → fn/in ∼= fn−1. Therefore, (adn−1B0...0)(A

′
n) ∈ in.

Combining this with (131) and (132), we obtain (133). �
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From the above results it follows that the elements

ci = (ad iB0...0)(An), i = 0, . . . , n − 1,

span the ideal in. The element cn−1 belongs to the center of fn. Moreover, for each
i = 0, . . . , n − 1 the image of ci belongs to the center of the quotient

fn/〈ci+1, . . . , cn−1〉.

Thus we have the following statement.

Lemma 13. For each n ≥ 2 the algebra fn is obtained from fn−1 applying the operation
of one-dimensional central extension no more than n times.

Let us now prove the main result of this section.

Theorem 17. The KdV equation (106) possesses fundamental algebras (121). Each
algebra fk is quasi-finite and is obtained from the algebra sl2(C)⊗CC[λ] applying several
times the operation of one-dimensional central extension.

Proof. It was shown above that (121) are fundamental algebras of (106). Let us prove
that algebras (121) are quasi-finite.

By Theorem 9, the algebra

g = sl2(C) ⊗C C[λ]

is quasi-finite. From (59) it follows that f1 is the trivial central extension of the algebra
L from Proposition 2.

Since the Heisenberg algebra H is nilpotent, the algebra f1 is obtained from g applying
6 times the operation of one-dimensional central extension. Therefore, by Theorem 8,
the algebra f1 is also quasi-finite. Finally, combining Lemma 13 and Theorem 8, we
obtain that all fundamental algebras (121) are quasi-finite. �

It is well known that sl2(C)⊗C C[λ] has no nontrivial central extensions. Combining
this with Theorem 17, we obtain the following specification of the structure of fk.

Theorem 18. Each algebra fk is isomorphic to the direct sum of sl2(C) ⊗ C[λ] and a
finite-dimensional nilpotent algebra.

5. Coverings of the Krichever-Novikov equation

Consider the Krichever-Novikov (KN) equation [11, 17, 18]

(134) ut = u3 −
3

2

u2
2

u1
+

h(u)

u1
, uk =

∂ku

∂xk
,

where h(u) is a polynomial of degree 3 with coefficients in C. If the roots of the
polynomial h(u) are distinct then equation (134) is said to be nonsingular.

The main goal of this section is Theorem 22.
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5.1. The canonical form of coverings. We want to have an analog of Theorem 16
for equation (134). The straightforward repetition of the proof of Theorem 16 is not
possible, because (134) is not polynomial in u1.

To overcome this, we need to introduce a perfect algebra that contains the function
1/u1. By Condition 2 of Definition 7, this algebra must contain also

∫
1/u1du1.

To this end, choose a half-line L ⊂ C from 0 to ∞ such that V1 = C \ L is simply
connected. Let ln u1 be a single-valued branch of the logarithm defined on V1. Set
Vi = C, i �= 1, and let P be the algebra of polynomials in

(135) ui, i ≥ 0,
1

u1

, lnu1.

Then P is a perfect algebra. Indeed, all conditions of Definition 7 are obvious except
of Condition 2. The latter follows from the fact that for any a ∈ Z, b ∈ Z+ there is a
polynomial g in u1, 1/u1, ln u1 such that ∂g/∂u1 = ua

1 lnb u1.

Remark 14. Thus for equation (134) we study not the whole translation-invariant
infinite prolongation, but the open dense subset

{(u0, u1, . . . ) | u1 ∈ C \ L, ui ∈ C ∀ i �= 1}
of it.

In Theorem 16, we proved that every covering of the KdV equation is locally equiv-
alent to a covering in the canonical form satisfying (92) for all s ≥ 1 and ai = 0, i ≥ 1.
For equation (134) the point ui = 0 is also crucial. However, one cannot prove the same
statement for coverings of (134), because 1/u1 and ln u1 are not defined at u1 = 0. Let
us make necessary modifications.

Definition 10. A vector field

(136) S =
m∑

j=1

sj(w1, . . . , wm, u, . . . , uk)
∂

∂wj

is said to be u1-free if each function sj(w1, . . . , wm, u, . . . , uk) is polynomial in

(137) ui, i ≥ 1,
1

u1

, ln u1

with coefficients dependent on u, w1, . . . , wm and the coefficient at the monomial u1 is
zero. (This coefficient is well defined because the functions

ua
1 lnb u1, a ∈ Z, b ∈ Z+,

are linearly independent.)

Definition 11. Let r ∈ Z+ and r ≤ k − 2. A vector field

A =
m∑

j=1

aj(w1, . . . , wm, u, u1, . . . , uk)
∂

∂wj

is said to be weakly r-simple if it satisfies (92) for all s ≥ 2 with ai = 0, i ≥ k − r, and
some a2, . . . , ak−r−1 ∈ C.
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In contrast to r-simple vector fields, a weakly r-simple vector field does not necessarily
satisfy (92) for s = 1.

Remark 15. In this section perfect functions are elements of the perfect algebra P
defined above.

Lemma 14. If in Lemmas 6, 7, 8, 9 one replaces the condition that A satisfies (92)
for all s ≥ 1 by the condition that A is u1-free and weakly (k − 2)-simple then the
conclusions of these lemmas remain valid.

Proof. Let us prove that Lemma 9 (1) remains valid, since the other statements are
proved analogously.

So assume that A(u, . . . , uk) is u1-free and weakly (k − 2)-simple and that equa-
tion (101) holds. By Definition 11, A satisfies (92) for all s ≥ 2. Therefore, the
equations

(138)
∂S

∂ui
= 0 ∀ i ≥ 1

are proved in the same way as in Lemma 9 (1).
Let us prove that ∂S/∂u is also equal to zero. From (101) for i = 1 we have

(139)
∂S(u)

∂u
+ [

∂A

∂u1
, S(u)] = 0.

Since A is u1-free and (138) holds, the vector field [∂A/∂u1, S(u)] is either zero or
depends nontrivially on some ui, i ≥ 1. Combining this with (138) and (139), we
obtain

∂S

∂u
= [

∂A

∂u1

, S(u)] = 0.

�
Theorem 19. For any covering of equation (134)

DxB − DtA + [A, B] = 0,(140)

A = A(u, u1, . . . , uk), B = B(u, u1, . . . , uk)(141)

(we omit the dependence on fibre coordinates wj) locally there is an equivalent covering
such that

(1) A, B are polynomial in (135),
(2) A is (k − 2)-simple and u1-free.

Proof. Let (141) be defined on a neighborhood of a point ui = ai.

Lemma 15. (1) For each r ≤ k− 2 and any covering (140) there is a locally gauge
equivalent covering with r-simple A.

(2) If a covering (140) has r-simple A then the vector fields

A′ = A(u, . . . , uk) − A(u, . . . , uk−r−1, 0, . . . , 0),

B′ = B(u, . . . , uk) − B(u, . . . , uk−r+1, 0, . . . , 0)

are primitive with respect to A and P.
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Proof. This is proved similarly to Lemma 10. Formulas (116) and (117) for l ≤ k − 3
are replaced by

Ã = P1 +
u2

k−l−1

u2
1

A′
2 + A′

0(u, . . . , uk−l−2),

B̃ = P2 + 2
uk−l−1uk−l+1

u2
1

A′
2 −

u2
k−l

u2
1

A′
2 + B′

11(u, . . . , uk−l−2)uk−l−1uk−l+

+B′
10(u, . . . , uk−l−2)uk−l + B′

0(u, . . . , uk−l−1),

where P1, P2, A′
2 are primitive. �

By the above lemma for r = k − 2, after a suitable gauge transformation we have

(142)
A = A′ + A0(u, u1),

B = B′ + B0(u, u1, u2, u3),

where the vector fields

(143)
A′ = A(u, . . . , uk) − A(u, u1, 0, . . . , 0),

B′ = B(u, . . . , uk) − B(u, u2, u3, 0, . . . , 0)

are primitive and A is (k − 2)-simple.
Substituting (142) to (140), it is straightforward to obtain that

(144) A0 = C +
1

u1
A1(u) + u1A2(u) + A3(u),

where C is primitive.
The vector field A remains weakly (k − 2)-simple and polynomial in (137) after any

gauge transformation of the form

(145) wi �→ f i(w1, . . . , wm, u).

Let us find a gauge transformation (145) such that A becomes u1-free. To this end,
let

m∑
j=1

cj(w1, . . . , wm, u)
∂

∂wj

be the coefficient of A at the monomial u1 and consider the system of ordinary differ-
ential equations

d

du
f j(w1, . . . , wm, u) = cj(f 1, . . . , fm, u), j = 1, . . . , m,

dependent on the parameters w1, . . . , wm. Its local solution with the initial condition

f j(w1, . . . , wm, a0) = wj, j = 1, . . . , m,

determines gauge transformation (145) that makes A u1-free.
By Lemma 14, in Lemma 15(2) for r = k − 2 the condition that A is (k − 2)-

simple can be replaced by the condition that A is weakly (k − 2)-simple and u1-free.
Therefore, after this gauge transformation vector fields (143) remain primitive and we
have formula (144) with primitive u1-free C and A2(u) = 0.
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Now it is straightforward to show that

(146) A(u, u1, 0, . . . , 0), B(u, u2, u3, 0, . . . , 0)

are polynomial in (135). Therefore, A and B satisfy the conditions of the theorem. �

5.2. The fundamental algebras. Consider the following set of perfect functions

Z = {(lna u1)u
i0
0 ui1

1 ui2
2 . . . uik

k | i1 ∈ Z,

a, i0, i2, . . . , ik ∈ Z+, |i1| + a + i0 + i2 + · · · + ik > 0}.
Similarly to the case of the KdV equation, from the proof of Theorem 19 it follows that
for each k ≥ 3 there are finite subsets

A′
k, B′

k ⊂ Z, A′
k ⊂ A′

k+1, B′
k ⊂ B′

k+1

such that the following statement holds. If a covering (140) of equation (134) has
(k − 2)-simple u1-free A then it is of the form

(147) A =
∑
f∈A′

k

fAf + A1, B =
∑
g∈B′

k

gBg + B1,

where the vector fields

(148) Af , Bg, A1, B1

do not depend on ui, i ≥ 0.
Let us show that the conditions of Definition 5 hold, if we set

Ak = A′
k ∪ {1}, Bk = B′

k ∪ {1}.
Indeed, Condition 1 follows from Theorem 19. Conditions 2, 3, 4 hold because, by
Lemma 14, Lemmas 6, 7, 8 are applicable to the canonical form of coverings described
in Theorem 19.

Vector fields (147) satisfy (140) if and only if certain Lie algebra relations hold
for (119). Denote by fKN

k−2 the quotient of the free Lie algebra generated by letters (119)
over these relations. We obtain the system of fundamental algebras

(149) · · · → fKN
n+1 → fKN

n → · · · → fKN
1 → fKN

0

for equation (134).

Proposition 4 ([17]). For each integer n ≥ 2 there is a conserved current Dtfn = Dxgn

of the form

fn =
u2

n

u2
1

+ f̃n(u, . . . , un−1), gn = 2
unun+2

u2
1

+ g̃n(u, . . . , un+1),

where f̃n, g̃n are polynomials in 1/u1, ui, i ≥ 0.

Similarly to Lemma 5, we can find equivalent conserved currents

f ′
n = fn + Dx(hn(u, . . . , un−2)), g′

n = gn + Dt(hn(u, . . . , un−2))

such that

• the functions f ′
n, g′

n are perfect,
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• we have
∂f ′

n

∂us
(u, . . . , us−1, 0, . . . , 0) = 0 ∀ s ≥ 2,

• f ′
n is polynomial in (137) with zero coefficient at the monomial u1.

Example 12. We have

f ′
2 =

u2
2

u2
1

+
2

3

h(u)

u2
1

,

g′
2 = 2

u2u4

u2
1

− u2
3

u2
1

− 4

3

h(u)u3

u3
1

− 4
u2

2u3

u3
1

+

+
9

4

u4
2

u4
1

− h(u)
u2

2

u4
1

+ 2
dh(u)

du

u2

u2
1

− 1

3

h(u)2

u4
1

.

Return to algebras (149). Let ak ⊂ fKN
k−2 be the subalgebra generated by Af , f ∈ A′

k,
and ãk ⊂ fKN

k−2 be the subalgebra generated by ak−2 and A1. Similarly to Lemma 11, we
obtain

Bg ∈ ak−2 ∀ g ∈ B′
k,(150)

[B1, ãk−2] ⊂ ak−2.(151)

For k ≥ 5 vector fields (147) can be rewritten as follows

A = f ′
k−2A

k−2 +
u2

k−3

u2
1

Ãk−2 + A0(u, . . . , uk−4),(152)

B = g′
k−2A

k−2 + B0(u, . . . , uk−1),(153)

where

Ak−2 = Au2
k−2u−2

1
, Ãk−2 = Au2

k−3u−2
1

,

[Ak−2, A] = 0,(154)

[Ak−2, B] = 3[A0, Ã
k−2].(155)

Equation (154) implies

[Ak−2, ãk−2] = 0.

Combining this with (150) and (155), we obtain

[Ak−2,B1] = 3[A1, Ã
k−2],(156)

[Ãk−2, ak−2] = 0.(157)

Taking into account (157), (151) and applying ad sB1 to (156), we obtain

(158) − (ads+1B1)(A
k−2) = 3[A1, (adsB1)(Ã

k−2)] ∀ s ≥ 0.

Similarly to Section 4.2, the obtained identities imply that for each k ≥ 5 the alge-
bra fKN

k−2 is obtained from fKN
k−3 applying several times the operation of one-dimensional

central extension.
Let us describe the algebras fKN

i for i = 0, 1, 2.
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Theorem 20. Any covering of equation (134) of the form

DxB − DtA + [A, B] = 0,

A = A(u, u1, u2, u3, u4), B = B(u, u1, u2, u3, u4)

is locally equivalent to a covering of the form

A = f ′
2C +

1

u1

A1(u) + V1,

B = g′
2C − u3

u2
1

A1 +
u2

2

2u3
1

A1 +
2u2

u1

∂A1

∂u
− h(u)

3u3
1

A1+

+
2

u1
[A1,

∂A1

∂u
] − 2u1

∂2A1

∂u2
+ V2,

where A1 = A10 +uA11 +u2A12, the vector fields C, Vi, A1k do not depend on ui, i ≥ 0,
and are subject to the following relations

[C, Vi] = [C, A1k] = [V1, V2] = [Vi, A1k] = 0 i = 1, 2, k = 0, 1, 2,(159)

2h(u)
∂A1

∂u
− dh(u)

du
A1 − 3[A1, [A1,

∂A1

∂u
]] = 0.(160)

Proof. This is proved by a straightforward computation following the scheme of the
proof of Theorem 19. Relation (160) was obtained in [6]. �

Equation (160) determines some relations between the vector fields A1k, k = 0, 1, 2.
Let us describe the quotient of the free Lie algebra generated by A1k over these relations.

Consider the ideal I ⊂ C[v1, v2, v3] generated by the polynomials

(161) v2
i − v2

j +
8

3
(ej − ei), i, j = 1, 2, 3,

where e1, e2, e3 are the roots of the polynomial h(u). Set

E = C[v1, v2, v3]/I.

That is, E is the ring of regular functions on the affine elliptic curve in C3 defined by
polynomials (161). The image of vj ∈ C[v1, v2, v3] in E is denoted by v̄j. Consider also
a basis x1, x2, x3 of the Lie algebra sl2(C) ∼= so3(C) with the relations

(162) [x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2

and endow the space L = sl2 ⊗C E with the Lie algebra structure described in (76).

Proposition 5 ([6]). Suppose that the roots e1, e2, e3 of h(u) are distinct. The quotient
of the free Lie algebra generated by A1k, k = 0, 1, 2, over relations (160) is isomorphic
to the subalgebra R ⊂ L generated by the elements

x1 ⊗ v̄1, x2 ⊗ v̄2, x3 ⊗ v̄3 ∈ L.

From (159) we obtain

fKN
0 = 0, fKN

1
∼= R ⊕ C

2, fKN
2

∼= R ⊕ C
3.

Theorem 21. The algebra R is quasi-finite.
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Proof. Below we assume everywhere that {j, k, l} = {1, 2, 3}. For each j = 1, 2, 3

consider the subspace Vj ⊂ C[v1, v2, v3] spanned by the monomials v
dj

j vdk
k vdl

l satisfying

(163) dj ≡ dk + 1 ≡ dl + 1 mod 2.

Denote by Rj the image of Vj in the quotient space E.
The algebra R was also studied in [14] in connection with coverings of the Landau-

Lifshitz equation. In the proof of Lemma 3.1 of [14] it is shown that R = ⊕3
j=1〈xj〉⊗Rj .

Let h ⊂ R be a subalgebra of finite codimension. Then the subspace Hj = {f ∈
Rj | xj ⊗ f ∈ h} is of finite codimension in Rj for each j = 1, 2, 3. In addition, from the
definition of Rj and relations (162) we have

(164) RjRk ⊂ Rl, HjHk ⊂ Hl.

This implies that for all j = 1, 2, 3 the subspace

(165) H ′
j = {a ∈ Hj | aRk ⊂ Hl, aRl ⊂ Hk}

is also of finite codimension in Rj . From (164) and (165) one gets

(166) H ′
jH

′
k ⊂ H ′

l , H ′
jRjRkRl ⊂ H ′

j.

It is easy to see that Rj = 〈v̄j〉 + RkRl. Therefore,

(167) R2
j = 〈v̄2

j 〉 + RjRkRl.

For each j = 1, 2, 3 the subspace

(168) H ′′
j =

{
a ∈ H ′

j | av̄2
k ⊂ H ′

j , av̄2
l ⊂ H ′

j, aRk ⊂ H ′
l , aRl ⊂ H ′

k

}

is of finite codimension in H ′
j and, therefore, in Rj . By definitions (168), (165) and

properties (164), (166), (167), one gets

RkH
′′
j ⊂ H ′′

l , RlH
′′
j ⊂ H ′′

k ,

which implies that ⊕3
j=1〈xj〉⊗H ′′

j ⊂ h is an ideal of R. Since H ′′
j is of finite codimension

in Rj , this ideal is of finite codimension in R. �

Collecting the results of this subsection and taking into account Theorems 21 and 8,
one obtains the following.

Theorem 22. The nonsingular Krichever-Novikov equation (134) possesses fundamen-
tal algebras (149), where fKN

0 = 0. Each fKN
n for n > 0 is quasi-finite and is obtained

from R applying several times the operation of one-dimensional central extension.

6. Coverings of the equation ut = uxxx

In this section we study the linear equation

(169) ut = uxxx.

The following theorem is proved by a straightforward computation.



COVERINGS AND THE FUNDAMENTAL GROUP FOR PDE 49

Theorem 23. Any Wahlquist-Estabrook covering

DxB − DtA + [A, B] = 0,

A = A(u, u1, u2), B = B(u, u1, u2)

of equation (169) is of the form

A = u2A2 + uA1 + A0,

B = u2(2uA2 + A1) − u2
1A2 + u1[A1, A0] −

1

2
u2[A1, [A1, A0]]+

+u[A0, [A0, A1]] + B0,

where the vector fields Ai, B0 depend only on w1, . . . , wm and are subject to the relations

[A0, A2] = [A1, A2] = 0,(170)

[A0, B0] = 0,(171)

[A1, [A1, [A1, A0]]] = 0,(172)

[A2, B0] =
3

2
[A0, [A1, [A1, A0]]],(173)

[B0, A1] = [A0, [A0, [A0, A1]]].(174)

Denote by N the quotient of the free Lie algebra generated by Ai, B0 over rela-
tions (170), (171), (172), (173), (174). Similarly to Section 4.1 one proves the following.

Theorem 24. Equation (169) possesses a system of fundamental algebras, which are
obtained from N applying several times the operation of one-dimensional central exten-
sion.

Let us present some information on the structure of N.

Theorem 25. There are ideals Ni, i ∈ Z+, of N such that

• N0 = 0, Ni ⊂ Ni+1 ∀ i ∈ Z+,
• the quotient Ni+1/Ni is commutative for all i ∈ Z+,
• the quotient N/ ∪i Ni is solvable.

Proof. For a subset S of a Lie algebra we denote by 〈S〉 the ideal generated by this
subset. For simplicity, below the images of Ai, B0 ∈ N in quotients of N are denoted
by the same symbols Ai, B0. From the relations that define the algebra N one easily
obtains the following.

Lemma 16. Let Q be a quotient algebra of N and C be an element of the subalgebra
of Q generated by Ai. If [A0, C] = [A1, C] = 0 then the ideal 〈C〉 ⊂ Q is spanned by the
elements (ad kB0)(C), k ∈ Z+, and is commutative.

Let us construct the required ideals Ni. Set N0 = 0 and N1 = 〈A2〉. Combining
relation (170) with the above lemma, we see that N1/N0 = N1 is commutative. By
induction on i ∈ N, set

(175) Ni+1 = 〈Ni, [A1, (ad 2i−1A0)(A1)]〉.
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Lemma 17. For all i ≥ 1 in the quotient algebra N/Ni we have

[(ad kA0)(A1), (ad lA0)(A1)] = 0 ∀ k, l ∈ Z+ k + l ≤ 2i − 2,(176)

[A0, [A1, (ad 2i−1A0)(A1)]] = [A1, [A1, (ad 2i−1A0)(A1)]] = 0.(177)

Proof. Let us prove this by induction on i. For i = 1 relation (176) is trivial, and
relation (177) follows from (172) and (173). Suppose that the statement holds for
i = n ≥ 1 and let us prove it for i = n+1. By the induction assumption, relations (176)
for i = n hold in N/Nn+1. By definition (175), we have also

(178) [A1, (ad 2n−1A0)(A1)] = 0.

Applying the Jacobi identity to (178) and taking into account (176) for i = n, we obtain

(179) [(ad kA0)(A1), (ad lA0)(A1)] = 0 ∀ k, l ∈ Z+ k + l ≤ 2n − 1.

By the same argument, we have

(180) [(ad kA0)(A1), (ad lA0)(A1)] =

= −[(ad k+1A0)(A1), (ad l−1A0)(A1)] ∀ k + l = 2n.

Using this, we obtain

(181) [(ad kA0)(A1), (ad lA0)(A1)] =

= [(ad lA0)(A1), (ad kA0)(A1)] = 0 ∀ k + l = 2n.

Relations (179) and (181) imply (176) for i = n + 1.
It remains to prove (177) for i = n + 1, that is,

[A0, [A1, (ad 2n+1A0)(A1)]] = 0,(182)

[A1, [A1, (ad 2n+1A0)(A1)]] = 0.(183)

Relation (183) follows easily from the Jacobi identity combined with (176) for i = n+1.
Similarly to (180) we have

(184) [(ad kA0)(A1), (ad lA0)(A1)] =

= −[(ad k+1A0)(A1), (ad l−1A0)(A1)] ∀ k + l = 2n + 1.

Set I = [A1, (ad 2n+1A0)(A1)]]. Using (184), one gets

I = (−1)n[(ad nA0)(A1), (ad n+1A0)(A1)] =

= (−1)n+1[(ad n−1A0)(A1), (ad n+2A0)(A1)].

Applying adA0 to this equality, we obtain

(185) [A0, I] = (−1)n[(ad nA0)(A1), (ad n+2A0)(A1)] =

= (−1)n+1
(
[(ad nA0)(A1), (ad n+2A0)(A1)]+

+ [(ad n−1A0)(A1), (ad n+3A0)(A1)]
)
.
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On the other hand, applying adB0 to [(ad n−1A0)(A1), (ad nA0)(A1)] = 0 and taking
into account (174) and (171), one gets

[(ad n+2A0)(A1), (ad nA0)(A1)] + [(ad n−1A0)(A1), (ad n+3A0)(A1)] = 0.

Combining this with (185), we obtain [A0, I] = 0, which proves relation (183). �
By Lemma 16, relation (177) implies that Ni+1/Ni is commutative. Relation (176)

says that in the quotient algebra N/ ∪i Ni we have

(186) [(ad kA0)(A1), (ad lA0)(A1)] = 0 ∀ k, l ∈ Z+,

which implies that this quotient of N is solvable. �
Theorem 26. The algebra N is not quasi-finite.

Proof. In the quotient algebra N/ ∪i Ni denote ck = (ad kA0)(A1). Consider the sub-
algebra g of N/ ∪i Ni generated by B0 and ck. Obviously, for a quasi-finite algebra
any quotient algebra and any subalgebra of finite codimension are also quasi-finite.
Therefore, it is sufficient to prove that the algebra g is not quasi-finite.

Relations (186) say that [ck, cl] = 0, while relations (174) and (171) imply [B0, ck] =
ck+3. Let mk, k ∈ Z+, be a sequence of nonzero complex numbers satisfying mk+3 =
−(k+1)mk. Consider the following transitive action of g on the manifold M = {(x, y) ∈
C2 | x �= 0, y �= 0}

ck �→ mk

xk+1

∂

∂y
, B0 �→

1

x2

∂

∂x
.

By Theorem 7, since the image of g in D(M) is infinite-dimensional, the algebra g is
not quasi-finite. �

7. Non-existence results for Bäcklund transformations

Theorem 27. Equation (169) is not connected by any Bäcklund transformation neither
with the KdV equation nor with the nonsingular Krichever-Novikov equation.

Proof. Below a Lie subalgebra denoted by h, h1, or h2 is always supposed to be of finite
codimension. The following lemma is obvious.

Lemma 18. Let g be a finite-dimensional semisimple Lie algebra. Suppose that a Lie
algebra g1 is obtained from a Lie algebra g2 applying several times the operation of one-
dimensional central extension. Then each of the following properties holds for i = 1 if
and only if it holds for i = 2.

• There are a subalgebra h ⊂ gi and an epimorphism h → g.
• For any subalgebra h ⊂ gi there is an epimorphism h → g.

Set g = sl2(C). Let us prove first that there is no Bäcklund transformation between
equation (169) and the nonsingular Krichever-Novikov equation. Combining Lemma 18
with Theorems 22, 24, and 14, we see that it is sufficient to prove that for any subal-
gebras h1 ⊂ R, h2 ⊂ N there is an epimorphism h1 → g, but there is no epimorphism
h2 → g.

There is a natural family of epimorphisms R → g parameterized by the points of the
affine curve in C3 given by polynomials (161). Namely, for a point (a1, a2, a3) of the
curve the generator xi ⊗ v̄i of R is mapped to aixi ∈ g. Since h1 is of finite codimension
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in R, there are polynomials fi(v̄1, v̄2, v̄3) and a point (a1, a2, a3) of the curve such that
xi ⊗ fi belongs to h1 and fi(a1, a2, a3) �= 0 for all i = 1, 2, 3. Then the restriction to h1

of the corresponding homomorphism ρ : R → g is surjective, since the elements

ρ(xi ⊗ fi) = fi(a1, a2, a3)xi, i = 1, 2, 3,

span g.
Non-existence of an epimorphism h2 → g follows from Theorem 25. Indeed, suppose

that there is an epimorphism ρ : h2 → g. Since h2∩Ni is solvable, we have ρ(h2∩Ni) = 0
for all i. Therefore, there is an epimorphism

h2/
(
h2 ∩ (∪iNi)

)
→ g,

which is impossible, since N/ ∪i Ni is solvable.
Let us now prove that there is no Bäcklund transformation between equation (169)

and the KdV equation. Since, according to Theorem 17, each fundamental algebra of
the KdV equation is obtained from g ⊗ C[λ] applying several times the operation of
one-dimensional central extension, it is sufficient to prove that for any subalgebra h1 ⊂
g⊗C[λ] there is an epimorphism h1 → g. Consider the natural family of epimorphisms

ρa : g ⊗ C[λ] → g, g ⊗ f(λ) �→ f(a)g, a ∈ C.

Since h1 is of finite codimension, for some of these epimorphisms its restriction to h1 is
surjective. �
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