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1. Introduction

In these notes we try to describe the theory of (generalized or higher) symmetries of
PDEs in the most general, compact, and coordinate-free form. In particular, the initial
bundle is allowed to be nontrivial and non-vector, the subset of a jet space determined by
a system of PDEs is not required to be a submanifold and is not required to be formally
integrable in the classical sense. All necessary coordinate formulas are also presented.

It seems that in the literature the theory of symmetries is developed rigorously only for
formally integrable PDEs. However, as we show in Example 4 in Section 5, there are many
PDEs (and some of them are very simple) that are not formally integrable. Therefore,
the standard approach to symmetries must be generalized in order to include this kind of
PDEs, and we hope that the present notes fill this gap.
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The theory is illustrated with the examples of the KdV and sine-Gordon equations.
More examples can be found in [2, 5, 7]. Our framework is close to that of [2, 4, 5], but
is more general. Also, we announce without proof a new result from [3] on the existence
of symmetry-invariant solutions.

All manifolds, mappings, and functions are supposed to be smooth.

Remark 1. In the analytic situation the theory is essentially the same, but one must
consider sheaves instead of globally defined functions and vector fields.

For a bundle τ the space of sections is denoted by Γ(τ). For a smooth map f : M1 →M2

the differential is denoted by f∗ and the pullback map is f ∗ : C∞(M2) → C∞(M1). For
a manifold N the space of vector fields is denoted by D(N). The letter D here reflects
the fact that vector fields on N are in one-to-one correspondence with derivations of the
algebra C∞(N).

2. An instructive example: solutions of the KdV equation

To motivate the general theory, consider first an example.
For a function u = u(x, t) introduce the following notation for partial derivatives

ux =
∂u

∂x
, ut =

∂u

∂t
, uxt =

∂2u

∂x∂t
, uxxx =

∂3u

∂x3
.

The famous Korteweg-de Vries equation reads

(1) ut = uxxx + uxu.

In what follows we call it the KdV equation.
By the Cauchy-Kovalevskaya theorem, for any analytic function f(x) there is a unique

solution u(x, t) of (1) such that u(x, 0) = f(x). However, this solution is usually hard to
describe explicitly. We want to find explicit solutions of (1), for example, solutions that
can be expressed in terms of elementary or special functions. To do this, we add to (1)
another PDE

(2) ϕ(x, t, u, ux, uxx, . . . ) = 0.

It turns out that a system of two equations (1), (2) is easier to solve than the initial
equation (1). Indeed, one can solve first equation (2) as an ordinary differential equation
with respect to the variable x, treating t as a parameter. Then one solves (1) as a first-
order ordinary differential equation with respect to t.

However, for a random equation (2) this system is inconsistent and has no solutions.
The theory that is described in these notes allows to construct many functions ϕ such
that system (1), (2) possesses solutions. It turns out that these solutions are in some
sense the most interesting of all KdV solutions and have a lot of applications in physics.

For example, one can take

(3) ϕ = uxxx + uxu− cux

for arbitrary constant c ∈ R. Let us solve system (1), (2) for this ϕ. From

(4) uxxx + uxu− cux = 0

and (1) one obtains

(5) ut = cux
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Exercise 1. Deduce from equations (5) and (4) that u(x, t) is of the form u = P (x+ ct),
where P is a function of one variable s and satisfies the ordinary differential equation

(6) P ′′′ + P ′P − cP ′ = 0.

Integrating equation (6), we obtain

P ′′ +
1

2
P 2 − cP = a

for some constant a. Multiplying this by P ′ and integrating once again, one gets

(7)
1

2
(P ′)2 +

1

6
P 3 − c

2
P 2 = aP + b

for some constant b. This equation can be solved in terms of so-called elliptic functions.
If a = b = 0 and c > 0 then the general solution of (7) is P (s) = 3c sech2(1

2

√
cs + d),

where d ∈ R is an arbitrary constant. Here

sech(x) =
2

ex + e−x

is the hyperbolic secant function. The corresponding solution u(x, t) = P (x + ct) of the
KdV equation is called the one-soliton solution.

Function (3) corresponds to a symmetry of the KdV equation, and the obtained solution
is an example of a symmetry-invariant solution.

3. Symmetries of finite jets

3.1. Jet spaces. Let π : E → M be a fiber bundle. For a section s of π denote by
Γs ⊂ E its graph. Let k be a non-negative integer. Two sections s1, s2 defined on a
neighborhood of a point x ∈M are said to be tangent of order k at x if s1(x) = s2(x) and
the submanifolds Γs1 , Γs2 are tangent of order k at the point s1(x) = s2(x) ∈ E. This
determines an equivalence relation on the set of germs of local sections at x. The set of
equivalence classes is denoted Jkx (π), and the equivalence class [s]kx of a section s is called
the k-th order jet of s at x.

The set

Jk(π) =
⋃
x∈M

Jkx (π)

is said to be the k-th order jet space of the bundle π. We have a natural map

(8) πk : Jk(π) →M, [s]kx 7→ x.

Obviously, J0(π) can be identified with E, then π0 = π.
Set n = dimM and m = dim π. Let x ∈ M , a ∈ π−1(x) ⊂ E, and U ⊂ M be a

neighborhood of x diffeomorphic to an open subset of Rn with coordinates x1, . . . , xn.
One can choose U such that there is an open subset V ⊂ Rm with coordinates u1, . . . , um

and an open subset W ⊂ E containing a and diffeomorphic to U × V in such a way that

π
∣∣
W

: (x1, . . . , xn, u
1, . . . , um) 7→ (x1, . . . , xn).

Such subset W with coordinates x1, . . . , xn, u
1, . . . , um is called an adapted coordinate

chart on E.
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Remark 2. In what follows, speaking about local coordinates in jet spaces we always
mean coordinates on the preimage π−1

k (W ) of an adapted coordinate chart W ⊂ E. As
we show below, the set π−1

k (W ) has coordinates (9) and π−1
∞ (W ) ⊂ J∞(π) has coordi-

nates (17).

Let S(U,W ) be the set of local sections on open subsets of U whose graphs lie in
W ∼= U × V . Such a section s is determined by smooth functions(

f 1(x1, . . . , xn), . . . , f
m(x1, . . . , xn)

)
on an open subset of U . Denote by J(U,W ) ⊂ Jk(π) the set of k-th order jets of sections
from S(U,W ). For any i1, . . . , ip ∈ {1, . . . , n} and j = 1, . . . ,m consider the functions

ujσ : J(U,W ) → R, ujσ
(
[s]kx

)
=

∂pf j

∂xi1 . . . ∂xip
.

Here σ = (i1, . . . , ip) is a symmetric multi-index, i.e., a non-ordered collection of numbers
from {1, . . . , n}. Set |σ| = p.

The multi-index σ is also allowed to be empty, and we can identify

uj = uj∅ : J(U,W ) → R.

Exercise 2. Prove that the number of symmetric multi-indices σ = (i1, . . . , ip) with

1 ≤ il ≤ n, 0 ≤ p ≤ k is equal to s(n, k) =
(n+ k)!

n! k!
.

We have also the functions xi : J(U,W ) → R, i = 1, . . . , n, determined by(
x1

(
[s]kx

)
, . . . , xn

(
[s]kx

))
= x ∈ U.

The functions xi, u
j
σ provide a map from J(U,W ) onto an open subset of Rn+m·s(n,k).

It is easily seen that Jk(π) can be covered by subsets of the form J(U,W ) and this
determines on Jk(π) a structure of a smooth manifold of dimension n+m · s(n, k). Map-
pings (8) become smooth bundles. Thus a system of local coordinates for Jk(π) consists
of

(9) xi, ujσ, i = 1, . . . , n, j = 1, . . . ,m, |σ| ≤ k.

Remark 3. In the classical language the symbol ujσ corresponds to the partial derivative

(10) ujσ =
∂|σ|uj

∂xi1 . . . ∂xip
.

3.2. The Cartan distribution and symmetries. For a section s of π denote by jk(s)
the section of πk given by

jk(s)(x) = [s]kx, x ∈M.

Let s be a section of π on a neighborhood U of x ∈ M and a = [s]kx ∈ Jk(π). The
n-dimensional vector subspace R(s, x) ⊂ TaJ

k(π) equal to the tangent space at a of
the submanifold jk(s)(U) ⊂ Jk(π) is called an R-plane. The Cartan subspace C(a) of
TaJ

k(π) is the linear span of all R-planes R(s′, x) such that [s′]kx = a. It can be shown
that Cartan subspaces form a smooth distribution on Jk(π) called the Cartan distribution.
The following propositions can be proved straightforwardly.
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Proposition 1. In a coordinate neighborhood one has the following basis of vector fields
for the Cartan distribution

Dk,i =
∂

∂xi
+

∑
j=1,...,m,
|σ|≤k−1

ujσi
∂

∂ujσ
, i = 1, . . . , n,

∂

∂uj
′

σ′

, j′ = 1, . . . ,m, |σ′| = k.

The Cartan distribution is also given by the 1-forms

wjσ = dujσ −
n∑
i=1

ujσidxi, |σ| ≤ k − 1, j = 1, . . . ,m,

which are called Cartan forms. Here an below for σ = (i1, . . . , ip) the symmetric multi-
index σi is (i1, . . . , ip, i).

In particular, for k ≥ 1 the fibers of the natural bundle

πk,k−1 : Jk(π) → Jk−1(π), [s]kx 7→ [s]k−1
x ,

are integral submanifolds of this distribution.

Remark 4. Let σ′ = (i, i, . . . , i︸ ︷︷ ︸
k

), then

[ ∂

∂uj
′

σ′

, Dk,i

]
=

∂

∂uj
′

σ′′

, σ′′ = (i, i, . . . , i︸ ︷︷ ︸
k−1

).

Therefore, the Cartan distribution on Jk(π) is not involutive, that is, not closed with
respect to the commutator of vector fields.

Proposition 2. Let N ⊂ Jk(π) be a submanifold such that πk
∣∣
N

: N → M is a diffeo-
morphism onto an open subset U ⊂M . Then N is an integral submanifold of the Cartan
distribution if and only if N = jk(s)(U) for some section s : U → E of the bundle π.

Proposition 3. For an R-plane R(s, x) ⊂ TaJ
k(π) consider the point [s]k+1

x ∈ Jk+1(π).
This correspondence provides a bijection between the set of R-planes at a and the set
π−1
k+1,k(a) ⊂ Jk+1(π). The differential of the bundle πk+1,k : Jk+1(π) → Jk(π) projects the

Cartan subspace C([s]k+1
x ) onto R(s, x).

A vector field X ∈ D(Jk(π)) is said to be a symmetry if for any vector field X ′ from
the Cartan distribution the commutator [X,X ′] also belongs to the Cartan distribution.

Remark 5. Clearly, X ∈ D(Jk(π)) is a symmetry if and only if the corresponding one-
parametric group of local diffeomorphisms preserves the Cartan distribution.

For k1 ≥ k2 we have the natural bundles

πk1,k2 : Jk1(π) → Jk2(π), [s]k1x 7→ [s]k2x .

The next proposition is called the Lie-Bäcklund theorem in the infinitesimal form, its
proof can be found in [2].
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Proposition 4. Let X ∈ D(Jk(π)) be a symmetry. For each p ≥ k there is a unique
symmetry Xp ∈ D(Jp(π)) such that

(11) (πp,k)∗(Xp) = X.

If dim π > 1 then for each 0 ≤ p ≤ k there is a unique symmetry Xp ∈ D(Jp(π)) such
that

(πk,p)∗(X) = Xp.

If dim π = 1 then the same statement holds for each 1 ≤ p ≤ k.
For p1 ≥ p2 we have also

(πp1,p2)∗(Xp1) = Xp2 .

Thus for dimπ > 1 every symmetry of Jk(π) is the lifting of some symmetry of
J0(π) = E.

If dim π = 1 then every symmetry of Jk(π) for k ≥ 1 is the lifting of some symmetry
of J1(π).

Remark 6. Let X ∈ D(Jk(π)) be a symmetry and p ≥ k. The unique symmetry
Xp ∈ D(Jp(π)) satisfying (11) is constructed as follows.

Let a ∈ Jp(π). We have a = [s]px0
for x0 = πp(a) and some section s ∈ Γ(π). Consider

the point
ak = πp,k(a) = [s]kx0

∈ Jk(π).

Let At be the one-parametric group of local diffeomorphisms of Jk(π) corresponding to
the vector field X ∈ D(Jk(π)). Consider the submanifold

N = jk(s)(M) = {[s]kx | x ∈M} ⊂ Jk(π),

which is an integral submanifold of the Cartan distribution. Since At(N) is also an integral
submanifold of the Cartan distribution, according to Proposition 2 for small enough t and
some neighborhood U of ak we have At(N) ∩ U = jk(st)(U

′) where U ′ ⊂ M is some
neighborhood of x0 and st is a section of π over U ′ ⊂M .

Set x(t) = πk(At(ak)) ∈ M . We have x(0) = x0. Note that st depends smoothly on t
and s0 = s

∣∣
U ′

. Therefore, a(t) = [st]
p
x(t) is a smooth curve in Jp(π) and a(0) = a. Then

the value of the vector field Xp ∈ D(Jp(π)) at the point a ∈ Jp(π) is defined to be

d a(t)

d t

∣∣∣∣
t=0

∈ TaJ
p(π).

Let us present explicit coordinate formulas for symmetries. Consider the total derivative
operators

(12) Dxi
=

∂

∂xi
+

∑
j=1,...,m,
|σ|≥0

ujσi
∂

∂ujσ
, i = 1, . . . , n.

These operators commute and are vector fields on the infinite jet space, see Section 4.1
below. In particular, uji = Dxi

(uj).

Remark 7. The meaning of Dxi
is the following. Consider a function f(xs, u

d, ujσ) of
coordinates (9). Set g = Dxi

(f). Suppose that uj are functions of x1, . . . , xn and sub-
stitute (10) to f and g. Then f, g also become functions of x1, . . . , xn and we have
g = ∂f/∂xi.
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For σ = (i1, . . . , ip) set
Dσ = Dxi1

◦ · · · ◦Dxip
.

The simplest way to prove the next two propositions is to use infinite jet spaces, we will
explain this in Section 4.2.

Proposition 5. For any collection of functions

(13) f 1, . . . , fn, g1 . . . , gm ∈ C∞(E)

the vector field

(14) X =
n∑
i=1

f i
∂

∂xi
+

∑
j=1,...,m,
|σ|≤k

(
Dσ

(
gj −

n∑
i=1

f iuji

)
+

( n∑
i=1

f iujσi

))
∂

∂ujσ

is a symmetry of D(Jk(π)).
If m > 1 then for any symmetry X ∈ D(Jk(π)) there is a unique collection of func-

tions (13) such that (14) holds.

Proposition 6. Suppose that m = 1, k ≥ 1 and denote

u = u1, uσ = u1
σ.

For any symmetry X ∈ D(Jk(π)) there is a unique function

(15) f ∈ C∞(J1(π))

such that

(16) X = −
n∑
i=1

∂f

∂ui

∂

∂xi
+

∑
|σ|≤k

(
Dσ(f)−

( n∑
i=1

∂f

∂ui
uσi

))
∂

∂uσ
.

And vice versa, for any function (15) vector field (16) is a symmetry of Jk(π).

Remark 8. Note that, although (12) involves ujσ for arbitrary σ, vector fields (14), (16)
involve only coordinates (9).

4. Symmetries of infinite jets

4.1. The infinite jet space and its Cartan distribution. The infinite jet space J∞(π)
is the inverse (projective) limit of the sequence of bundles

· · · → Jk+1(π) → Jk(π) → · · · → J1(π) → E →M.

Using the pullback of functions, we obtain natural embeddings

C∞(M) ↪→ C∞(E) ↪→ . . . ↪→ C∞(Jk(π)) ↪→ C∞(Jk+1(π)) ↪→ . . .

Using these embeddings, set

C∞(J∞(π)) =
⋃
k

C∞(Jk(π)).

Below we identify the algebras C∞(M), C∞(E), and C∞(Jk(π)) with the corresponding
subalgebras of C∞(J∞(π)). Local coordinates for J∞(π) are

(17) xi, ujσ, i = 1, . . . , n, j = 1, . . . ,m, |σ| ≥ 0.

A smooth function on J∞(π) depends on a finite number of coordinates (17).
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For a point

a = (a0, a1, . . . , ak, . . . ) ∈ J∞(π), ak ∈ Jk(π), πk1,k2(ak1) = ak2 ∀ k1 ≥ k2

a tangent vector v ∈ TaJ∞(π) is a sequence

(18) v0, v1, . . . , vk, . . . , vk ∈ Tak
Jk(π), (πk1,k2)∗(vk1) = vk2 ∀ k1 ≥ k2.

Vector fields on J∞(π) are derivations of the algebra C∞(J∞(π)). Each vector field
V ∈ D(J∞(π)) determines naturally the tangent vector Va ∈ TaJ

∞ in the usual way. In
coordinates V is determined by V (xi), V (ujσ) ∈ C∞(J∞(π))

V =
∑
i

V (xi)
∂

∂xi
+

∑
j,σ

V (ujσ)
∂

∂ujσ
.

Although this sum is infinite, V (f) ∈ C∞(J∞(π)) is well defined for any f ∈ C∞(J∞(π)).
A tangent vector (18) belongs to the Cartan subspace C(a) of TaJ

∞(π) if and only if vk
belongs to the Cartan distribution on Jk(π) for all k. The spaces C(a) form the Cartan
distribution on J∞(π). From Proposition 3 it is easily seen that dim C(a) = n and the
differential of the natural map π∞ : J∞(π) → M projects C(a) isomorphically onto the
vector space Tπ∞(a)M . This allows to define the C∞(M)-linear embedding

C : D(M) ↪→ D(J∞(π))

such that for any X ∈ D(M) and a ∈ J∞(π) one has (π∞)∗
(
C(X)

)
= X and the tangent

vector at a corresponding to the vector field C(X) lies in C(a). The map C is called the
Cartan connection.

Using Proposition 1, one obtains that in local coordinates we have C
( ∂

∂xi

)
= Dxi

,

where the vector field Dxi
∈ D(J∞(π)) is given by formula (12). Since [Dxi

, Dxj
] = 0, the

Cartan connection is flat, that is,

(19) C([X, Y ]) = [C(X),C(Y )] ∀X, Y ∈ D(M).

Denote by C(π) ⊂ D(J∞(π)) the C∞(J∞(π))-submodule of vector fields that belong
to Cartan distribution. In other words, the submodule C(π) is generated by vector fields
of the form C(X) for X ∈ D(M). In local coordinates C(π) is a free C∞(J∞(π))-module
generated by Dx1 , . . . , Dxn .

Property (19) implies [C(π), C(π)] ⊂ C(π). However, one cannot apply the Frobenius
theorem to the Cartan distribution, because dim J∞(π) = ∞. For a section s ∈ Γ(π)
consider the map

j∞(s) : M → J∞(π), x 7→ [s]∞x = ([s]0x, [s]
1
x, . . . , [s]

k
x, . . . ) ∈ J∞(π).

The n-dimensional submanifold j∞(s)(M) ⊂ J∞(π) is an integral submanifold of the
Cartan distribution.

4.2. The structure of the symmetry algebra. Similarly to the finite-dimensional
case, a vector field X ∈ D(J∞(π)) is said to be a symmetry if [X, C(π)] ⊂ C(π).

Example 1. According to Proposition 4, for any symmetry X of Jk(π) there is a unique
symmetry X̃ of J∞(π) such that

X̃
∣∣
C∞(Jk(π))

= X, X̃
∣∣
C∞(Jp(π))

= Xp, ∀ p ≥ k.
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Such symmetries of J∞(π) are said to be classical. Any classical symmetry determines
a one-parametric group of local diffeomorphisms of J∞(π), which preserve the Cartan
distribution.

An arbitrary symmetry of J∞(π) does not always determine a one-parametric group of
local diffeomorphisms.

Denote by Sym(π) ⊂ D(J∞(π)) the Lie algebra of symmetries. Obviously, C(π) is an
ideal of Sym(π). Consider the following subalgebra

Sv(π) = {X ∈ Sym(π) | X
∣∣
C∞(M)

= 0}.

For any X ∈ Sym(π) there is a unique Xh ∈ C(π) such that X −Xh ∈ Sv(π), that is,

(20) X
∣∣
C∞(M)

= Xh

∣∣
C∞(M)

.

Indeed, in a coordinate neighborhood we set Xh =
∑

iX(xi)Dxi
. Since for fixed X

there is no more than one Xh ∈ C(π) satisfying (20), the formulas for Xh in coordinate
neighborhoods provide a well-defined vector field on J∞(π). Since C(π) ∩ Sv(π) = 0
and each X ∈ Sym(π) can be presented as a sum X = Xh + (X − Xh), we obtain the
decomposition

(21) Sym(π) = C(π)⊕ Sv(π) (a direct sum of vector spaces).

The structure of C(π) is already known, so it remains to describe Sv(π).

Proposition 7. For any X ∈ Sv(π) one has

[X,C(Y )] = 0 ∀Y ∈ D(M).

In particular, in local coordinates

(22) [X,Dxi
] = 0, i = 1, . . . , n.

Proof. Since X
∣∣
C∞(M)

= 0, it is sufficient to prove (22). Since X is a symmetry, one has

[X,Dxi
] =

∑n
l=1 flDxl

for some fl ∈ C∞(J∞(π)). Using this and the fact that X(xa) = 0,
we obtain

fa =
( n∑
l=1

flDxl

)
(xa) = [X,Dxi

](xa) = 0 a = 1, . . . , n.

�

Equation (22) implies X(ujσ) = Dσ(X(uj)). Therefore, X is determined by

X(u1), . . . , X(um) ∈ C∞(J∞(π)).

In coordinate-free terms this means the following. Denote by κ(π) the vector space of
C∞(J∞(π))-valued derivations ϕ : C∞(E) → C∞(J∞(π)) of the algebra C∞(E) such that
ϕ
∣∣
C∞(M)

= 0. That is, ϕ : C∞(E) → C∞(J∞(π)) is an R-linear map satisfying

ϕ(fg) = fϕ(g) + gϕ(f) ∀ f, g ∈ C∞(E), ϕ(C∞(M)) = 0.

Proposition 8. For any ϕ ∈ κ(π) there is a unique symmetry Eϕ ∈ Sv(π) such that

Eϕ
∣∣
C∞(E)

= ϕ.

This is an isomorphism between the vector spaces κ(π) and Sv(π).
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Remark 9. For each point a ∈ E consider the vector space

V (a) = {v ∈ TaE | π∗(v) = 0}.

Consider the tangent bundle TE → E and the following submanifold of TE

V (E) =
⋃
a∈E

V (a) ⊂ TE.

Let v(π) be the natural vector bundle v(π) : V (E) → E, which is a subbundle of the
tangent bundle of E.

Denote by

(23) v∞(π) : V (π) → J∞(π)

the m-dimensional vector bundle equal to the pullback of the bundle v(π) by the natural
map π∞,0 : J∞(π) → E. It is easily seen that the C∞(J∞(π))-module κ(π) is naturally
isomorphic to the C∞(J∞(π))-module of sections of the bundle v∞(π).

Remark 10. If π is a vector bundle then the bundle v(π) is isomorphic to the pullback
of π by π and the bundle v∞(π) is isomorphic to the pullback of π by π∞ : J∞(π) →M .

Let us describe the space Sv(π) in local coordinates. We have the isomorphism

κ(π) →
(
C∞(J∞)

)m
, ϕ 7→ (ϕ(u1), . . . , ϕ(um)).

For ϕ = (ϕ1, . . . , ϕm) ∈ κ(π), ϕj ∈ C∞(J∞), one has

(24) Eϕ =
∑
j, σ

Dσ(ϕ
j)

∂

∂ujσ
.

Now we can prove Propositions 5, 6.
Proof of Proposition 5.
For any functions (13) consider the following vector field on E

X0 =
n∑
i=1

f i
∂

∂xi
+

m∑
j=1

gj
∂

∂uj
.

Since the Cartan distribution on J0(π) = E coincides with the whole tangent bundle TE,
the vector field X0 is a symmetry of J0(π). By Example 1, there is a unique symmetry
X̃ of J∞(π) such that

(25) X̃
∣∣
C∞(E)

= X0

and Xk = X̃
∣∣
C∞(Jk(π))

is a symmetry of Jk(π).

Remark 11. X̃ is unique, because, as it follows from the results of this section, any
symmetry of J∞(π) is uniquely determined by its restriction to C∞(E).

By (21), we have

(26) X̃ =
n∑
i=1

hiDxi
+ Eϕ, ϕ = (ϕ1, . . . , ϕm), hi, ϕj ∈ C∞(J∞(π)).
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Taking into account (25), one obtains

hi = X̃(xi) = X0(xi) = f i,

ϕj = X̃(uj)−
n∑
i=1

hiDxi
(uj) = X0(u

j)−
n∑
i=1

hiuji = gj −
n∑
i=1

f iuji .

Combining this with (12) and (24), we get that the symmetry Xk = X̃
∣∣
C∞(Jk(π))

coincides

with (14).
Now let X be an arbitrary symmetry of Jk(π). Set f i = X(xi), g

j = X(uj). By
Proposition (4), one has f i, gj ∈ C∞(E). According to Example 1, there is a classical
symmetry X̃ of J∞(π) such that X̃

∣∣
C∞(Jk(π))

= X. Then

X̃
∣∣
C∞(E)

=
∑
i

f i
∂

∂xi
+

∑
j

gj
∂

∂uj
.

As we have shown above, this implies that X = X̃
∣∣
C∞(Jk(π))

is given by (14).

Finally, if X is given by (14) then one can reconstruct f i, gj as f i = X(xi), g
j = X(uj).

Proof of Proposition 6.
For any function (15) consider the symmetry

(27) X ′ = Ef −
n∑
i=1

∂f

∂ui
Dxi

of J∞(π). It is easy to check that X ′(C∞(J1(π))
)
⊂ C∞(J1(π)) and X1 = X ′

∣∣
C∞(J1(π))

is

a symmetry of J1(π).
By Example 1, there is a classical symmetry X̃ of J∞(π) such that X̃

∣∣
C∞(J1(π))

= X1.

According to Remark 11, since X̃
∣∣
C∞(J1(π))

= X ′
∣∣
C∞(J1(π))

, one has X̃ = X ′. Since X̃ is

a classical symmetry, the restriction Xk = X̃
∣∣
C∞(Jk(π))

= X ′
∣∣
C∞(Jk(π))

is a symmetry of

Jk(π). From (27) it follows that Xk is given by (16).
Now let X be an arbitrary symmetry of Jk(π) and X̃ be the classical symmetry of

J∞(π) such that X̃
∣∣
C∞(Jk(π))

= X. By (21),

X̃ = Ef +
∑
i

hiDxi
, for some f, hi ∈ C∞(J∞(π)).

Since X̃ is a classical symmetry, one has X̃
(
C∞(J1(π))

)
⊂ C∞(J1(π)). This implies

hi = X̃(xi) ∈ C∞(J1(π)), f = X̃(u)−
∑
i

hiui ∈ C∞(J1(π)).(28)

Then the condition X̃(ui) ∈ C∞(J1(π)) yields hi = −∂f/∂xi. Therefore, X̃ is given by
formula (27), which implies (16) for X = X̃

∣∣
C∞(Jk(π))

.

If X is given by (16) then one can reconstruct f as f = X(u)−
∑

iX(xi)ui.

Exercise 3. Let X be a symmetry of J∞(π). Prove that

• if dimπ > 1 then X is a classical symmetry if and only if X
(
C∞(E)

)
⊂ C∞(E).

• if dimπ = 1 then X is a classical symmetry if and only if

X
(
C∞(J1(π))

)
⊂ C∞(J1(π)).
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5. Infinite prolongations of PDEs and symmetries

The described approach allows to associate with a system of PDEs a geometric object,
a subset of the corresponding jet space.

Example 2. Consider the trivial bundle

(29) π : R3 → R2, (x, t, u) 7→ (x, t).

One has the following coordinates in J3(π)

x, t, u, ux, ut, uxx, uxt, utt, uxxx, uxxt, uxtt, uttt.

The KdV equation (1) determines a nonsingular algebraic hypersurface in J3(π).
Consider the sine-Gordon equation uxt = sinu. It determines a nonsingular analytic

hypersurface in the space J2(π) with the coordinates

x, t, u, ux, ut, uxx, uxt, utt.

Return to the general case of an arbitrary fiber bundle π. Let Ek ⊂ Jk(π) be an
arbitrary closed subset. Consider the ideal

I(Ek) = {f ∈ C∞(Jk(π)) | f
∣∣
Ek

= 0}

of the algebra C∞(Jk(π)). Denote by I the ideal of C∞(J∞(π)) generated by all functions
of the form

f, V1(V2(. . . Vp(f) . . . ))

where f ∈ I(Ek), Vi ∈ C(π). The infinite prolongation of Ek is the subset

E = {a ∈ J∞(π) | g(a) = 0 ∀ g ∈ I} ⊂ J∞(π).

Example 3. In local coordinates, let Ek ⊂ Jk(π) be given by equations

Fs(xi, u
l, ujσ, . . . ) = 0, s = 1, . . . ,m′.

(We assume that I(Ek) is generated by Fs ∈ C∞(Jk(π)), s = 1, . . . ,m′). Then E ⊂ J∞(π)
is determined by the following infinite system of equations

(30) Fs = 0, Dσ(Fs) = 0, s = 1, . . . ,m′, |σ| ≥ 0.

In other words, the infinite prolongation is given by the initial PDEs and all their differ-
ential consequences.

Clearly, points of E are in one-to-one correspondence with infinite formal Taylor series
satisfying the initial system of PDEs.

We define the algebra C∞(E) as follows. A function f : E → R belongs to C∞(E) if and

only if there is f̃ ∈ C∞(J∞(π)) such that f = f̃
∣∣
E . Consider the ideal

I(E) = {f ∈ C∞(J∞(π)) | f
∣∣
E= 0}

of the algebra C∞(J∞(π)). Then C∞(E) ∼= C∞(J∞(π))/I(E). Clearly, I ⊂ I(E). We
assume that

(31) I = I(E).

The space of vector fields D(E) by definition consists of derivations of the algebra
C∞(E). Let X ∈ D(J∞(π)) be such that X(I(E)) ⊂ I(E), then X determines a derivation
of C∞(E) denoted by X

∣∣
E∈ D(E). In this case X is said to be tangent to E , and X

∣∣
E is

called the restriction of X to E .
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Due to (31), for any V ∈ C(π) ⊂ D(J∞(π)) one has V (I(E)) ⊂ I(E). Therefore, the
vector field V

∣∣
E∈ D(E) is well defined. In other words, the Cartan distribution of J∞(π)

is tangent to E . Denote by C(E) ⊂ D(E) the C∞(E)-submodule of vector fields of the
form V

∣∣
E , where V ∈ C(π). One has [C(E), C(E)] ⊂ C(E).

Remark 12. In local coordinates for each integer p ≥ k consider the subset

Ep = {a ∈ Jp(π) | f(a) = 0, Dσ(f)(a) = 0 ∀f ∈ I(Ek), ∀σ, |σ| ≤ p− k}.

It is called the (p−k)-th order prolongation of Ek and can be defined also in a coordinate-
free way [2, 4]. (We do not present the coordinate-free definition of Ep, because we will
not need this set).

The initial set Ek is said to be formally integrable if the following conditions hold

• Ep is a submanifold of Jp(π) for all p ≥ k,
• the map πp1,p2

∣∣
Ep1

: Ep1 → Ep2 is a bundle for all p1 ≥ p2 ≥ k.

It seems that in the literature one always requires the initial set Ek to be formally inte-
grable. We do not make this assumption, for us Ek and E are closed subsets (not necessarily
submanifolds) satisfying (31). It is not hard to show that condition (31) holds for any
formally integrable Ek. According to the next example, our class of sets Ek satisfying (31)
is wider than the class of formally integrable sets. (In fact our class is much wider).

Example 4. Let k = 2, consider bundle (29) and the set E2 ⊂ J2(π) determined by the
equation ut − uuxx = 0. Then E3 ⊂ J3(π) is given by the equations

ut − uuxx = 0, Dx(ut − uuxx) = uxt − uxuxx − uuxxx = 0,

Dt(ut − uuxx) = utt − utuxx − uutxx = 0.

It is easily seen that any point of the form

(u = ut = 0, ux = uxx = 1, uxt = 2, x, t, utt ∈ R) ∈ E2

does not belong to the image of the projection π3,2 : E3 → E2. Therefore, E2 is not formally
integrable.

The system

u1
t = u2

xx, u2
t = u1

x for u1 = u1(x, t), u2 = u2(x, t),

is not formally integrable either. As we will show in Example 11, these examples satisfy
condition (31), and, therefore, the presented approach is applicable to them.

A remark for specialists. The two described examples represent the two typical situa-
tions when a system of PDEs Ek is not formally integrable.

(1) If the symbol of Ek is not of constant rank.
(2) If the system consists of equations of different orders.

However, usually one can find a system of internal coordinates in the sense of Section 7.2,
then, by Theorem 2, condition (31) holds and the presented theory of symmetries is
applicable. (According to Remark 18, for any system of PDEs a system of internal
coordinates exists on a neighborhood of any point from some open dense subset of the
infinite prolongation).

Another situation that requires the presented approach is when Ek and E are algebraic
varieties with singularities.



SYMMETRIES OF PDES 14

A vector field X ∈ D(E) is said to be a symmetry of E if [X, C(E)] ⊂ C(E).
Consider the projection π∞

∣∣
E : E →M and the pullback homomorphism(
π∞

∣∣
E

)∗
: C∞(M) → C∞(E).

Set
A =

(
π∞

∣∣
E

)∗(
C∞(M)

)
⊂ C∞(E).

Similarly to (21), the space C(E) is an ideal of the Lie algebra Sym(E) of symmetries and

(32) Sym(E) = C(E)⊕ Sv(E) (a direct sum of vector spaces),

where
Sv(E) = {X ∈ Sym(E) | X

∣∣
A= 0}.

Theorem 1. For any X ∈ Sym(E) there is X̃ ∈ Sym(π) tangent to E such that X̃
∣∣
E= X.

If X ∈ Sv(E) then there is ϕ ∈ κ(π) such that Eϕ ∈ Sv(π) is tangent to E and Eϕ
∣∣
E= X.

Proof. By (32), X = Xh +Xv for some Xh ∈ C(E) and Xv ∈ Sv(E). By the definition of
C(E), there is X̃h ∈ C(π) such that X̃h

∣∣
E= Xh. Therefore, it remains to study the case

when X ∈ Sv(E).
Consider the map π∞,0

∣∣
E : E → E and the homomorphism

(
π∞,0

∣∣
E

)∗
: C∞(E) → C∞(E).

Set
A′ =

(
π∞,0

∣∣
E

)∗(
C∞(E)

)
⊂ C∞(E).

Similarly to κ(π), denote by κ(E) the vector space of C∞(E)-valued derivations

ψ : A′ → C∞(E)

of the algebra A′ such that ψ
∣∣
A= 0. An element ϕ ∈ κ(π) is said to be tangent to E if

ϕ
(

ker
(
π∞,0

∣∣
E

)∗) ⊂ I(E)

Then ϕ determines a derivation A′ → C∞(E) denoted by ϕ
∣∣
E ∈ κ(E).

Lemma 1. For any ψ ∈ κ(E) there is ϕ ∈ κ(π) tangent to E such that ϕ
∣∣
E = ψ.

Proof. Suppose first that π is a trivial bundle with fiber diffeomorphic to an open subset
of Rm. Let u1, . . . , um be coordinates in fibers of π. By the definition of C∞(E), there
exist functions ϕ1, . . . , ϕm ∈ C∞(J∞(π)) such that

ϕj
∣∣
E= ψ(uj

∣∣
E), j = 1, . . . ,m.

Then the required derivation ϕ : C∞(E) → C∞(J∞(π)) is defined by ϕ(uj) = ϕi and
ϕ(xi) = 0.

Now let π be an arbitrary bundle. By the above argument, the statement holds on each
adapted coordinate chart of E. Then the proof is completed using a suitable partition of
unity on the manifold E. �

Return to the proof of the theorem. For X ∈ Sv(E) set ψ = X
∣∣
A′ ∈ κ(E). By the above

lemma, there is ϕ ∈ κ(π) tangent to E such that ϕ
∣∣
E = ψ. Let us show that Eϕ ∈ Sv(π)

is tangent to E and Eϕ
∣∣
E= X. It is sufficient to check this in local coordinates xi, u

j
σ.

Similarly to Proposition 7 one has [X,Dxi

∣∣
E ] = 0, and, therefore,

X
(
ujσ

∣∣
E

)
= Dσ

∣∣
E

(
X

(
uj

∣∣
E

))
= Dσ

∣∣
E

(
ϕ(uj)

∣∣
E

)
= Eϕ(u

j
σ)

∣∣
E .
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Recall also that X(xi
∣∣
E) = 0 and Eϕ(xi) = 0.

Now the statement follows from the general fact that if Y ∈ D(E) and Y ′ ∈ D(J∞(π))
satisfy

Y
(
ujσ

∣∣
E

)
= Y ′(ujσ)

∣∣
E , Y

(
xi

∣∣
E

)
= Y ′(xi)

∣∣
E

then Y ′ is tangent to E and Y ′
∣∣
E = Y . �

Remark 13. In [2] this result is proved under the additional assumption that the map
π∞,0

∣∣
E : E → E is surjective.

Remark 14. The partition of unity technique cannot be applied to symmetries directly,
because for X ∈ Sym(π) and f ∈ C∞(J∞(π)) the vector field fX is not a symmetry in
general. But this technique can be used for elements of κ(π), because the space κ(π) is
a module over C∞(J∞(π)).

The structure of C(E) is clear, in local coordinates it is a free C∞(E)-module spanned
by Dx1

∣∣
E , . . . , Dxn

∣∣
E . In order to study the algebra Sv(E) we need to introduce nonlinear

differential operators and their linearizations in the next section.

6. Nonlinear differential operators and the category of PDEs

6.1. Nonlinear differential operators. Let

π : E →M, π′ : E ′ →M

be fiber bundles over the same base M . A nonlinear differential operator of order k is a
map ∆: Γ(π) → Γ(π′) of the form

(33) ∆: s 7→ δ ◦ jk(s),

where δ : Jk(π) → E ′ is a smooth map satisfying π′ ◦ δ = πk. It is easily seen that for
each l = 0, 1, 2, . . . the smooth map

δl : J
k+l(π) → J l(π′), δl([s]

k+l
x ) = [∆(s)]lx, s ∈ Γ(π), x ∈M,

is well defined and δ0 = δ. We have the commutative diagram

. . . −−−→ Jk+l+1(π) −−−→ Jk+l(π) −−−→ . . . −−−→ Jk(π)yδl+1

yδl

yδ

. . . −−−→ J l+1(π′) −−−→ J l(π′) −−−→ . . . −−−→ E ′

,

whose inverse limit determines a map

(34) ∆∞ : J∞(π) → J∞(π′).

In other words,

∆∞(a) = [∆(s)]∞x , a ∈ J∞(π),

where x = π∞(a) ∈ M and s ∈ Γ(π) is such that a = [s]∞x . It is easy to check that the
map ∆∞ preserves the Cartan distribution.
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6.2. The category of PDEs. One can define the category of PDEs as follows. An object
of the category is a triple (W,C∞(W ),D), where

• W is a topological space,
• C∞(W ) is a subalgebra of the algebra of continuous functions on W (elements of
C∞(W ) are called smooth functions on W ),

• D is a C∞(W )-submodule of the module of derivations of the algebra C∞(W ) such
that [D,D] ⊂ D.

Using C∞(W ), one can define the tangent space TaW for a point a ∈ W in the standard
way

TaW =

v : C∞(W ) → R

∣∣∣∣∣∣∣
v is R-linear,

v(fg) = f(a)v(g) + g(a)v(f),

∀f, g ∈ C∞(W )

 ∼= HomR(Ia/I
2
a ,R),

where Ia = {f ∈ C∞(W ) | f(a) = 0}. We have the natural map

eva : D → TaW, eva(V )(f) = V (f)(a), V ∈ D, f ∈ C∞(W ).

Set Da = eva(D) ⊂ TaW .
A morphism connecting two objects (W1, C

∞(W1),D1) and (W2, C
∞(W2),D2) is a con-

tinuous map τ : W1 → W2 such that τ ∗
(
C∞(W2)

)
⊂ C∞(W1) and for each a ∈ W1 one

has
τ∗

(
(D1)a

)
⊂ (D2)τ(a).

Here τ∗ : TaW1 → Tτ(a)W2 is the differential of τ defined in the standard way.

Example 5. The triples (J∞(π), C∞(J∞(π)), C(π)) and (J∞(π′), C∞(J∞(π′)), C(π′)) are
objects of this category, and ∆∞ is a morphism. ForD = C(π) the subspaceDa ⊂ TaJ

∞(π)
coincides with the Cartan subspace C(a).

Example 6. A triple (E , C∞(E), C(E)), where E is the infinite prolongation of a system
of PDEs and C(E) corresponds to the Cartan distribution, is the main example of an
object of the category of PDEs. So-called Bäcklund transformations in soliton theory are
examples of morphisms of infinite prolongations of PDEs [2].

Exercise 4. For a ∈ E consider the vector space eva(C(E)) ⊂ TaE . Prove that

dim eva(C(E)) = n = dimM.

Remark 15. We have given the most general definition of the category of PDEs. Usually
one imposes the following additional conditions on (W,C∞(W ),D).

• W is supposed to be a (possibly infinite-dimensional) manifold. An infinite-di-
mensional manifold here is a topological space N such that for any point a ∈ N
there is a neighborhood Ua endowed with a homeomorphism onto to the inverse
(projective) limit of

. . . −→M l+1
a

fl−→M l
a −→ . . .

f2−→M2
a

f1−→M1
a ,

where M l
a are finite-dimensional manifolds and fl are bundles. We can identify

C∞(M l
a) with the subalgebra f ∗l (C

∞(M l
a)) of C∞(M l+1

a ) and set

C∞(Ua) =
⋃
l≥1

C∞(M l
a).
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Then C∞(N) is defined as follows. A continuous function f : N → R belongs
to C∞(N) if and only if f

∣∣
Ua
∈ C∞(Ua) for all a ∈ N . Rigorous theory of such

infinite-dimensional manifolds is developed, for example, in [1].
• It is supposed that the spaces Da ⊂ TaW form a smooth distribution on W .

But for the general theory we do not need these conditions.

Example 7. The space J∞(π) is an infinite-dimensional manifold in the above sense.

6.3. Linearizations of nonlinear differential operators. For a finite-dimensional
manifold M ′ consider the triple (M ′, C∞(M ′), 0). This is an embedding of the cate-
gory of finite-dimensional manifolds into the category of PDEs. Let f be a morphism in
the category of finite-dimensional manifolds, that is, a smooth map f : M1 →M2. Recall
that the differential f∗ of f is a morphism of vector bundles

TM1

f∗ //

τ1 ""EEEEEEEE
f ∗TM2

f∗τ2{{vvv
vv

vv
vv

M1

where τi : TMi →Mi, i = 1, 2, are the tangent bundles and

f ∗τ2 : f ∗TM2 →M1

is the pullback of the bundle τ2 by the map f .
We want to introduce a similar notion of ‘differential’ for the morphism

(35) ∆∞ : J∞(π) → J∞(π′)

in the category of PDEs. This ‘differential’ is called the linearization of ∆, is denoted
`∆, and is a morphism of vector bundles

V (π)
`∆ //

v∞(π) $$HH
HH

HH
HH

H
(∆∞)∗V (π′)

(∆∞)∗v∞(π′)xxqqqqqqqqqq

J∞(π)

where
v∞(π) : V (π) → J∞(π), v∞(π′) : V (π′) → J∞(π′)

are the vector bundles introduced in Remark 9 and

(∆∞)∗v∞(π′) : (∆∞)∗V (π′) → J∞(π)

is the pullback of v∞(π′) by (35).
The morphism `∆ is defined as follows. Recall that Γ(v∞(π)) ∼= κ(π) consists of

C∞(J∞(π))-valued derivations ϕ : C∞(E) → C∞(J∞(π)) of the algebra C∞(E) such that
ϕ
∣∣
C∞(M)

= 0.

For a section ϕ ∈ Γ(v∞(π)) we need to define a section `∆(ϕ) ∈ Γ
(
(∆∞)∗v∞(π′)

)
. Note

that Γ
(
(∆∞)∗v∞(π′)

)
can be identified with the space of R-linear maps

γ : C∞(E ′) → C∞(J∞(π))

satisfying

γ(f1f2) = γ(f1)δ
∗(f2) + δ∗(f1)γ(f2), ∀ f1, f2 ∈ C∞(E ′), γ

∣∣
C∞(M)

= 0,
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where δ : Jk(π) → E ′ was introduced in (33) and δ∗ : C∞(E ′) → C∞(Jk(π)) is the pullback
homomorphism. Then for f ∈ C∞(E ′) we set

(36) `∆(ϕ)(f) = Eϕ(δ
∗(f)),

where Eϕ was defined in Proposition 8.

Remark 16. Thus for the smooth map ∆∞ : J∞(π) → J∞(π′) we have the usual differen-
tial (∆∞)∗ (which does not take into account the Cartan distribution) and the linearization
`∆, which is closely related to the Cartan distribution.

Let us describe `∆ in local coordinates. Let m = dimπ and m′ = dimπ′. Since `∆ is a
morphism from some m-dimensional vector bundle to some m′-dimensional vector bundle
over J∞(π), locally `∆ is a (m′ ×m)-matrix whose entries

[`∆]ij : C
∞(J∞(π)) → C∞(J∞(π)), i = 1, . . . ,m′, j = 1, . . . ,m,

are linear differential operators. Let v1, . . . , vm
′
be local coordinates in fibers of π′. Set

Fi = δ∗(vi) ∈ C∞(J∞(π)). Then

(37) [`∆]ij =
∑
σ

∂Fi

∂ujσ
Dσ.

The sum on the right-hand side is finite, because Fi depends only on a finite number of
the coordinates ujσ.

7. Computation of symmetries of PDEs

.

7.1. The defining equations for symmetries. Let us return to (32) and describe the
space Sv(E), where E ⊂ J∞(π) is the infinite prolongation of Ek ⊂ Jk(π). Suppose that
there is a nonlinear differential operator (33) and a section s0 : M → E ′ of π′ such that

(38) Ek = δ−1
(
s0(M)

)
.

Set I(s0) = {f ∈ C∞(E ′) | f
∣∣
s0(M)

= 0}. Consider the pullback homomorphism

δ∗ : C∞(E ′) → C∞(Jk(π)).

Due to (38) one has δ∗
(
I(s0)

)
⊂ I(Ek). We assume that

(39) the ideal of C∞(Jk(π)) generated by δ∗
(
I(s0)

)
coincides with I(Ek).

According to the following example, at least locally this can be achieved practically
always.

Example 8. In local coordinates let Ek ⊂ Jk(π) be determined by a system of PDEs

(40) Fs(xi, u
l, ujσ, . . . ) = 0, s = 1, . . . ,m′.

In other words, Ek = {a ∈ Jk(π) | Fs(a) = 0, s = 1, . . . ,m′}, where Fs ∈ C∞(Jk(π)).
Consider the trivial bundle

π′ : M × Rm′ →M, (x1, . . . , xn, v
1, . . . , vm

′
) 7→ (x1, . . . , xn),

and the map

(41) δ : Jk(π) →M × Rm′
, δ∗(xi) = xi, δ∗(vs) = Fs.
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Then we have (38) for s0 = 0. Condition (39) holds if and only if the functions Fs,
s = 1, . . . ,m′, generate the ideal I(Ek) ⊂ C∞(Jk(π)).

If the ideal generated by the functions Fs does not coincide with I(Ek) then one should
replace Fs by any finite collection of generators of the ideal I(Ek).

(A finite collection of generators exists unless the subset Ek ⊂ Jk(π) is extremely
complicated. For example, it exists if Ek is a submanifold or an analytic subset).

Example 9. Let n = k = 2, m = m′ = 1 and consider the PDE

F1 = (ut − uxx)
3 = 0.

In this case F1 does not generated the ideal I(E2), this ideal is generated by the function
ut − uxx, so one should consider instead the equivalent PDE ut − uxx = 0.

It is easily seen that conditions (38) and (39) imply

(42) E =
(
∆∞

)−1(
j∞(s0)(M)

)
,

where

j∞(s0) : M → J∞(π), x 7→ [s0]
∞
x .

Recall that, by Theorem 1, the Lie algebra Sv(E) ⊂ D(E) consists of vector fields of
the form Eϕ

∣∣
E , where ϕ ∈ κ(π) is such that Eϕ ∈ D(J∞(π)) is tangent to E ⊂ J∞(π).

Proposition 9. Suppose that (38) and (39) hold. For ϕ ∈ κ(π) the vector field Eϕ is
tangent to E if and only if

(43) `∆(ϕ)
∣∣
E= 0.

Proof. Recall that, according to Section 6.3, the element `∆(ϕ) is a section of the bundle
(∆∞)∗v∞(π′), and at the same time `∆(ϕ) can be identified with a map

`∆(ϕ) : C∞(E ′) → C∞(J∞(π))

given by (36). In the latter interpretation of `∆(ϕ), condition (43) is means that

(44) `∆(ϕ)(f) = Eϕ(δ
∗(f)) ∈ I(E) ∀f ∈ C∞(E ′).

Suppose that ϕ satisfies (44), then we must prove that Eϕ is tangent to E , that is,

(45) Eϕ
(
I(E)

)
⊂ I(E).

Combining (44) and (39), one obtains

(46) Eϕ
(
I(Ek)

)
⊂ I(E).

Taking into account Proposition (7) and the definition of the ideal I ⊂ J∞(π) in Section 5,
from (46) it follows that

(47) Eϕ
(
I
)
⊂ I(E).

Finally, combining (47) with (31), we get (45).
Now suppose that Eϕ is tangent to E . Then it is sufficient to check that

`∆(ϕ)(f)
∣∣∣
E

= 0 ∀f ∈ C∞(E ′).
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in local coordinates. Coordinates in fibers of π′ can be chosen such that s0 = 0. Therefore,
we can assume that Ek is given by (40) and δ is given by (41). Since Eϕ(Fs)

∣∣
E = 0 and

Eϕ(xi) = 0, for any f = f(x1, . . . , xn, v
1, . . . , vm

′
) ∈ C∞(E ′) we have

`∆(ϕ)(f)
∣∣∣
E

= Eϕ(δ
∗(f))

∣∣∣
E

= Eϕ
(
f(x1, . . . , xn, F1, . . . , Fm′)

)∣∣∣
E

=

m′∑
s=1

∂f

∂vs
(x1, . . . , xn, F1, . . . , Fm′) · Eϕ(Fs)

∣∣∣
E

= 0.

�

Let us summarize the obtained structure of the algebra of symmetries Sym(E) is local
coordinates. Suppose that E is the infinite prolongation of system (40). We have (32),
where the ideal C(E) is spanned by Dx1

∣∣
E , . . . , Dxn

∣∣
E and the subalgebra Sv(E) consists of

vector fields of the form Eϕ
∣∣
E , where Eϕ is given by (24) and ϕ1, . . . , ϕm ∈ C∞(J∞(π))

satisfy

(48)
∑
j, σ

∂Fi

∂ujσ
Dσ(ϕ

j)

∣∣∣∣
E
= 0, i = 1, . . . ,m′.

Remark 17. Equations (48) appear from (43) and (37).

7.2. Internal coordinates for infinite prolongations. It is convenient to study equa-
tion (43) in terms of internal coordinates of the subset E ⊂ J∞(π). First recall the similar
notion for submanifolds of Rn.

Exercise 5. Consider the space R3 with coordinates (x, y, z). Let f(x, y) be a smooth
function and

S = {(x, y, z) ∈ R3 | z = f(x, y)} ⊂ R3.

Prove that

• the ideal

I(S) = {g ∈ C∞(R3) | g
∣∣
S
= 0}

of the algebra C∞(R3) coincides with the ideal generated by the function

z − f(x, y),

• the algebra C∞(S) = C∞(R3)/I(S) is isomorphic to the algebra of smooth func-
tions in x, y. In other words, for any h(x, y, z) ∈ C∞(R3) there is a unique smooth
function h1(x, y) such that h−h1 ∈ I(S). Namely, one can set h1 = h(x, y, f(x, y)).
In particular, x, y form a system of coordinates for S.

Hint. Use the following property of smooth functions. Consider the space Rn with
coordinates x1, . . . , xn and a fixed point (a1, . . . , an) ∈ Rn. For any function f ∈ C∞(Rn)
there are functions g1, . . . , gn ∈ C∞(Rn) such that

f(x1, . . . , xn) = f(a1, . . . , an) +
n∑
i=1

(xi − ai)gi(x1, . . . , xn) ∀x1, . . . , xn.

Before giving the general definition of internal coordinates for E , let us consider an
example.
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Example 10. Return to the KdV equation (1). It is easily seen that, using its differential
consequences

(49) Dσ(ut − uxxx − uxu) = 0, |σ| ≥ 0,

all derivatives of the form
∂p+qu

∂tp∂xq
, p > 0, q ≥ 0,

can be expressed in terms of

ui =
∂iu

∂xi
, i = 0, 1, 2, . . .

That is, one can obtain from (49) equations of the form

(50)
∂p+qu

∂tp∂xq
= Fp,q(u, u1, u2, u3, . . . ) ∀ p > 0, q ≥ 0.

For example, applying Dx to (1), one obtains
(51)
ut=u3+u1u, utx=u4+u2u+u2

1, utxx=u5+u3u+3u2u1, utxxx=u6+u4u+4u3u1+3u2
2,

applying Dt to (1) and using (51), we get

utt = utxxx + utxu+ uxut = u6 + u4u+ 4u3u1 + 3u2
2 + (u4 + u2u+ u2

1)u+ u1(u3 + u1u),

and so on.
Moreover, it is easy to check that in the algebra C∞(J∞(π)) the ideal I generated by

the functions

ut − uxxx − uxu, Dσ(ut − uxxx − uxu), |σ| ≥ 0,

coincides with the ideal generated by the functions

(52)
∂p+qu

∂tp∂xq
− Fp,q(u, u1, u2, u3, . . . ), p > 0, q ≥ 0.

where
∂p+qu

∂tp∂xq
is considered as a coordinate of the jet space. Similarly to Exercise 5,

one can show that the ideal generated by (52) coincides with the ideal I(E). Therefore,
condition (31) holds in this case. Besides, similarly to Exercise 5, we obtain that C∞(E)
is isomorphic to the algebra of smooth functions in the variables

(53) x, t, ui, i ≥ 0.

This allows to call (53) internal coordinates of E . One can also introduce on E the
structure of an infinite-dimensional manifold in the sense of Remark 15 as follows. Set
M l = Rn+l+1 with coordinates x1, . . . , xn, u, . . . , ul, then E is isomorphic to the inverse
limit of the sequence of bundles

. . . −→M l+1 fl−→M l −→ . . .
f2−→M2

a

f1−→M1
a ,

fl : (x1, . . . , xn, u, . . . , ul+1) 7→ (x1, . . . , xn, u, . . . , ul).

A vector field V ∈ D(E) can be written in these coordinates as follows

V = V (x)
∂

∂x
+ V (t)

∂

∂t
+

∑
i≥0

V (ui)
∂

∂ui
.
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In particular, the total derivative operators restricted to E are

Dx

∣∣
E=

∂

∂x
+

∑
i≥0

ui+1
∂

∂ui
,

Dt

∣∣
E=

∂

∂t
+

∑
i≥0

(
Dx

∣∣
E

)i
(u3 + u1u)

∂

∂ui
.

Equation (48) reads

(54) Dt

∣∣
E(ϕ) =

(
Dx

∣∣
E

)3
(ϕ) + uDx

∣∣
E(ϕ) + u1ϕ.

Thus any symmetry X ∈ Sv(E) is of the form

X =
∑
i≥0

(
Dx

∣∣
E

)i
(ϕ)

∂

∂ui
,

where ϕ = ϕ(x, t, u, u1, u2, . . . , ul) ∈ C∞(E) satisfies (54). For example, ϕ given by (3) is
a solution of (54). In fact for any p ≥ 1 there is a solution of the form

ϕ = u2p+1 + g(u, . . . , u2p).

For any fixed integer l ≥ 0 one can solve equation (54) for ϕ = ϕ(x, t, u, . . . , ul) straight-
forwardly and obtain a finite-dimensional space Sl of solutions. The space Sv(E) ∼=

⋃
l Sl

is infinite-dimensional, and this fact is very important for soliton theory.

Now let us give a general definition motivated by the above example. Consider a system
of PDEs

Fs(xi, u
l, ujσ, . . . ) = 0, s = 1, . . . ,m′,

such that I(Ek) is generated by the functions Fs. Its infinite prolongation E is determined
by equations (30), and the ideal I ⊂ C∞(J∞(π)) is generated by the functions

(55) Fs, Dσ(Fs), s = 1, . . . ,m′, |σ| ≥ 0.

Let Ω be the set of all symmetric multi-indices σ and Z = {1, . . . ,m}. Suppose that there
are a subset Ω′ ⊂ Z × Ω and Gi,σ ∈ C∞(J∞(π)) for each (i, σ) ∈ Ω′ such that

• the functions Gi,σ do not depend on any of the coordinates ujσ′ , (j, σ′) ∈ Ω′,
• the functions

(56) uiσ −Gi,σ, (i, σ) ∈ Ω′,

generate the same ideal I. In particular, E is determined by the equations

uiσ = Gi,σ, (i, σ) ∈ Ω′.

Then

(57) x1, . . . , xn, u
j
σ, (j, σ) ∈

(
Z × Ω

)
\Ω′,

are called internal coordinates of E .
Similarly to Exercise 5 and Example 10, one gets that the ideal generated by (56)

coincides with the ideal I(E). Therefore, condition (31) holds true. Besides, the algebra
C∞(E) is isomorphic to the algebra of smooth functions in the variables (57). Thus we
obtain the following result.
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Theorem 2. If a system of PDEs with infinite prolongation E has a set of internal coordi-
nates then condition (31) holds, C∞(E) is isomorphic to the algebra of smooth functions
in the internal coordinates, and E has a structure of an infinite-dimensional manifold
described in Remark 15.

Remark 18. In [6] an algorithm is presented that for any system of PDEs E and any
point a from some open dense subset of E constructs a set of internal coordinates for E
on a neighborhood of a.

Example 11. Consider a system of the form

(58) uit = F i(x, t, u1, . . . , ud, u1
x, . . . , u

d
x, u

1
xx, . . . , u

d
xx, . . . ), ui = ui(x, t), i = 1, . . . , d,

(on the right-hand side there are no derivatives with respect to t). Similarly to Example 10,
one can show that

x, t, ui,
∂lui

∂xl
, i = 1, . . . , d, l ≥ 1,

form a system of internal coordinates for the infinite prolongation of (58). Therefore, by
Theorem 2, such systems satisfy condition (31).

A remark for specialists. Note that if the order of the right-hand side of (58) is greater
than 1 and the symbol of the right-hand side is not of constant rank then this system is
not formally integrable.

Example 12. Consider the sine-Gordon equation uxt = sinu and its infinite prolongation
E . It is easily seen that

x, t, u, ui =
∂iu

∂xi
, u′i =

∂iu

∂ti
, i ≥ 1,

form a system of internal coordinates for E . We have

Dx

∣∣
E=

∂

∂x
+

∑
i≥0

ui+1
∂

∂ui
+ sinu

∂

∂u′1
+ u1 cosu

∂

∂u′2
+

(
u2 cosu− u2

1 sinu
) ∂

∂u′3
+ . . . ,

Dt

∣∣
E=

∂

∂t
+

∑
i≥0

u′i+1

∂

∂u′i
+ sinu

∂

∂u1

+ u′1 cosu
∂

∂u2

+
(
u′2 cosu− u′1

2
sinu

) ∂

∂u3

+ . . . .

Equation (48) reads

(59) Dx

∣∣
EDt

∣∣
E(ϕ) = cosu · ϕ.

For example, ϕ = u3 +
1

2
u3

1 and ϕ = u′3 +
1

2
u′1

3 satisfy (59).

8. Applications to finding solutions of PDEs

8.1. Symmetry-invariant solutions. Let Ek be the closed subset of Jk(π) correspond-
ing to a system of PDEs and E ⊂ J∞(π) be its infinite prolongation. A section s : U → E
of the bundle π over an open subset U ⊂M is said to be a solution of the system of PDEs
if jk(s)(U) ⊂ Ek. Then j∞(s)(U) ⊂ E .

It can be shown that any n-dimensional integral submanifold of the Cartan distribution
on J∞(π) is locally of the form j∞(s)(U) for some U and s. Therefore, locally solutions
of E are in one-to-one correspondence with n-dimensional integral submanifolds of the
Cartan distribution on E .
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Consider a symmetry X ∈ Sym(π) tangent to E (that is, X(I(E)) ⊂ I(E)). A solution
s : U → E of E is said to be invariant with respect to the symmetry X if the vector field
X is tangent to the submanifold j∞(s)(U) ⊂ J∞(π).

Remark 19. This means that for each x ∈ U the tangent vector at a(x) = [s]∞x ∈ J∞(π)
corresponding to the vector field X belongs to the subspace

(
j∞(s)

)
∗(TxU) ⊂ Ta(x)J

∞(π),
which is equal to the Cartan subspace C(a(x)).

Proposition 10. Suppose that X ∈ Sym(π) is tangent to E. Consider the vertical part
Eϕ ∈ Sv(π) of X with respect to the direct sum decomposition (21), where

ϕ ∈ κ(π) ∼= Γ(v∞(π)).

Then a solution s : U → E of E is invariant with respect to X if and only if

(60) ∀x ∈ U ϕ([s]∞x ) = 0.

Here ϕ is regarded as a section of the bundle (23).

Proof. We have X = Xh +Eϕ, where Xh ∈ C(π). Since Xh is tangent to the submanifold
j∞(s)(U) for any s, the symmetry X is tangent to j∞(s)(U) if and only if Eϕ is. By
Remark 19, this is equivalent to the fact that for each x ∈ U the tangent vector corre-
sponding to Eϕ at the point [s]∞x ∈ J∞(π) belongs to the Cartan subspace at this point.
However, since Eϕ(C

∞(M)) = 0, this means that the vector field Eϕ is equal to zero at
the points [s]∞x for all x ∈ U . Finally, it is easy to check in local coordinates that the
latter condition is equivalent to (60). �

For any reasonable system of PDEs the set π∞(E) ⊂ M contains an open subset U of
M (otherwise there is no chance to find any solutions for E). Restricting the bundle π to
π−1(U) ⊂ E if necessary, we will assume in what follows that π∞(E) = M .

Let us write down the statement of Proposition 10 in local coordinates. Suppose that
the initial system of PDEs is

(61) Fs(xi, u
l, ujσ, . . . ) = 0, s = 1, . . . ,m′,

and ϕ = (ϕ1, . . . , ϕm) ∈ κ(π) ∼=
(
C∞(J∞(π)

)m
. Then functions

uj(x1, . . . , xn), j = 1, . . . ,m,

form a solution invariant with respect to the symmetry X if and only if they satisfy the
following extended system of PDEs

Fs(xi, u
l, ujσ, . . . ) = 0, s = 1, . . . ,m′,(62)

ϕj(xi, u
l, ujσ, . . . ) = 0, j = 1, . . . ,m.(63)

This suggests the following method to obtain solutions for (61): find a symmetry Eϕ
for (61), and solve system (62), (63).

Note that system (62), (63) is overdetermined, because it consists of m+m′ equations
for m unknown functions u1, . . . , um. Nevertheless, according to the next theorem, this
system almost always possesses solutions and is often easier to solve than the initial
system (62).

Theorem 3 ([3]). If Eϕ is a symmetry of (61) and ϕ = (ϕ1, . . . , ϕm) satisfies some non-
degeneracy conditions then system (62), (63) is consistent, that is, its infinite prolongation
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is non-empty. (Note that a system with non-empty infinite prolongation almost always
possesses solutions).

Moreover, system (62), (63) is usually equivalent to a system with fewer than n in-
dependent variables. In particular, if n = 2 then this system is usually equivalent to a
system of ordinary differential equations.

Remark 20. For systems of the form (58) this result is well known.
We would like to stress that in Theorem 3 the initial system (61) is allowed to be

overdetermined (but, as we said above, it must satisfy π∞(E) = M , where E is the infinite
prolongation of (61)).

Here we do not have a possibility to describe explicitly the non-degeneracy conditions
mentioned in Theorem 3, but many studied examples suggest that practically all impor-
tant symmetries satisfy these conditions.

Example 13. For a PDE of the form

(64) ut = f(x, t, u, ux, uxx, . . . )

the non-degeneracy condition for ϕ = ϕ(x, t, u, u1, u2, . . . ), where ul =
∂lu

∂xl
, is

∃ l ≥ 0
∂ϕ

∂ul
6= 0.

Example 14. In Section 2 for the KdV equation (1) we studied solutions invariant with
respect to the symmetry Eϕ for ϕ equal to (3).

8.2. Reproduction of solutions. Let ϕ ∈ κ(π) be such that Eϕ is tangent to E . Sup-
pose that there are ψ ∈ κ(π) and V ∈ C(π) such that

(65) ψ(C∞(E)) ⊂ I(E)

and the symmetry Y = Eϕ+ψ + V is classical. Condition (65) implies that Eψ is tangent
to E and Eψ

∣∣
E = 0, therefore, the symmetry Y is also tangent to E . Recall that E is the

infinite prolongation of Ek ⊂ Jk(π). We assume k ≥ 1, because the case k = 0 is trivial.
Denote by

Ga : Jk(π) → Jk(π), a ∈ R, G0 = Id,

the one-parametric group of local diffeomorphisms corresponding to the classical symme-
try Y . Let s : U → E be a solution of Ek. Since Y is tangent to E , we have

(66) Ga

(
jk(s)(U)

)
⊂ Ek ∀ a.

For a small enough open subset U ′ ⊂ U and small enough a the projection πk
∣∣
Na

: Na →M

is a diffeomorphism onto an open subset Ua ⊂ U , where Na = Ga

(
jk(s)(U

′)
)
⊂ Ek. Since

Y is a symmetry, Na is an integral submanifold of the Cartan distribution, and, by
Proposition 2, there is a section sa : Ua → E such that Na = jk(sa)(Ua). Since Na ⊂ Ek,
the section sa is a solution of Ek.

Thus, using a classical symmetry of Ek, for any solution s one obtains a one-parametric
family of solutions sa such that s0 = s.

Remark 21. One has sa = s for all a if and only if the solution s is invariant with respect
to the symmetry Y . Equivalently, s is invariant with respect to Eϕ.
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Example 15. For the KdV equation (1) consider the symmetry Eϕ, where

ϕ = uxxx + uxu− cux

is equal to (3) and c ∈ R is a constant. For ψ = ut − uxxx − uxu and V = cDx −Dt set
Y = Eϕ+ψ + V . We have

Y (u) = 0, Y (x) = c, Y (t) = −1.

Therefore, by Exercise 3, the symmetry Y is classical and the scheme described above
is applicable to it. For a solution s(x, t) of (1) the one-parametric family of solutions sa
determined by Y is given by

sa(x, t) = s(x+ ac, t− a)
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