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These are links to PostScript files containing notes for various topics in topol ogy.

| learned topology at M.1.T. from Topology: A First Course by James Munkres. At the time, the first
edition was just coming out; | still have the photocopies we were given before the printed version was
ready!

Hence, I'm abit biased: | still think Munkres' book is the best book to learn from. The writing is clear
and lively, the choice of topicsis still pretty good, and the exercises are wonderful. Munkres a'so hasa
gift for naming things in useful ways (The Pasting Lemma, the Sequence Lemma, the Tube Lemma).

(I like Paul Halmos's suggestion that things be named in descriptive ways. On the other hand, some
names in topology are terrible --- "first countable" and "second countable" come to mind. They are
amost as bad as "regions of type " and "regions of type |1" which you still sometimes encounter in
books on multivariable calculus.)

I've used Munkres both of the times |'ve taught topology, the most recent occasion being this summer
(1999). The lecture notes below follow the order of the topicsin the book, with afew minor variations.

Here are some areas in which | decided to do things differently from Munkres:

. | prefer to motivate continuity by recalling the epsilon-delta definition which students see in
analysis (or calculus); therefore, | took the pointwise definition as a starting point, and derived
theinverse image version later.

. | stated the results on quotient maps so as to emphasi ze the universal property.

. | prefer Zorn's lemmato the Maximal Principle; for example, in constructing connected
components, | use Zorn's lemmato construct maximal connected sets.

. | did Tychonoff's theorem at the same time as the other stuff on compactness. The proof for a
finite product islong enough that | decided to save some time by omitting it and just doing the
general case.

« It seems simpler to me to do Urysohn's lemma by indexing the level setswith dyadic rationalsin
[0,1] rather than rationals.

. How do | view/print the notes?
. How may | use/distribute the notes? How did you write them?
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6-14-1999
Review: Set Theory, Functions, and Relations
This is a brief review of material on set theory, functions, and relations. I’ll concentrate on things which
are often not covered (or given cursory treatment) in courses on mathematical proof.
Definition. Let A and B be sets, and let f : A — B be a function from A to B.
1. fis injective if for all a1,a2 € A, f(a1) = f(az) implies a3 = as.
2. f is surjective if for all b € B, there is an element @ € A such that f(a) = b.
3. f is bijective if f is injective and surjective.
Definition. Let f: A — B be a function. Let By C B.

1. The image of f is the set
f(A) ={f(a) |a € A}.

2. The inverse image of By is the set
J7H(Bo) ={a€ A J(a) € Bo}.

Remark. f is surjective if and only if f(A4) = B.

Example. (a) Let f: A — B and g,h : B — C be functions. Suppose that f is surjective and ¢ - f = h - f.
Prove that g = h.

Let b € B. T must show that g(b) = h(b).
Since f is surjective, I may find an element a € A such that f(a) = b. Then g - f = h - f implies that

g9(f(a)) = h(f(a)), so g(b) = h(b).
Therefore, g = h. 0O

(b) Let f: A — B. Suppose that for all g,h: B — C,if g- f = h - f, then g = h. Prove that f is surjective.

First, I’ll take care of the cases where A = (f or A contains a single element.

If A=% and B =0, then f is vacuously surjective: Every element of B (there are none) is an image of
an element of A.

If A=0 and B # §§, then B contains at least one element b. Define ¢ : B — {0,1} by ¢(b) = 0 and
h:B — {0,1} by h(b) = 1. Tt is vacuously true that ¢(f(a)) = h(f(a)) for all a € A (since there are no a’s
in A), but ¢ # h. Therefore, the hypothesis isn’t satisfied, and this case is ruled out.

Suppose A consists of a single element a. If B = @, then f is vacuously surjective. If B consists of a
single element, then f is obviously surjective.

Finally, suppose that B contains more than one element. f(a) is an element of B; suppose that by € B
and by # f(a). Consider the functions g, h : B — B given by

g(b)y =5 forall be B,

bbb
h(b) = {f(a) ith=by

Then g(f(a)) = f(a) = h(f(a)), so g-f = h-f. However, ¢ # h. Therefore, the hypothesis isn’t

satisfied, and this case is ruled out.



This concludes the proof for the trivial cases.

Assume that A contains more than one element.

Suppose, on the contrary, that f(A) # B. T’ll show that the hypothesis is violated.

If b € f(A), choose an element a; € A such that f(ay) = b. Since A contains more than one element, I
may find elements aq,as € A such that a3 # as. Define ¢g,h: B — A by

_Ja ifbe f(A) _Ja ifbe f(A)
9) = {cn itpg pay 4 90= {az it f(A) -

If a € A, then f(a) € f(A), so
g(f(a)) = ayay = h(f(a)).

Thus, g-f=h-f.

However, since f(A) # B, there is an element by € B — f(A). TFor this element, g(by) = a1, but
h(by) = az. Therefore, g # h.

This proves that the hypothesis is violated. This contradiction in turn establishes that f(A) = B, so f
is surjective. [

Remark. This result is often expressed by saying that surjective functions are right-cancellable. The dual
result is also true: Injective functions are left-cancellable.

Example. Let f: A — B, and suppose that By, By C B. Prove that f=1(B; U Bs) = f~1(B1) U f~1(B2).

Suppose a € f~1(By U By). Then f(a) € B; U Ba, so f(a) € By or f(a) € Bs.

If f(a) € By, then @ € f~Y(B1), so a € f~Y(B1)U f~Y(B2). If f(a) € Ba, then a € f~1(Ba), so
ac f_l(Bl) U f_l(Bz).

Therefore, @ € f~H(B1) U f=1(B2), so f71(B1U By) C f~1(B1) U f~1(B2).

Conversely, suppose that a € f=Y(B1)U f~1(Bs),so a € f~1(By) or a € f~1(B2).

If a € f~1(By), then f(a) € By, so f(a) € By U Bs, and hence a € f~1(By U Bs). If a € f~!(Bs), then
f(a) € By, so f(a) € By U Bs, and hence a € f~1(B; U Bs).

Therefore, a € f~1(B1 U Bs), so f~1(B1) U f~1(B2) C f~1(B1 U B3).

This proves that f=!'(B; U Bs) = f~1(B)U f~1(Bs). O

Definition. Let A be a set. A relation < on A is a simple order (or linear order) if:
1. (Comparability) For all a,b € A, exactly one of the following is true: a < b, b < a, or a = b.
2. (Nonreflexivity) There is no element a € A such that a < a.

3. (Transitivity) For all a,b,c € A, if a < b and b < ¢,then a < c.

Example. Let < be a simple order on a set A. The dictionary order (or lexicographic order) on A x A
is given by: (a,b) < (a', ') if and only if

l.a<a’;or
2. a=a',and b < V.

The words in a dictionary are ordered by their first letter. Among words with the same first letter, they
are ordered by their second letter, and so on. This explains the name of this order relation.
To give a specific example, in B? under the dictionary order, (1,4) < (2,4) and (1,6) < (1,8).



Definition. If A is an ordered set, a,b € A, and @ < b, then the open interval from «a to b is the set
(a,b) ={z |a < & < b}.

It may happen that this set is empty. In that case, since there are no elements “between” a and b, it’s
natural to say that a is the predecessor of b and b is the successor of a.

Unfortunately, “(a,b)” can mean a point in a Cartesian product or an open interval in a simple order.
To avoid confusion, I’ll sometimes write a x b for the point when both concepts occur in the same discussion.

Example. Consider the dictionary order on IR?. The open interval from the point 1 x 2 to the point 2 x 4 is
the union of:

1. The open ray {1 x y |y > 2}.
2. The lines {z x y | 1 < & < 2}.

3. The open ray {2 x y | y < 4}.

Definition. Suppose A and B are sets with simple orders <4 and<g, respectively. Let f : A — B be a
function. f is order-preserving if for all a;,as € A,

a; <4 az implies f(a1) <p f(az).

Example. With the usual order relation on R, define f : R — R by f(z) = #3. Then f is order-preserving.
In fact, a function R — R is order-preserving if it is an increasing function. 0O

Definition. Let A and B be ordered sets. A and B have the same order type if there’s an order-preserving
bijection from A to B.

Definition. A set is well-ordered if every nonempty subset has a smallest element.

The Well-Ordering Axiom says that every set can be well-ordered. This is an axiom of set theory;
it’s equivalent to other results which can be taken as axioms, such as the Axiom of Choice and Zorn’s
lemma.

Well-ordering means that for a given set, there is some order relation on the set relative to which the
set 1s well-ordered. That well-ordering will usually have little to do with familiar order relations.

3



Definition. Let A be an ordered set, and let B C A.
1. ¢ € B is the largest element of Bif b < cforall b € B, b # c.
Likewise, ¢ € B is the smallest element of B if ¢ < b for all b € B, b #£ c.

2. An element a € A is an upper bound for B if b < a for allb € B, b # a. If B has an upper bound, B
is bounded above.

Likewise, an element ¢ € A is a lower bound for B ifa < b for all b € B, b # a. If B has a lower
bound, B is bounded below.

3. If the set of upper bounds of B is nonempty, then the smallest element of that set is the least upper
bound for B. It i1s denoted lub B or sup B.

Likewise, if the set of lower bounds of B is nonempty, the largest element of that set is the greatest
lower bound for B. It is denoted glb B or inf B.

4. A set has the least upper bound property if every nonempty subset that is bounded above has a
least upper bound.

A set has the greatest lower bound property if every nonempty subset that is bounded below has
a greatest lower bound.

Example. The real numbers with the usual ordering satisfy the least upper bound property. In fact, it is
one of the axioms for the real numbers. 0O

Mathematics is based on a collection of axioms for set theory. They are called the Zermelo-Fraenkel
Axioms with the Axiom of Choice (often abbreviated to ZFC).

While the Axiom of Choice is accepted and used by most mathematicians, the situation was different
earlier in this century. Some mathematicians felt that the Choice Axiom was problematic and refused to use
it; others took care to note when they used the Choice Axiom in a proof. Many of the objections stemmed
from the often startling results which can be proved using the axiom.

Axiom of Choice. Let {X,} be a collection of disjoint nonempty sets. There exists a set X containing
exactly one element from each X,.

The Axiom of Choice is equivalent to the Well-Ordering Axiom, and also to an important result known
as Zorn’s lemma. The statement of Zorn’s lemma requires some preliminaries.

Definition. A relation < on a set X is a partial order if:
1. (Reflexivity) « < x for all x € X.
2. (Antisymmetry) If # < y and y < z, then z = y.

3. (Transitivity) If # < y and y < z, then z < z.

Example. The set of subsets of a set is partially ordered by inclusion. 0O

Example. The usual “less than or equal to” relation < on R is a partial order. 0O
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Definition. Let X be a partially ordered set.
1. A subset Y C X is totally ordered (or linearly ordered) if for all z,y € Y, either # <y or y < x.
A totally ordered subset is also said to be a chain.
2. If Y C X, then Y has an upper bound if there is an element x € X such that y <z forally € Y.
3. An element z € X is maximal if y € X and z < y implies z = y.

Zorn’s Lemma. If X is a nonempty partially ordered set in which every chain has an upper bound, then
X has maximal elements.

Zorn’s lemma is an immensely useful form of the Axiom of Choice. For example, you may have seen a
proof that every finite-dimensional vector space has a basis. Zorn’s lemma can be used to show that every
vector space has a basis.

Example. Let G be a group and let ¢ € G, g # 1. There is a subgroup H < G such that ¢ ¢ H and H is
maximal among subgroups with this property.

Let 8 be the collection of subgroups of G which do not contain g. § # @, since {1} € 8. § is partially
ordered by inclusion.
Let 7 be a chain in §. Let

Ho = U H.

HeT

Thus, Hy is just the union of all the elements of the chain.

I claim that Hy is a subgroup of (G which does not contain g.

First, 1 € H for all H € T, so certainly 1 € Hy.

If h,h' € Hy, then h € H and b’ € H' for some H,H' € 7. But 7 is a chain, so either H C H' or
H CH.

Suppose H C H'. Then h,h' € H', so (since H' is a subgroup) hh’~t € H'. Therefore, hh'~1 € Hy, and
hence Hy is a subgroup.

If g € Hp, then g € H for some H € T. But H € 8,50 g ¢ H by definition of S. Therefore, g & Hy.

I’'ve shown that Hy is a subgroup of G which does not contain g, so Hy € §. Since H C Hy for all
H € T, it follows that Hy is an upper bound for 7 in S.

Since every chain has an upper bound, Zorn’s lemma implies that & has a maximal element H. Then
H is a subgroup of G which is maximal among subgroups which do not contain g. 0O

@1999 by Bruce Ikenaga 5



6-15-1999
Topological Spaces

A function f: R — R is continuous at ¢ = a if and only if

For every € > 0, there is a § > 0 such that if § > |¢ — a| > 0, then € > |f(x) — f(a)|.
In words,

You can make f(x) arbitrarily close to f(a) by making z sufficiently close to a.

Continuity is important in analysis and calculus. The idea of “closeness” is an important part of the
definition of continuity. What would “closeness” mean in an abstract setting — one in which there’s no way
to measure the distance between two points?

A topology for a space is, roughly speaking, a specification of all ”closeness relations” in the space.

Definition. Let X be a set. A topology on X is a collection T of subsets of X satisfying the following
conditions:

1.0eTand X € T.
2. The union of elements of 7 is an element of 7.
3. The finite intersection of elements of 7 is an element of 7.

The elements of 7 are called open sets. The set X together with the topology 7 is a topological
space.

Example. If X is a set, take D to be P(X), the power set of X. (Recall that P(X) is the set of all subsets
of X.)

D is clearly a topology on X; it is called the discrete topology. In the discrete topology, all subsets
are open. 0O

The other extreme is the indiscrete topology on X. In this case, Z = {f), X}. Again, it is clear that
this is a topology on X. 0O

Definition. If 7; and 7> are topologies on a set X, then 7; is finer than 73 (or 7z is coarser than 77) if
71 O Tz2. In other words, finer topologies contain more open sets.

Thus, if D is the discrete topology on X, then D is finer than any other topology on X. If Z is the
indiscrete topology on X, then 7 is coarser than any other topology on X.

It is, of course, possible for two topologies on X to be incomparable, 1.e. neither may be finer than the
other.

Analysts often refer to “stronger” and “weaker” topologies, but their usage is often at variance with the
usage of topologists.

Example. Let X = {1,2,3}, and consider the following topologies on X:
To=1{0,{1},{2},{1,2}, X},

T2 = {wa {1}a {L Q}aX}’
Tz ={0,{1,2}, X}.
Ta=1{0,{2,3}, X}.
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Then 77 is finer than 75, and 75 is finer than 73. On the other hand, 74 is not comparable with the
other three.

As this example shows, topology does not necessarily concern itself with the concepts of measurement
or distance. They might not be applicable to the space under consideration. 0O

Example. The standard topology on R is the topology whose open sets consist of arbitrary unions of open
intervals.

The empty set is considered to be a degenerate open interval, and R can be written as a union of open
intervals.

A union of unions of open intervals is a union of open intervals.

It remains to show that this topology is closed under finite intersections. It’s fairly obvious that two
open intervals either do not intersect, or intersect in an open interval; I won’t write out the details. The
general case for finite intersections reduces to this case by distributing intersections over unions. 0O

Example. The standard topology on R™ is obtained by starting with open balls
B(r;r)={y e R" ||z —y| <r}.

(B(z;r) is called the open r-ball centered at x.) The open sets are arbitrary unions of open balls.
I’ll defer the verification that this gives a topology, since it will follow easily once I develop the notion
of a basis. 0O

The examples above give a typical way of defining a topology: Start with a collection of subsets and
then extend the collection to a topology by taking arbitrary unions. The next definition makes precise the
conditions I need to be able to do this.

Definition. Let X be a set. A collection B of subsets of X is a basis if:
1. Every element of X is contained in some element of B.

2. If By, By € Band x € By N By, there is an element Bs € B such that
xr € B3 C By N Bs.




The elements of B are called basic subsets, or basis elements.

Remark. By induction, it follows that if B is a basis, By,...,B, € B, and z € By N---N By, then there is
an element B € B such that
reEBCBIN---NB,.

Example. The open intervals in R form a basis.

If # € R, then z € (x — 1,2 + 1) (for instance).

If & 1s contained in the intersection of two open intervals, the intersection is itself an open interval which
contains & and is contained in the intersection.

The open balls B(z; r) in R™ form a basis. Obviously, every point in R" is contained in some open ball.

Take open balls B(x1;r1) and B(xg;rs). Assume that they intersect, and let € B(z1;r1) N B(xa;ra).
I have to find an open ball centered at x which is contained in the intersection.

Let sy = r; — |# — 21|. Then B(x;s1) C B(z1,71).

n-lx-x% |

B0y o f)

Likewise, let s2 = o — | — 2|. Then B(x;s2) C B(xa,r2).
Therefore, if T let » = min(sy, s2), then

B(xz;r) C B(x1;r1) N B(xa;ra).

This shows that the open balls in R” form a basis. O

Proposition. Let X be a set, and let B be a basis. Define T to be the collection of subsets U C X satisfying
the following property:

U € T if and only if for all x € U, there is an element B € B such that « € B C U.
Then 7 is a topology on X.
T is the topology generated by the basis B.

Proof. The empty set is in 7T it satisfies the defining condition vacuously, since it has no elements.
X € T: If x € X, the first axiom for a basis implies that there is an element B € B such that z € B C X.
Let {U,} be a collection of elements of 7. I need to show that the union U =J, U, is'in 7.
Let x € U. Then x € U, for some a. Since U, € T, there is an element B € B such that x € B C U,.
Then
reBCU,CU.

Hence, U € T.



Let Vi,...,V, € 7. I must show that V = ﬂ?zl Viisin 7. Let # € V. Then # € V; for all i. Since
Vi € T, for each ¢ I may find an element B; € B such that x € B; C V;. By the remark above, I may find an
element B € B such that x € B C ﬂ?:l B;. Then

l‘EBCﬁBiCﬁVZ’:V.

i=1 i=1

Hence, V € T.
Therefore, T is a topology. 0O

Notice that elements of a basis are automatically elements of the topology they generate: Basic sets are
open.

Definition. If 7 is a topology and B is a basis, then B is a basis for 7T if the topology generated by B is
the same as 7T .

Lemma. Let X be a set, B a basis, and 7 the topology generated by B. Then 7T is equal to the collection
of all unions of elements of B.

Proof. Since basis elements are open, unions of basis elements are open. Therefore, the collection of all
unions of basis elements i1s contained in 7.

Conversely, let U € 7. I must express U as a union of basis elements. For each € U, find a basis
element B, such that x € B, C U. Then U = Uer B,. 0O

Here are two more facts about bases. The proofs are straightforward.

1. Let 71 and 73 be topologies on X generated by bases By and Bs, respectively. Then 77 is finer than 7>
if and only if for every U € By and ¢ € U, there i1s an element V' € 51 such that x € V C U.

2. Given a topology 7 on X, a subcollection B of open sets is a basis for 7 if for all U € 7 and z € U,
there 1s an element B € BB such that z € B C U.

It’s possible to go to a “lower” level and generate a topology by taking unions and finite intersections.
Definition. If X is a set, a subbasis is a collection of subsets of X whose union is X.

Proposition. If S is a subbasis in X, the collection of all unions of finite intersections of elements of S is a
topology on X.

Proof. Let T denote the collection of all unions of finite intersections of elements of S.

The union of the elements of the subbasis is X, so X € 7. Taking the empty union gives the empty set,
soffeT.

The union of unions of finite intersections of elements of & are unions of finite intersections of elements
of §, so such a union is an element of 7.

The verification that 7 is closed under finite intersections is routine, using the fact that intersections
distribute over unions. I'll omit the details. 0O

Example. (Order topologies) Let X be a set linearly ordered by a relation <. Consider the following
collection of subsets of X:

1. All intervals [s, b), where b > s and s is the smallest element of X (if there is one).
2. All intervals (a,!], where @ < ! and { is the largest element of X (if there is one).
3. All intervals (a,b), where a < b.

I claim that this collection is a basis.



First, if « € X, I must find an element of the basis containing z. If = is the largest element, take an
interval of the form (a, #]; if # is the smallest element, take an interval of the form [z,5). If x is neither
largest nor smallest, I may find a, b such that a < @ < b. Then z € (a, ).

To verify the second axiom for a basis, just observe that the intersection of two intervals is either empty,
or an interval.

The topology generated by this basis is called the order topology. On R, for instance, this topology
is the standard topology. O

Example. (Partition topologies) Let X be a set, and let P be a partition of X. Then P is a basis: the
union of the sets in the collection is X, and since the sets do not intersect, the second basis axiom is satisfied
vacuously.

The topology generated by P is called the partition topology on X. The open sets are unions of
partition elements.

Note that if the partition consists of X itself, the partition topology is the indiscrete topology on X.
And if the partition elements are the points of X, the partition topology is the discrete topology. 0O

Example. (Product Topology) Suppose (X,S) and (Y, T) are topological spaces. (That is, S is the
topology on X and T is the topology on Y.)
Define a basis on the product X x Y by

B={UxV|UeSVeT}.

I need to verify that this 1s a basis.

First, if (z,y) € X x Y, find open sets U C X, V C YV such that t € U C X and y € V C Y. Then
(z,y) eU xV € B.

Now let U1 and Us be open in X, and let V4 and V5 be open in Y. Suppose that

(x,y) € (Ul X Vl) N (Uz X Vz)

Note that
(U1 X Vl) n (Uz X Vz) = (U1 ﬁUz) X (V1 n Vz)

Find opensets U C X and V CY suchthat e ¢ U CU NUs andye V CViNV, Then U x V € B,
and

(l‘,y)EUXVC(UlﬁUz)X(VlﬂVQ).

Therefore, B is a basis.
The topology generated by B is the product topology on X x Y.
In fact, if C 1s a basis for the topology on X and D is a basis for the topology on Y, then

E={UxV|UeCVeD}

is a basis for the product topology on X x Y.

For instance, give R the standard topology generated by the open intervals. Then the product topology
on % is generated by products of open intervals, i.e. open rectangles. In fact, this topology is the same
as the topology generated by open balls. This will follow from the next lemma, which gives an easy way of
telling when two topologies are the same. 0O

Lemma. Let 77 and 73 be topologies on X. Then 77 C 72 if and only if for every U € 77 and = € U, there
1s an element V € 75 such that x € V C U.



Proof. Suppose 71 C 7. f U €71 and © € U, then U € 73,30 x € U C U, and the condition holds.
Conversely, suppose that for every U € 77 and z € U, there is an element V € 73 such that z € V C U.
Let U be open in 7;. I want to show that U € 7. For each x € U, find an element V,, € 75 such that
x €V, CU. Then Uer Ve € Tz, but clearly Uer = U. Therefore, U € T5. Hence, 77 C 7. O

Corollary. The product topology on R? is the same as the topology generated by the open balls.

Proof. The picture below indicates the 1dea:

Example. (Subspace topology) Let X be a topological space, and let A C X. Define a topology on A by
stipulating that the open sets be the intersections of open sets of X with A.

It is easy to check that this is a topology. It is called the subspace topology on A. When a subset A
of X is given the subspace topology, A is said to be a subspace of X.

It is also easy to check that if B is a basis for the topology on X, then

{UNA|U € B}
is a basis for the subspace topology on A. O

Remark. If A C X, a subset of A that is open in the subspace topology need not be open in X.

For example, consider the subset Z C R, where R has the standard topology. Then {0} is open in the
subspace topology on Z, since (—1,1) is open in R and {0} =ZnN (-1, 1).

However, {0} is not open in R. Take 0 € {0}. There is no open interval (a,b) in R such that 0 € (a,b) C
{0}.

In fact, the subspace topology on Z is just the discrete topology. 0O

Theorem. Let X and Y be topological spaces. Let A be a subspace of X, and let B be a subspace of Y.
The product topology on A x B agrees with topology it inherits as a subset of X x Y.

Proof. Let U be open in A and let V' be open in B. Thus,
U=ANU" and V=BnV,

where U’ is open in X and V/ is open in Y. U x V is a basic open set in the product topology.

Now

UxV=(ANU)x(BNV)=(Ax B)n (U x V).

Therefore, U x V is open in the subspace topology on A x B. Thus, the product topology is contained
in the subspace topology.

Going the other way, consider a basic open set (A x B) N (U’ x V') in the subspace topology on A x B.
Then

AxBYN{U xVY=(AnU) x (BNnV").

This is a product of an open set in A and an open set in B, so it’s open in the product topology on
A X B.

Since an arbitrary open set in the subspace topology on A x B is a union of basic open sets, it follows
that the subspace topology is contained in the product topology. 0O
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6-16-1999
Closed Sets and Limit Points

Definition. If X is a topological space, a subset A C X is closed if X — A is open.

Example. In the standard topology on R, closed intervals are closed and points are closed.
Note, however, than points need not be closed in an arbitrary topological space.
In R, the closed r-ball centered at z

B(x;r) ={y eR" ||z —y| < r}

1s closed. O

Closed sets satisfy complementary properties relative to open sets.
Proposition. Let X be a topological space.
1. X and § are closed.
2. Finite unions of closed sets are closed.
3. Arbitrary intersections of closed sets are closed.
Proof. 1. X is closed, since X — X = (} is open. 0} is closed, since X — ) = X is open.

2. Let (4, ..., C), be closed. For each i, write C; = X — U;, where U; is open. Then

n n n n

x-a=x-Jx-v)=Nx-(x-U))= U

i=1 i=1 i=1 i=1
;= Ui is open, because it’s a finite intersection of open sets. Therefore, | J;_; C; is closed.

3. Let {Cy}aca be a family of closed sets. For each a € A, write C, = X — U,, where U, is open. Then

X—()Ca=X- ﬂ(X—Ua):X—(X— UUG): U va.

acA acA acA acA

UaEA U, is open, because it’s a union of open sets. Therefore, Cy is closed. O

aEA

It’s possible to construct a topology by specifying the closed sets rather than the open sets. Then you
can define the open sets to be the complements of closed sets.

11
Example. Give R the standard topology. The intervals (——, —) for n = 1,2,... are open sets. However,
n’'n

their intersection 1s
(o)

N (—%%) = {0},

which is a closed subset of R.



n —

Likewise, the intervals [—, ] are closed sets. However, their union 1s
n

U= 0

n=1

which is open in R. 0O

Open sets in the subspace topology are intersections of the subspace with open sets in the big space.
The next result says that the same is true of closed sets.

Proposition. Let X be a topological space, let Y be a subspace of X, and let € C Y. C is closed in Y if
and only if C'=Y N D, where D is closed in X.

Note that “closed in Y” means “closed in the subspace topology on Y.

Proof. Let D be closed in X. Write D = X — U, where U 1s open in X. Then
DNY=(X-U)nY =Y - nU).

fee(X-U)NnY,thenzeY andx ¢ U,sox ¢ YNU. This means € Y — (Y NU). Conversely, if
z€Y —(YNU),then x €Y, and ¢ ¢ U since x ¢ Y NU. Therefore, r € X —U,s02 € (X =U)NY.)
YNUisopeninY,s0Y — (Y NU) is closed in Y.
Conversely, suppose C' is closed in Y. Then Y —C'isopenin Y, ,s0 Y — C' =Y NU, where U is open in
X. Hence,
C=Y - (Y -CO)=Y —(YNU)=(X-U)NY.

X — U is closed in X, so C 1s the intersection of a closed set in X with Y. 0O

Proposition. Let X be a topological space, let Y be a subspace of X and let Z C Y.
1. If Zisopen in Y and Y is open in X, then Z is open in X.
2. If Z isclosed in Y and Y is closed in X, then 7 is closed in X.

Proof. I'll prove the first assertion; the proof of the second is similar.
Suppose Z is open in Y and Y isopen in X. Z =Y NU, where U is open in X. But Y is open in X,
so Z is an intersection of two open sets of X — hence, it is open in X. 0

Definition. Let X be a topological space, and let Y C X.
1. The closure of Y (denoted Y or cl(Y)) is the intersection of all closed sets containing Y.
2. The interior of Y (denoted Y or int(Y")) is the union of all open sets contained in Y.

Notice that the closed set X contains every subset Y, so the intersection formed in taking the closure
is not taken over an empty collection.

Remarks.
1. The closure of a set is closed, and the interior of a set is open.

2. The closure of a set is the smallest closed set containing the set; likewise, the interior of a set is the
largest open set contained in the set.

3. A set Y is closed if and only if Y = Y; a set Y is open if and only if Y = Y.
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Example. In the standard topology on R, the closure of (a,b) is [a,b] and the interior of [a, b] is (a,b).
More interestingly, @ = R. (A set whose closure is the whole space is said to be dense; thus, the
rationals are dense in the reals.) O

Example. The closure of even a single point can be quite large. For example, give Z the topology whose
open sets are the open intervals (—n, n) for n € 7T, together with §§ and Z.

What is the closure of {1}? The only closed sets which contain 1 are Z and Z — (—1,1). Now (—1,1) =
{0, }, so the intersection of these two sets is Z — {0}. Thus, the closure of a single point turns out to be
everything in Z but 0! 0O

Lemma. Let X be a topological space, let Y be a subspace, and let Z C Y. Then
cdy Z=YnNZ.
Here cly Z is the closure of Z in Y (with the subspace topology), whereas Z is the closure of Z in X.
Proof. cly Z is closed in Y so cly Z = C'NY, where C is closed in X. Now
ZCcdyZ=CnNnY CC,

so C'1s a closed set in X containing 7.
Therefore, Z C C, so
ZNnYy cCny =cly Z.

Conversely, Z is closed in X and contains Z, so Z NY is closed set in Y containing Z. Therefore,
cy Z C ZNnY. -
Hence, cly Z=Y NZ. 0O

Terminology.
1. If X is a topological space and z € X, a neighborhood of z is any open set containing .
Some authors use “neighborhood” to mean a set containing x in its interior.
2. If X and Y are sets, I'll say that X intersects Y or X meets Y if X NY # {).

Lemma. Let X be a topological space, and let Y C X. 2 € Y if and only if every neighborhood of x
intersects Y.

Proof. Suppose z € Y. Let U be a neighborhood of #. Suppose on the contrary that 7 N Y = . Then
UCX-Y,s0X-UDX—-(X-Y)=YVY.

Now X — U is a closed set containing Y, so X —U D Y. But then € Y C X — U implies ¢ ¢ U,
contrary to the assumption that U was a neighborhood of z.

Conversely, suppose every neighborhood of x intersects y. Let C be a closed set containing Y. T must
show that x € C; since C is arbitrary, this will prove that = € Y.

Suppose on the contrary that 2 ¢ C. Y C C implies X —Y D X — C — that is, X — C does not intersect
Y. Further, z € X — C, and X — C is open. Thus, X — (' is a neighborhood of  which does not meet Y,
contrary to assumption. Therefore, x € C, which is what I wanted to show. 0O

Remark. If B3 is a basis for the topology on X, then x € Y if and only if every B € B intersects Y.

In a sense, the closure of a set consists of the original set together with other points that are “close
to” the original set — you might picture these additional points as “boundary points”. I want to make the
notion of a “boundary point” precise.



Definition. Let X be a topological space, Y C X. A point € X is a limit point of Y is every neighborhood
of x intersects Y in some point other than x.

Example. In the standard topology on R, every point of [a, b] is a limit point of (a, b).
On the other hand, 0 is not a limit point of (1, 2). For example, the open set (—0.5,0.5) contains 0, but
does not intersect (1,2).

1
The set {—
n

n e Z+} has 0 as its only limit point.

Z has no limit points in IR. About every point in R — Z, you can construct an open interval which does
not contain any integers. And if n € Z, the open interval (n — 0.5, n 4 0.5) intersects 7Z in the point n.

Every real number is a limit point of (), since every open interval about a real number contains rational
numbers. 0O

Definition. If Y is a subset of a topological space X, the derived set Y’ is the set of limit points of Y.

Proposition. If Y is a subset of a topological space X, then
Y=AUA"

Proof. Suppose zx € Y UY".

IfzreY,thenzey.

If ¢ V, then @ € Y’, so every neighborhood of # meets ¥ — in a point other than «, but this fact
isn’t relevant. Since every neighborhood of x meets Y, an earlier result implies that € Y.

Conversely, suppose that x € Y. If 2 € Y, then £ € Y UY”, and I'm done.

Suppose then that = ¢ Y. Since x € Y, every neighborhood of  intersects Y. But the intersection can’t
consist of z, since & ¢ Y. Therefore, every neighborhood of # intersects Y in a point other than x. Hence,
r €Y’ and certainly x € YUY’ [

Corollary. Let X be a topological space, and let Y C X. Then Y is closed if and only if Y/ C Y.

Proof. If Y is closed, then Y =Y =Y UY’, so y Ccvy.
Conversely, f Y/ C Y, then YUY’ ' =Y so Y =Y, and Y is closed. O

The last result is often expressed by saying that a closed set contains all its lemit points. Thus, you
often show a set is closed by taking a limit point and showing that it lies in the set.
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6-17-1999
Hausdorff Spaces

If you try to study topological spaces without any conditions, the variety becomes overwhelming —
there is little you can say about topological spaces in general. In order to say more, you have to assume
more. The Hausdorff condition is a common assumption mathematicians make about topological spaces.

Definition. A topological space X is Hausdorff' (or T3)if for all z,y € X, # # y, there are neighborhoods
U of z and V of y such that U NV = .

Remark. An easy induction shows that if X 1s Hausdorff and 1, ..., z, € X, then there are neighborhoods
Uy of 21, ..., U, of z,, such that the U’s are pairwise disjoint.

Example. R is Hausdorff in the standard topology.
1
Let  and y be distinct points in R. Let ¢ = §|x —y|. Then (z — e, 2+ ¢€) and (y — €,y + €) are disjoint
open sets containing = and y, respectively.
€ € € €

— Y 9 Y —
X y a

Example. Consider the topology on X = {1,2,3} in which the open sets are @}, {1,2}, and {1,2,3}.

X 18 not Hausdorff, since 1t isn’t possible to find disjoint neighborhoods containing 1 and 2. 0O

Proposition. The product of Hausdorfl spaces is Hausdorff.

Proof. Let X and Y be Hausdorff spaces. Let (z1,41), (#2,y2) € X xY, and assume that (z1,y1) # (22, y2).
I want to find disjoint neighborhoods in X x Y containing the points.

Since the points aren’t the same, they must differ in at least one coordinate. Assume z; # 3 (the
argument is similar if instead y; # ya.



Since X 1s Hausdorff, I can find disjoint neighborhoods Uy of 1 and Uy of 5. Then U7 x Y and Us XY
are digjoint neighborhoods in X x Y, (x1,41) € U1 x Y, and (z2,y2) € Uz x Y.

Y
X %)
V3 S .(1 h
y2 ....... ..(XTVQ)
U x U, x, X

Therefore, X x Y is Hausdorff. 0O
Proposition. A subspace of a Hausdorfl space is HausdorfT.

Proof. Let X be Hausdorff, and let Y be a subspace of X. Let y1,y2 € Y, where y1 # yo.
Since X is Hausdorff, there are disjoint neighborhoods U of y; and Us of y» in X. Then U; NY is a
neighborhood of y; in Y and U> NY 1s a neighborhood of y» in Y, and U; NY and U; NY are disjoint.
Therefore, Y 1s Hausdorff. 0O

Proposition. If X is Hausdorff and a1, ...2, € X, then {21,...,2,} is closed.

Proof. First, I'll show that a single point is closed. Let # € X. T claim that X — {z} is open.

Take y € X — {«}. Since « # y, I may find disjoint neighborhoods U of « and V of y. Since V doesn’t
intersect U and x € U, it follows that V' C X — {#}. Thus, V is a neighborhood of y contained in X — {x}.
Since y was arbitrary, X — {x} is open.

Since a finite union of closed sets is closed, if #1,...2, € X, then {x1,...,2,} is closed. O

If y is a limit point of a set Y, then every neighborhood of y meets Y in a point other than y. In a
Hausdorff space, every neighborhood of a limit point meets the set in infinitely many points.

Proposition. Let X be Hausdorff, and let Y C X. # is a limit point of Y if and only if every neighborhood
of ¥ meets Y in infinitely many points.

Proof. If every neighborhood of  meets Y in infinitely many points, then surely every neighborhood meets
Y in a point other than Y. Therefore, x 1s a limit point of Y.

Conversely, suppose x is a limit point of Y. Let U be a neighborhood of z. T must show that U meets
Y in infinitely many points.

Suppose U meets YV in only finitely many points. Then U meets Y — {«} in only finitely many points
z1,...,%n. (Note that U must meet Y — {x} in at least one point, since # is a limit point of Y.)

Now X — {z1,...,&n} is open and contains #, so U N (X — {#1,...,2,}) is open and contains . But
in forming this set I've thrown out the points xi,...,z, where U meets Y, so it follows that U N (X —
{x1,...,2,}) does not meet Y at all! This contradicts the fact that every neighborhood of # must intersect
Y.

Hence, U intersects Y in infinitely many points. 0O
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6-21-1999
Continuous Functions

For a function f:IR — R, f is continuous at # = a if for every ¢ > 0, there is a § > 0 such that if
d>|e—a|l>0, then e>|f(x)— f(a)l

Interpreted in terms of intervals — 1.e. basic open sets in R — this says that for any interval I containing
f(a), there is an interval J containing a, such that f maps J into I.
This motivates the following definition.

Definition. Let f: X — Y be a function, where X and Y are topological spaces. f is continuous at € X
if for every neighborhood V of f(#), there is a neighborhood U of « such that f(U) C V.

\Y

X ® —» o f(X) f(U)

f is continuous (on X) if it is continuous at every point of X.

The definition I’ve given is often called the pointwise definition of continuity. I'll give the equivalent
global form shortly.

Example. Any function f : R" — R™ that is continuous in the e-§ sense is continuous according to the
definition above. 0O

Example. Let X be a topological space. The identity function id : X — X is continuous.
To prove this, let + € X and let V' be a neighborhood of id(#) = #. Then V is a neighborhood of x
which satisfies id(V) C V. D

Example. Let X and Y be topological spaces, and let y € Y. The constant function ¢, : X — Y defined by
¢y(x) = y for all # € X is continuous.

To see this, suppose z € X and V is a neighborhood of ¢,(2) = y. X is a neighborhood of #, and
cy(X) = {y} C V. Therefore, ¢, is continuous at z. [

Example. Let Y be a subspace of the topological space X. The inclusion map i : Y < X given by i(y) = v
for all y € Y is continuous.

To prove this, let y € Y and let V' be a neighborhood of i(y) = y in X. Since V is open in X, VNY is
openin Y, and y € VNY. Clearly, {(VNY) C V,s0 VNY is a neighborhood of y in ¥ which ¢ maps into
V. Therefore, C is continuous at y. 0O

Example. The composite of continuous functions is continuous.

To be specific, suppose that X, Y, and Z are topological spaces, f : X — Y is continuous at z, and
g :Y — 7 is continuous at f(x). Then g - f: X — Z is continuous at x.

Thus, if f is continuous on X and ¢ is continuous on Y, then ¢ - f is continuous on X.

1



To prove the result at a point, assume that f: X — Y is continuous at ¢ and g : Y — Z is continuous
at f(x). Let W be a neighborhood of ¢(f(#)) in Z. By continuity of g at f(z), there is a neighborhood V
of f(x) such that ¢(V) C W.

By continuity of f at z, there is a neighborhood U of @ such that f(U) C V.

N
w
fv)
IO
® 5

Then g(f(U)) C g(V) C W. so g- f is continuous at z. 0O

Example. The restriction of a continuous function is continuous.

Specifically, let f : X — Y be a continuous function between topological spaces. Let U be a subspace
of X. Then f|U : U =Y defined by f|U(x) = f(z) for all # € U is continuous.

The result is immediate from the last two examples, since f|U = f -4, where i : U < X is the inclusion
map, and the composite of continuous functions is continuous. 0O

Example. If f : X — Y is a continuous function between topological spaces and Y is a subspace of Z, then
the function f : X — Z defined by f(x) = f(x) for all # € X is continuous. (f is said to be obtained by
expanding the range.)

This result 1s also easy, since f

=14 f, where i : Y < Z is the inclusion map and the composite of
continuous functions is continuous. 0

Next, I'll show that the pointwise definition of continuity is equivalent to the following global definition.

Proposition. Let f: X — Y be a function between topological spaces. f is continuous if and only if for
every open set V in Y, f=1(V) is open in X.

This is expressed more concisely by saying that the inverse image of an open set is open.

Proof. Suppose f is continuous, and let V' be open in Y. I want to show that f=1(V) is open in X.

Let € f~1(V). I want to find a neighborhood of z contained in f=1(V). Now f(z) € V, so by
continuity, I can find a neighborhood U of z such that f(U) C V. Then U C f~1(V), and U is the desired
neighborhood of z. This proves that f=1(V) is open.

Conversely, suppose that the inverse image of an open set is open. I want to show that f is continuous.
Let # € X, and let V' be a neighborhood of f(z). T want to find a neighborhood U of # such that f(U) C V.

By assumption, f~1(V) is open. Since f(z) € V, it follows that € f=1(V). Moreover, f(f~*(V)) C V.
Thus, f=1(V) is a neighborhood of x that f maps into V. Hence, f is continuous. 0

I believe that the name of the next result is due to James R. Munkres; it’s an enormously useful tool
for constructing continuous functions.

Lemma. (The Pasting Lemma) Let X and Y be topological spaces, and let U and V' be open sets in X
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such that X = U U V. Suppose that f: U — Y and g : V — Y are continuous, and
flz) =g(x) forall zeUNV.
Then the function & : X — Y defined by

flz) ifzeU
hz) = {g(x) ifzeV

1s continuous.
Proof. Let W be open in Y. Then
h=H (W) = f7HW) U g™ (W),

By continuity, f~1(W) is open in U; since U is open in X, f~1(W) is open in X.

By continuity, ¢g=!(W) is open in V; since V is open in X, ¢g=}(W) is open in X.

Therefore, f=1(W) U g~} (W) is open in X, so h™1(W) is open in X. By the preceding result, A is
continuous.

An analogous result holds if U and V are closed; the proof follows from the next result, which says that
you can also express continuity in terms of closed sets.

Proposition. Let f : X — Y be a function between topological spaces. The following statements are
equivalent:

1. f is continuous.

2. Forall U C X, f(U) C f(U).

3. The inverse image of a closed set is closed.

Proof. (1 = 2) Suppose f is continuous, and let U/ C X. Since U = U UU’, T have
FO)=fuuu’) = fUu)u fU).

Clearly, f(U) C f(U); I need to show that f(U') C f(U).

Let 2 be a limit point of U, and let V' be a neighborhood of f(z). T must show that V intersects f(U).
Since f~1(V) is a neighborhood of  and z is a limit point of U, there is a y € f~1(V)NU such that y # .
Then

) e f(F7HV)NU) C RV NFU) C VN FU).

This proves that V intersects f(U), so f(x) € f(U). Thus, f(U') C f(U), and so f(U)U f(U") C f(U).
Therefore, f(U) C f(U).

(2 = 3) Suppose that for all U C X, f(U) C f(U). I want to show that the inverse image of a closed set is
closed.
Let C be closed in Y. I want to show that f=1(C) is closed in X. Now

1 (F7O) cTU ) cT=c,

where the first inclusion follows from statement 2, the second inclusion follows from f (f_l(C')) C C, and
the last equality follows from the fact that C' is closed.
Thus, f~1(C) C f~1(C). But clearly, f~1(C) C f~1(C), so f~1(C) = f~1(C), and f~1(C) is closed.

(3 = 1) Suppose the inverse image of a closed set is closed. T want to show that f is continuous.
Let V be an open subset of Y. Then Y — V is closed, so by assumption f~1(Y — V) is closed. But

A =V)=f') = f1(V) =X = f7H(V).
Therefore, X — f=1(V) is closed, so f=1(V) is open. Therefore, f is continuous. [
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6-22-1999
Homeomorphisms

Definition. Let X and Y be topological spaces, and let f: X — Y. fis a homeomorphismif f is bijective,
and both f and f~! are continuous.
If there is a homeomorphism between topological spaces X and Y, then X and Y are homeomorphic.

Homeomorphic spaces are “the same” as topological spaces, in the same way that isomorphic groups
are “the same” as groups. The big problem in topology — which is much too difficult to deal with in this
generality — 1is to classify all spaces up to homeomorphism.

The following properties are obvious:

1. The identity map of a topological space is a homeomorphism.
2. The composite of homeomorphisms is a homeomorphism.

3. The inverse of a homeomorphism is a homeomorphism.

Example. Define f : R — R by
flz) =+ k,

where k£ € R. Then f is a homeomorphism.
It’s clear that f is continuous, since the inverse image of an open interval is an open interval — it’s just
a translate of the original interval. Then the inverse function f=! : R — R given by f~!(z) =  — k is also
continuous, since it can be written as f~1(x) = « + (—k).
Define g : R — R by
g(z) = ra,

where r € R and r # 0. Then g is a homeomorphism.
Again, it’s clear that ¢ is continuous, since the inverse image of an open interval is an open interval.
Replacing r with — shows that the inverse ¢~' : R — IR is continuous.
r
From these facts, it follows that any two nonempty open intervals in R (with the subspace topologies)

are homeomorphic. For if (a, b) is a nonempty open interval, then:

1. f(x) = # — a maps (a,b) to (0,b— a).

2. g(x) = bL maps (0,6 —a) to (0,1).

f and ¢ are homeomorphisms, by observations above. This proves that every open interval is homeo-
morphic to (0,1). But homeomorphism is transitive (since the composite of homeomorphisms is a homeo-
morphism), so any two nonempty open intervals are homeomorphic.

The function tan : —g, g) — IR is continuous, and its inverse arctan : R — (—g, g) is continuous.
TN . . . . R T
Therefore, (—5, 5) 1s homeomorphic to R. But every nonempty open interval 1s homeomorphic to (—5, 5) ,

so 1t follows that every nonempty open interval 1s homeomorphic to R. 0O

Definition. Let f : X — Y be a function between topological spaces. f is open if f takes open sets to open
sets. Likewise, f is closed if f takes closed sets to closed sets.

Lemma. Homeomorphisms are open maps and closed maps.

Proof. I'll do the open map case; the closed map case is similar.

1



Let f: X =Y be a homeomorphism, and let U be open in X. T want to show that f(U) is open in Y.
Since f : X — Y is a homeomorphism, it has a continuous inverse f=1. By continuity, (f~1)=}(U) is

open in Y. But (f~1H)=Y(U) = f(U), so f(U) is open in Y. O

Example. You can tell that two spaces are not homeomorphic if you can find a topological property that one
has that the other does not. In a sense, this is a circular observation: A fopological property is a property
preserved by homeomorphisms. So this observation becomes useful as you develop a repertoire of properties
that are preserved by homeomorphisms.

For example, the circle

51:{(1‘,y)ER2‘x2+y2:1}

with the subspace topology is not homeomorphic to the interval (0, 1) in R with the subspace topology. One
reason: Removing a point from (0, 1) leaves a disjoint union of two sets open in (0, 1), but removing a point
from S' does not leave a disjoint union of two sets open in S'.

Take for granted that the assertion about S is true. To show that this difference implies that the
spaces aren’t homeomorphic, suppose f : (0,1) — S* is a homeomorphism. Take = € (0, 1), so (0,1) — {z} =
(0,2) U (#,1), a disjoint union of open subsets of (0, 1).

Since f is a homemorphism, f[(0, )] and f[(z,1)] are disjoint open subsets of S*, and St — {f(z)} =
J1(0,2)] U f[(2,1)]. This contradicts my claim about S', so S and (0, 1) aren’t homeomorphic.

The assertion about S' will follow from results I'll prove later about connected set. 0O

Example. Removing a point from R leaves a disjoint union of two open sets. The same is not true when a
point is removed from R" for n > 2. Therefore, R is not homeomorphic to R" for n > 2.

The fact that R™ and R" aren’t homeomorphic for m # n is a fact called invariance of domain; the
best proofs use methods from algebraic topology. 0O

The standard informal example of homeomorphic spaces 1s that a coffee cup is homeomorphic to a
doughnut. Popular accounts often say that two spaces are homeomorphic if you can imagine deforming one
into the other with cutting, tearing, or breaking.

O
=D

One of these things is not ékthe others.

In the picture above, the three solid objects are homeomorphic; the object shaped like a ring 1s not
homeomorphic to the others. This kind of assertion (like the one about the coffee cup and the doughnut)
must be taken in the right spirit. No one would set out to prove the assertion by writing down specific
homeomorphisms!

The notion of homeomorphism does not include the idea of “deforming” one thing into another. In the
first place, a deformation requires a “big space” inside of which the deformation takes place. In the second
place, a deformation is something which takes places in time. Neither of these notions is part of the definition

2



of a homeomorphism. The notion of isotopy comes closer to the idea of a continuous deformation of one
space into another.

Homeomorphism is also independent of the embedding of a space in a larger space. For example, the
trefoil knot on the left and the circle on the right are homeomorphic as topological spaces:

In order to get a hold of the obvious difference that exists between the two, you need to consider the
complements of these sets in R, In this case, the ambient space B? is responsible for the “knottedness” of
the trefoil.
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6-23-1999
The Product Topology

If X and Y are topological spaces, the product topology on X x Y 1is the topology generated by the
basis consisting of all sets U x V', where U is open in X and V is open in Y. This may be extended to
a product of finitely many spaces in the obvious fashion. How do you define a topology on a product of
infinitely many spaces?

Definition. Let {X;}4ca be a family of topological spaces. The box topology on [].. 4, X, is the topology

generated by the basis consisting of sets [],. 4 Ua, where U, is open in X,.

aEA

Let B be the collection of sets HaEA U, , where U, 1s open in X,. I want to show that B is a basis.

Let (%a)aca € [[4en Xa- Since X, is open in X, [] X, is an element of B, and it obviously contains
(xa)aEA~

Let (24)aca € (HaEA Us M Taca Va), where U, and V, are open in X, for each a. Then U, x V, is
open in Xg, 80 [[,c4(Ua NVy) is an element of B. Moreover,

aEA

(a)aea € [[(UanVa) C (H v.n]] va) :

a€A agA agA
This proves that B is a basis.
There is another way to generate a topology on a product. I'll need some preliminary results.
Lemma. If {7,}sca is a family of topologies on a set X, then 7 = ﬂaEA T4 18 a topology on X.

Proof. Since 0§, X € 7, for all a, it follows that #, X € 7.

If {U;}icr is a collection of open sets in T, then for each a, I have U; € T, for all i. Since 7, is a
topology, Uie[ U; € T, for all a. Hence, UiEI U; € 7. Thus, T 1s closed under arbitrary unions.

If {Uy,...,U,} is a collection of open sets in T, then for each a, T have U; € T, foralli=1,... n. Since
7. is a topology, (i, U; € T, for all a. Hence, (i, U; € T. Thus, T is closed under finite intersections.

Therefore, T is a topology. 0O

Definition. Let {X,},ca be a family of topological spaces, let X be a set, and let {f, : X — X, | a € A}
be a family of functions. The topology induced on X by the family {f,}.ca is the smallest topology
on X which makes all the f;’s continuous.

There is at least one topology on X which makes all the f,’s continuous, namely the discrete topology.
If T intersect all the topologies on X which make the f,’s continuous, T get a topology (by the last lemma)
which makes all the f,’s continuous. It is clearly the smallest such topology, in the sense that it’s contained
in every topology which makes all the f,’s continuous.

While this construction accomplishes the goal of making the f,’s continuous, it would be nice to have
a more concrete description of the open sets.

Lemma. Let {X,}.ca be a family of topological spaces, let X be a set, and let {f, : X — X, | a € A} be
a family of functions. The topology induced on X by the f,’s is the same as the topology generated by the
subbasis

{0 0°E" X, aea}.

Proof. First, this collection is a subbasis: If z € X, fix a € A and consider f,(#) € X,. Then X, is open in
X, and fa_l(Xa) 1s an element of the collection which contains z.
Now let § be the topology induced on X by the f,’s and let 7 be the topology generated by the subbasis.
If U is open in X, and f;}(U) is an element of the subbasis, then f;}(U) is open in 7. Since U and
fa were arbitrary, this shows that 7 makes all the f;’s continuous. But § is the smallest topology which
makes the f,’s continuous. Hence, § C 7.



Conversely, let U be open in X, and let f7!(U) be an element of the subbasis. I claim that f;1(U) is
an open set in §. For if not, then f; 1s not continuous, since the inverse image under f, of the open set U
isn’t open in X.

Now I know that all the elements of the subbasis are contained in §. But § is a topology, so arbitrary
unions of finite intersections of elements of the subbasis are also contained in §. Therefore, 7 C S.

Hence, the two topologies are the same. 0O

Here’s an important property of this topology.

Proposition. Let {X,},ca be a family of topological spaces, let X be a set, and let {f, : X — X, | a € A}
be a family of functions. Give X the topology induced on X by the f,’s, and let W be a topological space.
A function g : W — X 1s continuous if and only if f, - ¢ : W — X is continuous for all a.

Proof. If ¢ is continuous, then f,-g : W — X, is continuous for all @, since f,-g is a composite of continuous
maps.

Conversely, suppose f, - ¢ : W — X, is continuous for all a. I want to show that ¢ is continuous. Let
U be open in X; I must show that ¢g=*(U) is open in W.

To begin with, take U to be a subbasic open set. Thus, suppose U = f7'(V), where V is open in X,.
Then

g O) =g TN V)) = (e g)THV).

Since f, - ¢ is continuous, (f, - ¢)~1(V) is open in W.
For a general open set U, simply write U as a union of a finite intersections of subbasic open sets, then
use the fact that g~ (—) commutes with unions and intersections. O

Now specialize to the case where X = [] X,, and give X the topology induced by the family of

projection maps

aEA

{ﬂ'b:HXa—>Xb|b€A}.

aEA

The topology generated in this way is called the product topology; it is the smallest topology which
makes all the projection maps continuous.

Notice that I’ve already used the name “product topology” in the case of a product of finitely many
spaces to mean the topology generated by the basis consisting of products of open sets from the factors. In
fact, if there are finitely many factors, these two topologies are the same.

To see this, 1t’s helpful to get an explicit description for the basic open sets in the product topology. A
typical basis element has the form

o U) Na () N onag H(U),
where U; is open in X,,. Note that 77 1(U) N7w (V) = 771 (U N V), so I can combine terms with the same

index. Thus, I may as well assume that ay, as, ..., a, are distinct.
In this case, the set above 1s

H Vi, where V, =

{Xa ifa#ay,aq,...,a,
aEA

U, fa=a;, 1=1,2,...,n "~

Thus, a typical basis element for the product topology is a product of sets open in the factors, where all
but finitely many of these sets are the whole spaces. In the case where there are only finitely many factors,
this is simply products of sets open in the factors — the same as the product topology I defined earlier.

The next result says that a function into a product is continuous if and only if its factors are continuous.

Corollary. Let {X,}qca be a family of topological spaces, and give []
be a topological space, and let ¢ : W — []
continuous for all . O

acA Xa the product topology. Let W

wcA Xa be a function. g is continuous if and only if 7, - g is



Example. Define f: 2 — B> by
f(t) = (cost,sint,t).

In this case, the projections are
(my - f)(t) = cost, (m2-f)() =sint, (ms-f){t)=1.

Since these are continuous as functions R — R it follows from the corollary that f is continuous as well.

A final note: A basis element in the box topology is a product of sets open in the factors. Since this is
more general than the condition for basis elements of the product topology, it follows that the box topology
s finer than the product topology.
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7-17-1999
Metric Spaces

Definition. If X is a set, a metric on X is a function d : X x X — R such that:
1. d(z,y) > 0 for all #,y € X; d(z,y) = 0 if and only if z = y.
2. d(x,y) = d(y, ) for all z,y € X.
3. (Triangle Inequality) For all z,y,z € X,
d(z,y) +d(y, z) < d(z,z).
Lemma. If X is a set with a metric, the collection of open balls
Blase) ={y € X | d(z,y) < e}
is a basis.

Proof. If z € X, then x € B(z;1).
Suppose B(#1;€1) and B(xa;€3) are open balls. Let « € B(z1;€1) N B(wa;€).
Let

e =min(e; — d(x, 21), €2 — d(2, 22)).
Then » € B(x;¢) C B(xy1;¢1) N B(xa;e2). Therefore, the collection of open balls forms a basis. O

Definition. If X is a set with a metric, the metric topology on X is the topology generated by the basis
consisting of open balls B(z;¢), where € X and € > 0. A metric space consists of a set X together with
a metric d, where X is given the metric topology induced by d.

Remark. In generating a metric topology, it suffices to consider balls of rational radius.

Example. The usual metric on R" is defined by

n 1/2
d(z,y) = (Z(l‘z - yi)z) :

where & = (21, ..., 2,) and y = (y1,. .., Yn).

It is clear that d(z,y) > 0 and that d(z,z) =0 forallz,y € R". If & = (z1,...,x,) and y = (y1,. .-, Yn)
and d(x,y) = 0, then

(Z(zl - yi)z) =0, so Z(l‘z — )" =0.
i=1 i=1

This is only possible if (z; — y;)? = 0 for all i, and this in turn implies that x; = y; for all i. Therefore,
r=uy.

It is obvious that d(z,y) = d(y, z) for all z,y € R".

Note that d(x,y) = |& — y|, where | - | is the standard norm which gives the length of a vector. Now
|u|? = w - u, where - denotes the dot product in R™. By standard properties of the dot product,
lu+ v =(u+v) - (udv)=u-u+2u-v+v-v=|u?+2u-v+ v <|ul*+2ullv]|+ [v]* = (Ju| + |v])*

(The inequality follows from the Schwarz inequality |u - v| < |u||v|.) Then

lu+v| < |ul+ [v].

1



Now let u =2 —y and v =y — z. Then
lo —z| <le—yl+1ly—2l, or d(x,z) <d(w,y)+d(y,2).

Here is a proof of the Schwarz inequality in case you ahven’t seen it. Given u = (uy,...,u,),v =
(v1,...,v,) € R" I want to show that |u-v| < |u||v]; I'll show that |u - v|? < |u|?|v|?, and the result will
follow by taking square roots.

Set A= |ul?, C'=|v]?, and B = |u-v|. I want to show that B? < AC.

If A=0, then v =0, and the result is obvious. Assume then that A > 0. For all z € R,

n

Z(ulx + vi)z >0

i=1

n n n
xZZu?+2xZuivi+Zv? >0
i=1 i=1 i=1

t?A422B+C >0

B
Take x = T The last inequality yields

B? B
— A-2—"B >
yE 1 +C>0
BZ
——4C>0
A+ -

AC > C

This completes the proof of the Schwarz inequality.
Thus, the standard metric on R" satisfies the axioms for a metric. Obviously, the metric topology is
just the standard topology. 0O

Lemma. (Comparison Lemma for Metric Topologies) Let d and d’ be metrics on X inducing topologies
T and 7'. T is finer than 77 if and only if for all # € X and € > 0, there is a § > 0 such that Bg(x;6) C
Ba (x;€).

Proof. Suppose first that 7/ C 7. Let « € X, and let € > 0. Bg/(x;€) is open in 7', so it’s open in 7. Since
the open d-balls form a basis for 7, there is an open ball Bg(«;d) such that

x € By(x;0) C By (z;€).

Conversely, suppose that for all # € X and € > 0, there is a § > 0 such that Bg(#;d) C By (x;¢€). T want

to show that 7/ C T.
Let U be open in 7'. T want to show that it’s open in 7. Let # € U. Since the d’-balls form a basis for

7', there is an € > 0 such that
z € By(x;¢) CU.

By assumption, there is a § > 0 such that
x € By(x;0) C By (z;€).

Therefore, # € By(x;6) C U.
Now Bgy(#;d) is a T-open set containing « and contained in U. Since # € U was arbitrary, U is open in

T. Therefore, 7' C 7. O



The standard metric on R" is unbounded, in the sense that you can find pairs of points which are
arbitrarily far apart. However, you can always replace a metric with a bounded metric which gives the same
topology.

Definition. If (X, d) is a metric space and Y C X, then Y is bounded if there is an M € R such that
dlz,y) <M forall zyeY.

Lemma. Let X be a metric space with metric d. Define

d(z,y) = min(d(z,y), 1).
1. d is a metric.

2. d and d induce the same topology on X.

Proof. 1. Let #,y € X. Since d(z,y) > 0, d(z,y) = min(d(z,y),1) > 0, and

d(z,x) = min(d(x, z),1) = min(0, 1) = 0.

If d(z, y) = min(d(z,y),1) = 0, then d(x,y) = 0, so # = y. This shows that the first metric axiom holds.

Since d(z,y) = min(d(x,y), 1) = min(d(y, ), 1) = d(y, x), the second metric axiom holds.

To verify the third axiom, take #,y,z € X. Begin by noting that if either d(z,y) > 1 or d(y,2) > 1,
then d(z,y) = 1 or d(y, 2) = 1. Therefore,

d(z,y) +d(y,z) >1>d(x, 2).
Assume that d(z,y) < 1 and d(y, z) < 1. Then
d(z,y) +d(y,2) =d(x,y) + d(y, 2) > d(x,2) > d(z, 2).

This verifies the third axiom, so d is a metric.

2. Observe that for 0 < e < 1, By(x;¢) = Bg(x;¢). The idea is to apply the Comparison Lemma, shrinking
balls if necessary to make their radii less than 1.
Let x € X and let € > 0.
If € <1, then « € By(x;¢) = By(x;¢).
If e > 1, then
x € By(x;0.5) = B(x;0.5) C By(x;e).

Therefore, the d-topology is finer than the d’-topology. The other inclusion follows by simply swapping
the d’s and d’s. O

It follows that boundedness 1s not a topological notion, since every subset is bounded in the standard
bounded metric.

Example. The square metric on R" is given by

p($ay) = max(|x1 - y1|a ey |l‘n - yn|)

Relative to this metric, B(x;¢€) is an n-cube centered at x with sides of length 2e.
First, I'll show that p is a metric. Let & = (z1,...,2,), ¥y = (Y1,...,¥n) € R".

Clearly, p(z,y) > 0 and p(z,z) = 0. If p(x,y) = 0, then |z; — y;| = 0 for all ¢, so z = y.
It’s also obvious that p(z,y) = p(y, ).



If z,y,z € R", then for each j,
ple,y) +py, 2) = miax{|xi — i} —I—miax{|yi — |}y > ey =yl + v — 2] > ey — 2]

Therefore,
ple,y) + ply, ) > max{le; — 2]} = plz, 2).

Thus, p 18 a metric. 0O

Lemma. p induces the same topology on R" as the standard metric.

Proof. The idea of the proof is depicted below.

Note that
n 1/2
1/2
plar,y) = max{le: — yil} = lej =yl = (27— ;)?) " < (Z(xj —w)z) = d(x,y),
i=1

n 1/2
2 27\ /2 2\ 1/2
da,y) = | Do —w)? ] < (nomax{(@i—w))) = Va (o, 9)) = Vap(e, ).
i=1
These inequalities may be used to get p-balls contained in d-balls and d-balls contained in p-balls; by
the Comparison Lemma, this shows that the topologies are the same. 0O
Lemma. The square metric induces the product topology on R". O

Proof. If = (z1,...,2,) € R", then
B(z;e)=(x1—e,x14+€) x (a2 — €, 21+ €) X -+ X (2 — €, + €).

The set on the right is open in the product topology. Since the square metric-basic sets are open in the
product topology, any square metric-open set 1s open in the product topology.
Conversely, let

U= (al,bl) X (az,bz) X ... X (an,bn).

It is easy to check that sets of this form comprise a basis for the product topology.
Let ¢ = (21,...,2,) € U, 80 a; < &; < b; for all 4. Define

e = min{z; — a;,b; — a;}.
1

Then
(x; — e, i+ €) C (a;,b;) forall <.
So
B(z;¢) = H(xZ —exi+¢€) C H(ai,bi) =U.

K3
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It follows that U is open in the square metric topology. Since the product topology basic sets are open
in the square metric topology, any product topology open set is open in the square metric topology. 0

Lemma. Metric topologies are Hausdorff.

Proof. Let (X, d) be a metric space, and let  and y be distinct points of X. Let € = d(x, y). Then B (x; %)

and B (y; 5) are disjoint open sets in the metric topology which contain = and y, respectively. 0O

Lemma. If (X, d), (Y, d’') are metric spaces, the e-d definition of continuity is valid. Thatis,amap f: X =V
is continuous at # € X if and only if for every € > 0, there is a ¢ > 0 such that if § > d(«,y) implies that

¢>d'(f(z), [(y))-

Proof. First, suppose that f: X — Y is continuous at # € X. Let € > 0, and consider the ball B(f(x);e€).
Since this is an open set containing f(x), continuity implies that there is a § > 0 such that

f(B(x;6)) C B(f(x);e).

Now consider the conclusion to be established. Suppose y € X satisfies § > d(x,y). Then y € B(z;4d),
so f(y) € f(B(x;9)). Therefore, f(y) € B(f(x);€), so € > d(f(x), f(y)).

Conversely, suppose that for every ¢ > 0, there is a § > 0 such that if § > d(»,y) implies that
e>d'(f(z), f(y)). T want to show that f is continuous.

Let # € X, and let V' be an open set in Y containing f(z). T want to find a neighborhood U of  such
that f(U) C V.

Since the e-balls form a basis for the metric topology, I may find an € > 0 such that f(z) € B(f(z),e C V.
By assumption, there is a § > 0 such that if 6 > d(#, y) implies that € > d'(f(x), f(y)).

Now consider the ball B(z;d). This is an open set containing . If y € B(x;d), then ¢ > d(z,y) > 0.
Therefore, € > d'(f(z), f(y)), so f(y) € B(f(x);¢). This shows that f(B(x;d)) C B(f(x);¢) C V,s0 fis

continuous. 0O

Definition. If X is a set, a sequence in X is a function z : ZT — X.
It’s customary to write #, for z(n) in this situation, and to abuse terminology by referring to the
collection {x,} as “the sequence”.

Definition. Let X be a topological space. A sequence {z,} converges to a point 2 € X if for every
neighborhood U of , there is an integer N such that z, € U for all n > N.
zn, — « means that {z, } converges to x.

Lemma. Let X be a Hausdorff space. Convergent sequences converge to unique points.

Proof. Let ©, — = and z, — y. I want to show that z = y.

Suppose # # y. Since X is Hausdorff, I can find disjoint neighborhoods U of # and V of y. Since
zn, — x, I can find an integer M such that n > M implies z, € U. Since z, — y, I can find an integer N
such that n > N implies z,, € V. Therefore, for n > max(M, N), I have x,, € U NV = {. This is nonsense,
soxz=y. 0O

In particular, limits of sequences are unique in metric spaces.

Lemma. (The Sequence Lemma) Let X be a topological space, let Y C X, and let x € X. If there is a
sequence {z,} with z, € Y for all n and «,, — «, then & € Y. The converse is true if X is a metric space.

Proof. Suppose that there is a sequence {x,} with z, € Y for all n and 2, — 2. Let U be a neighborhood
of . Find an integer N such that z, € U for all n > N. Obviously, U meets Y. This proves that x € Y.

. . — 1
Conversely, suppose that X is a metric space and 2 € Y. For each n € Z*, the ball B (l‘; —) meets Y,
n

1
so I may choose z, € B (l‘; —) NY. Iclaim that =, — .
n

5



Let U be a neighborhood of z. Since the open balls form a basis for the metric topology, I may find
1 1
¢ > 0 such that B(z;¢) C U; then I may find N € Z¥ such that — < ¢, so B (l‘; N) C B(z;e).
n

1 1 1 1
Foralln > N, have — < —,soz, € Blz;—|. Since B|z;— | CU, I have z, € U for alln > N.
- n N N N -

This proves that z, — z. 0O

Theorem. Let X be a metric space, let Y be a topological space, and let f : X — Y. f is continuous if and
only if #, — # in X implies that f(z,) — f(z) in Y.

More succinctly, continuous functions carry convergent sequences to convergent sequences.

Proof. Suppose f is continuous, and suppose z, = # in X. Let V be a neighborhood of f(z) in Y. By
continuity, there is a neighborhood U of # such that f(U) C V.

Since x,, — x, there is an integer N such that z, € U for all n > N. Then f(z,) € f(U) C V for all
n > N. This proves that f(z,) = f(z).

Conversely, suppose that z, — @ in X implies that f(x,) = f(x) in Y. To show f is continuous, it will
suffice to show that for all A C X, I have f(A) C f(A).

Thus, take # € clA. T want to show that f(z) € m

Now X is a metric space and & € ¢l A, so by the Sequence Lemma, there is a sequence of points {z,} C A
with 2, — . By hypothesis, this implies that f(x,) — f(x). Since {f(zn)} is a sequence in f(A), the
Sequence Lemma implies that f(x) € f(A). Therefore, f is continuous. 0O

Definition. Let {f, : X — Y} be a sequence of functions from X to Y, where Y is a metric space. {f,}
converges uniformly to a function f: X — Y if for every € > 0, there is an integer N such that

d(fo(z), f(x)) <e for n>N and z€X.

Theorem. Let {f, : X — Y} be a sequence of continuous functions from X to Y, where Y is a metric space.
If {f.} converges uniformly to f: X — Y, then f is continuous. 0O

This is often expressed by saying that a uniform limit of continuous functions is continuous.

Proof. Let f(a) € Y and let B(f(a);¢) be a neighborhood of f(a). T want to find a neighborhood U of «
such that f(U) C B(f(a);e).

First, uniform continuity implies that there is an integer N such that
d(fa(e), f@)) < 5 for n>N, weX, ()

In particular,

d(fv(a). (@) < 5.

fn is continuous, so there is a neighborhood U of a such that fy(U) C B (fN(a), é) Thus,
d(fx (@), fn(a)) < % for all z € U.
Moreover, restricting (*) to n = N and « € U, I have
d(fn(2), f(z)) < % for all z € U.
Therefore, the triangle inequality implies that
A(7(@), F(a) < (e (2). (@) +d (), (@) +d(Tv(a). f(@) < G+ 5+ 5 =



forallz € U.
This proves that f is continuous. 0O

Example. For n € Z% let f,, : R — R be defined by

x
ne+1

(@) =

For fixed z, lim

= 0. Thus, this sequence of functions converges pointwise to the constant
n—oco nx + 1

function 0.
The picture below shows the graphs of f, for n =1,2,3,4,5 on the interval 0 < z < 1.

I will show that the convergence is uniform on the interval 0 < « < 1. Thus, choose ¢ > 0; I must find
an integer N such that if n > N then

[fn(2)] <e.
1

1
Since f},(¥) = ————5, fn» is an increasing function; f,(1) = ETE so 1t follows that
n

(nz+1)

1

1
Now choose N such that Vol < e. Thenifn > N|

1

n — <
(@l < 7 < §7

< €.

This proves that f, converges uniformly to O on 0 <2z <1. 0O

Example. For n € Z% let f,, : R — R be defined by

1

fn(l‘) - ne+1

For fixed « # 0, lim

n—co N 4+
function 0 for  # 0. It converges pointwise to 1 for z = 0.

= 0. Thus, this sequence of functions converges pointwise to the constant

7



The picture below shows the graphs of f, for n =1,2,3,4,5 on the interval 0 < z < 1.

I will show that the convergence is not uniform on the interval 0 < & < 1. In fact, I will show that there
is no integer N such that if n > N then

1
(@) < 5.

- 1 1 . o
To see this, it suffices to note that f, (—) = 5,80 there will always be a point in 0 < < 1 where the
n

function exceeds —.

Therefore, {f,} converges pointwise, but not uniformly, to the zero function. 0O
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7-5-1999
Quotient Spaces
You may have encountered quotient groups or quotient rings in an algebra course. In those situa-
tions, the idea was to turn a set of cosets of a subgroup or an ideal into a group or a ring.
A set of cosets is a partition of a group or a ring. In the topological setting, a quotient space arises as

a topology on a set of partition elements. You can use this to construct new topological spaces by “gluing”
and “pasting”.

If X and Y are topological spaces, a function f : X — VY is continuous if and only if when V' is open in
Y, f~lis openin X.

Definition. Let f: X — Y, where X and Y are topological spaces. f is a quotient map if:
1. f is surjective.
2. V is open in Y if and only if f=(V) is open in X.
Remarks.
1. Quotient maps are continuous.
2. If f: X > Y is a homeomorphism, then f is a quotient map.

Since f is a homeomorphism, it’s continuous; hence, if V' is open in Y, then f=(V) is open in X.
Conversely, suppose V C Y and f~(V) is open in X. Since f~! is continuous,

V=F( V) = (P T (V) is open.

3. The composite of two quotient maps is a quotient map.

In the definition of a quotient map, there are topologies on both X and Y. More often, you start with
a topological space and a partition of the space, then try to topologize the set of partition elements so that
the associated function (carrying an element of the space to the partition element containing it) is a quotient
map.

Lemma. Let X be a topological space, let Y be a set, and let f : X — Y be a surjection. Define a collection
of subsets of Y by requiring that V' € 7 if and only if f~1(V) is open in X. Then 7 is a topology on Y.

T is called the quotient topology on Y.

Proof. f=1(f) =0 is open in X, so {} is open in Y. f~3(Y) = X is open in X, so Y is open in Y.
Suppose {V; }ier is a collection of subsets of Y such that f=1(V;) is open in X for all i € I. Now

~(Un)=uron

and J;¢; J=1(Vi) is open in X. Therefore, Uiy Vi is open in Y.
Finally, suppose V1, ...V, is a collection of subsets of Y such that f~!(V;) is openin X fori=1,...,n.

i (ﬂ w) = ﬂ S,

and (i, f~'(V;) is open in X. Therefore, ();_, V; is open in Y.
Therefore, T is a topology. 0O



Example. (Partition Topologies) Let X be a topological space, and let X* = {X,}sc4 be a partition of
X. Define f : X — X* by

fle) =X, if z€X,.

This makes sense, because every element of X lies in exactly one X, .

f 1s clearly surjective; the quotient topology on X* induced by f is called the partition topology.

In fact, all quotient topologies are partition topologies. For if X is a topological space and f: X — Y is
surjective, the collection of inverse images {f~!(y) | y € Y} forms a partition of X. The partition topology
induced by this partition i1s the same as the quotient topology induced by f.

In applications, you often want to “glue” parts of a space together to make a new space. In this case,
the partition elements are as follow. A point that isn’t being glued to anything else is in a partition element
by itself. Otherwise, a group of points that are being glued together form a partition element.

For example, take the interval [0, 1]. Partition [0, 1] by defining {0, 1} to be one partition element and
defining {z} to be a partition element for 0 < @ < 1. This has the effect of gluing the endpoints together;
the quotient space is homeomorphic to a circle.

glue the
endpoints

glue the
sides

Similarly, if you take a rectangle and glue two opposite sides together, you get a cylinder. In this case,
the partition elements consist of individual points not on the glued sides and pairs of corresponding points
on the sides being glued.

If you twist the rectangle before gluing the opposite sides, the resulting quotient space is a Mobius strip.
If you glue both pairs of opposite sides together with no twisting, you get a torus. 0O

Lemma. Let X and Y be topological spaces. If f : X — Y is continuous, open, and surjective, then f is a
quotient map.

Proof. If V is open in Y, then f~1(V) is open in X by continuity.
Suppose V C Y and f~1(V) is open in X. Since f is open, f(f~1(V)) is open; since f is surjective,
V = f(f~1(V)). Therefore, V is open.

Hence, f is a quotient map. 0O
In general, quotient maps do not need to be open.

Covering spaces provide important examples of quotient maps; they are fundamental objects in
algebraic topology.

Definition. Let p : £ — B be a continuous surjection. p is a covering map if every point # € B has
a neighborhood U such that p~1(U) is a disjoint union ][] U, of open sets and ply, : Uy, — U is a
homeomorphism for all a € A.

aEA

A neighborhood U which satisfies this condition is evenly covered.
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Thus, p~!(U) looks like a stack of pancakes, where each pancake is carried homeomorphically onto U

by p.

Lemma. Covering maps are open.

Proof. Let p: E — B be a covering map, and let U C E be open. I want to show that p(U) is open in B.

Take € U, so p(x) € p(U). I need to find a neighborhood V of p(x) contained in p(U). Let W be an
evenly covered neighborhood of p(x). Since p~!(W) is a disjoint union ]| W, of open sets homeomorphic
to W and since » € p~1(W), x must lie in one of the W,’s.

Thus, let W, be a neighborhood of x mapped homeomorphically onto W by p. Then W, N U is open,
p maps it homeomorphically onto p(W, N U), and p(x) € p(W, NU). I claim that p(W, N U) is open in B.

To see this, observe that plw, : W, — p(W,) = W is a homeomorphism, so the inverse p|;V1a W= W,
is continuous. Now W, NU is open in F, so it’s open in W,. Hence, (p|;V1a)_1(Wa NU) = p(W,NU) is open
in p(Wy). But p(W,) = W is open in B, so p(W, NU) is open in B.

I’ve found a neighborhood p(W, N U) of @ which is contained in p(U). Therefore, p(U) is open, and p
is an open map. 0O

aEA

Corollary. Covering maps are quotient maps. 0O

Example. The map ¢ : R — S! given by
e(t) = (cos(2mt), sin(2mt))

1s a covering map; it wraps the real line around the circle. Each open interval of length 1 in R is mapped
homeomorphically to the circle minus a point. 0O

Example. If X x Y is a product of topological spaces, the projection maps m; : X x Y — X and m» :
X XY — Y are open, continuous, and surjective. Therefore, they are quotient maps. 0O

The next result tells you how to construct a map out of a quotient space; it is analogous to the results
in algebra which tell you how to construct group maps out of quotient groups, or ring maps out of quotient
rings.

Definition. Let p: X — Y be a quotient map. A fiber of p is a set p~*(y) for y € Y.

Theorem. (Universal Property for Quotients) Let p: X — Y be a quotient map. Then any continuous
map f : X — Z which is constant on each fiber of p factors uniquely through p; that is, there is a unique

3



continuous map f :Y — Z such that fp =71

X

Y A

Proof. Let y € Y. Since f is constant on p~!(y), I may take any « € p~*(y) and define

By construction, fp = f. T have to show that f 1s continuous. R
Let U be open in Z. I need to show f=1(U) is open in Y. By definition of the quotient topology, f=1(U)

is open in Y if and only if p~! (f_l(U)) is open in X. But since fp = f,

which 1s open in X by continuity of f.

This proves that f 1s continuous.

To prove uniqueness, suppose that fl and fz are continuous maps Y — Z such that flp = f and
fzp = f. Then flp =f= fzp; since p is surjective, it is right-cancellable, so fl = fz. d

If you think of the quotient topology as “gluing” or identifying the elements of each fiber, the universal
property says that the quotient topology is the “smallest” way of accomplishing this “gluing”, in the sense
that any other map that accomplishes this “gluing” receives a map from the quotient space.

Corollary. Let f : X — Z be a continuous surjective map and suppose p : X — X* is the quotient map
obtained from the partition of X by the fibers {f~1(z) | z € Z}.

1. There is a continuous bijection f : X* — Z such that fp =71
2. f i1s a homeomorphism if and only if f is a quotient map.

Proof. 1. p is the function which sends € X to the partition element f=1(z) € X*, where z = f(z). fis
trivially constant on each fiber, so the Universal Property yields a continuous map f : X* — Z such that
fr=171.

To be explicit, consider a fiber f=1(z) € X*. Let € f~1(z). Then p(z) = f~1(z), so

FUE) =7 (o) = fx) ==

The function g : 7 — X~ given by g(2) = J~1(z) is obviously the inverse of f as a set map, so f is
bijective. Thus, f is a continuous bijection.

2. If f 1s a homeomorphism, then f = fp 1s a composite of quotient maps, so it’s a quotient map.
Conversely, suppose f is a quotient map. p is constant on each fiber of f, so the Universal Property
applied to the quotient map f yields a continuous map h : Z — X~ such that hf = p.
Now fhf = f. That 1s, fh makes the outer triangle below commute:

X




But the outer triangle clearly commutes if I replace j’?z with idz. By the uniqueness part of the Universal
Property applied to the quotient map f, it follows that fh =idz.
Likewise, hfp = p. In other words, Af makes the outer triangle below commute:

The outer triangle will commute if T replace hf with i1dx+. By the uniqueness part of the Universal
Property applied to the quotient map p, it follows that hf —idx-.

Therefore, h = f‘l. (In fact, h is the map g defined in the first part of the proof.)

Since f is a continuous bijection with a continuous inverse, it’s a homeomorphism. 0O

Corollary. Let f : X — Z be a continuous surjective map and suppose p : X — X is the quotient map
obtained from the partition of X by the fibers {f~1(z) | z € Z}. If Z is Hausdorff, then so is X*.

Proof. Suppose f~!(z1) and f~!(z2) are distinct elements of X*. Then z; # z2, so I may find disjoint
neighborhoods U; of z; and Us of z5 in Z.

Look at f‘l(Ul) and f‘l(Uz). These are open in X*, since f is continuous. Since U; and Us are
disjoint, f‘l(Ul) and f‘l(Uz) are disjoint.

Finally, f(f_l(zl)) = z1 € Uy shows that f=1(z) € f‘l(Ul), and likewise f~1(z2) € f‘l(Uz).

Thus, 1 have disjoint neighborhoods of f~=!(z1) and f~=!(z2) in X*, so X* is Hausdorff. 0O
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7-26-1999

Connected Spaces

Definition. A space is connected if it cannot be written as the disjoint union of two nonempty open sets.
A separation of a topological space X consists of two disjoint nonempty open sets U and V' such that

X=UUuUV.

Thus, a connected space 1s one that cannot be separated.

Example. If X is connected and Y is homeomorphic to X, then Y is connected. 0O

Example. A point is connected (considered as a subspace of an arbitrary topological space). [

Example. R is connected in the standard topology.

On the other hand, 7 is not connected when considered as a subspace of R. (The subspace topology is
the discrete topology in this case.)

More generally, a set with more than one point is not connected in the discrete topology. 0O

Example. If X = U UV is a separation of X, then U and V are both open and closed.

Conversely, if A is a subset of a topological space X, A # @, X, and A is both open and closed, then
X = AU (X — A) is a separation of X.

To put it another way, a space is connected if and only if there 1s no proper nontrivial subset which is
both open and closed.

For example, any (nontrivial) partition topology is not connected. [

Proposition. Let X = U UV be a separation of X. If Y C X is connected, then Y C U or Y C V.

Proof. Suppose on the contrary that Y NU # ) and YNV # @. Then Y NU and Y NV are nonempty open
subsets of V' whose union is V, contradicting the fact that ¥ is connected. 0O

If a space X is not connected, what are the biggest connected subspaces of X7

Lemma. Let {U,},ca be a collection of connected subsets of a topological space X. Suppose that ﬂaEA Ud #
0. Then U = J,e 4 Ua is connected.

Proof. Suppose on the contrary that U = V U W is a separation of U. Let z € ﬂaEA U,. Then z € V or
z € W; without loss of generality, suppose & € V.

For each a, the connected set U, is contained in either V or W, by the preceding result. But « € U, for
all a, so all the U,’s meet V. Therefore, U, C V for all a, and hence U C V.

This means that W = (, which contradicts the fact that V and W separated U.

Therefore, U is connected. 0O

Theorem. Let X be a topological space.
1. Every point & € X is contained in a unique maximal connected subset C, of X.

2. Co=Cyor CNCy =0



To say that ) is maximal means that C, is not properly contained in any other connected subset of

X.

Proof. 1. Let x € X. Consider the collection C of connected subsets of X which contain z. C is nonempty,
since {z} € C. Order C by inclusion. I'll use Zorn’s Lemma to show that C has maximal elements.

Let D be a chain in C. Then every U € D contains z, so V = | Jy;cp U is a union of connected sets with
a point in common. By the preceding result, V' is connected; since it contains # and contains every U € D,
it 1s an upper bound for D in C.

By Zorn’s Lemma, C has maximal elements.

Next, I'll show that C has a unique maximal element.

If U and V are maximal elements of ', then U UV is a connected set, since U and V' are connected
and have z in common. Thus, U UV is a connected set containing z, so it’s an element of C. Since U and
V' are maximal and are contained in U/ UV, this is only possible if U = V.

Note that if C, is the unique maximal element in C, any connected set containing C, would be a
connected set containing  — hence, an element of C containing the maximal element C;. Therefore, there
is no connected set which properly contains Cl,.

2. Suppose Cy NCy # 0. Let z € Cp N Cy. Then C, Uy is connected, since it’s the union of connected
sets having a point in common. Moreover, C; U Cy, contains the maximal sets C; and Cy. By part 1, this is
impossible unless C, = Cy. 0O

The maximal connected sets described by the theorem form a partition of X. They are called the
connected components of X. Here is another sense in which they are maximal.

Lemma. Let X be a topological space. Every connected subset of X is contained in a component of X.

Proof. Let U be a connected subset of X. U must intersect some component of X; suppose UNC # @), where
U i1s a component. Then U U C is a union of connected sets with nonempty intersection, so it’s connected.
Since C' C U U, and since (' is maximal, I must have C' = U U . Therefore, U C C. 0O

Theorem. The continuous image of a connected set 1s connected.

Proof. Let f: X — Y be continuous and surjective, and suppose X is connected. I want to show that Y is
connected.

Suppose on the contrary that Y = U]V is a separation of Y. Since U and V are open, f~1(U)
and f=1(V) are open; since U and V are disjoint, f~1(U) and f=1(V) are disjoint. Therefore, X =
YOI £71(V) is a separation, contradicting the fact that X is connected. 0O

The theorem will be useful once I have some connected spaces to play with.

I’'m working toward showing that the product of connected spaces is connected; the preliminaries are
interesting in their own right.

Lemma. Let X be a topological space, let Y C X, and let Y = A[] B be a partition of Y. A and B separate
Y if and only if neither A nor B contains an X-limit point of the other.

Proof. Suppose A and B separate Y. Then A and B are closed in Y| so
ANY =cly A= A.

Suppose # is an X-limit point of A, so x € A. If x € B, then € Y, s0 2 € ANY = A. But then
z € AN B, contradicting the fact that A and B are disjoint.

Therefore, B contains no X-limit points of A.

A similar argument shows that A contains to X-limit points of B.

Conversely, suppose neither A nor B contains an X-limit point of the other. Let A’ denote the X-limit
points of A. Then A’ NY is the set of X-limit points of A contained in Y'; by assumption, none of these are
in B, so any such points must be in A. That is, A’NY C A. Then

ANY =(AUuAYNY =(ANY)UA' NY)CAUA=ACANY.
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Therefore, A= ANY, so A is closed in Y.
A similar argument shows that B is closed in Y.
Since A and B partition Y, they form a separation of Y. 0O

Lemma. If A is connected and
ACBCA,

then B is connected.
Heuristically, if you add some limit points of a connected set to the set, you get a connected set.

Proof. Suppose B = U [[V is a separation of B. Thus, U and V are disjoint nonempty open subsets of B.
Since A is connected, A lies entirely in U or V. Without loss of generality, say A C U. Taking closures in
X yields A C U.
U and V are disjoint, and by the preceding lemma V contains no limit points of /. Thus, ANV = §.
But B C A, so B doesn’t intersect V', either. This means that V is empty, which is a contradiction.
Therefore, B is connected. 0O

Corollary. The closure of a connected set is connected. [
Corollary. Connected components of a space are closed.

Proof. If C' is a connected component of X, then C is a connected set containing C', by the previous corollary.
By maximality, C'= C', so ' is closed. O

Lemma. The product of finitely many connected spaces is connected.

Proof. It suffices to prove this for two spaces, since the general result will follow by induction.

Thus, suppose X and Y are connected. I want to show that X x Y is connected. The idea 1s to use the
fact that a union of connected sets with a point in common is connected.

To do this, picture X x Y as a plane. I'll decompose it as the union of “crosses”: each “cross” consists
of the union of a fixed “horizontal line” with an arbitrary “vertical line”.

Y

X xY

Xx{yy}
Y g

Fix yo € Y. For each x € X, consider the set
Ce = (X x{yo}) U ({z} xY).

X X {yo} is connected, since it’s a homeomorphic copy of X; {@} x Y is connected, since it’s a homeo-
morphic copy of Y. The sets have the point (z,yo) in common. Therefore, C; is connected.

Next, the union of the Cy’s is connected, because it’s a union of connected sets having X x {yo} in
common. But the union of the C;’s is X x Y so X x Y is connected. [

Theorem. An arbitrary product of connected spaces is connected.

Proof. First, I'll choose a point in the product. I’ll construct a union of connected sets having this point in
common; the earlier result on unions shows that the union is connected. Finally, I'll show that the closure
of the union is the whole product; this will prove that the product is connected, by the earlier result on
closures.



Let X =[]

y= (ya)aEA € X.
For each finite collection {ay,...,a,} of indices from A, define

aca Xa be a product of connected spaces. 1 want to show that X is connected. Let

X(ay,...,an) = (Za)aca | ¥a =ya if aFay,... an}.

Thus, a point of X (ay,...,a,) agrees with y except possibly in the a1, ..., a, positions.

(Note that this doesn’t mean that such an x doesn’t agree with y in the ay, ..., an positions; it means
only that such an # does agree with y in the other positions.)

I claim that X(aj,...,a,) is connected. T’ll do this by showing that it’s homeomorphic to a finite
product of X,’s, which is connected by the preceding lemma.

Define ¢ : Xq, x -+ x Xy, — X(a1,...,a,) by

if a = a; for some 1

[6(@ay, -+ 2a)]a = {l‘

Yo if a # a; for any ¢

Thus, ¢ plugs z4,, ..., ¥4, into the ay, ..., a, components and uses y for the other components.
Define ¢ : X(ay,...,an) = Xgy X -+ X X4, by

Yl(xa)] = (Tays- - Tay,)-

¢ and 1 are easily seen to be inverses, so ¢ 1s bijective.

A basis element for the product topology on X,, x ---x X, is a product of open sets from the factors.
A basis element for the subspace topology on X (a1, ..., a,) consists of the intersection of X (a1, ..., a,) with
a basis element for the product X = [],.4 X4. A basis element for X =[], , X, consists of a product of
open sets from the factors, where at most finitely many are not the whole space.

With this description in mind, it is clear that ¢ carries a basis element for X, x --- x X, onto a
basis element for X (ai,...,a,), and ¢ carries a basis element for X(ay,...,a,) onto a basis element for
Xa, X -+ x Xg, . Therefore, ¢ is a homeomorphism.

Since X4, X - x X4, is a finite product of connected spaces, it’s connected. Therefore, X(ay,...,an)
is connected.

Since y € X(aq,...,ay) for any finite subset {a1,...,a,} C A, the union

X’:U{X(al,...,an) {al,...,an}CA}

1s a union of connected sets with a point in common, hence connected.

Finally, I claim that X/ = X. Let # € X, and let HaEA U, be a neighborhood of z, where U, is open
in X, and U, = X, for all but finitely many a’s. Let ai,...,a, be the indices for which U, # X,. Define
Z = (Za)aEA by

.- {l‘a, if @ = a; for some ¢
7 lya ifa+# a; for any i

Then z € HaEA Ug and z € X(ay,...,ay) C X'
Thus, every (basic) neighborhood of # intersects X’. Since # € X was arbitrary, it follows that X' =X.
Since X is the closure of a connected set, it’s connected. 0O
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8-10-1999
Connected Subsets of the Real Line

Proposition. [0, 1] is connected in the standard topology.

Proof. Suppose [0,1] = U UV is a separation, so U and V' are nonempty, disjoint, open sets.

The idea of the proof is to find a point on the “boundary” between U and V| then show that such a
point can’t be in either U or V.

Without loss of generality, suppose that 0 € U. Let

S={sel0,1]][0,s]C U}.

Since 0 € S, S is nonempty. Moreover, since 0 € U and U is open, there is an € > 0 such that [0,¢) C U.
Then {0, %} Cc U, so % € S. Thus, S # {0}.

S 1s a nonempty set which is bounded above, so it has a least upper bound. Let
sgp = sup S.

Since S # {0}, s > 0.
sg 1s the sort of “boundary point” I alluded to above. Before using it to obtain a contradiction, I'll
prove two preliminary results.

Claim1: If s€ S and 0 < r < s, then r € S.
[0,7] C[0,s] C U, since s¢€S.

Therefore, » € S.
Claim 2: If 0 < s < sy, then s € Sand s € U.

Suppose 0 < s < s but s ¢ S. If ¢t > s, then t ¢ S| else s € S by Claim 1. Since no element of S is
greater than s, it follows that s is an upper bound for S. But s < s, and sg is the least upper bound for S.
This contradiction implies that s € S; thus, [0,s] C U, so s € U.

Finally, I’ll obtain a contradiction by showing that sy can’t be in S or its complement.

Suppose sp € 5, so [0,sg] C U. Note that sqg < 1 — for if 5o = 1, then [0,1] = [0, so] C U, contradicting
the fact that V' is nonempty.

Now 0 < sg < 1, sg € U, and U is open, so there is an ¢ > 0 such that (sg —¢,s0 +¢) C U. Hence,

{0,80 + %} = [0, s0] U {50,50 + %} cu,
so sg + % € S. This contradicts the fact that sy is the least upper bound for 5.

It follows that sq ¢ S. Therefore, [0,s0] ¢ U. By Claim 2, [0,s0) C U, so sy ¢ U. Therefore, s5 € V.
Now sg > 0 and V' is open, so there is an € > 0 such that (sg — ¢, s9] C V. In particular, sg — % €V, and
this contradicts Claim 2.

It follows that there is no such separation, and hence [0, 1] is connected. 0O
Corollary. Any closed interval in R is connected.

Proof. Any closed interval in R is homeomorphic to [0,1]. O

Corollary. R is connected.



Proof.
R = U [—n,n]
n=1

represents R as a union of connected sets having points in common (specifically, the points in [—1,1] are
common to all of the intervals). By an earlier result, this proves that R is connected. 0O

Corollary. R" is connected.

Proof. X" is a product of connected spaces, so it’s connected. 0O
Corollary. Any open interval in R is connected.

Proof. Any open interval in R is homeomorphic to R. 0O

In fact, more is true. Let L be an ordered set with at least two elements. L is a linear continuum if
L has the least upper bound property (every subset bounded above has a least upper bound) and if z < y
implies there exists z such that # < z < y. For example, R is a linear continuum. One may show that every
linear continuum is connected.

You can show that many sets in R"™ are connected by using the results above and general stuff about
connected sets.

Example. S! is a connected subset of R,

To see this, note that the continuous function f : R — S! given by f(t) = (cost,sint) maps the
connected set R onto S*.

More generally, if f: R — R? is continuous, then the image 1s connected. For example, the graph of a
function y = f(z) defined for all # € R is a connected set. 0O

. . . 1
Example. The topologist’s sine curve consists of the graph of y = sin — for 0 < # < 1. The closed
x

topologist’s sine curve consists of the union of the topologist’s sine curve with the segment {(0,y) | =1 <
y <1}

The topologist’s sine curve is connected, because it’s a continuous image of a connected set. The closed
topologist’s sine curve is the closure of the topologist’s sine curve in R?, so it’s connected as well. 0O

Here’s a familiar result from calculus.

Theorem. (Intermediate Value Theorem) Let f : X — Y be a continuous function, where X is connected
and Y is an ordered set with the order topology. Let a,b € X, and let d be an element of ¥ between f(a)
and f(b) (so f(a) < d < f(b) or f(b) <d < f(a)). Then d = f(c) for some ¢ € X.
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Proof. If d = f(a) or d = f(b), then I'm done. So assume d # f(a), f(b). Then f(a) < d < f(b) or
Jb) <d < f(a).

F(X) is connected, since X is connected. Consider the sets f(X)N(—o0,d) and f(X)N(d,+o0). These
are disjoint open subsets of f(X); they are nonempty, since one contains f(a) and the other contains f(b).
Therefore, their union isn’t all of f(X). Hence, f(X) N {d} is nonempty.

An element f(X) N {d} is an element f(c) for ¢ € X such that f(¢) =d. O
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Path-Connectedness and Local Connectedness

Definition. Let X be a topological space. A path in X is a continuous function ¢ : [0,1] = X. ¢(0) and
o(1) are the endpoints of the path; ¢ is a path from &(0) to o(1).

Definition. Let X be a topological space. X is path connected if for all z,y € X, there is a path in X
from z to y.

Example. Points are path connected. 0

Example. R" is path connected. If ,y € R", then
ot)=(1 -tz +ty

is a path in R" from = to y. O

Lemma. A path connected space is connected.

Proof. Suppose X is path connected, and suppose that X = U UV is a separation of X. Let € U and let
y € V. By assumption there is a path ¢ : [0,1] = X such that ¢(0) = # and ¢(1) = y.

o~1(U) and o= (V) are disjoint open sets in [0, 1], and [0,1] = = 1(U) Uo~1(V). This contradicts the
fact that [0, 1] is connected.

Therefore, X is connected. 0O

. . . 1
Example. The topologist’s sine curve S consists of the graph of y =sin — for 0 < « < 1.
x

The topologist’s sine curve is connected, since it’s a continuous image of the connected set (0, 1]. The
space T = SU{(0,0)} is also connected, since it’s the union of S with one of its limit points in R?. However,
T is not path connected.

To prove this, I'll show that the point (0,0) cannot be connected by a path to the point (1,sin1).

Suppose on the contrary that o : [0, 1] — S is a path from (0,0) to (1,sin 1). Notice that (0, 0) is closed
in T, so 0=1((0,0)) is a closed subset of [0,1]. T will show that ¢=*((0,0)) is also open in [0, 1]; this will
prove that o=1((0,0)) = [0,1].

Let # € 0=1((0,0)). Let V be the open rectangle (—0,5.0.5) x (—0.5,0.5). The intersection of V with S
is an open set in S containing (0,0) — that is, a neighborhood of (0,0) in S. By continuity, I may find an
open interval (a,b) in R containing # such that

o ([0,1]N (a,b)) CV NS.
The intersection [0, 1] N (a,b) is an open interval or a half-open interval, so it’s connected. Therefore,
o ([0,1]N (a, b)) is connected. V N S is a disjoint union of open arcs in S with the point (0,0). Hence,
o ([0,1] N (a, b)) must map entirely into one of these components.
However, I know the point z € [0, 1] N (a,b) maps to (0,0). Therefore,
o ([0,1]N (a, b)) = (0,0).
Thus, [0,1]N (a,b) is a neighborhood of x contained in ¢=1((0,0)). This proves that ¢=1((0,0)) is open.

1



Since o71((0,0)) is a nonempty, open, and closed, and since it’s a subset of the connected set [0, 1], it
must be all of [0, 1]. Thus, ¢([0,1]) = (0,0), contradicting the fact that ¢ is a path from (0,0) to (1,sin1).
It follows that there 1s no such path, and therefore 7" isn’t path connected. 0O

Connected components were defined as the maximal connected subsets of a space; their existence followed
from Zorn’s Lemma. The path components of a space are defined in a similar fashion. I need a lemma
which is analogous to one I prove for connected sets.

Lemma. Let {U,}.ca be a collection of path connected subsets of a topological space X. Suppose that
Naca Ua # @#. Then U = Uaea Ua is path connected.

Proof. Let y,z € U. I must show that y and z can be joined by a path in U.

Suppose y € U, and z € Up. Since z € U, and U, is path connected,  and y can be joined by a path
in U,. Since ¢ € Uy and Uy is path connected, & and z can be joined by a path in Us.

Concatenating the two paths produces a path in U, UU, C U joining y and z. Therefore, U is path
connected. 0O

Theorem. Let X be a topological space.
1. Every point & € X is contained in a unique maximal path connected subset C, of X.
2. Co=Cyor CoNCy=0. O

To say that C; 1s maximal means that C, is not properly contained in any other path connected subset

of X.

The proof will be omitted; it is essentially the same as the result for connected components. You
can verify that the connected components proof required only the lemma on unions of connected sets with
nonempty intersection; I just proved the analogous lemma for path connected sets above.

Definition. Let X be a topological space. The path components of X are the maximal path connected
subsets of X.

Definition. Let X be a topological space.

1. X is locally connected if for every # € X and every neighborhood U of z, there is a connected

neighborhood V of & such that V C U.

2. X is locally path connected if for every & € X and every neighborhood U of z, there is a path
connected neighborhood V' of z such that V C U.

Example. Since a path connected neighborhood is a connected neighborhood, every locally path connected
space 1s locally connected. 0O

Example. R" is locally path connected, since a ball B(z;¢) is path connected. [

Example. Let S denote the topologist’s sine curve:

S:{(x,sinl) ‘0<x§1}.
T

Let T'= SU{(0,0)}. T is not locally connected; a neighborhood of (0, 0) consists of (0,0) together with
a disjoint union of open arcs, which is not a connected set. 0O
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Theorem. A space is locally connected if and only if the components of any open subset are open.
In particular, the components of a locally connected space are open.

Proof. Suppose X is connected and U C X is open. Let C' be a component of U. I want to show C'1s open.

Let # € C. By local connectedness, there is a connected neighborhood V' of z such that x € V C U.
Now V U C 1s a union of connected sets having the point « in common; since ' 1s maximal, V U C = C so
Vcd.

Since every point of C' has a neighborhood contained in C', C' is open.

Conversely, suppose that components of open subsets are open. Let « € X, and let U be a neighborhood
of . I must find a connected neighborhood V' of x such that € V C U. Take V to be the connected
component of U which contains . By assumption, V is open, and x € V C U.

Hence, X 1s locally connected. 0O

An essentially identical argument proves the following.

Theorem. A space 1s locally path connected if and only if the path components of any open set are open.
0

In particular, the path components of a locally path connected space are open.
The relationship between components and path components is described by the following result.
Proposition. Let X be a topological space.
1. Every path component is a subset of a component.
2. If X is locally path connected, then the path components and components coincide.

Proof. 1. A path component is path connected, and path connected sets are connected. Since every
connected set is contained in a component (i.e. a maximal connected set), every path component is contained
in a component.

2. Suppose X is locally path connected. Let C' be a component. I have to show that C'is a path component.

Let P be any path component contained in C'. (For instance, let # € C, and take P to be the path
component containing z.) Let P’ be the union of the path components of C' other than P.

Since X is locally path connected, P is open. X is locally connected, so C' is open; again, since X is
locally path connected, the path components of the open set C' are open. Hence, P’ is open, since it’s a
union of open sets.

Now C' = P U P’ is a disjoint union of open sets. Since C'is connected, P and P’ can’t be nonempty;
since P # 0, T have P’ = §). Thus, C' has no path components other than P, which means that C = P. [
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Compact Spaces
In the real line, compactness is equivalent to being closed and bounded. The Heine-Borel Theorem says
that a closed and bounded subset B of R has the property that if {U;};cs is a collection of open intervals

whose union contains B (i.e., the collection covers B), then some finite subcollection of the U’s also covers
B. This is the appropriate way to generalize “closed and bounded” to arbitary spaces.

Definition.
1. A topological space X is covered by a collection {U; };¢r of subsets if X = |J;; U;.

2. If X is a topological space, Y C X, and {U; };cr is a collection of subsets of X, then {U; };cr covers Y
if Y C Ujer Ui

3. If {U; }ier covers X and each U is open, then {U;};cs is an open cover of X.

4. 1If a subcollection of a covering also covers the space, the subcollection is a subcovering.

Example. The collection

{(n,n+1)|n€Z}U{<n—%,n+%) ‘nEZ}

is an open cover of R.
Every point of R — 7Z is contained in an interval of the form (n,n 4 1) for some n € Z. Each integer n

1s contained in (n — = n+ —). Thus, the collection covers IR; since each element of the collection is open,

2 2

it 1S an open cover.
The collection of open intervals with rational endpoints i1s also an open cover of R.

More generally, the collection of open balls with rational centers and rational radii forms an open cover
of R". [

Definition. A space X is compact if for every open cover {U; };cr of X, some finite subcollection {Uy, ..., U,}
also covers X.
To say it another way, a space is compact if every covering has a finite subcovering.

It is clear that compactness is preserved by homeomorphisms: If X is compact and X is homeomorphic
to Y, then Y is compact.

Example. Any finite set of points (with any topology) is compact, since any open cover can contain at most
finitely many (distinct) open sets. [

Example. R is not compact.
Consider the following open cover of R:

{(n,n+1)|nEZ}U{<n—%,n+%) ‘nEZ}.

1



2
any finite subcollection contains at most finitely many integers, so no finite subcollection can cover R.
Since every open interval (a, b) is homeomorphic to R, open intervals aren’t compact.
On the other hand, I'll show later that a closed interval [a, b] is compact. O

Each integer n is contained in exactly one element of the cover, namely [ n— = n+ 5) Therefore,

The following condition is equivalent to compactness; it is extremely important in analysis.

Definition. Let X be a topological space. A collection of subsets C of X satisfies the finite intersection
condition if the intersection of any finite subcollection of C is nonempty.

In other words, if C,...,C,, € C, then ()—; Ci # 0.

Theorem. Let X be a topological space. X is compact if and only if every collection of closed sets satisfying
the finite intersection condition has nonempty intersection.

Proof. Suppose X is compact, and let {C;};er be a collection of closed subsets of X such that every finite
subcollection has nonempty intersection. I want to show that (., C; # 0.
Suppose on the contrary that ﬂiEI Cy; = (. Then

X=x-G=Jx-ac).

i€l i€l

Therefore, {X —C;};cr is an open cover of X. By compactness, some finite subollection {X —C1,..., X —
Cy} covers X. Thus,

X:O@-@:X—ﬁ@.

i=1 i=1

Hence, ﬂ?zl C; = {, contrary to assumption.

Therefore, ();c; Ci # 0.

Conversely, suppose that every collection of closed subsets of X satisfying the finite intersection condition
has nonempty intersection. Let {U;};c; be an open cover of X. T want to show that {U;};cr has a finite
subcover.

Suppose on the contrary that no finite subcollection of {U;};er covers X. Consider the complements
{X — U, }iesr. This is a collection of closed sets. If {X — Uy, ..., X — Uy,} is a finite subcollection, then

n

ﬂu—mzx—0w¢ﬂ

i=1 i=1

For X # |J;_, Ui, since no finite subcollection of {U; };¢r covers X.
Thus, every finite subcollection of {X — U, };¢; has nonempty intersection. By assumption, {X — U, };er
has nonempty intersection. Therefore,

X-Ju=((X-1:)#0.

i€l i€l

This contradicts the fact that {U; };er covers X.
Hence, some finite subcollection of {U; };ecr covers X, and X is compact. 0O

Thus, the intersection condition is really just a translation of the definition of compactness from open
to closed sets. In any situation, you can choose the version that is easier to apply.

The results that follow describe how compactness behaves in connection with other topological concepts.

Lemma. Let X be a topological space, and let Y C X. Y is compact if and only if every open cover of Y
has a finite subcover.



Reminder: to say that {U;};er is an open cover of Y as a subset of X means that each U; is open in X
and Y C Uie[ U;. That 1is, the U;’s are subsets of X, and not necessarily subsets of Y.

Proof. Suppose Y is compact. Let {U;};cr be an open cover of Y by sets open in X. Then {U; N Y }ier
is an open cover of Y by sets open in Y. By compactness, some finite subcollection {U3 NY,... U, NY}
covers Y. Then {Uy,...,U,} covers Y.

Conversely, suppose that every open cover of Y has a finite subcover. Let {U;};cr be an open cover of
Y by sets open in Y. For each ¢, U; = Y NV, where V; is open in X.

Now {V; }ier is an open cover of Y by sets open in X, so by assumption a finite subcollection {Vi, ..., V,}
covers Y. Then {Y NVy,....YNV,} ={U1,...,U,} covers Y. Therefore, Y is compact. 0O

One way of putting this is: Compactness is intrinsic to the space. That is, to say Y is compact (in the
sense of the “open cover” property) has the same meaning whether Y is considered as a subspace of another
space or as a space in its own right. In contrast, whether a set is closed or not depends on the topology of
the ambient space.

Theorem. A closed subset of a compact space is compact.

Proof. Let X be a compact topological space, and let C' be a closed subset of X. Let {U;};cr be an open
cover of C, and consider the collection {U;};e; U{X — C}. This is an open cover of X, so by compactness
it has a finite subcover.

Ui

<

If X — (' occurs in this subcover, throw it out. The remaining sets {U;,...,U,} cover C. Thus, I've
found a finite subcover of C', so C' is compact. 0O

Theorem. A compact subset of a Hausdorff space is closed.

Proof. Let X be a Hausdorff space, and let C' be a compact subset of X. I'll show that the complement of
C' is open.

Let # € X — C'. I want to find a neighborhood of x that is contained in X — C'.

Since X 1s Hausdorff, for each y € C, there are disjoint neighborhoods Uy of z and Vj, of y. Now
{Vy}yey is an open cover of C, so by compactness there is a finite subcover {Vy,,...,V,, }. Let




If z€ U, then z € Uy, fori=1,...,n. Hence, 2 ¢V, fori=1,... n. But {V,,, ..., V}, } cover C, so
z¢& C ie z€ X —C. Thus, U is a neighborhood of # contained in X — C. Hence, X — C'is open, so C'is
closed. 0O

Remark. In the course of the proof, I showed that in a Hausdorff space, a compact set (C') and a point in
the complement (2) may be separated by disjoint open sets. O

Theorem. The continuous image of a compact space is compact.

Proof. Let X be a compact topological space, let Y be a topological space, and let f : X — Y be a surjective
continuous function. I want to show that Y 1s compact.

Let {U; };esr be an open cover of Y. Then {f~*(U;)};er is an open cover of X, so by compactness I may
find a finite subcover {f=Y(Uy),..., f~1(Un)}.

Now if y € YV, then y = f(z) for some x € X. Find i € {1,...,n} such that = € f~1(U;). Then
y = f(x) € U;. This shows that {Uy,...,U,} covers Y.

Hence, Y is compact. 0O
The proof of the following theorem makes nice use of the last three results.

Theorem. Let X and Y be topological spaces, where X is compact and Y is Hausdorff. Let f: X — Y be
a continuous bijection. Then f is a homeomorphism.

Proof. I need to show that f~! is continuous. I will show that the inverse image of a closed set is closed.

Let C be closed in X; I want to show that (f=1)~1(C) = f(C) is closed in Y. Since X is compact and
C' is closed, C'is compact. Since f is continuous and C' is compact, f(C) is compact. Since Y is Hausdorff

and f(C') is compact, f(C) is closed.

Therefore, f~1 is continuous, and f is a homeomorphism. 0O

Example. Define f:[0,1) — 5! by

f(t) = (cos(2mt), sin(2mt)).

Sl

f is a continuous bijection, and S is surely Hausdorff. However, f is not a homeomorphism. Intuitively,
=1 “unwraps” the circle onto the interval; it fails to be continuous at the point (1,0), where the circle needs
to be “cut” in order to do the unwrapping. This is not continuous, because points on either side of the cut
point which start off close together wind up far apart, at opposite ends of [0, 1).

Let X be the union of countably many copies of [0,1) and countably many copies of S'. Construct a
continuous bijection of X to itself by defining the map to be the “wrapping map” f from one of the [0, 1)’s
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to one of the S'’s and the identity maps id : [0,1) — [0,1) and id : S — S* on all the other pieces.

&————0
0 1

O
Qd

0 : 1

OO0

o
=}

O

o

The inverse fails to be continuous for the same reason that f is not continuous.

This gives an example of a continuous bijection from a Hausdorff space to itself which is not a homeo-
morphism. 0O

The following result can be used to show that a finite product of compact spaces is compact; it’s of
interest in 1ts own right.

Theorem. (The Tube Lemma) Let X and Y be topological spaces, and suppose Y is compact. Let z € X,
and let W C X x Y be an open set containing {#} x Y. Then there is a neighborhood U of # such that
UxYCW.

Proof. For each y € Y, there is a neighborhood Uy, x V;, of (x,y) such that U, is a neighborhood of « in X,
Vy is a neighborhood of y in Y, and U, x V, C W. It follows that {U, x V}, },ey is an open cover of {#} x Y.

Now {2} x Y is compact, since it’s homeomorphic to Y. Therefore, there is a finite subcollection

{Uu, x Vyy,... Uy, xVy, } which covers {z} x Y.

Let U = (N/_, Uy,. U is an open set containing z. If (z,y) € U x Y, then y € V,, for some i € {1,...,n}.
So (z,y) €U xV,, CW, and hence U xY CW. O

Example.

X

W={<o,y>|yeR}u{<x,y>|y<‘1‘, r 0

5



is an open subset of R? which contains the y-axis (i.e. {0} x R.

y

However, there is no open subset U of R such that
{0,y) |lye Ry CU xR CW.

The Tube Lemma does not apply because R is not compact. 0O

Lemma. Let X be a topological space. Let D be a collection of subsets of X which is maximal with respect
to satisfying the finite intersection condition. Then:

1. D 1s closed under finite intersections.
2. If ¢ C X and C meets every element of D, then C' € D.

Proof. 1. Suppose D1, ..., D, € D. I must show that D =[)'_, D; € D.

Consider the set D' = D U {D}. T claim that D’ satisfies the finite intersection condition.

Take Ei,...,Ey, € D'. If Ey,...,Ey € D, then (i, E; # 0, since D satisfies the finite intersection
condition.

Otherwise, one of the E’s is D; without loss of generality, say 1 = D and Es, ..., E,, € D. Then

i=1 i=1

since this is a finite intersection of elements of D.
Now D’ satisfies the finite intersection condition and it contains P. By maximality of D, D’ = D, which
means that D € D.

2. Suppose €' C X and C meets every element of D. I want to show that C' € D.
Consider the set D' = D U {C}. T claim that D’ satisfies the finite intersection condition.
Take Fy,...,E, € D'. If Ey,...,E, € D, then ()/~, E; # 0, since D satisfies the finite intersection
condition.
Otherwise, one of the E’s is ('; without loss of generality, say £y = C and Es,..., E, € D. Now
Eyn---NE, €D by part 1, so
CN(EaN---NEy)#0,

since (' meets every element of D.
Now D’ satisfies the finite intersection condition and it contains D. By maximality of D, D’ = D, which
means that C'e D. 0O

All of the proofs of Tychonoff’s theorem are sophisticated; 1t’s a difficult and important result. Lang
[1] credits the following proof to Nicholas Bourbaki, the nom-de-plume of a group of mathematicians who
wrote an extremely influential series of expository monographs.
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Theorem. (Tychonoff) Let {X,}.ca be a family of compact topological spaces. Then X = [] .4 X is
compact.

Proof. Let C be a collection of closed subsets of X satisfying the finite intersection condition. I need to

show that (ece C # 0.

Step 1. Consider the set T' of collections of subsets of X (closed or otherwise) which satisfy the finite
intersection condition and contain C. I claim that I' has maximal elements.

Order T' by inclusion.
Let IV be a chain in I'. Let

f:Ug.
g

er

Since each G € I contains C, F also contains C. I claim that JF satisfies the finite intersection condition.

Let Fy,...,F, € F. Suppose Fy € Gy, ..., F, € G,, where G1,...,G,, € I”. Since I” is a chain, there is
an index k € {1,...,n} such that F; € G for 1 < {# n. Since Gj satisfies the finite intersection condition,
FiN---NF, # 0. This proves that F satisfies the finite intersection condition.

Since F satisfies the finite intersection condition and contains C, it’s an element of I'; and it’s clearly an
upper bound for I'V. By Zorn’s lemma, I' has maximal elements.

Step 2. Let D be a maximal element of I'. Tl construct an element « € ﬂDeD D.

Let m, : X — X, be the a'™ projection map. Fix a € A, and consider the family of sets {m,D}pep.
For any finite subcollection {mg(D1),...,ma(Dn)}, the intersection Dy N ---N D, is nonempty, because D
satisfies the finite intersection condition. Since

7Ta(D1 n-- ﬂDn) C 7Ta(D1) n-- 'ﬂﬂ'a(Dn),

it follows that ma(D1) N - N, (Dy,) £ 0.
Therefore, {m,D}pep satisfies the finite intersection condition.
Hence, {m,D}pep satisfies the finite intersection condition.
Now {7, D}pep is a family of closed subsets of the compact space X,. Therefore, there is an element

Tg € ﬂ 7TaD.
DeD

Define & = (24)aea-
Step 3. Let U, be a neighborhood of z, in X,. I claim that 7 1(U,) € D.

Since U, is a neighborhood of ¢, and z, € ToD for all D € D, U, meets nqa(D) for all D € D. But if
Us N ma(D) # 0, then n71(U,) N D # (. To see this, note that if z € U, N w4(D), then z = m4(y) for some
y € D and so m,(y) € Uy. Thus, y € 771 (Uy,), and hence y € n; 1 (U,) N D.

Thus, 751 (U,) meets every set D € D. By the second part of the lemma, n;1(U,) € D.

Step 4. Every basic open set containing z is contained in D.

The sets ﬂgl(Ua) for @ € A and U, a neighborhood of z, in X, form a subbasis for the open sets
containing x. A basic open set containing z is a finite intersection of w1 (U, )-sets; such a finite intersection
is in D, by the first part of the lemma.

Step 5. Finally, I'll show that z € (. C.

Let D € D, and let U be a basic open set containing z. Since D satisfies the finite intersection condition,
UND . Since every basic open set containing # meets D, it follows that = € D.

In particular, if D is a closed set in D, then # € D. But all the sets in C are closed, and C C D, so z € ('
for all C' € C. Therefore, x € (e €.



This completes the proof that X is compact. 0O

[1] Serge Lang, Real analysis (2" edition). Reading, Massachusetts: Addison-Wesley Publishing Company,
1983. [ISBN 0-201-14179-5]
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7-11-1999
Compact Sets and the Real Numbers

Theorem. If X is an ordered set satisfying the least upper bound property, then any closed interval [a, b] in
X 1s compact.

Proof. The outline of the proof is as follows. Let {U;};cr be an open cover of [a,b]. Construct the set '
of points y € [a, b] such that [a,y] can be covered by a finite subcollection of {U;};cr. Take the least upper
bound ¢ of C' and show that ¢ € C'. Finally, show that ¢ = b.

Step 1. Suppose a < 2 < b. T claim that for some y > «, the interval [2,y] can be covered by at most two
elements of {U; }ier.

If « has an immediate successor @ + 1, then [z, 2 4 1] has only two elements, so it can be covered by at
most two U’s.

If 2 does not have an immediate successor, find U; containing z. Pick ¥’ > « such that [#,y') C U;; this
is possible since U; is open. Since & does not have an immediate successor, there is an element y such that
¢ <y<y'. Then [z,y] C U;, and [z, y] is covered by a single element of {U;};cr.

Step 2. Now let
C ={y € (a,b] | [a,y] can be covered by finitely many U;}.

By Step 1, there is an element y > a such that [a, y] can be covered by at most two elements of {U; };e;.
Therefore, C' is nonempty. Let ¢ be the least upper bound of C' in [a, b].

Step 3. I claim that ¢ € C.

Find U; containing ¢. U; is open and ¢ > a, so I may find an interval (d,c] C U;. Since d can’t be an
upper bound for (| there is an element of C' larger than d. Let ¢/ € C, where d < ¢/ < ¢. Then [a,¢] can
be covered by finitely many U’s, and [¢, ¢] C U;. Therefore, [a,c] = [a, ] U[¢/, €] can be covered by finitely
many U’s. Hence, ¢ € C.

Step 4. I claim that ¢ = b.

Suppose that ¢ < b. By Step 1, there is a y > ¢ such that [¢, y] can be covered by at most two elements
of {U; }ier. Since ¢ € O [a, ¢] can be covered by finitely many elements of {U; }ier. So [a,y] = [a,c] U [c, y]
can be covered by finitely many elements of {U;};cr, and therefore y € C'. This contradicts the fact that ¢
was the least upper bound of C. Hence, ¢ = b.

Since b € C, [a,b] can be covered by finitely many elements of {U;};cr. Therefore, [a,b] is compact. 0O
Corollary. A closed interval [a,b] in R is compact. [

Theorem. (Heine-Borel) A subset €' C R" is compact if and only if it is closed and bounded relative to
the standard metric or the square metric.

Remark. Recall that the standard metric d and the square metric p are related by

ple,y) < d(x,y) <V pla,y).
Hence, a set bounded relative to one metric is bounded relative to the other.

Proof. Suppose that C is compact. R” is Hausdorff, so C is closed. The collection of balls { B(0;n) | n € Z1}
is an open cover of R™, so it is an open cover of C'. By compactness, there is a finite subcover; the element
of the subcover with the largest radius contains C'; so C' is bounded.

Conversely, suppose C'is a closed and bounded subset of R™. Suppose that p(z,y) < s for all z,y € C.
Fix ¢ € C and let t = p(x,0). Then for all y € C,

d(y,0) <d(y,x) +d(x,0) = s+ 1.

1



It follows that C' C [—(s+ 1), s + t]*. However, [—(s + 1), s +¢]" is a product of compact spaces, so it’s
compact. Thus, C'is a closed subset of the compact set [—(s + ), s + t]?, so it is compact. O

Theorem. Let X be a compact topological space, let Y be an ordered set with the order topology, and let
f X =Y be continuous. There are points a,b € X such that

fla) < f(z) < f(b) forall zeX.

Proof. f(X) is a compact subset of Y. T’ll show that f(X) has a largest element and a smallest element.
Suppose that f(X) does not have a largest element. Then the collection of open rays

{(=o0, f(2)) [ v € X}

cover f(X). By compactness, I may find 21, ..., 2, € X such that

{(OO’ f(xl))’ R (_OO’ f($n))}

cover f(X).
Find m € {1,...,n} such that

J(em) = max{f(a;) [ 1< i < n}.

Then f(X) C (—o0, f(¥m)), but f(zm) ¢ (—oo, f(xm)). This contradiction shows that f(X) has a

largest element; a similar argument shows that f(X) has a smallest element. 0O

In the case where X = [a, b] is a closed interval in R and Y = R, this is the familiar result from calculus
which says that a continuous function on a closed interval has a max and a min on the interval.

The next result and its corollary are more amusing than important, since you’ve probably seen the
Cantor diagonalization proof of the uncountability of [0,!]. But this topological proof does not make any
reference to representations of real numbers as infinite decimal.

Theorem. Let X be a (nonempty) compact Hausdorff space. Suppose every point of X is a limit point of
X. Then X is uncountable.

Proof.

Step 1. Let U be a nonempty open subset of X, and let z € X. I'll construct an open set V' C U such that
r¢ V.

If U = {«}, then U is a neighborhood of & which contains only . This contradicts the assumption that
every point of X is a limit point of X. Now z may not be in U in the first place, but this shows that in any
event, U can’t consist of z alone.

Thus, I may choose y € U such that y # z. Since X is Hausdorff, there are disjoint neighborhoods A of
z and B ofy. Let V=BNU. Now

V=BnNnUCBCX-A,

and X — A is closed. Therefore, V' C X — A. In particular, since € A, V does not contain z.



Step 2. Next, I'll show that there is no surjection f : Zt — X.

Suppose that f : ZT — X. For the purposes of numbering, take Vo = X. By Step 1, I may find a
nonempty open set V; such that f(1) ¢ Vi.

Suppose inductively that n > 1, and I have found a nonempty open set V,_; C V,_s such that
f(n—1) ¢ V,_1. Use Step 1 to find a nonempty open set V,, C Vj,_; such that f(n) ¢ V,.

Consider the collection {V_”}neZ+' The collection has the finite intersection condition, since

VioVaoVsD....
By compactness, there is a point € ﬂnEZ+ V.. Then x # f(n) for any n € Z¥, so f is not surjective.

Since there is no surjective function from Z* to X, X is uncountable. 0O
Corollary. The interval [0, 1] in R is uncountable. O

Obviously, it follows that R and open intervals in R are uncountable.
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7-12-1999
Limit Point Compactness and Sequential Compactness

Definition. Let X be a topological space.
1. X is limit point compact if every infinite subset has a limit point.
2. X is sequentially compact if every sequence in X has a convergent subsequence.

If X is sequentially compact, then X is limit point compact. For every infinite subset of X contains
an infinite sequence; the limit of a convergent subsequence is a limit point of the original subset. A partial
converse 1s contained in the following theorem.

Theorem. Let X be a topological space.
1. If X is compact, then X is limit point compact.
2. If X is a metric space and X is limit point compact, then X is sequentially compact.

Proof. 1. Let X be compact, and let S C X be an infinite subset. I must show that S has a limit point.

Suppose that S does not have a limit point. It is vacuously true that S contains all its limit points, so
S 1s closed. Since X is compact, S is compact.

Let € S. Since z is not a limit point of S, there is a neighborhood U, of # which does not intersect
S in a point other than @. {U,}zes is an open cover of S, so by compactness there is a finite subcover
{Uey, Uz, }

Now S C {Uz, U...UU;,, but each U;, meets S only in x;. Therefore, S = {®1,...,2,}, which
contradicts the assumption that S is infinite.

Therefore, S has a limit point.

2. Suppose X is a metric space and X is limit point compact. Let {#,} be a sequence in X. T want to show
that {2, } has a convergent subsequence.
First, I have to eliminate any repetitions in the sequence, so define

S={x,|neZt}.

Thus, S is the set of points in {z,}.

Suppose S is finite. Then for some x € X, x,, = x for infinitely many n € Z*. Suppose this is true for
ny,ng,.... Then {x”l}z’eZJr is a convergent subsequence of {z,}, because all the terms are equal to «.

The only other possibility is that S 1s infinite. Then by limit point compactness, S has a limit point .

1
Consider the nested sequence of neighborhoods {B (l‘; E)

ke Z"’}. Since metric spaces are Hausdorff

1
and z 1s a limit point of S, each B (x; E) contains infinitely many points of S.
Choose ny € Z1 such that Tp, € B(x;1). Assuming that & > 1 and that ny, has been chosen, choose
1
ng > Ni—1 such that x,, € B (x; E)

1
I now have z,, — x. For if € > 0, choose N so that — < ¢ for k > N. Then z,, € B(z;¢) for k > N.
N

Example. The subsets {[2n —1,2n] | n € ZT} form a partition of ZT. The corresponding partition topology
is called the odd-even topology. Let X denote ZT with this topology.

X 1s limit point compact. To see this, let A be an arbitrary nonempty subset of X, and let a € A. For
some n € Z¥, a € [2n — 1,2n]. Notice that [2n — 1,2n] is the smallest open set containing 2n — 1 or 2n.

1



If a = 2n — 1, then 2n is a limit point of A, since every neighborhood of 2n contains a.

If a = 2n, then 2n — 1 is a limit point of A, since every neighborhood of 2n — 1 contains a.

In either case, A has a limit point. Since A was an arbitrary nonempty subset of X, surely every infinite
subset of X has a limit point. Thus, X is limit point compact.

On the other hand, X is not sequentially compact. For example, the sequence {1,2,3,...} has no
convergent, subsequence.

This example shows that limit point compactness does not in general imply sequential compactness.

In fact, X is not compact: The open cover {[2n—1,2n] | n € Z*} does not have a finite subcover. Thus,
limit point compactness does not in general imply compactness. 0O

Recall that if Y is a subset of a metric space (X, d), the diameter of YV is
diam(Y) = sup{d(z,y) |,y € Y}.

Theorem. (Lebesgue Number Lemma) Let X be a sequentially compact metric space, and let {U; }ier
be an open cover of X. There 1s an € > 0 such that every subset of X of diameter less than e is contained
in an element of {U; }ier.

€ is called a Lebesgue number for the cover.

Proof. Suppose on the contrary that no such ¢ exists. Then for every n € Z7T, there is a set A, of

diameter less than — which is not contained in any U;. Let a,, € A,. T'll show that {z,} has no convergent

n
subsequence, which will contradict sequential compactness.

Suppose on the contrary that {«,, } is a convergent subsequence converging to . Suppose that « € Uj.
Find € > 0 such that B(x;¢) C U;. Then choose n;, sufficiently large so that

€ 1 €
d(z,z,,)< - and — < —.
(@, 20,) < 5 <3
Ui
1/my
B(xe Xn
(xe) o X K B 1/, )
X
° €
n An B(xe )

1 1 1
Since diam(Ay, ) < — and x,, € A,,, it follows that A,, C B (xnk; —) Suppose y € B (l‘nk; —)
nk nk

ng

Then )
€

d(a:,y) < d(l‘,l‘nk) +d(xnkay) <+ —X<

.
2 Nk 2

= €.

€
2

1
Therefore, B (l‘nk; —) C B(z;¢€). Hence,
ng

1
A,, C B (xnk;n—) C B(z;¢) C U;.
k

This contradicts the fact that A,, is not contained in any U;. Therefore, there s a number € satisfying
the conclusion of the theorem. O

Theorem. Let X be a metric space. The following are equivalent:

2



1. X is compact.
2. X 1is limit point compact.
3. X is sequentially compact.

Proof. T've already proven (1 = 2) and (2 = 3). I need to prove (3 = 1). Suppose then that X is
sequentially compact. I need to show that X is compact.

Step 1. For every ¢ > 0, there is a finite covering of X by e-balls.

Let #1 € X and construct B(xzy;€). If X = B(x1;€), then 'm done. Otherwise, choose z2 € X — B(z1;¢€)
and construct B(xza;€). Again, if X = B(z1;¢) U B(z2o;¢€), I'm done; otherwise, choose z3 € X — (B(x1;¢) U
B(xa;€)). Keep going. Notice that each B(xy,;¢€) contains only one x5, namely .

Suppose that the process does not terminate. Consider the sequence {z,}. T claim that it has no

. . . € .

convergent, subsequence. Indeed, if {z,,} is a subsequence converging to «, then B (x; —) can contain at
most one x,,: If it contains two z,,’s, then they are less than e apart. Therefore, there is an e-ball about
an &,, containing another xz,,

It follows that the process must terminate, so X 1s covered by a finite number of e-balls.

Step 2. Every open cover of X contains a finite subcover.

Let {U;}ier be an open cover of X. Let ¢ be a Lebesgue number for the cover. Cover X with a finite

number of = balls {B1,...,B,}. Each B; has diameter less than ¢, so each B; is contained in some U, .

Then {U;, | j =1,...,n} is a finite subcollection of {U;};er which covers X. Therefore, X is compact. 0

Definition. Let X and Y be metric spaces, and let f : X — Y. f is uniformly continuous if for every
€ > 0, there is a § > 0 such that dx (a,b) < J implies dy (f(a), f(b)) < € for all a,b € X.

Theorem. Let X and Y be metric spaces, let f : X — Y be a continuous function, and suppose X is
compact. Then f is uniformly continuous.

Proof. Given € > 0, the open balls {B (y; %) ‘ Yy € Y} cover Y. Therefore, {f‘l (B (y; %)) ‘ Yy € Y} 18

an open cover of X.
By the Lebesgue Number Lemma, there is a 6 > 0 such that every set of diameter less than § is

contained in a f~1! (B (y; %)) In particular, if dx(a,b) < d, then {a, b} is a set of diameter less than J, so

abe f! (B (y; %)) for some y. This means that f(a), f(b) € B (y; %), so dy (f(a), f(b)) <e D

Example. Consider the function f : R — R given by f(z) = z2.

continuous.
To show that f is not uniformly continuous, I’ll show that there is no § > 0 such that if § > | — y|,

f 1s continuous, but f is not uniformly

. 2 . .
then 1 > |f(x)— f(y)|. Suppose on the contrary that such a J exists. Choose x > 5 and consider the points

x+ 3 and z.
First,

The points are less than ¢ units apart.
However,

<x+g)—|—x:2$+g>2~

3



So

f(x+§)—f<x>=(x+g)2_x2:(Hg_x

The images are more than 1 unit apart.
This shows that f is not uniformly continuous.

@1999 by Bruce Ikenaga

O

)



7-16-1999

Local Compactness

Definition. Let X be a topological space. X is locally compact if for all # € X, there is a compact set C'
and a neighborhood U of # such that x € U C C.

If X is compact, then X is locally compact: For any # € X, X is a compact set containing the

neighborhood X of z.

Example. If X is a space with the discrete topology, then X is locally compact. If @ € X, then {2} is a
compact set containing the neighborhood {#} of z. O

Example. R" is locally compact: If # € R"| the closed ball B(z;1) is compact, and it contains the open ball
B(z;1). D

Theorem. Let X be a Hausdorfl space. X is locally compact if and only if for every # € X and every
neighborhood U of , there is a neighborhood V of # such that V is compact and V C U.

Proof. Suppose for every # € X and every neighborhood U of &, there is a neighborhood V of z such that
V is compact and V' C U. Choose any neighborhood U of 2 — for example, X — and find a neighborhood
V of # with compact closure such that V' C U. Then V is a compact set containing a neighborhood V of z,
so X 1s locally compact.

Conversely, suppose X is locally compact. Let © € X, and let U be a neighborhood of z. Let C be a
compact set which contains a neighborhood V of z.

C'is compact and X is Hausdorff, therefore C' is closed. Tt follows that C' — U = C' N (X = U) is closed;
since it’s a subset of the compact set C, C'— U is compact. Note that € U, so ¢ C' — U.

I showed earlier that in a Hausdorff space, a compact set and a point not contained in it may be
separated by disjoint open sets. Thus, I may find disjoint open sets W7 and W5 such that C'— U C W; and
x e Ws.

U

W,

W

Next, I'll show that W5 NV is compact. C is a closed set containing V, so V C C. But Won'V C V,
so WonNV CV CC. Now Wy NV is a closed subset of the compact set C', so Wy NV is compact.

Moreover, Wo NV C Wy C X — Wy, X — Wy is closed, so Wo NV C X — W;. Since Wy NV does not
meet Wi, and since C'— U C Wy, it follows that W5 NV does not intersect ' — U. But Wy NV is a subset
of C,soWonNV CU.

Thus, W2 NV is a neighborhood of « with compact closure whose closure is contained in U. 0O

Corollary. Let X be a locally compact Hausdorff space, and let Y be a subspace of X. If Y is open or closed
in X, then Y is locally compact.



Proof. Suppose Y is open in X. Let z € Y. By the preceding result, I may find a neighborhood U of z such
that U is compact and U/ C Y. Note that U is automatically open in Y. Thus, z is contained in a compact
set which contains a Y-neighborhood of . Therefore, Y is locally compact.

Suppose Y is closed. Let y € Y, and let C be a compact set containing a neighborhood U of y. C'is
closed, since X is Hausdorff; therefore, C'NY is a closed subset of C'. Since C'is compact, C'NY is compact.
Moreover, C'NY contains U N'Y, which is a neighborhood of y. Therefore, Y 1s locally compact. 0O

Example. Let S denote the topologist’s sine curve

S:{(x,sinl) ‘0<x§1}.
T

Let X =SU{(0,0)}. X is not locally compact.
Take a ball B((0,0);¢) about the origin. Consider the intersection of X with the line y = % The

intersection is an infinite sequence of points with all but finitely many terms lying inside B((0,0);¢). The
€ N .
sequence converges to (0, 5), which is not in X.

If there is a compact set ' in X containing a neighborhood of (0, 0), then that neighborhood contains
B((0,0);¢) N X for e sufficiently small. By the argument above, such a neighborhood contains an infinite
subset of X with no limit point. The same is true for C, which contradicts the fact that compact sets are
limit point compact. 0O

It is often useful to embed a space in a compact Hausdorff space, because compact Hausdorff spaces
are very nicely behaved. For example, I'll show later that compact Hausdorff spaces are normal: Any two
disjoint closed sets can be separated by disjoint open sets. If a space is locally compact Hausdorff, 1t can be
embedded in a compact Hausdorfl space called the one-point compactification.

Lemma. Let X be a locally compact Hausdorfl space. Define Y = X U {co}, where oo is a point not in X.
Let 7 be the collection of subsets of Y consisting of:

1. Any open subset of X.
2. The complement in Y of a compact subset of X.
Then 7 is a topology on Y.
(Y, 7T) is called the one-point compactification of X.

Proof. (§ is open in X, so it’s open in Y. § is compact,so Y =Y — ) is open in Y.

To verify the axioms for unions and intersections, it’s necessary to take cases. I'll show the work for
unions; the proof for intersections is similar.

The union of open sets in X is open in X, so it’s open in Y.

If {C;} is a family of compact subsets of X, then

Uy -c)y=y-c.

i€l i€l

Now X is Hausdorff, so compact subsets are closed. Therefore, ﬂieI C; 1s closed. Since it’s contained
in any one of the compact sets Cj, it’s also compact. Therefore, | J;c; (Y — Cj) is the complement in Y of a
compact set in X, so it’s open in Y.

The remaining possibility is a union of sets open in X with complements of compact subsets of X. Using
the first two cases, this reduces to showing that if U is open in X and (' is a compact subset of X, then
UU(Y —C)isopeninY. But

Tuy -C)=Y - (C-U).

2



Cis closed in X, U is openin X, so C'— U is closed in X. But C'—=U C C and C'is compact, therefore
C' — U is compact. Hence, U U (Y — (') is a complement in Y of a compact set in X, so it’s open in Y. 0O

Here are some properties of the one-point compactification.
Lemma. Let X be a locally compact Hausdorff space, and let Y be its one-point compactification.

1. The subspace topology on X is the same as the original topology on X. (That is, the inclusion of X
into Y is a homeomorphism onto its image.)

2. If X is not compact, then ¥ = X.
3. Y is compact.

4. Y 1s Hausdorff.

Proof. 1. If U is open in X, then it’s open in Y by definition. Conversely, an open set in Y is either
an open set U in X (in which case UN X = U is open in X) or Y — C, where C' is compact in X. But
(Y = C)NnX = X — C, which is open inX since C is closed in X.

2. Since the only point of ¥ not in X is oo, this amounts to showing that oo is a limit point of X.
Neighborhoods of oo are sets Y — ', where (' is compact, and since X is not compact, C' # X. Thus, Y —C
must intersect X, and so co € X.

3. Let {U;}ier be an open cover of Y. One of the U’s, say Uy, must contain oo, so Uy must be a set of
the form Y — (', where C is compact in X. The sets U; N X for U; # Uy form an open cover of C; let
{U;, N X,...,U;, N X} be a finite subcover. Then {U;, ..., U; Uy} covers V.

4. Let @ and y be distinct points of Y. If they’re both in X, they may be separated by disjoint neighborhoods
in X (since X is Hausdorff), and these neighborhoods are also open in Y.

Otherwise, I'm trying to separate z € X from oo. Since X is locally compact, I may find a compact set
C containing a neighborhood U of . Then Y — C' and U are disjoint open sets in Y separating  and co. 0O

Corollary. A space X embeds as an open subset of a compact Hausdorff space if and only if X is locally
compact Hausdorff. 0O
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7-16-1999
The Countability Axioms

Definition. Let X be a topological space, and let « € X.

1. X has a countable basis at z if there is a countable collection of neighborhoods {B;};cr of  such
that if U is a neighborhood of z, then B; C U for some 1.

2. X is first countable if X has a countable basis at each point.
3. X is second countable if X has a countable basis for its topology.

Obviously, a second countable space is first countable.

. . . . 1
Example. Every metric space is first countable. If X is a metric space and # € X, then {B (x; —) ‘ ne Z"’}
n

1s a countable basis at . 0O

Example. R" is second countable, since the balls with rational centers and radii form a countable basis for
the usual topology.
On the other hand, R with the discrete topology is not second countable. 0O

Example. Consider R with the finite complement topology. Thus, the open sets are # and any set whose
complement is finite.

I claim that IR does not have a countable basis at any point. Suppose, for example, that there is a
countable basis { By, B2, ...} at 0. I claim that ();=, B; = {0}. Clearly, 0 is in the intersection; I must show
that no nonzero point is in the intersection.

Suppose that @ # 0. The complement of R — {x} is finite, so it’s an open set containing 0. Hence,
B; C R —{«} for some i. Then z ¢ B;, so = ¢ ()=, Bi.

Thus,

oQ

}R—{O}:R—ﬁBi:U(}R—Bi).

i=1 i=1

Each set B; is finite, so | J;=, (R — B;) is countable. But IR is uncountable, so R — {0} is uncountable.
This contradiction shows that there is no countable basis at 0; obviously, the argument works for any = € R.
Thus, R is not first countable (or second countable) in the finite complement topology. [

The following results were proved for metric spaces. An examination of the proofs shows that they only
depended on the fact that metric spaces are first countable.

Theorem. Let X and Y be topological spaces, and suppose X 1is first countable.
1. Let A C X. 2 € Aif and only if there is a sequence of points of A converging to z.

2. Let f: X =Y. fis continuous if and only if whenever {z,} is a convergent sequence in X, {f(z,)} is
a convergent sequence in Y. 0O

Proposition.

1. A subspace of a first countable space is first countable.

1



2. A countable product of first countable spaces is first countable.
3. A subspace of a second countable space is second countable.
4. A countable product of second countable spaces is second countable.

Proof. 1. Suppose X is first countable, and suppose Y is a subspace of X. Let y € Y. Let {By, Ba,...} be
a countable basis at y in X. Then {B; NY, B> NY,...} is a countable basis at y in V.

2. Suppose X1, Xs, ... are first countable spaces. Let (x,) € Hzozl X,. Let B, be a countable basis for z,
in X,,. Consider the collection ¢ of product neighborhoods Hzozl U,, where U, = X, for all but finitely
many n, and if U, # X,,, then U, € B,. Then U is a countable basis at (z,) in []>—; X,, so [[o; X, is
first countable.

3. Suppose X is second countable, and suppose Y is a subspace of X. Let {Bj, Bs, ...} be a countable basis
for the topology on X. Then {B; NY, B> NY, ...} is a countable basis for the subspace topology on Y.

4. Suppose Xi,Xs,... are second countable spaces. Let B, be a countable basis for the topology on
X,,.Consider the collection U of product neighborhoods [[_, U,, where U, = X,, for all but finitely many
n, and if U, # X,, then U, € B,. Then U is a countable basis for the product topology on Hzozl X, so
[T, X, is second countable. O

n=1
Definition. Let X be a topological space.
1. X is Lindelof if every open cover of X has a countable subcover.

2. X is separable if X has a countable dense subset.

Example. Any compact space is Lindelof, since every open cover has a finite subcover. [

Example. R is separable, since Q is a countable dense subset of R. 0

Proposition. Let X be a second countable topological space.
1. X 1is Lindelof.
2. X 1is separable.

Proof. 1. Let U be an open cover of X. Let {Bj, B, ...} be a countable basis for X. For each n € 7T let
U, ={U el | B, CU}.

Next, for each nonempty U,,, choose V,, € U,.

For each # € X, there is a U € U such that # € U. Moreover, there is a basis element B, such that
x € B, C U. Then U, is nonempty, so V,, is defined, and x € B,, C V,,.

Now x was an arbitrary point of X, so the collection {V,,} covers X. {V},} is a countable subcover of .

2. Let {B1, Ba,...} be a countable basis for the topology of X. Choose x, € B, for each n € Z*. Then
{x,} is a countable dense subset of X. 0O
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7-19-1999
The Separation Axioms

Definition. Let X be a space in which singletons are closed.
1. X 1s regular if a closed set and a point outside it can be separated by disjoint open sets.

2. X is normal if disjoint closed sets can be separated by disjoint open sets.

: [ ]

regular

— [

Obviously, a normal space is regular, and a regular space is Hausdorff.

Terminology. Recall that a Hausdorff space is also known as a T, space.

X is a Tp space if given distinct points «, y, there is a neighborhood U such that either # € U and y ¢ U
oryelUand z ¢ U.

X is a Ty space if given distinct points «, y, there are neighborhoods U of # and V of y such that y ¢ U
and x ¢ V.

X is a T,1 space if distinct points have neighborhoods whose closures are disjoint.

If you don’t require that points be closed, then a space in which disjoint points and closed sets can be
separated is T3, and a space in which disjoint closed sets can be separated is T}.

Lemma. Let X be a space in which singletons are closed.

L. X is regular if and only if for all # € X and every neighborhood U of z, there is a neighborhood V' of
x such that V C U.

2. X is normal if and only if for every closed subset A of X and every open set U containing A, there is
an open set V containing A such that V C U.

Proof. 1. Suppose X 1is regular, # € X, and U is a neighborhood of . Then X — U is a closed set disjoint
from z, so by regularity I may find disjoint open sets V' containing z and W containing X — U.

In particular, x € V C X — U; since X — U is closed, V C X — U.

Conversely, suppose that for all # € X and every neighborhood U of z, there is a neighborhood V of z
such that V C U. Let # € X and let C be a closed set which does not contain .

X —(C'is an open set containing z, so there is a neighborhood V of # such that V' C X —C. Then X -V
is an open set containing C'; and it is disjoint from the open set V' containing «. Therefore, X is regular.

2. The proof for normality is the same as the proof for regularity, with the point # replaced with the closed
set A. 0O

Corollary. If X is a regular space, then X is a Tz% space.

Proof. Suppose X is regular. Let x and y be distinct points in X. Points in X are closed, so X — {y} is a
neighborhood of x. By the preceding result, there is a neighborhood U of  such that U' C X — {y}. Again
by the preceding result, there is a neighborhood V' of  such that V C U.

X — U is a neighborhood of y, and X — U C X —U. Since X — U is closed, X —U C X — U. Since
VcUand X —UC X —U,V and X — U are disjoint.

1



Thus, V is a neighborhood of #, X — U is a neighborhood of y, and their closures are disjoint. Therefore,
XisTy. 0O

Corollary. If X is a locally compact Hausdorff space, then X is regular. 0O

Example. (Irrational slope topology [1, Example 75]) Let
X=QxQ*"

the points with rational coordinates in the closed upper half-plane. Fix an irrational number 6.
If z,e € R and € > 0, define a subset of the z-axis B(z;¢) by

Bz ) ={ye Q| |z -yl <c}.
Then for (z,y) € X and € > 0, set

N{(,y), ) = {(@}UB (a =5, UB (a+5,¢).

N((z,y), €) consists of the point (x,y) together with two open e-intervals of rationals on the z-axis. The
intervals are centered at points on the z-axis which determine lines of slopes ¢ and —@ with the point (z,y).

x.y)
[ ]

Bx-yb £ ) Bx+yb &)

Note that if y = 0, N((#,y), €) reduces to an open interval of rationals about # in the z-axis. Moreover,
if z € Q, then N((z,0),¢) is a basic open set.

Define a topology by taking as a basis all the sets N((z,y),¢) for all real ¢ > 0 and all (z,y) € X. Tt’s
clear that the sets cover X.

If (a,b) € N((%,y),€1) N N((2,y), €2), then either (a,b) = (x,y) or (a,b) lies in the intersection of the
intervals in the z-axis.

In the first case, if € = min(ey, €z2), then N((z,y),€) is a basis element containing (a, ) and contained
in N((z,y),e1) " N((2,y), €2).

In the second case, (a,b) = (a,0), and (a,0) € B (x + %, 61) nB (l‘ + %, 62), and this is the intersection

of open intervals in the z-axis. Choosing a sufficiently small ¢ > 0, I may find an interval N ((a, 0), €) contained
in this intersection.

If (a,b) € N((z1,11),€1) N N((x2,y2), €2) where (x1,41) # (22,y2), then again (a,b) must lie in the
intersection of intervals in the z-axis. As before, I may find a basic interval containing z contained in the
intersection of the original intervals.

Therefore, the collections of sets N((z,y),¢) for all real € > 0 and all (#,y) € X forms a basis.

Next, I'll show that the closures of any two basic neighborhoods must intersect.

What is N((z,y),€)? Tt consists of two diagonal strips of slopes # and —8 emanating from the intervals

B(x—g,e) andB(x—i—%,e).

(xY)
)

B(x-yh £ ) B(x+yh &)



To see this, observe that a basic neighborhood of a point in these strips will contain intervals in the
x-axis which intersect B (x — %, 6) or B (x + %, e).

It is clear that any two such pairs of strips must intersect. Therefore, the closures of any two basic
neighborhoods must intersect. By the result above, X is not regular. 0O

I proved a special case of the first part of the following proposition; I'm repeating the proof of the second
part for the sake of completeness.

Proposition.
1. A product of Hausdorff spaces is Hausdorff.
2. A subspace of a Hausdorff space is Hausdorff.

Proof. 1. Let {X,}4ca be a family of Hausdorff spaces. Let (24), (yq) be distinct points in []
some index b, zp # yp. Choose disjoint open sets U,V C X, such that z, € U and y, € V.

Defi
cune U_{Xa ifazb o V_{Xa ifab
U ifa=b TV ifa=b
HaEA U, is a neighborhood of (x4), [] Vy, is a neighborhood of (y,), and HaEA U, and HaEA V, are
disjoint. Therefore, {X,}aca is Hausdorff.

acA X,. For

aEA

2. Let X be a Hausdorff space, and let Y C X. Let #,y € Y. Find disjoint neighborhoods U of & and V of
yin X. Then U NY is a Y-neighborhood of 2, VNY is a Y-neighborhood of y, and U NY and V Ny are
disjoint. Therefore, Y i1s Hausdorff. 0O

Proposition.
1. A product of regular spaces is regular.
2. A subspace of a regular space is regular.

Proof. 1. Let {X,}sca be a family of regular topological spaces. For each a, X, is Hausdorf{l. Therefore,
[Toca Xa is Hausdorff, so points in [, , X, are closed.

Let (x4) be a point in [],c 4 Xa. Take a neighborhood of (x,) in []
with a smaller one if necessary, I may assume that it has the form []
U, = X, for all but finitely many a’s.

Since X, is regular for each a, I may find a neighborhood V, of x4, in X, such that V,CcU,. Ifais an
index for which U, = X,, T will take V, = X, as well. Then [] Vi is a neighborhood of (x4) in [],c 4 Xa,

ac4 Xa; replacing the neighborhood

acA U, where U, is open in X, and

and el
H Va — H Va C H Ua~
a€A acA acA

It follows by an earlier result that ] X, 18 regular.

aEA

2. Let X be a regular topological space, and let Y C X. A point of Y is closed in X, so 1t 1s closed in Y.

Let z € Y, and let C' be a closed subset of Y which does not contain &. Write C' =Y N D, where D is
closed in X. Find disjoint open sets U and V' in X such that x € U and D C V. Then Y NU and Y NV are
disjoint open sets in Y, z € Y NU, and C' C Y NV. Therefore, Y is regular. 0O

Remark. The preceding results are false for normal spaces: A subspace of a normal space need not be
normal, and a product of normal spaces need not be normal.

The following results say that the class of normal spaces is large enough to contain many interesting
spaces: specifically, metric spaces, compact Hausdorff spaces, and regular spaces having countable bases.

Theorem. Every metric space is normal.



Proof. Let (X, d) be a metric space. Since metric spaces are Hausdorff, points in X are closed.

Let C' and D be disjoint closed sets in X. Since C' C X — D and X — D is open, for every z € C' I may
find an open ball B(x;¢;) contained in X — D.

By a similar argument, for every y € D, there is a ball B(y; €,) contained in X — C.

Let
U:UB(l‘;%) and V:UB(y;%y).
zeC yeD

U and V are open sets, C' C U, and D C V. I claim that U and V are disjoint.
Suppose on the contrary that z € UNV —say z € B (x; %) forz € C'and z € B (y; %y) for y € D.
Then

d(z,y) < d(x, z) +d(y, z) < %x + %y

If e, < ¢y, then

€r €y € &
d —+ 2 < 24 2 =,
By <gtysyty=a
This means that € B(y; ¢y ), so « ¢ C, contradicting the fact that x € C.
Likewise, €, < ¢, implies that d(z,y) < €, which in turns implies that y € B(z;¢€,). This means that
y & D, contradicting the fact that y € D.
This proves my claim that U and V are disjoint. Since I’ve separated the closed sets C' and D with

disjoint open sets U and V| it follows that X is normal. 0O
Theorem. A compact Hausdorff space is normal.

Proof. In a Hausdorff space, points are closed.

I need to show that disjoint closed sets can be separated by disjoint open sets. First, recall that in a
Hausdorff space, a point and a compact set that doesn’t contain it can be separated by disjoint open sets.

Let €' and D be disjoint closed subsets of the compact Hausdorft space X. Since D is closed and X is
compact, D is compact. By the observation above, for each & € C' I may find disjoint open sets U, and V,
such that x € U, and D C V.

{Usz}eec is an open cover of C; C is compact, since it’s a closed subset of a compact space. Let

{Us,s..., Uz, } be afinite subcover of C'. Define

n

U:Ule and v:ﬁvxl.

i=1 i=1

U and V are open sets, C CU,and D C V. If ye UNV then y € U,, forsomez and y € V C V;,, so
y € Uy, NV, = 0. This contradiction shows that U/ and V' are disjoint.
Therefore, X is normal. 0O

Theorem. A regular space with a countable basis is normal.

Proof. Let X be a regular space with a coutable basis {BZ}Z T+ Since X is regular, points are closed.

Let C' and D be disjoint closed subsets of X. Let « € (. Since X — D 1s an open set containing z,
I may find a neighborhood U of « such that + € U C X — D. Next, regularity implies that there is a
neighborhood V' of # such that V' C U. Finally, there is a basis element B; containing « such that B; C V.
Now B; CV CU C X — D, so B; misses D.

Repeat this procedure for each # € C'. I wind up up with a countable subcollection {C;} of {B;} which
covers (', and which satisfies C'_jﬂ D = for all j.

Likewise, I may find a countable subcollection { Dy} of {B;} which covers D, and which satisfies DyNC' =
() for all k.

What I’d like to do 1s to take the unions of the two subcollections as my neighborhoods of C' and D, but
these unions may not be disjoint. However, since the subcollections are countable, I can inductively adjust
the subcollections to produce new subcollections whose unions will be disjoint.

4



Thus, for each j and k, define

J k
C}:Cj—UDk and D;CZD;@—UC]'.
k=1

j=1

Then let

A:DC’} and B:DD;«
j=1 k=1

I claim that A and B are disjoint open sets, C' C A, and D C B.

Each C% and each Dj is open, since each is an open set minus a closed set. Therefore, A and B are
unions of open sets, so they are open.

The union of the C}’s contains C. This is not changed by subtracting Dj’s, because these sets missed
C anyway. Therefore, A = U;ozl C’} contains C'. Similarly, B contains D.

Finally, I’ll show that A and B are disjoint. Suppose y € AN B. Then y € C’} N Dy, for some j and k.
Without loss of generality, suppose that j < k. Now y € (7 implies y € Cj, but y € D} implies y ¢ Cj for
j < k. This contradiction proves that A N B = .

Therefore, A and B are disjoint neighborhoods of ' and D, and X is normal. 0O

[1] Lynn A. Steen and J. Arthur Seebach, Counterexamples in Topology. New York: Holt, Rinehart, and
Winston, Inc., 1970. [ISBN 0-03-079485-4]
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7-22-1999
Urysohn’s Lemma

Urysohn’s lemma is often expressed by saying that disjoint closed sets in a normal space can be
separated by a continuous function — that is, there is a continuous, real-valued function which is 0 on one
of the closed sets and 1 on the other.

Note that if A and B are disjoint closed sets in a topological space X, then X — B is an open set
containing A. Conversely, if A is closed and U is an open set containing A, then A and X — U are disjoint
closed sets.

Thus, Urysohn’s lemma can be expressed in another form: In a normal space, given a closed set and an
open set containing it, there is a continuous, real-valued function which is 0 on the closed set and 1 outside
the open set. It is this version that I’ll prove; the discussion above shows that the other version is an easy
corollary.

The idea is that, for such a function to exist, there should be “level sets” — a set where the function is

1 A 1 .
equal to 17 set where the function is equal to > and so on from 0 to 1. Going the other way, maybe I can

define such a function by constructing the level sets.

1/4

172
3/4

There are various ways of constructing the level sets; they differ in the way they index the level sets. 1
will take the approach of [1] and [2], which index the level sets using the dyadic rationals in [0, 1] — the

rationals which can be written in the form on- The first step is to show that, given an appropriate collection

of such level sets, one may define a continuous function by using the level set indices in the obvious way.

Lemma. Let X and Y be topological spaces, let f: X — Y and let & be a subbasis for the topology on Y.
[ is continuous if and only if f=1(U) is open in X for every U € S.

Proof. Since subbasic sets are open, if f is continuous, then f=1(U) is open in X for every U € S.

Conversely, suppose that f=1(U) is open in X for every U € 8. An arbitrary open set in Y is a union
of finite intersections of elements of S. Since f~! preserves arbitrary unions and arbitrary intersections, the
inverse image of an arbitrary open set in Y is open in X. Therefore, f is continuous. 0

Lemma. Let X be a topological space, and let
k
S = ﬁwnzm 0<k<2b.

Suppose that for each s € S, there is an open set U, in X such that if r,s € S and » < s, then U, C U,.
The function f: X — R defined by

_Jinfp{reS|zel,} ifzecl
f($)_{1 if z ¢ Uy

1s continuous.



Note that some elements of S are represented by more than one fraction of the form on but repetitions

are eliminated by implication, since S is a set.

Proof. The open rays (—o0,a), (b, +00) for a,b € R form a subbasis for the standard topology on R. Tt
therefore suffices to show that f=!((—cca)) and f=1((b, +0c0)) are open for all a,b € R.

Consider the set f~1((—oc,a)). The range of f lies in [0,1]. Thus, if @ > 1, then f=1((—o00,q)) = X,
and if a < 0, then f=1((—o00,a)) = 0. In either case, f~1((—o0,a)) is open.

Suppose then that 0 < a < 1. T will show that f=!((—c0, a)) = Ur<a Ur-

Let € f~1((—00,a)), so f(x) < a < 1. Since f(z) is the greatest lower bound of the indices r such
that @ € U,, and since f(x) < a, there is an index r < a such that x € U,. Hence, = € |, ., U;.

Conversely, suppose # € |J._, Uy. Suppose & € U, where r < a. Then f(z) < r < a, s0 ¢ €
P (=50,0)).

Thus, f~}((—c0,a)) = U, <o Ur, 50 J=H((=00,a)) is open.

Now consider the set f71((b,+00)). The range of f lies in (—co, 1]. Thus, if b > 1, then f=!((b, +o0)) =
@, and if b < 0, then f=1((b,+00)) = X. In either case, f=1((b,+o0)) is open.

Suppose then that 0 < b < 1. T will show that f=1((b, +o0)) = Upsp (X — U,).

Let z € f~1((b,+00)), so f(x) > b. Since in addition b < 1, I may find r,s € S such that b < r < s <
f(x); by construction, U, C Us. Since f(x) is the greatest lower bound of the indices ¢ such that x € U,
and since f(x) > s, it follows that « ¢ U,. Hence, x ¢ U,,s0 t € X — U,, and = € U, sp(X — U,).

Conversely, suppose z € ., (X — U,). Suppose x € X — U,, where r > b. Then f(z) ¢ U,, so the
fact that the U’s are nested implies that f(z) ¢ U, for all s € S with s < r. Therefore, f(z) > r > b, so
£ € F1((b,+20)). -

Thus, f=1((b, +o0)) = U, s (X = U,), s0 J=1((b, +00)) is open.

Therefore, f is continuous. 0

rla

Theorem. (Urysohn’s Lemma) Let X be a normal space, let C' be a closed subset of X, and let U/ be an
open set containing C'. There is a continuous function f : X — [0, 1] such that f(C) =0 and f(X —U) = 1.

Proof. I'll define a sequence of sets U, indexed by
S:{Qﬁn‘nzo, 0§k§2”}

and satisfying U, C U, for r < s. o
Let U; = U. By normality, I may find an open set Uy such that C' C Uy C Uy C Uj.
By normality, I may find an open set Uy, such that

U_0C U1/2 Cmc Uy.
By normality, I may find open sets U;,4 and Usz;4 such that
Uy C Uija C mc Uijo
and
Ui7a C Usja € Taga € Ui,
Keep going. By construction, the U’s satisfy the hypotheses of the lemma. The function f constructed

by the lemma satisfies the conclusion of the theorem. 0O

Corollary. Let X be a normal space, and let A and B be disjoint closed subset of X. There is a continuous
function f: X — [0, 1] such that f(A) =0 and f(B) =1. O

[1] Glen Bredon, Topology and GeometryNew York: Springer-Verlag New York, Inc., 1993. [ISBN 0-387-
97926-3].

[2] Serge Lang, Real Analysis (24 edition). Reading, Massachusetts: Addison-Wesley Publishing Company,
Inc., 1983. [ISBN 0-201-14179-5].
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7-26-1999
The Tietze Extension Theorem
The Tietze Extension Theorem says that a continuous real-valued function on a closed subset of
a normal space may be extended to the entire space. I'll show that this extension condition is essentially
equivalent to normality.

The construction of the extension involves building a sequence of functions whose sum agrees with the
given function on the subspace.

Lemma. Let X be a normal space, let A be a closed subset of X and let f : A — R be a continuous function
satisfying |f(z)] < ¢ for all z € A and some ¢ € R. Then there is a continuous function g : X — R such that

1
1. Jg(z)] < 3° for all z € X.

2. |f(x) —g(z)] < %c for all z € A.

() (o)

are disjoint closed sets in A; since A is closed, these sets are also closed in X. By Urysohn’s lemma, I may

Proof. The sets

11
find a continuous function g : X — [—gc, gc] such that

()b o o ()

1
By construction, |g(z)| < 3¢ for all z € X.
1 1 2
Now consider cases. If —¢ < f(z) < ~3% then g(z) = —3¢ 80 |f(z) — g(x)] < 3¢

It %c < f(#) < e, then g(z) = %c, so |f(x) —g(x)| < se.

[SCR N )

2
e, T again have |f(z) — g(2)| < 3¢ 0

Lo —

1 1 1
Finally, suppose —3¢ < flz) < 3¢ Since —3¢ <g(z) <
Theorem. Let X be Hausdorff. The following are equivalent:

1. X 1s normal.

2. If A 1s a closed subset of X, any continuous function f : A — R extends to a continuous function
F: X >R

To say that F extends f means that F|, = f.
Remark. R may be replaced by a closed interval [a, b].

Proof. (2 = 1) Suppose that if A is a closed subset of X, any continuous function f : A — R extends to a
continuous function F': X — R. Let C' and D be disjoint closed subsets of X. Define f : CUD — R by

(0 ifzeC
f(x)_{1 ifreD

C' U D is closed, so by assumption, I may extend f to a function F' : X — R. Pick disjoint open sets U
and V in R such that 0 € U and 1 € V. Then F~*(U) and F~1(V) are disjoint open sets in X, C'C F~}(U),
and D C F~Y(V). Therefore, X is normal.



(1 = 2) Suppose first that |f(z)| < ¢ for all # € A and some ¢ € R. T'll extend f to F': X — R such that
[F(x)] < e
By the Lemma, I may find a continuous function gy : X — R such that

¢ forall =€ X,

IA

lgo(z)]

[f(x) — go(x)] ¢ forall ze& A.

IA
ISy NCRICT I

Next, apply the Lemmato f — gy : A — R to find a function g; : X — R such that

2
lg1(z)] < 3¢ for all =€ X,

LN W =

|f(z) — go(x) — g1(2)]| < ~§c for all =€ A.

Suppose n > 1 and g,_1 : X — IR has been defined and satisfies

1 o/2\"!
lgn-1(2)| < =+ [ = ¢ forall ze€X,
-3 3
2 n
|£(2) — go(2) — g1(x) — - — gn_1(2)]| < (5) ¢ forall ze A

|gn(x)|§%<§) ¢ forall zeX,
n+1
&) = ao(e) = gs) =~ (el < (2) e forall sea

I want to define F(z) = Zgn(x) I must show that this series converges. To see this, note that
n=0
1 /2\" =1 2\ . . . -
lgn ()] < 3\3) © and that Z 3 \y) cisa convergent geometric series. Therefore, >~  g,(2)
n=0

converges absolutely by direct comparison.
Next, I want to show that F'(x) is continuous. Let # € X, and let

sk(2) = 3 gal)

be the £*® partial sum.

If £ > j, then
k j k k Eo 9\ "
IEECICIE) SIABED SPRCIE D St D SRTABTED S N E) S
n=0 n=0 n=j+1 n=j+1 n=j+1
2\~

L /oNdtE RTUED sonn | son il 1—<§) 9\ i+1 9\ k+1

s G X () =5G) - | T G -G) )
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Fix j and let & — co:
o\ J+1
re-s@i<(3) e

Since the right side goes to 0 as j — oo independent of x, it follows that the partial sums converge
uniformly to F(z). Since the partial sums are continuous, it follows that F'(«) is continuous.

For x € A, I have
93\ k+1
<(s) -

As k — oo, the right side goes to 0, and the sum goes to F(z). Thus, I agrees with f on A.

Before I consider the case where f is unbounded, I need to observe something about the preceding
construction. I claim that if |f(#)] < ¢, T can construct an extension F’(z) satisfying |F'(z)| < c.

To see this, first construct F'(z) as above. Note that

ggn<x> < ggnw < i% (g): .

Let B= F~! ({—c} U{c}). This is a closed set disjoint from A, since if z € A, |F(z)| = |f(z)] < e. Let
¢ be a continuous function such that ¢(A) = 1 and ¢(B) = 0. Define F'(z) = ¢(x) - F'(x). F' still extends
f, but now |F'(z)| < c.

Now I'll consider the unbounded case where f: A — IR.

‘f(x) - ()

[F(2)] =

Let ¢ : R — (—g, g) be the arctangent function ¢ (z) = arctan . Then ¢ - f: A — (—g, g) satisfies
|- flz)| < g Construct an extension F' : X — (—g, g) Then ¢~ - F : X — R is a continuous function

which extends f. 0O
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