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These are links to PostScript files containing notes for various topics in topology.

I learned topology at M.I.T. from Topology: A First Course by James Munkres. At the time, the first 
edition was just coming out; I still have the photocopies we were given before the printed version was 
ready!

Hence, I'm a bit biased: I still think Munkres' book is the best book to learn from. The writing is clear 
and lively, the choice of topics is still pretty good, and the exercises are wonderful. Munkres also has a 
gift for naming things in useful ways (The Pasting Lemma, the Sequence Lemma, the Tube Lemma).

(I like Paul Halmos's suggestion that things be named in descriptive ways. On the other hand, some 
names in topology are terrible --- "first countable" and "second countable" come to mind. They are 
almost as bad as "regions of type I" and "regions of type II" which you still sometimes encounter in 
books on multivariable calculus.)

I've used Munkres both of the times I've taught topology, the most recent occasion being this summer 
(1999). The lecture notes below follow the order of the topics in the book, with a few minor variations.

Here are some areas in which I decided to do things differently from Munkres:

●     I prefer to motivate continuity by recalling the epsilon-delta definition which students see in 
analysis (or calculus); therefore, I took the pointwise definition as a starting point, and derived 
the inverse image version later. 

●     I stated the results on quotient maps so as to emphasize the universal property. 
●     I prefer Zorn's lemma to the Maximal Principle; for example, in constructing connected 

components, I use Zorn's lemma to construct maximal connected sets. 
●     I did Tychonoff's theorem at the same time as the other stuff on compactness. The proof for a 

finite product is long enough that I decided to save some time by omitting it and just doing the 
general case. 

●     It seems simpler to me to do Urysohn's lemma by indexing the level sets with dyadic rationals in 
[0,1] rather than rationals. 

●     How do I view/print the notes? 
●     How may I use/distribute the notes? How did you write them? 
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Review� Set Theory� Functions� and Relations

This is a brief review of material on set theory� functions� and relations� I�ll concentrate on things which
are often not covered �or given cursory treatment	 in courses on mathematical proof�

De�nition� Let A and B be sets� and let f 
 A� B be a function from A to B�

�� f is injective if for all a�� a� � A� f�a�	 � f�a�	 implies a� � a��

�� f is surjective if for all b � B� there is an element a � A such that f�a	 � b�


� f is bijective if f is injective and surjective�

De�nition� Let f 
 A� B be a function� Let B� � B�

�� The image of f is the set
f�A	 � ff�a	 j a � Ag �

�� The inverse image of B� is the set

f���B�	 � fa � A j f�a	 � B�g �

Remark� f is surjective if and only if f�A	 � B�

Example� �a	 Let f 
 A � B and g� h 
 B � C be functions� Suppose that f is surjective and g � f � h � f �
Prove that g � h�

Let b � B� I must show that g�b	 � h�b	�
Since f is surjective� I may �nd an element a � A such that f�a	 � b� Then g � f � h � f implies that

g�f�a		 � h�f�a		� so g�b	 � h�b	�

Therefore� g � h�

�b	 Let f 
 A� B� Suppose that for all g� h 
 B � C� if g � f � h � f � then g � h� Prove that f is surjective�

First� I�ll take care of the cases where A � � or A contains a single element�
If A � � and B � �� then f is vacuously surjective
 Every element of B �there are none	 is an image of

an element of A�
If A � � and B �� �� then B contains at least one element b� De�ne g 
 B � f�� �g by g�b	 � � and

h 
 B � f�� �g by h�b	 � �� It is vacuously true that g�f�a		 � h�f�a		 for all a � A �since there are no a�s
in A	� but g �� h� Therefore� the hypothesis isn�t satis�ed� and this case is ruled out�

Suppose A consists of a single element a� If B � �� then f is vacuously surjective� If B consists of a
single element� then f is obviously surjective�

Finally� suppose that B contains more than one element� f�a	 is an element of B� suppose that b� � B
and b� �� f�a	� Consider the functions g� h 
 B � B given by

g�b	 � b for all b � B�

h�b	 �

�
b if b �� b�
f�a	 if b � b�

�

Then g�f�a		 � f�a	 � h�f�a		� so g � f � h � f � However� g �� h� Therefore� the hypothesis isn�t
satis�ed� and this case is ruled out�

�



This concludes the proof for the trivial cases�
Assume that A contains more than one element�
Suppose� on the contrary� that f�A	 �� B� I�ll show that the hypothesis is violated�
If b � f�A	� choose an element ab � A such that f�ab	 � b� Since A contains more than one element� I

may �nd elements a�� a� � A such that a� �� a�� De�ne g� h 
 B � A by

g�b	 �

�
ab if b � f�A	
a� if b �� f�A	

and g�b	 �

�
ab if b � f�A	
a� if b �� f�A	

�

If a � A� then f�a	 � f�A	� so
g�f�a		 � af�a� � h�f�a		�

Thus� g � f � h � f �
However� since f�A	 �� B� there is an element b� � B � f�A	� For this element� g�b�	 � a�� but

h�b�	 � a�� Therefore� g �� h�
This proves that the hypothesis is violated� This contradiction in turn establishes that f�A	 � B� so f

is surjective�

Remark� This result is often expressed by saying that surjective functions are right�cancellable� The dual
result is also true
 Injective functions are left�cancellable�

Example� Let f 
 A� B� and suppose that B�� B� � B� Prove that f���B� �B�	 � f���B�	 � f���B�	�

Suppose a � f���B� �B�	� Then f�a	 � B� �B�� so f�a	 � B� or f�a	 � B��
If f�a	 � B�� then a � f���B�	� so a � f���B�	 � f���B�	� If f�a	 � B�� then a � f���B�	� so

a � f���B�	 � f���B�	�
Therefore� a � f���B�	 � f���B�	� so f���B� �B�	 � f���B�	 � f���B�	�
Conversely� suppose that a � f���B�	 � f���B�	� so a � f���B�	 or a � f���B�	�
If a � f���B�	� then f�a	 � B�� so f�a	 � B� �B�� and hence a � f���B� �B�	� If a � f���B�	� then

f�a	 � B�� so f�a	 � B� �B�� and hence a � f���B� �B�	�
Therefore� a � f���B� �B�	� so f���B�	 � f���B�	 � f���B� �B�	�
This proves that f���B� �B�	 � f���B�	 � f

���B�	�

De�nition� Let A be a set� A relation � on A is a simple order �or linear order	 if


�� �Comparability	 For all a� b � A� exactly one of the following is true
 a � b� b � a� or a � b�

�� �Nonre�exivity	 There is no element a � A such that a � a�


� �Transitivity	 For all a� b� c � A� if a � b and b � c�then a � c�

Example� Let � be a simple order on a set A� The dictionary order �or lexicographic order	 on A�A
is given by
 �a� b	 � �a�� b�	 if and only if

�� a � a�� or

�� a � a�� and b � b��

The words in a dictionary are ordered by their �rst letter� Among words with the same �rst letter� they
are ordered by their second letter� and so on� This explains the name of this order relation�

To give a speci�c example� in R� under the dictionary order� ��� �	 � ��� �	 and ��� �	 � ��� �	�

�



De�nition� If A is an ordered set� a� b � A� and a � b� then the open interval from a to b is the set

�a� b	 � fx j a � x � bg�

It may happen that this set is empty� In that case� since there are no elements �between� a and b� it�s
natural to say that a is the predecessor of b and b is the successor of a�

Unfortunately� ��a� b	� can mean a point in a Cartesian product or an open interval in a simple order�
To avoid confusion� I�ll sometimes write a� b for the point when both concepts occur in the same discussion�

Example� Consider the dictionary order on R�� The open interval from the point �� � to the point �� � is
the union of


�� The open ray f�� y j y � �g�

�� The lines fx� y j � � x � �g�


� The open ray f�� y j y � �g�

1 x 2

2 x 4

De�nition� Suppose A and B are sets with simple orders �A and�B � respectively� Let f 
 A � B be a
function� f is order�preserving if for all a�� a� � A�

a� �A a� implies f�a�	 �B f�a�	�

Example� With the usual order relation on R� de�ne f 
 R� R by f�x	 � x�� Then f is order�preserving�
In fact� a function R� R is order�preserving if it is an increasing function�

De�nition� Let A and B be ordered sets� A and B have the same order type if there�s an order�preserving
bijection from A to B�

De�nition� A set is well�ordered if every nonempty subset has a smallest element�

The Well�Ordering Axiom says that every set can be well�ordered� This is an axiom of set theory�
it�s equivalent to other results which can be taken as axioms� such as the Axiom of Choice and Zorn�s

lemma�
Well�ordering means that for a given set� there is some order relation on the set relative to which the

set is well�ordered� That well�ordering will usually have little to do with familiar order relations�






De�nition� Let A be an ordered set� and let B � A�

�� c � B is the largest element of B if b � c for all b � B� b �� c�

Likewise� c � B is the smallest element of B if c � b for all b � B� b �� c�

�� An element a � A is an upper bound for B if b � a for all b � B� b �� a� If B has an upper bound� B
is bounded above�

Likewise� an element a � A is a lower bound for B if a � b for all b � B� b �� a� If B has a lower
bound� B is bounded below�


� If the set of upper bounds of B is nonempty� then the smallest element of that set is the least upper
bound for B� It is denoted lubB or supB�

Likewise� if the set of lower bounds of B is nonempty� the largest element of that set is the greatest
lower bound for B� It is denoted glbB or infB�

�� A set has the least upper bound property if every nonempty subset that is bounded above has a
least upper bound�

A set has the greatest lower bound property if every nonempty subset that is bounded below has
a greatest lower bound�

Example� The real numbers with the usual ordering satisfy the least upper bound property� In fact� it is
one of the axioms for the real numbers�

Mathematics is based on a collection of axioms for set theory� They are called the Zermelo�Fraenkel

Axioms with the Axiom of Choice �often abbreviated to ZFC	�

While the Axiom of Choice is accepted and used by most mathematicians� the situation was di�erent
earlier in this century� Some mathematicians felt that the Choice Axiom was problematic and refused to use
it� others took care to note when they used the Choice Axiom in a proof� Many of the objections stemmed
from the often startling results which can be proved using the axiom�

Axiom of Choice� Let fXag be a collection of disjoint nonempty sets� There exists a set X containing
exactly one element from each Xa�

The Axiom of Choice is equivalent to the Well�Ordering Axiom� and also to an important result known
as Zorn�s lemma� The statement of Zorn�s lemma requires some preliminaries�

De�nition� A relation 	 on a set X is a partial order if


�� �Re�exivity	 x 	 x for all x � X�

�� �Antisymmetry	 If x 	 y and y 	 x� then x � y�


� �Transitivity	 If x 	 y and y 	 z� then x 	 z�

Example� The set of subsets of a set is partially ordered by inclusion�

Example� The usual �less than or equal to� relation 	 on R is a partial order�

�



De�nition� Let X be a partially ordered set�

�� A subset Y � X is totally ordered �or linearly ordered	 if for all x� y � Y � either x 	 y or y 	 x�

A totally ordered subset is also said to be a chain�

�� If Y � X� then Y has an upper bound if there is an element x � X such that y 	 x for all y � Y �


� An element x � X is maximal if y � X and x 	 y implies x � y�

Zorn�s Lemma� If X is a nonempty partially ordered set in which every chain has an upper bound� then
X has maximal elements�

Zorn�s lemma is an immensely useful form of the Axiom of Choice� For example� you may have seen a
proof that every �nite�dimensional vector space has a basis� Zorn�s lemma can be used to show that every

vector space has a basis�

Example� Let G be a group and let g � G� g �� �� There is a subgroup H � G such that g �� H and H is
maximal among subgroups with this property�

Let S be the collection of subgroups of G which do not contain g� S �� �� since f�g � S� S is partially
ordered by inclusion�

Let T be a chain in S� Let
H� �

�
H�T

H�

Thus� H� is just the union of all the elements of the chain�
I claim that H� is a subgroup of G which does not contain g�
First� � � H for all H � T � so certainly � � H��
If h� h� � H�� then h � H and h� � H� for some H�H � � T � But T is a chain� so either H � H� or

H� � H�
Suppose H � H�� Then h� h� � H �� so �since H � is a subgroup	 hh��� � H�� Therefore� hh��� � H�� and

hence H� is a subgroup�
If g � H�� then g � H for some H � T � But H � S� so g �� H by de�nition of S� Therefore� g �� H��
I�ve shown that H� is a subgroup of G which does not contain g� so H� � S� Since H � H� for all

H � T � it follows that H� is an upper bound for T in S�
Since every chain has an upper bound� Zorn�s lemma implies that S has a maximal element H� Then

H is a subgroup of G which is maximal among subgroups which do not contain g�

c
���� by Bruce Ikenaga �
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Topological Spaces

A function f � R� R is continuous at x � a if and only if

For every � � �� there is a � � � such that if � � jx� aj � �� then � � jf	x
� f	a
j�

In words�

You can make f	x
 arbitrarily close to f	a
 by making x su�ciently close to a�

Continuity is important in analysis and calculus� The idea of 
closeness� is an important part of the
de�nition of continuity� What would 
closeness� mean in an abstract setting � one in which there�s no way
to measure the distance between two points�

A topology for a space is� roughly speaking� a speci�cation of all �closeness relations� in the space�

De�nition� Let X be a set� A topology on X is a collection T of subsets of X satisfying the following
conditions�

�� � � T and X � T �

�� The union of elements of T is an element of T �

�� The �nite intersection of elements of T is an element of T �

The elements of T are called open sets� The set X together with the topology T is a topological

space�

Example� If X is a set� take D to be P	X
� the power set of X� 	Recall that P	X
 is the set of all subsets
of X�


D is clearly a topology on X� it is called the discrete topology� In the discrete topology� all subsets
are open�

The other extreme is the indiscrete topology on X� In this case� I � f�� Xg� Again� it is clear that
this is a topology on X�

De�nition� If T� and T� are topologies on a set X� then T� is �ner than T� 	or T� is coarser than T�
 if
T� � T�� In other words� �ner topologies contain more open sets�

Thus� if D is the discrete topology on X� then D is �ner than any other topology on X� If I is the
indiscrete topology on X� then I is coarser than any other topology on X�

It is� of course� possible for two topologies on X to be incomparable� i�e� neither may be �ner than the
other�

Analysts often refer to 
stronger� and 
weaker� topologies� but their usage is often at variance with the
usage of topologists�

Example� Let X � f�� �� �g� and consider the following topologies on X�

T� � f�� f�g� f�g�f���g�Xg�

T� � f�� f�g� f�� �g� Xg�

T� � f�� f�� �g� Xg�

T� � f�� f�� �g� Xg�

�
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1

2

3

4

Then T� is �ner than T�� and T� is �ner than T�� On the other hand� T� is not comparable with the
other three�

As this example shows� topology does not necessarily concern itself with the concepts of measurement
or distance� They might not be applicable to the space under consideration�

Example� The standard topology on R is the topology whose open sets consist of arbitrary unions of open
intervals�

The empty set is considered to be a degenerate open interval� and R can be written as a union of open
intervals�

A union of unions of open intervals is a union of open intervals�
It remains to show that this topology is closed under �nite intersections� It�s fairly obvious that two

open intervals either do not intersect� or intersect in an open interval� I won�t write out the details� The
general case for �nite intersections reduces to this case by distributing intersections over unions�

Example� The standard topology on Rn is obtained by starting with open balls

B	x� r
 � fy � Rn j jx� yj � rg�

	B	x� r
 is called the open r�ball centered at x�
 The open sets are arbitrary unions of open balls�
I�ll defer the veri�cation that this gives a topology� since it will follow easily once I develop the notion

of a basis�

The examples above give a typical way of de�ning a topology� Start with a collection of subsets and
then extend the collection to a topology by taking arbitrary unions� The next de�nition makes precise the
conditions I need to be able to do this�

De�nition� Let X be a set� A collection B of subsets of X is a basis if�

�� Every element of X is contained in some element of B�

�� If B�� B� � B and x � B� �B�� there is an element B� � B such that

x � B� � B� �B��

x

B1

B2

B3

�



The elements of B are called basic subsets� or basis elements�

Remark� By induction� it follows that if B is a basis� B�� � � � � Bn � B� and x � B� � � � � � Bn� then there is
an element B � B such that

x � B � B� � � � � �Bn�

Example� The open intervals in R form a basis�
If x � R� then x � 	x� �� x� �
 	for instance
�
If x is contained in the intersection of two open intervals� the intersection is itself an open interval which

contains x and is contained in the intersection�
The open balls B	x� r
 in Rn form a basis� Obviously� every point in Rn is contained in some open ball�
Take open balls B	x�� r�
 and B	x�� r�
� Assume that they intersect� and let x � B	x�� r�
 �B	x�� r�
�

I have to �nd an open ball centered at x which is contained in the intersection�
Let s� � r� � jx� x�j� Then B	x� s�
 � B	x�� r�
�

x1

x

| x - x  |1

r  - | x - x  |1 1

B(x  ; r  )1 1

Likewise� let s� � r� � jx� x�j� Then B	x� s�
 � B	x�� r�
�
Therefore� if I let r � min	s�� s�
� then

B	x� r
 � B	x�� r�
 �B	x�� r�
�

This shows that the open balls in Rn form a basis�

Proposition� Let X be a set� and let B be a basis� De�ne T to be the collection of subsets U � X satisfying
the following property�

U � T if and only if for all x � U � there is an element B � B such that x � B � U �

Then T is a topology on X�

T is the topology generated by the basis B�

Proof� The empty set is in T � it satis�es the de�ning condition vacuously� since it has no elements�
X � T � If x � X� the �rst axiom for a basis implies that there is an element B � B such that x � B � X�
Let fUag be a collection of elements of T � I need to show that the union U �

S
a
Ua is in T �

Let x � U � Then x � Ua for some a� Since Ua � T � there is an element B � B such that x � B � Ua�
Then

x � B � Ua � U�

Hence� U � T �

�



Let V�� � � � � Vn � T � I must show that V �
T
n

i��
Vi is in T � Let x � V � Then x � Vi for all i� Since

Vi � T � for each i I may �nd an element Bi � B such that x � Bi � Vi� By the remark above� I may �nd an
element B � B such that x � B �

Tn

i��
Bi� Then

x � B �
n�

i��

Bi �
n�

i��

Vi � V�

Hence� V � T �
Therefore� T is a topology�

Notice that elements of a basis are automatically elements of the topology they generate� Basic sets are
open�

De�nition� If T is a topology and B is a basis� then B is a basis for T if the topology generated by B is
the same as T �

Lemma� Let X be a set� B a basis� and T the topology generated by B� Then T is equal to the collection
of all unions of elements of B�

Proof� Since basis elements are open� unions of basis elements are open� Therefore� the collection of all
unions of basis elements is contained in T �

Conversely� let U � T � I must express U as a union of basis elements� For each x � U � �nd a basis
element Bx such that x � Bx � U � Then U �

S
x�U

Bx�

Here are two more facts about bases� The proofs are straightforward�

�� Let T� and T� be topologies on X generated by bases B� and B�� respectively� Then T� is �ner than T�
if and only if for every U � B� and x � U � there is an element V � B� such that x � V � U �

�� Given a topology T on X� a subcollection B of open sets is a basis for T if for all U � T and x � U �
there is an element B � B such that x � B � U �

It�s possible to go to a 
lower� level and generate a topology by taking unions and �nite intersections�

De�nition� If X is a set� a subbasis is a collection of subsets of X whose union is X�

Proposition� If S is a subbasis in X� the collection of all unions of �nite intersections of elements of S is a
topology on X�

Proof� Let T denote the collection of all unions of �nite intersections of elements of S�
The union of the elements of the subbasis is X� so X � T � Taking the empty union gives the empty set�

so � � T �
The union of unions of �nite intersections of elements of S are unions of �nite intersections of elements

of S� so such a union is an element of T �
The veri�cation that T is closed under �nite intersections is routine� using the fact that intersections

distribute over unions� I�ll omit the details�

Example� 	Order topologies
 Let X be a set linearly ordered by a relation �� Consider the following
collection of subsets of X�

�� All intervals �s� b
� where b � s and s is the smallest element of X 	if there is one
�

�� All intervals 	a� l�� where a � l and l is the largest element of X 	if there is one
�

�� All intervals 	a� b
� where a � b�

I claim that this collection is a basis�

�



First� if x � X� I must �nd an element of the basis containing x� If x is the largest element� take an
interval of the form 	a� x�� if x is the smallest element� take an interval of the form �x� b
� If x is neither
largest nor smallest� I may �nd a� b such that a � x � b� Then x � 	a� b
�

To verify the second axiom for a basis� just observe that the intersection of two intervals is either empty�
or an interval�

The topology generated by this basis is called the order topology� On R� for instance� this topology
is the standard topology�

Example� 	Partition topologies
 Let X be a set� and let P be a partition of X� Then P is a basis� the
union of the sets in the collection is X� and since the sets do not intersect� the second basis axiom is satis�ed
vacuously�

The topology generated by P is called the partition topology on X� The open sets are unions of
partition elements�

Note that if the partition consists of X itself� the partition topology is the indiscrete topology on X�
And if the partition elements are the points of X� the partition topology is the discrete topology�

Example� 	Product Topology
 Suppose 	X�S
 and 	Y� T 
 are topological spaces� 	That is� S is the
topology on X and T is the topology on Y �


De�ne a basis on the product X � Y by

B � fU � V j U � S� V � T g �

I need to verify that this is a basis�
First� if 	x� y
 � X � Y � �nd open sets U � X� V � Y such that x � U � X and y � V � Y � Then

	x� y
 � U � V � B�
Now let U� and U� be open in X� and let V� and V� be open in Y � Suppose that

	x� y
 � 	U� � V�
 � 	U� � V�
�

Note that
	U� � V�
 � 	U� � V�
 � 	U� �U�
 � 	V� � V�
�

Find open sets U � X and V � Y such that x � U � U� � U� and y � V � V� � V�� Then U � V � B�
and

	x� y
 � U � V � 	U� � U�
� 	V� � V�
�

Therefore� B is a basis�
The topology generated by B is the product topology on X � Y �
In fact� if C is a basis for the topology on X and D is a basis for the topology on Y � then

E � fU � V j U � C� V � Dg

is a basis for the product topology on X � Y �
For instance� give R the standard topology generated by the open intervals� Then the product topology

on R� is generated by products of open intervals� i�e� open rectangles� In fact� this topology is the same
as the topology generated by open balls� This will follow from the next lemma� which gives an easy way of
telling when two topologies are the same�

Lemma� Let T� and T� be topologies on X� Then T� � T� if and only if for every U � T� and x � U � there
is an element V � T� such that x � V � U �

�



Proof� Suppose T� � T�� If U � T� and x � U � then U � T�� so x � U � U � and the condition holds�
Conversely� suppose that for every U � T� and x � U � there is an element V � T� such that x � V � U �
Let U be open in T�� I want to show that U � T�� For each x � U � �nd an element Vx � T� such that

x � Vx � U � Then
S
x�U

Vx � T�� but clearly
S
x�U

� U � Therefore� U � T�� Hence� T� � T��

Corollary� The product topology on R� is the same as the topology generated by the open balls�

Proof� The picture below indicates the idea�

x
x

Example� 	Subspace topology
 Let X be a topological space� and let A � X� De�ne a topology on A by
stipulating that the open sets be the intersections of open sets of X with A�

It is easy to check that this is a topology� It is called the subspace topology on A� When a subset A
of X is given the subspace topology� A is said to be a subspace of X�

It is also easy to check that if B is a basis for the topology on X� then

fU �A j U � Bg

is a basis for the subspace topology on A�

Remark� If A � X� a subset of A that is open in the subspace topology need not be open in X�
For example� consider the subset Z� R� where R has the standard topology� Then f�g is open in the

subspace topology on Z� since 	��� �
 is open in R and f�g �Z� 	��� �
�
However� f�g is not open in R� Take � � f�g� There is no open interval 	a� b
 in R such that � � 	a� b
 �

f�g�
In fact� the subspace topology on Zis just the discrete topology�

Theorem� Let X and Y be topological spaces� Let A be a subspace of X� and let B be a subspace of Y �
The product topology on A �B agrees with topology it inherits as a subset of X � Y �

Proof� Let U be open in A and let V be open in B� Thus�

U � A � U � and V � B � V ��

where U � is open in X and V � is open in Y � U � V is a basic open set in the product topology�
Now

U � V � 	A � U �
� 	B � V �
 � 	A� B
 � 	U � � V �
�

Therefore� U � V is open in the subspace topology on A �B� Thus� the product topology is contained
in the subspace topology�

Going the other way� consider a basic open set 	A�B
 � 	U �� V �
 in the subspace topology on A�B�
Then

	A �B
 � 	U � � V �
 � 	A � U �
� 	B � V �
�

This is a product of an open set in A and an open set in B� so it�s open in the product topology on
A� B�

Since an arbitrary open set in the subspace topology on A� B is a union of basic open sets� it follows
that the subspace topology is contained in the product topology�

c	���� by Bruce Ikenaga �
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Closed Sets and Limit Points

De�nition� If X is a topological space� a subset A � X is closed if X �A is open�

Example� In the standard topology on R� closed intervals are closed and points are closed�
Note� however� than points need not be closed in an arbitrary topological space�
In Rn� the closed r�ball centered at x

B�x� r� 	 fy � Rn j jx� yj � rg

is closed�

Closed sets satisfy complementary properties relative to open sets�

Proposition� Let X be a topological space�

�� X and � are closed�


� Finite unions of closed sets are closed�

�� Arbitrary intersections of closed sets are closed�

Proof� �� X is closed� since X �X 	 � is open� � is closed� since X � � 	 X is open�


� Let C�� � � � � Cn be closed� For each i� write Ci 	 X � Ui� where Ui is open� Then

X �
n�
i��

Ci 	 X �
n�
i��

�X � Ui� 	
n�
i��

�X � �X � Ui�� 	
n�
i��

Ui�

T
n

i��
Ui is open� because it�s a 
nite intersection of open sets� Therefore�

S
n

i��
Ci is closed�

�� Let fCaga�A be a family of closed sets� For each a � A� write Ca 	 X � Ua� where Ua is open� Then

X �
�
a�A

Ca 	 X �
�
a�A

�X � Ua� 	 X �

�
X �

�
a�A

Ua

�
	
�
a�A

Ua�

S
a�A

Ua is open� because it�s a union of open sets� Therefore�
T
a�A

Ca is closed�

It�s possible to construct a topology by specifying the closed sets rather than the open sets� Then you
can de
ne the open sets to be the complements of closed sets�

Example� Give R the standard topology� The intervals

�
�
�

n
�
�

n

�
for n 	 �� 
� � � � are open sets� However�

their intersection is
��
n��

�
�
�

n
�
�

n

�
	 f�g�

which is a closed subset of R�

�



Likewise� the intervals

�
�

n
�
n� �

n

�
are closed sets� However� their union is

��
n��

�
�

n
�
n� �

n

�
	 ��� ���

which is open in R�

Open sets in the subspace topology are intersections of the subspace with open sets in the big space�
The next result says that the same is true of closed sets�

Proposition� Let X be a topological space� let Y be a subspace of X� and let C � Y � C is closed in Y if
and only if C 	 Y �D� where D is closed in X�

Note that �closed in Y � means �closed in the subspace topology on Y ��

Proof� Let D be closed in X� Write D 	 X � U � where U is open in X� Then

D � Y 	 �X � U � � Y 	 Y � �Y � U ��

�If x � �X � U ��Y � then x � Y and x �� U � so x �� Y �U � This means x � Y � �Y �U �� Conversely� if
x � Y � �Y � U �� then x � Y � and x �� U since x �� Y � U � Therefore� x � X � U � so x � �X � U � � Y ��

Y �U is open in Y � so Y � �Y � U � is closed in Y �
Conversely� suppose C is closed in Y � Then Y �C is open in Y � so Y �C 	 Y �U � where U is open in

X� Hence�
C 	 Y � �Y �C� 	 Y � �Y � U � 	 �X � U � � Y�

X � U is closed in X� so C is the intersection of a closed set in X with Y �

Proposition� Let X be a topological space� let Y be a subspace of X and let Z � Y �

�� If Z is open in Y and Y is open in X� then Z is open in X�


� If Z is closed in Y and Y is closed in X� then Z is closed in X�

Proof� I�ll prove the 
rst assertion� the proof of the second is similar�
Suppose Z is open in Y and Y is open in X� Z 	 Y � U � where U is open in X� But Y is open in X�

so Z is an intersection of two open sets of X � hence� it is open in X�

De�nition� Let X be a topological space� and let Y � X�

�� The closure of Y �denoted Y or cl�Y �� is the intersection of all closed sets containing Y �


� The interior of Y �denoted �Y or int�Y �� is the union of all open sets contained in Y �

Notice that the closed set X contains every subset Y � so the intersection formed in taking the closure
is not taken over an empty collection�

Remarks�

�� The closure of a set is closed� and the interior of a set is open�


� The closure of a set is the smallest closed set containing the set� likewise� the interior of a set is the
largest open set contained in the set�

�� A set Y is closed if and only if Y 	 Y � a set Y is open if and only if Y 	 �Y �






Example� In the standard topology on R� the closure of �a� b� is �a� b� and the interior of �a� b� is �a� b��
More interestingly� Q 	 R� �A set whose closure is the whole space is said to be dense� thus� the

rationals are dense in the reals��

Example� The closure of even a single point can be quite large� For example� give Zthe topology whose
open sets are the open intervals ��n� n� for n �Z�� together with � and Z�

What is the closure of f�g� The only closed sets which contain � are ZandZ� ���� ��� Now ���� �� 	
f�� g� so the intersection of these two sets is Z� f�g� Thus� the closure of a single point turns out to be
everything in Zbut ��

Lemma� Let X be a topological space� let Y be a subspace� and let Z � Y � Then

clY Z 	 Y �Z�

Here clY Z is the closure of Z in Y �with the subspace topology�� whereas Z is the closure of Z in X�

Proof� clY Z is closed in Y � so clY Z 	 C � Y � where C is closed in X� Now

Z � clY Z 	 C � Y � C�

so C is a closed set in X containing Z�
Therefore� Z � C� so

Z � Y � C � Y 	 clY Z�

Conversely� Z is closed in X and contains Z� so Z � Y is closed set in Y containing Z� Therefore�
clY Z � Z � Y �

Hence� clY Z 	 Y � Z�

Terminology�

�� If X is a topological space and x � X� a neighborhood of x is any open set containing x�

Some authors use �neighborhood� to mean a set containing x in its interior�


� If X and Y are sets� I�ll say that X intersects Y or X meets Y if X � Y �	 ��

Lemma� Let X be a topological space� and let Y � X� x � Y if and only if every neighborhood of x
intersects Y �

Proof� Suppose x � Y � Let U be a neighborhood of x� Suppose on the contrary that U � Y 	 �� Then
U � X � Y � so X � U � X � �X � Y � 	 Y �

Now X � U is a closed set containing Y � so X � U � Y � But then x � Y � X � U implies x �� U �
contrary to the assumption that U was a neighborhood of x�

Conversely� suppose every neighborhood of x intersects y� Let C be a closed set containing Y � I must
show that x � C� since C is arbitrary� this will prove that x � Y �

Suppose on the contrary that x �� C� Y � C impliesX�Y � X�C � that is� X�C does not intersect
Y � Further� x � X � C� and X � C is open� Thus� X � C is a neighborhood of x which does not meet Y �
contrary to assumption� Therefore� x � C� which is what I wanted to show�

Remark� If B is a basis for the topology on X� then x � Y if and only if every B � B intersects Y �

In a sense� the closure of a set consists of the original set together with other points that are �close
to� the original set � you might picture these additional points as �boundary points�� I want to make the
notion of a �boundary point� precise�

�



De�nition� Let X be a topological space� Y � X� A point x � X is a limit point of Y is every neighborhood
of x intersects Y in some point other than x�

Example� In the standard topology on R� every point of �a� b� is a limit point of �a� b��
On the other hand� � is not a limit point of ��� 
�� For example� the open set ������ ���� contains �� but

does not intersect ��� 
��

The set

�
�

n

			 n �Z�
 has � as its only limit point�

Zhas no limit points in R� About every point in R�Z� you can construct an open interval which does
not contain any integers� And if n �Z� the open interval �n� ���� n� ���� intersects Zin the point n�

Every real number is a limit point of Q� since every open interval about a real number contains rational
numbers�

De�nition� If Y is a subset of a topological space X� the derived set Y � is the set of limit points of Y �

Proposition� If Y is a subset of a topological space X� then

Y 	 A �A��

Proof� Suppose x � Y � Y ��
If x � Y � then x � Y �
If x �� Y � then x � Y �� so every neighborhood of x meets Y � in a point other than x� but this fact

isn�t relevant� Since every neighborhood of x meets Y � an earlier result implies that x � Y �
Conversely� suppose that x � Y � If x � Y � then x � Y � Y �� and I�m done�
Suppose then that x �� Y � Since x � Y � every neighborhood of x intersects Y � But the intersection can�t

consist of x� since x �� Y � Therefore� every neighborhood of x intersects Y in a point other than x� Hence�
x � Y �� and certainly x � Y � Y ��

Corollary� Let X be a topological space� and let Y � X� Then Y is closed if and only if Y � � Y �

Proof� If Y is closed� then Y 	 Y 	 Y � Y �� so y� � Y �
Conversely� if Y � � Y � then Y � Y � 	 Y � so Y 	 Y � and Y is closed�

The last result is often expressed by saying that a closed set contains all its limit points� Thus� you
often show a set is closed by taking a limit point and showing that it lies in the set�

c	���� by Bruce Ikenaga �
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Hausdor� Spaces

If you try to study topological spaces without any conditions� the variety becomes overwhelming �
there is little you can say about topological spaces in general� In order to say more� you have to assume
more� The Hausdor� condition is a common assumption mathematicians make about topological spaces�

De�nition� A topological space X is Hausdor� �or T�	if for all x� y � X� x �
 y� there are neighborhoods
U of x and V of y such that U � V 
 ��

x

y

X

U

V

Remark� An easy induction shows that if X is Hausdor� and x�� � � � � xn � X� then there are neighborhoods
U� of x�� � � � � Un of xn� such that the U �s are pairwise disjoint�

Example� R is Hausdor� in the standard topology�

Let x and y be distinct points in R� Let � 

�



jx� yj� Then �x� �� x� �	 and �y � �� y � �	 are disjoint

open sets containing x and y� respectively�

x y

ε ε εε

Example� Consider the topology on X 
 f�� 
� �g in which the open sets are �� f�� 
g� and f�� 
� �g�

1 2 3

X is not Hausdor�� since it isn�t possible to �nd disjoint neighborhoods containing � and 
�

Proposition� The product of Hausdor� spaces is Hausdor��

Proof� Let X and Y be Hausdor� spaces� Let �x�� y�	� �x�� y�	 � X�Y � and assume that �x�� y�	 �
 �x�� y�	�
I want to �nd disjoint neighborhoods in X � Y containing the points�

Since the points aren�t the same� they must di�er in at least one coordinate� Assume x� �
 x� �the
argument is similar if instead y� �
 y��

�



Since X is Hausdor�� I can �nd disjoint neighborhoods U� of x� and U� of x�� Then U��Y and U��Y

are disjoint neighborhoods in X � Y � �x�� y�	 � U� � Y � and �x�� y�	 � U� � Y �

X

Y

U1 U21x 2x

22(x  , y  )

11(x  , y  )
1y

2y

Therefore� X � Y is Hausdor��

Proposition� A subspace of a Hausdor� space is Hausdor��

Proof� Let X be Hausdor�� and let Y be a subspace of X� Let y�� y� � Y � where y� �
 y��
Since X is Hausdor�� there are disjoint neighborhoods U� of y� and U� of y� in X� Then U� � Y is a

neighborhood of y� in Y and U� � Y is a neighborhood of y� in Y � and U� � Y and U� � Y are disjoint�
Therefore� Y is Hausdor��

Proposition� If X is Hausdor� and x�� � � �xn � X� then fx�� � � � � xng is closed�

Proof� First� I�ll show that a single point is closed� Let x � X� I claim that X � fxg is open�
Take y � X � fxg� Since x �
 y� I may �nd disjoint neighborhoods U of x and V of y� Since V doesn�t

intersect U and x � U � it follows that V � X � fxg� Thus� V is a neighborhood of y contained in X � fxg�
Since y was arbitrary� X � fxg is open�

Since a �nite union of closed sets is closed� if x�� � � �xn � X� then fx�� � � � � xng is closed�

If y is a limit point of a set Y � then every neighborhood of y meets Y in a point other than y� In a
Hausdor� space� every neighborhood of a limit point meets the set in in�nitely many points�

Proposition� Let X be Hausdor�� and let Y � X� x is a limit point of Y if and only if every neighborhood
of x meets Y in in�nitely many points�

Proof� If every neighborhood of x meets Y in in�nitely many points� then surely every neighborhood meets
Y in a point other than Y � Therefore� x is a limit point of Y �

Conversely� suppose x is a limit point of Y � Let U be a neighborhood of x� I must show that U meets
Y in in�nitely many points�

Suppose U meets Y in only �nitely many points� Then U meets Y � fxg in only �nitely many points
x�� � � � � xn� �Note that U must meet Y � fxg in at least one point� since x is a limit point of Y �	

Now X � fx�� � � � � xng is open and contains x� so U � �X � fx�� � � � � xng	 is open and contains x� But
in forming this set I�ve thrown out the points x�� � � � � xn where U meets Y � so it follows that U � �X �
fx�� � � � � xng	 does not meet Y at all� This contradicts the fact that every neighborhood of x must intersect
Y �

Hence� U intersects Y in in�nitely many points�

c����� by Bruce Ikenaga 
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Continuous Functions

For a function f � R� R� f is continuous at x � a if for every � � �� there is a � � � such that if

� � jx� aj � �� then � � jf	x
 � f	a
j�

Interpreted in terms of intervals � i�e� basic open sets inR� this says that for any interval I containing
f	a
� there is an interval J containing a� such that f maps J into I�

This motivates the following de
nition�

De�nition� Let f � X � Y be a function� where X and Y are topological spaces� f is continuous at x � X

if for every neighborhood V of f	x
� there is a neighborhood U of x such that f	U 
 � V �

x f(x)
f

V
U

f(U)

f is continuous 	on X
 if it is continuous at every point of X�

The de
nition I�ve given is often called the pointwise de�nition of continuity� I�ll give the equivalent
global form shortly�

Example� Any function f � Rn � R
m that is continuous in the ��� sense is continuous according to the

de
nition above�

Example� Let X be a topological space� The identity function id � X � X is continuous�
To prove this� let x � X and let V be a neighborhood of id	x
 � x� Then V is a neighborhood of x

which satis
es id	V 
 � V �

Example� Let X and Y be topological spaces� and let y � Y � The constant function cy � X � Y de
ned by
cy	x
 � y for all x � X is continuous�

To see this� suppose x � X and V is a neighborhood of cy	x
 � y� X is a neighborhood of x� and
cy	X
 � fyg � V � Therefore� cy is continuous at x�

Example� Let Y be a subspace of the topological space X� The inclusion map i � Y �� X given by i	y
 � y

for all y � Y is continuous�
To prove this� let y � Y and let V be a neighborhood of i	y
 � y in X� Since V is open in X� V � Y is

open in Y � and y � V � Y � Clearly� i	V � Y 
 � V � so V � Y is a neighborhood of y in Y which i maps into
V � Therefore� � is continuous at y�

Example� The composite of continuous functions is continuous�
To be speci
c� suppose that X� Y � and Z are topological spaces� f � X � Y is continuous at x� and

g � Y � Z is continuous at f	x
� Then g � f � X � Z is continuous at x�
Thus� if f is continuous on X and g is continuous on Y � then g � f is continuous on X�

�



To prove the result at a point� assume that f � X � Y is continuous at x and g � Y � Z is continuous
at f	x
� Let W be a neighborhood of g	f	x

 in Z� By continuity of g at f	x
� there is a neighborhood V

of f	x
 such that g	V 
 � W �
By continuity of f at x� there is a neighborhood U of x such that f	U 
 � V �

x

f(x)

f

g

V

U

f(U)

W

f(V)

g(f(U))

g(f(x))

Then g	f	U 

 � g	V 
 � W � so g � f is continuous at x�

Example� The restriction of a continuous function is continuous�
Speci
cally� let f � X � Y be a continuous function between topological spaces� Let U be a subspace

of X� Then f jU � U � Y de
ned by f jU 	x
 � f	x
 for all x � U is continuous�
The result is immediate from the last two examples� since f jU � f � i� where i � U �� X is the inclusion

map� and the composite of continuous functions is continuous�

Example� If f � X � Y is a continuous function between topological spaces and Y is a subspace of Z� then
the function �f � X � Z de
ned by �f	x
 � f	x
 for all x � X is continuous� 	 �f is said to be obtained by
expanding the range�


This result is also easy� since �f � i � f � where i � Y �� Z is the inclusion map and the composite of
continuous functions is continuous�

Next� I�ll show that the pointwise de
nition of continuity is equivalent to the following global de
nition�

Proposition� Let f � X � Y be a function between topological spaces� f is continuous if and only if for
every open set V in Y � f��	V 
 is open in X�

This is expressed more concisely by saying that the inverse image of an open set is open�

Proof� Suppose f is continuous� and let V be open in Y � I want to show that f��	V 
 is open in X�
Let x � f��	V 
� I want to 
nd a neighborhood of x contained in f��	V 
� Now f	x
 � V � so by

continuity� I can 
nd a neighborhood U of x such that f	U 
 � V � Then U � f��	V 
� and U is the desired
neighborhood of x� This proves that f��	V 
 is open�

Conversely� suppose that the inverse image of an open set is open� I want to show that f is continuous�
Let x � X� and let V be a neighborhood of f	x
� I want to 
nd a neighborhood U of x such that f	U 
 � V �

By assumption� f��	V 
 is open� Since f	x
 � V � it follows that x � f��	V 
� Moreover� f	f��	V 

 � V �
Thus� f��	V 
 is a neighborhood of x that f maps into V � Hence� f is continuous�

I believe that the name of the next result is due to James R� Munkres� it�s an enormously useful tool
for constructing continuous functions�

Lemma� 	The Pasting Lemma
 Let X and Y be topological spaces� and let U and V be open sets in X

�



such that X � U � V � Suppose that f � U � Y and g � V � Y are continuous� and

f	x
 � g	x
 for all x � U � V�

Then the function h � X � Y de
ned by

h	x
 �

�
f	x
 if x � U

g	x
 if x � V

is continuous�

Proof� Let W be open in Y � Then

h��	W 
 � f��	W 
 � g��	W 
�

By continuity� f��	W 
 is open in U � since U is open in X� f��	W 
 is open in X�
By continuity� g��	W 
 is open in V � since V is open in X� g��	W 
 is open in X�
Therefore� f��	W 
 � g��	W 
 is open in X� so h��	W 
 is open in X� By the preceding result� h is

continuous�

An analogous result holds if U and V are closed� the proof follows from the next result� which says that
you can also express continuity in terms of closed sets�

Proposition� Let f � X � Y be a function between topological spaces� The following statements are
equivalent�

�� f is continuous�

�� For all U � X� f	U 
 � f	U 
�

�� The inverse image of a closed set is closed�

Proof� 	� � �
 Suppose f is continuous� and let U � X� Since U � U � U �� I have

f	U 
 � f	U � U �
 � f	U 
 � f	U �
�

Clearly� f	U 
 � f	U 
� I need to show that f	U �
 � f	U 
�
Let x be a limit point of U � and let V be a neighborhood of f	x
� I must show that V intersects f	U 
�

Since f��	V 
 is a neighborhood of x and x is a limit point of U � there is a y � f��	V 
�U such that y �� x�
Then

f	y
 � f
�
f��	V 
 � U

�
� f	f��	V 

 � f	U 
 � V � f	U 
�

This proves that V intersects f	U 
� so f	x
 � f	U 
� Thus� f	U �
 � f	U 
� and so f	U 
 � f	U �
 � f	U 
�
Therefore� f	U 
 � f	U 
�

	� � �
 Suppose that for all U � X� f	U 
 � f	U 
� I want to show that the inverse image of a closed set is
closed�

Let C be closed in Y � I want to show that f��	C
 is closed in X� Now

f
�
f��	C


�
� f 	f��	C

 � C � C�

where the 
rst inclusion follows from statement �� the second inclusion follows from f
�
f��	C


�
� C� and

the last equality follows from the fact that C is closed�
Thus� f��	C
 � f��	C
� But clearly� f��	C
 � f��	C
� so f��	C
 � f��	C
� and f��	C
 is closed�

	� � �
 Suppose the inverse image of a closed set is closed� I want to show that f is continuous�
Let V be an open subset of Y � Then Y � V is closed� so by assumption f��	Y � V 
 is closed� But

f��	Y � V 
 � f��	Y 
� f��	V 
 � X � f��	V 
�

Therefore� X � f��	V 
 is closed� so f��	V 
 is open� Therefore� f is continuous�
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Homeomorphisms

De�nition� Let X and Y be topological spaces� and let f � X � Y � f is a homeomorphism if f is bijective�
and both f and f�� are continuous�

If there is a homeomorphism between topological spaces X and Y � then X and Y are homeomorphic�

Homeomorphic spaces are �the same	 as topological spaces� in the same way that isomorphic groups
are �the same	 as groups� The big problem in topology 
 which is much too di�cult to deal with in this
generality 
 is to classify all spaces up to homeomorphism�

The following properties are obvious�

�� The identity map of a topological space is a homeomorphism�

�� The composite of homeomorphisms is a homeomorphism�

�� The inverse of a homeomorphism is a homeomorphism�

Example� De
ne f � R� R by
f�x� � x� k�

where k � R� Then f is a homeomorphism�
It�s clear that f is continuous� since the inverse image of an open interval is an open interval 
 it�s just

a translate of the original interval� Then the inverse function f�� � R� R given by f���x� � x� k is also
continuous� since it can be written as f���x� � x� ��k��

De
ne g � R� R by
g�x� � rx�

where r � R and r �� �� Then g is a homeomorphism�
Again� it�s clear that g is continuous� since the inverse image of an open interval is an open interval�

Replacing r with
�

r
shows that the inverse g�� � R� R is continuous�

From these facts� it follows that any two nonempty open intervals in R �with the subspace topologies�
are homeomorphic� For if �a� b� is a nonempty open interval� then�

�� f�x� � x� a maps �a� b� to ��� b� a��

�� g�x� �
x

b� a
maps ��� b� a� to ��� ���

f and g are homeomorphisms� by observations above� This proves that every open interval is homeo�
morphic to ��� ��� But homeomorphism is transitive �since the composite of homeomorphisms is a homeo�
morphism�� so any two nonempty open intervals are homeomorphic�

The function tan �
�
�
�

�
�
�

�

�
� R is continuous� and its inverse arctan � R�

�
�
�

�
�
�

�

�
is continuous�

Therefore�
�
�
�

�
�
�

�

�
is homeomorphic toR� But every nonempty open interval is homeomorphic to

�
�
�

�
�
�

�

�
�

so it follows that every nonempty open interval is homeomorphic to R�

De�nition� Let f � X � Y be a function between topological spaces� f is open if f takes open sets to open
sets� Likewise� f is closed if f takes closed sets to closed sets�

Lemma� Homeomorphisms are open maps and closed maps�

Proof� I�ll do the open map case� the closed map case is similar�

�



Let f � X � Y be a homeomorphism� and let U be open in X� I want to show that f�U � is open in Y �
Since f � X � Y is a homeomorphism� it has a continuous inverse f��� By continuity� �f������U � is

open in Y � But �f������U � � f�U �� so f�U � is open in Y �

Example� You can tell that two spaces are not homeomorphic if you can 
nd a topological property that one
has that the other does not� In a sense� this is a circular observation� A topological property is a property
preserved by homeomorphisms� So this observation becomes useful as you develop a repertoire of properties
that are preserved by homeomorphisms�

For example� the circle

S� �
n
�x� y� � R�

��� x� � y� � �
o

with the subspace topology is not homeomorphic to the interval ��� �� in Rwith the subspace topology� One
reason� Removing a point from ��� �� leaves a disjoint union of two sets open in ��� ��� but removing a point
from S� does not leave a disjoint union of two sets open in S��

Take for granted that the assertion about S� is true� To show that this di�erence implies that the
spaces aren�t homeomorphic� suppose f � ��� ��� S� is a homeomorphism� Take x � ��� ��� so ��� ���fxg �
��� x�� �x� ��� a disjoint union of open subsets of ��� ���

Since f is a homemorphism� f ���� x�� and f ��x� ��� are disjoint open subsets of S�� and S� � ff�x�g �
f ���� x��� f ��x� ���� This contradicts my claim about S�� so S� and ��� �� aren�t homeomorphic�

The assertion about S� will follow from results I�ll prove later about connected set�

Example� Removing a point from R leaves a disjoint union of two open sets� The same is not true when a
point is removed from Rn for n � �� Therefore� R is not homeomorphic to Rn for n � ��

The fact that Rm and Rn aren�t homeomorphic for m �� n is a fact called invariance of domain� the
best proofs use methods from algebraic topology�

The standard informal example of homeomorphic spaces is that a co�ee cup is homeomorphic to a
doughnut� Popular accounts often say that two spaces are homeomorphic if you can imagine deforming one
into the other with cutting� tearing� or breaking�

One of these things is not like the others.

In the picture above� the three solid objects are homeomorphic� the object shaped like a ring is not
homeomorphic to the others� This kind of assertion �like the one about the co�ee cup and the doughnut�
must be taken in the right spirit� No one would set out to prove the assertion by writing down speci
c
homeomorphisms�

The notion of homeomorphism does not include the idea of �deforming	 one thing into another� In the

rst place� a deformation requires a �big space	 inside of which the deformation takes place� In the second
place� a deformation is something which takes places in time� Neither of these notions is part of the de
nition

�



of a homeomorphism� The notion of isotopy comes closer to the idea of a continuous deformation of one
space into another�

Homeomorphism is also independent of the embedding of a space in a larger space� For example� the
trefoil knot on the left and the circle on the right are homeomorphic as topological spaces�

In order to get a hold of the obvious di�erence that exists between the two� you need to consider the
complements of these sets in R�� In this case� the ambient space R� is responsible for the �knottedness	 of
the trefoil�
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The Product Topology

If X and Y are topological spaces� the product topology on X � Y is the topology generated by the
basis consisting of all sets U � V � where U is open in X and V is open in Y � This may be extended to
a product of �nitely many spaces in the obvious fashion� How do you de�ne a topology on a product of
in�nitely many spaces	

De�nition� Let fXaga�A be a family of topological spaces� The box topology on
Q

a�A
Xa is the topology

generated by the basis consisting of sets
Q

a�A
Ua� where Ua is open in Xa�

Let B be the collection of sets
Q

a�A
Ua� where Ua is open in Xa� I want to show that B is a basis�

Let 
xa�a�A �
Q

a�A
Xa� Since Xa is open in Xa�

Q
a�A

Xa is an element of B� and it obviously contains

xa�a�A�

Let 
xa�a�A �
�Q

a�A
Ua �

Q
a�A

Va
�
� where Ua and Va are open in Xa for each a� Then Ua � Va is

open in Xa� so
Q

a�A

Ua � Va� is an element of B� Moreover�


xa�a�A �
Y
a�A


Ua � Va� �

�Y
a�A

Ua �
Y
a�A

Va

�
�

This proves that B is a basis�

There is another way to generate a topology on a product� I�ll need some preliminary results�

Lemma� If fTaga�A is a family of topologies on a set X� then T 

T
a�A

Ta is a topology on X�

Proof� Since �� X � Ta for all a� it follows that �� X � T �
If fUigi�I is a collection of open sets in T � then for each a� I have Ui � Ta for all i� Since Ta is a

topology�
S
i�I

Ui � Ta for all a� Hence�
S
i�I

Ui � T � Thus� T is closed under arbitrary unions�
If fU�� � � � � Ung is a collection of open sets in T � then for each a� I have Ui � Ta for all i 
 �� � � � � n� Since

Ta is a topology�
Tn

i�� Ui � Ta for all a� Hence�
Tn

i�� Ui � T � Thus� T is closed under �nite intersections�
Therefore� T is a topology�

De�nition� Let fXaga�A be a family of topological spaces� let X be a set� and let ffa � X � Xa j a � Ag
be a family of functions� The topology induced on X by the family ffaga�A is the smallest topology
on X which makes all the fa�s continuous�

There is at least one topology on X which makes all the fa�s continuous� namely the discrete topology�
If I intersect all the topologies on X which make the fa�s continuous� I get a topology 
by the last lemma�
which makes all the fa�s continuous� It is clearly the smallest such topology� in the sense that it�s contained
in every topology which makes all the fa�s continuous�

While this construction accomplishes the goal of making the fa�s continuous� it would be nice to have
a more concrete description of the open sets�

Lemma� Let fXaga�A be a family of topological spaces� let X be a set� and let ffa � X � Xa j a � Ag be
a family of functions� The topology induced on X by the fa�s is the same as the topology generated by the
subbasis n

f��a 
U � j U
open

� Xa� a � A
o
�

Proof� First� this collection is a subbasis� If x � X� �x a � A and consider fa
x� � Xa� Then Xa is open in
Xa and f��a 
Xa� is an element of the collection which contains x�

Now let S be the topology induced on X by the fa�s and let T be the topology generated by the subbasis�
If U is open in Xa and f��

a

U � is an element of the subbasis� then f��

a

U � is open in T � Since U and

fa were arbitrary� this shows that T makes all the fa�s continuous� But S is the smallest topology which
makes the fa�s continuous� Hence� S � T �

�



Conversely� let U be open in Xa and let f��a

U � be an element of the subbasis� I claim that f��a


U � is
an open set in S� For if not� then fa is not continuous� since the inverse image under fa of the open set U
isn�t open in X�

Now I know that all the elements of the subbasis are contained in S� But S is a topology� so arbitrary
unions of �nite intersections of elements of the subbasis are also contained in S� Therefore� T � S�

Hence� the two topologies are the same�

Here�s an important property of this topology�

Proposition� Let fXaga�A be a family of topological spaces� let X be a set� and let ffa � X � Xa j a � Ag
be a family of functions� Give X the topology induced on X by the fa�s� and let W be a topological space�
A function g �W � X is continuous if and only if fa � g �W � Xa is continuous for all a�

Proof� If g is continuous� then fa �g �W � Xa is continuous for all a� since fa �g is a composite of continuous
maps�

Conversely� suppose fa � g � W � Xa is continuous for all a� I want to show that g is continuous� Let
U be open in X� I must show that g��
U � is open in W �

To begin with� take U to be a subbasic open set� Thus� suppose U 
 f��a

V �� where V is open in Xa�

Then
g��
U � 
 g��
f��

a 
V �� 
 
fa � g�
��
V ��

Since fa � g is continuous� 
fa � g���
V � is open in W �
For a general open set U � simply write U as a union of a �nite intersections of subbasic open sets� then

use the fact that g��
�� commutes with unions and intersections�

Now specialize to the case where X 

Q

a�A
Xa� and give X the topology induced by the family of

projection maps �
�b �

Y
a�A

Xa � Xb j b � A

�
�

The topology generated in this way is called the product topology� it is the smallest topology which

makes all the projection maps continuous�
Notice that I�ve already used the name �product topology� in the case of a product of �nitely many

spaces to mean the topology generated by the basis consisting of products of open sets from the factors� In
fact� if there are �nitely many factors� these two topologies are the same�

To see this� it�s helpful to get an explicit description for the basic open sets in the product topology� A
typical basis element has the form

���
a�


U�� � ���
a�


U�� � � � �� ���
an


Un��

where Ui is open in Xai � Note that �
��
a 
U � � ���a 
V � 
 ���a 
U � V �� so I can combine terms with the same

index� Thus� I may as well assume that a�� a�� � � � � an are distinct�
In this case� the set above is

Y
a�A

Va� where Va 


�
Xa if a �
 a�� a�� � � � � an
Ui if a 
 ai� i 
 �� �� � � �� n

�

Thus� a typical basis element for the product topology is a product of sets open in the factors� where all

but �nitely many of these sets are the whole spaces� In the case where there are only �nitely many factors�
this is simply products of sets open in the factors � the same as the product topology I de�ned earlier�

The next result says that a function into a product is continuous if and only if its factors are continuous�

Corollary� Let fXaga�A be a family of topological spaces� and give
Q

a�A
Xa the product topology� Let W

be a topological space� and let g � W �
Q

a�A
Xa be a function� g is continuous if and only if �a � g is

continuous for all a�

�



Example� De�ne f � R� R
� by

f
t� 
 
cos t� sin t� t��

In this case� the projections are


�� � f�
t� 
 cos t� 
�� � f�
t� 
 sin t� 
�� � f�
t� 
 t�

Since these are continuous as functions R� R� it follows from the corollary that f is continuous as well�

A �nal note� A basis element in the box topology is a product of sets open in the factors� Since this is
more general than the condition for basis elements of the product topology� it follows that the box topology

is �ner than the product topology�
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Metric Spaces

De�nition� If X is a set� a metric on X is a function d � X �X � R such that�

�� d�x� y� � 	 for all x� y � X
 d�x� y� � 	 if and only if x � y�

�� d�x� y� � d�y� x� for all x� y � X�


� �Triangle Inequality� For all x� y� z � X�

d�x� y� � d�y� z� � d�x� z��

Lemma� If X is a set with a metric� the collection of open balls

B�x
 �� � fy � X j d�x� y� � �g

is a basis�

Proof� If x � X� then x � B�x
 ���
Suppose B�x�
 ��� and B�x�
 ��� are open balls� Let x � B�x�
 ��� �B�x�
 ����
Let

� � min��� � d�x� x��� �� � d�x� x����

Then x � B�x
 �� � B�x�
 ��� �B�x�
 ���� Therefore� the collection of open balls forms a basis�

De�nition� If X is a set with a metric� the metric topology on X is the topology generated by the basis
consisting of open balls B�x
 ��� where x � X and � � 	� A metric space consists of a set X together with
a metric d� where X is given the metric topology induced by d�

Remark� In generating a metric topology� it su�ces to consider balls of rational radius�

Example� The usual metric on Rn is de�ned by

d�x� y� �

�
nX
i��

�xi � yi�
�

����
�

where x � �x�� � � � � xn� and y � �y�� � � � � yn��

It is clear that d�x� y� � 	 and that d�x� x� � 	 for all x� y � Rn� If x � �x�� � � � � xn� and y � �y�� � � � � yn�
and d�x� y� � 	� then �

nX
i��

�xi � yi�
�

����
� 	� so

nX
i��

�xi � yi�
� � 	�

This is only possible if �xi � yi�� � 	 for all i� and this in turn implies that xi � yi for all i� Therefore�
x � y�

It is obvious that d�x� y� � d�y� x� for all x� y � Rn�
Note that d�x� y� � jx � yj� where j � j is the standard norm which gives the length of a vector� Now

juj� � u � u� where � denotes the dot product in Rn� By standard properties of the dot product�

ju� vj� � �u� v� � �u� v� � u � u� �u � v � v � v � juj� � �u � v � jvj� � juj� � �jujjvj� jvj� � �juj� jvj���
�The inequality follows from the Schwarz inequality ju � vj � jujjvj�� Then

ju� vj � juj� jvj�

�



Now let u � x� y and v � y � z� Then

jx� zj � jx� yj � jy � zj� or d�x� z� � d�x� y� � d�y� z��

Here is a proof of the Schwarz inequality in case you ahven�t seen it� Given u � �u�� � � � � un�� v �
�v�� � � � � vn� � Rn� I want to show that ju � vj � jujjvj
 I�ll show that ju � vj� � juj�jvj�� and the result will
follow by taking square roots�

Set A � juj�� C � jvj�� and B � ju � vj� I want to show that B� � AC�
If A � 	� then u � 	� and the result is obvious� Assume then that A � 	� For all x � R�

nX
i��

�uix� vi�
� � 	

x�
nX
i��

u�i � �x
nX
i��

uivi �
nX
i��

v�i � 	

x�A� �xB � C � 	

Take x � �B

A
� The last inequality yields

B�

A�
�A� �

B

A
�B � C � 	

�B�

A
� C � 	

AC � C

This completes the proof of the Schwarz inequality�
Thus� the standard metric on Rn satis�es the axioms for a metric� Obviously� the metric topology is

just the standard topology�

Lemma� �Comparison Lemma for Metric Topologies� Let d and d� be metrics on X inducing topologies
T and T �� T is �ner than T � if and only if for all x � X and � � 	� there is a � � 	 such that Bd�x
 �� �
Bd� �x
 ���

Proof� Suppose �rst that T � � T � Let x � X� and let � � 	� Bd� �x
 �� is open in T �� so it�s open in T � Since
the open d�balls form a basis for T � there is an open ball Bd�x
 �� such that

x � Bd�x
 �� � Bd� �x
 ���

Conversely� suppose that for all x � X and � � 	� there is a � � 	 such that Bd�x
 �� � Bd� �x
 ��� I want
to show that T � � T �

Let U be open in T �� I want to show that it�s open in T � Let x � U � Since the d��balls form a basis for
T �� there is an � � 	 such that

x � Bd� �x
 �� � U�

By assumption� there is a � � 	 such that

x � Bd�x
 �� � Bd� �x
 ���

Therefore� x � Bd�x
 �� � U �
Now Bd�x
 �� is a T �open set containing x and contained in U � Since x � U was arbitrary� U is open in

T � Therefore� T � � T �

�



The standard metric on Rn is unbounded� in the sense that you can �nd pairs of points which are
arbitrarily far apart� However� you can always replace a metric with a bounded metric which gives the same
topology�

De�nition� If �X� d� is a metric space and Y � X� then Y is bounded if there is an M � R such that

d�x� y� �M for all x� y � Y�

Lemma� Let X be a metric space with metric d� De�ne

d�x� y� � min�d�x� y�� ���

�� d is a metric�

�� d and d induce the same topology on X�

Proof� �� Let x� y � X� Since d�x� y� � 	� d�x� y� � min�d�x� y�� �� � 	� and

d�x� x� � min�d�x� x�� �� � min�	� �� � 	�

If d�x� y� � min�d�x� y�� �� � 	� then d�x� y� � 	� so x � y� This shows that the �rst metric axiom holds�
Since d�x� y� � min�d�x� y�� �� � min�d�y� x�� �� � d�y� x�� the second metric axiom holds�
To verify the third axiom� take x� y� z � X� Begin by noting that if either d�x� y� � � or d�y� z� � ��

then d�x� y� � � or d�y� z� � �� Therefore�

d�x� y� � d�y� z� � � � d�x� z��

Assume that d�x� y� � � and d�y� z� � �� Then

d�x� y� � d�y� z� � d�x� y� � d�y� z� � d�x� z� � d�x� z��

This veri�es the third axiom� so d is a metric�

�� Observe that for 	 � � � �� Bd�x
 �� � Bd�x
 ��� The idea is to apply the Comparison Lemma� shrinking
balls if necessary to make their radii less than ��

Let x � X and let � � 	�
If � � �� then x � Bd�x
 �� � Bd�x
 ���
If � � �� then

x � Bd�x
 	��� � Bd�
�x
 	��� � Bd�x
 ���

Therefore� the d�topology is �ner than the d��topology� The other inclusion follows by simply swapping
the d�s and d��s�

It follows that boundedness is not a topological notion� since every subset is bounded in the standard
bounded metric�

Example� The square metric on Rn is given by

��x� y� � max�jx� � y�j� � � � � jxn � ynj��

Relative to this metric� B�x
 �� is an n�cube centered at x with sides of length ���
First� I�ll show that � is a metric� Let x � �x�� � � � � xn�� y � �y�� � � � � yn� � Rn�
Clearly� ��x� y� � 	 and ��x� x� � 	� If ��x� y� � 	� then jxi � yij � 	 for all i� so x � y�
It�s also obvious that ��x� y� � ��y� x��






If x� y� z � Rn� then for each j�

��x� y� � ��y� z� � max
i
fjxi � yijg�max

i
fjyi � zijg � jxj � yj j� jyj � zj j � jxj � zj j�

Therefore�
��x� y� � ��y� z� � max

j
fjxj � zj jg � ��x� z��

Thus� � is a metric�

Lemma� � induces the same topology on Rn as the standard metric�

Proof� The idea of the proof is depicted below�

Note that

��x� y� � max
i
fjxi � yijg � jxj � yj j �

�
�xj � yj�

�
���� �

�
nX
i��

�xj � yj�
�

����
� d�x� y��

d�x� y� �

�
nX
i��

�xj � yj�
�

����
�
�
n �max

i
f�xi � yi�

�g
����

�
p
n
�
��x� y��

����
�
p
n��x� y��

These inequalities may be used to get ��balls contained in d�balls and d�balls contained in ��balls
 by
the Comparison Lemma� this shows that the topologies are the same�

Lemma� The square metric induces the product topology on Rn�

Proof� If x � �x�� � � � � xn� � Rn� then

B�x
 �� � �x� � �� x� � ��� �x� � �� x� � ��� � � � � �xn � �� xn � ���

The set on the right is open in the product topology� Since the square metric�basic sets are open in the
product topology� any square metric�open set is open in the product topology�

Conversely� let
U � �a�� b��� �a�� b��� � � �� �an� bn��

It is easy to check that sets of this form comprise a basis for the product topology�
Let x � �x�� � � � � xn� � U � so ai � xi � bi for all i� De�ne

� � min
i
fxi � ai� bi � xig�

Then
�xi � �� xi � �� � �ai� bi� for all i�

So
B�x
 �� �

Y
i

�xi � �� xi � �� �
Y
i

�ai� bi� � U�

�



It follows that U is open in the square metric topology� Since the product topology basic sets are open
in the square metric topology� any product topology open set is open in the square metric topology�

Lemma� Metric topologies are Hausdor��

Proof� Let �X� d� be a metric space� and let x and y be distinct points of X� Let � � d�x� y�� Then B
�
x


�

�

�
and B

�
y


�

�

�
are disjoint open sets in the metric topology which contain x and y� respectively�

Lemma� If �X� d�� �Y� d�� are metric spaces� the ��� de�nition of continuity is valid� That is� a map f � X � Y

is continuous at x � X if and only if for every � � 	� there is a � � 	 such that if � � d�x� y� implies that
� � d��f�x�� f�y���

Proof� First� suppose that f � X � Y is continuous at x � X� Let � � 	� and consider the ball B�f�x�
 ���
Since this is an open set containing f�x�� continuity implies that there is a � � 	 such that

f �B�x
 ��� � B�f�x�
 ���

Now consider the conclusion to be established� Suppose y � X satis�es � � d�x� y�� Then y � B�x
 ���
so f�y� � f �B�x
 ���� Therefore� f�y� � B�f�x�
 ��� so � � d��f�x�� f�y���

Conversely� suppose that for every � � 	� there is a � � 	 such that if � � d�x� y� implies that
� � d��f�x�� f�y��� I want to show that f is continuous�

Let x � X� and let V be an open set in Y containing f�x�� I want to �nd a neighborhood U of x such
that f�U � � V �

Since the ��balls form a basis for the metric topology� I may �nd an � � 	 such that f�x� � B�f�x�� � � V �
By assumption� there is a � � 	 such that if � � d�x� y� implies that � � d��f�x�� f�y���

Now consider the ball B�x
 ��� This is an open set containing x� If y � B�x
 ��� then � � d�x� y� � 	�
Therefore� � � d��f�x�� f�y��� so f�y� � B�f�x�
 ��� This shows that f�B�x
 ��� � B�f�x�
 �� � V � so f is
continuous�

De�nition� If X is a set� a sequence in X is a function x �Z� � X�
It�s customary to write xn for x�n� in this situation� and to abuse terminology by referring to the

collection fxng as �the sequence��
De�nition� Let X be a topological space� A sequence fxng converges to a point x � X if for every
neighborhood U of x� there is an integer N such that xn � U for all n � N �

xn � x means that fxng converges to x�

Lemma� Let X be a Hausdor� space� Convergent sequences converge to unique points�

Proof� Let xn � x and xn � y� I want to show that x � y�
Suppose x 	� y� Since X is Hausdor�� I can �nd disjoint neighborhoods U of x and V of y� Since

xn � x� I can �nd an integer M such that n � M implies xn � U � Since xn � y� I can �nd an integer N
such that n � N implies xn � V � Therefore� for n � max�M�N �� I have xn � U � V � 
� This is nonsense�
so x � y�

In particular� limits of sequences are unique in metric spaces�

Lemma� �The Sequence Lemma� Let X be a topological space� let Y � X� and let x � X� If there is a
sequence fxng with xn � Y for all n and xn � x� then x � Y � The converse is true if X is a metric space�

Proof� Suppose that there is a sequence fxng with xn � Y for all n and xn � x� Let U be a neighborhood
of x� Find an integer N such that xn � U for all n � N � Obviously� U meets Y � This proves that x � Y �

Conversely� suppose that X is a metric space and x � Y � For each n �Z�� the ball B
�
x


�

n

�
meets Y �

so I may choose xn � B

�
x


�

n

�
� Y � I claim that xn � x�

�



Let U be a neighborhood of x� Since the open balls form a basis for the metric topology� I may �nd

� � 	 such that B�x
 �� � U 
 then I may �nd N �Z� such that
�

n
� �� so B

�
x


�

N

�
� B�x
 ���

For all n � N � I have
�

n
�

�

N
� so xn � B

�
x


�

N

�
� Since B

�
x


�

N

�
� U � I have xn � U for all n � N �

This proves that xn � x�

Theorem� Let X be a metric space� let Y be a topological space� and let f � X � Y � f is continuous if and
only if xn � x in X implies that f�xn�� f�x� in Y �

More succinctly� continuous functions carry convergent sequences to convergent sequences�

Proof� Suppose f is continuous� and suppose xn � x in X� Let V be a neighborhood of f�x� in Y � By
continuity� there is a neighborhood U of x such that f�U � � V �

Since xn � x� there is an integer N such that xn � U for all n � N � Then f�xn� � f�U � � V for all
n � N � This proves that f�xn�� f�x��

Conversely� suppose that xn � x in X implies that f�xn�� f�x� in Y � To show f is continuous� it will
su�ce to show that for all A � X� I have f�A� � f�A��

Thus� take x � clA� I want to show that f�x� � f�A��
NowX is a metric space and x � clA� so by the Sequence Lemma� there is a sequence of points fxng � A

with xn � x� By hypothesis� this implies that f�xn� � f�x�� Since ff�xn�g is a sequence in f�A�� the
Sequence Lemma implies that f�x� � f�A�� Therefore� f is continuous�

De�nition� Let ffn � X � Y g be a sequence of functions from X to Y � where Y is a metric space� ffng
converges uniformly to a function f � X � Y if for every � � 	� there is an integer N such that

d�fn�x�� f�x�� � � for n � N and x � X�

Theorem� Let ffn � X � Y g be a sequence of continuous functions from X to Y � where Y is a metric space�
If ffng converges uniformly to f � X � Y � then f is continuous�

This is often expressed by saying that a uniform limit of continuous functions is continuous�

Proof� Let f�a� � Y and let B�f�a�
 �� be a neighborhood of f�a�� I want to �nd a neighborhood U of a
such that f�U � � B�f�a�
 ���

First� uniform continuity implies that there is an integer N such that

d�fn�x�� f�x�� �
�



for n � N� x � X� ���

In particular�

d�fN �a�� f�a�� �
�



�

fN is continuous� so there is a neighborhood U of a such that fN �U � � B
�
fN �a��

�




�
� Thus�

d �fN �x�� fN �a�� �
�



for all x � U�

Moreover� restricting ��� to n � N and x � U � I have

d�fN �x�� f�x�� �
�



for all x � U�

Therefore� the triangle inequality implies that

d�f�x�� f�a�� � d�fN �x�� f�x�� � d �fN �x�� fN �a�� � d�fN �a�� f�a�� �
�



�

�



�

�



� �

�



for all x � U �
This proves that f is continuous�

Example� For n �Z�� let fn � R� R be de�ned by

fn�x� �
x

nx� �
�

For �xed x� lim
n��

x

nx� �
� 	� Thus� this sequence of functions converges pointwise to the constant

function 	�

The picture below shows the graphs of fn for n � �� �� 
� �� � on the interval 	 � x � ��
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I will show that the convergence is uniform on the interval 	 � x � �� Thus� choose � � 	
 I must �nd
an integer N such that if n � N � then

jfn�x�j � ��

Since f �n�x� �
�

�nx� ���
� fn is an increasing function
 fn��� �

�

n� �
� so it follows that

jfn�x�j � �

n � �
for 	 � x � ��

Now choose N such that
�

N � �
� �� Then if n � N �

jfn�x�j � �

n� �
� �

N � �
� ��

This proves that fn converges uniformly to 	 on 	 � x � ��

Example� For n �Z�� let fn � R� R be de�ned by

fn�x� �
�

nx� �
�

For �xed x 	� 	� lim
n��

�

nx� �
� 	� Thus� this sequence of functions converges pointwise to the constant

function 	 for x 	� 	� It converges pointwise to � for x � 	�

�



The picture below shows the graphs of fn for n � �� �� 
� �� � on the interval 	 � x � ��

0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

I will show that the convergence is not uniform on the interval 	 � x � �� In fact� I will show that there
is no integer N such that if n � N � then

jfn�x�j � �

�
�

To see this� it su�ces to note that fn

�
�

n

�
�

�

�
� so there will always be a point in 	 � x � � where the

function exceeds
�

�
�

Therefore� ffng converges pointwise� but not uniformly� to the zero function�

c����� by Bruce Ikenaga �
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Quotient Spaces

You may have encountered quotient groups or quotient rings in an algebra course� In those situa�
tions� the idea was to turn a set of cosets of a subgroup or an ideal into a group or a ring�

A set of cosets is a partition of a group or a ring� In the topological setting� a quotient space arises as
a topology on a set of partition elements� You can use this to construct new topological spaces by �gluing�
and �pasting��

If X and Y are topological spaces� a function f 	 X � Y is continuous if and only if when V is open in
Y � f�� is open in X�

De�nition� Let f 	 X � Y � where X and Y are topological spaces� f is a quotient map if	

�� f is surjective�


� V is open in Y if and only if f���V � is open in X�

Remarks�

�� Quotient maps are continuous�


� If f 	 X � Y is a homeomorphism� then f is a quotient map�

Since f is a homeomorphism� it
s continuous� hence� if V is open in Y � then f���V � is open in X�
Conversely� suppose V � Y and f���V � is open in X� Since f�� is continuous�

V � f
�
f���V �

�
�
�
f��

��� �
f���V �

�
is open�

�� The composite of two quotient maps is a quotient map�

In the de�nition of a quotient map� there are topologies on both X and Y � More often� you start with
a topological space and a partition of the space� then try to topologize the set of partition elements so that
the associated function �carrying an element of the space to the partition element containing it� is a quotient
map�

Lemma� Let X be a topological space� let Y be a set� and let f 	 X � Y be a surjection� De�ne a collection
of subsets of Y by requiring that V � T if and only if f���V � is open in X� Then T is a topology on Y �

T is called the quotient topology on Y �

Proof� f����� � � is open in X� so � is open in Y � f���Y � � X is open in X� so Y is open in Y �
Suppose fVigi�I is a collection of subsets of Y such that f���Vi� is open in X for all i � I� Now

f��

��
i�I

Vi

�
�
�
i�I

f���Vi��

and
S
i�I f

���Vi� is open in X� Therefore�
S
i�I Vi is open in Y �

Finally� suppose V�� � � � Vn is a collection of subsets of Y such that f���Vi� is open in X for i � �� � � � � n�

f��

�
n�
i��

Vi

�
�

n�
i��

f���Vi��

and
Tn

i��
f���Vi� is open in X� Therefore�

Tn

i��
Vi is open in Y �

Therefore� T is a topology�

�



Example� �Partition Topologies� Let X be a topological space� and let X� � fXaga�A be a partition of
X� De�ne f 	 X � X� by

f�x� � Xa if x � Xa�

This makes sense� because every element of X lies in exactly one Xa�

f is clearly surjective� the quotient topology on X� induced by f is called the partition topology�
In fact� all quotient topologies are partition topologies� For if X is a topological space and f 	 X � Y is

surjective� the collection of inverse images ff���y� j y � Y g forms a partition of X� The partition topology
induced by this partition is the same as the quotient topology induced by f �

In applications� you often want to �glue� parts of a space together to make a new space� In this case�
the partition elements are as follow� A point that isn
t being glued to anything else is in a partition element
by itself� Otherwise� a group of points that are being glued together form a partition element�

For example� take the interval ��� ��� Partition ��� �� by de�ning f�� �g to be one partition element and
de�ning fxg to be a partition element for � � x � �� This has the e�ect of gluing the endpoints together�
the quotient space is homeomorphic to a circle�

glue the
endpoints

glue the
sides

Similarly� if you take a rectangle and glue two opposite sides together� you get a cylinder� In this case�
the partition elements consist of individual points not on the glued sides and pairs of corresponding points
on the sides being glued�

If you twist the rectangle before gluing the opposite sides� the resulting quotient space is a M�obius strip�
If you glue both pairs of opposite sides together with no twisting� you get a torus�

Lemma� Let X and Y be topological spaces� If f 	 X � Y is continuous� open� and surjective� then f is a
quotient map�

Proof� If V is open in Y � then f���V � is open in X by continuity�

Suppose V � Y and f���V � is open in X� Since f is open� f�f���V �� is open� since f is surjective�
V � f�f���V ��� Therefore� V is open�

Hence� f is a quotient map�

In general� quotient maps do not need to be open�

Covering spaces provide important examples of quotient maps� they are fundamental objects in
algebraic topology�

De�nition� Let p 	 E � B be a continuous surjection� p is a covering map if every point x � B has
a neighborhood U such that p���U � is a disjoint union

�
a�A

Ua of open sets and pjUa 	 Ua � U is a
homeomorphism for all a � A�

A neighborhood U which satis�es this condition is evenly covered�






Thus� p���U � looks like a stack of pancakes� where each pancake is carried homeomorphically onto U

by p�

x
U

p

Ua

Lemma� Covering maps are open�

Proof� Let p 	 E � B be a covering map� and let U � E be open� I want to show that p�U � is open in B�

Take x � U � so p�x� � p�U �� I need to �nd a neighborhood V of p�x� contained in p�U �� Let W be an
evenly covered neighborhood of p�x�� Since p���W � is a disjoint union

�
a�AWa of open sets homeomorphic

to W and since x � p���W �� x must lie in one of the Wa
s�

Thus� let Wa be a neighborhood of x mapped homeomorphically onto W by p� Then Wa � U is open�
p maps it homeomorphically onto p�Wa � U �� and p�x� � p�Wa � U �� I claim that p�Wa � U � is open in B�

To see this� observe that pjWa
	Wa � p�Wa� � W is a homeomorphism� so the inverse pj��Wa

	W �Wa

is continuous� Now Wa �U is open in E� so it
s open in Wa� Hence� �pj
��

Wa

����Wa �U � � p�Wa �U � is open
in p�Wa�� But p�Wa� � W is open in B� so p�Wa � U � is open in B�

I
ve found a neighborhood p�Wa � U � of x which is contained in p�U �� Therefore� p�U � is open� and p

is an open map�

Corollary� Covering maps are quotient maps�

Example� The map e 	 R� S� given by

e�t� � �cos�
�t�� sin�
�t��

is a covering map� it wraps the real line around the circle� Each open interval of length � in R is mapped
homeomorphically to the circle minus a point�

Example� If X � Y is a product of topological spaces� the projection maps �� 	 X � Y � X and �� 	
X � Y � Y are open� continuous� and surjective� Therefore� they are quotient maps�

The next result tells you how to construct a map out of a quotient space� it is analogous to the results
in algebra which tell you how to construct group maps out of quotient groups� or ring maps out of quotient
rings�

De�nition� Let p 	 X � Y be a quotient map� A �ber of p is a set p���y� for y � Y �

Theorem� �Universal Property for Quotients� Let p 	 X � Y be a quotient map� Then any continuous
map f 	 X � Z which is constant on each �ber of p factors uniquely through p� that is� there is a unique

�



continuous map �f 	 Y � Z such that �fp � f �

X

p

�

�
�
�
�
�R

f

Y
�f � Z

Proof� Let y � Y � Since f is constant on p���y�� I may take any x � p���y� and de�ne

�f�y� � f�x��

By construction� �fp � f � I have to show that �f is continuous�
Let U be open in Z� I need to show �f���U � is open in Y � By de�nition of the quotient topology� �f���U �

is open in Y if and only if p��
�
�f���U �

�
is open in X� But since �fp � f �

p��
�
�f���U �

�
� f���U ��

which is open in X by continuity of f �
This proves that �f is continuous�
To prove uniqueness� suppose that �f� and �f� are continuous maps Y � Z such that �f�p � f and

�f�p � f � Then �f�p � f � �f�p� since p is surjective� it is right�cancellable� so �f� � �f��

If you think of the quotient topology as �gluing� or identifying the elements of each �ber� the universal
property says that the quotient topology is the �smallest� way of accomplishing this �gluing�� in the sense
that any other map that accomplishes this �gluing� receives a map from the quotient space�

Corollary� Let f 	 X � Z be a continuous surjective map and suppose p 	 X � X� is the quotient map
obtained from the partition of X by the �bers ff���z� j z � Zg�

�� There is a continuous bijection �f 	 X� � Z such that �fp � f �


� �f is a homeomorphism if and only if f is a quotient map�

Proof� �� p is the function which sends x � X to the partition element f���z� � X�� where z � f�x�� f is
trivially constant on each �ber� so the Universal Property yields a continuous map �f 	 X� � Z such that
�fp � f �

To be explicit� consider a �ber f���z� � X�� Let x � f���z�� Then p�x� � f���z�� so

�f
�
f���z�

�
� �f �p�x�� � f�x� � z�

The function g 	 Z � X� given by g�z� � f���z� is obviously the inverse of �f as a set map� so �f is
bijective� Thus� �f is a continuous bijection�


� If �f is a homeomorphism� then f � �fp is a composite of quotient maps� so it
s a quotient map�
Conversely� suppose f is a quotient map� p is constant on each �ber of f � so the Universal Property

applied to the quotient map f yields a continuous map h 	 Z � X� such that hf � p�
Now �fhf � f � That is� �fh makes the outer triangle below commute	

X

�
�
�
�
�

�

f p

�

�
�
�
�
�R

f

Z h � X�
�f � Z

�



But the outer triangle clearly commutes if I replace �fh with idZ � By the uniqueness part of the Universal
Property applied to the quotient map f � it follows that �fh � idZ �

Likewise� h �fp � p� In other words� h �f makes the outer triangle below commute	

X

�
�
�
�
�

�

p f

�

�
�
�
�
�R

p

X�
�f � Z

h � X�

The outer triangle will commute if I replace h �f with idX� � By the uniqueness part of the Universal
Property applied to the quotient map p� it follows that h �f � idX� �

Therefore� h � �f��� �In fact� h is the map g de�ned in the �rst part of the proof��
Since �f is a continuous bijection with a continuous inverse� it
s a homeomorphism�

Corollary� Let f 	 X � Z be a continuous surjective map and suppose p 	 X � X� is the quotient map
obtained from the partition of X by the �bers ff���z� j z � Zg� If Z is Hausdor�� then so is X��

Proof� Suppose f���z�� and f���z�� are distinct elements of X�� Then z� �� z�� so I may �nd disjoint
neighborhoods U� of z� and U� of z� in Z�

Look at �f���U�� and �f���U��� These are open in X�� since �f is continuous� Since U� and U� are
disjoint� �f���U�� and �f���U�� are disjoint�

Finally� �f
�
f���z��

�
� z� � U� shows that f���z�� � �f���U��� and likewise f���z�� � �f���U���

Thus� I have disjoint neighborhoods of f���z�� and f���z�� in X�� so X� is Hausdor��
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Connected Spaces

De�nition� A space is connected if it cannot be written as the disjoint union of two nonempty open sets�

A separation of a topological space X consists of two disjoint nonempty open sets U and V such that
X � U � V �

Thus� a connected space is one that cannot be separated�

Example� If X is connected and Y is homeomorphic to X� then Y is connected�

Example� A point is connected 	considered as a subspace of an arbitrary topological space
�

Example� R is connected in the standard topology�

On the other hand� Zis not connected when considered as a subspace of R� 	The subspace topology is
the discrete topology in this case�


More generally� a set with more than one point is not connected in the discrete topology�

Example� If X � U � V is a separation of X� then U and V are both open and closed�

Conversely� if A is a subset of a topological space X� A �� �� X� and A is both open and closed� then
X � A � 	X � A
 is a separation of X�

To put it another way� a space is connected if and only if there is no proper nontrivial subset which is
both open and closed�

For example� any 	nontrivial
 partition topology is not connected�

Proposition� Let X � U � V be a separation of X� If Y � X is connected� then Y � U or Y � V �

Proof� Suppose on the contrary that Y �U �� � and Y �V �� �� Then Y �U and Y �V are nonempty open
subsets of V whose union is V � contradicting the fact that Y is connected�

If a space X is not connected� what are the biggest connected subspaces of X�

Lemma� Let fUaga�A be a collection of connected subsets of a topological space X� Suppose that
T
a�A Ua ��

�� Then U �
S
a�A Ua is connected�

Proof� Suppose on the contrary that U � V �W is a separation of U � Let x �
T
a�A Ua� Then x � V or

x �W � without loss of generality� suppose x � V �

For each a� the connected set Ua is contained in either V or W � by the preceding result� But x � Ua for
all a� so all the Ua
s meet V � Therefore� Ua � V for all a� and hence U � V �

This means that W � �� which contradicts the fact that V and W separated U �

Therefore� U is connected�

Theorem� Let X be a topological space�

�� Every point x � X is contained in a unique maximal connected subset Cx of X�

�� Cx � Cy or Cx � Cy � ��

�



To say that Cx is maximal means that Cx is not properly contained in any other connected subset of
X�

Proof� �� Let x � X� Consider the collection C of connected subsets of X which contain x� C is nonempty�
since fxg � C� Order C by inclusion� I
ll use Zorn
s Lemma to show that C has maximal elements�

Let D be a chain in C� Then every U � D contains x� so V �
S
U�D U is a union of connected sets with

a point in common� By the preceding result� V is connected� since it contains x and contains every U � D�
it is an upper bound for D in C�

By Zorn
s Lemma� C has maximal elements�
Next� I
ll show that C has a unique maximal element�
If U and V are maximal elements of C� then U � V is a connected set� since U and V are connected

and have x in common� Thus� U � V is a connected set containing x� so it
s an element of C� Since U and
V are maximal and are contained in U � V � this is only possible if U � V �

Note that if Cx is the unique maximal element in C� any connected set containing Cx would be a
connected set containing x � hence� an element of C containing the maximal element Cx� Therefore� there
is no connected set which properly contains Cx�

�� Suppose Cx � Cy �� �� Let z � Cx � Cy� Then Cx � Cy is connected� since it
s the union of connected
sets having a point in common� Moreover� Cx �Cy contains the maximal sets Cx and Cy� By part �� this is
impossible unless Cx � Cy�

The maximal connected sets described by the theorem form a partition of X� They are called the
connected components of X� Here is another sense in which they are maximal�

Lemma� Let X be a topological space� Every connected subset of X is contained in a component of X�

Proof� Let U be a connected subset of X� U must intersect some component of X� suppose U�C �� �� where
U is a component� Then U �C is a union of connected sets with nonempty intersection� so it
s connected�
Since C � U � C� and since C is maximal� I must have C � U �C� Therefore� U � C�

Theorem� The continuous image of a connected set is connected�

Proof� Let f � X � Y be continuous and surjective� and suppose X is connected� I want to show that Y is
connected�

Suppose on the contrary that Y � U
Q
V is a separation of Y � Since U and V are open� f��	U 


and f��	V 
 are open� since U and V are disjoint� f��	U 
 and f��	V 
 are disjoint� Therefore� X �
f��	U 


Q
f��	V 
 is a separation� contradicting the fact that X is connected�

The theorem will be useful once I have some connected spaces to play with�

I
m working toward showing that the product of connected spaces is connected� the preliminaries are
interesting in their own right�

Lemma� Let X be a topological space� let Y � X� and let Y � A
Q
B be a partition of Y � A and B separate

Y if and only if neither A nor B contains an X�limit point of the other�

Proof� Suppose A and B separate Y � Then A and B are closed in Y � so

A � Y � clY A � A�

Suppose x is an X�limit point of A� so x � A� If x � B� then x � Y � so x � A � Y � A� But then
x � A �B� contradicting the fact that A and B are disjoint�

Therefore� B contains no X�limit points of A�
A similar argument shows that A contains to X�limit points of B�
Conversely� suppose neither A nor B contains an X�limit point of the other� Let A� denote the X�limit

points of A� Then A� � Y is the set of X�limit points of A contained in Y � by assumption� none of these are
in B� so any such points must be in A� That is� A� � Y � A� Then

A � Y � 	A �A�
 � Y � 	A � Y 
 � 	A� � Y 
 � A �A � A � A � Y�

�



Therefore� A � A � Y � so A is closed in Y �
A similar argument shows that B is closed in Y �
Since A and B partition Y � they form a separation of Y �

Lemma� If A is connected and
A � B � A�

then B is connected�

Heuristically� if you add some limit points of a connected set to the set� you get a connected set�

Proof� Suppose B � U
Q
V is a separation of B� Thus� U and V are disjoint nonempty open subsets of B�

Since A is connected� A lies entirely in U or V � Without loss of generality� say A � U � Taking closures in
X yields A � U �

U and V are disjoint� and by the preceding lemma V contains no limit points of U � Thus� A � V � ��
But B � A� so B doesn
t intersect V � either� This means that V is empty� which is a contradiction�

Therefore� B is connected�

Corollary� The closure of a connected set is connected�

Corollary� Connected components of a space are closed�

Proof� If C is a connected component ofX� then C is a connected set containingC� by the previous corollary�
By maximality� C � C� so C is closed�

Lemma� The product of �nitely many connected spaces is connected�

Proof� It su�ces to prove this for two spaces� since the general result will follow by induction�
Thus� suppose X and Y are connected� I want to show that X � Y is connected� The idea is to use the

fact that a union of connected sets with a point in common is connected�
To do this� picture X � Y as a plane� I
ll decompose it as the union of �crosses�� each �cross� consists

of the union of a �xed �horizontal line� with an arbitrary �vertical line��

Y

X

y0
0

x

{x} x Y

X x {y  }

Fix y� � Y � For each x � X� consider the set

Cx � 	X � fy�g
 � 	fxg � Y 
�

X � fy�g is connected� since it
s a homeomorphic copy of X� fxg � Y is connected� since it
s a homeo�
morphic copy of Y � The sets have the point 	x� y�
 in common� Therefore� Cx is connected�

Next� the union of the Cx
s is connected� because it
s a union of connected sets having X � fy�g in
common� But the union of the Cx
s is X � Y � so X � Y is connected�

Theorem� An arbitrary product of connected spaces is connected�

Proof� First� I
ll choose a point in the product� I
ll construct a union of connected sets having this point in
common� the earlier result on unions shows that the union is connected� Finally� I
ll show that the closure
of the union is the whole product� this will prove that the product is connected� by the earlier result on
closures�

�



Let X �
Q

a�AXa be a product of connected spaces� I want to show that X is connected� Let
y � 	ya
a�A � X�

For each �nite collection fa�� � � � � ang of indices from A� de�ne

X	a�� � � � � an
 � 	xa
a�A j xa � ya if a �� a�� � � � � ang�

Thus� a point of X	a�� � � � � an
 agrees with y except possibly in the a�� � � � � an positions�
	Note that this doesn
t mean that such an x doesn�t agree with y in the a�� � � � � an positions� it means

only that such an x does agree with y in the other positions�

I claim that X	a�� � � � � an
 is connected� I
ll do this by showing that it
s homeomorphic to a �nite

product of Xa
s� which is connected by the preceding lemma�
De�ne � � Xa� � 	 	 	 �Xan � X	a�� � � � � an
 by

��	xa�� � � � � xan
�a �

�
xai if a � ai for some i
ya if a �� ai for any i

�

Thus� � plugs xa� � � � � � xan into the a�� � � � � an components and uses y for the other components�
De�ne � � X	a�� � � � � an
� Xa� � 	 	 	 �Xan by

��	xa
� � 	xa� � � � � � xan
�

� and � are easily seen to be inverses� so � is bijective�
A basis element for the product topology on Xa� � 	 	 	�Xan is a product of open sets from the factors�

A basis element for the subspace topology on X	a�� � � � � an
 consists of the intersection of X	a�� � � � � an
 with
a basis element for the product X �

Q
a�AXa� A basis element for X �

Q
a�AXa consists of a product of

open sets from the factors� where at most �nitely many are not the whole space�
With this description in mind� it is clear that � carries a basis element for Xa� � 	 	 	 � Xan onto a

basis element for X	a�� � � � � an
� and � carries a basis element for X	a�� � � � � an
 onto a basis element for
Xa� � 	 	 	 �Xan � Therefore� � is a homeomorphism�

Since Xa� � 	 	 	 �Xan is a �nite product of connected spaces� it
s connected� Therefore� X	a�� � � � � an

is connected�

Since y � X	a�� � � � � an
 for any �nite subset fa�� � � � � ang � A� the union

X� �
�n

X	a�� � � � � an

��� fa�� � � � � ang � A

o

is a union of connected sets with a point in common� hence connected�
Finally� I claim that X � � X� Let x � X� and let

Q
a�A Ua be a neighborhood of x� where Ua is open

in Xa and Ua � Xa for all but �nitely many a
s� Let a�� � � � � an be the indices for which Ua �� Xa� De�ne
z � 	za
a�A by

za �

�
xai if a � ai for some i
ya if a �� ai for any i

�

Then z �
Q

a�A Ua and z � X	a�� � � � � an
 � X��

Thus� every 	basic
 neighborhood of x intersects X �� Since x � X was arbitrary� it follows that X� � X�
Since X is the closure of a connected set� it
s connected�
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Connected Subsets of the Real Line

Proposition� ��� �� is connected in the standard topology�

Proof� Suppose ��� �� � U � V is a separation	 so U and V are nonempty	 disjoint	 open sets�
The idea of the proof is to 
nd a point on the �boundary� between U and V 	 then show that such a

point can
t be in either U or V �
Without loss of generality	 suppose that � � U � Let

S � fs � ��� �� j ��� s� � Ug�

Since � � S	 S is nonempty� Moreover	 since � � U and U is open	 there is an � � � such that ��� �� � U �

Then
h
��

�

�

i
� U 	 so

�

�
� S� Thus	 S �� f�g�

S is a nonempty set which is bounded above	 so it has a least upper bound� Let

s� � sup S�

Since S �� f�g	 s� � ��
s� is the sort of �boundary point� I alluded to above� Before using it to obtain a contradiction	 I
ll

prove two preliminary results�

Claim �� If s � S and � � r � s	 then r � S�

��� r� � ��� s� � U� since s � S�

Therefore	 r � S�

Claim �� If � � s � s�	 then s � S and s � U �

Suppose � � s � s� but s �� S� If t � s	 then t �� S	 else s � S by Claim �� Since no element of S is
greater than s	 it follows that s is an upper bound for S� But s � s�	 and s� is the least upper bound for S�
This contradiction implies that s � S� thus	 ��� s� � U 	 so s � U �

Finally	 I
ll obtain a contradiction by showing that s� can
t be in S or its complement�
Suppose s� � S	 so ��� s�� � U � Note that s� � � � for if s� � �	 then ��� �� � ��� s�� � U 	 contradicting

the fact that V is nonempty�
Now � � s� � �	 s� � U 	 and U is open	 so there is an � � � such that �s� � �� s� � �� � U � Hence	

h
�� s� �

�

�

i
� ��� s�� �

h
s�� s� �

�

�

i
� U�

so s� �
�

�
� S� This contradicts the fact that s� is the least upper bound for S�

It follows that s� �� S� Therefore	 ��� s�� �� U � By Claim �	 ��� s�� � U 	 so s� �� U � Therefore	 s� � V �

Now s� � � and V is open	 so there is an � � � such that �s� � �� s�� � V � In particular	 s� �
�

�
� V 	 and

this contradicts Claim ��
It follows that there is no such separation	 and hence ��� �� is connected�

Corollary� Any closed interval in R is connected�

Proof� Any closed interval in R is homeomorphic to ��� ���

Corollary� R is connected�

�



Proof�

R�
��
n��

��n� n�

represents R as a union of connected sets having points in common �speci
cally	 the points in ���� �� are
common to all of the intervals�� By an earlier result	 this proves that R is connected�

Corollary� Rn is connected�

Proof� Rn is a product of connected spaces	 so it
s connected�

Corollary� Any open interval in R is connected�

Proof� Any open interval in R is homeomorphic to R�

In fact	 more is true� Let L be an ordered set with at least two elements� L is a linear continuum if
L has the least upper bound property �every subset bounded above has a least upper bound� and if x � y
implies there exists z such that x � z � y� For example	 R is a linear continuum� One may show that every
linear continuum is connected�

You can show that many sets in Rn are connected by using the results above and general stu� about
connected sets�

Example� S� is a connected subset of R��

To see this	 note that the continuous function f � R � S� given by f�t� � �cos t� sin t� maps the
connected set R onto S��

More generally	 if f � R� R
� is continuous	 then the image is connected� For example	 the graph of a

function y � f�x� de
ned for all x � R is a connected set�

Example� The topologist�s sine curve consists of the graph of y � sin
�

x
for � � x � �� The closed

topologist�s sine curve consists of the union of the topologist
s sine curve with the segment f��� y� j �� �
y � �g�

The topologist
s sine curve is connected	 because it
s a continuous image of a connected set� The closed
topologist
s sine curve is the closure of the topologist
s sine curve in R�	 so it
s connected as well�

Here
s a familiar result from calculus�

Theorem� �IntermediateValue Theorem� Let f � X � Y be a continuous function	 where X is connected
and Y is an ordered set with the order topology� Let a� b � X	 and let d be an element of Y between f�a�
and f�b� �so f�a� � d � f�b� or f�b� � d � f�a��� Then d � f�c� for some c � X�

�



Proof� If d � f�a� or d � f�b�	 then I
m done� So assume d �� f�a�� f�b�� Then f�a� � d � f�b� or
f�b� � d � f�a��

f�X� is connected	 since X is connected� Consider the sets f�X�� ���� d� and f�X�� �d����� These
are disjoint open subsets of f�X�� they are nonempty	 since one contains f�a� and the other contains f�b��
Therefore	 their union isn
t all of f�X�� Hence	 f�X� � fdg is nonempty�

An element f�X� � fdg is an element f�c� for c � X such that f�c� � d�
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Path�Connectedness and Local Connectedness

De�nition� Let X be a topological space� A path in X is a continuous function � � ��� �	� X� �
�� and
�
�� are the endpoints of the path� � is a path from �
�� to �
���

De�nition� Let X be a topological space� X is path connected if for all x� y � X
 there is a path in X

from x to y�

Example� Points are path connected�

Example� Rn is path connected� If x� y � Rn
 then

�
t� � 
�� t�x� ty

is a path in Rn from x to y�

Lemma� A path connected space is connected�

Proof� Suppose X is path connected
 and suppose that X � U � V is a separation of X� Let x � U and let
y � V � By assumption there is a path � � ��� �	� X such that �
�� � x and �
�� � y�

���
U � and ���
V � are disjoint open sets in ��� �	
 and ��� �	 � ���
U � � ���
V �� This contradicts the
fact that ��� �	 is connected�

Therefore
 X is connected�

Example� The topologist�s sine curve S consists of the graph of y � sin
�

x
for � � x � ��

The topologist�s sine curve is connected
 since it�s a continuous image of the connected set 
�� �	� The
space T � S�f
�� ��g is also connected
 since it�s the union of S with one of its limit points in R�� However

T is not path connected�

To prove this
 I�ll show that the point 
�� �� cannot be connected by a path to the point 
�� sin ���
Suppose on the contrary that � � ��� �	� S is a path from 
�� �� to 
�� sin ��� Notice that 
�� �� is closed

in T 
 so ���

�� ��� is a closed subset of ��� �	� I will show that ���

�� ��� is also open in ��� �	� this will
prove that ���

�� ��� � ��� �	�

Let x � ���

�� ���� Let V be the open rectangle 
��� ������� 
����� ����� The intersection of V with S

is an open set in S containing 
�� �� � that is
 a neighborhood of 
�� �� in S� By continuity
 I may �nd an
open interval 
a� b� in R containing x such that

� 
��� �	� 
a� b�� � V � S�

The intersection ��� �	� 
a� b� is an open interval or a half�open interval
 so it�s connected� Therefore

� 
��� �	� 
a� b�� is connected� V � S is a disjoint union of open arcs in S with the point 
�� ��� Hence

� 
��� �	� 
a� b�� must map entirely into one of these components�

However
 I know the point x � ��� �	� 
a� b� maps to 
�� ��� Therefore


� 
��� �	� 
a� b�� � 
�� ���

Thus
 ��� �	� 
a� b� is a neighborhood of x contained in ���

�� ���� This proves that ���

�� ��� is open�

�



Since ���

�� ��� is a nonempty
 open
 and closed
 and since it�s a subset of the connected set ��� �	
 it
must be all of ��� �	� Thus
 �
��� �	� � 
�� ��
 contradicting the fact that � is a path from 
�� �� to 
�� sin ���

It follows that there is no such path
 and therefore T isn�t path connected�

Connected components were de�ned as the maximal connected subsets of a space� their existence followed
from Zorn�s Lemma� The path components of a space are de�ned in a similar fashion� I need a lemma
which is analogous to one I prove for connected sets�

Lemma� Let fUaga�A be a collection of path connected subsets of a topological space X� Suppose thatT
a�A Ua �� 	� Then U �

S
a�A Ua is path connected�

Proof� Let y� z � U � I must show that y and z can be joined by a path in U �
Suppose y � Ua and z � Ub� Since x � Ua and Ua is path connected
 x and y can be joined by a path

in Ua� Since x � Ub and Ub is path connected
 x and z can be joined by a path in Ub�
Concatenating the two paths produces a path in Ua � Ub � U joining y and z� Therefore
 U is path

connected�

Theorem� Let X be a topological space�

�� Every point x � X is contained in a unique maximal path connected subset Cx of X�

�� Cx � Cy or Cx � Cy � 	�

To say that Cx is maximal means that Cx is not properly contained in any other path connected subset
of X�

The proof will be omitted� it is essentially the same as the result for connected components� You
can verify that the connected components proof required only the lemma on unions of connected sets with
nonempty intersection� I just proved the analogous lemma for path connected sets above�

De�nition� Let X be a topological space� The path components ofX are the maximal path connected
subsets of X�

De�nition� Let X be a topological space�

�� X is locally connected if for every x � X and every neighborhood U of x
 there is a connected
neighborhood V of x such that V � U �

�� X is locally path connected if for every x � X and every neighborhood U of x
 there is a path
connected neighborhood V of x such that V � U �

Example� Since a path connected neighborhood is a connected neighborhood
 every locally path connected
space is locally connected�

Example� Rn is locally path connected
 since a ball B
x� �� is path connected�

Example� Let S denote the topologist�s sine curve�

S �

��
x� sin

�

x

� ��� � � x � �

�
�

Let T � S �f
�� ��g� T is not locally connected� a neighborhood of 
�� �� consists of 
�� �� together with
a disjoint union of open arcs
 which is not a connected set�

�



Theorem� A space is locally connected if and only if the components of any open subset are open�

In particular
 the components of a locally connected space are open�

Proof� Suppose X is connected and U � X is open� Let C be a component of U � I want to show C is open�
Let x � C� By local connectedness
 there is a connected neighborhood V of x such that x � V � U �

Now V �C is a union of connected sets having the point x in common� since C is maximal
 V �C � C
 so
V � C�

Since every point of C has a neighborhood contained in C
 C is open�
Conversely
 suppose that components of open subsets are open� Let x � X
 and let U be a neighborhood

of x� I must �nd a connected neighborhood V of x such that x � V � U � Take V to be the connected
component of U which contains x� By assumption
 V is open
 and x � V � U �

Hence
 X is locally connected�

An essentially identical argument proves the following�

Theorem� A space is locally path connected if and only if the path components of any open set are open�

In particular
 the path components of a locally path connected space are open�

The relationship between components and path components is described by the following result�

Proposition� Let X be a topological space�

�� Every path component is a subset of a component�

�� If X is locally path connected
 then the path components and components coincide�

Proof� �� A path component is path connected
 and path connected sets are connected� Since every
connected set is contained in a component 
i�e� a maximal connected set�
 every path component is contained
in a component�

�� Suppose X is locally path connected� Let C be a component� I have to show that C is a path component�
Let P be any path component contained in C� 
For instance
 let x � C
 and take P to be the path

component containing x�� Let P � be the union of the path components of C other than P �
Since X is locally path connected
 P is open� X is locally connected
 so C is open� again
 since X is

locally path connected
 the path components of the open set C are open� Hence
 P � is open
 since it�s a
union of open sets�

Now C � P � P � is a disjoint union of open sets� Since C is connected
 P and P � can�t be nonempty�
since P �� 	
 I have P � � 	� Thus
 C has no path components other than P 
 which means that C � P �
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Compact Spaces

In the real line� compactness is equivalent to being closed and bounded� The Heine�Borel Theorem says
that a closed and bounded subset B of R has the property that if fUigi�I is a collection of open intervals
whose union contains B �i�e�� the collection covers B�� then some �nite subcollection of the U 	s also covers
B� This is the appropriate way to generalize 
closed and bounded� to arbitary spaces�

De�nition�

�� A topological space X is covered by a collection fUigi�I of subsets if X �
S
i�I Ui�


� If X is a topological space� Y � X� and fUigi�I is a collection of subsets of X� then fUigi�I covers Y
if Y �

S
i�I Ui�

�� If fUigi�I covers X and each Ui is open� then fUigi�I is an open cover of X�

�� If a subcollection of a covering also covers the space� the subcollection is a subcovering�

Example� The collection

f�n� n� �� j n �Zg �

��
n�

�



� n�

�




� ��� n �Z
�

is an open cover of R�

Every point of R�Zis contained in an interval of the form �n� n� �� for some n �Z� Each integer n

is contained in

�
n�

�



� n�

�




�
� Thus� the collection covers R� since each element of the collection is open�

it is an open cover�

The collection of open intervals with rational endpoints is also an open cover of R�

More generally� the collection of open balls with rational centers and rational radii forms an open cover
of Rn�

De�nition� A spaceX is compact if for every open cover fUigi�I ofX� some �nite subcollection fU�� � � � � Ung
also covers X�

To say it another way� a space is compact if every covering has a �nite subcovering�

It is clear that compactness is preserved by homeomorphisms� If X is compact and X is homeomorphic
to Y � then Y is compact�

Example� Any �nite set of points �with any topology� is compact� since any open cover can contain at most
�nitely many �distinct� open sets�

Example� R is not compact�

Consider the following open cover of R�

f�n� n� �� j n �Zg �

��
n�

�



� n�

�




� ��� n �Z
�
�

�



Each integer n is contained in exactly one element of the cover� namely

�
n�

�



� n�

�




�
� Therefore�

any �nite subcollection contains at most �nitely many integers� so no �nite subcollection can cover R�
Since every open interval �a� b� is homeomorphic to R� open intervals aren	t compact�
On the other hand� I	ll show later that a closed interval �a� b� is compact�

The following condition is equivalent to compactness� it is extremely important in analysis�

De�nition� Let X be a topological space� A collection of subsets C of X satis�es the �nite intersection
condition if the intersection of any �nite subcollection of C is nonempty�

In other words� if C�� � � � � Cn � C� then
Tn
i��Ci �� ��

Theorem� Let X be a topological space� X is compact if and only if every collection of closed sets satisfying
the �nite intersection condition has nonempty intersection�

Proof� Suppose X is compact� and let fCigi�I be a collection of closed subsets of X such that every �nite
subcollection has nonempty intersection� I want to show that

T
i�I Ci �� ��

Suppose on the contrary that
T
i�I Ci � �� Then

X � X �
�
i�I

Ci �
�
i�I

�X � Ci��

Therefore� fX�Cigi�I is an open cover ofX� By compactness� some �nite subollection fX�C�� � � � � X�
Cng covers X� Thus�

X �
n�
i��

�X �Ci� � X �
n�
i��

Ci�

Hence�
Tn

i��Ci � �� contrary to assumption�
Therefore�

T
i�I Ci �� ��

Conversely� suppose that every collection of closed subsets ofX satisfying the �nite intersection condition
has nonempty intersection� Let fUigi�I be an open cover of X� I want to show that fUigi�I has a �nite
subcover�

Suppose on the contrary that no �nite subcollection of fUigi�I covers X� Consider the complements
fX � Uigi�I � This is a collection of closed sets� If fX � U�� � � � � X � Ung is a �nite subcollection� then

n�
i��

�X � Ui� � X �
n�
i��

Ui �� ��

For X ��
Sn
i�� Ui� since no �nite subcollection of fUigi�I covers X�

Thus� every �nite subcollection of fX �Uigi�I has nonempty intersection� By assumption� fX �Uigi�I
has nonempty intersection� Therefore�

X �
�
i�I

Ui �
�
i�I

�X � Ui� �� ��

This contradicts the fact that fUigi�I covers X�
Hence� some �nite subcollection of fUigi�I covers X� and X is compact�

Thus� the intersection condition is really just a translation of the de�nition of compactness from open
to closed sets� In any situation� you can choose the version that is easier to apply�

The results that follow describe how compactness behaves in connection with other topological concepts�

Lemma� Let X be a topological space� and let Y � X� Y is compact if and only if every open cover of Y
has a �nite subcover�






Reminder� to say that fUigi�I is an open cover of Y as a subset of X means that each Ui is open in X�
and Y �

S
i�I Ui� That is� the Ui	s are subsets of X� and not necessarily subsets of Y �

Proof� Suppose Y is compact� Let fUigi�I be an open cover of Y by sets open in X� Then fUi � Y gi�I
is an open cover of Y by sets open in Y � By compactness� some �nite subcollection fU� � Y� � � � � Un � Y g
covers Y � Then fU�� � � � � Ung covers Y �

Conversely� suppose that every open cover of Y has a �nite subcover� Let fUigi�I be an open cover of
Y by sets open in Y � For each i� Ui � Y � Vi� where Vi is open in X�

Now fVigi�I is an open cover of Y by sets open inX� so by assumption a �nite subcollection fV�� � � � � Vng
covers Y � Then fY � V�� � � � � Y � Vng � fU�� � � � � Ung covers Y � Therefore� Y is compact�

One way of putting this is� Compactness is intrinsic to the space� That is� to say Y is compact �in the
sense of the 
open cover� property� has the same meaning whether Y is considered as a subspace of another
space or as a space in its own right� In contrast� whether a set is closed or not depends on the topology of
the ambient space�

Theorem� A closed subset of a compact space is compact�

Proof� Let X be a compact topological space� and let C be a closed subset of X� Let fUigi�I be an open
cover of C� and consider the collection fUigi�I � fX � Cg� This is an open cover of X� so by compactness
it has a �nite subcover�

C

X - C

Ui

If X � C occurs in this subcover� throw it out� The remaining sets fU�� � � � � Ung cover C� Thus� I	ve
found a �nite subcover of C� so C is compact�

Theorem� A compact subset of a Hausdor� space is closed�

Proof� Let X be a Hausdor� space� and let C be a compact subset of X� I	ll show that the complement of
C is open�

Let x � X �C� I want to �nd a neighborhood of x that is contained in X � C�
Since X is Hausdor�� for each y � C� there are disjoint neighborhoods Uy of x and Vy of y� Now

fVygy�Y is an open cover of C� so by compactness there is a �nite subcover fVy� � � � � � Vyng� Let

U �
n�
i��

Uyi �

y

y

y

y

y

y

y

y

y

1

1

3

2

1

2

3

2

3

x

V

V

V

U

U

U

C

�



If z � U � then z � Uyi for i � �� � � � � n� Hence� z �� Vyi for i � �� � � � � n� But fVy� � � � � � Vyng cover C� so
z �� C� i�e� z � X � C� Thus� U is a neighborhood of x contained in X �C� Hence� X � C is open� so C is
closed�

Remark� In the course of the proof� I showed that in a Hausdor� space� a compact set �C� and a point in
the complement �x� may be separated by disjoint open sets�

Theorem� The continuous image of a compact space is compact�

Proof� Let X be a compact topological space� let Y be a topological space� and let f � X � Y be a surjective
continuous function� I want to show that Y is compact�

Let fUigi�I be an open cover of Y � Then ff���Ui�gi�I is an open cover of X� so by compactness I may
�nd a �nite subcover ff���U��� � � � � f���Un�g�

Now if y � Y � then y � f�x� for some x � X� Find i � f�� � � � � ng such that x � f���Ui�� Then
y � f�x� � Ui� This shows that fU�� � � � � Ung covers Y �

Hence� Y is compact�

The proof of the following theorem makes nice use of the last three results�

Theorem� Let X and Y be topological spaces� where X is compact and Y is Hausdor�� Let f � X � Y be
a continuous bijection� Then f is a homeomorphism�

Proof� I need to show that f�� is continuous� I will show that the inverse image of a closed set is closed�

Let C be closed in X� I want to show that �f������C� � f�C� is closed in Y � Since X is compact and
C is closed� C is compact� Since f is continuous and C is compact� f�C� is compact� Since Y is Hausdor�
and f�C� is compact� f�C� is closed�

Therefore� f�� is continuous� and f is a homeomorphism�

Example� De�ne f � ��� ��� S� by

f�t� � �cos�
�t�� sin�
�t���

f

0 1

S1

f is a continuous bijection� and S� is surely Hausdor�� However� f is not a homeomorphism� Intuitively�
f�� 
unwraps� the circle onto the interval� it fails to be continuous at the point ��� ��� where the circle needs
to be 
cut� in order to do the unwrapping� This is not continuous� because points on either side of the cut
point which start o� close together wind up far apart� at opposite ends of ��� ���

Let X be the union of countably many copies of ��� �� and countably many copies of S�� Construct a
continuous bijection of X to itself by de�ning the map to be the 
wrapping map� f from one of the ��� ��	s

�



to one of the S�	s and the identity maps id � ��� ��� ��� �� and id � S� � S� on all the other pieces�

f

id

id

id

id

0 1

0

0

1

1

0

0

1

1

The inverse fails to be continuous for the same reason that f is not continuous�

This gives an example of a continuous bijection from a Hausdor� space to itself which is not a homeo�
morphism�

The following result can be used to show that a �nite product of compact spaces is compact� it	s of
interest in its own right�

Theorem� �The Tube Lemma� Let X and Y be topological spaces� and suppose Y is compact� Let x � X�
and let W � X � Y be an open set containing fxg � Y � Then there is a neighborhood U of x such that
U � Y � W �

w

Xx

Y

U

{x} x Y

U x Y

Proof� For each y � Y � there is a neighborhood Uy � Vy of �x� y� such that Uy is a neighborhood of x in X�
Vy is a neighborhood of y in Y � and Uy �Vy � W � It follows that fUy �Vygy�Y is an open cover of fxg�Y �

Now fxg � Y is compact� since it	s homeomorphic to Y � Therefore� there is a �nite subcollection
fUu� � Vy� � � � �Uyn � Vyng which covers fxg � Y �

Let U �
Tn

i�� Uyi � U is an open set containing x� If �z� y� � U�Y � then y � Vyi for some i � f�� � � � � ng�
So �z� y� � U � Vyi �W � and hence U � Y � W �

Example�

W � f��� y� j y � Rg �

�
�x� y� j y �

���� �x
���� � x �� �

�

�



is an open subset of R� which contains the y�axis �i�e� f�g �R�

y

x

However� there is no open subset U of R such that

f��� y� j y � Rg � U �R�W�

The Tube Lemma does not apply because R is not compact�

Lemma� Let X be a topological space� Let D be a collection of subsets of X which is maximal with respect
to satisfying the �nite intersection condition� Then�

�� D is closed under �nite intersections�


� If C � X and C meets every element of D� then C � D�

Proof� �� Suppose D�� � � � � Dn � D� I must show that D �
Tn
i��Di � D�

Consider the set D� � D � fDg� I claim that D� satis�es the �nite intersection condition�
Take E�� � � � � Em � D�� If E�� � � � � Em � D� then

Tm

i��Ei �� �� since D satis�es the �nite intersection
condition�

Otherwise� one of the E	s is D� without loss of generality� say E� � D and E�� � � � � Em � D� Then

m�
i��

Ei � D � �E� � 	 	 	 �Em� �
n�
i��

Di � �E� � 	 	 	 �Em� �� ��

since this is a �nite intersection of elements of D�
Now D� satis�es the �nite intersection condition and it contains D� By maximality of D� D� � D� which

means that D � D�


� Suppose C � X and C meets every element of D� I want to show that C � D�
Consider the set D� � D � fCg� I claim that D� satis�es the �nite intersection condition�
Take E�� � � � � Em � D�� If E�� � � � � Em � D� then

Tm

i��Ei �� �� since D satis�es the �nite intersection
condition�

Otherwise� one of the E	s is C� without loss of generality� say E� � C and E�� � � � � Em � D� Now
E� � 	 	 	 �Em � D by part �� so

C � �E� � 	 	 	 �Em� �� ��

since C meets every element of D�
Now D� satis�es the �nite intersection condition and it contains D� By maximality of D� D� � D� which

means that C � D�

All of the proofs of Tychono�	s theorem are sophisticated� it	s a di�cult and important result� Lang
��� credits the following proof to Nicholas Bourbaki� the nom�de�plume of a group of mathematicians who
wrote an extremely in�uential series of expository monographs�

�



Theorem� �Tychono�� Let fXaga�A be a family of compact topological spaces� Then X �
Q
a�AXa is

compact�

Proof� Let C be a collection of closed subsets of X satisfying the �nite intersection condition� I need to
show that

T
C�C

C �� ��

Step �� Consider the set � of collections of subsets of X �closed or otherwise� which satisfy the �nite
intersection condition and contain C� I claim that � has maximal elements�

Order � by inclusion�
Let �� be a chain in �� Let

F �
�
G���

G�

Since each G � �� contains C� F also contains C� I claim that F satis�es the �nite intersection condition�
Let F�� � � � � Fn � F � Suppose F� � G�� � � � � Fn � Gn� where G�� � � � �Gn � ��� Since �� is a chain� there is

an index k � f�� � � � � ng such that Fi � Gk for � 
 i �� n� Since Gk satis�es the �nite intersection condition�
F� � 	 	 	 � Fn �� �� This proves that F satis�es the �nite intersection condition�

Since F satis�es the �nite intersection condition and contains C� it	s an element of �� and it	s clearly an
upper bound for ��� By Zorn	s lemma� � has maximal elements�

Step �� Let D be a maximal element of �� I	ll construct an element x �
T
D�D D�

Let �a � X � Xa be the ath projection map� Fix a � A� and consider the family of sets f�aDgD�D�
For any �nite subcollection f�a�D��� � � � � �a�Dn�g� the intersection D� � 	 	 	 �Dn is nonempty� because D
satis�es the �nite intersection condition� Since

�a�D� � 	 	 	 �Dn� � �a�D�� � 	 	 	 � �a�Dn��

it follows that �a�D�� � 	 	 	 � �a�Dn� �� ��
Therefore� f�aDgD�D satis�es the �nite intersection condition�
Hence� f�aDgD�D satis�es the �nite intersection condition�
Now f�aDgD�D is a family of closed subsets of the compact space Xa� Therefore� there is an element

xa �
�
D�D

�aD�

De�ne x � �xa�a�A�

Step �� Let Ua be a neighborhood of xa in Xa� I claim that ���a �Ua� � D�

Since Ua is a neighborhood of xa and xa � �aD for all D � D� Ua meets �a�D� for all D � D� But if
Ua � �a�D� �� �� then ���a �Ua� �D �� �� To see this� note that if z � Ua � �a�D�� then z � �a�y� for some
y � D and so �a�y� � Ua� Thus� y � ���a �Ua�� and hence y � ���a �Ua� �D�

Thus� ���a �Ua� meets every set D � D� By the second part of the lemma� ���a �Ua� � D�

Step �� Every basic open set containing x is contained in D�

The sets ���a �Ua� for a � A and Ua a neighborhood of xa in Xa form a subbasis for the open sets
containing x� A basic open set containing x is a �nite intersection of ���a �Ua��sets� such a �nite intersection
is in D� by the �rst part of the lemma�

Step �� Finally� I	ll show that x �
T
C�C C�

Let D � D� and let U be a basic open set containing x� Since D satis�es the �nite intersection condition�
U �D �� �� Since every basic open set containing x meets D� it follows that x � D�

In particular� if D is a closed set in D� then x � D� But all the sets in C are closed� and C � D� so x � C
for all C � C� Therefore� x �

T
C�C C�

�



This completes the proof that X is compact�
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Compact Sets and the Real Numbers

Theorem� If X is an ordered set satisfying the least upper bound property� then any closed interval �a� b� in
X is compact�

Proof� The outline of the proof is as follows� Let fUigi�I be an open cover of �a� b�� Construct the set C
of points y � �a� b� such that �a� y� can be covered by a �nite subcollection of fUigi�I � Take the least upper
bound c of C and show that c � C� Finally� show that c 	 b�

Step �� Suppose a � x � b� I claim that for some y � x� the interval �x� y� can be covered by at most two
elements of fUigi�I �

If x has an immediate successor x
 �� then �x� x
 �� has only two elements� so it can be covered by at
most two U �s�

If x does not have an immediate successor� �nd Ui containing x� Pick y� � x such that �x� y�� � Ui
 this
is possible since Ui is open� Since x does not have an immediate successor� there is an element y such that
x � y � y�� Then �x� y� � Ui� and �x� y� is covered by a single element of fUigi�I �
Step �� Now let

C 	 fy � �a� b� j �a� y� can be covered by �nitely many Uig�
By Step �� there is an element y � a such that �a� y� can be covered by at most two elements of fUigi�I�

Therefore� C is nonempty� Let c be the least upper bound of C in �a� b��

Step �� I claim that c � C�

Find Ui containing c� Ui is open and c � a� so I may �nd an interval �d� c� � Ui� Since d can�t be an
upper bound for C� there is an element of C larger than d� Let c� � C� where d � c� � c� Then �a� c�� can
be covered by �nitely many U �s� and �c�� c� � Ui� Therefore� �a� c� 	 �a� c�� � �c�� c� can be covered by �nitely
many U �s� Hence� c � C�

Step �� I claim that c 	 b�

Suppose that c � b� By Step �� there is a y � c such that �c� y� can be covered by at most two elements
of fUigi�I � Since c � C� �a� c� can be covered by �nitely many elements of fUigi�I � So �a� y� 	 �a� c�� �c� y�
can be covered by �nitely many elements of fUigi�I � and therefore y � C� This contradicts the fact that c
was the least upper bound of C� Hence� c 	 b�

Since b � C� �a� b� can be covered by �nitely many elements of fUigi�I � Therefore� �a� b� is compact�

Corollary� A closed interval �a� b� in R is compact�

Theorem� �Heine�Borel� A subset C � Rn is compact if and only if it is closed and bounded relative to
the standard metric or the square metric�

Remark� Recall that the standard metric d and the square metric � are related by

��x� y� � d�x� y� � p
n � ��x� y��

Hence� a set bounded relative to one metric is bounded relative to the other�

Proof� Suppose that C is compact� Rn is Hausdor�� so C is closed� The collection of balls fB��
n� j n �Z�g
is an open cover of Rn� so it is an open cover of C� By compactness� there is a �nite subcover
 the element
of the subcover with the largest radius contains C� so C is bounded�

Conversely� suppose C is a closed and bounded subset of Rn� Suppose that ��x� y� � s for all x� y � C�
Fix x � C and let t 	 ��x� ��� Then for all y � C�

d�y� �� � d�y� x� 
 d�x� �� 	 s 
 t�

�



It follows that C � ���s
 t�� s
 t�n� However� ���s 
 t�� s
 t�n is a product of compact spaces� so it�s
compact� Thus� C is a closed subset of the compact set ���s 
 t�� s
 t�n� so it is compact�

Theorem� Let X be a compact topological space� let Y be an ordered set with the order topology� and let
f � X � Y be continuous� There are points a� b � X such that

f�a� � f�x� � f�b� for all x � X�

Proof� f�X� is a compact subset of Y � I�ll show that f�X� has a largest element and a smallest element�
Suppose that f�X� does not have a largest element� Then the collection of open rays

f���� f�x�� j x � Xg

cover f�X�� By compactness� I may �nd x�� � � � � xn � X such that

f��� f�x���� � � � � ���� f�xn��g

cover f�X��
Find m � f�� � � � � ng such that

f�xm� 	 maxff�xi� j � � i � ng�

Then f�X� � ���� f�xm��� but f�xm� �� ���� f�xm��� This contradiction shows that f�X� has a
largest element
 a similar argument shows that f�X� has a smallest element�

In the case where X 	 �a� b� is a closed interval in R and Y 	 R� this is the familiar result from calculus
which says that a continuous function on a closed interval has a max and a min on the interval�

The next result and its corollary are more amusing than important� since you�ve probably seen the
Cantor diagonalization proof of the uncountability of ��� l�� But this topological proof does not make any
reference to representations of real numbers as in�nite decimal�

Theorem� Let X be a �nonempty� compact Hausdor� space� Suppose every point of X is a limit point of
X� Then X is uncountable�

Proof�

Step �� Let U be a nonempty open subset of X� and let x � X� I�ll construct an open set V � U such that
x �� V �

If U 	 fxg� then U is a neighborhood of x which contains only x� This contradicts the assumption that
every point of X is a limit point of X� Now x may not be in U in the �rst place� but this shows that in any
event� U can�t consist of x alone�

Thus� I may choose y � U such that y �	 x� Since X is Hausdor�� there are disjoint neighborhoods A of
x and B of y� Let V 	 B 	 U � Now

V 	 B 	 U � B � X � A�

and X �A is closed� Therefore� V � X �A� In particular� since x � A� V does not contain x�

x

y

U

B

A

V = U    B

U

�



Step �� Next� I�ll show that there is no surjection f �Z� � X�

Suppose that f � Z� � X� For the purposes of numbering� take V� 	 X� By Step �� I may �nd a
nonempty open set V� such that f��� �� V��

Suppose inductively that n � �� and I have found a nonempty open set Vn�� � Vn�� such that
f�n � �� �� Vn��� Use Step � to �nd a nonempty open set Vn � Vn�� such that f�n� �� Vn�

Consider the collection fVng
n�Z

� � The collection has the �nite intersection condition� since

V� 
 V� 
 V� 
 � � � �

By compactness� there is a point x � T
n�Z

� Vn� Then x �	 f�n� for any n �Z�� so f is not surjective�

Since there is no surjective function fromZ� to X� X is uncountable�

Corollary� The interval ��� �� in R is uncountable�

Obviously� it follows that R and open intervals in R are uncountable�

c����� by Bruce Ikenaga �
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Limit Point Compactness and Sequential Compactness

De�nition� Let X be a topological space�

�� X is limit point compact if every in�nite subset has a limit point�

�� X is sequentially compact if every sequence in X has a convergent subsequence�

If X is sequentially compact� then X is limit point compact� For every in�nite subset of X contains
an in�nite sequence� the limit of a convergent subsequence is a limit point of the original subset� A partial
converse is contained in the following theorem�

Theorem� Let X be a topological space�

�� If X is compact� then X is limit point compact�

�� If X is a metric space and X is limit point compact� then X is sequentially compact�

Proof� �� Let X be compact� and let S � X be an in�nite subset� I must show that S has a limit point�
Suppose that S does not have a limit point� It is vacuously true that S contains all its limit points� so

S is closed� Since X is compact� S is compact�
Let x � S� Since x is not a limit point of S� there is a neighborhood Ux of x which does not intersect

S in a point other than x� fUxgx�S is an open cover of S� so by compactness there is a �nite subcover
fUx� � � � � � Uxng�

Now S � fUx� � � � � � Uxn � but each Uxi meets S only in xi� Therefore� S 	 fx�� � � � � xng� which
contradicts the assumption that S is in�nite�

Therefore� S has a limit point�

�� Suppose X is a metric space and X is limit point compact� Let fxng be a sequence in X� I want to show
that fxng has a convergent subsequence�

First� I have to eliminate any repetitions in the sequence� so de�ne

S 	 fxn j n �Z
�g�

Thus� S is the set of points in fxng�
Suppose S is �nite� Then for some x � X� xn 	 x for in�nitely many n �Z�� Suppose this is true for

n�� n�� � � �� Then fxnigi�Z� is a convergent subsequence of fxng� because all the terms are equal to x�
The only other possibility is that S is in�nite� Then by limit point compactness� S has a limit point x�

Consider the nested sequence of neighborhoods

�
B

�
x�

�

k

� ��� k �Z�
�
� Since metric spaces are Hausdor


and x is a limit point of S� each B

�
x�

�

k

�
contains in�nitely many points of S�

Choose n� �Z
� such that xn� � B�x� ��� Assuming that k � � and that nk� has been chosen� choose

nk � nk�� such that xnk � B

�
x�

�

k

�
�

I now have xnk � x� For if � � 
� choose N so that
�

nk
� � for k � N � Then xnk � B�x� �� for k � N �

Example� The subsets f��n� �� �n� j n �Z�g form a partition ofZ�� The corresponding partition topology
is called the odd�even topology� Let X denote Z� with this topology�

X is limit point compact� To see this� let A be an arbitrary nonempty subset of X� and let a � A� For
some n �Z�� a � ��n� �� �n�� Notice that ��n� �� �n� is the smallest open set containing �n� � or �n�

�



If a 	 �n� �� then �n is a limit point of A� since every neighborhood of �n contains a�
If a 	 �n� then �n� � is a limit point of A� since every neighborhood of �n� � contains a�
In either case� A has a limit point� Since A was an arbitrary nonempty subset of X� surely every in�nite

subset of X has a limit point� Thus� X is limit point compact�
On the other hand� X is not sequentially compact� For example� the sequence f�� �� �� � � �g has no

convergent subsequence�
This example shows that limit point compactness does not in general imply sequential compactness�
In fact� X is not compact� The open cover f��n��� �n� j n �Z�g does not have a �nite subcover� Thus�

limit point compactness does not in general imply compactness�

Recall that if Y is a subset of a metric space �X� d�� the diameter of Y is

diam�Y � 	 supfd�x� y� j x� y � Y g�

Theorem� �Lebesgue Number Lemma� Let X be a sequentially compact metric space� and let fUigi�I
be an open cover of X� There is an � � 
 such that every subset of X of diameter less than � is contained
in an element of fUigi�I �

� is called a Lebesgue number for the cover�

Proof� Suppose on the contrary that no such � exists� Then for every n � Z�� there is a set An of

diameter less than
�

n
which is not contained in any Ui� Let xn � An� I�ll show that fxng has no convergent

subsequence� which will contradict sequential compactness�
Suppose on the contrary that fxnkg is a convergent subsequence converging to x� Suppose that x � Ui�

Find � � 
 such that B�x� �� � Ui� Then choose nk su�ciently large so that

d �x� xnk� �
�

�
and

�

nk
�

�

�
�

x

B(x;  )ε

Ui

xn An

x
xnk

ε

1/nk

B(x;  )ε

xnk
1/nkB(     ,      )

Since diam�Ank� �
�

nk
and xnk � Ank � it follows that Ank � B

�
xnk �

�

nk

�
� Suppose y � B

�
xnk�

�

nk

�
�

Then

d�x� y� � d�x� xnk� � d�xnk� y� �
�

�
�

�

nk
�

�

�
�

�

�
	 ��

Therefore� B

�
xnk�

�

nk

�
� B�x� ��� Hence�

Ank � B

�
xnk �

�

nk

�
� B�x� �� � Ui�

This contradicts the fact that Ank is not contained in any Ui� Therefore� there is a number � satisfying
the conclusion of the theorem�

Theorem� Let X be a metric space� The following are equivalent�

�



�� X is compact�

�� X is limit point compact�

�� X is sequentially compact�

Proof� I�ve already proven �� � �� and �� � ��� I need to prove �� � ��� Suppose then that X is
sequentially compact� I need to show that X is compact�

Step �� For every � � 
� there is a �nite covering of X by ��balls�

Let x� � X and construct B�x�� ��� If X 	 B�x�� ��� then I�m done� Otherwise� choose x� � X�B�x�� ��
and construct B�x�� ��� Again� if X 	 B�x�� �� �B�x�� ��� I�m done� otherwise� choose x� � X � �B�x�� ���
B�x�� ���� Keep going� Notice that each B�xn� �� contains only one xk� namely xn�

Suppose that the process does not terminate� Consider the sequence fxng� I claim that it has no

convergent subsequence� Indeed� if fxnkg is a subsequence converging to x� then B
�
x�

�

�

�
can contain at

most one xnk� If it contains two xnk �s� then they are less than � apart� Therefore� there is an ��ball about
an xnk containing another xnk

It follows that the process must terminate� so X is covered by a �nite number of ��balls�

Step �� Every open cover of X contains a �nite subcover�

Let fUigi�I be an open cover of X� Let � be a Lebesgue number for the cover� Cover X with a �nite

number of
�

�
balls fB�� � � � � Bng� Each Bj has diameter less than �� so each Bj is contained in some Uij �

Then fUij j j 	 �� � � � � ng is a �nite subcollection of fUigi�I which covers X� Therefore� X is compact�

De�nition� Let X and Y be metric spaces� and let f � X � Y � f is uniformly continuous if for every
� � 
� there is a � � 
 such that dX �a� b� � � implies dY �f�a�� f�b�� � � for all a� b � X�

Theorem� Let X and Y be metric spaces� let f � X � Y be a continuous function� and suppose X is
compact� Then f is uniformly continuous�

Proof� Given � � 
� the open balls
n
B
�
y�
�

�

� ��� y � Y
o
cover Y � Therefore�

n
f��

�
B
�
y�

�

�

�� ��� y � Y
o
is

an open cover of X�
By the Lebesgue Number Lemma� there is a � � 
 such that every set of diameter less than � is

contained in a f��
�
B
�
y�
�

�

��
� In particular� if dX�a� b� � �� then fa� bg is a set of diameter less than �� so

a� b � f��
�
B
�
y�

�

�

��
for some y� This means that f�a�� f�b� � B

�
y�
�

�

�
� so dY �f�a�� f�b�� � ��

Example� Consider the function f � R� R given by f�x� 	 x�� f is continuous� but f is not uniformly
continuous�

To show that f is not uniformly continuous� I�ll show that there is no � � 
 such that if � � jx� yj�

then � � jf�x��f�y�j� Suppose on the contrary that such a � exists� Choose x �
�

�
� and consider the points

x�
�

�
and x�

First� �
x�

�

�

�
� x 	

�

�
� ��

The points are less than � units apart�
However� �

x�
�

�

�
� x 	 �x�

�

�
� � �

�

�
�
�

�
	

�

�
�
�

�
�

�

�
�

�



So

f

�
x�

�

�

�
� f�x� 	

�
x�

�

�

��
� x� 	

�
x�

�

�
� x

��
x�

�

�
� x

�
	

�

�
�

�
x�

�

�
� x

�
�

�

�
�
�

�
	 ��

The images are more than � unit apart�
This shows that f is not uniformly continuous�
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Local Compactness

De�nition� Let X be a topological space� X is locally compact if for all x � X� there is a compact set C
and a neighborhood U of x such that x � U � C�

If X is compact� then X is locally compact� For any x � X� X is a compact set containing the
neighborhood X of x�

Example� If X is a space with the discrete topology� then X is locally compact� If x � X� then fxg is a
compact set containing the neighborhood fxg of x�

Example� Rn is locally compact� If x � Rn� the closed ball B�x	 �
 is compact� and it contains the open ball
B�x	 �
�

Theorem� Let X be a Hausdor� space� X is locally compact if and only if for every x � X and every
neighborhood U of x� there is a neighborhood V of x such that V is compact and V � U �

Proof� Suppose for every x � X and every neighborhood U of x� there is a neighborhood V of x such that
V is compact and V � U � Choose any neighborhood U of x � for example� X � and 
nd a neighborhood
V of x with compact closure such that V � U � Then V is a compact set containing a neighborhood V of x�
so X is locally compact�

Conversely� suppose X is locally compact� Let x � X� and let U be a neighborhood of x� Let C be a
compact set which contains a neighborhood V of x�

C is compact and X is Hausdor�� therefore C is closed� It follows that C �U � C � �X �U 
 is closed	
since it�s a subset of the compact set C� C � U is compact� Note that x � U � so x �� C � U �

I showed earlier that in a Hausdor� space� a compact set and a point not contained in it may be
separated by disjoint open sets� Thus� I may 
nd disjoint open sets W� and W� such that C � U � W� and
x �W��

x

U

C

V

W1

W2

Next� I�ll show that W� � V is compact� C is a closed set containing V � so V � C� But W� � V � V �
so W� � V � V � C� Now W� � V is a closed subset of the compact set C� so W� � V is compact�

Moreover� W� � V � W� � X �W�� X �W� is closed� so W� � V � X �W�� Since W� � V does not
meet W�� and since C � U � W�� it follows that W� � V does not intersect C � U � But W� � V is a subset
of C� so W� � V � U �

Thus� W� � V is a neighborhood of x with compact closure whose closure is contained in U �

Corollary� Let X be a locally compact Hausdor� space� and let Y be a subspace of X� If Y is open or closed
in X� then Y is locally compact�

�



Proof� Suppose Y is open in X� Let x � Y � By the preceding result� I may 
nd a neighborhood U of x such
that U is compact and U � Y � Note that U is automatically open in Y � Thus� x is contained in a compact
set which contains a Y �neighborhood of x� Therefore� Y is locally compact�

Suppose Y is closed� Let y � Y � and let C be a compact set containing a neighborhood U of y� C is
closed� since X is Hausdor�	 therefore� C �Y is a closed subset of C� Since C is compact� C �Y is compact�
Moreover� C � Y contains U � Y � which is a neighborhood of y� Therefore� Y is locally compact�

Example� Let S denote the topologist�s sine curve

S �

��
x� sin

�

x

� ��� � � x � �

�
�

Let X � S � f��� �
g� X is not locally compact�

Take a ball B���� �
	 �
 about the origin� Consider the intersection of X with the line y �
�

�
� The

intersection is an in
nite sequence of points with all but 
nitely many terms lying inside B���� �
	 �
� The

sequence converges to
�
��
�

�

�
� which is not in X�

If there is a compact set C in X containing a neighborhood of ��� �
� then that neighborhood contains
B���� �
	 �
 � X for � su�ciently small� By the argument above� such a neighborhood contains an in
nite
subset of X with no limit point� The same is true for C� which contradicts the fact that compact sets are
limit point compact�

It is often useful to embed a space in a compact Hausdor� space� because compact Hausdor� spaces
are very nicely behaved� For example� I�ll show later that compact Hausdor� spaces are normal� Any two
disjoint closed sets can be separated by disjoint open sets� If a space is locally compact Hausdor�� it can be
embedded in a compact Hausdor� space called the one�point compacti�cation�

Lemma� Let X be a locally compact Hausdor� space� De
ne Y � X � f�g� where � is a point not in X�
Let T be the collection of subsets of Y consisting of�

�� Any open subset of X�

�� The complement in Y of a compact subset of X�

Then T is a topology on Y �

�Y� T 
 is called the one�point compacti�cation of X�

Proof� � is open in X� so it�s open in Y � � is compact� so Y � Y � � is open in Y �
To verify the axioms for unions and intersections� it�s necessary to take cases� I�ll show the work for

unions	 the proof for intersections is similar�
The union of open sets in X is open in X� so it�s open in Y �
If fCig is a family of compact subsets of X� then

�
i�I

�Y � Ci
 � Y �
�
i�I

Ci�

Now X is Hausdor�� so compact subsets are closed� Therefore�
T

i�I
Ci is closed� Since it�s contained

in any one of the compact sets Ci� it�s also compact� Therefore�
S

i�I
�Y � Ci
 is the complement in Y of a

compact set in X� so it�s open in Y �
The remaining possibility is a union of sets open inX with complements of compact subsets ofX� Using

the 
rst two cases� this reduces to showing that if U is open in X and C is a compact subset of X� then
U � �Y �C
 is open in Y � But

U � �Y �C
 � Y � �C � U 
�

�



C is closed in X� U is open in X� so C �U is closed in X� But C �U � C and C is compact� therefore
C � U is compact� Hence� U � �Y � C
 is a complement in Y of a compact set in X� so it�s open in Y �

Here are some properties of the one�point compacti
cation�

Lemma� Let X be a locally compact Hausdor� space� and let Y be its one�point compacti
cation�

�� The subspace topology on X is the same as the original topology on X� �That is� the inclusion of X
into Y is a homeomorphism onto its image�


�� If X is not compact� then Y � X �

�� Y is compact�

�� Y is Hausdor��

Proof� �� If U is open in X� then it�s open in Y by de
nition� Conversely� an open set in Y is either
an open set U in X �in which case U � X � U is open in X
 or Y � C� where C is compact in X� But
�Y � C
 �X � X �C� which is open inX since C is closed in X�

�� Since the only point of Y not in X is �� this amounts to showing that � is a limit point of X�
Neighborhoods of� are sets Y �C� where C is compact� and since X is not compact� C �� X� Thus� Y �C
must intersect X� and so � � X �

�� Let fUigi�I be an open cover of Y � One of the U �s� say U�� must contain �� so U� must be a set of
the form Y � C� where C is compact in X� The sets Ui � X for Ui �� U� form an open cover of C	 let
fUi� �X� � � � � Uin �Xg be a 
nite subcover� Then fUi� � � � � � Uin � U�g covers Y �

�� Let x and y be distinct points of Y � If they�re both inX� they may be separated by disjoint neighborhoods
in X �since X is Hausdor�
� and these neighborhoods are also open in Y �

Otherwise� I�m trying to separate x � X from�� Since X is locally compact� I may 
nd a compact set
C containing a neighborhood U of x� Then Y �C and U are disjoint open sets in Y separating x and��

Corollary� A space X embeds as an open subset of a compact Hausdor� space if and only if X is locally
compact Hausdor��
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The Countability Axioms

De�nition� Let X be a topological space� and let x � X�

�� X has a countable basis at x if there is a countable collection of neighborhoods fBigi�I of x such
that if U is a neighborhood of x� then Bi � U for some i�

�� X is �rst countable if X has a countable basis at each point�

�� X is second countable if X has a countable basis for its topology�

Obviously� a second countable space is 	rst countable�

Example� Every metric space is 	rst countable� IfX is a metric space and x � X� then

�
B

�
x


�

n

� ��� n �Z�
�

is a countable basis at x�

Example� Rn is second countable� since the balls with rational centers and radii form a countable basis for
the usual topology�

On the other hand� Rwith the discrete topology is not second countable�

Example� Consider R with the 	nite complement topology� Thus� the open sets are � and any set whose
complement is 	nite�

I claim that R does not have a countable basis at any point� Suppose� for example� that there is a
countable basis fB�� B�� � � �g at �� I claim that

T
�

i��
Bi � f�g� Clearly� � is in the intersection
 I must show

that no nonzero point is in the intersection�
Suppose that x �� �� The complement of R� fxg is 	nite� so it
s an open set containing �� Hence�

Bi � R� fxg for some i� Then x �� Bi� so x ��
T�

i��
Bi�

Thus�

R� f�g � R�
��
i��

Bi �
��
i��

�R�Bi��

Each set Bi is 	nite� so
S�

i��
�R� Bi� is countable� But R is uncountable� so R� f�g is uncountable�

This contradiction shows that there is no countable basis at �
 obviously� the argument works for any x � R�
Thus� R is not 	rst countable �or second countable� in the 	nite complement topology�

The following results were proved for metric spaces� An examination of the proofs shows that they only
depended on the fact that metric spaces are 	rst countable�

Theorem� Let X and Y be topological spaces� and suppose X is 	rst countable�

�� Let A � X� x � A if and only if there is a sequence of points of A converging to x�

�� Let f � X � Y � f is continuous if and only if whenever fxng is a convergent sequence in X� ff�xn�g is
a convergent sequence in Y �

Proposition�

�� A subspace of a 	rst countable space is 	rst countable�

�



�� A countable product of 	rst countable spaces is 	rst countable�

�� A subspace of a second countable space is second countable�

�� A countable product of second countable spaces is second countable�

Proof� �� Suppose X is 	rst countable� and suppose Y is a subspace of X� Let y � Y � Let fB�� B�� � � �g be
a countable basis at y in X� Then fB� � Y�B� � Y� � � �g is a countable basis at y in Y �

�� Suppose X�� X�� � � � are 	rst countable spaces� Let �xn� �
Q
�

n��
Xn� Let Bn be a countable basis for xn

in Xn� Consider the collection U of product neighborhoods
Q
�

n��
Un� where Un � Xn for all but 	nitely

many n� and if Un �� Xn� then Un � Bn� Then U is a countable basis at �xn� in
Q
�

n��
Xn� so

Q
�

n��
Xn is

	rst countable�

�� Suppose X is second countable� and suppose Y is a subspace of X� Let fB�� B�� � � �g be a countable basis
for the topology on X� Then fB� � Y�B� � Y� � � �g is a countable basis for the subspace topology on Y �

�� Suppose X�� X�� � � � are second countable spaces� Let Bn be a countable basis for the topology on
Xn�Consider the collection U of product neighborhoods

Q
�

n��
Un� where Un � Xn for all but 	nitely many

n� and if Un �� Xn� then Un � Bn� Then U is a countable basis for the product topology on
Q�

n��
Xn� soQ�

n��
Xn is second countable�

De�nition� Let X be a topological space�

�� X is Lindel�of if every open cover of X has a countable subcover�

�� X is separable if X has a countable dense subset�

Example� Any compact space is Lindel�of� since every open cover has a �nite subcover�

Example� R is separable� since Q is a countable dense subset of R�

Proposition� Let X be a second countable topological space�

�� X is Lindel�of�

�� X is separable�

Proof� �� Let U be an open cover of X� Let fB�� B�� � � �g be a countable basis for X� For each n �Z�� let

Un � fU � U j Bn � Ug�

Next� for each nonempty Un� choose Vn � Un�
For each x � X� there is a U � U such that x � U � Moreover� there is a basis element Bn such that

x � Bn � U � Then Un is nonempty� so Vn is de	ned� and x � Bn � Vn�
Now x was an arbitrary point of X� so the collection fVng covers X� fVng is a countable subcover of U �

�� Let fB�� B�� � � �g be a countable basis for the topology of X� Choose xn � Bn for each n � Z�� Then
fxng is a countable dense subset of X�
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The Separation Axioms

De�nition� Let X be a space in which singletons are closed�

�� X is regular if a closed set and a point outside it can be separated by disjoint open sets�

�� X is normal if disjoint closed sets can be separated by disjoint open sets�

regular

normal

Obviously� a normal space is regular� and a regular space is Hausdor��

Terminology� Recall that a Hausdor� space is also known as a T� space�
X is a T� space if given distinct points x� y� there is a neighborhood U such that either x � U and y �� U

or y � U and x �� U �
X is a T� space if given distinct points x� y� there are neighborhoods U of x and V of y such that y �� U

and x �� V �
X is a T

�
�
�
space if distinct points have neighborhoods whose closures are disjoint�

If you don�t require that points be closed� then a space in which disjoint points and closed sets can be
separated is T�� and a space in which disjoint closed sets can be separated is T��

Lemma� Let X be a space in which singletons are closed�

�� X is regular if and only if for all x � X and every neighborhood U of x� there is a neighborhood V of
x such that V � U �

�� X is normal if and only if for every closed subset A of X and every open set U containing A� there is
an open set V containing A such that V � U �

Proof� �� Suppose X is regular� x � X� and U is a neighborhood of x� Then X � U is a closed set disjoint
from x� so by regularity I may 	nd disjoint open sets V containing x and W containing X � U �

In particular� x � V � X � U 
 since X � U is closed� V � X � U �
Conversely� suppose that for all x � X and every neighborhood U of x� there is a neighborhood V of x

such that V � U � Let x � X and let C be a closed set which does not contain x�
X�C is an open set containing x� so there is a neighborhood V of x such that V � X�C� Then X�V

is an open set containing C� and it is disjoint from the open set V containing x� Therefore� X is regular�

�� The proof for normality is the same as the proof for regularity� with the point x replaced with the closed
set A�

Corollary� If X is a regular space� then X is a T
�
�
�
space�

Proof� Suppose X is regular� Let x and y be distinct points in X� Points in X are closed� so X � fyg is a
neighborhood of x� By the preceding result� there is a neighborhood U of x such that U � X � fyg� Again
by the preceding result� there is a neighborhood V of x such that V � U �

X � U is a neighborhood of y� and X � U � X � U � Since X � U is closed� X � U � X � U � Since

V � U and X � U � X � U � V and X � U are disjoint�

�



Thus� V is a neighborhood of x� X�U is a neighborhood of y� and their closures are disjoint� Therefore�
X is T

�
�
�
�

Corollary� If X is a locally compact Hausdor� space� then X is regular�

Example� �Irrational slope topology ��� Example �
�� Let

X � Q�Q���

the points with rational coordinates in the closed upper half�plane� Fix an irrational number ��
If x� � � R and � � �� de	ne a subset of the x�axis B�x
 �� by

B�x
 �� � fy � Q j jx� yj � �g�

Then for �x� y� � X and � � �� set

N ��x� y�� �� � f�x� y�g �B
�
x�

y

�
� �
�
�B

�
x�

y

�
� �
�
�

N ��x� y�� �� consists of the point �x� y� together with two open ��intervals of rationals on the x�axis� The
intervals are centered at points on the x�axis which determine lines of slopes � and �� with the point �x� y��

(x,y)

B(x - y/   ,   )θ ε B(x + y/   ,   )θ ε

Note that if y � �� N ��x� y�� �� reduces to an open interval of rationals about x in the x�axis� Moreover�
if x � Q� then N ��x� ��� �� is a basic open set�

De	ne a topology by taking as a basis all the sets N ��x� y�� �� for all real � � � and all �x� y� � X� It�s
clear that the sets cover X�

If �a� b� � N ��x� y�� ��� �N ��x� y�� ���� then either �a� b� � �x� y� or �a� b� lies in the intersection of the
intervals in the x�axis�

In the 	rst case� if � � min���� ���� then N ��x� y�� �� is a basis element containing �a� b� and contained
in N ��x� y�� ��� �N ��x� y�� ����

In the second case� �a� b� � �a� ��� and �a� �� � B
�
x�

y

�
� ��

�
�B
�
x�

y

�
� ��

�
� and this is the intersection

of open intervals in the x�axis� Choosing a su�ciently small � � �� I may 	nd an intervalN ��a� ��� �� contained
in this intersection�

If �a� b� � N ��x�� y��� ��� � N ��x�� y��� ��� where �x�� y�� �� �x�� y��� then again �a� b� must lie in the
intersection of intervals in the x�axis� As before� I may 	nd a basic interval containing x contained in the
intersection of the original intervals�

Therefore� the collections of sets N ��x� y�� �� for all real � � � and all �x� y� � X forms a basis�
Next� I�ll show that the closures of any two basic neighborhoods must intersect�
What is N ��x� y�� ��� It consists of two diagonal strips of slopes � and �� emanating from the intervals

B
�
x�

y

�
� �
�
and B

�
x�

y

�
� �
�
�

(x,y)

B(x - y/   ,   )θ ε B(x + y/   ,   )θ ε

�



To see this� observe that a basic neighborhood of a point in these strips will contain intervals in the

x�axis which intersect B
�
x�

y

�
� �
�
or B

�
x�

y

�
� �
�
�

It is clear that any two such pairs of strips must intersect� Therefore� the closures of any two basic
neighborhoods must intersect� By the result above� X is not regular�

I proved a special case of the 	rst part of the following proposition
 I�m repeating the proof of the second
part for the sake of completeness�

Proposition�

�� A product of Hausdor� spaces is Hausdor��

�� A subspace of a Hausdor� space is Hausdor��

Proof� �� Let fXaga�A be a family of Hausdor� spaces� Let �xa�� �ya� be distinct points in
Q

a�AXa� For
some index b� xb �� yb� Choose disjoint open sets U� V � Xb such that xb � U and yb � V �

De	ne
Ua �

n
Xa if a �� b
U if a � b

and Va �
n
Xa if a �� b
V if a � b

�

Q
a�A Ua is a neighborhood of �xa��

Q
a�A Va is a neighborhood of �ya�� and

Q
a�A Ua and

Q
a�A Va are

disjoint� Therefore� fXaga�A is Hausdor��

�� Let X be a Hausdor� space� and let Y � X� Let x� y � Y � Find disjoint neighborhoods U of x and V of
y in X� Then U � Y is a Y �neighborhood of x� V � Y is a Y �neighborhood of y� and U � Y and V � y are
disjoint� Therefore� Y is Hausdor��

Proposition�

�� A product of regular spaces is regular�

�� A subspace of a regular space is regular�

Proof� �� Let fXaga�A be a family of regular topological spaces� For each a� Xa is Hausdor�� Therefore�Q
a�AXa is Hausdor�� so points in

Q
a�AXa are closed�

Let �xa� be a point in
Q

a�AXa� Take a neighborhood of �xa� in
Q

a�AXa
 replacing the neighborhood
with a smaller one if necessary� I may assume that it has the form

Q
a�A Ua� where Ua is open in Xa and

Ua � Xa for all but 	nitely many a�s�
Since Xa is regular for each a� I may 	nd a neighborhood Va of xa in Xa such that Va � Ua� If a is an

index for which Ua � Xa� I will take Va � Xa as well� Then
Q

a�A Va is a neighborhood of �xa� in
Q

a�AXa�
and Y

a�A

Va �
Y
a�A

Va �
Y
a�A

Ua�

It follows by an earlier result that
Q

a�AXa is regular�

�� Let X be a regular topological space� and let Y � X� A point of Y is closed in X� so it is closed in Y �
Let x � Y � and let C be a closed subset of Y which does not contain x� Write C � Y �D� where D is

closed in X� Find disjoint open sets U and V in X such that x � U and D � V � Then Y �U and Y �V are
disjoint open sets in Y � x � Y � U � and C � Y � V � Therefore� Y is regular�

Remark� The preceding results are false for normal spaces� A subspace of a normal space need not be
normal� and a product of normal spaces need not be normal�

The following results say that the class of normal spaces is large enough to contain many interesting
spaces� speci	cally� metric spaces� compact Hausdor� spaces� and regular spaces having countable bases�

Theorem� Every metric space is normal�

�



Proof� Let �X� d� be a metric space� Since metric spaces are Hausdor�� points in X are closed�
Let C and D be disjoint closed sets in X� Since C � X �D and X �D is open� for every x � C I may

	nd an open ball B�x
 �x� contained in X �D�
By a similar argument� for every y � D� there is a ball B�y
 �y� contained in X � C�
Let

U �
�
x�C

B
�
x

�x
�

�
and V �

�
y�D

B
�
y

�y
�

�
�

U and V are open sets� C � U � and D � V � I claim that U and V are disjoint�

Suppose on the contrary that z � U � V � say z � B
�
x

�x
�

�
for x � C and z � B

�
y

�y
�

�
for y � D�

Then

d�x� y� � d�x� z� � d�y� z� �
�x
�
�
�y
�
�

If �x � �y� then

d�x� y� �
�x
�
�
�y
�
�

�y
�
�
�y
�

� �y�

This means that x � B�y
 �y�� so x �� C� contradicting the fact that x � C�
Likewise� �y � �x implies that d�x� y� � �x� which in turns implies that y � B�x
 �x�� This means that

y �� D� contradicting the fact that y � D�
This proves my claim that U and V are disjoint� Since I�ve separated the closed sets C and D with

disjoint open sets U and V � it follows that X is normal�

Theorem� A compact Hausdor� space is normal�

Proof� In a Hausdor� space� points are closed�
I need to show that disjoint closed sets can be separated by disjoint open sets� First� recall that in a

Hausdor� space� a point and a compact set that doesn�t contain it can be separated by disjoint open sets�
Let C and D be disjoint closed subsets of the compact Hausdor� space X� Since D is closed and X is

compact� D is compact� By the observation above� for each x � C I may 	nd disjoint open sets Ux and Vx
such that x � Ux and D � Vx�

fUxgx�C is an open cover of C
 C is compact� since it�s a closed subset of a compact space� Let
fUx� � � � � � Uxng be a 	nite subcover of C� De	ne

U �
n�
i��

Uxi and V �
n�
i��

Vxi �

U and V are open sets� C � U � and D � V � If y � U � V � then y � Uxi for some i and y � V � Vxi � so
y � Uxi � Vxi � 	� This contradiction shows that U and V are disjoint�

Therefore� X is normal�

Theorem� A regular space with a countable basis is normal�

Proof� Let X be a regular space with a coutable basis fBigi�Z� � Since X is regular� points are closed�
Let C and D be disjoint closed subsets of X� Let x � C� Since X � D is an open set containing x�

I may 	nd a neighborhood U of x such that x � U � X � D� Next� regularity implies that there is a
neighborhood V of x such that V � U � Finally� there is a basis element Bi containing x such that Bi � V �
Now Bi � V � U � X �D� so Bi misses D�

Repeat this procedure for each x � C� I wind up up with a countable subcollection fCjg of fBig which
covers C� and which satis	es Cj �D � 	 for all j�

Likewise� I may 	nd a countable subcollection fDkg of fBigwhich covers D� and which satis	es Dk�C �
	 for all k�

What I�d like to do is to take the unions of the two subcollections as my neighborhoods of C and D� but
these unions may not be disjoint� However� since the subcollections are countable� I can inductively adjust
the subcollections to produce new subcollections whose unions will be disjoint�

�



Thus� for each j and k� de	ne

C�j � Cj �

j�
k��

Dk and D�
k � Dk �

k�
j��

Cj�

Then let

A �
��
j��

C�j and B �
��
k��

D�
k�

I claim that A and B are disjoint open sets� C � A� and D � B�
Each C �j and each D�

k is open� since each is an open set minus a closed set� Therefore� A and B are
unions of open sets� so they are open�

The union of the Cj�s contains C� This is not changed by subtracting Dk�s� because these sets missed
C anyway� Therefore� A �

S�
j��C

�
j contains C� Similarly� B contains D�

Finally� I�ll show that A and B are disjoint� Suppose y � A � B� Then y � C�j �D
�
k for some j and k�

Without loss of generality� suppose that j � k� Now y � C�j implies y � Cj � but y � D�
k implies y �� Cj for

j � k� This contradiction proves that A �B � 	�
Therefore� A and B are disjoint neighborhoods of C and D� and X is normal�

��� Lynn A� Steen and J� Arthur Seebach� Counterexamples in Topology� New York� Holt� Rinehart� and
Winston� Inc�� ����� �ISBN ����������
���
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Urysohn�s Lemma

Urysohn�s lemma is often expressed by saying that disjoint closed sets in a normal space can be
separated by a continuous function � that is� there is a continuous� real�valued function which is � on one
of the closed sets and � on the other�

Note that if A and B are disjoint closed sets in a topological space X� then X � B is an open set
containing A� Conversely� if A is closed and U is an open set containing A� then A and X � U are disjoint
closed sets�

Thus� Urysohn	s lemma can be expressed in another form
 In a normal space� given a closed set and an
open set containing it� there is a continuous� real�valued function which is � on the closed set and � outside
the open set� It is this version that I	ll prove� the discussion above shows that the other version is an easy
corollary�

The idea is that� for such a function to exist� there should be �level sets
 � a set where the function is

equal to
�

�
� a set where the function is equal to

�

�
� and so on from � to �� Going the other way� maybe I can

de�ne such a function by constructing the level sets�

A

U

1/2
3/4

1/4

There are various ways of constructing the level sets� they di�er in the way they index the level sets� I
will take the approach of ��� and ���� which index the level sets using the dyadic rationals in ��� �� � the

rationals which can be written in the form
k

�n
� The �rst step is to show that� given an appropriate collection

of such level sets� one may de�ne a continuous function by using the level set indices in the obvious way�

Lemma� Let X and Y be topological spaces� let f 
 X � Y � and let S be a subbasis for the topology on Y �
f is continuous if and only if f���U � is open in X for every U � S�

Proof� Since subbasic sets are open� if f is continuous� then f���U � is open in X for every U � S�
Conversely� suppose that f���U � is open in X for every U � S� An arbitrary open set in Y is a union

of �nite intersections of elements of S� Since f�� preserves arbitrary unions and arbitrary intersections� the
inverse image of an arbitrary open set in Y is open in X� Therefore� f is continuous�

Lemma� Let X be a topological space� and let

S �

�
k

�n

��� n � �� � � k � �n
�
�

Suppose that for each s � S� there is an open set Us in X such that if r� s � S and r � s� then Ur � Us�
The function f 
 X � R de�ned by

f�x� �

�
infRfr � S j x � Urg if x � U�

� if x �� U�

is continuous�

�



Note that some elements of S are represented by more than one fraction of the form
k

�n
� but repetitions

are eliminated by implication� since S is a set�

Proof� The open rays ���� a�� �b���� for a� b � R form a subbasis for the standard topology on R� It
therefore su�ces to show that f������a�� and f����b����� are open for all a� b � R�

Consider the set f������� a��� The range of f lies in ��� ��� Thus� if a � �� then f������� a�� � X�
and if a � �� then f������� a�� � �� In either case� f������� a�� is open�

Suppose then that � � a � �� I will show that f������� a�� �
S
r�a Ur �

Let x � f������� a��� so f�x� � a � �� Since f�x� is the greatest lower bound of the indices r such
that x � Ur � and since f�x� � a� there is an index r � a such that x � Ur � Hence� x �

S
r�a Ur�

Conversely� suppose x �
S
r�a Ur � Suppose x � Ur � where r � a� Then f�x� � r � a� so x �

f������� a���
Thus� f������� a�� �

S
r�a Ur � so f

������� a�� is open�
Now consider the set f����b������ The range of f lies in ���� ��� Thus� if b � �� then f����b����� �

�� and if b � �� then f����b����� � X� In either case� f����b����� is open�
Suppose then that � � b � �� I will show that f����b����� �

S
r�b�X � Ur��

Let x � f����b������ so f�x� � b� Since in addition b � �� I may �nd r� s � S such that b � r � s �
f�x�� by construction� Ur � Us� Since f�x� is the greatest lower bound of the indices t such that x � Ut�
and since f�x� � s� it follows that x �� Us� Hence� x �� Ur � so x � X � Ur � and x �

S
r�b�X � Ur��

Conversely� suppose x �
S
r�b�X � Ur�� Suppose x � X � Ur� where r � b� Then f�x� �� Ur � so the

fact that the U 	s are nested implies that f�x� �� Us for all s � S with s � r� Therefore� f�x� � r � b� so
x � f����b������

Thus� f����b����� �
S
r�b�X � Ur�� so f����b����� is open�

Therefore� f is continuous�

Theorem� �Urysohn�s Lemma� Let X be a normal space� let C be a closed subset of X� and let U be an
open set containing C� There is a continuous function f 
 X � ��� �� such that f�C� � � and f�X �U � � ��

Proof� I	ll de�ne a sequence of sets Ur indexed by

S �

�
k

�n

��� n � �� � � k � �n
�

and satisfying Ur � Us for r � s�
Let U� � U � By normality� I may �nd an open set U� such that C � U� � U� � U��
By normality� I may �nd an open set U��� such that

U� � U��� � U��� � U��

By normality� I may �nd open sets U��� and U��� such that

U� � U��� � U��� � U���

and
U��� � U��� � U��� � U��

Keep going� By construction� the U 	s satisfy the hypotheses of the lemma� The function f constructed
by the lemma satis�es the conclusion of the theorem�

Corollary� Let X be a normal space� and let A and B be disjoint closed subset of X� There is a continuous
function f 
 X � ��� �� such that f�A� � � and f�B� � ��

��� Glen Bredon� Topology and Geometry�New York
 Springer�Verlag New York� Inc�� ����� �ISBN ������
���������

��� Serge Lang� Real Analysis ��nd edition�� Reading� Massachusetts
 Addison�Wesley Publishing Company�
Inc�� ����� �ISBN ���������������
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The Tietze Extension Theorem

The Tietze Extension Theorem says that a continuous real�valued function on a closed subset of
a normal space may be extended to the entire space� I�ll show that this extension condition is essentially
equivalent to normality�

The construction of the extension involves building a sequence of functions whose sum agrees with the
given function on the subspace�

Lemma� Let X be a normal space� let A be a closed subset of X� and let f 	 A� Rbe a continuous function
satisfying jf
x�j � c for all x � A and some c � R� Then there is a continuous function g 	 X � R such that

�� jg
x�j �
�

�
c for all x � X�

�� jf
x� � g
x�j �
�

�
c for all x � A�

Proof� The sets

f��
��

�

�
c��

��
and f��

��
����

�

�
c

��

are disjoint closed sets in A
 since A is closed� these sets are also closed in X� By Urysohn�s lemma� I may

�nd a continuous function g 	 X �

�
�
�

�
c�
�

�
c

�
such that

g

�
f��

��
����

�

�
c

���
� �

�

�
c and g

�
f��

��
�

�
c��

���
�

�

�
c�

By construction� jg
x�j �
�

�
c for all x � X�

Now consider cases� If �c � f
x� � �
�

�
c� then g
x� � �

�

�
c� so jf
x�� g
x�j �

�

�
c�

If
�

�
c � f
x� � c� then g
x� �

�

�
c� so jf
x� � g
x�j �

�

�
c�

Finally� suppose �
�

�
c � f
x� �

�

�
c� Since �

�

�
c � g
x� �

�

�
c� I again have jf
x� � g
x�j �

�

�
c�

Theorem� Let X be Hausdor�� The following are equivalent	

�� X is normal�

�� If A is a closed subset of X� any continuous function f 	 A � R extends to a continuous function
F 	 X � R�

To say that F extends f means that F jA � f �

Remark� Rmay be replaced by a closed interval �a� b��

Proof� 
� � �� Suppose that if A is a closed subset of X� any continuous function f 	 A � R extends to a
continuous function F 	 X � R� Let C and D be disjoint closed subsets of X� De�ne f 	 C �D � R by

f
x� �
n
� if x � C

� if x � D
�

C �D is closed� so by assumption� I may extend f to a function F 	 X � R� Pick disjoint open sets U
and V in R such that � � U and � � V � Then F��
U � and F��
V � are disjoint open sets in X� C � F��
U ��
and D � F��
V �� Therefore� X is normal�

�




� � �� Suppose �rst that jf
x�j � c for all x � A and some c � R� I�ll extend f to F 	 X � R such that
jF 
x�j � c�

By the Lemma� I may �nd a continuous function g� 	 X � R such that

jg�
x�j �
�

�
c for all x � X�

jf
x�� g�
x�j �
�

�
c for all x � A�

Next� apply the Lemma to f � g� 	 A� R to �nd a function g� 	 X � R such that

jg�
x�j �
�

�
�
�

�
c for all x � X�

jf
x�� g�
x�� g�
x�j �
�

�
�
�

�
c for all x � A�

Suppose n � � and gn�� 	 X � R has been de�ned and satis�es

jgn��
x�j �
�

�
�

�
�

�

�n��
c for all x � X�

jf
x�� g�
x�� g�
x� � � � � � gn��
x�j �

�
�

�

�n
c for all x � A�

Apply the Lemma to �nd gn 	 X � R satisfying

jgn
x�j �
�

�
�

�
�

�

�n
c for all x � X�

jf
x� � g�
x�� g�
x�� � � � � gn
x�j �

�
�

�

�n��
c for all x � A�

I want to de�ne F 
x� �
�X
n��

gn
x�� I must show that this series converges� To see this� note that

jgn
x�j �
�

�
�

�
�

�

�n
c� and that

�X
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�

�
�
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�n
c is a convergent geometric series� Therefore�

P
�

n�� gn
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converges absolutely by direct comparison�
Next� I want to show that F 
x� is continuous� Let x � X� and let

sk
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kX
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be the kth partial sum�
If k � j� then
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Fix j and let k ��	

jF 
x�� sj
x�j �

�
�

�

�j��
c�

Since the right side goes to � as j � � independent of x� it follows that the partial sums converge
uniformly to F 
x�� Since the partial sums are continuous� it follows that F 
x� is continuous�

For x � A� I have �����f
x� �
kX

n��

gn
x�

����� �
�
�

�

�k��
c�

As k ��� the right side goes to �� and the sum goes to F 
x�� Thus� F agrees with f on A�
Before I consider the case where f is unbounded� I need to observe something about the preceding

construction� I claim that if jf
x�j � c� I can construct an extension F �
x� satisfying jF �
x�j � c�
To see this� �rst construct F 
x� as above� Note that

jF 
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n��

gn
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�X
n��

jgn
x�j �
�X
n��

�
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�

�
�

�
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c � c�

Let B � F�� 
f�cg � fcg�� This is a closed set disjoint from A� since if x � A� jF 
x�j � jf
x�j � c� Let
� be a continuous function such that �
A� � � and �
B� � �� De�ne F �
x� � �
x� � F 
x�� F � still extends
f � but now jF �
x�j � c�

Now I�ll consider the unbounded case where f 	 A� R�

Let � 	 R�


�
�

�
�
�

�

�
be the arctangent function �
x� � arctanx� Then � � f 	 A�



�
�

�
�
�

�

�
satis�es

j� � f
x�j �
�

�
� Construct an extension F 	 X �



�
�

�
�
�

�

�
� Then ��� � F 	 X � R is a continuous function

which extends f �

c	���� by Bruce Ikenaga �
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