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THE GEOMETRY OF THE LINEAR PARTIAL DIFFERENTIAL
EQUATION OF THE SECOND ORDER.*

By RicmHARD L. INGRAHAM.

1. Introduction. The general linear partial differential equation of the
second order in one unknown and n variables has an intrinsic geometry defined
by its coefficients. This was investigated first by B. Cotton [1], to whom
all the basic results are due. Further work introduced little that was new.
Struik and Wiener [2], who were mainly interested in a certain physical
application of the Cotton theory, recognized that the geometry of the quadratic
and linear differential forms involved, under the groups allowed, could be
unified in the concept of one geometry—the Weyl geometry—but otherwise
added nothing new to the mathematical theory. Levi-Civita [3], using the
Cotton theory, confined himself to the problem of finding normal forms,
eliminating one of the most interesting groups by a normalization. Moreover,
he paid most attention to the case n =2, an exceptional case to which the
general theory does not apply.

The present paper aims first, by making consistent use of the intrinsic
Weyl geometry, to cast the known theory in the form in which the powerful
transformation calculus of modern differential geometry can be most directly
applied to the equivalence problem (which yields a classification) and to the
problems of simplifying the equation in the large by suitable transformations
and of finding solutions. Second, making use of these methods, it gives several
new results, of which the most important is the criterion for the equivalence
of two such equations expressed in finite form in terms of complete sets of
invariants of the corresponding Weyl geometries. As a corollary, the criterion
that an equation be reducible to ordinary Laplacian form is immediate.

2. The intrinsic geometry. We treat only equations with vanishing
undifferentiated term. Let the equation be written (cf. [4] for a concise
summary of the notations used by Schouten and others)

(2-1) gro0Prsp + d70rp =0 [0, =10/02"5 7,8, - -, =1, - ©, n; det g™ 5% 0].

* Received March 31, 1953.




692 RICHARD L. INGRAHAM.

The question of whether the left member might represent simply the Laplacian
of ¢ in a curved space endowed with a suitable linear connection and metric
is answered in the affirmative by the following theorem.

TuroreM 1. Equations of the type (2.1) can always be written as the
generalized Laplacian of ¢ equals zero in terms of covariant differentiation
with respect to a unique Weyl-type linear connection. The associated intrinsic
geometry of the quation is o Weyl geometry W, (n~2) and is uniquely
determined.

Proof. The first part of the theorem states that (2.1) is identical with
(2.2) Vi (970sp) =0

for a unique Weyl-type connection, i.e., a symmetric linear connection
Apg' = Mgy’ for which there exist a symmetric tensor Gs(det Grs 540) and
a vector F, such that

(2- 3) qut = Opqt - Tzl(Athq + Athp - qupt)

where O, is the Christoffel symbol of Gys, G*¢ are the normalized cofactors,
the unit tensor A?, =&, and F* — G*'F,. Expanding (2.2) using (2.3),
and comparing with (2.1), one obtains the unique solutions Gr; = grs, the
normalized cofactors of ¢, and

(2-4) Fr——2/n(d" + g7Cy"),

which proves the first part. For reasons which will emerge in a moment we
define (n42?):

(R.4) fr=>0—2/n)""Fr= (1 —n/R)7(d" + g7Cpq"), [s= gurf".

Then the connection in (2.2) in terms of g, and f, is

(».3) Apgt = Cpg' — 3 (1 —2/n) (A%fq + Alofp — gndf*)-

The second part of the theorem asserts that we can really associate a
geometry with the equation; that is, that the geometrical form in which we
have cast (2.1) persists unchanged throughout the group of allowable trans-
formations which take (2.1) into equivalent forms. Now this group? is the
direct product of @&,: 27" = fr"(29), det d,2*" 4 0: non-singular change of
coordinates ; & : multiplication through of the equation by a factor r(x2) > 0:

* Beside the two groups considered here, Cotton treats a third group ¢ - p¢ trans-
forming the unknown. If this further group is adjoined, the equivalence classes will
be correspondingly larger.
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gauge group. This second part then asserts that the intrinsic geometry is
the Weyl gecmetry W, (cf. [5], p. 81) defined by the symmetric and linear
differential forms g,.; and f; respectively in the precise sense that a) under a
transformation of &,, (2. 1) goes into V, (97%0y¢p) = 0, where the connection
Apgt' is given by (R.3)’ with

0p = 6/0xr’ 5 Jrs = grsar’fvras’xs: fs’ = fsas’xs:

and that b) under a transformation of & with r it goes into 'V, ("9 %0s¢) = 0,
where the connection ’A,,t is given by (2. 3)” with

,grs = AJrs» ,fs == ]cs + 0 IOg As A= 1L
For then g,, and f; transform under &, X & as in W,.

Proof. a) is immediate from the invariant form of (2.2). b) is shown
as follows: g7¢ — "g"8 =¢"¢, hence grs —> "¢rs = Agrs for A=1"1. By (2.4)’,

fs=fo= (1 —n/2) 7 ("g’d" 4 "g77Coq"" gsr), "dr=rdr = \d".
This equals
fs + (R —n) A gP(Rgpsdh — Gpedsh) = fs + 05 log A,

q.e.d. (It should be noted that the connection (2.3)’ in terms of which
(.R) is written is not the same as the Weyl connection belonging to W,. In
particular, A, is not gauge-invariant.)

It is remarkable that this theory breaks down for n = 2. This case is
treated briefly at the end of the article.

Of particular interest is the subclass of self-adjoint equations, those
which, after multiplication by a suitable (positive) factor, can be written in
the form

(2.1) 0, (Prsdsp) =0 [for some set of functions Pr#].

This property has a very nice geometrical characterization (vemark: this
geometrical characterization of self-adjointness is independent of the boundary
behavior of ¢):

TureoreM R. Equation (2.1) is self-adjoint if and only if its intrinsic
geometry is Riemannian, (ns42).

We recall that W, is Riemannian if and only if 0fr; = 0; i.e., there
exists a gauge in which f, = 0.
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Proof. If W, is Riemannian, then in the gauge in which f, = 0 by (. 3)’
V- becomes covariant differentiation with respect to Cpst. Hence (2.2) reads

Vr(g7e0sp) =19 [20:(] g [2g70s9) =0, [g = det g»].
Multiply through by | g |*; this proves the sufficiency.

Conversely, if equation (2.1) is self-adjoint, then in a suitable gauge
"= 0,9%". From (R.4)’,

fr=(1—=n/2) s (dp97° — Opg?* — g%, log | g |) = (n—2)79, log l gl

so f, is a gradient, which proves the necessity.

3. Curvature and the equivalence criterion. Two equations (2. 1) are
equivalent (by this we shall always mean equivalent under the product group
®, X §) if and only if their intrinsic Weyl geometries are the same. For
they both can be written in the form (2.2) with connections of the form
(2.8)’ and this prescription is invariant against the transformations con-
sidered. It follows that the equivalence problem for these linear equations
reduces to the equivalence problem for the Weyl geometry W,. This closely
parallels the usual treatment of the equivalence of quadratic differential forms
with slight complications due to the fact that here we have a linear form
adjoined and the gauge group as well as coordinate transformation group.
Tt is a noteworthy fact that the equivalence-characterizing system of invariants
of the quadratic form and that of the linear form are completely unified in
the invariants of W,. We sketch the proof below, followed by the theorem.

Let g, and f,, functions of z?, define the intrinsic geometry of the first
equation, and ’g,q, frr, functions of 2#’, that of the second equation. Then we

ask whether there exist a gauge transformation A(z?) and coordinate trans-
formation z? = f?(29") such that

(8.1) "9vq — AGpe APy A% = 0, (8.2) "for — fpdPpy — Ay =0,
where
(3.3) Opra? = APy (8.3)’ 0p log A = Ay,

Differentiating (3.1) and using (3.2), (3.3), and (3.3)", we get on
rearranging

(3' 4‘) Pp'q'T’Arr’ - qu"App'Aqq’ - ap’qu' =0,
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where T,,” (the linear connection of W,) is short for
Tpg" = O — 3 (A7 + A"dfo — gudf")

and T, is the corresponding expression ? in ‘g, and “f. Differentiating
(8.2) and using (3.3) and 3.4), we get on rearranging

(3- 4)’ Vq"fp' - qupAqq’App' — V¢hpy = 0,

where V4 from here on will mean covariant differentiation with respect to
T, , and Vg, correspondingly, with respect to Tjq”. The problem then
reduces to solving the system of partial differential equations (3.3), (3.3)’,
(8.4), (3.4)” and the finite equations (3. 1), (3. 2) in the (n + 1)* unknowns
a?, A, A%y, A, as functions of z?".

The integrability conditions of (3.8) are satisfied in virtue of (3.4).
The integrability conditions of (3.4) are
(3.5) Rygrt' Aty — Ryt A2y A0 A7y,
where Ryt (the curvature tensor of W,) stands for
Rpgr' = — 20T 1" — 2ppy5) Tas®

correspondingly for R, q»* in terms of Ty, and the infinite sequence of
equations obtained by repeated differentiation of (3.5):

3.6 VoRpgrt' Aty — V Ryt APy A%y ATw A, - - - =+ - - ete.
par A5p

It is remarkable to note now that the integrability conditions of the
other equations, those arising from the linear form, impose no new conditions.
For, the integrability conditions of (8.3)’ are, from (3. 4)’,

for = fad % APy, fao =V taf 51 = O1af 01,

correspondingly for fs, in terms of ’f,, and the infinite sequence of equations
arising from these by repeated differentiation. But multiplying (3. 5) through
by A%, (the normalized cofactors of A% ), contracting +/ and s’, and using
the identities Rpe" = nfpg, VsBpg™ =1V sfpg* * *, We find that these inte-
grability conditions are satisfied in virtue of (3.5), (8.6),- - -. Moreover,
the integrability conditions of (3.4)’, with the aid of (8.2), come out to be

(Rp'q’r’tlA by — qurtApp’Aqq'Arr')f =10

and equations arising from these by repeated differentiation. But these are

? Note on notation: T instead of ‘T is written because it is gauge-invariant (cf. the
definition equation). The same remark applies toA,, R,.,*, and fp.




696 RICHARD L. INGRAHAM.

satisfied in virtue of (3.5), (3.6), - -. Hence by the well-known theorem
(cf. say, [6], Chap. 5, § 7) on systems of partial differential equations the
equivalence theorem for the linear equations (2.1) reads as follows:

TurorREM 3. Two equations (2. 1) whose intrinsic geometries are charac-
terized by the invariants gpe, fr (functions of a?) and 'gpq, 'fr (functions
of z?") respectively for ns£2 are equivalent if and only if there exists a
positive integer N such that a) the sets of equations (3.1), (3.2), and the
first N sets of equations (3.5), (3.6), « -, in the unknowns a2, X, A%y, Ay
as functions of z?" are compatible and b) all sets of solutions of these equations
satisfy the (N + 1)-th set of equations.

Therewith, equations (2.1) are elassified into equivalence classes.

The simplest equation (R.1) is the ordinary Laplacian equation
(8.7) 880%,5p = 0 [ = +1;8%=0,r£5].

(The term “Laplacian” here embraces all metric signatures.) Then the
equivalence theorem gives us immediately the criterion that any equation
(%.1) be reducible to this form:

CorOLLARY. An equation (2.1) is equivalent to the ordinary Laplacian
equation if and only +f its intrinsic geometry is flat.

By flat is meant Rp,*=0. (This implies both that the geometry is
Riemannian and flat in the Riemannian sense.)

Another application of the complete set of invariants of the intrinsic
geometry (in the Riemannian case) is the determination by algebraic means .
of whether the equation admits any “ plane-wave ” type solutions. Consider
the sets of equations in the unknown & (z?)

(3.8) groEd, =0, (3.9) Rpgités = 0,
(3.10)  ViRpu*ts — 0, (8.11)  VZuBpgtés =0, - -.

THEOREM 4. In the Riemanntan case fpq = 0, there exist solutions of
(R.1) of the plane-wave type if and only if there exists a positive integer M
such that a) the first M of (3.9), (3.10),- + - are compatible for the unknown
£(a?) and b) all solutions of these satisfy the (M -4 1)-th set of equations,
finally, c) some solution of these satisfies (3.8).

¢ = F( [ ksda®) is defined to be a plane-wave if F is any twice differ-
entiable function, { means the indefinite line integral, and ¥, is a null parallel
field: V,ks =0, grek,by — 0.
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Proof. If and only if such an M exists does there exist a field k, parallel
with respect to the Riemannian space defined by W, in the gauge for which
fr=0 (cf. [7], §23); %k then is a solution of (3.9), (3.10),- - -. If and
only if one of these solutions also satisfies (8.8) does there exist a null
parallel field. Hence the conditions of the theorem are necessary and suffi-
cient in order that there exist a plane-wave. But every plane-wave yields a
solution of (2.1). For in the gauge in which f, =0 we get from (2.2)

grsVer{F(f kdat)} = ngrskrks =0,

where F” means the derivative of F' with respect to its argument.

4. The case n=2. We add a few words on the anomalous case n = 2.
The first part of Theorem 1 is still true, but no Weyl geometry W, can be
associated with the equation. For although g,, and F, (given by (2.4))
are tensors against &,, under & they transform as follows:

(4.1) "9pa = Mnas 'Fp=F).

Hence the geometry is that of a class of conformally related Riemannian
spaces V', on each of which the same Pfaffian is superimposed.

Theorem 2 holds in the form: Equation (2.1) is self-adjoint if and only
if F, is a gradient.

Of course d;F,; = 0 has not now any Riemannian interpretation. In
proof, note that if the equation is self-adjoint, then in a coordinate and gauge
frame in which it takes the form (2.1)’, we have F, — }d,log | g | (cf. the
proof of Theorem 2). Conversely, if F, is a gradient, 4d,log h, h > 0, say,
perform the gauge transformation with A —="h%|g|% to a frame where
|"g|=h, 'F,=F,=4%d,log |’g|. Then, as in the proof of Theorem 2,
in this coordinate and gauge frame ’d" = d,’g*" and hence the equation is
self-adjoint.

Theorem 3 does not apply. In the present case n — 2 the equations we
start from in the equivalence problem are

(4.?) "Jrra — MpeAPp Aty = 0; Opa? = A7y
(4.8) "Fy — FpA?,, = 0.

Since any two V’s of the same signature are conformal (cf. [7], § 28), the
problem reduces to using the remaining freedom in the coordinate trans-
formations satisfying (4.2) to satisfy (4.3) as well. This was treated at
lenth by Cotton ([1], p. 236 et seq.) and also elsewhere in the literature.

3



698 RICHARD L. INGRAHAM.

From the facts that F, = 0 for the ordinary Laplacian equation (38.7),
F, is gauge-invariant for n = 2, and any two V.’s of the same signature are
conformal, we infer immediately the following

CoROLLARY. The vanishing of F, is necessary and sufficient in order that
the equation (R.1) be reducible to ordinary Laplacian form.

Thus in the case of a definite metric, #, = 0 is the criterion that the
solution of (2.1) be reducible to the solution of the Beltrami differential
equations.

INSTITUTE FOR ADVANCED STUDY.
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