
THE GEOMETRY OF THE LINEAR PARTIAL DIFFERENTIAL 

EQUATION OF THE SECOND ORDER." 


1. Introduction. The general lincar partial differential equation of the 
second order in one unknown and 7% variables has an intrinsic geometry defined 
by its coefficients. This was investigated first by E. Cotton [I], to whom 
all the basic results are due. Further work introduced little that was new. 

Struik and Wiener [2], who were mainly interested in a certain physical 
application of the Cotton theory, recognized that the geometry of the quadratic 
and linear differential forills involved, under the gronps allowed, could be 
unified in the concept of one geometry-the Weyl geometry-but otherwise 
added nothing new to the mathematical theory. Levi-CivitB. [3], using the 
Cotton theory, confined himself to the problem of finding nornial forms, 
eliminating one of the most interesting gronps by a normalization. Moreovel., 
he paid most attention to the case n = 2, an exceptional case to which the 
general theory does not apply. 

The present paper aims first, by making consistent use of the intrinsic 
Weyl geometry, to cast the known theory in the form in which the powerful 
transformation calculus of modern differential geometry can be most directly 
applied to the equivalence problem (which yields a classification) and to the 
problems of simplifying the equation in the large by suitable transformations 
and of finding solutions. Second, making use of these methods, it gives several 
new results, of which the most important is the criterion for the equivalence 
of two such equations expressed in finite form in terms of complete sets of 
invariants of the corresponding Weyl geometries. i ls  a corollary, the criterion 
that an equation be reducible to ordinary Laplacian form is immediate. 

2. The intrinsic geometry. We treat only equations with vanishing 
nndiflerentiated term. Let the equation be written (cf. [4] for a concise 
summary of the notations used by Schouten and others) 
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The question of whether the left member might represent simply the Laplacian 
of + in a curved space endowed with a suitable linear connection and metric 
is answered in the afirmative by the following theorem. 

THEOREM Igqz~at ions  of t h e  t y p e  (2.  1 )  c a n  a lways  be zurit ten u s  t h e  1. 

generalized Lap lac ian  of + equals  zero i n  t e r m s  of covar iant  d i f e r e n t i a t i o n  
w i t h  respect  t o  a z ~ n i q u e  1Veyl-type l inear  connect ion .  T h e  ussociated i n t r i n s i c  
geome t ry  of t h e  q u a t i o n  i s  n W e y l  g e o m e t r y  1V, ( n  # 2) and  i s  u n i q u e l y  
de t e rmined .  

Proo f .  The first part of the theorem states that (2. 1) is identical with 

for a nniqne JVey1-type connection, i. e., a symmetric linear connection 
hp,t =Aqpt for which there exist a symmetric tensor G,,(det G,, # 0) and 
a vector Pr such that 

where Cpqt is the Christoffel symbol of G,,, Gr8 are the normalized cofactors, 
the unit tensor Apq =Spa, and Ft =GtrP,. Expanding (2. 2) using (2. 3 ) ,  
and comparing with (2. 1 ) )  one obtains the unique solutions G,, =g,.,, the 
normalized cofactors of gr8, and 

which proves the first part. For reasons which will emerge in a moment we 
define ( n  # 2) : 

Then the connection in (2. 2 )  in terms of g,, and f, is 

The second part of the theorem asserts that we can really associate a 
g e o m e t r y  with the equation; that is, that the geometrical form in which we 
have cast (2. 1 )  persists unchanged throughout the group of allowable trans- 
formations which take (2. 1 )  into equivalent forms. Now this group is the 
direct product of (3, : xp' = fp' (@), det 8,xp' # 0 : non-singular change of 
coordinates ;8:multiplication through of the equation by a factor 7 (xq) > 0 : 

Beside the two groups considered here, Cotton treats a third group @ -* p@ trans-
forming the unknown. If this further group is adjoined, the equivalence classes will 
be correspondingly larger. 
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gauge group. This second part then asserts that the intrinsic geometry is 

the SVey1 gecrnetry lV.n (cf. [ 5 ] ,  p. 81) defined by the symmetric and linear 
differential forms g,, and f, respectively in the precise sense that a )  under a 
transformation of a,, (2. 1 )  goes into V,. (gr'8'd,j+) = 0, where the connection 
hpPqpt'is given by (2. 3)' with 

and that b) nnder a transformation of 8with T it goes into 'V,('gr8d,+) =0, 
where the connection 'llpqt is given by (2. 3)' with 

For then g,., and f, transform nnder a,, X 8 as in 1'7,. 

P~oof .  a)  is immediate from the invariant form of (2. 2) .  b) is shown 

as follows : gr8+ 'grs =7 g r S ,hence g,, + 'g,, =hg,, for h = T-'. By (2. 4)') 

f, + 'f, = (1-n/2) -'('g,:d~ f 'gpq'Cpqr'g,,), ' d ~=T a r  =h-'ar. 

This equals 

q. e. d. ( I t  should be noted that the connection (2. 3)' in  terms of which 
(2. 2) is written is not the same as the Weyl connection belonging to W,. I11 
particular, APgr is not gauge-invariant.) 

It is remarkable that this theory breaks down for n = 2. This case is 
treated briefly at  the end of the article. 

Of particular interest is the subclass of self-adjoint ecluations, those 
which, after multiplication by a suitable (positive) factor, can be written in 
the form 

(2. a, (prsas+) =0 [for some set of functions P r 8 ] .  

This property has a very nice geometrical characterization (remark: this 
geometrical characterization of self-adjointness is independent of the boundary 
behavior of +) : 

2.THEOREM Equation (2. 1) is self-adjoint if and only if its intrinsic 
geometry is Riemannian, ( n# 2).  

We recall that W,, is Riemannian if and only if aL,f,, =0 ;  i. e., there 
exists a gauge in which f ,  =0. 
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Proof. If W ,  is Riemannian, then in the gauge in which f, =0 by (2. 3) '  
V, becomes covariant diflerentiation with respect to Cpyt. Hence (2.  2 )  reads 

vr(gTsaS$)E: / g l-Ba,(l g l*g~sa,+) =0, [g =det g,,] . 

3fultiply through by / g 1 % ;  this proves the sufficiency. 

Conversely, if equation (2. 1) is self-adjoint, then in a suitable gauge 
CIT =asgSr. From (2.  4)', 

so f, is a gradient, which proves the necessity. 

3. Curvature and the equivalence criterion. Two equat,ions (2. 1 )  are 
equivalent (by this we shall always mean equivalent under the product group 
@,, X 5)if and only if their intrinsic Weyl geometries are the same. For 
they both can be written in the form (2. 2 )  with connections of the form 
(2. 3)' and this prescription is invariant against the transformations con-
sidered. It follows that the equivalence problem for these linear equations 
reduces to the equivalence problem for the Weyl geometry W,. This closely 
parallels the usual treatment of the equivalence of quadratic differential forms 
with slight complications due to the fact that here we have a linear form 
adjoined and the gauge group as well as coordinate transformation group. 
It is a noteworthy fact that the equivalence-characterizing system of invariants 
of the quadratic form and that of the linear form are completely unified in 
the invariants of T'V,. We sketch the proof below, followed by the theorem. 

Let g,, and f,, functions of xp, define the intrinsic geometry of the first 
equation, and 'g,,,,, 'f,,, functions of xp', that of the second equation. Tlien we 
ask whether there exist a gauge transformation X(XQ') and coordinate trans- 
formation 2 P =fp (24') such that 

(3. 1 )  'g,,,, -hg,,A~,,Aq,. =0, (3. 2) 'fp, -fpA~,,- ilP,=0, 

where 

(3 .3 )  ~, .xP=A,,. (3 .  3)' a,. log x =A,.. 

Differentiating (3. 1 )  and using (3. 2),  (3. 3) ,  and (3. 3)', we get on 
rearranging 

(3 .4 )  r,,,,~'Ar,, -rpq).Anp,A~,,--aplArq, =0, 
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where I?,,?' (the linear connection of W,) is short for 

r p q v  -Cpqr -g(4 'pf q + AVqfp-gpqfr 

and F,,,,~' is the corresponding expression in 'g,,,, and 'f,,. Differentiating 

(3. 2) and using (3. 3) and 3. 4),  we get on rearranging 

(3.4) '  Vq,'fp,-VqfpAQq,APp,-Vq,lip,=0, 

where Vq f ro~n here on will mean covariant diferentiation with respect to 
TPqT, and Vqr, correspondingly, with respect to rp,q,T'. thenThe problem 
reduces to solving the system of partial differential equations (3. 3),  (3. 3)', 
(3 .4) ,  (3. 4)' and the finite equations (3. I ) ,  (3.2)  in the (n +1) unknowns 
xp, A, Aopr,hp,as functions of xp'. 

The integrability conditions of (3. 3) are satisfied in virtue of (3 .4) .  
The integrability conditions of (3. 4) are 

where Rp,,t (the curvature tensor of W,) stands for 

correspondingly for Rp,q,,,t' in terms of rq,,Jf,and the infinite sequence of 
equations obtained by repeated differentiation of (3. 5) : 

(3 .6)  Vs.RP,,,,,t'Att. = . . . --. . . ,etc.vsRpq,tAPp~Aqq~AT,~ASs~, 

It is remarliable to note now that the integrability conditions of the 
other equations, those arising from the linear form, impose no new conditions. 
For, the integrability conditions of (3.3) '  are, from (3.4)', 

correspondingly for fqjP, in terms of 'f,,, and the infinite sequence of equations 
arising from these by repeated differentiation. But multiplying (3. 5 )  through 
by AS't (the normalized cofactors of ,4ttr), contracting r' and s', and using 
the identities RPqrr =nf,,, VsR,d  =nvSfPq,. . . ,we find that these inte- 
grability conditions are satisfied in virtue of (3. 5 ) ,  (3. 6 ) ,  . . . . Moreover, 
the integrability conditions of (3.4): with the aid of (3. 2 ) ,  come out to be 

and equations arising from these by repeated differentiation. But these are 

Note on notation: r instead of 'r is written because i t  is gauge-invariant (cf. the 
definition equation). The same remark applies to A,, RPqrt,and f,,. 
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satisfied in virtue of ( 3 .  5) )  ( 3 .  6),  . . . . Hence by the well-linown theorem 
(cf. say, [6], Chap. 5, $ 7)  on systems of partial differential equations the 
equivalence theorem for the linear equations ( 2 .  1 )  reads as follows: 

THEOREM3.  TWOequatio'l~s ( 2 .  1 )  whose in t r ins i c  geometries are charac- 
terized b y  t h e  invariants  g,,, f ,  ( f u n c t i o n s  of xp) and 'g,,,,, ' f , ,  ( f u n c t i o n s  
of x ~ ' )  respectively for n # 2 are equivalent if and on ly  if there  exists a 
positive in t eger  N such  t h a t  a)  t h e  sets of equations ( 3 .  I ) ,  ( 3 .  2)) and t h e  
first N sets  of equations ( 3 .  5 ) ,  ( 3 .  6); . . , in the  u n k n o w n s  xp, 4 A?,,, A,, 

as fulzctions of 2,' are compatible a.nd b) all sets of solutions of these equations 
sat is fy  t h e  ( N  + 1)- th  set of equations.  

Therewith, equations (2. 1 )  are classified into equivalence classes. 

The simplest equation (2. 1 )  is the ordinary Laplacian equation 

(The term "Laplacian" here embraces all metric signatures.) Then the 
equivalence theorem gives us immediately the criterion that any equation 
(2.  1 )  be reducible to this form : 

COROLLARY.An equat ion (2. 1 )  i s  equivalent t o  t h e  ordinary  Laplacian 
equat ion if am-l on ly  if i t s  in t r ins i c  geornetry i s  flat. 

By flat is meant RPqTt=0. (This implies both that the geometry is 
Riemannian and flat in the Riemannian sense.) 

Another application of the complete set of invariants of the intrinsic 
geometry (in the Riemannian case) is the determination by algebraic means 
of whether the equation admits any "plane-wave )'type solutions. Consider 
the sets of equations in the unknown <,(xp) 

THEOREM4. In t h e  R i e m a n n i a n  case f,,= 0, there exist  solutions of 
(2. 1 )  of t h e  plane-wave t y p e  if and on ly  if there  exists a positive in teger  M 
such  t h a t  a )  t h e  first M of (3. 9),  ( 3 .  l o ) ,  . . . are computible for t h e  u n k n o w n  
&(xP) and b) all solutions of these sat is fy  t h e  ( M  + 1)-th set of equations,  
finally, c) some solut ion o f  these satisfies (3.  8 ) .  

4 =P ( $  ksdx8)  is defined to be a plane-zoave if P is any twice differ- 
entiable function, 1means the indefinite line integral, and k ,  is a null parallel 
field : V r k s=0, grsk,ks =0. 
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I'yoof. If and only if such an d l  exists does there exist a field k, parallel 
with respect to the Riemannian space defined by SY,  in the gauge for which 
f, =0 (cf. [ 7 ] ,  8 23) ;k, then is a solution of (3. 9),  (3. l o ) ,  . . . . If and 

only if one of these solutions also satisfies (3. 8) does there exist a null 
parallel field. Hence the conditions of the theorem are necessary and suffi- 
cient in order that there exist a plane-wave. But every plane-wave yields a 
solution of (2. 1 ) .  For in  the gauge in which f, =0 we get from (2.2)  

where F' means the derivative of F with respect to its argument. 

4. The case n = 2. We add a few words on the anomalous case n =2. 
The first part of Theorem 1 is still true, but no Weyl geometry W2 can be 
associated with the equation. For although g,, and F, (given by (2. 4 ) )  
are tensors against a,, under 8 they transforin as follows: 

EIence the geometry is that of a class of conformally related Riemannian 
spaces 8 2 ,  on each of which the same Pfaffian is superimposed. 

Theorem 2 holds in the form: Equation (2. 1) is self-adjoint if and only 
if F, is a gradient. 

Of course dc,FTl =0 has not now any Riemannian interpretation. In  
proof, note that if the equation is self-adjoint, then in a coordinate and gauge 
frame in which i t  takes the form (2. I)', we have P, =40, log I g 1 (cf. the 
proof of Theorem 2) .  Conversely, if I?,. is a gradient, $0, log h, h > 0, say, 
perform the gauge transformation with h =ha j g 1-8 to a frame where 

1 'g 1 =h, 'F, =P, =$3, log 1 'g I. Then, as in the proof of Theorem 2, 
in this coordinate and gauge frame 'dl' =O,'gsr and hence the equation is 
self-adjoint. 

Theorem 3 does not apply. I n  the present case n =2 the equations we 
start from in the equivalence problem are 

Since any two V,'s of the same signature are conformal (cf. [ 7 ] ,  5 28), the 
problem reduces to using the remaining freedom in the coordinate trans-
formations satisfying (4. 2) to satisfy (4. 3)  as well. This was treated at  
lenth by Cotton ([I], p. 236 et seq.) and also elsewhere in the literature. 



698 	 REHARD L. INGRAHAM. 

From the facts that P,  =0 for the ordinary Laplacian equation (3 .  7 ) ,  
F, is gauge-invariant for n =2, and any two V,'s of the same signature are 
conformal, we infer immediately the following 

COROLLARY.T h e  vanishing of F ,  is  necessary and suficient in order that 
the equation ( 2 . 1 )  be reducible to ordinary Laplacian form. 

Thus in the case of a definite metric, F,  =0 is the criterion that the 
solution of (2. 1) be reducible to the solution of the Beltrami differential 
equations. 
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