
Acta Applicandae Mathematicae57: 165–204, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

165

The Theory of Linear G-Difference Equations

PER K. JAKOBSEN and VALENTIN V. LYCHAGIN
Faculty of Science, University of Tromsø, Tromsø 9037, Norway. e-mail: perj@math.uit.no

(Received: 14 January 1998)

Abstract. We introduce the notion of difference equations defined on a structured set. The symmetry
group of the structure determines the set of difference operators. All main notions in the theory of
difference equations are introduced as invariants of the action of the symmetry group. Linear equa-
tions are modules over the skew group algebra, solutions are morphisms relating a given equation
to other equations, symmetries of an equation are module endomorphisms, and conserved structures
are invariants in the tensor algebra of the given equation.

We show that the equations and their solutions can be described through representations of the
isotropy group of the symmetry group of the underlying set. We relate our notion of difference
equation and solutions to systems of classical difference equations and their solutions and show that
out notions include these as a special case.
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1. Introduction

Let us consider a general second-order difference equation of the form

aifi+1+ bifi + cifi−1 = 0.

Introduce the simple graphS consisting of vertices{xi}i∈Z and edges
{{xi, xi+1}}i∈Z. Let F (S) be theR-algebra ofR-valued functions on the graphS.
Then the sequences{ai}, {bi}, {ci} and{fi} are all elements inF (S). Denote these
elements bya, b, c, andf . Let s be the operator of left translation on the latticeS,
sxi = xi−1. Thens acts onF (S) in the natural way

(sf )(xi) = f (s−1xi).

Define4 = as + be + cs−1 wheree acts as the identity onS. Then4 acts on
F (S) as aR-linear operator and our original equation can be written as4(f ) = 0.
In order to understand what4 is in algebraic terms, we need to introduce some
new notions. LetG = Aut(S) be the automorphism group of the graphS. This
group acts onF (S) in the natural way(gf )(xi) = f (g−1xi). LetA be the set of
finite formal linear combinations of elements inG with coefficients inF (S).

A =
{∑

g

agg | ag ∈ F (S)

}
.
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On the setA we define addition and scalar multiplication with elementsr ∈ R
componentwise. Product is defined in the following way(ag)(bg′) = (agb)(gg′).
With these operationsA is aR-algebra.A = F (S)[G] is the skew group algebra
of G overF (S). This algebra acts onF (S) through(∑

g

agg

)
f =

∑
g

agg(f ).

Using these notions we observe that our classical difference operator4 =
as + be + cs−1 is an element of the skew group algebraA. It is now evident
that we can interpret all elements inA as difference operators overS. We will
in fact defineA to be the algebra of G-difference operators overS. This means
that the notion of a difference operator is defined in terms of the symmetries of
the underlying graphS. The group of symmetries ofS measures the arbitrariness
in the description ofS. Without this arbitrariness, difference operators could not
exist, in a totally asymmetrical space with trivial symmetry group there could be
no difference operators and, as a consequence, no difference equations.

In this paper, we will generalize these simple observations and consider a setS
and a groupG acting onS. For any such group action, there exists some structure
onS such thatG is a subgroup of the full automorphism group of this structure. If
the set is finite, then the group is actually the full group of automorphisms of the
spaceS. The algebra of scalar difference operators onS will be the skew group al-
gebraA = F (S)[G]whereF (S)will be the algebra ofF-valued functions defined
onS. Difference equations onS and their solutions must be invariant objects under
the action of the groupG. If they are not invariant, their description and solutions
will depend on the arbitrariness in the specification of the underlying space. The
Klein Erlanger program in geometry has shown that the building blocks of the
geometry on a set with a group action are the invariants of the group. Geometrical
objects and their relations are constructed from invariants. In this way the geometry
will not depend on the arbitrariness of the underlying space. What we propose in
this paper is in the spirit of the Erlanger program in geometry.

We propose that the building blocks of the theory of difference equations on a
finite space with some structure are the invariants of the group of automorphisms
acting on the space. The algebra of difference operators will be the skew group
algebra,A, of G and all main notions in the theory of difference equations will
be defined in terms of invariants. A linear difference equationsE will be anA-
module, symmetries ofE will be A-endomorphisms ofE . All conserved quantities
and structures of the equations will be invariant elements in the tensor algebra of
the equationE . A special role will be played by the equations corresponding to
indecomposable and simpleA-modules.

In this paper we introduce a categorical point of view on equations and solu-
tions. The equations are objects in a full subcategory of the category ofA-modules.
Solutions of an equation are descriptions of the equation in terms of other equa-
tions. Only descriptions that are invariants are allowed and this leads to the idea
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of a solution of an equation in a Category ofA-modules as a morphism between
the given equation and some other equation. So solutions are morphisms in the
Category. Solving an equation thus means to find theG-invariant descriptions or
morphisms between the given equation and all other equations in the Category.
In this way symmetries are special types of solutions, they are descriptions of
an equation in terms of itself. Simple equations play a special role in that they
can only be described in terms of themselves. They play the role of atoms in our
category of equations. In the semisimple situation all equations are sums of simple
equations so the description of a given equation in terms of simple equations in
fact gives a complete description of the equation. In a more general situation we
also need descriptions in terms of indecomposable equations in order to give a
complete description of a given equation. The indecomposable equations that are
not simple are closely related to the notion of quantization. The family of simple
and indecomposable equations is determined by the group of symmetries of the
underlying space so this group determines the type of solutions that are needed to
solve any equation in the Category. Note that from this point of view a solution is
a relational concept. It does not belong to one object but to a pair of objects.

In this paper, we will develop the theory for a class of equations we call finite
type. These are analogs of the finite type or Frobenius equations in the theory of
differential equations. Note that if the setS is finite, then all equations are of finite
type. In a forthcoming work, the theory will be developed for a much wider class
of equations.

There exists currently several geometric-algebraic approaches to the study of
difference and differential equations; the differential algebra approach of Ritt [1]
and Kolchin [2] and the description through use of jet bundles and D-modules
[3] just to mention two. Our approach does not belong directly to any of these
directions. It is, however, somewhat related to the approach in [3] and the difference
algebra approach in [4].

2. The Main Notions in the Theory of Finite Type Difference
Equations on a Set

Let S be a set and letG be a group acting onS. We will assume that the action of
G is from the left and is faithful and transitive so thatG is acting as a transitive
group of permutations onS. It is well know from the theory of permutation groups
that there exists a finite set of relations onS such that the groupG is included in
the full group of symmetries of these relations. A space is a set with some structure
defined. Any group acting on a set can thus be thought of as the symmetry group
of a space. Examples of such spaces are graphs, lattices, finite projective spaces,
finite linear spaces, etc.

EXAMPLE. Let S be the cyclic graph with vertex set{x1, x2, . . . , xn} and edge
set{{x1, x2}, {x2, x3}, . . . , {xn, x1}}. This graph can be considered to be a discrete
approximation to the circleS1. The group of symmetries of this finite space is the



168 PER K. JAKOBSEN AND VALENTIN V. LYCHAGIN

dihedral group,D2n. It has two generatorst ands, wheret is reflection aroundx1

ands is left translation. The symmetry group has 2n elements and presentation in
terms of generators and relations in the following form:

D2n =
〈
s, t | sn = 1, t2 = 1, tst = sn−1

〉
.

We will now define the main notions in the theory of difference equations on a
spaceS as the invariants associated to the group of symmetries ofS.

2.1. THE ALGEBRA OF G-DIFFERENCE OPERATORS

Let F be a field and letF (S) be theF-algebra ofF valued functions onS. LetG
be the symmetry group of the spaceS. Then the left action ofG onS can be lifted
to a left action ofG onF (S) in a natural way:

(g(f ))(x) = f (g−1x) ∀g ∈ G.
The skew group algebra ofG overF (S) is the set of finite formal linear combina-
tions of elements ofG with coefficients inF (S). Addition and multiplication by
elements inF is defined componentwise and multiplication is defined by

(fg)(hg′) = (fg(h))gg′.
We now define the first basic notion in our theory of difference equations.

DEFINITION 1. F (S)[G] is the algebra ofG-difference operatorson the setS.

NOTATION. We will from now on use the notationk = F (S) andA = F (S)[G].
EXAMPLE. Let S be the cyclic graphS with n elements. We have seen that
the symmetry group ofS is the dihedral groupD2n with generators beeing left
translations and reflectiont . The algebra ofD2n-difference operators consists of
formal linear combinations ofF-valued functions and elements ofD2n. The algebra
A contains the usual difference operators from the calculus of differences whose
continum limit corresponds to the usual ordinary differential operators. But it also
contains operators involving the reflectiont . These operators will in the continum
limit correspond to differential-delay equations.

2.2. LINEAR G-DIFFERENCE EQUATIONS OF FINITE TYPE AND SOLUTIONS

Let A be the algebra of G-difference operators on a spaceS. Let E be a finitely
generated module overk. If not otherwise noted finitely generated means finitely
generated overk. Assume thatG acts onE on the left,g(f e) = g(f )ge. Then
E is a leftA-module with the natural action of the skew group algebraA on E .
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In this wayE can be considered to be an invariant for the symmetry groupG of
the underlying space. We will consider only leftA-modules that can be given a
geometrical interpretation. Defineµx ⊂ k by

µx = {f : S→ F | f (x) = 0}.
The subsetsµx are clearly ideals ink. They are in fact maximal ideals.

PROPOSITION 1.µx is a maximal ideal inF (S).
Proof.µx is clearly an ideal inF (S). Let J be an ideal inF (S) and assume

thatµx ⊂ J ⊂ F (S) ⇒ ∃j ∈ J such thatj /∈ µx ⇒ j (x) 6= 0⇒ j/j (x) ∈ J .
Then( j

j (x)
− 1

)
(x) = j (x)

j (x)
− 1= 0⇒ j

j (x)
− 1 ∈ µx,

but

µx ⊂ J ⇒ j

j (x)
− 1 ∈ J ⇒ j

j (x)
−
( j

j (x)
− 1

)
= 1 ∈ J ⇒ J = F (S).

This is a contradiction soJ = µx andµx is maximal.

For eachx ∈ S we have a submoduleµxE sinceµx is an ideal. We will only
consider leftA-modules that have no invisible elements [3].

DEFINITION 2. E is ageometricleft A-module iff⋂
x∈S

µxE = 0. (2.1)

E being a leftA-module means that we have an action of the algebra of G-difference
operators onE . We are now ready to define the second main notion in our theory.

DEFINITION 3. A linear G-difference equation of finite type is a geometric left
A-module that is finitely generated overk.

We will use the term GF-difference equations for the equations defined in the
previous definition. In general, the structure of a GF-difference equation is in-
vestigated by comparing it to other equations. An equation will be considered to
be understood only if its relations to all other equations are known. This is the
Categorical point of view. Relations between equations areA-morphisms so an
equationE is understood orsolvedif HomA(E,F ) is known for all GF-difference
equationsF . Let us formalize this in a definition

DEFINITION 4. Let E be any GF-difference equation. Then a solution ofE
of type F , whereF is a GF-difference equation, is aA-module morphismφ ∈
HomA(E,F ).
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Using this definition we can now say that a GF-difference equation is solved
if we know all solutions of the equation. We will introduce two special types
of solutions that will play a central role in our theory. A GF-difference equation
is indecomposable if it cannot be written as a direct sum of two GF-difference
equations. Our first special type of solution is the following definition:

DEFINITION 5. Let E be any GF-difference equation and letS be a indecom-
posable equation. Then a indecomposable solution ofE of typeS is an element of
HomA(E,S).

The second special type of solution are symmetries. These are relations that
describe the equation in terms of itself so we define:

DEFINITION 6. LetE be any GF-difference equation. Then a symmetry ofE is
aA-morphism ofE to itself.

So a symmetry ofE is an element of EndA(E). If f ∈ HomA(E,F ) is any
solution E of type F andφ is a symmetry ofE thenφ∗(f ) = φ ◦ f is also a
solution of typeF . So symmetries map solutions of some type to solutions of the
same type. The problem of solving an equation is closely linked to the module
structure of the equation and we will now start to develop the structure theory for
GF-difference equations.

3. The Structure of the Category of GF-Difference Equations

Let GFE be a category [5] whose objects are GF-difference equations and mor-
phisms areA-module morphisms.

DEFINITION 7. GFE is the category of GF-difference equations.

A complete description of the structure of the categoryGFE is the same as
knowing all solutions to all GF-difference equations. This, in general, is an enor-
mously complicated problem. In this section, we will describe what can be said in
general about the structure of the categoryGFEwithout placing any restrictions on
the setS or the groupG. We will start our investigation of the structure ofGFE by
investigating the closure of the set of GF-difference with respect to the usual linear
algebra operations like direct sum, tensor product, etc. These operations preserve
the set of modules that are finitely generated overk. They also preserve the property
of being geometric as we will now see.

3.1. THE ALGEBRA OF GF-DIFFERENCE EQUATIONS

Let E1,E2 be two GF-difference equations. ThenE1⊕E2 is a finitely generated left
A-module with the operations

f (e1, e2) = (f e1, f e2) ∀f ∈ k,
g(e1, e2) = (ge1, ge2) ∀g ∈ G.
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PROPOSITION 2. The direct sum of GF-difference equationsE1 ⊕ E2 is a GF-
difference equation.

Proof. We know that
⋂
x∈S µxE1 = 0,

⋂
x∈S µxE2 = 0 and we have by

definition that

µxE =
{∑

i

fiei | fi ∈ µx, ei ∈ E

}

⇒ µx(E1⊕ E2) =
{∑

i

fi(e
1
i + e2

i ) | fi ∈ µx, e1
i ∈ E1, e

2
i ∈ E2

}
.

But ∑
i

fi(e
1
i + e2

i ) =
∑
i

fie
1
i +

∑
i

fie
2
i ∈ µxE1⊕ µxE2.

So

µx(E1⊕ E2) ⊂ µxE1⊕ µxE2

⇒
⋂
x∈S

µx(E1⊕ E2) ⊂
⋂
x∈S
(µxE1⊕ µxE2) ⊂

⋂
x∈S

µxE1⊕
⋂
x∈S

µxE2

= 0+ 0= 0.

So the direct sum is a finitely generated geometric leftA-module. 2
Let E1,E2 be GF-difference equations. From this, it follows that they are left

k-modules sincek ⊂ A are algebras. The algebrak is Abelian soE1 ⊗k E2 is a
well-defined finitely generatedk-module. Define aG action on the tensor product
module byg(e1⊗k e2) = ge1⊗k ge2. With this action we have

PROPOSITION 3.E1⊗k E2 is aA-module with the givenG action.
Proof.

g(f e1⊗k e2) = g(f e1)⊗k ge2 = g(f )(ge1)⊗k ge2

= ge1⊗k g(f )(ge2) = ge1⊗k g(f e2)

= g(e1⊗k f e2),

(g1g2)(e1⊗k e2) = (g1g2)e1⊗k (g1g2)e2 = g1(g2e1)⊗k g1(g2e2)

= g1(g2e1⊗k g2e2) = g1(g2(e1⊗k e2)),

(gf )(e1⊗k e2) = g(f e1⊗k e2) = g(f e1)⊗k ge2

= (g(f )g)e1⊗k ge2 = (g(f ))(ge1⊗k ge2)

= (g(f )g)(e1⊗k e2). 2
PROPOSITION 4.Assume thatE1,E2 are two GF-difference equations. ThenE1⊗k
E2 is also a GF-difference equation.
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Proof.We observe thatµx(E1⊗k E2) ⊂ µxE1⊗k E2. So we have⋂
x∈S

µx(E1⊗k E2) ⊂
⋂
x∈S
(µxE1⊗k E2) ⊂

(⋂
x∈S

µxE1

)
⊗k E2 = 0. 2

Let E1,E2 be two GF-difference equations. Then Homk(E1,E2) is a finitely
generated leftk-module with the natural action ofk

(f φ)(e) = f (φ(e)) ∀f ∈ k.
Define an action ofG on Homk(E1,E2) by

(gφ)(e) = g(φ(g−1e)) ∀g ∈ G.

PROPOSITION 5. Homk(E1,E2) is a leftA-module with the given action ofk
andG.

Proof.

(gφ)(f e) = g(φ(g−1f e)) = g(φ((g−1)fg−1e)) = g((g−1)f φ(g−1e))

= g(g−1)f (gφ(g−1e)) = f ((gφ)(e)),
((g1g2)φ)(e) = (g1g2)φ((g1g2)

−1e) = g1(g2φ(g
−1
2 (g−1

1 e)))

= g1((g2φ)(g
−1
1 e)) = (g1(g2φ))(e),

((gf )(φ))(e) = (g(f φ))(e) = g((f φ)(g−1e)) = g(f (φ(g−1e)))

= g(f )(g(φ(g−1e))) = g(f )((gφ)(e))
= (g(f )(gφ))(e) = ((g(f )g)(φ))(e). 2

PROPOSITION 6. Homk(E1,E2) is a GF-difference equation.
Proof.Letψ ∈ µxHomk(E1,E2)⇒ψ =∑i fiφi with fi ∈ µx, φi ∈ Homk(E1,

E2) ⇒ ψ(e) = ∑
i fi(φ(e)) ∈ µxE2 soψ(e) ∈ µxE2 for all e ∈ E1 ⇒ ψ ∈

Homk(E1, µxE2). So we haveµxHomk(E1,E2) ⊂ Homk(E1, µxE2). But then⋂
x∈S

µxHom(E1,E2) ⊂
⋂
x∈S

Homk(E1, µxE2) ⊂ Homk

(
E1,

⋂
x∈S

µxE2

)
= 0. 2

As a special case of the last proposition we have

COROLLARY 1. Let E be a GF-difference equation. Then the dualE∗ is also a
GF-difference equation.

Let us next consider the case of quotients. Assume thatE is a GF-difference
equation and letE ′ ⊂ E be a submodule ofE .

PROPOSITION 7.E/E ′ is GF-difference equation.
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Proof.SinceE/E ′ is finitely generated we only need to prove that it is geometric.
Let h ∈ µx(E/E ′) thenh = ∑

i fi[ei] wherefi ∈ µx and [ei] ∈ E/E ′ are the
equivalent classes of elements inE . Soh = ∑

i fi[ei] = [
∑

i fiei] and we can
conclude thatµx(E/E ′) ⊂ µxE/E ′. But then we have⋂

x∈S
µx(E/E

′) ⊂
⋂
x∈S

µxE/E
′ ⊂

(⋂
x∈S

µxE

)
/E ′ = 0. 2

We already know that tensor products and direct sums of GF-difference equa-
tions are GF-difference equations. This implies that the tensor algebraT E of a
GF-difference equation is a GF-difference equation. The modulesSnE and∧nE
are factors of the tensor algebra ofE so we have the following result:

COROLLARY 2. LetE be a GF-difference equation. ThenSnE and∧nE are GF-
difference equations.

3.2. GF-DIFFERENCE EQUATIONS AS MODULES OF SECTIONS IN VECTOR

BUNDLES

We have seen that the category of GF-difference equations is closed with respect to
quotients,⊕,⊗k,Homk, ∧k andSnk . These modules can be given an interpretation
as modules of sections in vector bundles over the setS.

Let E be a GF-difference equation. Then, in particular,E is a k-module and
µxE ⊂ E is a k submodule ofE . Let Ex = E/µxE . ThenEx is A-module over
k/µx ≈ F and therefore is aF vector space. Denote the elements ofEx by [e]x
where[e]x = [e′]x only if e − e′ ∈ µxE . Let the bundleB overS be defined by

B =
⋃
x∈S
(x,Ex),

where the projection,π :B → S, in the bundle is a projection on the first compo-
nent. Let0(B) be the set of sections in the bundleB. This set is a module overk
through pointwise addition and multiplication by functions ink.

For each element inG define a bundle map in the bundleB through

g(x, [e]x) = (gx, [ge]gx). (3.1)

This set of bundle maps in fact defines an action ofG on the bundleB.

PROPOSITION 8. Bundle map(3.1) is well defined and determines an action of
G on the bundleB.

Proof.Assume[e]x = [e′]x . Thene− e′ ∈ µxE and soge− ge′ ∈ g(µxE). Let
ẽ ∈ µxE , thenẽ = ∑i fiei whereei ∈ E andfi ∈ µx and sogẽ = ∑i g(f )igei .
But g(f )i(gx) = fi(x) = 0 sog(fi) ∈ µgx. Then it follows thatge − ge′ ∈ µgxE
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and we can conclude that[ge]gx = [ge′]gx so the map is well defined. Using the
definition of the bundle map, we have

(g1g2)(x, [e]x) = ((g1g2)x, [(g1g2)e](g1g2)x) = (g1(g2x), [g1(g2e)]g1(g2x))

= g1(g2x, [g2e]g2x) = g1(g2(x, [e]x))
so the bundle map defines an action ofG on the bundleB. 2
COROLLARY 3. B is a vector bundle, that isdimEx is constant.

Proof.Let x ∈ S be a fixed point in the setS. The group acts transitively on the
setS so for anyy ∈ S there exists ag ∈ G such thatgx = y. This element induces
a mapφg:Ex → Ey defined byφg([e]x) = [ge]gx . This map is linear and has an
inverseφg−1. We can therefore conclude that all fibersEy of the bundleB have the
same dimension soB is a vector bundle. 2

We now induce an action ofG on0(B) defining

(gs)(x) = g(s(g−1x)). (3.2)

PROPOSITION 9.Action(3.2)gives0(B) the structure of anA-module.
Proof.

((gf )(s))(x) = (g(f s))(x) = g((f s)(g−1x)) = g(g(f )(x)s(g−1x))

= g(f )(x)(gs)(x) = (g(f )g)(s)(x),
((g1g2)s)(x) = (g1g2)s((g1g2)

−1x) = g1(g2s(g
−1
2 (g−1

1 x)))

= g1((g2s)(g
−1
1 )) = (g1(g2s))(x). 2

PROPOSITION 10.E ≈ 0(B) asA-modules.
Proof. Let e ∈ E . Defineφ(e) ∈ 0(B) by φ(e)(x) = [e]x . We clearly have

φ: E → 0(B).

φ(e + f ′)(x) = [e + f ′]x = [e]x + [f ′]x = φ(e)(x) + φ(f ′)(x)
= (φ(e)+ φ(f ′))(x),

φ(f e)(x) = [f e]x = f (x)[e]x = f (x)φ(e)(x) = (f φ(e))(x).
We have used that fact thatz[e]x = [f e]x wheref is any function such thatf (x) =
z. This is well defined because if[e]x = [e′]x andf (x) = z, f ′(x) = z, then
e′ = e + h, f ′ = f + g, whereh ∈ µxE andg ∈ µx . But thenf e − f ′e′ =
f e − (f + g)(e + h) = −ge − f h− gh ∈ µxE . So[f e]x = [f ′e′]x .

We have now proved thatφ is a k-module morphism. It is also aA-module
morphism

φ(ge)(x) = [ge]x = [ge]g(g−1x) = g([e]g−1x) = g(φ(e)(g−1x))

= (gφ(e))(x).
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Assumeφ(e) = φ(e′). Then[e]x = [e′]x so [e − e′]x = 0 ∀x ∈ S. But this
means thate − e′ ∈ ⋂x∈S µxE . We can therefore conclude thate = e′ becauseE
is geometric. Soφ is injective.

For eachy ∈ S let 5y: E → Ey be the canonical projection.B is a vector
bundle so that the dimensionn of each fibre as aF-vector space is the same. Let
{ei}mi=1 be a set of generators forE . Then5y({ei}mi=1) generatesEy for all y ∈ S
so at each point at least one subset of sayn elements of{ei}ni=1 form a basis forEy
after projection by5y . There are only finitely many subsets ofn elements from the
set ofm generators. Enumerate these subsets

Bi = {el(i,k)}nk=1, i = 1, . . . , r.

Here l(i, k) is an index function. PutS1 = S and define subsetsVi ⊂ S
recursively

Vi = {y ∈ Si | 5y(B
i) is a basis ofEy},

Si+1 = Si − Vi.
This gives us a finite set of nonempty subsets{Vi}pi=1 such thatVi

⋂
Vj = ∅ for

i 6= j , S = ⋃p

i=1Vi and5yB
i = {[el(i,k)]y}nk=1 is a basis forEy for all y ∈ S. Let

δVi be the characteristic function forVi. ThenδVi ∈ k and
∑

i δVi = 1. LetTi =
δVi0(B). ThenTi is ak-submodule of0(B) andTi hask-basis{δViφ(el(i,k))}nk=1.
Let s ∈ 0(B) be any section. Then we have

s =
(∑

i

δVi

)
(s) =

∑
i

δVi s =
∑
i

∑
k

fikδViφ(el(i,k))

= φ

(∑
i

∑
k

fikδVi el(i,k)

)
.

But e =∑i

∑
k fikδVi el(i,k) ∈ E soφ is surjective. 2

This result show that the categoryGFE is equivalent to the category of modules
of sections in vector bundles0(B) overS where the action ofG is defined through
(3.1) and (3.2).

PROPOSITION 11.LetE be a GF-difference equation. ThenE is free and finite-
dimensional as a k-module.

Proof. Let {exi }ni=1 be a basis forEx overF. The numbern exists and is inde-
pendent ofx since all our bundles are finite-dimensional and vector bundles so that
the dimension of all fibers are the same. Define sections{si}ni=1 by si(x) = exi .
Assume that

∑n
i=1 fisi = 0. Then

∑n
i=1 fi(x)e

x
i = 0 sofi(x) = 0 for all x ∈ S

and alli. This implies thatfi = 0 for all i and we conclude that{si}ni=1 is a linearly
independent set overk. Let s ∈ 0(B), thens(x) = ex ∈ Ex so there exists complex
numbers{cxi }ni=1 such thats(x) =∑n

i=1 c
x
i e
x
i . Define functions ink by fi(x) = cxi ,

thens =∑x
i=1 fisi and{si}ni=1 is a spanning set. 2
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We can use this result to prove a standard isomorphism. Define a mapφ: E∗ ×
F → Homk(E,F ) by φ(e∗, f )(e) = e∗(e)f .

PROPOSITION 12.φ is k-bilinear.
Proof.

φ(e∗1 + e∗2, f )(e) = φ((e1 + e2)
∗, f )(e) = (e1+ e2)

∗(e)f
= e∗1(e)f + e∗2(e)f = φ(e∗1, f )(e)+ φ(e∗2, f )(e)
= (φ(e∗1, f )+ φ(e∗2, f ))(e),

φ(e∗, f1+ f2)(e) = e∗(e)(f1+ f2)

= e∗(e)f1+ e∗(e)f2 = (φ(e∗1, f1)+ φ(e∗, f2))(e),

φ(re∗, f )(e) = (re∗)(e)f = (r(e∗(e)))f = r(e∗(e)f )
= r(φ(e∗, f )(e)) = (rφ(e∗, f ))(e). 2

This proposition show that we have a well-defined mapφ: E∗⊗kF → Homk(E,F )
defined byφ(e∗ ⊗k f )(e) = e∗(e)f .

PROPOSITION 13.φ is anA-isomorphism.
Proof. Let {ei}ni=1, {fi}mi=1 be the basis overk for E andF . Let {e∗i }ni=1 be the

dual basis forE∗. Then{e∗i ⊗k fj } is a basis forE∗ ⊗k F because the modules are
free overk. Letv =∑ij aij e

∗
i ⊗k fj and assume thatφ(v) = 0. Thenφ(v)(es) = 0

for all s and we have
∑

j asj fj = 0 so thataij = 0 for all i andj because{fj }
is a basis forF . Soφ is injective. LetF ∈ Homk(E,F ). Define the matrix(Fij )
by F(ei) = ∑j Fij fj and letv = ∑ij Fij e

∗
i ⊗k fj . Thenφ(v) = F so thatφ is

surjective. Finally, we have

φ(g(e∗ ⊗k f ))(e) = φ(ge∗ ⊗k gf )(e) = (ge∗)(e)gf = (g(e∗(g−1e)))gf

= g(e∗(g−1e)f ) = g(φ(e∗ ⊗k f )(g−1e))

= (gφ(e∗ ⊗k f ))(e)
so thatφ is anA-morphism. 2
COROLLARY 4. Homk(E,F ) ≈ E∗ ⊗k F .

We know that the category of GF-difference equations is closed with respect to
the usual linear algebra operations. Since we have proved that any GF-difference
equation is isomorphic toA-module of sections in a vector bundle overS, it is
evident that all such linear algebra operations must reduce to operations on the
corresponding vector bundles. The following series of propositions show that the
correspondence is as nice as one would expect.

Let E1,E2 be two GF-difference equations. ThenE1 ≈ 0(B1) andE2 ≈ 0(B2)

whereB1, B2 are vector bundles

B1 =
⋃
x∈S
(x,E1

x ), B2 =
⋃
x∈S
(x,E2

x).
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We then have

PROPOSITION 14.E1⊕ E2 ≈ 0(B1⊕ B2).
Proof.Define a mapφ: E2⊕E2→ 0(B1⊕B2) byφ(s1, s2)(x) = (s1(x), s2(x)),

where we identify the GF-difference equationsE1,E2 with their corresponding
modules of sections.

Assumeφ(s1, s2) = φ(s′1, s
′
2). Then (s1(x), s2(x)) = (s′1(x), s

′
2(x)) and so

s1(x) = s′1(x), s2(x) = s′2(x) for all x ∈ S. But this implies that(s1, s2) = (s′1, s′2)
andφ is injective.

Let s ∈ E1⊕ E2. Thens(x) ∈ E1
x ⊕ E2

x for all x ∈ S. Defines1(x) = π1 ◦ s(x)
ands2(x) = π2 ◦ s(x), whereπ1:E1

x ⊕ E2
x → E1

x andπ2:E1
x ⊕ E2

x → E2
x are the

projections on the first and second factor. But then(s1, s2) ∈ E1⊕E2 and evidently

φ(s1, s2)(x) = (s1(x), s2(x)) = s(x),
soφ is surjective. Furthermore, we have

φ(f (s1, s2))(x) = φ(f s1, f s2)(x) = ((f s1)(x), (f s2)(x))
= (f (x)s1(x), f (x)s2(x)) = f (x)(s1(x), s2(x))
= (f φ(s1, s2))(x),

φ(g(s1, s2))(x) = φ(gs1, gs2)(x) = ((gs1)(x), (gs2)(x))
= (g(s1(g

−1x)), g(s2(g
−1x))) = g((s1, s2)(g−1x))

= F(gφ(s1, s2))(x).

Soφ is a leftA-module morphism and the proof is complete. 2
We have seen that thek-tensor product of GF-difference equations is a GF-

difference equation with the action ofk andG defined by

f (s1⊗k s2) = f s1⊗k s2 ∀f ∈ k,
g(s1⊗k s2) = gs1⊗k gs2 ∀g ∈ G.

Using the vector bundlesB1 andB2 corresponding toE1 andE2 we define a new
vector bundleB1⊗F B2 by

B1⊗F B2 =
⋃
x∈S
(x,E1

x ⊗F E2
x).

Let 0(B1⊗F B2) be the set of sections in the vector bundleB1⊗F B2. This set
is ak-module through pointwise addition and multiplication by elements ofk. It is
also a leftA-module through the action

(gs)(x) = g(s(g−1x)),

where

g(x, [e1] ⊗F [e2]) = (gx, [ge1]gx ⊗F [ge2]gx).
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We then have the following result:

PROPOSITION 15.E1⊗k E2 ≈ 0(B1⊗F B2).
Proof.Define a map̃φ: E1 × E2→ 0(B1⊗F B2) by

φ̃(s1, s2)(x) = s1(x)⊗F s2(x).
We have

φ̃(s1 + s1, s2) = (s1+ s1)(x)⊗F s2(x) = (s1(x)+ s1(x))⊗F s2(x)
= s1(x)⊗F s2(x)+ s1(x)⊗F s2(x)
= (φ(s1, s2)+ φ(s1, s2))(x),

φ̃(f s1, s2)(x) = (f s1)(x)⊗F s2(x) = (f (x)s1(x))⊗F s2(x)
= s1(x)⊗F (f (x)s2(x)) = s1(x)⊗F (f s2)(x)
= φ(s1, f s2)(x).

Soφ̃ is k-bilinear and therefore induces a unique mapφ: E1⊗k E2→ 0(B1⊗FB2)

where

φ(s1⊗k s2)(x) = s1(x)⊗F s2(x).
Let {s1

i }ni=1 and {s2
i }ni=1 be bases forE1 andE2 ask-modules. These bases exists

because the modules are free as modules overk. Let s ∈ E1⊗k E2, then

s =
∑
ij

fij s
1
i ⊗k s2

j .

Assume thatφ(s) = 0. This implies that

s =
∑
ij

fij (x)s
1
i (x)⊗F s2

j (x) = 0 ∀x ∈ S.

But thenfij (x) = 0 ∀x ∈ S and sofij = 0 and, as a consequence,s = 0.
Therefore,φ is injective. Lets ∈ 0(B1⊗F B2). This implies thats(x) ∈ B1⊗F B2

so there exists elements ofF zxij such that

s(x) =
∑
ij

zxij s1(x)⊗F s2(x).

Define elementsfij ∈ k by fij (x) = zxij and defineh ∈ E1⊗k E2 by

h =
∑
ij

fij s
1
i ⊗k s2

j .

Then we evidently haveφ(h) = s andφ is surjective.
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We already know thatφ is k-linear by definition of tensor product. But we also
have

φ(g(s1⊗k s2))(x) = φ(gs1⊗k gs2)(x) = (gs1)(x)⊗F (gs2)(x)
= g(s1(g

−1x))⊗F g(s2(g−1x)) = g((s1⊗k s2)(g−1x))

= g(φ(s1, s2)(g
−1x)) = (gφ(s1⊗k s2))(x)

soφ is aA-module morphism and the proof is complete. 2
Now let E ≈ 0(B) be a GF-difference equation with a corresponding vector

bundleB. Let E ′ ⊂ E be a subequation. Define

Vx = {[e]x | e ∈ E ′}.
ThenVx ⊂ Ex is a subspace ofEx for eachx ∈ S and the dimension is independent
of x. Define a vector bundleB ′ by

B ′ =
⋃
x∈S
(x, Vx).

ThenB ′ is evidently a subvector bundle ofB and we have by construction that
E ′ ≈ 0(B ′). LetEx/Vx be the factor space. Its dimension is independent ofx and
we can form the vector bundle

B/B ′ =
⋃
x∈S
(x,Ex/Vx).

Denote the elements ofEx/Vx by [vx]Vx . We define an action by elements inG
by

g([vx]Vx ) = [g(vx)]Vgx .
This action is well defined and we use it to induce an action ofG on0(B/B ′)

in the usual way.

PROPOSITION 16.E/E ′ ≈ 0(B/B ′).
Proof. Define a mapφ:0(B)/0(B ′) → 0(B/B ′) by φ([s])(x) = [s(x)]Vx .

Thenφ is well defined because if[s] = [s′], thens − s′ ∈ 0(B ′) and, therefore,
s(x) − s′(x) ∈ Vx. So [s(x)]Vx = [s′(x)]Vx and, therefore,φ([s]) = φ([s′]).
Furthermore, we have

φ([s] + [s′])(x) = φ([s + s′])(x) = [(s + s′)(x)]Vx
= [s(x) + s′(x)]Vx = [s(x)]Vx + [s′(x)]Vx
= (φ([s]) + φ([s′]))(x),

φ(f [s])(x) = φ([f s])(x) = [(f s)(x)]Vx = [f (x)s(x)]Vx
= f (x)[s(x)]Vx = f (x)φ([s])(x) = (f φ([s]))(x),

φ(g[s])(x) = φ([gs])(x) = [(gs)(x)]Vx = [g(s(g−1x))]Vx
= [g(s(g−1x))]V

g(g−1x)
= g([s(g−1x)]V

g−1x
)

= g(φ([s])(g−1x) = (gφ([s]))(x).
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So we can conclude thatφ is aA-module morphism. Assume thatφ([s]) = φ([s′]).
Thenφ([s])(x) = φ([s′])(x) for all x ∈ S. But this is the same as[s(x)]Vx =[s′(x)]Vx sos(x) − s′(x) ∈ Vx. This implies thats − s′ ∈ 0(B ′) so, by definition,
[s] = [s′] andφ is injective. Letγ ∈ 0(B/B ′), thenγ (x) = [vx]Vx . Defines ∈
0(B) by s(x) = vx . Then clearlyφ([s])(y) = [s(y)]Vy soφ([s]) = γ andφ is
surjective. 2

Since∧nE andSnE are factor bundles of the tensor algebraT E , it follows from
the previous proposition that

COROLLARY 5.

∧n0(B) = 0(∧nB),
Sn0(B) = 0(SnB).

Let E1 andE2 be GF-difference equations. We have proved that Homk(E1,E2)

is a GF-difference equation with the actions

(f φ)(s1) = f (φ(s1)) ∀f ∈ k,
(gφ)(s1) = g(φ(g−1s1)).

We know thatE1 ≈ 0(B1), E2 ≈ 0(B2) whereB1 = ⋃
x∈S(x,E

1
x ) andB2 =⋃

x∈S(x,E
2
x ) are vector bundles. Let HomF(E1

x , E
2
x) be the set ofF-linear maps

from E1
x to E2

x . These have all the same dimension and we can form the vector
bundle

HomF(B1, B2) =
⋃
x∈S
(x,HomF(E

1
x , E

2
x)).

We have aG-action on the vector bundle HomF(B1, B2) given by g(x, φx) =
(gx, g(φx)) where we define

g(φx)([e1]gx) = g(φx(g−1[e1]gx)).
This induces the structure of a leftA-module on the set0(HomF(B1, B2)) in the
usual way.

PROPOSITION 17. Homk(E1,E2) ≈ 0(HomF(B1, B2)).
Proof.Define a map

F : Homk(E1,E2) −→ 0(HomF(B1, B2)),

φ 7−→ Fφ

as (Fφ)(x)(v1
x) = φ(s)(x) wheres ∈ 0(B1) satisfiess(x) = v1

x . This is well
defined because ifs, s′ ∈ 0(B1) ands(x) = s′(x) for the givenx ∈ S, then

φ(s)(x) = (δxφ(s))(x) = (φ(δxs))(x),
φ(s′)(x) = (δxφ(s

′))(x) = (φ(δxs′))(x).
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But

(δxs)(y) = δx(y)s(y) = δxyv1
x,

(δxs
′)(y) = δx(y)s

′(y) = δxyv1
x.

Thereforeδxs = δxs
′ and we haveφ(s)(x) = (φ(δxs))(x) = (φ(δxs

′))(x) =
φ(s′)(x). SoF is well defined. Assume thatFφ1 = Fφ2. Let s ∈ 0(B1), then
φ1(s)(x) = (Fφ1)(x)(s(x)) = (Fφ2)(x)(s(x)) = φ2(s)(x) for all x ∈ S. But then
φ1 = φ2 andF is injective. Letγ ∈ 0(HomF(B1, B2)) be given. Define a map
φ:0(B1)→ 0(B2) by φ(s)(x) = γ (x)(s(x)). Then we have

φ(s + s′)(x) = γ (x)(s(x)+ s′(x))
= γ (x)(s(x))+ γ (x)(s′(x)) = φ(s)(x) + φ(s′)(x),

φ(f s)(x) = γ (x)(f (x)s(x)) = f (x)γ (x)(s(x))
= f (x)φ(s)(x) = (f φ(s))(x).

So we have thatφ ∈ Homk(0(B1), 0(B2)) and also

F(φ)(x)(v1
x) = φ(s)(x) = γ (x)(s(x)) = γ (x)(v1

x).

Therefore, we have thatFφ = γ andF is surjective. Furthermore, we have

F(f φ)(x)(v1
x) = (f φ)(s)(x) = (f (φ(s)))(x)
= f (x)(φ(s)(x)) = f (x)(F (φ)(x)(v1

x))

= (f (x)F (φ)(x))(v1
x) = (f F(φ))(x)(v1

x),

F (gφ)(x)(v1
x) = (gφ)(s)(x) = (g(φ(g−1s)))(x) = g(φ(g−1s)(g−1x))

= g(F(φ)(g−1x)(g−1v1
x)) = (g(F (φ)(g−1x)))(v1

x)

= (gF(φ))(x)(v1
x).

SoF is aA-module morphism. 2
Let E ≈ 0(B) be a given GF-difference equation whereB = ⋃x∈S(x,Ex) is a

vector bundle. Define the dual vector bundleB∗ =⋃x∈S(x,E
∗
x ). Then as a special

case of the previous proposition, we have:

PROPOSITION 18.E∗ ≈ 0(B∗).

3.3. THE GEOMETRIC DESCRIPTION OF A-MORPHISMS

Let 0(B), 0(B ′) be two GF-difference equations with corresponding vector bun-
dlesB = ⋃

x∈S(x,Ex), B
′ = ⋃

x∈S(x,E
′
x) and letφ ∈ HomA(0(B), 0(B

′)).
Define a mapFφ:B → B ′ by

Fφ(x, vx) = (x, F xφ ),
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whereFxφ (vx) = φ(s)(x) ands ∈ 0(B) is any section satisfyings(x) = vx.
PROPOSITION 19.Fxφ :Ex → E′x is well defined.

Proof.Assumes(x) = s′(x) = vx. Then

φ(s)(x) = (δxφ(s))(x) = φ(δxs)(x),
φ(s′)(x) = (δxφ(s

′))(x) = φ(δxs′)(x),
and(δxs)(y) = δx(y)s(y) = δx(y)s

′(y) = (δxs
′)(y) for all y ∈ S. This means

that δxs = δxs
′ and soφ(δxs) = φ(δxs

′) and we can conclude thatφ(s)(x) =
φ(s′)(x). 2
PROPOSITION 20.Fxφ is F-linear.

Proof. Let vx, ux ∈ Ex and lets, t ∈ 0(B) be any sections such thats(x) =
vx, t (x) = ux . Then(s + t)(x) = vx + ux and we have

Fxφ (vx + ux) = φ(s + t)(x) = φ(s)(x) + φ(t)(x) = Fxφ (vx)+ Fxφ (ux).
Let a ∈ F andvx ∈ Ex . Let s ∈ 0(B) be any section such thats(x) = vx . Then
(as)(x) = a(s(x)) = avx and we have

Fxφ (avx) = φ(as)(x) = (aφ(s))(x) = a(φ(s)(x)) = aFxφ (vx). 2

PROPOSITION 21.Fyφ ◦ g = g ◦ Fg
−1y

φ for all g ∈ G andy ∈ S.
Proof.Let y ∈ S, g ∈ G andvg−1y ∈ Eg−1y. Let s ∈ 0(B) be any section such

thats(g−1y) = vg−1y . Then we have

F
y

φ (gvg−1y) = F
y

φ (gs(g
−1y)) = Fyφ ((gs)(y)) = φ(gs)(y)

= (gφ(s))(y) = g(φ(s)(g−1y)) = g(F g−1y

φ (s(g−1y)))

= g(F
g−1y

φ (vg−1y)). 2
The previous three propositions show that a morphism of GF-difference equa-

tions is a family ofF-linear maps that are related at different points as described in
the last proposition. LetHy be the isotropy group of the pointy ∈ S. As a special
case of the last proposition, we have

COROLLARY 6. Fyφ ◦ h = h ◦ Fyφ for all h ∈ Hy andy ∈ S.

So the mapsFyφ commutes with the action of the isotropy group at each point
and areF[Hx]-module morphisms on the fiber above the point. Properties of the
morphismsφ ∈ Hom(0(B), 0(B ′)) is transferred to the family of mapsFxφ .

PROPOSITION 22.Letx ∈ S be some point inS. Thenφ ∈ HomA(0(B), 0(B
′))

is surjective if and only ifFxφ :Ex → E′x is surjective.
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Proof. Assumeφ is surjective. Letv′x ∈ E′x be given. Then there existsγ ∈
0(B ′) such thatγ (x) = v′x . Let s ∈ 0(B) be such thatφ(s) = γ . Let vx = s(x).
Then

Fxφ (vx) = φ(s)(x) = γ (x) = v′x,
soFxφ is surjective.

Assume thatFxφ is surjective. Lety ∈ S and letv′y ∈ E′y . There existsg ∈ G
such thatgx = y. Definev′x = g−1v′y ∈ E′x . Then there existsvx ∈ Ex such that
Fxφ (vx) = v′x . Definevy = gvx. Then we have

F
y

φ (vy) = Fyφ (gvx) = gFxφ (vx) = gv′x = v′y
soFyφ is surjective for ally ∈ S. Let γ ∈ 0(B ′). Thenγ (y) = vy ∈ E′y for all y.
For eachy there then existsvy ∈ Ey such thatFyφ (vy) = v′y . Defines ∈ 0(B) by
s(y) = vy. Then we have

φ(s)(y) = Fyφ (vy) = v′y = γ (y)
soφ(s) = γ andφ is surjective. 2
PROPOSITION 23.Let x ∈ S be any point inS. Thenφ ∈ HomA(0(B), 0(B

′))
is injective if and only ifFxφ :Ex → E′x is injective.

Proof.Assume thatφ ∈ HomA(0(B), 0(B
′)) is not injective. Then there exists

s ∈ 0(B), s 6= 0 such thatφ(s) = 0. There is at least one pointy ∈ S such that
s(y) = vy 6= 0. Then

F
y

φ (vy) = φ(s)(y) = 0,

soFyφ is not injective. Letg ∈ G be such thatgx = y. Let g:Ex → Ey be the
corresponding invertible fiber map. Definevx = g−1vy . Thenvx 6= 0, vx ∈ Ex and

Fxφ (vx) = Fxφ (g−1vy) = g−1F
y

φ (vy) = 0

soFxφ is not injective.
Assume thatφ is injective. Letvx ∈ Ex and assume thatFxφ (vx) = 0. Let

s ∈ 0(B) be any section such thats(x) = vx . Defineγ ∈ 0(B) by γ = δxs. Then

φ(γ )(y) = φ(δxs)(y) = δx(y)φ(s)(y) = δxyF xφ (vx) = 0

for all y ∈ S. But thenγ = 0 and sovx = s(x) = γ (x) = 0 and we conclude that
Fxφ is injective. 2

Combining the previous propositions we have

COROLLARY 7. Letx ∈ S be any point inS. Thenφ ∈ HomA(0(B), 0(B
′)) is

an A-module isomorphism if and only ifFxφ :Ex → E′x is aF[H ]-module isomor-
phism.
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Any A-morphism gives us a family ofF-linear maps with the properties de-
scribed. Any such family will in fact come from anA-morphism of modules.

For eachx ∈ S, letFx :Ex → E′x be aF-linear map. Assume that the members
of the family are related through

Fxφ ◦ g = g ◦ Fg
−1x

φ

for all g ∈ G andx ∈ S.
Define a mapφ:0(B)→ 0(B ′) by

φ(s)(x) = Fx(s(x)).

PROPOSITION 24.φ ∈ HomA(0(B), 0(B
′)).

Proof.Let s, t ∈ 0(B). Then

φ(s + t)(x) = Fx((s + t)(x)) = Fx(s(x) + t (x))
= Fx(s(x))+ Fx(t (x)) = φ(s)(x) + φ(t)(x).

Let s ∈ 0(B) andf ∈ k. Then

φ(f s)(x) = Fx((f s)(x)) = Fx(f (x)s(x))
= f (x)F x(s(x)) = f (x)φ(s)(x) = (f φ(s))(x).

Let s ∈ 0(B) andg ∈ G. Then

φ(gs)(x) = Fx((gs)(x)) = Fx(g(s(g−1x)))

= g(F g
−1x(s(g−1x))) = g(φ(s)(g−1x)) = (gφ(s))(x). 2

In general, a submodule of a finitely generated module does not have to be
finitely generated. We will now show that for the categoryGFE all submodules are
in fact GF-difference equations.

PROPOSITION 25. Let E and E ′ be GF-difference equations and also letφ ∈
HomA(E,E

′) be aA-module morphism. TheIm φ and Kerφ are GF-difference
equations.

Proof.We know that imφ and kerφ are submodules of geometric modules and
are therefore geometric. Let{ei}ni=1 be a set of generators forE . Then{φ(ei)}ni=1 is
a finite set of generators for imφ. So imφ is a GF-difference equation. We know
thatE ≈ 0(B) for some vector bundleB = ⋃y∈S(y,Ey). We know that kerφ is
a geometric submodule so we have an injectiveA-module morphismT : kerφ ↪→
0(B ′) ⊂ 0(B) whereB ′ = ⋃y∈S(y, Vy) is the subbundle with fibers

Vy = {s(y) | s ∈ kerφ}.
Let {Fyφ }y∈S be the family of maps corresponding toφ and letvy ∈ Vy. Thenvy =
s(y) for somes ∈ kerφ and we haveFyφ (vy) = φ(s)(y) = 0. Letγ ∈ 0(B ′). Then
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γ (y) ∈ Vy for all y ∈ S so thatφ(γ )(y) = Fyφ (γ (y)) = 0 and as a consequence
γ ∈ kerφ and the mapT is surjective. But then we have proved that kerφ ≈ 0(B ′)
and kerφ is finitely generated and therefore a GF-difference equation. 2
COROLLARY 8. Let E be a GF-difference equation andE ′ ⊂ E a submodule.
ThenE ′ is a GF-difference equation.

Proof.We know thatE andE/E ′ are GF-difference equations. Letφ: E → E/E ′
be the natural projection. Thenφ is aA-module morphism andE ′ = kerφ. 2

3.4. THE GENERAL STRUCTURE OFGFE

We are now ready to give a characterization of the structure of the categoryGFE.
All the structural properties follow from the following proposition.

PROPOSITION 26.Let E be a GF-difference equation. ThenE is both Artinian
and Noetherian.

Proof.Let E1 ⊂ E2 ⊂ E3 · · · be a ascending chain of submodules inE . Then, in
particular, this is a chain of freek-modules. ButE has finite dimension overk so the
chain must stop and the moduleE is Noetherian. Similarly, let· · · ⊂ E3 ⊂ E2 ⊂ E1

be a descending chain of submodules ofE . Then, in particular, it is a descending
chain of freek-modules. But the dimension of any module overk is nonnegative
so the chain must stop. 2

A GF-difference equation issimple if it contains no GF-difference equations
as submodules andindecomposableif it cannot be written as a direct sum of GF-
difference equations. A composition series for a GF-difference equation is a finite
filtering 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E of the equationE such that the composition
factorsEi/Ei−1 are simple equations. Because of the previous proposition and the
general structure theory for modules [6], we have

THEOREM 1. Let E be a GF-difference equation. ThenE has a composition
series and all composition series forE has the same number of elements in the
filtration and the composition factors are the same up to isomorphism. Any GF-
difference equation can be written as a direct sum of a finite number of indecom-
posable equations.

This theorem is a combination of the Jordan–Hølder theorem and the Krull–
Smidth theorem. This theorem reduce the problem of solving GF-difference equa-
tions to the study of indecomposable equations. Furthermore, it shows, that all
indecomposable equations are related to simple equations through a finite set of
simple decomposition factors. The first problem then is to find the simple equa-
tions and the next is to construct the indecomposable equations using a set of
composition factors. This last problem is essentially the problem of quantization.
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Even finding the simple equations is, in general, not a trivial task in the category
GFE. We will however now proceed to prove a theorem that show that the cat-
egoryGFE is equivalent to a category where the problem of finding simple and
indecomposable objects is more approachable.

4. The Equivalence Theorem

We will first construct a special class of GF-difference equations and then show
that all GF-difference equations are in fact of this type. Letx ∈ S and letHx be the
isotropy group of that point. All such groups for different pointsx are isomorphic.
We will usually suppress the point we are referring to and just writeH = Hx. For
eachy ∈ S define the setyH by

yH = {g ∈ G | gx = y}.
We evidently havegH = yH whereg ∈ G satisfygx = y so the setsyH are just
the left cosets ofH inG. LetV be a finite-dimensionalF[H ]-module and form the
trivial bundleS × V

S × V =
⋃
y∈S
(y, V ).

Let σ be a transversal to the partitioning ofG by the classesyH

σ(y) ∈ yH ∀y ∈ S.

Let0(G×V ) be thek-module of sections in the trivial bundleS×V . We will now
define an action ofG in this module of sections as

g(y, v) = (gy, σ (gy)−1gσ(y)v).

This gives aG-action.

PROPOSITION 27.(gg′)(y, v) = g(g′(y, v)).
Proof.

(gg′)(y, v) = ((gg′)y, σ ((gg′)y)(gg′)σ (y)v)
= (g(g′y), σ (g(g′y))gσ (g′y)σ (g′y)−1g′σ(y)v)
= g(g′y, σ (g′y)g′σ(y)v) = g(g′(y, v)). 2

We let this action in the bundle induce an action on the module of sections in the
bundle in the usual way.

(gs)(y) = g(s(g−1y)).

This gives the set of section in the bundleS × V the structure of a GF-difference
equation. It appears as if each choice of transversalσ gives a different action on
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the bundle and so a differentA-module structure on the set0(S × V ). They are,
however, all isomorphic. Let0(S×V ) and0(S×V )′ be the modules corresponding
to the choice of two transversalsσ andσ ′. Then we have

PROPOSITION 28.0(S × V ) ≈ 0(S × V )′.
Proof. For eachy ∈ S there exists aγ (y) ∈ H such thatσ(y) = σ ′(y)γ (y).

Define a mapφγ :0(S×V )→ 0(S×V )′ byφγ (s)(y) = γ (y)−1(s(y)) This map is
clearly bijective with inverseφγ−1 whereφγ−1(s)(y) = γ (y)(s(y)). We also have

φγ (f s)(y) = γ (y)−1((f s)(y)) = γ (y)−1(f (y)s(y))

= f (y)(γ (y)−1(s(y))) = f (y)φγ (s)(y) = (f φγ (s))(y),
φγ (gs)(y) = γ (y)−1((gs)(y)) = γ (y)−1(g(s(g−1y)))

= γ (y)−1(σ (y)−1gσ(g−1y)s(g−1y))

= γ (y)−1σ(y)−1gσ(g−1y)γ (g−1y)γ (g−1y)−1s(g−1y)

= (σ (y)γ (y))−1g(σ (g−1y)γ (g−1y))γ (g−1y)−1s(g−1y)

= σ ′(y)−1gσ ′(g−1y)(φγ (s))(g
−1y)

= (gφγ (s))(y).

So the mapφγ is also aA-module morphism and the proof is complete. 2
The constructed class of GF-difference equations in fact includes all GF-differen-

ce equations.

THEOREM 2. Let E be any GF-difference equation. ThenE ≈ 0(S × V ) for
someF[H ]-module of finite dimension overF.

Proof.We know thatE ≈ 0(B) for some vector bundleB

B =
⋃
y∈S
(y,Ey).

Let σ be a transversal to the classesyH , Thenσ(y)x = y and so the action of
G on the bundle gives us the liftσ(y):Ex → Ey and this map is an isomorphism
sinceG is a group. DefineV = Ex . ThenV is a finite-dimensionalH space. Letφ
be the map

φ:B → S × V,
(y, vy) 7→ (y, σ (y)−1vy).

This map is clearly an isomorphism of vector bundles and it commutes with theG

action

φ(g(y, vy)) = φ(gy, gvy) = (gy, σ (gy)−1gvy)

= (gy, σ (gy)−1gσ(y)σ (y)−1vy) = gφ(y, vy).
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Define a mapFφ by

Fφ:0(B) → 0(S × V ),
Fφ(s)(y) 7→ φ(s(y)),

Fφ is clearly bijective with inverseFφ−1 and we also have

Fφ(f s)(y) = φ((f s)(y)) = φ(f (y)s(y)) = f (y)φ(s(y))
= f (y)(Fφ(s)(y)) = (f Fφ(s))(y),

Fφ(gs)(y) = φ((gs)(y)) = φ(g(s(g−1y)))

= g(φ(s(g−1y))) = g(Fφ(s)(g−1y)) = (gFφ(s))(y).
SoFφ is aA-module morphism and the proof is complete. 2

Let F[H ] − finmodbe the category of modules overF[H ] with finite dimen-
sion overF with direct sum and tensor product and dual overF defined as is
usual in representation theory. For this category all main structural theorems for
the decomposition of modules apply so that all such modules have composition
series and can be written as a finite direct sum of indecomposables. We will now
proceed to show that the categoryGFE andF[H ]−finmodare in fact equivalent as
categories. From a structural point of view, we will not distinguish between isomor-
phic objects and will therefore prove the equivalence by showing the isomorphism
of the Grothendieck algebra [7]AG for GFE andAH for F[H ] − finmod. The
algebra structure inAG andAH is the one induced from direct sum and tensor
product in the corresponding categories. In addition to the usual algebra structure,
we have a conjugation map induced from the dual in the categories. Define a map
onT :AH → AG by

T ([V ]) = [0(S × V )],
where elements in the Grothendieck algebras are denoted by square brackets of
elements in the corresponding categories.

PROPOSITION 29.T is well defined.
Proof. Assume[V ] = [U ]. Then there exists aF[H ]-module isomorphism

Fx:V → U . SoFx is anF-isomorphism andFx(hv) = hFx(v) for all h ∈ H . De-
note the fiber overy ∈ S of the vector bundlesB1 = S×V andB2 = S×U byVy
andUy. For eachy ∈ S define a mapFy:Vy → Uy by Fy(vy) = g(F x(g−1vy)) ∈
Uy whereg is any element inG such thatgx = y. The family of maps{Fy}y∈S is
well defined because ifg1 is another element inG such thatg1x = y theng1 = gh
for someh ∈ H and we have

g1(F
x(g−1

1 vy)) = (gh)(F x((gh)−1vy)) = g(h(F x(h−1g−1vy)))

= g(F x(g−1vy)).
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The family{Fy}y∈S satisfies all requirements in Proposition 24 and therefore deter-
mines aA-morphism,φ:0(S×V )→ 0(S×U). From the construction we observe
that each member of the family{Fy}y∈S is aF[H ]-module isomorphism. We there-
fore can conclude that the mapφ is anA-isomorphism so that[0(S × V )] =
[0(S × U)]. 2
PROPOSITION 30.T :AH → AG is a bijection.

Proof.Let [E] be any element inAG. From Theorem 2 we know that there exists
aV in F[H ]− finmodsuch that[E] = [0(S × V )]. TheT ([V ]) = [E] so thatT
is surjective. Assume thatT ([V ]) = T ([U ]). This means that there exists aA-
module isomorphismφ:0(S × V ) → 0(S × U). Let y ∈ S be any point. Then
Proposition 7 show that there exists aF[H ]-module isomorphismFyφ :V → U . But
then[V ] = [U ] andT is injective. 2

Rewriting some of the results proved earlier we find thatT is a structure pre-
serving map.

PROPOSITION 31.The mapT is structure preserving

T ([U ] + [V ]) = T ([U ])+ T ([V ]),
T ([U ][V ]) = T ([U ])T ([V ]),
T ([U ]∗) = (T ([U ])∗.

This relation between the categoriesGFE andF[H ]− finmodgives us a way to
find all indecomposable equations of finite type inGFE from the indecomposable
F[H ]-modules of finite dimension overF.

PROPOSITION 32.E is a indecomposable GF-difference equation of finite type
if and only ifE ≈ 0(S × V ) whereV is a indecomposableF[H ]-module of finite
dimension overF.

Proof.Let E be indecomposable. We know thatE ≈ 0(S ×V ) for someF[H ]-
moduleV . Assume thatV is decomposable so thatV ≈ V1 ⊕ V2. DefineE1 =
0(S × V1),E2 = 0(S × V2). Then

[E] = T ([V ]) = T ([V1⊕ V2]) = T ([V1] + [V2])
= T ([V1])+ T ([V2]) = [E1] + [E2] = [E1⊕ E2].

So thatE ≈ E1 ⊕ E2 andE is decomposable. This is a contradiction so thatV is
indecomposable. LetV be indecomposable and of finite dimension overF. Define
E = 0(S×V ). ThenE is a GF-difference equation of finite type andT ([V ]) = [E].
Assume thatE is decomposable. ThenE ≈ E1 ⊕ E2. We know that there exists
F[H ]-modulesV1, V2 of finite dimension overF such thatE1 ≈ 0(S × V1),E2 ≈
0(S × V2). Then we have

T [V ] = [E] = [E1⊕ E2] = [E1] + [E2] = T ([V1])+ T ([V2])
= T ([V1] + [V2]) = T ([V1⊕ V2]).
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But T is injective so that[V ] = [V1⊕V2]. ThenV ≈ V1⊕V2 andV is decompos-
able. This is a contradiction. 2

For simple equations of finite type we have

PROPOSITION 33.E is a simple GF-difference equation of finite type if and only
if E ≈ 0(S × V ) whereV is a simpleF[H ]-module.

Proof. Let E be a simple GF-difference equation of finite type. We know that
E ≈ 0(S × V ) for someF[H ]-moduleV of finite dimension overF. Assume that
V has a submoduleV ′. Let E ′ = 0(S × V ′). ThenE ′ is a submodule ofE soE is
not simple. This is a contradiction. Assume thatV is a simpleF[H ]-module. Let
E = 0(S × V ) and assume thatE is not simple so that it has a submoduleE ′. But
thenE ′ ≈ 0(S × V ′), whereV ′ is a submodule ofV . This is a contradiction. 2

The simpleF[H ]-modules are in general not easy to find. For the case when the
isotropy group is finite and the character of the field does not divide the order of
the groupH , the algebraF[H ] is semisimple and the full power of the theory of
characters [8] can be applied. Even in the case when the character ofF does divide
the order of the group, the modular case, powerful tools are available.

5. The Projection Formula for GF-Difference Equations

The Frobenius projection formula [9] can be generalized to apply to GF-difference
equations when the isotropy group is finite and the underlying field isC. This
formula greatly simplifies the solution process when it applies. LetE ≈ 0(B) be
any GF-difference equation whereB = ⋃

y∈S(y,Ey) is a vector bundle overS.
We know that the fiber overy ∈ S is aF[Hy]-module. Denote the character of this
module byχy . There is a relation between characters at different points.

PROPOSITION 34.χy(hy) = χgy(ghyg−1) for all y ∈ S, g ∈ G andhy ∈ Hy.
Proof. Let hy ∈ Hy and letg ∈ G. Thenhy = g−1ghyg

−1g = g−1(ghyg
−1)g

so we have

χy(hy) = tr(hy) = tr(g−1(ghyg
−1)g) = tr(ghyg

−1) = χgy(ghyg−1). 2

Assume thatE ′ ≈ 0(B ′) is a submodule ofE ≈ 0(B). ThenB ′ ⊂ B so that
E′y ⊂ Ey as aF-linear subspace for ally ∈ S. For eachy ∈ S let5E ′(y):Ey → Ey
be the Frobenius map

5E ′(y)vy =
dimE′y
| Hy |

∑
hy∈Hy

χy(h
−1
y )hyvy.

Hereχy is the character of theF[H ]-moduleE′y .
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Eachhy is aF-linear map so clearly5E ′(y) is aF-linear map for eachy ∈ S.
We also have

PROPOSITION 35.5E ′(y)(gvg−1y) = g5E ′(g
−1y)(vg−1y) for all y ∈ S and

g ∈ G.
Proof. Let cy = dimEy/|Hy|. Then cy = cy ′ for all y, y′ ∈ S sinceB =⋃
y∈S(y,Ey) is a vector bundle andHy ≈ Hy ′ for all y, y′ ∈ S. We have

5E ′(y)(g
−1vy) = cy

∑
hy∈Hy

χy(h
−1
y )hy(gvg−1y

= cy
∑
hy∈Hy

χy(h
−1
y )g(g

−1hyg)vg−1y

= cyg
∑
hy∈Hy

χy(h
−1
y )(g

−1hyg)vg−1y

= cyg
∑

h
g−1y∈Hg−1y

χy(gh
−1
y g
−1)hg−1yvg−1y

= cg−1yg
∑

h
g−1y∈Hg−1y

χg−1y(h
−1
g−1y

)hg−1yvg−1y

= 5E ′(g
−1y)(vg−1y). 2

Define a map5E ′ onE ≈ 0(B) by

5E ′(e)(y) = 5E ′(y)(e(y)).

Then we can conclude from the previous proposition that

COROLLARY 9. 5E ′ ∈ HomA(E,E).

In general5E ′ is not a projection onE ′. Assume thatF = C. ThenE =∑i niSi

where allSi are simpleA-modules. Then we have

PROPOSITION 36.5Si |Sj = δij id.
Proof.5Si |Sj ∈ HomA(Sj ,Sj ). But this means that5Si |Sj (y) ∈ HomC(Sjy,

Sjy) for all y ∈ S. From the Schur lemma we can conclude that5Si |Sj (y) =
λij (y)idy. But then

dimSjyλij (y)

= Tr(5Si |Sj (y)) =
dimSiy

|Hy|
∑
hy∈Hy

χiy(h
−1
y )χjy(hy) = δijdimSiy .

So we haveλij (y) = δij and the proof is complete. 2
COROLLARY 10. 5Si is a projection ofE ontoniSi ⊂ E .
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The projection formula can be used to simplify the solution process for GF-
difference equations.

PROPOSITION 37.φ is a solution ofE of typeS if and only ifφ = 5∗
S
(ψ) for

some solutionψ of5S(E) of typeS.
Proof. Let ψ ∈ HomA(niSi ,Si ). Then5∗

Si
(ψ) = ψ ◦5Si ∈ HomA(E,Si )

and so5∗
Si
(ψ) is a solution ofE of typeSi . Conversely, letφ ∈ HomA(E,Si ) be a

solution ofE of typeSi. We know by the structure theorem thatE ≈∑j njSj . By
the Schur lemmaφ|njSj = 0 for i 6= j . Letψ = φ|niSi , thenψ ∈ HomA(niSi ,Si )

is a solution ofniSi of typeSi and for anye =∑j ej in E ≈∑j njSj we have

5∗Si (ψ)(e) = ψ(5Si (e)) = ψ(ei) = φ(ei) = φ(e). 2

6. Coordinate Description of GF-Difference Equations

Let E be any GF-difference equation. The structure ofE is essentially determined
by the action ofG on thek-moduleE . Let {ei}ni=1 be ak-basis forE . Define a set
of matricesEg ∈ Mat(n, k) by

gei =
∑
j

Egij ej .

The set of matrices{Eg}g∈G determines theG-action onE with respect to the gives
k-basis. They formally play the same role as the connection symbols in differential
geometry and we will call themthe connection of the given GF-difference equation.
In generalEgg

′ 6= EgEg
′
so the relationg → Eg is not a representation ofG. We

have, however, the following result.

PROPOSITION 38.Egg
′ = g(Eg′)Eg.

Proof.

(gg′)ei = g(g′ei) = g
∑
j

Eg
′

ij ej =
∑
j

g(Eg
′

ij )gej

=
∑
j

∑
k

g(Eg
′

ij )E
g

jkek =
∑
j

(∑
k

g(Eg
′

ik )E
g

kj

)
ej .

So we can conclude that

E
gg′
ij =

∑
k

g(E
g′
ik )E

g

kj . 2

From this result, we immediately have

COROLLARY 11. (Eg)−1 = g(Eg−1
).
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6.1. COORDINATE DESCRIPTION OF TENSOR OPERATIONS

We will now investigate how the connections of GF-difference equations behave
when we perform the usual linear algebra operations on the corresponding mod-
ules.

Let E andF be leftA-modules and let{ei}ni=1, {fj }mj=1 bek-bases forE andF .
Let {Eg}g∈G and{F g}g∈G be the connection of theG-difference equationsE and
F with respect to the given basis. With respect to direct sum we have the following
result

PROPOSITION 39.(E ⊕ F )g = Eg ⊕ F g.
Proof.A basis forE ⊕ F is {(ei,0), (0, fj )}n,mi=1,j=1 and

g(ei,0) = (gei,0) =
(∑

j

Egij ej ,0

)
=
∑
j

Egij (ej ,0),

g(0, fi) = (0, gfi) =
(

0,
∑
j

F g

ij fj

)
=
∑
j

F g

ij (0, fj ).

So we have proved that(E ⊕ F )g = Eg ⊕ F g. 2
We have a similar simple result for thek-tensor product.

PROPOSITION 40.(E ⊗k F )g = Eg ⊗k F g.
Proof. SinceE andF are freek-modules it follows that{ei ⊗k fj }n,mi=1,j=1 is a

k-basis forE ⊗k F . Furthermore, we have

g(ei ⊗k fj ) = gei ⊗k gfj =
(∑

r

Egirer

)
⊗k

(∑
s

F g

jsfs

)
=
∑
r

∑
s

EgirF
g

jser ⊗k fs.

So

(E ⊗k F )girjs = EgirF
g

js. 2

For Homk(E,F ) we have the following result.

PROPOSITION 41. Homk(E,F )g = F g ⊗k ((Eg)t )−1.
Proof.Define elementsδij ∈ Hom(E,F ) by

δij (ek) =
{
fi if j = k,
0 if j 6= k.
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Then{δij } is ak-basis for Homk(E,F ). Furthermore, we have

(gδij )(eu) = g(δij (g
−1eu)) = g

(
δij

(∑
v

Eg
−1

uv ev

))
= g

∑
v

Eg
−1

uv δij (ev) = g(Eg
−1

uj )gfi =
∑
r

g(E
g−1

uj )F
g

ir fr.

So we can conclude that

Homk(E,F )
g = F g ⊗k (g(Eg−1

))t .

But gEg
−1 = (Eg)−1 and the proof is complete. 2

Consider the special caseE∗ = Homk(E, k). ClearlyF g = kg = 1 and the
previous proposition gives

COROLLARY 12. (E∗)g = ((Eg)t )−1.

For symmetric and antisymmetric product there are no simple general formulas
for computing the connection ofSnE and∧nE in terms of the connection ofE . For
notational simplicity we only consider the casen = 2. Let {ei} be ak-basis forE .
Then{eiej }i6j is ak-basis forS2E . By definition, we have

gei =
∑
j

Egij e.j.

But then we have

g(eiej ) = geigej =
(∑

k

Egikek

)(∑
l

Egjlel

)
=
∑
kl

EgikE
g

jlekel

=
∑
k>l

EgikE
g

jlekel +
∑
k=l

EgikE
g

jlekel +
∑
k<l

EgikE
g

jlekel

=
∑
k

EgikE
g

jkekek +
∑
k<l

(EgikE
g

jl + EgilE
g

jk)ekel.

So forn = 2 we have

(S2E)gijkl =
{

E
g

ikE
g

jk k = l,
EgikE

g

jl + EgilE
g

jk k < l.

We now consider∧2E . A k-basis for∧2E is {ei ∧ ej }i<j . Furthermore, we have

g(ei ∧ ej ) = gei ∧ gej =
(∑

k

Egikek

)
∧
(∑

l

Egjlel

)
=
∑
kl

EgikE
g

jlek ∧ el

=
∑
k<l

EgikE
g

jlek ∧ el +
∑
k>l

EgikE
g

jlek ∧ el

=
∑
k<l

(EgikE
g

jl − EgilE
g

jk)ek ∧ el.
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We can conclude that

(∧2E)gijkl = EgikE
g

jl − EgilE
g

jk.

Assume that dimkE = 2. Then we have

Eg =
(

Eg11 Eg12

E
g

21 E
g

22

)
.

The module∧2E is one-dimensional overk with basise1 ∧ e2. The matrix
(∧2E)g is the scalar

(∧2E)g = Eg11E
g

22− Eg12E
g

21 = det(Eg).

It is evident that a similar result holds in general

PROPOSITION 42.LetdimkE = n. Then(∧nE)g = det(Eg).

6.2. COORDINATE DESCRIPTION OF A-MODULE MORPHISMS AND SOLUTIONS

Let E andF be GF-difference equations withk-bases{ei}ni=1, {fi}mi=1 and connec-
tion {Eg}g∈G, {F g}g∈G. Let φ ∈ HomA(E,F ) be aA-module morphism. Thenφ
is k-linear and has a matrixφ = (φij ) with respect to the given bases forE andF .

PROPOSITION 43.g(φ)F g = Egφ for all g ∈ G.
Proof.Thek-morphismφ is aA-module morphism only ifφ(ge) = gφ(e) for

all g ∈ G. But we have

φ(gei) = φ

(∑
j

Egij ej

)
=
∑
j

Egijφ(ej ) =
∑
j

Egij
∑
k

φjkfk

=
∑
k

(∑
j

Egij φjk

)
fk,

gφ(ei) = g

(∑
φij fj

)
=
∑
j

g(φij )gfj =
∑
j

g(φij )
∑
k

F g

jkfk

=
∑
k

(∑
j

g(φij )F
g

jk

)
fk

comparing sides we have
∑

j g(φij )F
g

jk =
∑

j E
g

ijφjk for all i, k andg ∈ G. 2
It is clearly sufficient that the matrixφ satisfies the equation in the previous

proposition only on a set of generators forG. We have defined solution of typeF to
a given GF-difference equationE asA-morphisms fromE to F . Using coordinates
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as in the previous proposition we see that solutions in our sense is a matrix of
functions onS that solves a set of classical difference equations. This show that
we are not redefining the notion of solution and justifies our use of this term in our
theory.

7. Invariant Structures

Let E,E ′,F andF ′ be GF-difference equations. Letφ ∈ HomA(E,F ) andψ ∈
HomA(E

′,F ′) and define mapsφ ⊗k ψ, Snφ,∧nφ by

(φ ⊗k ψ)(e⊗k e′) = φ(e)⊗k ψ(e′),
Snφ(e1e2 · · · en) = φ(e1)φ(e2) · · ·φ(en),
∧nφ(e1 ∧ e2 · · · ∧ en) = φ(e1) ∧ φ(e2) · · · ∧ (en).

Then the maps are well defined and we have the following result whose proof
can be found in standard texts [7].

PROPOSITION 44.The mapsφ ⊗k ψ, Snφ,∧nφ are well defined and

φ ⊗k ψ ∈ HomA(E ⊗k E ′,F ⊗k F ′),
Snφ ∈ HomA(S

nE, SnF ),

∧nφ ∈ HomA(∧nE,∧nF ).

7.1. CONSERVED QUANTITIES

Let E,F be GF-difference equations and letφ ∈ HomA(E,F ) be a solution
of E of type F . Using φ we can generate morphismsSnφ:SnE → SnF and
∧nφ:∧nφ → ∧nF . Let us first consider the symmetric case. Assume that there
exists an invariant element or structureα ∈ SnE . This means thatgα = α for all
g ∈ G. ThenSnφ(α) ∈ SnF and we have

g(Snφ(α)) = Snφ(gα) = Snφ(α),
so thatSnφ(α) is an invariant structure inSnF . Let us consider the particular case
whenF is the simple objectS ≈ k corresponding to the trivial action ofG. Then
SnS ≈ k and we have the following result:

PROPOSITION 45.LetE be any GF-difference equation with an invariant struc-
tureα ∈ SnE . Letφ ∈ HomA(E, k) be any solution ofE of typeS ≈ k. Then

Snφ(α) = constant

Proof.We know thatSnφ(α) is an element ink and thatgSnφ(α) = Snφ(α) for
all elements inG. ButG acts transitivly soSnφ(α) must be a constant function.2
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Note that in coordinates this gives us a symmetric polynomial invariant for the
equationE .

Let us next consider the antisymmetric case. Letα ∈ ∧nE be a invariant struc-
ture forE so thatgα = α for all g ∈ G. Theng(∧nφ(α)) = ∧nφ(α) so∧nφ(α) is
an invariant structure in∧nF . This leads to the following proposition:

PROPOSITION 46.LetS be a GF-difference equation andn = dimkF . LetE be
any GF-difference equation with invariant structureα ∈ ∧nE . Then

∧nφ(α) = constant.

for any solutionφ ∈ HomA(E,S).

This gives us an antisymmetric polynomial invariant for the equationE . In
a similar way conditions for other types of conservation laws can be specified
through invariants.

7.2. SELF-DUAL EQUATIONS

Let E be any GF-difference equation and letE∗ be the dual equation. Assume that
there is an invariant structureα ∈ S2E∗ or α ∈ ∧2E∗. Define a mapFα: E → E ′ by

Fα(e)(e
′) = α(e, e′).

We have the following result:

PROPOSITION 47.Fα is aA-morphism.
Proof. It is evident thatFα(e) ∈ E∗ and thatFα is k-linear. Furthermore, we

have

Fα(ge)(e
′) = α(ge, e′) = gg−1(α(ge, g(g−1e′))) = g((g−1α)(e, g−1e′))
= g(α(e, g−1e′)) = g(Fα(e)(g−1e′)) = (gFα(e))(e′). 2

Let us now define the notion of self duality for GF-difference equations.

DEFINITION 8. A GF-difference equationE is self-dual ifE ≈ E∗ asA-modules.

Using the previous proposition we can now prove the following proposition:

PROPOSITION 48.LetE be a GF-difference equation and assumeE has a non-
degenerate invariant structureα ∈ S2E∗ or α ∈ ∧2E∗. ThenE is self-dual.

Proof. We have aA-morphismFα: E → E∗. This map is bijective ifα is non-
degenerate becauseFα(e) = β if and only if α(e, e′) = β(e′) for all e′ and these
equations has one and only one solutione sinceα is nondegenerate. 2

This proposition show that any GF-difference equation with an invariant Euclid-
ean or symplectic structure is self-dual.
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7.3. SOLUTIONS AND COMPOSITION PRINCIPLES

Let E,F be GF-difference equations and letφ ∈ Homk(E,F ). Thenφ is a so-
lution of typeF of E if gφ = φ for all g ∈ G. This means that a solution is a
invariant structure in Homk(E,F ). Letα ∈ S2(Homk(E,F )

∗)⊗k Homk(E,F ) be
a invariant structure. Using the standard isomorphism Homk(F ,F

′) ≈ F ∗ ⊗k F ′,
α defines a mapTα: Homk(E,F )⊗k Homk(E,F )→ Homk(E,F ) defined by

Tα(φ,ψ) = α(φ,ψ).
For the mapTα we have the following result:

PROPOSITION 49. Let E,F be a GF-difference equations and letφ,ψ ∈
HomA(E,F ) be a pair of solutions ofE of typeF . ThenTα(φ,ψ) ∈ HomA(E,F )
is a solution ofE of typeF .

Proof. We havegφ = φ andgψ = ψ for all g ∈ G since they are solutions.
But then we have

g(Tα(φ,ψ)) = g(α(g−1gφ, g−1gψ)) = (gα)(gφ, gψ)
= α(φ,ψ) = Tα(φ,ψ). 2

So a GF-difference equationE has a symmetric composition principle for solu-
tions of type F if there is an invariant structure inS2(Homk(E,F )

∗) ⊗k
Homk(E,F ). In a similar way other types of composition principles will corre-
spond to the existense of certain invariants in the tensor algebra of the equationE .

8. Module Description of Classical Difference Equations

We will now develope the analog of differential operators on sections in vector
bundles. Many of the constructions introduced also applies in the case of equations
that are not of finite type. We will however in this section assume that all modules
that appears are GF-difference equations. This will, in particular, mean thatA itself
must be a GF-difference equation. This can only happen ifG is a finite group. Since
G acts transitively onS this means that we are considering the situation whereS is
a finite set.

8.1. THE MODULE OF DIFFERENCE OPERATORS

Let E ,E ′ be A-modules. We will define an action of elements in the module
Homk(E,E

′) ⊗k A on E . For each element(φ, a) ∈ Homk(E,E
′) × A define a

mapµ(φ, a): E → E ′ by

µ(φ, a)(e) = φ(ae).

PROPOSITION 50.µ(φ, a) is F-linear.
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Proof.

µ(φ, a)(e + e′) = φ(a(e + e′)) = φ(ae + ae′) = φ(ae)+ φ(ae′)
= µ(φ, a)(e)+ µ(φ, a)(e′),

µ(φ, a)(re) = φ(a(re)) = φ(r(ae)) = rφ(ae) = rµ(φ, a)(e). 2
Letµ be the map(φ, a)→ µ(φ, a). Then we have

PROPOSITION 51.µ is k-bilinear.
Proof.

µ(φ + φ′, a)(e) = (φ + φ′)(ae) = φ(ae)+ φ′(ae)
= µ(φ, a)(e) + µ(φ′, a)(e),

µ(φ, a + a′)(e) = φ((a + a′)e) = φ(ae + a′e) = φ(ae)+ φ(a′e)
= µ(φ, a)(e) + µ(φ, a′)(e),

µ(f φ, a)(e) = (f φ)(ae) = f (φ(ae)) = φ(f (ae))
= φ((f a)e) = µ(φ, f a)(e). 2

So we have a well defined mapµ: Homk(E,E
′)⊗k A→ HomF(E,E ′) defined by

µ(φ ⊗k a) = φ(ae).
PROPOSITION 52.The mapµ is aA-module morphism.

Proof.By construction the mapµ is ak-module morphism. Letg ∈ G, then we
have

µ(g(φ ⊗k a))(e) = µ(gφ ⊗k ga) = (gφ)(gae)
= g(φ(g−1(gae))) = g(φ(ae)) = g(µ(φ ⊗k a)(e))
= (gµ(φ ⊗k a))(e). 2

The elementsθ ∈ Homk(E,E
′) ⊗k A thus acts asF-linear maps from the module

E to the moduleE ′. The action is defined by

θ(e) = µ(θ)(e).
We will now consider the coordinate expression for these maps. Let{ei}, {e′i} bek-
bases forE andE ′. Then{φij } is a basis for Homk(E,E ′)whereφij (ek) = δike′j . Let
θ ∈ Homk(E,E

′)⊗k A ande ∈ E . Using this basis we haveθ =∑ijg θijgφij ⊗k g
ande =∑i fiei . This gives us(∑

ijg

θijgφij ⊗k g
)(∑

k

ek

)
=
∑
ijg

θijgφij

(
g
∑
k

fkek

)
=
∑
ijg

θijgφij

(∑
k

g(f )k
∑
l

E
g

klel

)
=
∑
ijklg

θijgg(f )kE
g

klφij (el) =
∑
ijklg

θijgg(f )kE
g

klδile
′
j =

∑
ijkg

θijgg(f )kE
g

kie
′
j .
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The equationθ(e) = 0 is therefore equivalent to a system of classical difference
equations∑

k

(∑
ig

θijgE
g

kig

)
fk = 0.

In general any elements in the kernel ofµ will be trivial when considered as
F-linear maps.

EXAMPLE. LetS = {x, y, z} be the cyclic graph of three elements with symme-
try group S3. Let the group elements in cycle notation beg0 = id, g1

= (1,3,2), g2 = (1,2,3), g3 = (1,2), g4 = (2,3) andg5 = (1,3). Then the
elementθ = φ ⊗k (g0 + g1 + g2 − g3 − g4 − g5), φ 6= 0, is trivial as aF-linear
map.

We therefore makes the following definition:

DEFINITION 9. Difn∗(E,E ′) = (Homk(E,E
′) ⊗k A)/kerµ is the module of

difference operators fromE to E ′.

8.2. COMPOSITION OF DIFFERENCE OPERATORS

LetE1,E2 andE3 beA-modules. For each pair of elements(φ, g) ∈ Homk(E2,E3)×
A define a mapFφg : Homk(E1,E2)× A→ Homk(E1,E3)⊗k A by

Fφg (ψ, b) = φ ◦ gψ ⊗k gb.
PROPOSITION 53.Fφg is middlek-linear for each(φ, g) ∈ Homk(E2,E3)× A.

Proof.

Fφg (ψ + ψ ′, b) = φ ◦ (g(ψ + ψ ′))⊗k gb = φ ◦ (gψ + gψ ′)⊗k gb
= (φ ◦ gψ + φ ◦ gψ ′)⊗k gb
= φ ◦ gψ ⊗k gb + φ ◦ gψ ′ ⊗k gb
= Fφg (ψ, b)+ Fφg (ψ ′, b),

F φg (ψ, b + b′) = φ ◦ gψ ⊗k g(b + b′) = φ ◦ gψ ⊗k (gb + gb′)
= φ ◦ gψ ⊗k gb + φ ◦ gψ ⊗k gb′
= Fφg (ψ, b)+ Fφg (ψ, b′),

F φg (ψ, f b) = φ ◦ gψ ⊗k g(f b) = φ ◦ gψ ⊗k g(f )gb
= g(f )(φ ◦ gψ)⊗k gb = φ ◦ (g(f )(gφ))⊗k gb
= φ ◦ ((g(f )g)ψ)⊗k gb = φ ◦ ((g(f ))ψ)⊗k gb
= φ ◦ g(fψ)⊗k gb = Fφg (f ψ, b). 2
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So we have a well-definedF-linear mapFφg : Homk(E1,E2)⊗kA→ Homk(E1,E3)

⊗k A defined by

Fφg (ψ ⊗k b) = φ ◦ gψ ⊗k gb.
We use this map to define a mapF : Homk(E2,E3)×A→ HomF(Homk(E1,E2)⊗k
A,Homk(E1,E3)⊗k A) by

F(φ, a) =
∑
g

agF
φ
g ,

wherea =∑g agg.

PROPOSITION 54.F is k-bilinear.
Proof.We have

Fφ+φ
′

g (ψ ⊗k b) = (φ + φ′) ◦ gψ ⊗k gb = (φ ◦ gψ + φ′ ◦ gψ)⊗k gb
= φ ◦ gψ ⊗k gb + φ′ ◦ gψ ⊗k gb
= Fφg (ψ ⊗k b)+ Fφ

′
g (ψ ⊗k b).

Using this we find

F(φ + φ′, a)
=
∑
g

agF
φ+φ′
g =

∑
g

agF
φ
g +

∑
g

agF
φ′
g

= F(φ, a)+ F(φ′, a),
F (φ, a + a′) =

∑
g

(ag + a′g)F φg =
∑
g

agF
φ
g +

∑
g

a′gF
φ
g

= F(φ, a)+ F(φ, a′),
F (f φ, a)(ψ ⊗k b) =

∑
g

agF
fφ
g (ψ ⊗k b) =

∑
g

ag((f φ) ◦ gψ ⊗k gb)

=
∑
g

ag(f (φ ◦ gψ)⊗k gb) =
∑
g

agf (φ ◦ gψ ⊗k gb)

=
∑
g

(f ag)(φ ◦ gψ ⊗k gb). = F(φ, f a)(ψ ⊗k b). 2

We can conclude that we have a well-defined mapF : Homk(E2,E3) ⊗k A →
HomF(Homk(E1,E2)⊗k A,Homk(E1,E3)⊗k A)

F(φ ⊗k a)(ψ ⊗k b) =
∑
g

agφ ◦ (gψ)⊗k gb.

Letµi, i = 1,2,3 be the action map. Then we have

PROPOSITION 55.F(θ2)(θ1) ∈ kerµ3 if θ1 ∈ kerµ1 or θ2 ∈ kerµ2.
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Proof. Let θ1 ∈ Homk(E1,E2) ⊗k A, θ2 ∈ Homk(E2,E3) ⊗k A. Then θ1 =∑
i ψi ⊗k bi andθ2 =∑i φi ⊗k ai . But then we have

F(θ2)(θ1) =
∑
ij

F (φi ⊗k ai)(ψj ⊗k bj ) =
∑
ijg

aigφi ◦ gψj ⊗k gbj .

Using this we find

µ3(F (θ2)(θ1))(e1) =
∑
ijg

aig(φ ◦ gψj)(gbj e1)

=
∑
ijg

aigφi(gψj(bje1))

=
∑
ig

aigφi

(
g

(∑
j

ψj (bje1)

))
=
∑
ig

aigφi(gµ1(θ1)(e1))

=
∑
i

(
φi

(∑
g

aigµ1(θ1)(e1)

))
=
∑
i

φi(aiµ1( θ1)(e1))

= µ2(θ2)(µ1(θ1)(e1)) = 0

if θ1 ∈ kerµ1 or θ2 ∈ kerµ2. 2
The mapF therefore restricts to the modules of difference operators and we

have a mapc: Difn∗(E2,E3)×Difn∗(E1,E2)→ Difn∗(E1,E3) defined by

c([θ2], [θ1]) = [F(θ2)(θ1)].
We use the mapc to define composition of difference operators.

DEFINITION 10. Let11 ∈ Difn∗(E1,E2) and12 ∈ Difn∗(E2,E3) be difference
operators. Define the composition12 ◦11 ∈ Difn∗(E1,E3) by

12 ◦11 = c(12,11).

8.3. MODULES CORRESPONDING TO DIFFERENCE OPERATORS

By construction Difn∗(k, k) is a leftA-module. Letµ:A → HomF(k, k) be the
action map ofA. Then, by definition, Difn∗(k, k) = A/kerµ. For any element
a ∈ A let1a = [id ⊗k a] ∈ Difn∗(k, k) be the corresponding difference operator.
Then we have

PROPOSITION 56.Let1 ∈ Difn∗(E, k). Thena1 = 1a ◦1.
Proof. We only need to consider a generating set for Difn∗(E, k). Let 1 =

[α ⊗k b]. Then we have

a1 = [a(α ⊗k b)] =
[∑

g

agg(α ⊗k b)
]
=
[∑

g

ag(gα ⊗k gb)
]
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=
[∑

g

agF
id
g (α ⊗k b)

]
= [F(id⊗k a)(α ⊗k b)]

= c([id⊗k a], [α ⊗k b]) = 1a ◦1. 2
Let1 ∈ Difn∗(E1,E2). Define a mapφ1: Difn∗(E2, k)→ Difn∗(E1, k) by

φ1(∇) = ∇ ◦1.
Then we have

PROPOSITION 57.φ1 is a leftA-module morphism.
Proof.

φ1(a∇) = (a∇) ◦1 = (1a ◦ ∇) ◦1 = 1a ◦ (∇ ◦1) = aφ1(∇). 2
DEFINITION 11. Let1 ∈ Difn∗(E1,E2). The GF-difference equation corre-
sponding to1 is E1 = Cokerφ1.

8.4. CLASSICAL SOLUTIONS

Let1 ∈ Difn∗(E1,E2) be a difference operator. Define the set of classical solutions
C(1) of 1 by

DEFINITION 12. C(1) = {e ∈ E1 | 1(e) = 0}.
Let S0 ≈ k be the simple module corresponding to trivial action ofG. For each

e ∈ C(1) define a mapφe: E1→ S0 by φe([λ]) = λ(e).
PROPOSITION 58.φe is well defined for eache ∈ C(1).

Proof.Assume that[λ] = [λ′]. Thenλ−λ′ = φ1(∇) for some∇ ∈ Difn∗(E2, k).
But then we have

φe([λ]) = λ(e) = λ′(e)+ φ1(∇)(e)
= λ′(e)+∇(φ1(e)) = λ′(e). 2

PROPOSITION 59.φe ∈ HomA(E1,S0).
Proof.

φe(a[λ]) = φe([aλ]) = (1a ◦ λ)(e) = 1a(λ(e))

= (id⊗k a)(λ(e)) = aλ(e) = aφe([λ]). 2
Now define a mapφ:C(1)→ HomA(E1,S0) by φ(e) = φe. Then we have

PROPOSITION 60.φ:C(1)→ φ(C(1)) ⊂ HomA(E1,S0) is a isomorphism of
F-vector spaces.
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Proof. Assume thatφ(e) = φ(e′). Then we have thatφe([λ]) = φe′([λ]) so
thatλ(e − e′) = 0 for all λ ∈ Difn∗(E1, k). Let {ei} be a basis forE1 and{e∗i } the
dual basis. Thene − e′ = ∑

i fiei, λj = [e∗j ⊗k 1] ∈ Difn∗(E1, k) and we have
fj = e∗j (

∑
i fiei) = λj(e − e′) = 0. Soe = e′ andφ is injective. Furthermore, we

haveφ(re)([λ]) = λ(re) = rλ(e) = rφ(e)([λ]) soφ is F-linear. 2
The previous proposition show that any classical solution of a difference oper-

ator1 is contained in the set of solutions ofE1 of typeS0.

8.5. MODULES CORRESPONDING TO SYSTEMS OF DIFFERENCE EQUATIONS

Any system of difference equations on the spaceS is of the form

n∑
k=1

(∑
g

c
j

kgg

)
fk = 0 for j = 1, . . . ,m.

The given system of difference equations will only fix thek-module structure of
theA-modulesE1 andE2. It will not fix the A-module structure or the operator
1 ∈ Difn∗(E1,E2) separately but will fix a relation between theA-module structure
onE1 and the operator1. The space of solutions of the given system of difference
equations must be equal toC(1) Using bases{ei} and{fi} for E1 andE2, we have
1 = [∑ijg θijgφij ⊗k g] and the relation is∑

i

θijgE
g

ki = cjkg,

whereEg is the connection for the action of g onE1. This means that in general
we have many different modulesE1 corresponding to a given system of difference
equations. However, for all these modulesE1, we haveC(1) ∈ HomA(E1,S0) so
they all contain the set of solutions of the given system of difference equations.
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