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Abstract. We introduce the notion of difference equations defined on a structured set. The symmetry
group of the structure determines the set of difference operators. All main notions in the theory of
difference equations are introduced as invariants of the action of the symmetry group. Linear equa-
tions are modules over the skew group algebra, solutions are morphisms relating a given equation
to other equations, symmetries of an equation are module endomorphisms, and conserved structures
are invariants in the tensor algebra of the given equation.

We show that the equations and their solutions can be described through representations of the
isotropy group of the symmetry group of the underlying set. We relate our notion of difference
equation and solutions to systems of classical difference equations and their solutions and show that
out notions include these as a special case.
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1. Introduction
Let us consider a general second-order difference equation of the form
a;i fiv1+bifi +cifiia=0.
Introduce the simple graph$ consisting of vertices{x;};cz and edges
{{xi, xiv1}}iez- Let F(8) be theR-algebra ofR-valued functions on the graph
Then the sequencgs; }, {b;}, {c;} and{f;} are all elements itF ($). Denote these

elements by, b, ¢, and f. Lets be the operator of left translation on the lattife
sx; = x;_1. Thens acts on¥ (4) in the natural way

(f)(x) = f(s™tx).

Define A = as + be + cs~ wheree acts as the identity of. ThenA acts on
F (8) as aR-linear operator and our original equation can be writtengg) = 0.
In order to understand what is in algebraic terms, we need to introduce some
new notions. LetG = Aut(8) be the automorphism group of the grapphThis
group acts orf ($) in the natural way(gf)(x;) = f(g x;). Let A be the set of
finite formal linear combinations of elementsGhwith coefficients in¥ (8).

A= {Zagg la, € 37(5)}.
8
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On the setA we define addition and scalar multiplication with elements R
componentwise. Product is defined in the following way)(bg') = (agb)(gg’).
With these operationd is aR-algebra.A = F(8)[G] is the skew group algebra
of G over ¥ (8). This algebra acts oft (8) through

(Zagg)f = Y a8 (f).

Using these notions we observe that our classical difference opekater
as + be + c¢s~1 is an element of the skew group algebta lt is now evident
that we can interpret all elements i as difference operators ovér We will
in fact defineA to be the algebra of G-difference operators ofeiThis means
that the notion of a difference operator is defined in terms of the symmetries of
the underlying grapts. The group of symmetries of measures the arbitrariness
in the description of. Without this arbitrariness, difference operators could not
exist, in a totally asymmetrical space with trivial symmetry group there could be
no difference operators and, as a consequence, no difference equations.

In this paper, we will generalize these simple observations and consides a set
and a groupG acting on$. For any such group action, there exists some structure
on 4 such thaiG is a subgroup of the full automorphism group of this structure. If
the set is finite, then the group is actually the full group of automorphisms of the
space$. The algebra of scalar difference operatorssomill be the skew group al-
gebraA = F(8)[G] whereF (8) will be the algebra of-valued functions defined
on 4. Difference equations of and their solutions must be invariant objects under
the action of the grougy. If they are not invariant, their description and solutions
will depend on the arbitrariness in the specification of the underlying space. The
Klein Erlanger program in geometry has shown that the building blocks of the
geometry on a set with a group action are the invariants of the group. Geometrical
objects and their relations are constructed from invariants. In this way the geometry
will not depend on the arbitrariness of the underlying space. What we propose in
this paper is in the spirit of the Erlanger program in geometry.

We propose that the building blocks of the theory of difference equations on a
finite space with some structure are the invariants of the group of automorphisms
acting on the space. The algebra of difference operators will be the skew group
algebra,A, of G and all main notions in the theory of difference equations will
be defined in terms of invariants. A linear difference equatiénagill be an A-
module, symmetries & will be A-endomorphisms of. All conserved quantities
and structures of the equations will be invariant elements in the tensor algebra of
the equationg. A special role will be played by the equations corresponding to
indecomposable and simpfemodules.

In this paper we introduce a categorical point of view on equations and solu-
tions. The equations are objects in a full subcategory of the categannuidules.
Solutions of an equation are descriptions of the equation in terms of other equa-
tions. Only descriptions that are invariants are allowed and this leads to the idea
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of a solution of an equation in a Category Afmodules as a morphism between

the given equation and some other equation. So solutions are morphisms in the
Category. Solving an equation thus means to find@hievariant descriptions or
morphisms between the given equation and all other equations in the Category.
In this way symmetries are special types of solutions, they are descriptions of
an equation in terms of itself. Simple equations play a special role in that they
can only be described in terms of themselves. They play the role of atoms in our
category of equations. In the semisimple situation all equations are sums of simple
equations so the description of a given equation in terms of simple equations in
fact gives a complete description of the equation. In a more general situation we
also need descriptions in terms of indecomposable equations in order to give a
complete description of a given equation. The indecomposable equations that are
not simple are closely related to the notion of quantization. The family of simple
and indecomposable equations is determined by the group of symmetries of the
underlying space so this group determines the type of solutions that are needed to
solve any equation in the Category. Note that from this point of view a solution is

a relational concept. It does not belong to one object but to a pair of objects.

In this paper, we will develop the theory for a class of equations we call finite
type. These are analogs of the finite type or Frobenius equations in the theory of
differential equations. Note that if the sgfs finite, then all equations are of finite
type. In a forthcoming work, the theory will be developed for a much wider class
of equations.

There exists currently several geometric-algebraic approaches to the study of
difference and differential equations; the differential algebra approach of Ritt [1]
and Kolchin [2] and the description through use of jet bundles and D-modules
[3] just to mention two. Our approach does not belong directly to any of these
directions. Itis, however, somewhat related to the approach in [3] and the difference
algebra approach in [4].

2. The Main Notions in the Theory of Finite Type Difference
Equations on a Set

Let 8 be a set and lef be a group acting o&. We will assume that the action of

G is from the left and is faithful and transitive so th@tis acting as a transitive
group of permutations o#. It is well know from the theory of permutation groups

that there exists a finite set of relations #rsuch that the groug is included in

the full group of symmetries of these relations. A space is a set with some structure
defined. Any group acting on a set can thus be thought of as the symmetry group
of a space. Examples of such spaces are graphs, lattices, finite projective spaces,
finite linear spaces, etc.

EXAMPLE. Let4$ be the cyclic graph with vertex séty, x,, ..., x,} and edge
set{{x1, xp}, {x2, x3}, ..., {x,,, x1}}. This graph can be considered to be a discrete
approximation to the circl&!. The group of symmetries of this finite space is the
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dihedral groupD,,. It has two generatorsands, wherer is reflection around;
ands is left translation. The symmetry group has @ements and presentation in
terms of generators and relations in the following form:

Dy, =(s,t|s" =112 =1 tst = s"7).

We will now define the main notions in the theory of difference equations on a
spaces as the invariants associated to the group of symmetriés of

2.1. THE ALGEBRA OF G-DIFFERENCE OPERATORS

LetF be a field and letF () be theF-algebra off' valued functions or$. Let G
be the symmetry group of the spageThen the left action of; on S can be lifted
to a left action ofG on % (8) in a natural way:

(N = fg ) VYged.

The skew group algebra of over ¥ (48) is the set of finite formal linear combina-
tions of elements of; with coefficients in# ($). Addition and multiplication by
elements irF is defined componentwise and multiplication is defined by

(fe)(hg) = (fg(h)gg'.
We now define the first basic notion in our theory of difference equations.

DEFINITION 1. ¥ (48)[G]is the algebra o6G-difference operatorsn the sefS.
NOTATION. We will from now on use the notatidn= £ (§) andA = £ (§)[G].

EXAMPLE. Let 4 be the cyclic graph$ with n elements. We have seen that
the symmetry group of is the dihedral grou,, with generators beeing left
translations and reflectiory. The algebra oD,,-difference operators consists of
formal linear combinations df-valued functions and elementsb§,,. The algebra

A contains the usual difference operators from the calculus of differences whose
continum limit corresponds to the usual ordinary differential operators. But it also
contains operators involving the reflectionThese operators will in the continum
limit correspond to differential-delay equations.

2.2. LINEAR G-DIFFERENCE EQUATIONS OF FINITE TYPE AND SOLUTIONS

Let A be the algebra of G-difference operators on a sphadeet € be a finitely
generated module ovér If not otherwise noted finitely generated means finitely
generated ovek. Assume thatG acts ong on the left,g(fe) = g(f)ge. Then
€ is a left A-module with the natural action of the skew group algehran &.
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In this way & can be considered to be an invariant for the symmetry g@ugd
the underlying space. We will consider only leftmodules that can be given a
geometrical interpretation. Define. C k by

pr={f:8—=>F| f(x) =0}
The subsetg., are clearly ideals itk. They are in fact maximal ideals.

PROPOSITION 1. i, is a maximal ideal inF (§).

Proof. u, is clearly an ideal inF (8). Let J be an ideal inF (§) and assume
thatu, C J C F(8) = 3j e Jsuchthatj ¢ u, = j(x) #0= j/j(x) € J.
Then

j j@) j
o w=LY 102 L _1ep,
(j(x> ) 15 TS N

but

j i o
//LxC.Iij(—x)—].EJij(—x)—(m—l)—16]#]—\/“(’3).

This is a contradiction séd = u, andu, is maximal.

For eachx € § we have a submodule, & sincepu, is an ideal. We will only
consider leftA-modules that have no invisible elements [3].

DEFINITION 2. ¢& is ageometrideft A-module iff
[\ us€ =0. (2.1)

xed

€& being a leftA-module means that we have an action of the algebra of G-difference
operators or¢. We are now ready to define the second main notion in our theory.

DEFINITION 3. A linear G-difference equation of finite type is a geometric left
A-module that is finitely generated over

We will use the term GF-difference equations for the equations defined in the
previous definition. In general, the structure of a GF-difference equation is in-
vestigated by comparing it to other equations. An equation will be considered to
be understood only if its relations to all other equations are known. This is the
Categorical point of view. Relations between equations Araorphisms so an
equationg is understood osolvedif Hom, (&, ) is known for all GF-difference
equations¥ . Let us formalize this in a definition

DEFINITION 4. Let & be any GF-difference equation. Then a solutiongof
of type ¥, where¥ is a GF-difference equation, is A&4module morphismp e
Hom, (&, 7).
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Using this definition we can now say that a GF-difference equation is solved
if we know all solutions of the equation. We will introduce two special types
of solutions that will play a central role in our theory. A GF-difference equation
is indecomposable if it cannot be written as a direct sum of two GF-difference
equations. Our first special type of solution is the following definition:

DEFINITION 5. Let & be any GF-difference equation and &tbe a indecom-
posable equation. Then a indecomposable solutighalftype & is an element of
Hom, (&, 6).

The second special type of solution are symmetries. These are relations that
describe the equation in terms of itself so we define:

DEFINITION 6. Let& be any GF-difference equation. Then a symmetrg s
a A-morphism of€ to itself.

So a symmetry of is an element of End&). If f € Hom, (&, ) is any
solution & of type & and ¢ is a symmetry of¢ then¢*(f) = ¢ o f is also a
solution of type# . So symmetries map solutions of some type to solutions of the
same type. The problem of solving an equation is closely linked to the module
structure of the equation and we will now start to develop the structure theory for
GF-difference equations.

3. The Structure of the Category of GF-Difference Equations

Let GFE be a category [5] whose objects are GF-difference equations and mor-
phisms areA-module morphisms.

DEFINITION 7. GFE is the category of GF-difference equations.

A complete description of the structure of the categ@iyE is the same as
knowing all solutions to all GF-difference equations. This, in general, is an enor-
mously complicated problem. In this section, we will describe what can be said in
general about the structure of the categGi§iE without placing any restrictions on
the set$ or the groupG. We will start our investigation of the structure @¥E by
investigating the closure of the set of GF-difference with respect to the usual linear
algebra operations like direct sum, tensor product, etc. These operations preserve
the set of modules that are finitely generated @védihey also preserve the property
of being geometric as we will now see.

3.1. THE ALGEBRA OF GFDIFFERENCE EQUATIONS

Let &, & be two GF-difference equations. Thén® &, is a finitely generated left
A-module with the operations

fle1,e2) = (fe1, fea) Vf ek,
gle1, e2) = (ge1, ge2) Vg € G.
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PROPOSITION 2. The direct sum of GF-difference equatiofs® &, is a GF-
difference equation.

Proof. We know that(),_, 1«61 = 0, [),cs & = 0 and we have by
definition that

ne€ = {Zfieil ﬁEMx,eie8}

= m(slea&z):{Zﬁ(eHefn fi € trre] € €167 € &

1

But
Dfilet+e =) fiel + ) fie? € 1,61 B 11,62
So
Mx(gl S 82) C ngl S /Lx82
= [ 1e(E1® ) C [ (161 11:E) C [ |1:E1 B [ ) 1162
xed xed xed xed
=0+0=0.
So the direct sum is a finitely generated geometricAefhodule. a

Let &1, & be GF-difference equations. From this, it follows that they are left
k-modules sinc& C A are algebras. The algebkais Abelian so&; ®; &, is a
well-defined finitely generatekkmodule. Define & action on the tensor product
module byg(e1 ®; e2) = ge1 ®; geo. With this action we have

PROPOSITION 3. &; ®; &, is a A-module with the givel action.
Proof.

g(fe1®r e2) = g(fer) Qi gea = g(f)(ger) Qi gez
= ge1 @ 8(f)(ge2) = ge1 @ g(fe2)
= g(e1 ®r fe2),
(8182)(e1 B €2) = (8182)e1 O (8182)e2 = g1(82€1) Q g1(82€2)
= g1(g2¢1 @ g2¢2) = g1(g2(e1 ® €2)),
(8f)(e1 @k e2) = g(fe1 @ e2) = g(fe1) B ge2
= (g(f)g)e1 ®r ge2 = (g([f))(ge1 x ge2)
= (g(f)g)(e1 R €2). 0

PROPOSITION 4.Assume thagy, &, are two GF-difference equations. Th&®,
&, is also a GF-difference equation.
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Proof. We observe that,, (&1 ®; &) C 1,81 Qi &2. SO we have

ﬂﬂx(gl ®y &2) C ﬂ(ﬂxgl ®r &) C (ﬂﬂx81> ®r & =0. O

xed xed xed

Let &, & be two GF-difference equations. Then Hai, &) is a finitely
generated left-module with the natural action a&f

(fe)e) = f(@le)) Vfek
Define an action oG on Hom, (&1, &,) by

(gd)(e) = g(p(g ")) VgeG.

PROPOSITION 5. Hom(é&y, &) is a left A-module with the given action @éf
andG.
Proof.

(gd)(fe) =g(d(g ' fe)) = g(p((g ) fg  e) = g((g N fp(g "e)
=g(g N f(gp(gre)) = f((gd)(e)),
((8182)9)(e) = (8182)P((8182) e) = g1(g200(g5 (g1 "))
= 21((g20) (g1 €)) = (g1(g29))(e),
(8N @) (e) = (g(f))(e) = g((f)(g 'e)) = g(f(d(g "))
= g(f)(g(p(g 7€) = g(/)((gP)(e))
= (g()(gp)(e) = (g()R)(@))(e). O

PROPOSITION 6. Honé, &) is a GF-difference equation.

Proof.Lety € u Hom (61, &) = ¢ = ), fi: With f; € uy, ¢; € Hom (&1,
&) = Yle) = ), fild(e)) € 280y (e) € uc&foralle € & = ¥ €
Homy (&1, 11, &2). SO we haver, Hom, (&1, &) C Hom, (&1, 1, &>). But then

ﬂ uHom(&y, &2) C ﬂ Homy (€1, . &2) C Homy (81, ﬂ ngz) =0. O

xed xed xesd

As a special case of the last proposition we have

COROLLARY 1. Let & be a GF-difference equation. Then the dgélis also a
GF-difference equation.

Let us next consider the case of quotients. Assume@&hata GF-difference
equation and le¢’ C & be a submodule of.

PROPOSITION 7. /€&’ is GF-difference equation.
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Proof.Sinceg /&’ is finitely generated we only need to prove that it is geometric.
Leth € u,(€/8") thenh = Y, file;] where f; € u, andle;] € £/& are the
equivalent classes of elementsdnSoh = ), file;] = [)_; fie:] and we can
conclude thaj, (/&) C u,&/8& . But then we have

rthWUCwaW€C(TWMéy€=O- O

xed xed xed

We already know that tensor products and direct sums of GF-difference equa-
tions are GF-difference equations. This implies that the tensor aldgebraf a
GF-difference equation is a GF-difference equation. The modifl€sand A" &
are factors of the tensor algebra®to we have the following result:

COROLLARY 2. Leté& be a GF-difference equation. Théh& and A" & are GF-
difference equations.

3.2. GF-DIFFERENCE EQUATIONS AS MODULES OF SECTIONS IN VECTOR
BUNDLES

We have seen that the category of GF-difference equations is closed with respect to
quotients,®, ®;, Hom, A, andS;. These modules can be given an interpretation
as modules of sections in vector bundles over thefset

Let & be a GF-difference equation. Then, in particuléris a k-module and
u.€ C &is ak submodule of. LetE, = &/u,&. ThenE, is A-module over
k/u, ~ F and therefore is & vector space. Denote the elementsEfby [e],
where[e], = [¢'], only if e — ¢ € u, &. Let the bundleB over$ be defined by

B = Jw Ey,

xed

where the projectionz: B — 4, in the bundle is a projection on the first compo-
nent. Letl" (B) be the set of sections in the bundie This set is a module ovér
through pointwise addition and multiplication by functionskin

For each element i@ define a bundle map in the bundbethrough

g(x, [ely) = (gx, [ge]gx)- (31)
This set of bundle maps in fact defines an actioG'ain the bundleB.

PROPOSITION 8. Bundle map(3.1) is well defined and determines an action of
G on the bundleB.

Proof. Assumele], = [¢'],. Thene — ¢’ € 1, & and soge — ge’ € g(u,8). Let
€ € &, thene = ), fie; wheree; € € and f; € u, and soge = ). g(f)ige;.
Butg(f)i(gx) = fi(x) = 0S0g(f;) € pg,. Then it follows thalge — ge’ € 1,1 &
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and we can conclude thgge],. = [ge'l,x SO the map is well defined. Using the
definition of the bundle map, we have

(g182)(x, [ely) = ((g182)x, [(g182)€]l(g1e0)x) = (81(g2X), [81(&2€) g1 (gox))
= g1(82x, [g2elg,x) = 81(g2(x, [ely))

so the bundle map defines an actiorGobn the bundles. ]

COROLLARY 3. B is avector bundle, that idimE, is constant.

Proof.Let x € 8 be a fixed point in the se&. The group acts transitively on the
sets so for anyy € & there exists @ € G such thaigx = y. This element induces
amapg,: E, — E, defined byg,([e],) = [gel,,. This map is linear and has an
inverseg,-1. We can therefore conclude that all fibéfs of the bundleB have the
same dimension sB is a vector bundle. O

We now induce an action @ onT"(B) defining
(g5)(x) = g(s(g ). (3.2)

PROPOSITION 9. Action(3.2) givesI' (B) the structure of ami-module.
Proof.

(8HENE) = (g(f)x) = g((f$)(g 7 x) = g(g(f)(x)s(g 1x))
g(Hx)(gs)(x) = (g(fHg)(s)(x),

(8182)5((8182) %) = g1(g2s(g5 (g1 X))

= 21((g29)(g1 ") = (g1(g28)) (). O

((8182)5)(x)

PROPOSITION 10.& ~ I'(B) as A-modules.
Proof. Let e € &. Define¢(e) € I'(B) by ¢(e)(x) = [e],. We clearly have
¢:& — I'(B).

ple+ fHx) =le+ fli=lels +[flr = o) (x) + o (fH(x)
= (p(e) + () (x),
d(fe)(x) =[fely = f(O)lely = f()p(e)(x) = (fp(e))(x).
We have used that fact thdk], = [ fe], wheref is any function such that(x) =
z. This is well defined because [i¢], = [¢/], and f(x) = z, f'(x) = z, then
e =e+h,f = f+ g, whereh € n,& andg € u,. Butthenfe — f'¢’ =

fe—(f+g(e+h) =—ge— fh—ghe & Solfel. =[f'el..
We have now proved that is a k-module morphism. It is also a-module
morphism

p(ge)(x) = [gely = [gelye-1r) = g([elg-1,) = g(p(e)(g %))
= (gp(e))(x).
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Assumegp (e¢) = ¢(¢’). Then[e], = [¢'], sO[e — €'], = 0 Vx € 4. But this
means that — ¢’ € (), u+€. We can therefore conclude that= ¢’ becauses
is geometric. S@ is injective.

For eachy € $ letI1,: & — E, be the canonical projectiorB is a vector
bundle so that the dimensionof each fibre as &-vector space is the same. Let
{e;}"_, be a set of generators fér. ThenTIl, ({¢;}",) generatest, forall y € 4§
so at each point at least one subset ofisajements ofe; }!_; form a basis forE,
after projection byi1,. There are only finitely many subsetsmoélements from the
set ofm generators. Enumerate these subsets

Bi = {el(i,k)}zzl, I = 1, N

Herel(i, k) is an index function. Pu; = 4§ and define subset; C 4§
recursively

Vi ={y € 4 | I1,(B') is a basis ofz, },
Si1=4—-V.

This gives us a finite set of nonempty subsgtg!_; such thatV; NV, = @ for
i#j,8=U",V,andIl,B" = {[e;i.)],};_, is a basis folE, for all y € §. Let
8y, be the characteristic function fof,. Thendy, € k and)_, 8y, = 1. LetT; =
8y,I"(B). ThenT; is ak-submodule of"(B) andT; hask-basis{dy,¢ (e;ii)}i_1-
Lets € I'(B) be any section. Then we have

o = <Zav,)(s) =Y 5= fududenn)
i i i k
= ¢( DD fudv ezouio)-
k

i

Bute =), )", fidv,eiir) € € SO¢ is surjective. O

This result show that the categd®FE is equivalent to the category of modules
of sections in vector bundld3(B) over8 where the action of; is defined through
(3.1) and (3.2).

PROPOSITION 11.Let & be a GF-difference equation. Thénis free and finite-
dimensional as a k-module.

Proof. Let {¢}!_; be a basis folE, overF. The numben exists and is inde-
pendent of since all our bundles are finite-dimensional and vector bundles so that
the dimension of all fibers are the same. Define sectiong_; by s;(x) = ;.
Assume thad ! ; fis; = 0. Then) " ; fi(x)ef = 0sof;(x) =0forallx € §
and alli. This implies thatf; = 0 for alli and we conclude thas;}"_, is a linearly
independent set ovér Lets € I'(B), thens(x) = e, € E, so there exists complex
numberg(c;}_, such thak(x) = >"_, c¢/e’. Define functions irk by f;(x) = ¢},
thens = > 7_; fis; and{s;}!_, is a spanning set. 0
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We can use this result to prove a standard isomorphism. Define @ ngdpx
F — Homy (&, ) by ¢(e*, f)(e) = e*(e) f.

PROPOSITION 12.¢ is k-bilinear.
Proof.

plel +e5, f)le) = p((ex + e2)", f)(e) = (e1+e2)"(e) f
=ej(e) f +es(e) f = dleq, f)le) + p(es, fle)
= (p(e1, ) + ¢(e3, ))(e),
¢(e*, fi+ fo)e) = e (e)(f1+ f2)
= e*(e) f1+e*(e) f2 = (¢ (e], f1) + B (e, f2)(e),
p(re*, f)(e) = (re*)(e) f = (r(e*(e)) f =r(e*(e) f)
=r(p(e", fle) = (re(e”, f))(e). O

This proposition show that we have a well-defined mag*®, F — Hom (€, F)
defined by (e¢* Q@ f)(e) = e*(e) f.

PROPOSITION 13.¢ is an A-isomorphism.

Proof. Let {e;}7_,, { fi}/_, be the basis ovek for & and #. Let {¢}/_; be the
dual basis fo*. Then{e @ f;} is a basis fo6* ®, F because the modules are
free overk. Letv = ) .. a;;ef ®; f; and assume thai(v) = 0. Theng (v)(e,) = 0
for all s and we have jasifi = 0s0 thate;; = O for all i and j becaussq f;}
is a basis forF. So¢ is injective. LetF € Hom (&, ). Define the matrix F;;)
by F(e;) = >_; Fij f; and letv = 3. Fjjef ® f;. Theng(v) = F so thatg is
surjective. Finally, we have

P (g(e* @ f))(e) = P(ge* @ gf)(e) = (ge*)(e)gf = (g(e* (g e)))gf
= g(e*(g7re) ) = g(@(e* @ (g )
= (gp(e* R ))(e)
so thatg is an A-morphism. O

COROLLARY 4. Hom (&, F) ~ &* @ F .

We know that the category of GF-difference equations is closed with respect to
the usual linear algebra operations. Since we have proved that any GF-difference
equation is isomorphic tel-module of sections in a vector bundle owrit is
evident that all such linear algebra operations must reduce to operations on the
corresponding vector bundles. The following series of propositions show that the
correspondence is as nice as one would expect.

Let &, &, be two GF-difference equations. Thén~ I'(B;) and&, ~ I'(B5y)
whereB;, B, are vector bundles

Bi=Jw ED,  Ba=[Jx ED.

xes xes
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We then have

PROPOSITION 14.&, @ & ~ I'(B1 ® B).

Proof.Define a map: &;® & — I'(B1® Bo) by ¢ (s1, 52) (x) = (s1(x), s2(x)),
where we identify the GF-difference equatioéig &, with their corresponding
modules of sections.

Assumed (s1, s2) = @(s7, 55). Then (si(x), s2(x)) = (s3(x), s5(x)) and so
s1(x) = 57(x), s2(x) = s5(x) for all x € 4. But this implies thatsy, s2) = (s7, 55)
andg¢ is injective.

Lets € & @ &,. Thens(x) € E} @ E2for all x € 8. Defines;(x) = 71 0 s(x)
andsy(x) = mp o s(x), wheren;: E} @ E? — Elandn,: EL @ E2 — E? are the
projections on the first and second factor. But thans,) € &, ® &, and evidently

@ (s1,52)(x) = (s51(x), 52(x)) = s(x),
S0¢ is surjective. Furthermore, we have

d(f(s1,52)(x) = d(fs1, f52)(x) = ((fs1)(x), (fs2)(x))
= (f(x)s1(x), f(x)s2(x)) = f(x)(s1(x), s2(x))
= (fo(s1,52)(x),

d(g(s1,52))(x) = P(gs1, gs2)(x) = ((gs1)(x), (g52)(x))
= (g(s2(87 %)), g(s2(g %)) = g((s1, 52)(g ')
= F(g¢(s1,52))(x).

So¢ is a left A-module morphism and the proof is complete. a

We have seen that thietensor product of GF-difference equations is a GF-
difference equation with the action bfandG defined by

f(s1 @k 82) = fs1®rs2 Vf €k,
8(s1 ®x 52) = gs1®; gs2 Vg € G.

Using the vector bundleB; and B, corresponding t&; and&, we define a new
vector bundleB; ®r B, by

B ®r B> = |_J(x. E} ®r E?).

xed

Let I"(B1 ®F B») be the set of sections in the vector bunélle®r B». This set
is ak-module through pointwise addition and multiplication by elements difis
also a leftA-module through the action

(g9)(x) = g(s(gx)),
where

g(x, [e1] ®F [62]) = (gx’ [gel]gx QR [geZ]gx)-
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We then have the following result:

PROPOSITION 15.8&; Rk & ~ I'(B1 ®r B>).
Proof. Define a magp: &, x & — I'(By Qp B») by

G (51, 52) (x) = 51(x) ®F 52(x).

We have

G(s1+51,52) = (51+ 51)(X) @F 52(x) = (52(x) + 51(x)) F 52(x)
51(x) ®F s2(x) + 51(x) ®F 52(x)

(@ (51, 52) + P (51, 52)) (X)),

G (fs1,52)(x) = (fs)(x) ®r 52(x) = (f (¥)51(x)) B 52(x)

51(x) ®F (f (x)s2(x)) = s1(x) ®F (f52)(x)

= ¢(s1, f52)(%).

So¢ is k-bilinear and therefore induces a unique rgag; ®; & — I'(B1 ®F Bo)
where

@ (51 Qx 52)(x) = 51(x) ®F 52(x).

Let {s}}"_, and{s?}"_, be bases fog; and & ask-modules. These bases exists

because the modules are free as modulesiovegts € 8, ®; &>, then
s = Z fijsi ®x sf.
ij
Assume thatp(s) = 0. This implies that
s = Z fij (x)sl-l(x) QF sjz-(x) =0 Vxes.
ij

But then fj;(x) = O0Vx € & and sof;; = 0 and, as a consequence,= 0.
Thereforeg is injective. Lets € I'(B1 ®r B»). This implies thak(x) € B, Qr B>
so there exists elements }Efz;‘j such that

s(x) =Y zis1(x) ®p s2(x).
ij
Define elementy;; € k by f;;(x) = z;; and definer € & ®; &, by
h = Z fijsl-l R sjz.
ij

Then we evidently have (h) = s and¢ is surjective.
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We already know thap is k-linear by definition of tensor product. But we also
have
P (8(s1 ®r 52))(x) = P (gs1 B g52)(x) = (g51)(x) B (g52)(x)
= g(s1(g7'0)) ®r g(s2(g 7)) = (51 @ 52) (g 1x))
= 2(@(51,52) (g 1) = (g (51 ®% 52))(x)
so¢ is aA-module morphism and the proof is complete. a

Now let & ~ I'(B) be a GF-difference equation with a corresponding vector
bundleB. Let &’ C & be a subequation. Define
Vx = {[e]x | S 8/}

ThenV, C E, isasubspace df, for eachx € § and the dimension is independent
of x. Define a vector bundl®’ by

B = U(x, V).

xed

Then B’ is evidently a subvector bundle & and we have by construction that
& ~ T'(B'). Let E,/V, be the factor space. Its dimension is independent arfid
we can form the vector bundle

B/B =|_J(x, Ex/ Vo).

xesd

Denote the elements @,/ V, by [v,]y,. We define an action by elementséGh

by
g([vly,) = [g(i)ly,,-

This action is well defined and we use it to induce an actio&6 @h I"(B/B’)
in the usual way.

PROPOSITION 16.€/&" ~ T'(B/B’).

Proof. Define a mapp:I'(B)/I'(B’) — T'(B/B’) by ¢([s])(x) = [s(x)]y,.
Theng is well defined because [§] = [s'], thens — s’ € T'(B’) and, therefore,
s(x) —s'(x) € V. Sol[s(x)ly, = [s'(x)]y, and, thereforeg([s]) = ¢([s']).
Furthermore, we have

¢ ([s]1+ [sDx) = o ([s +s'D(x) = [(s +5)(x)]v,
= [s(x) + 5" ()], = [s()]v, + [s' ()],
= (¢ ([s]) + o ([s'])) (%),
d(fIsDx) = d(LfsD(x) = [(f$))]y, = [f (x)s(X)]v,
= f)s)]y, = f)PUsD(x) = (f[sD))(x),
P (glsD(x) = ¢ ([gsD(x) = [(g)(D)]y, = [g(s(g )]y,
=[g(s(g v, 5, = &ls(e 0y, 1)

8(g

= g(@([sD(g %) = (gp([s])(x).
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So we can conclude thatis aA-module morphism. Assume that[s]) = ¢ ([s']).
Theng([sD(x) = ¢([s'D(x) for all x € §. But this is the same gs(x)]y, =
[s"(x)]y, sOs(x) — s'(x) € V,. This implies thatt — s’ € I"(B’) so, by definition,
[s] = [s'] and¢ is injective. Lety € I'(B/B’), theny(x) = [v,]y,. Defines €
['(B) by s(x) = v,. Then clearlyp([s])(y) = [s(y)]v, S0¢([s]) = y and¢ is
surjective. O

SinceA” & andS" € are factor bundles of the tensor algebrg, it follows from
the previous proposition that

COROLLARY 5.
A'T(B) =T (A\"B),
S"T'(B) = I'(S"B).

Let &, and &, be GF-difference equations. We have proved that Hém &)
is a GF-difference equation with the actions

(fP)(s1) = f(@p(s1) Vf €k,

(g9)(s1) = g(p(g ts1)).
We know thaté; ~ I'(By), & ~ I'(B;) whereB; = |J, 4(x, E}) and B, =
U, cs(x, E?) are vector bundles. Let HomE?, E2) be the set off-linear maps

from E! to E2. These have all the same dimension and we can form the vector
bundle

Homg(By, By) = |_J(x. Home(E}, E2)).

xed

We have aG-action on the vector bundle HartB,, B,) given by g(x, ¢,) =
(gx, g(¢y)) where we define

g(p)([erlgr) = g (g Herler))-

This induces the structure of a ledtmodule on the sef (Homg(By, B»)) in the
usual way.

PROPOSITION 17. HoRté&i, &2) ~ I'(Homg(B1, B2)).
Proof. Define a map

F:Homy (&1, &) —> T['(Homg(By, B2)),
¢ — F¢
as (F¢)(x)(v}) = ¢(s)(x) wheres € I'(By) satisfiess(x) = vl. This is well
defined because if s' € I'(B;) ands(x) = s’'(x) for the givenx € 4§, then
d($)(x) = (620 (5))(x) = (P(8x5))(x),
d(sH(x) = () (x) = (@85 (x).
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But

0 (Y) = 8:(3)s(y) = 807,

BN = 8:(0)s'(y) = 8yyv;.
Therefores,s = 6,5 and we havep(s)(x) = (@(6:5)(x) = (965 (x) =
¢(s")(x). So F is well defined. Assume that¢, = F¢,. Lets € I'(By), then

$1(5)(x) = (Fp)(x)(s(x)) = (Fp2)(x)(s(x)) = ¢2(s)(x) for all x € 8. But then
¢1 = ¢ and F is injective. Lety € I'(Homp(B1, B»)) be given. Define a map
¢:T(By) — T'(By) by ¢ (s)(x) = y(x)(s(x)). Then we have

P(s +5)(x) =y () (s(x) +5"(x))
=y () (s(0) + ¥ () (' (x) = $()(x) + P (s) (%),
¢(fs)(x) =y () (f()s(x) = fx)y (x)(s(x))
= f(X)$()(x) = (fd () (x).

So we have thap € Hom(I'(By), I'(B>)) and also

F($)(x)(vp) = () (x) = y () (s(x)) = y(x)(vD).

Therefore, we have thdt¢ = y and F is surjective. Furthermore, we have

F(fO)()@h = (fO)()(x) = (f(p(s) ()
FOO(@(5)(x) = fFOO(F(@)(x)(wh)
(fOF(@)(x) D) = (FF(@)(x)(v)),

F(gd)(x)(v) = (gp)(s)(x) = (g(@(g 1)) (x) = g(p(g s)(g x))
= g(F(®)(g ) (g7 vh) = (g(F (@) (g %)) (v}
= (gF(¢)(x)(vy).
SoF is aA-module morphism. O

Let & ~ I'(B) be a given GF-difference equation whéte= | J,_,(x, E;) isa
vector bundle. Define the dual vector bun@e= (] _,(x, E¥). Then as a special
case of the previous proposition, we have:

xes

PROPOSITION 18.&* ~ I'(B*).

3.3. THE GEOMETRIC DESCRIPTION OF AMORPHISMS

Let I"(B), I'(B’) be two GF-difference equations with corresponding vector bun-
dlesB = [J,cs(x, Ey), B = [U,s(x, E}) and let¢p € Hom,(T'(B), T'(B)).
Define a mapF,: B — B’ by

F¢(-xa vx) = (x7 Fq);)7
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wherng(vx) = ¢(s)(x) ands € I'(B) is any section satisfying(x) = v,.

PROPOSITION 19. F;: E, — E| is well defined.
Proof. Assumes(x) = s’(x) = v,. Then

P(s)(x) = (5:0(s))(x) = d(6x5)(x),

d(sH(x) = 6 ())(x) = P(8:5)(x),
and (8,8)(y) = 6. (y)s(y) = 8,(y)s’'(y) = (B,s")(y) for all y € 8. This means
thaté,s = 6.5 and so¢(8,s) = ¢(8,s") and we can conclude that(s)(x) =
(") (x). O

PROPOSITION 20. F is F-linear.
Proof. Letv,,u, € E, and lets,r € I'(B) be any sections such thatx) =
Uy, t(x) = u,. Then(s + t)(x) = v, + u, and we have

Fy(uy +uy) = ¢(s + 1) (x) = ¢(s)(x) + ¢ (1) (x) = Fy(vy) + Fy(uy).
Leta € F andv, € E,. Lets € I'(B) be any section such thatx) = v,. Then

(as)(x) = a(s(x)) = av, and we have

Fy(avy) = ¢(as)(x) = (agp(5)(x) = a(p(s)(x)) = aF, (vy). O

PROPOSITION 21.F) o g = g o F(ffly forall g € G andy € 5.
Proof.Lety € 8, g € G andv,1, € E,1,. Lets € I'(B) be any section such

thats(g~y) = v,-1,. Then we have

F}(gve1,) = Fj(gs(g7'y) = F}((g9)() = ¢ (gs) ()
= (N = 8B()(g ) = g(FS (s(g™ )
= g(F% 7 (v,1,). O

The previous three propositions show that a morphism of GF-difference equa-
tions is a family ofF-linear maps that are related at different points as described in
the last proposition. Lektl, be the isotropy group of the poifnte 4. As a special
case of the last proposition, we have

COROLLARY 6. Fy oh=ho Fj forallh € H,andy € 4.

So the mapng commutes with the action of the isotropy group at each point
and areF[ H,]-module morphisms on the fiber above the point. Properties of the
morphismsp € Hom(I'(B), I'(B)) is transferred to the family of maps;.

PROPOSITION 22.Letx € 8 be some point i. Theny € Homy(I'(B), I'(B"))
is surjective if and only it} E, — E| is surjective.
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Proof. Assumeg is surjective. Letv, € E’ be given. Then there exisis
['(B’) such thaty (x) = v,. Lets € I'(B) be such thap (s) = y. Letv, = s(x).
Then

Fy() = o)) =y (x) = v,

SO Fy is surjective.
Assume that is surjective. Lety € § and letv) € E|. There existg € G
such thatgx = y. Definev, = ¢g7'v/ € E.. Then there exists, € E, such that

F3(vy) = v,. Definev, = guv,. Then we have
Fy(vy) = F}(gvy) = gF} (vy) = g}, =)

SO Fg is surjective for ally € 8. Lety € I'(B’). Theny(y) = v, € E| for all y.

For eachy there then exists, € E, such thath{(vy) = v,. Defines € I'(B) by
s(y) = vy. Then we have

D)) = Fy(vy) = v, =y (y)
S0¢(s) = y and¢ is surjective. O
PROPOSITION 23.Letx € $ be any point in§. Theng € Homy(I'(B), I'(B"))
is injective if and only ifF: E, — E| is injective.
Proof. Assume thatp € Hom,(I"(B), I'(B’)) is not injective. Then there exists

s € I'(B), s # 0 such thatp(s) = 0. There is at least one pointe $ such that
s(y) = vy, # 0. Then

Fj(vy) = ¢(s)(y) =0,
SO Fg is not injective. Letg € G be such thagx = y. Letg: E, — E, be the
corresponding invertible fiber map. Defing= g—lvy. Thenv, #0, v, € E, and
Fji(vy) = Fy(g vy) =g 'F)(v,) =0

So Fy is not injective.
Assume thatp is injective. Letv, € E, and assume thafg(vx) = 0. Let
s € I'(B) be any section such thatx) = v,. Definey € I'(B) by y = §,s. Then

P()(¥) = ¢ B:5)(¥) = 8:(MP()(y) =8y Fy(vs) =0
forall y € 4. Buttheny = 0 and saw, = s(x) = y(x) = 0 and we conclude that
Fy is injective. a
Combining the previous propositions we have

COROLLARY 7. Letx € 4§ be any point in§. Theng € Hom,(I"(B), I'(B")) is
an A-module isomorphism if and onlyﬁg: E, — E’ is aF[H]-module isomor-
phism.
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Any A-morphism gives us a family df-linear maps with the properties de-
scribed. Any such family will in fact come from atrmorphism of modules.
For eachx € 4, let F*: E, — E' be aF-linear map. Assume that the members
of the family are related through
1

Fd’)‘og:gqu‘f !

forall g € G andx € 4.
Define a maw:I'(B) — I'(B’) by

P(s)(x) = F*(s(x)).

PROPOSITION 24.¢ € Hom,(I'(B), I'(B)).
Proof.Lets,tr € I'(B). Then

P(s +0)(x) = F'((s +1)x) = F'(s(x) +1(x))
= F'(s(x)) + F*(t(x)) = ¢()(x) + ¢(0)(x).

Lets e I'(B) and f € k. Then

P(fs)x) = F((f9)(x) = F(f(x)s(x))
= fOF (s(x)) = f()($)(x) = (fP(9))(x).

Lets e I'(B) andg € G. Then

P(gs)(x) = F*((g5)(x)) = F*(g(s(g x)))
= g(F¢ “(s(g7x))) = g(@(5)(g x)) = (g(5)) (x). O

In general, a submodule of a finitely generated module does not have to be
finitely generated. We will now show that for the categ&HE all submodules are
in fact GF-difference equations.

PROPOSITION 25. Let & and & be GF-difference equations and also tete
Hom, (&, &) be a A-module morphism. Then ¢ and Ker¢ are GF-difference
equations.

Proof. We know that imp and kerp are submodules of geometric modules and
are therefore geometric. Lgt;}"_, be a set of generators fér Then{¢(¢;)}"_; is
a finite set of generators for ith So im¢ is a GF-difference equation. We know
that& ~ I'(B) for some vector bundl® = Uyd(y, Ey). We know that ket is
a geometric submodule so we have an injecivenodule morphisnt': ker¢ <
I'(B’) c I'(B) whereB’ = Uyd(y, Vy) is the subbundle with fibers

Vy = {s(y) | s € kerg}.

Let {Fg}ye,g be the family of maps correspondinggaand letv, € V,. Thenv, =
s(y) for somes € ker¢ and we haveF; (v,) = ¢(s)(y) = 0. Lety € I'(B’). Then
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y(y) € V,forall y € 8 sothatg(y)(y) = qu(y(y)) = 0 and as a consequence
y € ker¢ and the maf’ is surjective. But then we have proved that ex I'(B’)
and ke is finitely generated and therefore a GF-difference equation. O

COROLLARY 8. Let & be a GF-difference equation ar&gl c & a submodule.
Thenég’ is a GF-difference equation.

Proof.We know thate and& /&’ are GF-difference equations. Lgté — &/8&’
be the natural projection. Themis a A-module morphism ané’ = kerg. O

3.4. THE GENERAL STRUCTURE ORGFE

We are now ready to give a characterization of the structure of the cat&dtity
All the structural properties follow from the following proposition.

PROPOSITION 26.Let & be a GF-difference equation. Theéhis both Artinian
and Noetherian.

Proof.Let &, C &, C &3--- be a ascending chain of submodulegirirhen, in
particular, this is a chain of frédemodules. Bug has finite dimension ovérso the
chain must stop and the modw#ias Noetherian. Similarly, let-- C 3 C & C &;
be a descending chain of submodulesgofThen, in particular, it is a descending
chain of freek-modules. But the dimension of any module o¥e€s nonnegative
so the chain must stop. O

A GF-difference equation isimpleif it contains no GF-difference equations
as submodules ariddecomposablé it cannot be written as a direct sum of GF-
difference equations. A composition series for a GF-difference equation is a finite
fitering 0 C & C & C --- C & of the equatiorg such that the composition
factorsé;/&;_1 are simple equations. Because of the previous proposition and the
general structure theory for modules [6], we have

THEOREM 1. Let & be a GF-difference equation. Thehhas a composition
series and all composition series férhas the same number of elements in the
filtration and the composition factors are the same up to isomorphism. Any GF-
difference equation can be written as a direct sum of a finite number of indecom-
posable equations.

This theorem is a combination of the Jordan—Hglder theorem and the Krull-
Smidth theorem. This theorem reduce the problem of solving GF-difference equa-
tions to the study of indecomposable equations. Furthermore, it shows, that all
indecomposable equations are related to simple equations through a finite set of
simple decomposition factors. The first problem then is to find the simple equa-
tions and the next is to construct the indecomposable equations using a set of
composition factors. This last problem is essentially the problem of quantization.
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Even finding the simple equations is, in general, not a trivial task in the category
GFE. We will however now proceed to prove a theorem that show that the cat-
egory GFE is equivalent to a category where the problem of finding simple and
indecomposable objects is more approachable.

4. The Equivalence Theorem

We will first construct a special class of GF-difference equations and then show
that all GF-difference equations are in fact of this type.L et § and letH, be the
isotropy group of that point. All such groups for different pointare isomorphic.

We will usually suppress the point we are referring to and just wHite- H,.. For
eachy € 4 define the setH by

yH ={g e G| gx=y}.

We evidently haveg H = yH whereg € G satisfygx = y so the setg H are just
the left cosets off in G. Let V be a finite-dimensional[ H ]-module and form the
trivial bundle§ x V

sxv=Ju .

yeS
Let o be a transversal to the partitioning Gfby the classes H
o(y) e yH Vyels.

LetI'(G x V) be thek-module of sections in the trivial bundiex V. We will now
define an action of; in this module of sections as

g(y,v) = (gy,0(gy) *go (M)v).
This gives aG-action.

PROPOSITION 27.(gg") (v, v) = g(g'(y, v)).
Proof.

(88 (v, v) = ((gg)y. o((gg)y)(ggHo (y)v)
(g(g'y), o(g(g'y))go (g y)o(g'y)  ga(y)v)
= g(g'y,0(g'y)g'c(y)v) =g (y,v)). O

We let this action in the bundle induce an action on the module of sections in the
bundle in the usual way.

(&) () = g(s(gy)).

This gives the set of section in the bundlex V the structure of a GF-difference
equation. It appears as if each choice of transversgives a different action on
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the bundle and so a differedt-module structure on the sEt{$ x V). They are,
however, all isomorphic. Ldt (8 x V) andI'(§ x V)’ be the modules corresponding
to the choice of two transversaisands’. Then we have

PROPOSITION28.T (8 x V) = T'(§ x V)'.

Proof. For eachy € & there exists & (y) € H such thato (y) = o'(y)y (»).
Defineamap,: I'(§xV) - ['($x V) by, (s)(y) = y(y) *(s(y)) This map is
clearly bijective with inverse, 1 whereg,-1(s)(y) = v (y)(s(y)). We also have

by (f)(Y) = vy H(HD) = vy L Ms()
FOGOM 0N = FOM, () = (fd, () (),
y () &) () =y () Hgls(g 7))

y () Mo () Tgo (g y)s(e )

y() o go (g v e ve ) e hy)
@MY g @y vy sy
= o'(y) g0’ (g V) (e, (N MY

= (g¢y (s))(y).

So the maw, is also aA-module morphism and the proof is complete. a

&, (gs)(y)

The constructed class of GF-difference equations in factincludes all GF-differen-
ce equations.

THEOREM 2. Let & be any GF-difference equation. Thén~ T'(§ x V) for
someF[ H]-module of finite dimension ov&r
Proof. We know that¢ ~ I'(B) for some vector bundI®

B=J&, E).

yes

Let o be a transversal to the classegd, Theno (y)x = y and so the action of
G on the bundle gives us the lift(y): E, — E, and this map is an isomorphism
sinceG is a group. Defing = E,. ThenV is a finite-dimensionaH space. Lep
be the map

0B —> 8xV,
0, vy) > (v, 0 (0) " vy).

This map is clearly an isomorphism of vector bundles and it commutes witti the
action

gy, vy) = P(gy, gvy) = (gy, 0 (gy) ‘gv,)
= (gy,0(gy) tga (Mo () tvy) = gd(y, vy).
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Define a mapF, by

Fy:T(B) — T(8x V),
Fs(5)(3) = ¢(s(7).

F, is clearly bijective with inversé -1 and we also have

Fs(f)(0) = ¢(f)O) = d(fMsO)) = fF(M(s())
= fFO(Fp()) = (FFp() (),
Fs(g)(y) = ¢((g9)(») = d(g(s(g )
= g(@(s(g71»)) = g(Fyp()(g™ ) = (gFyp() ().

So F,, is aA-module morphism and the proof is complete. a

Let F[H] — finmodbe the category of modules ovEfH] with finite dimen-
sion overF with direct sum and tensor product and dual oledefined as is
usual in representation theory. For this category all main structural theorems for
the decomposition of modules apply so that all such modules have composition
series and can be written as a finite direct sum of indecomposables. We will now
proceed to show that the categ@¥FE andF[ H]—finmodare in fact equivalent as
categories. From a structural point of view, we will not distinguish between isomor-
phic objects and will therefore prove the equivalence by showing the isomorphism
of the Grothendieck algebra [A; for GFE and Ay for F[H] — finmod The
algebra structure iMg and Ay is the one induced from direct sum and tensor
product in the corresponding categories. In addition to the usual algebra structure,
we have a conjugation map induced from the dual in the categories. Define a map
onT:Ay — Ag by

T(vD) =[x V)],

where elements in the Grothendieck algebras are denoted by square brackets of
elements in the corresponding categories.

PROPOSITION 29.T is well defined.

Proof. Assume[V] = [U]. Then there exists &[H]-module isomorphism
F*:V — U.SoF" is anF-isomorphism and"* (hv) = hF*(v) forallh € H. De-
note the fiber ovey € § of the vector bundle®; = 8 x V. andB, = 8 x U by V,
andU,. For eachy € $ define amapF”: V, — U, by F?(v,) = g(F*(g 1v,)) €
U, whereg is any element irtG such thatgx = y. The family of mapg F”},c5 is
well defined because #; is another element i& such thatg;x = y theng, = gh
for someh € H and we have

g1(F*(g1Mv,) = (gh)(F*((gh) tvy)) = g(h(F*(h~ g 1v,)))
= g(F* (g 'v))).
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The family{ F} < satisfies all requirements in Proposition 24 and therefore deter-
mines aA-morphismg:T' (8§ x V) — I'($ x U). From the construction we observe
that each member of the famify”} 5 is alF[ H ]-module isomorphism. We there-
fore can conclude that the mapis an A-isomorphism so thatl'(§ x V)] =

[[(8 x U)]. O

PROPOSITION 30.T: Ay — Ag is a bijection.

Proof.Let[&] be any element id ;. From Theorem 2 we know that there exists
aV in F[H]- finmodsuch thaf&] = [['(§ x V)]. TheT([V]) = [&] so thatT
is surjective. Assume th& ([V]) = T([U]). This means that there existsda
module isomorphisng:T'(8 x V) — I'(§ x U). Lety € § be any point. Then
Proposition 7 show that there exist®[d@ ]-module isomorphism}«“g: V — U.But
then[V] = [U] andT is injective. O

Rewriting some of the results proved earlier we find thiat a structure pre-
serving map.

PROPOSITION 31.The magpr is structure preserving

Tr((Ul+[VD =1T(UD+T(VD,
T(Ullvh =rqQupr (v,
T(U1") = (T(UD".

This relation between the categori@8E andF[ H]— finmodgives us a way to
find all indecomposable equations of finite typeGdiE from the indecomposable
F[H]-modules of finite dimension ovét.

PROPOSITION 32. ¢ is a indecomposable GF-difference equation of finite type
if and only if& ~ I'(§ x V) whereV is a indecomposabl&[ H]-module of finite
dimension oveF.

Proof. Let & be indecomposable. We know th@atre I' (8 x V) for someF[H -
module V. Assume thal/ is decomposable so that ~ V; & V. Define&, =
'8 x Vy),8& =T(48 x V). Then

[E] = T(AVD =T(V1® V2]) =T (V1] + [V2])
= T([(ViD) + T([V2]) = [&1] + [&2] = [€1 © &2].
So thaté ~ &, ® &, and§& is decomposable. This is a contradiction so thas
indecomposable. Laf be indecomposable and of finite dimension déeDefine
& =T'(8xV). Theng is a GF-difference equation of finite type afid V]) = [&].
Assume thatt is decomposable. Theh ~ &, @ &,. We know that there exists

F[H]-modulesVy, V5 of finite dimension ovelr such thaig; ~ I'(8 x V), & ~
I'(8 x V). Then we have

TVl = [E1=[&1 @ &) = [&1] + [E2] = T([Va]) + T([V2D)
= T((Vil+[V2D) =T([V1 @ V2)).
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But T is injective so thafV] = [V1 @ V>]. ThenV = V; & V, andV is decompos-
able. This is a contradiction. O

For simple equations of finite type we have

PROPOSITION 33.¢ is a simple GF-difference equation of finite type if and only
if & ~T'(8 x V) whereV is a simpleF[ H]-module.

Proof. Let & be a simple GF-difference equation of finite type. We know that
& ~ T'(8 x V) for someF[H]-moduleV of finite dimension oveF. Assume that
V has a submodul®’. Let&’ = I'($ x V’). Then&’ is a submodule of so € is
not simple. This is a contradiction. Assume tf¥ats a simpleF[H]-module. Let
& =T (8 x V) and assume tha is not simple so that it has a submodéle But
then&’ ~ I'(8 x V'), whereV’ is a submodule o¥. This is a contradiction. O

The simpleF[ H]-modules are in general not easy to find. For the case when the
isotropy group is finite and the character of the field does not divide the order of
the groupH, the algebrd[H] is semisimple and the full power of the theory of
characters [8] can be applied. Even in the case when the charafteloet divide
the order of the group, the modular case, powerful tools are available.

5. The Projection Formula for GF-Difference Equations

The Frobenius projection formula [9] can be generalized to apply to GF-difference
equations when the isotropy group is finite and the underlying field. i his
formula greatly simplifies the solution process when it applies.éLet T'(B) be

any GF-difference equation wheie = J,4(y, E,) is a vector bundle oves.

We know that the fiber ovey € 4§ is alF[ H,]-module. Denote the character of this
module byy,. There is a relation between characters at different points.

PROPOSITION 34.x,(h,) = x¢ (ghyg™t) forally € 8,¢ € G andh, € H,.
Proof.Leth, € H, and letg € G. Thenh, = g~ 'gh,g ¢ = g7 (gh,g7 Vg
so we have

Xy (hy) = tr(hy) =tr(g H(ghyg ™) = tr(ghy,g ™) = xey(ghyg ™). O

Assume tha€’ ~ I'(B’) is a submodule o ~ I'(B). ThenB’ C B so that
E, CE,as aIE‘_—Iinear subspace for all € 8. Foreachy € 4 letllg (y): E, — E,
be the Frobenius map

dimE’

_ y -1
e (y)vy = | h;’ Xy(hy Yhyv,.
y y

Herey, is the character of thE[H]—moduIeE;.
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Eachh, is aF-linear map so clearlyl¢ (y) is alF-linear map for eacly € 4.
We also have

PROPOSITION 35. ITg/(y)(gv,-1,) = gng/(g_ly)(vgfly) forall y € 8 and
ge G.

Proof. Let ¢, = dimE,/|H,|. Thenc, = ¢, forall y,y’ € 8 sinceB =
U,es(y, Ey) is a vector bundle andl, ~ H, forall y, y" € 4. We have

e (@ vy) = ¢y Y Xy(hyHhy(gv,a,

hy€H,y

= ¢, Y xy(h g M hyg)vg,
hy€H,y

= cy8 ) a8 hyg)vga,

hyeHy

= ¢,8 Z Xy(gh;lg_l)hg—lyvg—ly

hg-1,€Hy-1,

= C4-1,8 Z Xg—ly(h;_lly)hg—lyvg—ly

hg_lyeHg_ly
= Me(g 0 (vg1y). O
Define a mafdls on & ~ I'(B) by
e (e)(y) = Mg (y)(e(y)).
Then we can conclude from the previous proposition that
COROLLARY 9. Tlg' € Hom,(&, &).

In generallle is not a projection o8’. Assume thaf = C. Theng = ), n;&;
where all&; are simpleA-modules. Then we have

PROPOSITION 36.11g, |6,~ = §;;id.

Proof.Ig,|s, € Homa (G, &;). Butthis means thdlg, |s; (v) € Home (G,
&;,) for all y € 4. From the Schur lemma we can conclude tha{ |s,; (y) =
)"ij (y)|dy But then

dim 6”,)\.” (y)

dim G; _ .
= Tr(Mg,ls, () = 2 xiy (B 3y () = 8;,dim Sy
|Hy| hyeH
y y
So we have\;;(y) = §;; and the proof is complete. O

COROLLARY 10. IIg, is a projection ofé onton;S; C €.
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The projection formula can be used to simplify the solution process for GF-
difference equations.

PROPOSITION 37.¢ is a solution of¢ of type& if and only if¢p = ITE (v) for
some solution) of T1g(&) of types.

Proof.Let v € Homy(n; 5;, &;). Thenl‘l”éi(w) =Y ollg, € HOMy (€, 6;)
and soll, (V) is a solution of¢ of type ;. Conversely, lep € Hom, (€, ;) be a
solution ofé of type &,. We know by the structure theorem tigat 3. n;&;. By
the Schurlemma|,;s;, = 0fori # j. Lety = ¢|,s,, theny € Homy (n;65;, &)
is a solution of1;&; of type&; and foranye =3 ¢;in & ~ . n;&; we have

M, (W) (e) = ¥ (Ilg,(e) = ¥ (&) = Pp(e;) = ¢(e). O

6. Coordinate Description of GF-Difference Equations

Let & be any GF-difference equation. The structuresa$ essentially determined
by the action ofG on thek-moduleé&. Let {¢;}"_, be ak-basis forg. Define a set
of matrices€® € Mat(n, k) by

ge; = Z 85-@]-.
J

The set of matrice$6¢},.; determines thé&-action oné with respect to the gives
k-basis. They formally play the same role as the connection symbols in differential
geometry and we will call thertihhe connection of the given GF-difference equation

In generalgss’ + £2€¢ so the relatiorg — &¢ is not a representation @f. We
have, however, the following result.

PROPOSITION 38.&%¢' = g(é‘g’)&‘g.
Proof.

(88)er = glgle) =g ) &fej = g(&)ge;
; ;

Zzg<8§>8fkek=Z<Zg<8§>8/f,->ef-
J k k

J

So we can conclude that

& = 2 _s(EES. 0
k

From this result, we immediately have

COROLLARY 11. (8¢)~1 = g(&¢7).
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6.1. COORDINATE DESCRIPTION OF TENSOR OPERATIONS

We will now investigate how the connections of GF-difference equations behave
when we perform the usual linear algebra operations on the corresponding mod-
ules.

Let€ andF be leftA-modules and lete; }i_;, { f;}}_, bek-bases fo€ and ¥ .
Let {&¢%},cc and{F ¢},cc be the connection of theé- dlfference equation§ and
F with respect to the given basis. With respect to direct sum we have the following
result

PROPOSITION 39.(€ @ ¥)¢ = &% @ F5.

Proof. A basis foré © ¥ is {(e;, 0), (0, f)};2] ;,_; and

g(ei,O)z(gei,O):<Z e/’ ) 28 (61,0)
g(0, f) = (0,gf) = (o,Zf,-j?’f./) Zf ©. ).
J

So we have proved th&€ @ F)8 = &% @ F3. a

We have a similar simple result for tihetensor product.

PROPOSITION 40.(€ ®; F)& = &% ®; F¢.
Proof. Since& and ¥ are freek-modules it follows thate; ®; f;}/; ;_; is a
k-basis foré ®; F. Furthermore, we have

g(ei ® fj) = gei @ &fj = (Z&ﬁe) Qk (ZJTjifs>
= Zzgﬁfﬁer O fs-
So

(EQ F)s. =E5F5. O

irjs irY js*

For Hom.(&, #) we have the following result.

PROPOSITION 41. Hop(€, ¥)¢ = F¢ @ ((€%)")~%.
Proof. Define elements;; € Hom(&, ) by

i I j =k,
5’1"(‘3"):{5 Iifj‘;ék.
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Then{s;;} is ak-basis for Hom(&, #). Furthermore, we have

(g8ij)(en) = 8(8j (g ten)) = g(éij<28;’;1€v)>
= ¢ &5 8(e) = (€5 )gfi = Zg(&g YEE S,

So we can conclude that
Hom, (€, )% = F¢ @ (g(6% ))'.

Butg&¢ = (6¢)~! and the proof is complete. O

Consider the special cage = Hom, (&, k). Clearly ¢ = k8 = 1 and the
previous proposition gives
COROLLARY 12. (§%)¢ = ((&2)")~L.

For symmetric and antisymmetric product there are no simple general formulas
for computing the connection ¢f'& andA™ €& in terms of the connection &f. For

notational simplicity we only consider the case= 2. Let{e;} be ak-basis for€.
Then{e;e;}i<; is ak-basis fors2¢. By definition, we have

Z Efe.d.
But then we have

gleje;) = geige; = (Zé’,kek)<28 zez) =) &iElee
kl

= Z Sligjglekel + Z Slké‘]lekel + Z Sigflekel
k>1 k<l
= Z €565 eer + Z(eg &% + 6565 )erer.
k<l
So forn = 2 we have
8 08 —

(S28) _ 8!/(8]/( k - l’
ikt — S,igg + 8"”8" k <.

We now considen?g. A k-basis fora%€ is {e; A e;}; ;. Furthermore, we have

gle; Nej) = gei Ngej = <Z€kek) A <Z gflel) = Z Sligflek Ae
! ki

8 o8 8 08
= Z gikgjlek Aer + Z gikgjlek N e
k<l k>1

= > (&35 — &i€i)e N
k<l
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We can conclude that
(%8, = €565 — &565,.
Assume that dipp€ = 2. Then we have
ot _ (s 8)
€1 €5
The moduleA?€ is one-dimensional ovet with basise; A e,. The matrix
(A28)¢ is the scalar
(A28)8 = &,€5, — €5,85, = det(&?).
It is evident that a similar result holds in general

PROPOSITION 42.Letdim; & = n. Then(A"§)8 = det(§%).

6.2. COORDINATE DESCRIPTION OF AMODULE MORPHISMS AND SOLUTIONS

Let & and ¥ be GF-difference equations withbasede;};_,, { f;}7, and connec-
tion {88} ,cq, {(F¥)eeq. Letp € HOomy (€, F) be aA-module morphism. Thea
is k-linear and has a matrig = (¢;;) with respect to the given bases orand # .

PROPOSITION 43.g(¢p)F¢ = &8¢ forall g € G.
Proof. The k-morphism¢ is a A-module morphism only i (ge) = g¢ (e) for
all g € G. But we have

d(ge;) = ¢(28,§ej) = Eipe) =D &L ¢k
J J J k
= > (ng}‘bjk)fk,
k J

g(Z(/)ijfj) = Zg(@/)gfj - Zg(d)ij) Z?ﬁ(fk
J J k
=y (Zg(qs,»j)?ji)fk
J

g (ei)

k

comparing sides we have ; g(¢;)) ¥, = >_; &5¢u foralli,kandg € G. O

It is clearly sufficient that the matri® satisfies the equation in the previous
proposition only on a set of generators forWe have defined solution of tys& to
a given GF-difference equatighasA-morphisms fron€ to ¥ . Using coordinates
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as in the previous proposition we see that solutions in our sense is a matrix of
functions on4 that solves a set of classical difference equations. This show that
we are not redefining the notion of solution and justifies our use of this term in our
theory.

7. Invariant Structures

Let &, &, F andF’ be GF-difference equations. Lete Hom, (&, ) andy €
Homy (&', ¥’) and define mapg ®; v, S"¢, A"¢ by

(¢ Qi Y)(e @ €)= p(e) Qr Y(e),
S"p(erez---e,) = pler)p(ez) -~ p(ey),
Ngpler Nez---Ney) =dler) Adlez) - A (en).

Then the maps are well defined and we have the following result whose proof
can be found in standard texts [7].

PROPOSITION 44.The maps ®; ¥, S"¢, A"¢ are well defined and

® ¥ € Homy (€ @i &', F @ F),
S"¢ € Homy(S" €, S"F),
AN'¢p € Homy (A€, A" F).

7.1. CONSERVED QUANTITIES

Let &, F be GF-difference equations and et e Hom, (€, F) be a solution

of & of type . Using ¢ we can generate morphisn$§¢: "¢ — S"¥ and
AN A"p — A'F. Let us first consider the symmetric case. Assume that there
exists an invariant element or structure= S"&. This means thage = « for all

g € G.ThenS"¢(x) € S"F and we have

8(8"p(a)) = §"Pp(ge) = "¢ (),

so thatS" ¢ («) is an invariant structure i§" ¥ . Let us consider the particular case
when¥ is the simple objec ~ k corresponding to the trivial action ¢f. Then
S$"G ~ k and we have the following result:

PROPOSITION 45.Let & be any GF-difference equation with an invariant struc-
turex € S"€. Letgp € Hom, (&, k) be any solution o€ of type& =~ k. Then

S"¢ (o) = constant

Proof. We know thatS” ¢ («) is an element itk and thatg S"¢ (o) = S"¢ («) for
all elements inG. But G acts transitivly s&" ¢ («) must be a constant functiom
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Note that in coordinates this gives us a symmetric polynomial invariant for the
equationg.

Let us next consider the antisymmetric case.d.&t A"€ be a invariant struc-
ture for€& so thatga = « forall g € G. Theng(A"¢(a)) = A"¢(a) SON P () iS
an invariant structure in" ¥ . This leads to the following proposition:

PROPOSITION 46.LetS be a GF-difference equation amd= dim, ¥ . Let& be
any GF-difference equation with invariant structure=s A"&. Then

AN'¢ (o) = constant
for any solutionp € Hom, (&€, &).

This gives us an antisymmetric polynomial invariant for the equa&ionn
a similar way conditions for other types of conservation laws can be specified
through invariants.

7.2. SELF-DUAL EQUATIONS

Let & be any GF-difference equation and &tbe the dual equation. Assume that
there is an invariant structutee S2¢* ora € A28*. Define a magF,: & — &' by

F,(e)() =ale, €.
We have the following result:

PROPOSITION 47.F, is a A-morphism.
Proof. It is evident thatF,(¢) € &* and thatF, is k-linear. Furthermore, we
have

F,(ge)(e) = a(ge, ) = gg Ha(ge, g(g ")) = g((g ) (e, g71¢))
= glale, g ') = g(Fu(e)(g 1)) = (gFu(e))(€). O

Let us now define the notion of self duality for GF-difference equations.
DEFINITION 8. A GF-difference equatioé is self-dual ifé ~ &* asA-modules.
Using the previous proposition we can now prove the following proposition:

PROPOSITION 48.Let & be a GF-difference equation and assuéhbas a non-
degenerate invariant structuge e S6* or o € A%26*. Theng is self-dual.

Proof. We have aAd-morphismF,: & — &*. This map is bijective itx is non-
degenerate becausg(e) = g if and only if a(e, ¢) = B(¢') for all ¢ and these
equations has one and only one solutégsincew is nondegenerate. a

This proposition show that any GF-difference equation with an invariant Euclid-
ean or symplectic structure is self-dual.
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7.3. SOLUTIONS AND COMPOSITION PRINCIPLES

Let &, ¥ be GF-difference equations and fete Hom, (&, ¥). Theng is a so-
lution of type F of & if g¢p = ¢ for all g € G. This means that a solution is a
invariant structure in Hog(&, ). Leta € S2(Hom,(€, F)*) &, Hom.(&, F) be

a invariant structure. Using the standard isomorphism HGMF') ~ F* Q. F/,

a defines a maff,: Hom, (&, ) ®, Hom(€, ) — Hom, (&, ) defined by

Tu(9. V) = (e, ).

For the mag,, we have the following result:

PROPOSITION 49. Let &, ¥ be a GF-difference equations and lgt ¢ <
Homy (€, ) be a pair of solutions of of type# . ThenT, (¢, ) € Homy (&, F)
is a solution of¢ of type¥F .

Proof. We haveggp = ¢ andgyr =  for all g € G since they are solutions.
But then we have

g(T,(d. V) = gla(g g, g g¥)) = () (g9, g¥)
= a(d’»lﬁ) :Ta((b’ W) a

So a GF-difference equaticdhhas a symmetric composition principle for solu-
tions of type F if there is an invariant structure i$2(Hom.(€, F)*) ®x
Hom (&€, ). In a similar way other types of composition principles will corre-
spond to the existense of certain invariants in the tensor algebra of the eggiation

8. Module Description of Classical Difference Equations

We will now develope the analog of differential operators on sections in vector
bundles. Many of the constructions introduced also applies in the case of equations
that are not of finite type. We will however in this section assume that all modules
that appears are GF-difference equations. This will, in particular, mead fteslf

must be a GF-difference equation. This can only happérisfa finite group. Since

G acts transitively or$ this means that we are considering the situation widse

a finite set.

8.1. THE MODULE OF DIFFERENCE OPERATORS

Let €,6" be A-modules. We will define an action of elements in the module
Hom (€, &) ®; A on &. For each elemenip, a) € Hom, (&, &) x A define a
mapu (¢, a): & — & by

n(g,a)(e) = ¢(ae).

PROPOSITION 50. 11(¢, a) is F-linear.
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Proof.
u(g,a)(e+e) =¢ale +e)) = ¢plae +ae’) = p(ae) + ¢(ae’)
= (¢, a)(e) + n(d, a)e),
u(g,a)(re) = ¢(a(re)) = ¢(r(ae)) =re(ae) =ru(p, a)(e). O

Let u be the mafe, a) — (¢, a). Then we have
PROPOSITION 51.  is k-bilinear.
Proof.
@+ ¢, a)e) = (¢ + ¢)(ae) = ¢(ae) + ¢'(ae)
= (@, a)(e) + n(@', a)e),
(@, a+ad)(e) =¢((a+a)e) =¢ae+a'e) = ¢(ae) + ¢(a'e)
= n(@, a)(e) + u(@,a’)(e),
u(fe,a)e) = (fo)ae) = f(d(ae)) = ¢(f(ae))
=¢((fa)e) = n(¢, fa)(e). O

So we have a well defined map Hom (€, &) ®, A — Homp(&, &) defined by
w(ep Q@ a) = ¢(ae).

PROPOSITION 52.The mapu is a A-module morphism.
Proof. By construction the map is ak-module morphism. Leg € G, then we
have
n(g(p @ a))(e) = n(gd O ga) = (g¢)(gae)
= g(p(g " (gae))) = g(¢(ae)) = g(uu(p  a)(e))
= (gu(e ® a))(e). O

The element® € Hom, (&, &) ®, A thus acts aF-linear maps from the module
& to the modules’. The action is defined by

0(e) = nd)(e).
We will now consider the coordinate expression for these mapgeliefe;} bek-
bases fo€ andé&’. Then{¢;;} is a basis for Hom(&, &) whereg;; (ex) = S,ke}. Let
6 € Hom, (€, &) ®; A ande € €. Using this basis we have= } ... 6;;,¢;; ® g
ande = ), fie;. This gives us

(Z 0ijgPij Ok g) (Z ek)
ijg k
= Zeijgff’ij (8 Z fkek) = Zgijgﬁbt’j(Zg(f)k Z gkglel>
ijg k ijg k !

=D 058 (iEidii(er) = D 08 (fuEESue =D Oijeg(FuEe).

ijklg ijklg ijkg



200 PER K. JAKOBSEN AND VALENTIN V. LYCHAGIN

The equatiord (¢) = 0 is therefore equivalent to a system of classical difference
equations

Z (ng./gglfig)fk =0.
k ig

In general any elements in the kernelofwill be trivial when considered as
F-linear maps.

EXAMPLE. Let$ = {x, y, z} be the cyclic graph of three elements with symme-
try group Ss. Let the group elements in cycle notation g = id, g1
=(1,3,2,2 = (1,23),g3 = (1,2),g4 = (2,3) andgs = (1, 3). Then the
elementy = ¢ ®; (go+ g1+ g2 — g3 — g4 — &5), ¢ # O, is trivial as aF-linear
map.

We therefore makes the following definition:

DEFINITION 9. Difn,(&, &) = (Hom, (&, &) ®, A)/keru is the module of
difference operators froré to &’.

8.2. COMPOSITION OF DIFFERENCE OPERATORS

Let &1, & andé&sz be A-modules. For each pair of elemelits g) € Hom, (&5, &3) x
A define a magFy: Homy (€1, &) x A — Hom (€1, &3) @ A by

F{(r,b) = ¢ o gy ® gb.

PROPOSITION 53.F§’ is middlek-linear for each(¢, g) € Hom, (&, &3) x A.
Proof.
FYW+y',b)=¢o@W+¥)) Qgb=do(gy+gy) & gh
= (pog¥ +¢ogy) ®gh
=¢ogy @gb+dogy ®gh
=FY(y.b) + F2 (Y. ),
F(,b+b)=¢ogy ®gb+b)=g¢ogy ®(gh+gh)
=¢ogy @ gb+dogy ®gh
= F{(yr,b) + FY (¥, b)),
F2(Y, fb) = ¢ o gV Qi g(fb) = d o gy @ g(f)gh
=8(f/)(@Pogy) Qrgb=¢o(g(f)(gp)) & gb
= ¢ o ((8(fIQV) kb= ¢ o ((§(fNV) R gb
=pog(fy) ®gb=F(fV.b). O
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So we have a well-defindetinear mapF;f’: Homy (&1, &)®rA — Hom, (81, 83)
Qi A defined by

F{(y @ b) = ¢ o gy @ gb.

We use this map to define a mapHom, (&5, &3) x A — Homg(Homy (&1, &) ®;
A, Hom (&1, &3) ® A) by

F(¢.a) =) a,F}
8

wherea =3}, a,g.

PROPOSITION 54. F is k-bilinear.
Proof. We have

FEP W @cb) = 9+ ) og¥ @ugh=(pogy +¢ ogy) i gb
= ¢pogy Qughb+ ¢ ogy Qgb
= F{(W & b)+ F{ (¥ i b).

Using this we find
Flp+¢' a)
_ZagF¢+¢ —Zag +Zag
= F(¢, a)+F(¢ a)

F(o, a+a)_2(ag+a)F¢—Zag —i—Za

= F(¢,a)+F(¢,a),
F(f¢p.a)f ®cb) =Y a,F/P(W @by = a,((f$) o g @i gb)
8 8

= a,(f($og¥) @i gh) =Y a,f($ogy @ gh)
8

8

= (fag))(¢o gy & gh). = F(¢p. fa)( & b). O
8

We can conclude that we have a well-defined nkaplom,(&;, &3) Q; A —
Homg (Hom, (&1, &) ®« A, Hom, (&1, &3) ®; A)

F(¢p @k a)(y @k b) =) aspo (gy) O gb.

8

Let u;,i = 1, 2, 3 be the action map. Then we have

PROPOSITION 55. F (6,)(01) € kerus if 81 € keru, or 6, € ker .
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Proof. Let 6, € Hom, (&1, &) Qi A, 0, € Hom (&, &3) ®; A. Thenf, =
> i Vi ®r by andb; = Y, ¢ ®y a;. But then we have

F(0)(01) = ) F(¢ @k a)(W; Rk b)) = ) aighi 0 gVr; Ok gb;.
ij ijg
Using this we find
1a(F (02)(01)(e1) = ) aig(¢ 0 g¥r;)(gbje)
ijg
=Y aigi(g¥;(bjen))

ijg

= aid; (g(Z v <bjel>)) =) ai$i(g1a(61)(en))
ig J ig

=> <¢,»(Za,-gul(91)<el))) = i(aipa(6r)(er)
i g i

= u2(02)(n1(01)(e1)) =0
if 6, € keruq or 6, € ker . O

The mapF therefore restricts to the modules of difference operators and we
have a map: Difn,(&,, &3) x Difn,(&,, ) — Difn. (&1, &) defined by

c([62], [61]) = [F(62)(61)].
We use the map to define composition of difference operators.

DEFINITION 10. LetA; € Difn,(&1, &) and A, € Difn,(&,, &) be difference
operators. Define the compositidty o A1 € Difn, (&1, &3) by

Az o Al = C(Az, Al).

8.3. MODULES CORRESPONDING TO DIFFERENCE OPERATORS

By construction Difp(k, k) is a left A-module. Letu: A — Homg(k, k) be the
action map ofA. Then, by definition, Difp(k, k) = A/keru. For any element
a € AletA, = [id ®; a] € Difn,(k, k) be the corresponding difference operator.
Then we have

PROPOSITION 56.Let A € Difn, (&, k). ThenaA = A, o A.
Proof. We only need to consider a generating set for Qigh k). Let A =
[ ®; b]. Then we have

alA = [a(a & b)] = [Zagg(a ®x b)} = [Zag(ga ®x gb)}
8 8
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= [Z%Fg“’w ®% b)] = [F(id ® a)(e ® )]
8
= c(lid @ al. [0 @ b)) = A0 A, O

Let A e Difn, (&1, &). Define a ma?: Difn.(&, k) — Difn, (&1, k) by
#2(V)=VoA.
Then we have

PROPOSITION 57.¢% is a left A-module morphism.
Proof.

d*@V) = @V)oA=(A,o0V)oA=A,0(VoA)=ap”(V). O

DEFINITION 11. LetA e Difn,(&1, &). The GF-difference equation corre-
sponding toA is &, = Cokerg?.

8.4. CLASSICAL SOLUTIONS

Let A € Difn,(&1, &) be a difference operator. Define the set of classical solutions
C(A) of A by

DEFINITION 12. C(A) = {e € & | A(e) = 0}.

Let g ~ k be the simple module corresponding to trivial actiorGofFor each
e € C(A) define a map,: Ex — S by ¢.([A]) = A(e).

PROPOSITION 58.¢, is well defined for each € C(A).
Proof.Assume thafr] = [A']. Theni—1' = ¢* (V) for someV e Difn,. (&>, k).
But then we have

G ([A]) = A(e) = A'(e) + ™ (V)(e)

= A(e) + V(ga(e) = 1 (e). O
PROPOSITION 59.¢, € Hom, (€A, Sp).
Proof.
de(a[r]) = ¢.([ar]) = (As o A)(e) = Ay(A(e))

= (id ®c a)(A(e)) = ar(e) = ag.([1]). O

Now define a mag: C(A) — Hom, (A, &p) by ¢ (e) = ¢.. Then we have

PROPOSITION 60.¢: C(A) — ¢(C(A)) C Hom,(&Ea, Gp) is aisomorphism of
F-vector spaces.
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Proof. Assume thatp(e¢) = ¢(¢’). Then we have thap.([A]) = ¢ ([A]) SO
thati(e — ¢’) = O for all A € Difn, (&1, k). Let {¢;} be a basis fo€; and{e;} the
dual basis. Thea — ¢’ = ), fie;, Aj = [} @« 1] € Difn..(&1, k) and we have
fi= e;’f(zi fier) = Aj(e —€’) = 0. Soe = ¢ and¢ is injective. Furthermore, we
haveg (re)([A]) = A(re) = ri(e) = r¢(e)([A]) s0¢ is F-linear. O

The previous proposition show that any classical solution of a difference oper-
ator A is contained in the set of solutions &f of type So.

8.5. MODULES CORRESPONDING TO SYSTEMS OF DIFFERENCE EQUATIONS

Any system of difference equations on the spéds of the form

n

Z(ZC£gg)fk =0 forj=1,...,m.

k=1 8

The given system of difference equations will only fix thenodule structure of
the A-modulesé&; and &,. It will not fix the A-module structure or the operator
A e Difn,(&1, &,) separately but will fix a relation between themodule structure

on &; and the operatoA. The space of solutions of the given system of difference
equations must be equal @A) Using basege;} and{ f;} for & andé,, we have
A=), 0ijs®ij ® gl and the relation is

g8 _ J
E :Qijggki = Cig»
i

where&¢ is the connection for the action of g @&. This means that in general
we have many different module&s, corresponding to a given system of difference
equations. However, for all these modu&s we haveC (A) € Hom, (€, Sg) SO
they all contain the set of solutions of the given system of difference equations.
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