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1 History

It was in the year 1834 that a naval architect John Scott Russell made an
observation, which much later gave rise to important developments in math-
ematics and physics. He was on horseback, riding along the Union Canal
between Edinburgh and Glasgow, and he saw a boat rapidly drawn by a pair
of horses, which however stopped suddenly and a “rounded, smooth and well
defined heap of water” loosened from its prow, “continuing its course along
the channel apparently without change of form and diminition of speed”,
rolling forward “at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to a foot and a half in
height”, [1]. John Scott Russell performed a large number of experiments in
wave tanks, schematized below,[2].



Our naval architect obtained the following results.

i) There is an essential difference between the two instances, whether the
elevation of the water to the left of the slide is higher or lower than
that to the right of the slide: one or more “heaps” of water, (a) and
(b), or an oscillatory wave, (c).

(a) and (b) are examples of solitary waves, called later solitons.

ii) it is possible that a solitary wave splits into a number of smaller solitary
waves; this depends on the height of the excitation.

iii) Solitary waves propagate without change of form and without damping,
worth mentioning. The velocity of propagation is proportional to its
amplitude.

iv) When two solitons propagate from left to right and the larger soliton is
behind the smaller one, then the latter will be overtaken by the former.
After the collison both emerge without change of form, only their po-
sition is interchanged. They behave like colliding marbles exchanging
their momentum.

v) A simple empirical formula was obtained for the speed of propagation
of the solitary wave.

These results were debated and the question of the possible existence of this
type of waves was discussed. Airy came to the conclusion that Scott Russel’s
wave could not exist and Stokes used the right equation, but drew the wrong
conclusion. However, Boussinesq and Lord Rayleigh gave in 1871 respectively
1876 the mathematical proof of the existence of the solitary wave, an “a priori
demonstration a posteriori”. Nevertheless, the mathematical community, in
so far as interested in the solitary wave, dit not agree unanimously upon
the results of Boussinesq and Lord Rayleigh and this was for Korteweg and
his student de Vries a motive to investigate again the existence of the wave.
They published their results in 1895 in the Philosophical Magazine in a paper
titled “On the Change of Form of Long Waves advancing in a Rectangular
Canal and on a New Type of Long Stationary Waves”, [3]. For reasons to be
explained below this paper is nowadays on the top of the hit parade of the
citation index. Korteweg and de Vries deduced in this paper their equation
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where £ + n(z,t) represents the elevation of the water surface above the
bottom of the canal at time t and at a horizontal distance x from the origin
of coordinates, g is the constant of gravity, a a small constant in connection
with the velocity of the uniform motion given to the liquid and o is a constant
related to as well the capillary tension at the surface as to the fluid density.
This equation is valid for waves with an amplitude small and with a wave
length large in comparison with the depth £ of the canal.

(From the evaluation of 7(z,t), being the height of the water surface
above equilibrium, follows their conclusion that in a frictionless liquid there
may exist absolutely stationary waves, [3].

The K.d.V.-equation is after some scaling usually written in the more at-
tractable form

— —bu— + =0, (1)

where u(z,t) denotes the form of the wave. This equation has a nonlinear
term GUg—;‘ accounting for the breaking of the wave — the higher a wave par-
ticle, the larger its velocity — and a dispersion term % accounting for the
broadening of the wave profile. These two effects balance each other and
give rise to the stable stationary behaviour. Substitution of a travelling wave
solution u(z,t) = f(x — ct) leads to periodic solutions; f appears to become
the square of the elliptic function cn and that is why these travelling waves
are called cnoidal waves.

Whenever the modulus of this elliptic function approaches 1 the soliton so-
lution — a“heap of water” emerges, viz.

u(z,t) = —a sech2{\/g(z — 2at)}, (2)

However, when the modulus approaches zero one gets the sinusoidal wave,
the one derived by Stokes. After the publication of the paper by Korteweg
and de Vries the stationary wave was not considered as an important topic
and it remained so untill about 1965, when Zabusky and Kruskal reported
on waves in a collisionless plasma and the recurrence of initial states, [4].
Their point of departure was the K.d.V.-equation and besides the recurrence
of the initial state of the system their numerical calculations confirmed also
the experimental observations of Scott Russell.

In the same time there remained the still unsolved problem of Fermi, Pasta



and Ulam concerning the finite heat conductivity in solids. In order to obtain
some insight into this problem the solid was modelled by a one-dimensional
string of particles of equal mass and connected with each other by springs.
Excitation of the string sets the particles into motion and the subsequent
behaviour of these particles is described by a set of ordinary differential equa-
tions depending on the interaction force of the springs between neighbouring
particles. To obtain statistical equilibrium and finite thermal conductivity
Fermi expected that the spring force should be nonlinear, as was already
suggested by Debije in 1914. However, the numerical results showed that the
initial state of the string returned again after some time and this was against
all physical expectations [5].

This recurrence of initial states is similar as that discovered later by Zabusky
and Kruskal.

Toda analyzed in about 1967 the Fermi-Pasta-Ulam string using an expo-
nential spring potential; he obtained periodic solutions in the form of elliptic
functions for the periodic Toda chain and solitary wave solutions for the in-
finite chain; the latter involves again the sech? function (with discrete space
variable); they have all the soliton properties as discovered by Scott Russell,
6].

This is not a miracle because the equations for the discrete Toda chain may
be considered as a spatial discretization of the K.d.V.-equation.

2 The Korteweg - de Vries Equation as a
Hamilton System

The Toda-chain with a finite number N of particles provides an example of
a classical finite dimensional Hamilton system of ordinary differential equa-
tions. Toda showed that this system has N independent conserved quantities,
mutually in involution and it is therefore according to the Liouville-Arnold
theorem integrable. Since this system is a discretization of the K.d.V.-
equation, an analysis of the latter calls for a translation of the “classical”
Hamilton theory for a system of ordinary differential equations to a Hamil-
ton theory for a partial differential equation such as the K.d.V.-equation.
This is possible by replacing the Hamilton function H by a Hamilton func-
tional H[u, us, Ugzs, . ..], the gradient VH by the variational derivative §,H
and the skew symmetric structure matrix by a skew adjoint differential op-



erator, which may depend on the dependent variable u and its z-derivatives.
The following important results have been obtained. The K.d.V.-equation
(m = 1) can be embedded in a hierarchy of evolution equations which may
be expressed in the Hamilton representation
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where the infinite number of functionals {Ha,11}52; are conserved for each
flow 323 - Moreover, by a second Hamilton representation of this hierarchy
it is easﬁy deduced that the conserved functionals are in involution with re-
spect to an appropriately defined Poisson bracket and hence the evolutionary

vector fields {#ﬁl}fﬁ:l commute. An important operator is the recursion

operator R mapping the symmetry atza_l on 3t26+1’ [7].
The K.d.V. hierarchy is an example of an “integrable” system of evolution
equations and this hierarchy is not the only one. A list of 39 different “inte-

grable” systems together with their recursion operators is presented in [8].

3 Spectral Properties

All solutions u(z, ta,,1) of any K.d.V.-equation out of the hierarchy with
u(z,ton41) — 0 for |z| — oo have the property that the discrete Lo-spectrum

{p;j}]_, of the Schréodinger operator
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a2 w(z, tan1),
is independent of ¢s,,1. The normalization coefficients of the eigenfunctions
{v; ‘]-]:1, such that ||¢;|| = 1 are denoted by c¢;(t2,+1) and depend on g, ;.
Besides the discrete spectrum there is the continuous spectrum with gener-
alized eigenfunctions fi(z,k) ~ e*® for £ — +oo. The relation

fi(z,=k) = T(k)f (2, k) = R(k, tan11) f+ (2, k)

defines the transmission coefficient T'(k), which is independent of 5,1, and
the reflection coefficient R(k,ts,,1). An expansion of {T'(k)}~! into powers
of k7! yields immediately the infinite number of conservation laws.

The potential u(z,ts,1) yields the spectral set

S(tons1) = {A Y1, {ci(tans1) Y1, T (), R(k, t2ns1)], but also conversely this
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set S(tony1) determines the potential u(z,to,41). This important property
and the time evolution of S(t2,,1) provides a method to solve initial value
problems. The initial value problem for the K.d.V.-equation with u(z,0) =
—N(N + 1)sech’z, N =1,2,3,..., yields N eigenvalues {); = 52 §V21 and
R(k,t3) = 0; the solution is a so-called N-soliton consisting of N separated
solitary waves with amplitudes {—25};_; and velocities {4j}}_;. The over-
taking of slow solitons by faster solitons without change of form is now easily
verified by considering the wave travelling from z = —oo to x = +o00; there
appears only a phase shift for every solitary wave, but the sum of all phase
shifts does not change, [9].

A new solution can be constructed from a known solution by adding one
or more eigenvalues to those corresponding with the known solution. This
proces generates a so-called Backlund transformation, named after Backlund,
who applied already in 1880 a related transformation in his theory of surfaces
of constant negative curvature, [9]. A great step forward was made by Sato,
taking together all time variables and introducing the 7-function,

2
Q(t]_, t3, t5 .. ) = a3 lOg’T(tl, t3, t5, .. .),
oty
where the variable z has been replaced by t; and where the function g satisfies
all equations from the K.d.V. hierarchy.
The operators

X0 = o [ S0 o [ S L 2

2n+1 8t2n+1

produce new solutions from known solutions, satisfying the whole K.d.V.
hierarchy by
Toew = {A(k) X (k) + B(k) X (—k)}To1a-

The above mentioned N soliton-solution is obtained by applying this operator
consecutively to Toq = 1 with k& = i\/g_)j, j=1,2,...N. The operators X (k)
are known as vertex operators and they form a representation of the infinite
dimensional Lie-algebra Agl), the one-dimensional central extension of the
loop algebra s£(2,C) ® C(t,t!). This connection of soliton equations and
the representation of infinite Lie-algebras gives a deep understanding of the
rich mathematical structure behind families of nonlinear equations of soliton
type. For literature concerning this section we refer the reader to [9]-[13].



As already mentioned in section 2 there exist many other evolution equations
with solutions of soliton type. The most well-known are the sine-Gordon
equation

e 9%y )
— — — =sin
ou?  Ov? ?
and the nonlinear Schrodinger equation
Oy 0% 9
—_— - - =0.
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The first one appeared in the work of Backlund; it is the equation for the
angle ¢ between the asymptotic directions on a surface of constant negative
curvature with u and v orthogonal coordinates in the directions of minimal
and maximal curvature. The nonlinear Schrodinger equation is the equation
for the envelope of nonlinear waves satisfying

o Py
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where the right-hand side is an approximation of sinp fora =1, g = % and
© small.

Besides these continuous equations also their discrete counterparts, so-called
lattice equations, should be noted. Research on e.g. magnetic spin chains
led physicists to the study of the semi-discrete and fully discrete versions of
the soliton equations, also in three and four dimensions. There is, of course,
much similarity and the field is of great importance in theoretical physics.
The reader is referred to [14].

4 Solitons in Physics and Engineering

Already in an early phase of the development of the theory there were many
applications in physics and engineering. As to the K.d.V.-equation we have
already mentioned surface waves, magnetohydrodynamic waves in a plasma,
and the conduction of heat, but there are many many more applications. An
interesting one is the occurrence of internal large solitons, very deep in the
Andaman sea between Thailand and Sumatra and in the Sulu sea between
the Philipines and Kalimantan; these solitons brought much dammage to oil
platforms located in these regions, [11], [15].

Another concerns pressure waves in liquid-gas bubbles mixtures, causing
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dammage to ship propellers, [15].

Finally, we mention the stability of the vortex in the red spot of Jupiter
[15]. The sine-Gordon equation has been used in several models: the colli-
sion of elementary particles (Perring and Skyrme in 1962!), the propagation
of a crystal dislocation and the propagation of magnetic flux in a Josephson-
junction, a device for information processing systems [2].

The nonlinear Schrodinger equation has been applied in a model for the prop-
agation of optical solitons in glasfibers; this is investigated by Hasegawa [15]
and his theory is, due to the stability and the controllability of the optical
pulses, of great significance in the theory of high speed communication. Mol-
lenauer c.s. succeeded in transporting 20.10° soliton pulses per second over
a distance of 14.000 km, [15].

The interested reader may consult a long list of many early applications in

16].

5 Recent Developments

This review is intended only to provide an impression of one of the great
discoveries in nonlinear analysis, starting with the K.d.V.-equation. For de-
velopments, more recent than those reported above, we mention some sources
giving new results. The processes of scattering and inverse scattering are gen-
eralized in [17] to the case of several space dimensions; in this reference is
also discussed the connection between complete integrability of partial dif-
ferential equations and the Painlevé equations.

Another source of literature is reference [18], where the impact of soliton the-
ory on many areas of mathematics has been highlighted, such as in nonlinear
analysis, algebraic structures, geometry, knot and braid theory, and quantum
and statistical mechanics.

Finally, we mention reference [15], the proceedings of the International Sym-
posium in Amsterdam to commemorate the centennial of the equation by
and named after Korteweg and de Vries.

Literature

1. J. Scott Russel; Report on Waves, Report on the fourteenth meeting
of the British Association Adv. Sci., pp 311-390, 57 plates, 1845.



10.

11.

12.

13.

M. Remoissenet; Waves Called Solitons, Springer, Berlin, 1994.

D.J. Korteweg and G. de Vries; On the Change of Form of Long Waves
Advancing in a Rectangular Canal and on a New Type of Long Sta-
tionary Waves. Philosophical Magazine, 39, pp 422-443, 1895.

N.J. Zabusky and M.D. Kruskal; Interaction of “solitons” in a colli-
sionless plasma and the recurrence of initial states. Phys. Rev. Lett.,
15, pp 240-243, 1965.

E. Fermi, J.R. Pasta and S.M. Ulam; Studies of nonlinear problems,
Los Alamos Sci. Lab. Rep., LA-1940, 1955.

M. Toda; Theory of Nonlinear Lattices, 2°¢ enlarged edition, Springer,
Berlin, 1989.

. P.J. Olver; Application of Lie Groups to Differential Equations, 2°¢

edition, Springer, Berlin, 1993.

Jing Ping Wang; Symmetries and Conservation Laws of Evolution
Equations, Thomas Stieltjes Institute for Mathematics, Free Univer-
sity, Amsterdam, 1998.

E. van Groesen and E.M. de Jager; Mathematical Structures in Contin-
uous Dynamical Systems. Studies in Mathematical Physics, 6, North-
Holland Publ. Cy., Amsterdam, 1994.

A.C. Newell; Solitons in Mathematics and Physics, Regional Conference
Series in Appl. Math., STAM, Philadelphia, 1985.

A.P. Fordy, (Editor); Soliton Theory: a survey of results. Nonlinear
Science, Theory and Applications, Manchester University Press, 1990.

V.G. Kagc; Inifinite-dimensional Lie algebras, third ed., Cambridge Uni-
versity Press, 1990.

E.A. de Kerf, G.G.A. Bauerle, A.P.E. ten Kroode; Lie Algebras, Finite
and Infinite Dimensional Lie Algebras and Applications in Physics,
Part 2, Chs 25-27. Studies in Math. Physics, 7, North-Holland Publ.
Cy, Amsterdam, 1997.



14.

15.

16.

17.

18.

G.R.W. Quispel, F.W. Nijhoff, J.H.H. Perk, (eds); Statistical Mechan-
ics, Soliton Theory, and Nonlinear Dynamics, in honour of H.W. Capel,
Physica A, Statistical and Theoretical Physics, 228, Ns 1-4, 1996.

M. Hazewinkel, H-W. Capel and E.M. de Jager, (eds); Proceedings of
the International Symposium K.d.V.’95, Kluwer Academic Publishers,
1995.

A.C. Scott, F.Y.F. Chu, D.W. McLaughlin; The Soliton: A New Con-
cept in Applied Science, Proceedings of the .LE.E.E., 61, no 10, 1973.

M.J. Ablowitz and P.A. Clarkson; Solitons, Nonlinear Evolution Equa-
tions and Inverse Scattering; London Mathematical Society Lecture
Note Series, 149, Cambridge University Press, 1991.

A.S. Fokas, V.E. Zakharov, (eds); Important Developments in Soliton
Theory; Springer Series in Nonlinear Dynamics; Springer, Berlin, 1993.

10



