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Abstract. In this paper a new formalism based on exterior differential systems is derived for
perfect-fluid spacetimes endowed with an Abelian orthogonally tranditivgroup of motions
acting on spacelike surfaces. This formulation allows simplifications of Einstein equations and
it can be applied for different purposes. As an example a singularity-free metric is rederived in
this framework. A sufficient condition for a diagonal metric to be geodesically complete is also
provided.

PACS numbers: 0420J, 0420D, 9880H

1. Introduction

Perfect-fluid spacetimes endowed with an Abeliangroup of isometries have been used for
describing many different physical situations. When the group is acting on timelike surfaces,
they have been used extensively for describing axisymmetric compact objects in stationary
rotation (cf [1] for a review).

On the other hand, if the group acts on spacelike surfaces, the applications are different
[2]. A classification of these spacetimes is given in [3]. They can model spacetimes where
two plane gravitational waves are colliding (cf [4] for a review), but they are also useful for
describing inhomogeneous cosmologies (cf [5, 6] for a review) in an attempt to cope with
the inhomogeneity present in our Universe. An interesting featut@,afosmologies is the
possibility of avoiding initial and final singularities (cf [1, 7, 8] for a review) and therefore
physics will be valid in the whole spacetime. These models satisfy the causality and energy
conditions and just fail to contain trapped sets, according to the well known singularity theorems
[9,10].

In this paper we shall try to cope with two features concerning non-singular perfect-fluid
orthogonally transitiveG, cosmological models: first of all one has to devise a method for
obtaining exact models and then one should check whether the solution is singular or not. Both
of these will be the aim of this paper.

A new tetrad formalism based on differential forms will be introduced for deriving results
about spatially inhomogeneous spacetimes. It will be shown that the methods initially devised
for stationary axially symmetric spacetimes [11] are also useful when the group of motions
acts on spacelike surfaces. The 1-forms that are used in this formalism will be shown to have
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kinematical meaning when considering spatial congruences. If the congruence corresponds
to an invariantly defined quantity (for instance, in the cylindrical case, the axial Killing), the
kinematical properties can be used to classify the solutions. Also, using the remaining gauge
freedom, the tetrad can be adapted to the congruence so that the exterior system can be written
in terms of 1-forms with an invariant and physical interpretation. Moreover, when one tries to
obtain an exact model, itis generally useful to impose certain assumptions on these kinematical
quantities (now with an invariant interpretation). As the approach is grounded on an exterior
differential system, the coordinates can be chosen according to the ansatz that is performed,
instead of fixing them from the beginning.

Assuming one has obtained a new cosmological model, it usually takes lengthy
calculations to determine whether there are singularities in it. The question is settled if the
curvature invariants are already singular, but if they are regular in the whole spacetime, there
is a priori no reason to assume that every geodesic is complete. In fact, there are cosmologies
with regular curvature invariants that are incomplete and therefore singular, despite no quantity
becoming unboundedly large [9]. Therefore we deem it convenient to have a general result
that may simplify the task of analysing the issue of geodesic completeness. This matter will
be addressed for the diagonal case in this paper.

Let us describe in more detail the contents of the paper. In section 2 spacelike congruences
in a general spacetime will be studied in order to achieve an interpretation for the mathematical
quantities that will appear in the formalism. In the stationary axisymmetric case timelike
congruences were considered and their tangent field could be considered as a velocity and
therefore the interpretation was straightforward. Another way of interpreting spacelike
congruences is due to Greenberg [12], but in this paper a different approach will be followed.
In section 3 the formalism is written in terms of an exterior system of equations that include
Cartan and Einstein field equations as well as their integrability conditions. The set of equations
will be simplified taking advantage of the remaining gauge freedom. As an example of how
the exterior system can be used for obtaining exact solutions the singularity-free model in [13]
will be obtained within the formalism in section 4. The question of geodesic completeness of
diagonal inhomogeneous cosmological models will be addressed in section 5 and a theorem
will be derived as a sufficient condition for a model to be non-singular. This condition will
be shown to be weak enough to comprise all known diagonal singularity-free inhomogeneous
cosmological models in section 6.

2. Spacelike congruences

The kinematical properties of a timelike congruence can be defined by decomposing the
covariant derivative of the timelike vector field defined by the congruence [14, 15]. An analysis
of the spacelike congruences has been made by Greenberg [12]. In his analysis Greenberg
introduces an observer moving with a 4-velocity. Projecting the covariant derivative of
the vector field defined by the congruence orthogonaltde obtains ‘spacelike’ quantities
characterizing the congruence. In this section we will follow a different approach to study the
kinematical properties of a spacelike congruence. We will use a straightforward translation of
the timelike congruence analysis. In this way we obtain kinematical properties not necessarily
with a spacelike character, but we will find that these kinematical quantities can be used in
a natural way to formulate a simplified differential form approach for spacetimes with two
commuting spacelike Killing vectors.

Let us consider a congruence of spacelike curves,

x¥ =x*(y4, 1), a=123,
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where the three constant$ = ¢* specify a particular curve andis the arc length. We can
define a unit tangent vector,

dx?
ﬂ = — a = 1.
n ar ngn
We will assume in the following that the congruence defines, at least locally, a vector field

nf (x*).

( L(Z.t us take a particular curvg) in the congruence, specified by three constant$,
and a pointp in the curve(C) characterized by an arc length Now consider another curve
in the congruencéC*) near(C) and specified by constangé* = y¢ + §y* and a pointp* in
(C*) with the same arc lengthr) asp. Then, up to first order, we have,

dx*

= aya

5x% 8y,

which, in general, is not orthogonal #¥. In order to obtain a vector orthogonal &8 we
introduce the projector tensor

Py = gg —n"ng,
such thatPgn” = 0. Then we can define

§ 1 x% = Pg‘&c‘S (8lx“na = 0).

Note thats | x* can be spacelike, timelike or null.

The rate of change of the connecting vector of two spacelike curves of the congruences
allows us to characterize locally the congruence. First, let us consider the change in the
‘modulus’. Assumes, x“ is timelike or spacelike, then,

€(81)? = gopd xS, xP, € = +1.
The rate of change @f along the congruence is

61y s x%8,xP 1
=S LYY 4 T, @

sl 8l 3
where we define,

o =n", (2)
Ny = no,;/g;n/3 3)
Sup = Na:p) — Nahp) — 5P Pog. (4)

wheresS is a trace-free symmetric tensor.
If we define the unitary connecting vector,

8an
sl
Equation (1) can be written as follows:

@
8l

o

1
= eSype”e’ + édl (5)
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On the other hand, for the rate of change®fve find,
Pl (e*) = (W + 5P, — eS,nete’sh)e” (6)
where
Wap = nla:p) = altp)-
If ¢* is an eigenvector of,,, (S*e” = Ae*) then the previous equations reduce to
Pl (e*) = Whe”. @)

It is interesting to note that if we know,, S, Wus, and® in a given point we can
reconstruct the congruence locally using that

Ny p = ilan,g + Waﬁ + Saﬂ + %CDPaﬁ.
Some important properties are
Paﬁnﬁ =0, ngn® =0, Waﬁnﬂ =0= Saﬂnﬂ.

In order to have a better characterization of the spacelike congruence we can study the
eigenvalue problem for the trace-free symmetric three-dimensional tépgdhat can be
formulated as follows:

(Sup — M Pap)v? = 0.

As the quadratic forms defined I8yg and P4 are not definite forms, a standard analysis
gives us the following different situations:

e A1, Ap andiz = —A1 — A, are three different real numbers. In this case we have one
timelike eigenvector and two spacelike eigenvectors. They are mutually orthogonal.

e A1, A1 are complex conjugates and = —2Re(x1). In this case we have two complex
conjugate eigenvectors; andm, corresponding to the complex eigenvalues and a real
spacelike eigenvector orthogonali#oandm. The complex eigenvector can be written
asm = a +ib, wherea is timelike andb spacelike and they are mutually orthogonal and
normalized to-; and 3, respectively.

e A1 = Ay # 0, A3 = —2A; are real numbers. In this case there is a null eigenvector
corresponding to the double eigenvalue and one spacelike eigenvector orthogonal to the
plane containing the null eigenvector.

e 11 = A2 = A3 = 0. In this case there is a null eigenvector corresponding to the triple
eigenvalue.

The interpretation of the kinematical properties of a spacelike congruence depends on the
physical interpretation of the vector fieldind the character of the eigenvalues and eigenvectors
of Ses. Assume, for instance, that the three eigenvalues are real and different. Consequently,
the three eigenvectors are mutually orthogonal and there is one timelike and two spacelike
eigenvectors. In order to give an interpretation in this case, let us consider a curve (C) in
the congruence and a point (P) in it corresponding te 5. Assume that in the spacelike
subspace in the orthogonal hyperspace to (C) in (P) we have a disc. Orthogonal to it there is a
unit timelike vector. If we imagine different curves of the congruences crossing the border of
the disc and the final point of the timelike vector, going fregto o + 87, the disc changes to
an ellipse and the direction and modulus of the timelike vector also changes. These changes
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are determined by the kinematical variables of the congrueb¢cés; andW,g, and the final
effect can be decomposed in the following two steps.

Step 1 ¢ and S,z effects). The influence ofd andS,s on the disc and timelike vector can
be understood using equation (5)tfis an eigenvector af,z and verifiesS,ge? = Ae® the
equation reduces to

81y 1

53

Hence, the two directions indicated by the two spacelike eigenvectors will transform to the
principal directions of the ellipse and the length of the principal axis will be obtained from
the previous equation. The new direction of the timelike vector will be given by the direction
of the timelike eigenvector and the modulus will be obtained from the previous equation. In
this way we can think of the spacelike congruence as generating a ‘virtual tube flux’ where
the transverse section is given by the ellipse, the velocity of the fluid by the timelike unit
eigenvector off,z and its modulus can be interpreted as the density, whose changes are given
by the previous equation (note that, in principle, the virtual fluid has nothing to do with any
real perfect fluid; the physical interpretation of such a virtual fluid depends on the physical
interpretation of the congruence).

Step 2 ¥, effects). Finally, the effect ofW,s on the ‘tube flux’ is to ‘bend and twist the
tube’. This result follows from equation (7).

The only remaining kinematical variable ig but this represents the curvature of the
selected curve in the congruence.

In the case whet,s has degenerate or complex eigenvalues the interpretation is not as
straightforward. We will study those cases in the particular situation when the metric admits
two Killing vectors.

2.1. Kinematical variables in a tetrad formalism
Using a tetrad adapted tosuch that? = n,

ds? = —0°®0°+0' @01 +0°2 0% +0° ® 63,
the covariant derivative of takes the following form:

Na;b = —V2abs

wherey®,. = —egje;egi (where{e,} is the orthonormal frame dual @“}) are the Ricci
rotation coefficients. The kinematical properties of the congruenge@dd as follows:
n = y0220° + y120" + y320° (8)
D = —y020t Y121 — V233 9)
Wr = (yoz1 — ¥1200° A 01 + (yoo3+ 12300° A 03 + (123 + 72300 A 63 (10)
St = (%v020+ 3y121 — %V233)90 ®0°+ (3¥020+ 3121+ $7233)0" @ 0°

+(3020 — 37121 — 57233)0° ® 0 + (yo21 + 1200° ®, 6"

+(Yo23 — 723000° @y 0% + (y123 — ¥231)0" ®; 6°, (11)

where®; is the symmetric part of the tensor product, thati®, w = v Q w + w ® v)/2.
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3. Tetrad formalism for a spacetime endowed with two spacelike orthogonally transitive
commuting Killing vectors

If a spacetime has two spacelike Killing vectdis n} defining an Abelian orthogonally
transitiveG, group of motions we can choose the tetrad for the spacithe*, 62, 63},

ds? = -0°®60°+0' @0 +02®60%+60°® 63,
such tha®? ande® are in lin{g, n} and [11, 16]:

Le0° =0=L,0% L0 =0=L,0"

Le6% = 0= L,0% Le0®=0=L,0°

It is important to notice that there is a residad (1, 1) gauge in the{#°-6*} subspace and
also as0(2) gauge in thg 9?03} subspace.

For the tetrad presented above a family of independent non-vanishing Ricci rotation
coefficients are the following:

Y010, Y011, Y022, Y023 = Y032, Y033, Y122, Y123 = V132, Y133, Y230, V231-

Then, the kinematical variables reduce to

= y020° + y120" (12)
®=0 (13)
Wr = (yoza+ 72300° A 0° + (y123 + 2300 A 6° (14)
St = (yo23 — 12300° ®; 0° + (123 — y231)0" ®, 6°. (15)
It is interesting to define 1-forms, w ando,
o = —y020° — y120* (16)
o = —(Yo23+ 72300° — (y123+ y2300" (17)
o = (y230 — 1029)0° + (y231 — ¥129)0" (18)

such that the kinematical variables can be written as

n=—uo
Wr = —w 63
ST=—O®593

so thatw, w ando completely parametrize the kinematical variables.
The eigenvalue problem fa&f7 simplifies and there are three different cases. Defining
A = Y023 — Y230 @andB = y123 — yo31 We find:

(@) B = €eA wheree? = 1 (o null).
In this caser is a null formo = A(6° + €6'). We haver; = A, = A3 = 0 whose
eigenvector is proportional t®.

(b) B > A (o spacelike).
In this case we havi; = 0, V1 o« %o (timelike).

ho=+/B2— A2, Vo x o ++/ B2 — A20% (spacelike,
A3 = —v B2 — A2, Vs x o —+/ B2 — A20° (spacelike.

(c) B < A (o timelike).
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In this case we havi; = 0, Vi « xo (spacelike).
Ao = iV A2 — B2, Vo o o +iv A2 — B263,
A3 = —iv/ A2 — B2, Vs x o —ivA? — B293.

In order to complete the family of 1-forms that will be used to write an exterior system
equivalent to the Einstein equations, we introduce two new 1-fgrasdy,

B = —(Yoz2+ 1039)0° — (y122+ 132)0* (19)
v = yo1d° + yo10™. (20)

The interpretation of these 1-forms will be found immediately below.

3.1. Vanishing torsion equations

With our choice of tetrad and variables, the vanishing torsion equations can be written as

do® =v A0t (21)
dot =v A 6° (22)
do? =a A02+w 63 (23)
dod = (B —a) AO3+0 A2 (24)

The meaning o andg is now clear, since is the connection form in th#’—9* subspace,
while d(62 A 63) = B A 62 A 63 shows thatg describes the expansion of the volume in the
6°—9° subspacet.

3.2. First Bianchi identities

The first Bianchi identities are the integrability conditions for the equations (21)-(24). By
exterior differentiation of those equations we find

dg =0, (25)
dQ+x A8 =0, (26)
ds —k AQ =0, 27)
de +Q A8 =0, (28)

whereQ =8 -2, =w+oandc =w —o.

3.3. Einstein field equations

We consider the energy—momentum tensor of a perfect flujd= (u+ p)ugu, + pgq, (Where
u, is the velocity of the fluidu is the energy density angd the pressure of the fluid), as the
source of the gravitational field. In appropriate units, the Einstein equations read as

R[xv - %Rgau = (M + p)urxuv + P8av
or, equivalently,
Roy = (1 + plugity + 3(L — P)gav-

T Note thatg is proportional to the differential of the transitivity surface area element, as defined in [17], and also is
proportional to the differential of the functidif in equation (15.3) in [2].
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After writing the Ricci tensor in the orthonormal coframe in terms of the Ricci rotation
coefficients and identifying the kinematical 1-forms and their derivatives, the Einstein field
equations can be combined to produce the following equivalent exterior systemt:

d«Q+BAxQ+Kxk A%85 =0, (29)
dx8+B A% — Kk AxQ =0, (30)
dxB+BA*B = (L — p)u A *u, (32)
dv— 3B ARB+IQARQ+ I8 A8 = —F(u+ pu A xu, (32
d*B+%,B/\*B+%QA*§2+%8/\*S+2VAB:—(M+p)u/\*ﬂ, (33)
dB+IBAB+IQAQ+ISAS+20 Axf =—(u+pluni, (34)

where the tilde operation on 1-forms in thg-9* subspace is a reflection with respect to the
direction determined bg?t. If A = A00° + 1101, theni = 1¢0° — 1101. Thex operator is the
Hodge dual in the 2-subspag@-*.

3.4. Integrability conditions

As u and the other physically relevant 1-forms have a vanishing Lie derivative with respect to
the two Killing fields, the coefficients of the forms we have considered are independent of the
variables in th@?—63 subspace. The integrability conditions for the system of equations that
we have considered above are either trivial or already incorporated in the system, except for
the contracted Bianchi identity,

™., =0,

which in our case reduces to

du + dp Au =0, (35)

m+p
d*u+(ﬂ+

du) A*u =0, (36)
u+p

and therefore the fluid is irrotational.

We also have to take into account the following constraint indicating that the velocity of
the fluid is a unit timelike vector:

uAsu=—09n0%

3.5. Simplification of the equations

Recall that there is a remaining freedom of choice consisting in a rotat@hasfdé* in their
own plane, as well as a rotation @ and6? in their own plane. This freedom can be used to
simplify the differential system introduced above.

3.5.1. Gauge freedom in t#é—62 subspace. Under a rotation through an angle

62\ ([ cosp) sinp) (62
<9A3) _< —sin(gp) cogg) )(93> (37)

t A similar calculation can be found in [18] for the stationary axisymmetric case.
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the kinematical 1-forms transform as

B =8 (38)
k =k +2dp, (39)
EZ _ cgs(2<p) — sin(2¢p) Q . (40)
) sin(2p)  co92¢p) 8
Without loss of generality, we can use this freedom in order to impose, for instance,
k= eb: (62 = 1),
(note thatc =8 & o0 =0andk = —§ < w = 0) or,

& =eQ (62 = 1)
as the integrability condition for those equations derived from equation (39) are identically
satisfied using the first Bianchi identities. A more general gauge-fixing condition is

& = c0g2¢0)$2 — sin(2¢0)3; @o = constant

and in the same way as in the previous cases the integrability conditions are satisfied using
equations (25)—(28).

It is important, in order to characterize the solutions of the equations, to know whether a
given solution is ‘diagonal’ or not. In an adapted gauge this is equivaleht#d = «. In
a non-adapted gauge we get & 0 and2 A § = 0. In other words, if we have a solution
satisfying the previous equations, with an adequate transformation, the metric can be written
in a diagonal form.

3.5.2. Gauge freedom in tie®—9* subspace. The freedom in th&°—-6* subspace can be
used to aligre® with a timelike kinematical form of! with a spacelike kinematical form; a
good candidate seems to hdut a careful analysis shows thais more useful. In this way
we have to separate three different cases.

(i) B null. If gis anull form then we have

*f = €f; =1
Using this relation in equation (33) and adding equation (33) with equation (34) we find

QAQ+exQ+3A@E+ex8)+4pun (i +exii)=0,

and introducing the relations,
Q = Qo0° + 2,07,
8 = 800° + 8167,
u= u090 + u191,

in the previous equation we find,
(Qo +€Q1)? + (80 + €81)% + 4p(uo + eur)® = 0.

As a consequence jf > 0 we find that®, §, andu are null forms. Hencef 8 null then
eitherp < 0oruis null.

The cases witlp < 0 oru null are not very physical for a perfect fluid and we will not
consider them here. The only remaining case is 0 but from (31) and the fact th#tis null
we findx = 0 and then the solution represents a vacuum spacetime.
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(i) B timelike. If B is timelike we can alig® with it. With this choice, the equations in
(21)—(36) to be solved reduce to the system composed by

B =e20°

u/\*uzeZQ,B/\*ﬂ,

plus the last two vanishing torsion equations, (23) and (24), the first Bianchi identities (25)—
(28), the first three Einstein equations (29)—(31), the integrability conditions (35) and (36),
and, finally,

do =28 — 2&2%{(u — p)B+ (1 + P)[(B. u)u + (B, xu) * u]
+1[(B, QIQ + (B, %Q) x Q]+ 1[(B, 8) 8 + (B, x8) * 8]}, (41)

where(, ) denotes the scalar product aftd, 6°) = —1, (6%, 6) = 1, and(¢°,6) = 0 =

(91, 90). It is important to notice that the connectiorcan be solved algebraically from (33)
and (34) and the thus obtained satisfies (32) identically, using the remaining equations of the
system. Thus, we can forget abeytvhich may be obtained trivially after we have solved the
system presented above. A useful expressiom fsrthe following:

v=xdQ —[1— (1n— p)e??] % B.
Also, it has to be noticed that for a generic 1-fagnn the#°-0*-subspace we can write,
o = —(o, u)u + (o, xu) x u,
and as a consequence,
Opy = (o, uyu + (o, *u) * u,

can be interpreted as a reflectiornofvith respect tar. An analogous interpretation is possible
for the similar expression changingby < (or 8). Finally, let us note that the integrability
condition for the equation (41) is identically satisfied using the rest of the system.

(ii) B spacelike. If B is spacelike we can aligh' with it. In a similar way as in the timelike
case, the system can be reduced to (23)—(31), (35)—(36) and,

p=e 20!
uAsxu=—CBAxB

dQ = 3B+ 3€%{(u — p)B+ (u+ p)[(B. u)u + (B, *u) * u]
+3[(B. Q)Q + (B, %Q) x Q]+ L[(B, 8)8 + (B, x5) * 8]}. (42)

The reasoning for timelikg is valid for the spacelike case. The 1-forncan be written
as

v=xdQ —[1+(u — p)e*?] x B.
Again the integrability condition for the equation (42) is satisfied identically.
Components of the differential ¢f in the lightcone and positivity. The spacelike or timelike

character ofg is essential in many senses [2,17]. Here we present another one related with
the gradient of the modulus ¢f, parametrized by%.
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Hence, let us study the components of the differentigd af the lightcone, that is, along
the null geodesic directions on th8-6*-subspace:

B timelike. We have,
p=e2°
Q = Q0% + Q161
8 = 800° + 8,6%
U= u090 +uq0t
dO = 3,00° + 9, 006*
and then we find
e %@ +0)0 =32 —3(u—p)+3(u+ p)uo+uy)?
+3(Q0 £ Q)% + 3 (B0 £ 50)%

B spacelike. The only new equation is
p=e 2ot
and then the new components are,
e C@1£00)0 = 3€ 2%+ 31— p) + 3(u+ p)uo £ u1)® + 3(Qo + Q)% + 3 (S0 £ 81)%
We can see that the right-hand side of the equatio(bfak dg) Q is positive in the spacelike

case (when the energy condition> | p| is satisfied) and has no definite sign in the timelike
case. Therefore in the spacelike case the transitivity cylinders are not trapped surfaces.

4. An example

In order to show how the formalism works let us derive the non-singular solution in [13]. This
non-singular cosmology is diagonal, therefore we can choose a gauge sueh=that= 0.
The 1-formp is spacelike as in every other regular inhomogeneous spacetindé encthosen
parallel to it as indicated in section 3.5.2.

Concerning the fluid, two aéasze are made. The velocity of the fluid is taken to-##
and the fluid is stiff, that isp = . Then we find that = e x . Introducing this expression
in (35) and (36) the resulting equations imply,

dO = —3dInu+B. (43)

The equations are written using a 1-form basis formed by the closed forrasd .
Locally this means that we can write,

o = du, B = dv, (44)
and therefore (43) can be integrated to yield,
ue?? = a%e?, (45)

whereq is a constant.

Now we have to solve (29) and (30) (note that the only remaining equation (42) can be
integrated by line integrals, when we have solved the rest of the equations, as its integrability
condition is identically satisfied using the rest of the equations of the system). Then, we

introduce two functiong, g of the chosen variables v to express the Hodge dual gfas
du + fd
adp = B S (46)
8
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that allows us to complete the dual of our 1-form local basis,

—fdu+(g2- f?)d
*0u = S du (g f) v’ (47)
8
taking into account the properties of the Hodge dual.
Now (29) and (30) are equivalent to the following two partial differential equations:
af dg _ 9g
— —f=+=—g=0, 48
gBu fau av & (48)
of _ .of  og
———+f = —g—==0, 49
ov fau gau (49)
A simple solution of the system of equations can be obtained by requiring‘tbata

function ofv. Theng can be integrated from (49),

g:,/h—Zui—i, (50)

wherer is a function ofv. Introducing this expression fgrin (48) we find

d>f _df 1dn df
——=+2—|u+-— —h+f—=0 51
( dv? dv)u 2dv fdv ' 1)
which can be easily integrated to find
f=p+qe, (52)
h = —2¢%e™ — 4e” pqv + wqe”, (53)

wherep, ¢ andw are constants. This allows us to write down the funcgon
g =/ —2q%e — 4% pqu + wqe?’ — Aque. (54)

The last equation to be integrated is (42). Using the expressiog ftirat has been
obtained previously, it can be written as follows:

%‘ = (2f? — 2g% — 2a%€®) dv + (2 + 4f) du, (59)

which allows us to obtain the following expression for the fluid energy density:
w= kexp(2p2v + nge@ + 4 pgv — wqe” — a’e? + 2u + 4pu + 4que2”), (56)

where the constartwill be taken to be:? without loss of generality.
The metric can be written in a simple form if we perform a change of variables and the
coordinatey is taken to be Im. If ¢ is chosen accordingly so that the coordinates are isotropic,

v=Inr, u= —%qr2 —pinr — gz, (57)
the fluid density takes the form,
w = a’r?r(r+h exp(—%qzr4 — (a2 +q+ 2pq)r2 —2qt% — 4pqr® — 4q2t2r2), (58)

after eliminating unnecessary parameters.

The metric functions or the fluid density are singular unlgss 0, —1. Both cases are
indeed the same solution just changintpr —g. In [13], ¢ is nameds anda? is a.

Note that, in principle, this metric could also have been obtained by the generation
algorithm due to Wainwrighet al [19].
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5. Geodesic completeness

In this section we shall attempt to give a sufficient condition for a diagonal cylindfigal
cosmology to be non-singular. Once one encounters a cosmological model with regular
curvature invariants it usually takes lengthy and tedious calculations to prove that the metric is
causally geodesically complete. The condition we state here shall be large enough to comprise
most known cylindrical non-singular cosmological models.

For diagonal cylindricatG,-cosmology we can choose a gauge where 0 = o (note
that there is a residual gauge, a rotation with= constant). Equations (25) and (26) can be
integrated, obtaining

a = —df, ﬂ:d—p. (59)
0

Using these expressions f@randj, as well as the fact that = 0 = o, we can integrate

equations (23) and (24) to find

9% =e/dz,
6% = pe’ do.

All known non-singular diagonal cylindric#&f,-cosmologies have a spacelike Hence,
following the method described in section 3.5.2, we aligmvith 3,

d
ot = 02 (60)
P
As the cosmological fluid is irrotational, the velocity of the fluid can be written as
u = esdr,
using isotropic coordinatesandr such that,
*dr = —dr and *dr = —dr, (61)
that provides the following expression féf = —x6?:
0% = e? (& de + 2 dr). (62)
p P
The constraint A xu = —€?2 A % imposes a relation betwegrand Q,
2€2g
o= (63)
Py — Pr
Using the previous results the metric takes the following form:
ds? = €200 —di? + dr?) + p2(z, r) €707 dg? + &2/ d%, (64)

Hence, the calculations will be performed in a chart whenedr are isotropic coordinates
for the subspace orthogonal to the Killing orbits ap@dndz are coordinates adapted to the
Killing fields. The usual ranges for these coordinates are chosen,

—00 < t, 7 < 00, 0<r < oo, 0<¢ < 2m. (65)

We shall assume from the beginning that the metric functifns p areC? and thatp is
positive. Certainly a2 requirement is needed in order to avoid a singular Riemann tensor,
but for geodesic completeneSs$ would be enough since just the affine connection is involved
in the equations.
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Following [2], if we are to have a regular symmetry axis on the locus wheteg (&, &) =
0, then we have to impose that

lim g(gradA, gradA)
p—0 4A -

on approaching the axis. In our case this means that if the metric fungtigrare C* at the
axis,

1, (66)

lim N oy (1, 7)% = pi(r, 1)) = 1. (67)

From now on we shall denote the derivatives with respeetands by subscripts.

There is no loss of generality in imposing that the axis is located oa 0, since
we are always free to choose a different set of isotropic coordifat&sby performing a
transformation,

T, = R,, T, = R, (68)
which amounts to taking a solution of the one-dimensional wave equation,
R — R, =0, (69)

with a boundary conditiorR = 0 on the axis. This problem is underdetermined, since no
initial condition has been imposed. For instance, one couldRaker andR, = 0 atr = 0.

In order to determine whether the metric is geodesically complete, we shall write the
expressions for the geodesic equations,

i+ xlxt =0, (70)

where the dot denotes derivative with respect to the affine parameter of the geodesic.
In principle we would have to write a second-order system of four differential equations,

but two of them become first order due to the existence of isometries. 2f(z, 7, ¢, z) is

the 4-velocity of the geodesic agds a Killing field thenp = & - u is a constant of geodesic
motion. The following quantities are then conserved along geodesics:

L=p2@tr)e?tng (71)
P = ezf(ff)z’ (72)

respectively the angular momentum and theomponent of the linear momentum of a unit
mass test particle in free fall.

There is also a conserved quantidy,which takes the value zero for lightlike, one for
timelike and minus one for spacelike geodesics. This quantity arises from the fact that the
4-velocityu is normalized when an affine parametrization is used. We shall consider just future
causal geodesics,

§ =02 72} — L2p7%(t, ) e ) — p2e?fn), (73)
The remaining second-order equations read,

i+ gt r)i?+2g,(t, r)ir + g (t, r)ir? — P2AT =8O i (1 )
e 2t

*L W{Pr(l»r) +p(t,r) fi(t,r)}, (74)

g (t, 1)+ 2g,(t, r)tr + g, (t, r)i% + P2 =8Ol £ (1 1)

L2/ e

—-L W{Pr(hr)+/0(t,r)fr(l‘,r)}, (75)

after substituting the derivatives of the cyclic coordinates for their expressions in terms of
the constants of geodesic motion.
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These equations can be written in a more compact form making use of the equation for

. e—zg(fx") . e_2_f(lvr)
{e0ni) — —{ezé’(’v’) [5 + P20 + 2= “ =0, (76)
p=(t, 1) 1),
L e e 2fr)
{eZg(t,r),;} + 5 {e2g(w) |:5 + p2g2fan 4 12 2 ):H =0. 77)
pLT) 1),

An important family of geodesics are lightlike radial geodesics{ P = § = 0), for
which there is a constaktsuch that

=i = ke %00, (78)

The derivative of the time coordinate must not grow too fastif these geodesics are complete.
A sufficient condition is achieved by imposing thadoes not grow faster than exponentially
for large values of. This amounts to the following condition @gn

g(t,r) = —3In|t +a| +b, (79)

wherea andb are constants. If this condition is fulfilledis defined for arbitrarily large values
of the affine parameter.

The system of second-order equations (76) and (77) is shown to be equivalent to a system
of first-order equations by introducing a new functignSince,

g 2f(.r)
it Pzezf(”’)}, (80)
pe(t,r

it is tempting to parametrizg » by means of hyperbolic functions &f

i2 o }',2 — e—2g(r,r) {8 + L2

_ e2fn ,

f=e8tn [s+ 2 + p2e2f(tr) coshé(t, r), (81)
p2(t, r)

] e2f@r) . .

F=e80n [s+12 + P2e2/ ) sinh&(e, r). (82)
p2(t, r)

After introducing these expressions in (76) and (77), a first-order equatigniseeasily
obtained,

E(t,r) = —e 2CNIF (¢, r)sinh&(t, r) + F. (7, r) coshg(z, r)}, (83)

—2f(t,r)
F(,r) = [5+12° + p2e2/(t.r) (84)
’ p2(t, 1) ’

which expands into the following expression for

e 8

== V8 + L2p2e2] + p2e2]

—2f

x{ coshg [(Sg, + LZe’T(gr - fr = %) +P%e (g, + fr)]

—2f
+sinhg [(Sg, + LzepT<g, - fi- %) + P?e?l (g, + fz)} } (85)

where the dependence of the functionsron has been omitted in order to avoid a large
equation.
The equivalent equation for past-directed geodesics can be also obtained,

E(t,r) = e 2CI(F,(t, r)sinhE(r, r) — Fo(r, r) cOshe(z, r)}. (86)
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Now we can check the equations to extract conditions for causal geodesics to be complete.
No attention needs to be paid to the equationgfand¢, since they are just quadratures to
be solved once andr are known as functions of the affine parameter and cannot be singular
unless the functions involved in the integration are singular and we have already imposed that
the metric functions must be smooth.

We have to prevent the coordinates from tending to infinity at a finite value of the affine
parameter. Also the coordinatenust not tend to zero at a finite value of the affine parameter
when the constant of geodesic motibris non-zero. Wheil is zero, the denominators that
depend orp disappear and the expressions#ar andé are not singular at = 0.

First of all we shall exclude the possibility of having arbitrarily large valuelg pfThere
are two cases to consider.

e £>0,&>0. Weshall impose a condition in order to prevent this situation from lasting
too long by requiring tha§ changes sign for large values of the time coordinat®ince
we may have geodesics with any of the constants of motion equal to zero, the terms that
multiply them in the numerator df must be treated independently. For instance §for

we need,

0 < coshkg, +sinhgg, = sinh&(g, +g) +e g, (87)
and similar conditions fof. and P. These conditions can be fulfilled by requiring

g +g& >0,

(g—f—Inp)+(@—f—Inp) >0, (88)

8+ )+t f)>0,

for large values of and increasing. And for the remaining terms that multiply & we
shall have further to impose that

8r
(g—f—1Inp),, (89)
&+

be either positive or at most of the same order as their respective terms in (88) st that e
makes them negligible, also for large values ahd increasing.
With all these requirementsbecomes negative beforenay develop a singularity.

e £ < 0,8 < 0. As in the previous case, we shall prevérftom growing unboundedly
large. Since the unfriendly denominators depending ahat are only dangerous in this
case since decreases, only appear when£ 0, we shall just require for non-zeio,
thaté becomes positive for large valuesrofAgain, by imposing such a restriction on the
numerator of one finds, for large values ofand decreasing,

_2f
Sl — &) ¥ L7l = f = Inp) — (g = I p))

+P2& (g + )i — (g + f);} > 0 (90)
by making use of the identity cosh= — sinh& + &. SinceL # 0, its term may help
compensate for the others to achieve a positive numerator. The terms that multiply the
exponential of,
€72 Pr 2. 0¢
(Sgr+L 7<gr_fr_;)+P ez'f(gr"'fr)v (91)

must be either negative or at most of the same order as the term in (90) for large values of
t and decreasing,.
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Finally, we shall prescribe a behaviour faimilar to that used for lightlike radial geodesics
to avoid faster than exponential growth for large values of

g(t,r)

g, r)+ ft,r)y+lnps > —In|t +a|+b, (92)

g, r)— f(t,r)
the first of which is obviously weaker than the condition already required for lightlike radial
geodesics. The constantsbh need not be the same for the three inequalities.

No similar restrictions need be imposedrgsince this derivative cannot become singular
beforet does according to equation (73).

Similar results can be derived for past-directed causal geodesics by just replacing the sign
of the derivatives with respect tofor the opposite in (88) and (90), for small values of the
time coordinate. The other conditions remain unchanged for small valuesrafe they were
obtained forz|.

According to [20], the spacetime is globally hyperbolic since from the derivation of the
results it follows that every lightlike geodesic intersects once and only once every hypersurface
of constant time and therefore they are Cauchy hypersurfaces.

These results can be summarized in the following theorem.

Theorem. A cylindrically symmetric diagonal metric in the form (64) with metric functions
f, g, p is future causally geodesically complete if conditions (79), (88)—(92) are fulfilled for
large values of.

In addition, the spacetime is globally hyperbolic.

A fact that is worth mentioning is the relation for the orbit of a future-directed geodesic,

d
d—; — tanhe. (93)
This means that, for events, ro), (¢, r), ro < r, to < t, on the geodesic we have
r<ro+(t—1to), (94)
and ifrg > r, 1o < t, then,
r=>rg— (l - to). (95)

Furthermore, the orbit lies above its tangent lines while > 0 and, therefore, we obtain
alower bound. Forg < r, fp < 1,

r = ro +tanhg (1o, ro) - (¢ — to), (96)
And similarly, foré, & < 0,rg > r, fo < t,
r <ro+tanh (1o, ro) - (t — o). (97)
6. Examples

In this section we shall show explicitly how the theorem works with all known diagonal non-
singular models.

e Senovilla[21]. Thisisthe first known non-singular cosmological modelin the literature. It
describes a universe in a radiation-dominated epoch. Its geodesic completeness is proven
in [22]. The metric functions for this model are

g(t,r) = 2Incoshar) + In cosh3ar),
f(t.r) =Incoshat) + 1 Incosh3ar), (98)

1
p(t,r) = = coshar) sinh(3ar) cosh?3(3ar),
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wherea is a positive constant related to the maximum of the pressure.

Since they are even functionsofve need not worry about past-directed geodesics.

All three functions in (79) and (92) are positive except for constants and the term
In(sinh(3ar)) in the third function. For increasing it does not mean a problem. For
decreasing, it is bounded by (95),

In(sinh(3ar)) > In(sinh(3a|r — rg + 10])), (99)

and therefore they fulfil this condition.
The first and third conditions in (88) are always satisfied for positiemd the same
happens with the second for large values.of
The expressions in (89) do not dependrceind are always positive, except the second
one, which requires large valuesrof
All three terms in (90) independently are positive for small valuesarid positiver .
Concerning (91), the term as a whole is negative for smafid positiver.
Hence this spacetime is geodesically complete.

e Ruiz—Senovilla [23]. This family includes the previous one as a subcage ferl and
n = 3. The metric is not written in isotropic form in the original paper, but it can be cast
in that form by the change of variable,

1 cosh(naR) dx
r=—

na J P(x)’ (100)
P(x) = /x2+ (K — )x@-D/n _ K,
whereP (x) is a growing function fox > 1. We shall need for our reasoning that
dR(r) _ P(coshnaR(r)))
dr sinh(naR(r))

which tends to a positive constant whetends to zero, to one whentends to infinity
and is always positive for positive

(101)

g(t,r) = 2(1 +n)Incoshar) + 2(n — 1) In coshnaR(r)),

f,r)= n—1 Incoshat) + n2— 1 Incosh(naR(r)),
n
102
p(t,r) = LL coshar) cost*™/" (naR(r)) P( cosi(naR(r))), (102)
na
L—& K-1
-0 o

The ranges of the parameters are= 3, K > 0 anda is again an arbitrary positive
constant and every metric function is even in the coordinate time

Every function in (79) and (92) is either positive or involves a term that behaves-as In
for smallr and therefore can be bounded like in the previous example.

The expressions in (88) are all positive for lang@and positiver as happened in the
Senovilla subcase. The first and third ones are positive for all

The radial derivatives in (89) are again positive for large values dte first and third
ones are positive for a.

Again the three terms in (90) are positive for largend small values of.

Finally, the angular momentum term in (91) is unboundedly negative for smdiile the
others are bounded and therefore the whole term is negative for small values of the radial
coordinate.

Hence the whole set of conditions is fulfilled and the family is geodesically complete.
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e Mars[24]. Thisis a family of non-singular models with no equation of state and depending
on two parameters, related to the maximum density of perfect fluid, ang %T,

g(t,r) = —3Incosh2at) + 3¢ cosif (2at) sink?(2ar),

f(t,r) = 2Incosh2at) — In coshar), (103)
fr) = isinh(Zar)
pl,r) = 2q cosh2at)’

Again the metric functions are even in the time coordinate

The negative terms in (79) and (92) are counteracted by the exponential growthcof the
terms for large andr.

Concerning (88), the three expressions are positive for posiéixeept for bounded terms
inz andr.

The same sort of behaviour is to be found in (89) but for all values of

The terms in the expression of (90) are all bounded or tend to zero exceptdott®2ra).
Therefore, this term is positive for small The reasoning why the terms on siah) tend
to zero faster than those with cdah) is explained in the next example.

Finally, the expression in (91) is negative for small values since every term tends to
zero or is bounded except for the2a coth(2ra) term.

Therefore, this family is also geodesically complete.

e Ferrandez-Jambrina. This non-separable metric, that has been obtained in section 4,
corresponds to a spacetime filled with a stiff perfect fluid. Both parametensdj, are
positive.« is related to the maximum of the density of the fluid. The metric functions are

g(t.r) = 3B+ o+ B)r? + pr® + 2612,
far) =3p(r2+2%),  p,n=r,
and again they are even functions of time.
The three functions in (79) and (92) are positive, except for a constant and a term In
to which applies the same reasoning used for Senovilla’s metric and so this condition is
trivially satisfied.
The first and third expressions in (88) are positive for positive values dhe second
expression requires in addition large values.of
The same happens for (89), regardless this time of the sign of
The terms in (90) are all either positive and growing linearly witr as ¥ r or tending
to zero. Note that the terms polynomicritend to zero although they may be multiplied
by powers of since according to (97%) decreases to zero faster thagrows to infinity.
Finally, all of the terms in (91) tend to zero excepl/r, which makes the expression
negative for small values of
Therefore these spacetimes are geodesically complete.

(104)

7. Summary

In this paper a new approach f6r, inhomogeneous cosmological models has been derived.
The description is grounded on kinematical properties of spacelike congruences that have been
encoded in several 1-forms. The exterior differential system, equivalent to Einstein equations,
has been submitted to different kinds of simplifications. Based on this formalism several
consequences are drawn. Itis shown that when the transitivity surfaces are null a perfect fluid
is not admissible. Also, when these surfaces are spacelike they are not trapped sets.

T Note that there is a misprint in the original paper.
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As an application to non-singular cosmological models a solution is reobtained within
the formalism. A theorem is written stating a sufficient condition for diagonal models to
be singularity-free and globally hyperbolic. All known non-singular diagonal perfect-fluid
spacetimes fit within this framework.
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