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Abstract:

Although quaternions  are generally  deemed useful for  representing three dimenional  rotations  and are often used
in  3D redering  software,  most  of  the  information  on  them is  either  extremely  technical,  or  merely  defines  them
without  offering  any  intuitive  understanding.  In  particular,  while  the  expression  for  a  general  4D  quaternion
rotation is often given, there is seldom any explanation of how to construct a particular desired rotation, other than
blindly converting from the equivalent matrix.

In this paper I'd like to present my own attempts at an intuitive understanding. (Intuitive, at least for someone who
is very familiar  with complex numbers  and is comfortable  with linear algebra.)  Although  this by it’s very nature
has  a  hand  waving  quality,  I  hope  that  this  kind  of  understanding  will  lead  to  the  more  effective  application  of
quaternions.

Properties of 4D Rotations
Rotations  in  three  dimensions  are  usually  described  as  rotation  about  an  axis  —  a  particular  vector.  It  is  more
accurate  to say that  rotation occurs in a plane,  but in three dimensions  it’s easier  to describe a plane by giving a
vector perpendicular to the plane at the center of rotation.

That isn’t sufficient  in four dimensions.  There  is a two dimensional space perpendicular  to any rotation plane,  so
to describe the rotation plane, we’ll  have to give two directions in it. In this paper I will describe the “x-y plane”
or the “z-w plane” and so on. I’ll eventually want to construct a rotation given any two non-parallel vectors.

In addition,  since  there  are two dimensions  perpendicular  to any  rotation plane,  that  allows us  to have  a second,
completely  independent  rotation  plane  spinning  at  the  same  time.  A  general  rotation  will  have  two  angles  of
rotation, as well as two vectors describing one rotation plane. The orientation of the second rotation plane can be
derived from the first  one,  but only  up to an  overall  sign.  We  can’t  tell  which  way the second  plane is  spinning
without additional input, or at least a convention of some sort.



Review of Rotations in the Complex Plane
Quaternions in four dimensions can be viewed as a generalization  of complex numbers in two dimensions.  Com-
plex rotations should be familiar to anyone with a Physics or Engineering background.

Given a complex number z = x + Ây  (where x  and y are real  numbers and Â2 = -1), which  can also be viewed as
the point (x,y) on the complex plane,  we can rotate that point about the origin by multiplying by a pure complex
phase, such as ‰Âq = cosHqL + Â sinHqL .

(1)‰Âq  z = HcosHqL + ÂsinHqLL Hx + Â yL
= x cosHqL - y sinHqL + Â Hy cosHqL + x sinHqLL

which looks like a rotation by angle q in the x-y plane. 

Rotation in the Complex Plane

z

z eÂ q

q

The rotation itself is just another complex number, except that it sits on a circle of radius one. In fact, any complex
number can be written in this polar form.

(2)z = r ‰Â q = r cosHqL + Â r sinHqL
The complex conjugate (replaceing Â with -Â) gives us a rotation in the opposite direction.

(3)z* = r ‰-Â q = r cosH-qL + Â r sinH-qL = r cos(q) - Â r sin(q)

A Review of Quaternions

‡ Definition

A quaternion is a combination of four real numbers,

(4)q = w + i x + j y + k z
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where  i2 = j2 = k2 = -1  (just  like  for  complex  numbers)  and  i  j  k = -1.  For  any  pair  of  them,  i  j = - j i
(they anticommute). In particular:

(5)
i j = k j k = i k i = j
j i = -k k j = -i k i = -j

Physicists  will  recognize  i,  j,  and  k  as  similar  to  the  Pauli  matrices  from Quantum  Mechanics.  Indeed,  you  can
write them as 2x2 unitary matrices, but we won’t need to do that here. All we need to know is that they’re the axes
of a four-dimensional space.

‡ Polar Form

We can also write a quaternion in “polar form” in the same way we handled complex numbers.

(6)q = r ‰ǹ q

where r is a real number, q is an angle in radians, and ǹ  is a three dimensional unit vector. I will sometimes call ǹ
an “axis vector” and will often treat it like any other quaternion.

(7)
ǹ = x i + y j + z k

x2 + y2 + z2 = 1

We can expand the polar form just as we did with complex numbers.

(8)q = r ‰ǹ q = r cos(q) + r ǹsin(q)

It may seen surprising that a complicated mix of i, j, and k like ǹ  is should behave as if it were just i alone, but it
shouldn’t be. We tend to think that “i is along the x-axis” but really, one direction is just as good as any other. Any
combination of i, j, and k (that still has length 1) is just as good as any other.

Exercise: ǹ2  = ?

Given an arbitrary quaternion q, you can calculate the polar form like this. (Where q* is the quaternion equivalent
of the complex conjugate.)

(9)

r = » q » =
è!!!!!!!!!!!q  q*

cos HqL = Re I q
ÅÅÅÅÅ
r
M =

q + q*

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r

sin HqL = À q - q*

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r

À =
è!!!!!!!!!!!!!!!!!!!!!!!

-Hq - q*L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 r

ǹ =
q - q*

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» q - q* » =
q - q*

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 r  sin HqL

Be careful of the case where q is real. Then q = 0 and ǹ  is undefined. Also note that the sign of q can be absorbed
into ǹ , so even though you can find q in the range -p < q ≤ p given both the sine and the cosine (and many math
libraries have a two argument arctangent function for that purpose), in the above we limited q to q ≥ 0. If we had
wanted the full range of q we could have limited the directions of ǹ  instead.

‡ Manipulating Quaternions

Adding two quaternions is easy. Just add the components like you would a vector.
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(10)q1 + q2 = Hw1 + w2L + i Hx1 + x2L + j Hy1 + y2L + k Hz1 + z2L
Multiplying two quaternions can look really hairy due to the multiplication rules of the i, j, and k.

(11)
q1  q2 = Hw1 w2 - x1 x2 - y1 i2 - z1 z2L + i Hw2 x1 + w1 x2 - y2 z1 + y1 z2L +

j Hw2 y1 + w1 y2 + x2 z1 - x1 z2L + k H-x2 y1 + x1 y2 + w2 z1 + w1 z2L
It makes a little more sense if you write the quaternion in a “1+3” notation, [w, v], where v is just an ordinary 3-
vector made from the real cooefficients of the i, j, and k. Then

(12)
q1  q2 = Aw1, v

Ø
1EAw2, v

Ø
2E

= Aw1  w2 - v
Ø
1.v

Ø
2, w1  v

Ø
2 + w2  v

Ø
1 + v

Ø
1 µ v

Ø
2E

Note  that  when  w1 and  w2 are  zero,  then  the  quaternion  product  is  just  the  vector  dot  product  and  vector  cross
product at the same time.

Finding  the  inverse  of  a  quaternion  is  easiest  in  polar  form.  It’s  just  like  that  of  a  complex  number.  We  can
interpret it as changing a rotation by angle q to a rotation by -q.

(13)q-1 = Ir ‰ǹ qM-1
=

1
ÅÅÅÅÅ
r

 ‰-ǹ q =
1
ÅÅÅÅÅ
r

 cos HqL -
1
ÅÅÅÅÅ
r

ǹ sin HqL
In particular, if q is a unit quaternion, the inverse is the same thing as the conjugate q* .

Exercise: Write down an expression for  è!!!!q  in polar form.

There  is  a  clever  way to find  the  “square  root”  (the  half  angle  version,  ignoring  overall  ±)  of  a unit  quaternion:
Add one and renormalize.

(14)‰ǹ qê2 =
1 + ‰ǹ q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» 1 + ‰ǹ q » =
1 + ‰ǹ q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2 H1 + cos HqLL
It’s easy to see how this works if you draw a picture of the two quaternions being added. The total quaternion (in
red) is half the angle from the real axis no matter what the starting quaternion is.

0.5 1

0.5

1

Quaternion ˙Square Root¯

‰ǹ q 1+‰ǹ q

qê2

It’s  also easy  to see  that  the quaternion  square root  of -1  is undefined.  It  could be any  3-space  unit  vector  ǹ .  In
such cases, you’ll need some additional criteria to figure out which one you might want in a particular situation.
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Quaternions as a “Complex-Like” Rotation
To  build  up  to  a  general  quaternion  rotation,  I’ll  start  by  naively  treating  it  just  like  a  complex  rotation.  We’ll
apply a pure rotation of the form ‰ǹ q to a quaternion q. The trouble is, the order of multiplication matters here. Do
we multiply the phase from the left or the right? The correct answer is both. We split the difference, like this.

(15)‰ǹ qê2  q  ‰ǹ qê2

To see what's going on, however, I'm going to write q as the sum of two parts: qc , the part which commutes with
ǹ  (the real  part and  the part  that’s parallel  with ǹ)  and qa ,  the part  which  anticommutes  with ǹ  (the part  that  is
orthogonal to ǹ ). For example, if ǹ  = i, then qc = w + i x, and qa = j y + k z.

(16)
‰ǹ qê2  q  ‰ǹ qê2 = ‰ǹ qê2  Hqc + qaL  ‰ǹ qê2

= ‰ǹ qê2  qc  ‰ǹ qê2 + ‰ǹ qê2  qa  ‰ǹ qê2

The  commuting  part,  qc ,  is  easy.  It  passes  right  though  one  of  the  phases,  allowing  us  to  combine  them.  The
anticommuting part, qa , is almost as easy. It passes through the phase changing the sign of ǹ  as it goes, leaving us
with:

(17)‰ǹ qê2  ‰ǹ qê2  qc + ‰ǹ qê2  ‰-ǹ qê2  qa = ‰ǹ q  qc + qa
The interpretation of our transformation is clear:

The  transformation  ‰ǹ qê2  q  ‰ǹ qê2  can  be  interpreted  as  a  rotation  of  angle  q   in  the  plane
defined by ǹ  and the “real axis”. I will call these “w-axis rotations”.

In particular,
‰i qê2  q  ‰i qê2 rotates in the w-x plane
‰j qê2  q  ‰j qê2 rotates in the w-y plane
‰k qê2  q  ‰k qê2 rotates in the w-z plane

Quaternions as a 3D Rotation
Textbooks usually describe a quaternion rotation as u q u-1 where u is any unit quaternion. (Aside: In this case it
doesn’t have to be a unit quaternion,  since the inverse will cancel out any overall  r scale factors, but I'll continue
to assume that it is one.) Using the same techniques as in the previous section, we can see this is

(18)
‰ǹ qê2  q  ‰-ǹ qê2 = ‰ǹ qê2  Hqc + qaL  ‰-ǹ qê2

= ‰ǹ qê2  qc  ‰-ǹ qê2 + ‰ǹ qê2  qa  ‰-ǹ qê2

Now when we pull the phases through, the phases on the commuting part cancel, and we have

(19)‰ǹ qê2  ‰-ǹ qê2  qc + ‰ǹ qê2  ‰ǹ qê2  qa = qc + ‰ǹ q  qa
It’s  clear  that  the  rotation  is  now  only  acting  on  qa ,  but  in  what  way,  exactly?  I’m  going  to  rewrite  the  anti-
commuting  part  in  a  different  way.  For  the  sake  of  notation,  I’m  going  to  assume  that  ǹ=i,  so  that  qa can  be
written  j y + k z. Then, I will insert a factor of 1 = j(-j), and pull one j out to the end (changing the sign of i as it
anticommutes.)
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It’s  clear  that  the  rotation  is  now  only  acting  on  qa ,  but  in  what  way,  exactly?  I’m  going  to  rewrite  the  anti-
commuting  part  in  a  different  way.  For  the  sake  of  notation,  I’m  going  to  assume  that  ǹ=i,  so  that  qa can  be
written  j y + k z. Then, I will insert a factor of 1 = j(-j), and pull one j out to the end (changing the sign of i as it
anticommutes.)

(20)
‰i qê2  qa  ‰-i qê2 =

‰i qê2  Hj  y + k  zL H-jL j  ‰-i qê2 = ‰i qê2  Hy + i  zL  ‰i qê2  j

And that  looks  like  an ordinary  complex  rotation  in  the  y-z  plane  (with  a  j  tacked  on  the  end  to make  the  final
result space-like.)

The interpretation of this transformation is clear:

The transformation  ‰ǹ qê2  q  ‰-ǹ qê2  can be interpreted as a rotation of angle q  about the axis
ǹ  leaving the real part unchanged. I will call this a “3-space rotation”.

In particular,
‰i qê2  q  ‰-i qê2 rotates in the y-z plane
‰j qê2  q  ‰-j qê2 rotates in the z-x plane
‰k qê2  q  ‰-k qê2 rotates in the x-y plane

It is worth noting that while a general 3D rotation like u q u-1 rotates in a plane in 3-space, the cooresponding “w-
axis”  rotation,  u q u ,  rotates  in  a  plane  perpendicular  to  that  of  u q u-1 .  From  that  we  can  see  what  quaternion
multiplication really is: In the expression u q, the u transforms q by applying a rotation, by the same angle, in two
orthogonal planes at once. At the same time, you can interpret it as q transforming u, rotating u about two differ-
ent planes by some different angle.

‡ 3D Rotations Applied to a Polar Form

Here is a useful identity.

(21)u  ‰n` q  u-1 = ‰u n` u-1  q

This makes intuitive sense — a 3-space rotation ought  to just  rotate the 3-space  axis vector.  It’s easy to prove if
we expand it this way.

(22)
u  ‰n` q  u-1 = u  Hcos HqL + ǹ sin HqLL u-1

= cos HqL + u  ǹ u-1  sin HqL
= ‰u ǹ u-1  q

Note, however, that this trick does not work for rotations through the w-axis

(23)u  ‰n` q  u  ‰u n` uq

since u  ǹ u  typically has a real component, and our polar form breaks down. 

General 4D Rotations
The most general 4D rotation of a quaternion q can be written uL  q  uR , which is multiplying on the left and on the
right by arbitrary  unit quaternions.  So, given two quaternions,  what  rotation do they represent?  What are the two
rotation planes, and what is the angle of rotation for each one? I’ll start by writing the rotation in polar form. 

(24)‰ǹ1  q1 q ‰ǹ2  q2
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First note that if ǹ1 and ǹ2  are parallel or antiparallel (ǹ1 = ±ǹ2 ), we already know what rotations they represent.
The trick will be to rewrite ǹ1 and ǹ2  as parallel and antiparallel parts. Define ǹi and ǹj as rotations of ǹ1 and ǹ2
so that

(25)
ǹ1 = cos(j)ǹi + sin(j)ǹj
ǹ2 = cos(j)ǹi - sin(j)ǹj

You can also write this as

(26)

1
ÅÅÅÅ
2

 Hǹ1 + ǹ2L =
1
ÅÅÅÅ
2

À ǹ1 + ǹ2 À ǹi = cos HjL ǹi

1
ÅÅÅÅ
2

 Hǹ1 - ǹ2L =
1
ÅÅÅÅ
2

À ǹ1 - ǹ2 À ǹj = sin HjL ǹj

Note that ǹi and ǹj are orthonormal, unless ǹ1 = ±ǹ2 , in which case one of  ǹi or ǹj is undefined. Also note that
j is the angle between ǹ1 and ǹi , or half the angle between ǹ1 and ǹ2 ,

We can remove the explicit references to ǹj  with a 3-space rotation about ǹk = ǹi  ǹj . Let u = ‰ǹk  jê2 . Then

(27)
ǹ1 = u  ǹi  u-1

ǹ2 = u-1  ǹi  u

Note that you can calculate u without having to calculate j.
ǹ1  ǹ2 = Hcos HjL ǹi + sin HjL ǹjL Hcos HjL ǹi - sin HjL ǹjL

= -cos H2 jL - ǹk  sin H2 jL = -u4

so u = H-ǹ1  ǹ2L1ê4 .

Our original general rotation can then be written

(28)
‰ǹ1 q1  q  ‰ǹ2 q2 = Iu‰ǹi q1  u-1M  q  Iu-1 ‰ǹi q2  uM

= Iu I‰ǹi q1  Hu-1  q  u-1 L ‰ǹi q2 M uM
When we rearrange the parenthesis, we can see a new interpretation of the transformation. 

First we apply u-1 which tilts the plane of rotation by j, so that it’s aligned on the w-axis. 
Then  we  apply  a  “complex-like”  rotation  in  the  w-ǹi plane  and  a  space  rotation  in  the  ǹj -ǹk  plane

(depending on the values of q1  and q2 .) 
Finally, we apply u, to return the rotation plane to where it was.

To make this explicit, we write our arbitrary q in this basis

(29)

qw = u2

qi = u  ǹi  u = ǹi
qj = u  ǹj  u = ǹj
qk = u  ǹk  u = u2  ǹk

so that 
q = w qw + x qi  + y qj  + z qk , or 
u-1  q  u-1 = w + x ǹi + y ǹj + z ǹk , 

and then observe how the rotation acts on the pieces.
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(30)

‰ǹ1 q1  q  ‰ǹ2 q2 = Iu I‰n`i q1  H w + x ǹi + y ǹj + z ǹkL ‰n`i q2 M uM
= Iu I‰ǹi q1  H w + x ǹiL ‰ǹi q2 + ‰ǹi q1  Hy + z ǹiL ‰-ǹi q2  ǹjM uM
= Iu I‰ǹi  H q1 +q2L  H w + x ǹiL + ‰ǹi H q1 -q2L  Hy + z ǹiL ǹjM uM

At this point it’s clear that the w and x parts are going to be rotated by an angle of q1 + q2 , while the y and z parts
are  going  to  be  rotated  by  an  angle  of  q1 - q2 .  I’ll  leave  the  remaining  algebra  to  the  reader  and  jump  to  my
conclusion.

A general  4D rotation of quaternion q, given by ‰ǹ1 q1  q  ‰ǹ2 q2 , is a rotation by q1 + q2 in the qw -
qi plane, and a rotation by q1 - q2 in the qj -qk plane, where, if ǹ1 ≠ ±ǹ2

qw = ‰ǹk  j = H-ǹ1  ǹ2L1ê2
 qi = ǹ1 +ǹ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»ǹ1 +ǹ2» = ǹi

 qj = ǹ1 -ǹ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»ǹ1 -ǹ2» = ǹj

 qk = ‰ǹk  j  ǹk = qw  ǹi  ǹj
If  ǹ1 = -ǹ2 then replace q2 Ø -q2 and ǹ2 Ø -ǹ2 , and then...
If  ǹ1 = ǹ2 then qw = 1 , qi = ǹ1 , and the second rotation is a 3-space rotation about the ǹ1 axis.

‡ Interpretation

For a general 4D rotation of the form ‰ǹ1  q1 q ‰ǹ2  q2 , the following is true.

The rotation is in one plane leaving the other fixed, if and only if q1 = q2  (modulo 2p of course).
If the angle between ǹ1 and ǹ2 is 2 j  then the planes of rotation are tilted by j.
The planes of rotation intersect the 3D space along ǹ1  ǹ2 , which we have called ǹi  and ǹj .

‡ Pictures (to do)

Rotation in an Particular Plane
Suppose we want to find a rotation that will rotation unit quaternion q1 into q2 . Since each quaternion can also be
a rotation, there is a very simple way of doing this — by multiplying by q1 and q2 . In fact, there are lots of ways
of doing this.

(31)(q2 q1
-1 )q1 = q1 (q1

-1 q2 ) = (q1
-1 ) q1 (q2 ) = (q2

1ê2 q1
-1ê2 ) q1 (q1

-1ê2 q2
1ê2 ) = q2

While  all  of  these  rotations  “work”,  in  that  they  rotate  q1 into  q2 ,  they  each  rotate  the  perpendicular  plane  in
different ways. Let’s break this down a bit. I’ll write the quaternions in the 1+3 notation: qn = Aqn , q

Ø

n E

(32)
q2  q1

-1 = Aq2 , q
Ø

2 EAq1 , -q
Ø

1 E  = Aq1  q2 + q
Ø

1 .q
Ø

2 , q1  q
Ø

2 - q2  q
Ø

1 + q
Ø

1 µ q
Ø

2 E
 q1

-1 q2  = Aq1 , -q
Ø

1 E Aq2 , q
Ø

2 E= Aq1  q2 + q
Ø

1 .q
Ø

2 , q1  q
Ø

2 - q2  q
Ø

1 - q
Ø

1 µ q
Ø

2E
The first thing to notice is that the real parts of these are symmetric in the indices 1 and 2, while the space parts are
anti-symmetric.  Thus, if you were to swap the indices, you’d turn this rotation into its conjugate, and therefore its
inverse. This makes perfect sense, since rotation from q1 into q2 is the inverse of rotation from q2 into q1 .

The second  thing  to  notice  is  that  the  real  parts  are  the  4D dot  product  between  q1 and  q2 ,  and  is  therefore  the
cosine of the angle between them. This is what you’d expect for a rotation from q1 into q2 . 
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Next, notice that the 3-space parts are different only in that the third term has a different sign.

(33) A0, q1  q
Ø

2 - q2  q
Ø

1 E = q1  q2 - q2  q1 = » q1  q2 - q2  q1 » ǹi

A0,  q
Ø

1 µ q
Ø

2 E =  … qØ1 µ q
Ø

2 … ǹ j

The first two terms is precisely the linear combination of q1 and q2 which has no real part. It’s the direction along
which the rotation plane intersects the 3-space. Earlier, we had called this direction ǹi . The third term is the space
direction that’s orthogonal  to the plane of q1 and q2 ,  the direction  along which  the other,  perpendicular,  rotation
plane intersects the 3-space. Earlier, we had called this direction ǹ j .

It is easy to see that these transformations have the same form as the more general transformation we found in the
previous section. In fact, we can now write down by inspection the following expressions.

(34)

q2  q1
-1 = cosHqL + sinHqL HcosHjL ǹi + sinHjL ǹ j L = ‰qHcosHjL ǹi +sinHjL ǹ j L

q1
-1  q2 = cosHqL + sinHqL HcosHjL ǹi - sinHjL ǹ j L = ‰qHcosHjL n` i -sinHjL n` j L

where q is the angle between  q1 and q2 , and

q1  q2 - q2  q1 = » q1  q2 - q2  q1 » ǹi = sinHqL cosHjL ǹi

A0, q
Ø

1 µ q
Ø

2 E = … qØ1 µ q
Ø

2 … ǹ j = sinHqL sinHjL ǹ j

Claim:  The rotation  that  takes  the  unit  quaternion  q1 into  q2 while leaving  the  perpendicular  rotation plane  fixed
can be written

(35)Hq2  q1
-1 L1ê2  q Hq1

-1  q2 L1ê2  

We expand this as

(36)‰
qÅÅÅÅÅ2  HcosHjL ǹi +sinHjL ǹ j L  q‰

qÅÅÅÅÅ2  HcosHjL ǹi -sinHjL ǹ j L  
and use the results of the previous section to note that this is a rotation of angle q in the plane given by

qw = ‰ǹk  j = ‰ǹi  ǹj  j

qi = ǹi
and a rotation of zero in the perpendicular plane.

(Aside:  The  literature  describes  something  called  a  “Slerp”  (spherical  linear  interpolation)  that  will  smoothly
transform q1 into q2 . They let qHtL = Hq2  q1

-1 Lt q1 , which is q1 when t = 0  and q2 when t = 1. Unfortunately, this
only multiplies  on one  side, so  it also rotates  the plane  orthogonal  to q1 and q2 .  This isn’t  actually wrong, since
the  Slerp  is  only  intended  for  interpolating  between  two  points  on  a  hypersphere  —  it  was  not  ment  to  be  a
rotation operator,  even if  it looks  like one  in quaterion  form.  Still, if  we wanted a slerp-like  rotation in only one
plane, it’s clear what we need: qHtL = Hq2  q1

-1 Ltê2 q1 Hq1
-1  q2 Ltê2 )

It’s  useful  to look at  eq.  35  for  two special  cases.  First,  if  q1 and q2  lie in a plane  that goes  through the w-axis,
then they have the same axis vector and therefore they commute. In particular q2  q1

-1 = q1
-1  q2  and our rotation

has the form u  q  u  as you’d expect.  Second, if   q1 and q2  are both pure space vectors (having zero real compo-
nents)  then  q1

-1 = - q1  and  q2  q1
-1 = - q2  q1 = q2

-1  q1 = Hq1
-1  q2 L-1 ,  and  therefore  our  rotation  has  the  form

u  q  u-1 .
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Swapping Rotation Planes
Given a rotation in two orthogonal rotation planes, can we find a rotation that swaps the rolls of those planes? This
is surprisingly easy, given the machinery we already have. Suppose our rotation is represented by

(37)‰ǹ1  q1 q ‰ǹ2  q2

We already know that the tilt of one of the rotation planes is given by (assuming ǹ1   ǹ2  and q1 , q2  0.)

(38)qw = ‰ǹk  j = H-ǹ1  ǹ2L1ê2
All  we  need  to  do  is  spin  this  by  90°,  which  is  just  multiplying  by  ǹk ,  though  we’ll  probably  want  to  do  it
symmetrically.

(39)
u = ǹk

1ê2
= H1 + ǹkL ëè!!!2

Iu-1  ‰ǹ1  q1  uMq (u ‰ǹ2  q2 u-1 )

If  ǹ1 =  ǹ2 , or one of q1 , q2 = 0, then ǹk is undefined. You can choose any ǹk  which is perpendicular to which-
ever of ǹ1 or ǹ1  you can interpret.

Rotating a Triangle
Rotating from q1  to q2  only partially specifies a rotation.  The rotation in the plane perpendicular to q1 and q2 is
still undetermined. Rotation a pair of quaternions while keeping the angle between them fixed doesn’t completely
specify  the  4D rotation,  but  it’s  the next  step.  This is  equivalent  to spining a  rigid  triangle  around  one corner  to
some other arbitrary rotation.

Suppose we want  to rotate  a pair  of quaternions,  q1  and p1 ,  into another pair,  q2  and p2 .  For the sake  of argu-
ment, let’s first consider a brute force approach. We know how to find a rotation from q1  to q2 . If we describe it
in polar form

(40)‰ǹ1  qÅÅÅÅ2 q ‰ǹ2  qÅÅÅÅ2

we can then tweek it to add a rotation by q '  in the plane perpendicular to  q1  and q2 .

(41)‰ǹ1  q+q'ÅÅÅÅÅÅÅÅÅÅ2 q ‰ǹ2  q-q'ÅÅÅÅÅÅÅÅÅÅ2

It’s obvious that q '  is the angle between  ‰ǹ1  qÅÅÅÅ2 p1 ‰ǹ2  qÅÅÅÅ2  and p2  after being projected onto the plane perpendicu-
lar to  q1  and q2 . Not only is this messy, it breaks when  q1 = q2 . In that case, there is an entire 3D space that  p1
and p2  can lie in.

Let’s back up a bit. Remember that there is a simple way to rotate q1  into q2 , if we don’t care about the perpendic-
ular plane.

(42)Hq2  q1
-1 L q

If we look at this as a two step process — q1
-1  takes q1  to the real axis before we apply q2  — then we can insert

a completely general 3D rotation about the real axis which won’t interfere with finally getting to q2 .

(43)Hq2  u q1
-1 L q  Hu-1 L
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We can find out what u is by requiring that our rotation take p1  to p2 .

(44)Hq2  u q1
-1 L p1  Hu-1 L = p2

or

(45)u Hq1
-1  p1 L u-1 = q2

-1  p2

So u is the pure space rotation that takes q1
-1  p1  into q2

-1  p2 . (We know it’s a pure space rotation since  q1
-1  p1

and q2
-1  p2  have the same real component:  the cosine of the angle between each p and q.) We’ve reduced a 4D

problem rotating two quaternions to a 3D problem rotating one quaternion. 

We  know  how  to  rotate  one  quaternion.  We  can  use  eq.  35  if  we’re  careful  to  project  our  vectors  onto  the  3D
space first. The projections are easy to calculate: zero the real part and renormalize. In fact this is exactly the axis
vector of their polar form.

Let ǹ1 =  the axis vector of q1
-1  p1 , and

ǹ2 =  the axis vector of q2
-1  p2 .

So our constraint (eq. 45) looks like
u ǹ1  u-1 = ǹ2

There is an intuitive interpretation of this u . ǹ1 is a 90° rotation in the plane of the initial triangle. (Note that right-
multiplying by q1

-1  p1  will rotate q1  into p1 .) Similarly, ǹ2  is a 90° rotation in the plane of the final triangle. In
fact, if the ps and qs are both pure space vectors, then ǹ ~ p µ q , the normal vector to the triangle. What our u  is
really doing then, is rotating the “normal vector” of the first triangle onto the “normal vector” of the second. The
“normal vector” of a triangle isn’t defined in 4D, but these ǹi s are the 4D equivalent.

We can find u  using eq. 35,
 u = H- ǹ2  ǹ1 L1ê2  
 and our rotation now looks like

(46)Iq2 H- ǹ2  ǹ1 L1ê2 q1
-1 M q  H- ǹ2  ǹ1 L-1ê2

There’s  one  thing  you  have  to  watch  out  for.  When  ǹ1 = - ǹ2 ,  u =
è!!!!!!!

-1  which  isn’t  uniquely  defined.  This
happens when the triangle is flipped over by 180°. All we need to do is set u  to any space  direction that’s perpen-
dicular to ǹ1 .

Rotating a Tetrahedron (not yet ready)
Matrices
It is useful to be able to convert between a pair of quaternions representing a rotation, and a 4x4 matrix represent-
ing the same rotation.

(55)uL q uR õ Rq =

i

k

jjjjjjjjjjjj

r0 0 r0 1 r0 2 r0 3
r1 0 r1 1 r1 2 r1 3
r2 0 r2 1 r2 2 r2 3
r3 0 r3 1 r3 2 r3 3

y

{

zzzzzzzzzzzz
 

i

k

jjjjjjjjjjjj

q0
q1
q2
q3

y

{

zzzzzzzzzzzz

This is fairly easy to do, if you remember that rotations take one set of orthonormal basis vectors into another.
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‡ Quaternions ô Matrix

Each column of the matrix is the result of transforming one of our basis vectors, which in quaternion form are {1,
i, j, k}. Given that, we can practically write down our final matrix without any effort.

(56)R =

i

k

jjjjjjjjjjjjjj

HuL 1 uRL0 HuL i uRL0 HuL j uRL0 HuL k uRL0
HuL 1 uRL1 HuL i uRL1 HuL j uRL1 HuL k uRL1
HuL 1 uRL2 HuL i uRL2 HuL j uRL2 HuL k uRL2
HuL 1 uRL3 HuL i uRL3 HuL j uRL3 HuL k uRL3

y

{

zzzzzzzzzzzzzz

Let uL = Ha, b, c, dLand uR = He, f , g, hL . The explicit form of our matrix is then.

(57)R =

i

k

jjjjjjjjjjjj

ae - bf - cg - dh -be - af - dg + ch -ce + df - ag - bh -de - cf + bg - ah
be + af - dg + ch ae - bf + cg + dh -de - cf - bg + ah ce - df - ag - bh
ce + df + ag - bh de - cf - bg - ah ae + bf - cg + dh -be + af - dg - ch
de - cf + bg + ah -ce - df + ag - bh be - af - dg - ch ae + bf + cg - dh

y

{

zzzzzzzzzzzz

‡ Matrix ô Quaternions by Diagonalization

To go the other way, we first interpret each column of the matrix R as a quaternion.

(58)

r0 = Hr0 0, r1 0, r2 0, r3 0L
r1 = Hr0 1, r1 1, r2 1, r3 1L
r2 = Hr0 2, r1 2, r2 2, r3 2L
r3 = Hr0 3, r1 3, r2 3, r3 3L

We’ll  work  it  column  by  column.  What  transformation  will  take  1  to  r0 ?  It’s  r0  itself.  We  could  either  right
multiply,  left  multiply,  or  even  some  mix  of  the  two.  I’ll  choose  the  left  multiply.  Let  u1 = r0  Our  tentative
transformation is then u1 q 1 .

For  the  next  column,  we  ask  what  transformation  will  take  i  to  r1 before  u1  has  been  applied?  Clearly  it’s
u1

-1  r1  i-1 . (That is, undo the i, and then apply the r1 , then undo the u1 .) We can’t apply that to either the left or
right  without  clobbering  the  transformation  on  the  first  column,  so  we  split  it  across  both  sides.  Let
u2 = Hu1

-1  r1  i-1 L1ê2 . Our tentative transformation is now u1 u2  q u2 -1 .

(There  is  a  special  case  when  u2
2 = -1,  where  the  square  root  is  poorly  defined.  This  only  happens  when  the

diagonal of the matrix (the i component)  is -1. To clear it, we can rotate by 180° about any axis in the j-k  plane.
u2 = j  will work.)

(There is another interpretation for the i-1  in the last transformation. We know that simple rotation matrices have
cosine  of  the  angles  along  the  diagonal,  and  that  quaternion  rotations  have  the  cosine  in  the  real  component.
What’s an easy way to move the cosine in Hr1 L1 to the real component Hr1 L0 ? Multiply by -i.)

What’s  left  of  our  rotation  is  just  a 2-D  rotation about  the  x-axis.  We could  just  read  the sine  and  cosine  of the
rotation off of the 3rd row of the remaining matrix (which is u2

-1  u1
-1  r2 u2 , the transformed version of r2 ), but

let’s  do  it  formally.  What  transformation  will  take  j  to  r2 before  u1 and  u2 have  been  applied?  Let
u3 = Hu2

-1  u1
-1  r2 u2 j-1 L1ê2 . Our final transformation is now u1 u2  u3  q u3 -1  u2 -1 .

(Again there is a special case where u3 2 = -1. This time it’s due to a -1 on the j component. To clear it, we must
rotate  by  180°  about  the  i  axis,  so  u3 = i .  We  can’t  use  the  k  axis:  it  would  clobber  the  second  column  of  the
matrix which we had cleared with u2 .)
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To summarize:

(59)

u1 = r0
u2 = Hu1

-1  r1  i-1 L1ê2
u3 = HHu1 u2 L-1  r2 u2 j-1 L1ê2

uL = u1 u2  u3
uR = Hu2  u3 L-1

(While this is correct and (somewhat) intuitive, it is computationally intensive. Can I simplify?)

‡ Matrix ô Quaternions by Geometry

Just use the Rotate a Tetrahedron method described above.  Since a matrix rotates {1, i, j,  k} into the columns of
the matrix, and since any column of the matrix can be determined by the other three, we can choose any three of
the four  columns  as our  tetrahedron.  Since  the matrix  columns  are  also orthogonal,  we don’t  have  to project  the
quaternions onto the 3-space. (pi = p̀i  and ri = r̀i = rè i  in the notation of that section.)

The resulting algorithm is actually quite similar to the “by Diagonalization” method above. (For the "simple, two-
step" version at least.) It’s just the interpretation that’s different.

Summary
We’ve reviewed the nature of rotations in four dimensions, of rotations in the complex plane, and the mathematics
of quaternions. Then we’ve described how rotations can act as rotations in certain limited planes before attacking
the general case. We’ve shown how to calculate the quaternion pair that describes rotation in particular planes, and
how to calculate the planes given the quaternion pair.

A general  4D rotation of quaternion q, given by ‰ǹ1 q1  q  ‰ǹ2 q2 , is a rotation by q1 + q2 in the qw -
qi plane, and a rotation by q1 - q2 in the qj -qk plane, where, if ǹ1 ≠ ±ǹ2

qw = ‰ǹk  j = H-ǹ1  ǹ2L1ê2
 qi = ǹ1 +ǹ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»ǹ1 +ǹ2» = ǹi

 qj = ǹ1 -ǹ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»ǹ1 -ǹ2» = ǹj

 qk = ‰ǹk  j  ǹk = qw  ǹi  ǹj
If  ǹ1 = -ǹ2 then replace q2 Ø -q2 and ǹ2 Ø -ǹ2 , and then...
If  ǹ1 = ǹ2 then qw = 1 , qi = ǹ1 , and the second rotation is a 3-space rotation about the ǹ1 axis.

Some properties of this rotation are:
The rotation planes intersect the 3-space along the directions ǹi and ǹk .
The rotation planes form angles j and j+p/2 with the w-axis.

Some special cases of particular interest are:
If q1 = q2 then the rotation is in one plane, leaving the orthogonal plane fixed.
If q1 = q2 = q ê2 and ǹ1 = ǹ2 then the rotation plane passes through the w-axis.
If q1 = q2 = q ê 2and  ǹ1 = -ǹ2 then the rotation plane is entirely within the 3-space, perpendicular with the

w-axis.
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The rotation that takes q1 into q2 while leaving the perpendicular rotation plane fixed can be written
 Hq2  q1

-1 L1ê2  q Hq1
-1  q2 L1ê2  
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