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Abstract: The exceptional Lie group G2  can be viewed as the group of automorphisms on the 
octonians, the largest of the normed division algebras. In this paper I will attempt to illustrate the 
nature of G2  and present a representation that emphasizes its symmetries. In particular, I derive a set 
of generators of G2  that are related to each other by simple permutations of the coordinates.

Octonians
The octonians are an eight dimensional  extension of the quaternions (which are in turn and extension of complex
numbers)  which are normed (the product of the norm is the norm of the product)  and they are a division algebra
(every non-zero element has an inverse.) There are two common ways of defining them.

‡ By doubling

You can build the octonians by repeated use of the Cayley-Dickson construction. [3]

The complex numbers can be defined as an ordered pair of real numbers Hx, yL  with the multiplication rule
Ha, bL Hc, dL = Ha c - b d, a d + b cL

This  is  equivalent  to  adding  a  new  element  Â  to  the  real  numbers,  where  Â2 = -1.Complex  numbers  are  com-
monly written in the form

Ha, bL = a + Â b
An important operation is complex conjugation, a reflection on the imaginary axis.

Ha, bLêêêêêêêê
= Ha, -bL , a + Â b

êêêêêêêêêêê
= a - Â b

The quaternions can be defined as an ordered pair of complex numbers with the multiplication rule
Ha, bL Hc, dL = Ha c - b dêê, aêê d + b cL

This is equivalent to introducing a second imaginary element ¸  where ¸2 = -1, and Â ¸ = - ¸ Â , which implies a
third imaginary element, ‰ = Â ¸ . Quaternions are commonly written in the form

w + Â x + ¸ y + ‰ z
Quaternion conjugation is a reflection in the 3D imaginary space.

Ha, bLêêêêêêêê
= Haêê, -bL , w + Â x + ¸ y + ‰ zêêêêêêêêêêêêêêêêêêêêêêêêêêêêê

= w - Â x - ¸ y - ‰ z

Finally, octonians can be defined as an ordered pair of quaternions with the multiplication rule
Ha, bL Hc, dL = Ha c - dêê b, a d + b cêêL

This is equivalent  to introducing a forth imaginary element Â ,  where Â2 = -1, which in turn implies three more:
‚Â ,  „Â ,  and  ‰Â ,  which  all  anti-commute  and  which  all  square  to -1.  Octonians  are commonly  written  in terms of
two quaternions and Â .

Ha, bL = a + b Â
Octonian conjugation is a reflection in the 7D imaginary space.

Ha, bLêêêêêêêê
= Haêê, -bL , a + b Âêêêêêêêêêê

= aêê - b Â



Finally, octonians can be defined as an ordered pair of quaternions with the multiplication rule
Ha, bL Hc, dL = Ha c - d

êê
b, a d + b cêêL

This is equivalent  to introducing a forth imaginary element Â ,  where Â2 = -1, which in turn implies three more:
‚Â ,  „Â ,  and  ‰Â ,  which  all  anti-commute  and  which  all  square  to -1.  Octonians  are commonly  written  in terms of
two quaternions and Â .

Ha, bL = a + b Â
Octonian conjugation is a reflection in the 7D imaginary space.

Ha, bLêêêêêêêê
= Haêê, -bL , a + b Âêêêêêêêêêê

= aêê - b Â

Octonians are non-associative. In particular
Â H¸ ÂL = -H Â ¸L Â

This is clearly necessary if we are to require that H‰ÂL2 = HH‚ „L ÂL2 = -1.

It's important to note that these choices of basis are purely arbitrary. You can chose any purely imaginary octonian
to be the generator of the complex numbers. You can chose any second imaginary octonian, as long as it's orthogo-
nal to the first to be your ¸, and get the quaternions. You can choose any third octonian, orthogonal to Â, ¸, and ‰,
to be your Â, and generate the full octonians. There are no preferred directions, other than the real axis.

‡ By 7-cycle multiplication rules

An  equivalent  way  of  defining  the  octonians  (described  in  [2])  is  by  giving  a  basis,  Ân for  n œ 81. .. 7<with  the
multiplication rules

Ân
2 = -1, 

Ân Ân+1 = -Ân+1 Ân = Ân+3

Ân+1 Ân+3 = -Ân+3 Ân+1 = Ân

Ân+3 Ân = -Ân Ân+3 = Ân+1

(where the subscripts cycle modulo 7). A general octonian can be written
x = a0 + ⁄n=1

7 an  Ân

and the octonian conjugate can be written
xêê = a0 - ⁄n=1

7 an  Ân

There is a simple relationship between the doubling basis and the 7-cycle basis.
Â = Â1 , ¸ = Â2 , Â = Â3 , ‰ = Â4 , „Â = Â5 , -‰Â = Â6 , ‚Â = Â7

An advantage  of  the  7-cycle  basis  is  that  whenever  you  have a  relationship  between  octonians,  you can  quickly
generate seven other relationships  by incrementing  the indices. In particular (and I emphasize this because I'll be
using  it  a  lot),  any  two  octonians  and  their  product,  for  example  Ân , Ân+1 ,  and  Ân+3 for  any  n,  are  in  the  same
quaternion subalgebra and are associative.

‡ What they do

The norm of a real, complex, quaternion, or octonian number can be written
PxT = x xêê

For octonians, that can be expanded as
PxT = x xêê = a0

2 + ⁄n=1
7 an

2

 A unit is a number (real, complex, quaternion, or octonian) whose norm is 1. Any unit u  can be written as
u = ‰ǹ q = cosHqL + ǹ sinHqL

where ǹ  is a unit with zero real part and q  is a real angle of rotation. (In other words, Euler's formula generalizes
to quaternions and octonians.) For complex numbers, multiplication by a unit, ‰nq  z , is a simple rotation about the
origin by angle q . Multiplication by quaternion units is also a rotation. It's probably easiest to explain by showing
the equivalent matrix.
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‰Âq  x   Ø  

i

k

jjjjjjjjjjjj

cosHqL -sinHqL 0 0
sinHqL cosHqL 0 0

0 0 cosHqL -sinHqL
0 0 sinHqL cosHqL

y

{

zzzzzzzzzzzz
 x

In words, left multiplying by ‰Âq  rotates by q in the w-Â plane and also in the ¸-‰ plane. Right multiplying give the
opposite rotation in only the second plane.

x ‰Âq   Ø  

i

k

jjjjjjjjjjjj

cosHqL -sinHqL 0 0
sinHqL cosHqL 0 0

0 0 cosHqL sinHqL
0 0 -sinHqL cosHqL

y

{

zzzzzzzzzzzz
 x

We can split the difference in two ways

‰Âqê2  x ‰Âqê2   Ø  

i

k

jjjjjjjjjjjj

cosHqL -sinHqL 0 0
sinHqL cosHqL 0 0

0 0 1 0
0 0 0 1

y

{

zzzzzzzzzzzz
 x

‰Âqê2  x ‰-Âqê2   Ø  

i

k

jjjjjjjjjjjj

1 0 0 0
0 1 0 0
0 0 cosHqL sinHqL
0 0 -sinHqL cosHqL

y

{

zzzzzzzzzzzz
 x

One  can  see  that  with  these  pieces  one  can  build  up  completely  general  groups  of  rotations.  In  fact,  give  an
arbitrary quaternion unit u , the operation u x uêê  is a general 3D rotation, and given two arbitrary unit quaternions u
and v , the operation u x v  is a general 4D rotation.

We can find the generators of the Lie algebra by taking the derivative near the identity (finding the tangent space
as they say).  The matrix  you get  is the same as  if  you'd set  the angle to 90°.  It gives  you a much  more compact
version of the structure of the group.

Â x   Ø  

i

k

jjjjjjjjjjjj

0 -1 0 0
1 0 0 0
0 0 0 -1
0 0 1 0

y

{

zzzzzzzzzzzz
 x , ¸ x   Ø  

i

k

jjjjjjjjjjjj

0 0 -1 0
0 0 0 1
1 0 0 0
0 -1 0 0

y

{

zzzzzzzzzzzz
 x , ‰ x   Ø  

i

k

jjjjjjjjjjjj

0 0 0 -1
0 0 -1 0
0 1 0 0
1 0 0 0

y

{

zzzzzzzzzzzz
 x

Note that the matrix forms of these operations obey the same algebra as the operators themselves.

The equivalent matrices for the octonians are similar. In the 7-cycle basis we have

Â1  x  Ø 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 -1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 -1 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

, x Â1  Ø 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 -1 0 0
0 0 0 -1 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

There are several interesting things to note.
1) Â1  rotates in the planes: w-1, 2-4, 3-7, and 5-6.
2) The rotation planes are related to the quaternion subalgebras which contain Â1 : 124, 713, and 561.
3) Right  multiplying has  the  same rotation in the plane through the  real axis as left  multiplying  does but

the opposite rotation everywhere else.
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There are several interesting things to note.
1) Â1  rotates in the planes: w-1, 2-4, 3-7, and 5-6.
2) The rotation planes are related to the quaternion subalgebras which contain Â1 : 124, 713, and 561.
3) Right  multiplying has  the  same rotation in the plane through the  real axis as left  multiplying  does but

the opposite rotation everywhere else.

Clearly ‰ǹ qê2  x ‰ǹ qê2  is a rotation in the Real-ǹ  plane that is fixed everywhere else. Using that alone, we can build
up completely general rotations in eight dimensions. Unlike in the quaternion case, the non-associativity prevents
us  from reducing  that  to  multiplying  by  one  or  two  octonians.  However,  it  can  be  proven  that  (see  Conway  [2]
section 8.4) any general rotation can be built up from at most seven left multiplications.

Elements and Generators of G2

The group G2  can  be represented  by  the group  of  automorphisms  on  the  octonians.  That  is,  elements  of G2  are
mappings from the octonians onto themselves which preserve multiplication. If g  is an element of G2 , then

gHxL gHyL = gHx yL
It  can  be  shown  (see  Cacciatori  et.  al.  [ref.  1],  section  2)  that  if  g  is  a  series  of  left  handed  multiplications  by
purely imaginary octonians, and if gH1L = 1, then g œ G2 .

Following ref. [1] we define
gabc HxL = -HHc bL aL Ha Hb Hc xLLL

where,  a ,  b ,  c ,  and  Hc bL a  are  all  purely  imaginary  octonians.  Clearly  our  choice  of  Hc bL a   guarantees
gabc H1L = 1, so gabc œ G2 . The condition that Hc bL a  is imaginary means that HcbL ¶ a .

We next add a parameter to gabc  so we can find the tangents near the identity. Still following ref. [1] we consider
gat  bc  where  at = c cosHtL + a sinHtL ,  with  the  additional  requirements  that  a ¶ b ,  b ¶ c ,  and  c ¶ a .  Then  by
definition

Cabc = dÅÅÅÅÅÅdt »t=0 gat  bc

is an element of LieHG2 L .

To quote ref. [1], "With suitable choices of the elements a , b , and c  among the elements of the canonical basis of
Œ  we can find a basis of this  algebra."  It's the "suitable choices"  that I'm interested in.  I think it's  informative to
examine all 210 (7 µ 6 µ 5) choices and see what's there.

210 Combinations

‡ Overall sign

Our first identity is
Cabc = -Ccba

I know because I've tried them all,  but you could probably prove it by carefully permuting the octonians in gabc .
(to do...)

‡ Quaternion Subalgebras

If a , b , and c  are part of a quaternion subalgebra ( Â1 , Â2 , and Â4  for example) then HHc bL aL is real, and our condi-
tions  on  the  indices  of  gabc  aren't  satisfied.  Clearly  this  is  a  non-starter.  Although  C124  is  not  an  element  of
LieHG2 L , it's still interesting. Compare it to right multiplying by Â2 .
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x Â2 Ø

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 -1 0 0 0 0 0
0 0 0 0 -1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

, C124 Ø

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Note that C124  is just Â2  with the axes 1, 2, and 4 (along with the real axis) projected out. This is true for each of
the 7-cycle equivalents, and for the 6 permutations of the indices:

When Âa ,  Âb ,  and  Âc  generate  a  quaternion  algebra,  then  Cabc  is  equivalent  to  right  multiplying  by  Âb  and  then
projecting out the real, a , b , and c axes.

‡ Complements to the Quaternion Subalgebras

Just as when we added Â  to the quaternions to get the additional basis elements ‚Â , „Â , and ‰Â , we can multiply the
indices of a quaternion Cabc  by something outside the quaternion space, call it d , to get Cad, bd, cd . It doesn't matter
if you right or left multiply — d  anticommutes with everything else and Cabc  is an even function of each index.

There  are  four  choices  for  the  extra  axis.  C124 ,  for  example,  can  be  modified  by  Â3 ,  Â5 ,  Â6 ,  or  Â7 ,  giving  us  the
following  elements  of  LieHG2 L .  (I'm  going  to  start  suppressing  the  first  row  and  column  of  the  matrices,  since
elements of G2  always leave the real axis alone.)

C13,23,43 = C756 , C15,25,45 = C637 , C16,26,46 = C573 , C17,27,47 = C365

C756  Ø 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

, C637  Ø 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

, 

C573  Ø 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

, C365  Ø 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

Curiously,  the choice almost doesn't matter.  We find that C756 = C365 = -C637 = -C573 . More than that, when
we introduced Âa  into C124 , it had the effect of reflecting the a th row and column. For Â3  and Â5 that had the effect
of reversing the direction of the 3-5 plane rotation.  For Â6  and Â7 , it  reversed the direction of the 6-7 plane rota-
tion. Since these Cs all represent rotations in the same two planes, they all represent the same operation, up to an
overall sign.
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Constructing one of these "quaternion complements" tends to obscure the original quaternion basis. To avoid that,
I'll introduce a new notation.

Cabcd = Cad,bd,cd

‡ Dependent Triplets

When  we  have  four  versions  of  the  same  thing  with  some  extra  signs,  is  there  a  preferred  choice?  Is  there  one
that's easier to use?

Recall  that  C124  was  a  projection  of  Â2 .  What  else  is  a  projection  of  Â2 ?  It  turns  out  there  are  three  of  them,
corresponding  to  the  cyclic  permutations  Hi, i + 1, i + 3L ,  H i + 3, i, i + 1L ,  and  H i + 1, i + 3, iL ,  adjusted  so  that
there is a '2' in the middle of each.

C124 , C523 , C726

If  we turn each of these  into an element of LieHG2 L  with the corresponding Âi-1  (which gives  a more convenient
choice of signs than Âi+2 , Âi+4 , or Âi+5  do), we get

C1247 = C365  ,C5231 = C647 , C7265 = C431

or 

C1247 Ø

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

,

C5231 Ø

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

-1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

,

C7265 Ø

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 -1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 -1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

Note that:
These were based on Ca2c  and their 2nd row and column is zero.
Each has two of the three rotation planes that the Â2  matrix has.
Their sum is zero.
Their product is zero.
They commute with each other.
They are not orthogonal, but the difference between any two is orthogonal to the third.

The orthonormality condition is (from ref. [1], sec 2)
TrHCI  CJ L = -4 dI J

from which we find that (for example)

C1247  and 1ÅÅÅÅÅÅÅÅÅÅè!!!!3  HC5231 - C7265 L = 1ÅÅÅÅÅÅÅÅÅÅè!!!!3

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0

-2 0 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
are orthogonal to each other and normalized.
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The orthonormality condition is (from ref. [1], sec 2)
TrHCI  CJ L = -4 dI J

from which we find that (for example)

C1247  and 1ÅÅÅÅÅÅÅÅÅÅè!!!!3  HC5231 - C7265 L = 1ÅÅÅÅÅÅÅÅÅÅè!!!!3

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0

-2 0 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
are orthogonal to each other and normalized.

In fact, these matrices act like three vectors on a plane, which are spaced 120° apart.

e1

e2

e3

e¶=
1

ÅÅÅÅÅÅÅÅÅÅè!!!!
3

He2-e3L

We can write down the corresponding rotation matrix by inspection. We want a rotation that maps
C1247 Ø C5231 Ø C7265 Ø C1247

To do that, it must map the indices according to
Â1 Ø Â5 Ø Â7 Ø Â1 , Â4 Ø Â3 Ø Â6 Ø Â4

The matrix for that is obviously

S =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
1 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

, S3 = 1, S-1 = ST = S2
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ST C1247 S = C5231 ST C5231 S = C7265 ST C7265 S = C1247

It's easy to write down a similar matrix for any other dependent triplet.

‡ Counting to 210

We have examined them all. There are
3 cyclic permutations and 7 incremented version of C124 . That's 21 combinations which are not in LieHG2 L .
There are 4 ways to convert each of the above 21 into an element of LieHG2 L , though they are redundant.
Lastly, every Cabc = -Ccba

That's
3µ7µ(1+4)µ2 = 210

Of these combinations, only 21 are significant. 42 are not even in LieHG2 L  and the rest are really copies of the 21,
up to overall sign. 

The 21 are not orthogonal. The 21 fall into seven groups of 3, and each group of 3 can be arranged as two orthogo-
nal elements, so really there are 14 independent elements, which is the number of generators G2  requires.

The Generators of LieHG2L
I  will  call  my  generators  Ca,i  where  a œ 81. .7<  is  the  2nd  index  in  Cabcd ,  and  i œ 81, 2, 3<  says  which  cyclic
permutation of the subalgebra it belongs to. More explicitly

Ca,1 = Ca+3,a,a+1,a-1

Ca,2 = Ca-1,a,a+2,a-2 all right hand indices incremented modulo 7
Ca,3 = Ca-2,a,a+1,a-3

These matrices are related by the 7-cycle and 3-cycle transformations (aren't they pretty?)

L =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

, S1 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

, Sa+1 = LT  Sa  L

Ca,i+1 = Sa
T  Ca,i  Sa , Ca+1,i = LT  Ca,i  L
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My actual matrices are (for Crow, column ) 

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 -1 0 0
0 0 1 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 -1 0 0 0 0 0
0 0 0 0 0 -1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 -1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 -1 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

-1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 -1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 -1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 -1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 -1
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 -1 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 -1 0 0 0

-1 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 -1 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 0 0 0 0 0
-1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 -1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 -1 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 -1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 -1
0 0 1 0 0 0 0
0 0 0 0 1 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 -1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 -1 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 -1 0
0 0 -1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 0 0 0 0

-1 0 0 0 0 0 0
0 0 0 1 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 -1 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 -1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 -1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

-1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 -1 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0
0 0 0 0 0 -1 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 -1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 0 0
0 0 0 0 0 0 0

-1 0 0 0 0 0 0
0 0 0 0 -1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 -1 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 -1 0 0 0 0 0
0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

Understanding G2 9



If we are going to build minimal orthogonal sets from these, we'll also need to define
Da,i = 1ÅÅÅÅÅÅÅÅÅÅè!!!!3  HCa,i+1 - Ca,i+2 L (i  index wraps around modulo 3)

so that Ca,i  and Da,i  are an orthonormal set for any given a  and i .

‡ Commutators

Matrices in the same row commute.
@Ca,i , Ca, j D = 0 " a œ 81. .7<, i, j œ 81, 2, 3<

A few commutators give a factor of ±2. These form su(2) subgroups.
@Ca,1 , Ca+1,2 D = 2 Ca+3,3 " a œ 81. .7<  and cyclic permutations of the Ca,i s.
@Ca,1 , Ca+2,2 D = 2 Ca+6,3

For every su(2) based commutator like
@Ca,1, Cb,2D = 2 Cc,3

there are several related commutators where you change the second index of one Ci, j .
@Ca,1, Cb,1D = -Cc,3 @Ca,1, Cb,3D = -Cc,3
@Ca,2, Cb,2D = -Cc,3 @Ca,3, Cb,2D = -Cc,3

Thus,  changing  only one  of the  3-cycle  indices  gives  the  same commutator,  except for  a factor  of -1 ê2. (Or, if
you prefer, cosH120 °L , as if the matrix had been rotated a third of a circle.)

If you change both of the 3-cycle indices inside the commutator the third 3-cycle index will change as well. How
it changes depends on the if the first two change in the same direction. If we have

@Ca,1 , Cb,2 D = 2 Cc,3

then
@Ca,1+1 , Cb,2+1 D = -Cc,3+1 @Ca,1-1 , Cb,2-1 D = -Cc,3+1

@Ca,1+1 , Cb,2-1 D = -Cc,3-1 @Ca,1-1 , Cb,2+1 D = -Cc,3-1

or
@Ca,2 , Cb,3 D = -Cc,1 @Ca,3 , Cb,1 D = -Cc,1

@Ca,2 , Cb,1 D = -Cc,2 @Ca,3 , Cb,3 D = -Cc,2

Communting  a  C  with  a  D  is  similar  to  rotating  a  C  by  90°.  (Just  as  "rotating"  a  introduced  a  factor  of  a,
"rotating" a introduced a factor of a.) This commutator will be important when we go looking for su(3) subgroups
of G2 .

@Ca,1 , Db,2 D = @Ca,1 , Cb,3 - Cb,1 D ëè!!!3
= H-Cc,3 + Cc,3 L ëè!!!3
= 0

Continuing in that vein we can rotate by any multiple of p/6.
@Ca,1 , Cb,2 D = 2 Cc,3 cosH0L = 2 Cc,3

@Ca,1 , Db,2 D = 2 Cc,3 cosHp ê 2L = 0
@Ca,1 , Cb,3 D = 2 Cc,3 cosH2 p ê 3L = - Cc,3

@Ca,1 , Db,3 D = 2 Cc,3 cosH7 p ê6L = -
è!!!3 Cc,3

@Ca,1 , Cb,1 D = 2 Cc,3 cosH4 p ê 3L = - Cc,3

@Ca,1 , Db,1 D = 2 Cc,3 cosH11 p ê 6L =
è!!!3 Cc,3
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The su(2) based @D, DD  commutators are (given @Ca,1 , Cb,2D = 2 Cc,3 )
@Da,1 , Db,2D = @Ca,1+1 - Ca,1-1 , Cb,2+1 - Cb,2-1D ê3

= @Ca,1+1 , Cb,2+1 D - @Ca,1+1 , Cb,2-1 D - @Ca,1-1 , Cb,2+1 D + @Ca,1-1 , Cb,2-1 D ê3
= H-Cc,3+1 + Cc,3-1 + Cc,3-1 - Cc,3+1 L ê3
= -2 Dc,3 ëè!!!3

Thus, it's the same form as for @Ca,1 , Cb,2 D  but with a different factor.

Changing one of the 3-cycle indices is similar to the @C, CD  commutators.
@Da,1, Db,1D = Dc,3  ëè!!!3 @Da,1, Db,3D = Dc,3  ëè!!!3
@Da,2, Db,2D = Dc,3  ëè!!!3 @Da,3, Db,2D = Dc,3  ëè!!!3

Changing both of the 3-cycle  indices gives you mixed terms. Because our notation is redundant,  there are lots of
ways of expressing the result. The following is simplest, in my opinion

@Da,1+1, Db,2+1D = -Cc,1 - 2ÅÅÅ3  Cc,2 + 2ÅÅÅ3  Cc,3 = -Cc,1 - 2ÅÅÅÅÅÅÅè!!!!3  Dc,1
@Da,1+1, Db,2-1D = + 2ÅÅÅ3  Cc,1 + Cc,2 - 2ÅÅÅ3  Cc,3 = Cc,2 - 2ÅÅÅÅÅÅÅè!!!!3  Dc,2
@Da,1-1, Db,2+1D = + 2ÅÅÅ3  Cc,1 + Cc,2 - 2ÅÅÅ3  Cc,3 = Cc,2 - 2ÅÅÅÅÅÅÅè!!!!3  Dc,2
@Da,1-1, Db,2-1D = -Cc,1 - 2ÅÅÅ3  Cc,2 + 2ÅÅÅ3  Cc,3 = -Cc,1 - 2ÅÅÅÅÅÅÅè!!!!3  Dc,1

Note that the third 3-cycle index moves in the opposite direction as the corresponding C  commutators.

As an example, here are all of the @C1,i , C2, j D  related commutators.

@C1,1 , C2,1D = -C4,3 @C1,1 , D2,1 D =
è!!!3 C4,3 @D1,1 , D2,1 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3

@C1,1 , C2,2D = 2 C4,3 @C1,1 , D2,2 D = 0 @D1,1 , D2,2 D = - 2 D4,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,1 , C2,3D = -C4,3 @C1,1 , D2,3 D = -

è!!!3 C4,3 @D1,1 , D2,3 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,2 , C2,1D = -C4,2 @C1,2 , D2,1 D = -D4,2 @D1,2 , D2,1 D = C4,2 - 2 D4,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,2 , C2,2D = -C4,3 @C1,2 , D2,2 D = -D4,3 @D1,2 , D2,2 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,2 , C2,3D = -C4,1 @C1,2 , D2,3 D = -D4,1 @D1,2 , D2,3 D = -C4,1 - 2 D4,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,3 , C2,1D = -C4,1 @C1,3 , D2,1 D = D4,1 @D1,3 , D2,1 D = -C4,1 - 2 D4,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,3 , C2,2D = -C4,3 @C1,3 , D2,2 D = D4,3 @D1,3 , D2,2 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,3 , C2,3D = -C4,2 @C1,3 , D2,3 D = D4,2 @D1,3 , D2,3 D = C4,2 - 2 D4,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3

@C2,1 , C4,1D = -C1,3 @C2,1 , D4,1 D = D1,3 @D2,1 , D4,1 D = C1,3 - 2 D1,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,1 , C4,2D = -C1,2 @C2,1 , D4,2 D = D1,2 @D2,1 , D4,2 D = -C1,2 - 2 D1,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,1 , C4,3D = -C1,1 @C2,1 , D4,3 D = D1,1 @D2,1 , D4,3 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,2 , C4,1D = -C1,1 @C2,2 , D4,1 D = -

è!!!3 C1,1 @D2,2 , D4,1 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,2 , C4,2D = -C1,1 @C2,2 , D4,2 D =

è!!!3 C1,1 @D2,2 , D4,2 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,2 , C4,3D = 2 C1,1 @C2,2 , D4,3 D = 0 @D2,2 , D4,3 D = - 2 D1,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,3 , C4,1D = -C1,2 @C2,3 , D4,1 D = -D1,2 @D2,3 , D4,1 D = -C1,2 - 2 D1,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,3 , C4,2D = -C1,3 @C2,3 , D4,2 D = -D1,3 @D2,3 , D4,2 D = C1,3 - 2 D1,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,3 , C4,3D = -C1,1 @C2,3 , D4,3 D = -D1,1 @D2,3 , D4,3 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3

@C4,1 , C1,1D = -C2,2 @C4,1 , D1,1 D = -D2,2 @D4,1 , D1,1D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,1 , C1,2D = -C2,3 @C4,1 , D1,2 D = -D2,3 @D4,1 , D1,2D = -C2,3 - 2 D2,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,1 , C1,3D = -C2,1 @C4,1 , D1,3 D = -D2,1 @D4,1 , D1,3D = C2,1 - 2 D2,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,2 , C1,1D = -C2,2 @C4,2 , D1,1 D = D2,2 @D4,2 , D1,1D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,2 , C1,2D = -C2,1 @C4,2 , D1,2 D = D2,1 @D4,2 , D1,2D = C2,1 - 2 D2,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,2 , C1,3D = -C2,3 @C4,2 , D1,3 D = D2,3 @D4,2 , D1,3D = -C2,3 - 2 D2,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,3 , C1,1D = 2 C2,2 @C4,3 , D1,1 D = 0 @D4,3 , D1,1D = - 2 D2,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,3 , C1,2D = -C2,2 @C4,3 , D1,2 D = -

è!!!3 C2,2 @D4,3 , D1,2D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,3 , C1,3D = -C2,2 @C4,3 , D1,3 D =

è!!!3 C2,2 @D4,3 , D1,3D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
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@C1,1 , C2,1D = -C4,3 @C1,1 , D2,1 D =
è!!!3 C4,3 @D1,1 , D2,1 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3

@C1,1 , C2,2D = 2 C4,3 @C1,1 , D2,2 D = 0 @D1,1 , D2,2 D = - 2 D4,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,1 , C2,3D = -C4,3 @C1,1 , D2,3 D = -

è!!!3 C4,3 @D1,1 , D2,3 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,2 , C2,1D = -C4,2 @C1,2 , D2,1 D = -D4,2 @D1,2 , D2,1 D = C4,2 - 2 D4,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,2 , C2,2D = -C4,3 @C1,2 , D2,2 D = -D4,3 @D1,2 , D2,2 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,2 , C2,3D = -C4,1 @C1,2 , D2,3 D = -D4,1 @D1,2 , D2,3 D = -C4,1 - 2 D4,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,3 , C2,1D = -C4,1 @C1,3 , D2,1 D = D4,1 @D1,3 , D2,1 D = -C4,1 - 2 D4,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,3 , C2,2D = -C4,3 @C1,3 , D2,2 D = D4,3 @D1,3 , D2,2 D = D4,3ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C1,3 , C2,3D = -C4,2 @C1,3 , D2,3 D = D4,2 @D1,3 , D2,3 D = C4,2 - 2 D4,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3

@C2,1 , C4,1D = -C1,3 @C2,1 , D4,1 D = D1,3 @D2,1 , D4,1 D = C1,3 - 2 D1,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,1 , C4,2D = -C1,2 @C2,1 , D4,2 D = D1,2 @D2,1 , D4,2 D = -C1,2 - 2 D1,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,1 , C4,3D = -C1,1 @C2,1 , D4,3 D = D1,1 @D2,1 , D4,3 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,2 , C4,1D = -C1,1 @C2,2 , D4,1 D = -

è!!!3 C1,1 @D2,2 , D4,1 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,2 , C4,2D = -C1,1 @C2,2 , D4,2 D = è!!!3 C1,1 @D2,2 , D4,2 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,2 , C4,3D = 2 C1,1 @C2,2 , D4,3 D = 0 @D2,2 , D4,3 D = - 2 D1,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,3 , C4,1D = -C1,2 @C2,3 , D4,1 D = -D1,2 @D2,3 , D4,1 D = -C1,2 - 2 D1,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,3 , C4,2D = -C1,3 @C2,3 , D4,2 D = -D1,3 @D2,3 , D4,2 D = C1,3 - 2 D1,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C2,3 , C4,3D = -C1,1 @C2,3 , D4,3 D = -D1,1 @D2,3 , D4,3 D = D1,1ÅÅÅÅÅÅÅÅÅÅÅè!!!!3

@C4,1 , C1,1D = -C2,2 @C4,1 , D1,1 D = -D2,2 @D4,1 , D1,1D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,1 , C1,2D = -C2,3 @C4,1 , D1,2 D = -D2,3 @D4,1 , D1,2D = -C2,3 - 2 D2,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,1 , C1,3D = -C2,1 @C4,1 , D1,3 D = -D2,1 @D4,1 , D1,3D = C2,1 - 2 D2,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,2 , C1,1D = -C2,2 @C4,2 , D1,1 D = D2,2 @D4,2 , D1,1D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,2 , C1,2D = -C2,1 @C4,2 , D1,2 D = D2,1 @D4,2 , D1,2D = C2,1 - 2 D2,1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,2 , C1,3D = -C2,3 @C4,2 , D1,3 D = D2,3 @D4,2 , D1,3D = -C2,3 - 2 D2,3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,3 , C1,1D = 2 C2,2 @C4,3 , D1,1 D = 0 @D4,3 , D1,1D = - 2 D2,2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,3 , C1,2D = -C2,2 @C4,3 , D1,2 D = -

è!!!3 C2,2 @D4,3 , D1,2D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3
@C4,3 , C1,3D = -C2,2 @C4,3 , D1,3 D =

è!!!3 C2,2 @D4,3 , D1,3D = D2,2ÅÅÅÅÅÅÅÅÅÅÅè!!!!3

Converting to Other Notations

‡ Pauli Matrices / su(2) Subgroups

The Pauli matrices [ref. 4, 6] obey the commutation relations
@si , s j D = 2 Â ijk sk

Note,  however,  that  the  Pauli  matrices  are  hermitian,  while  our  Ca,i s  are  antihermitian.  We  need  to  find  the
commutators for the Â si s.

@Â si , Â s j D = -2 ijk HÂ sk L
It's easy to find a match.

Â s1 = C4,3 Â s2 = C2,2 Â s3 = C1,1

Note  that  these  three  Ca,i s  are  exactly  the  matrices  for  which  rows  and  columns  1,  2,  and  4  are  zero.  These  are
actually 4x4 matrices, which is what you'd expect for a real representation of su(2).

Clearly  this is  not the only representation  of su(2).  We can cyclically  permute  C4,3 ,  C2,2 ,  and C1,1  (giving three
trivial choices), use their Da,i  equivalents (in an anti-cyclic order), or we can increment the first indices of all three
(giving seven distinct choices.)
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‡ Gell-Mann Matrices / su(3) Subgroups

Like the Pauli matrices, the Gell-Mann matrices [ref. 5, 6] are hermitian, so we are obliged to multiply them by Â
before comparing them to the Ca, b s. The first three are a copy of the Pauli matrices, so we start with

Â l1 = C4,3 Â l2 = C2,2 Â l3 = C1,1

It's an obvious guess that l8  is going to be built from the degenerate triplet that l3  belongs to. For example
Â l8 = D1,1 = 1ÅÅÅÅÅÅÅÅÅÅè!!!!3  HC1,2 - C1,3 L

commutes with Â l1 , Â l2 , and Â l3  as required.

l4  and  l5  are part  of  another su(2)  subgroup,  but  their  commutator  is  a  mix of  l3  and  l8 .  We're  looking  for  a
commutator like

@Â l4 , Â l5 D = -2 Â I 1ÅÅÅÅ2  l3 +
è!!!!3ÅÅÅÅÅÅÅÅÅÅ2  l8 M = - HC1,1 + C1,2 - C1,3 L = 2 C1,3

l6  and l7  are similar.
@Â l6 , Â l7 D = -2 Â I- 1ÅÅÅÅ2  l3 +

è!!!!3ÅÅÅÅÅÅÅÅÅÅ2  l8 M = - H-C1,1 + C1,2 - C1,3 L = -2 C1,2

Looking through our collection of su(2) subgroups, we easily find a match.
@C5,1, C6,2D = 2 C1,3  and @C7,1, C3,3D = -2 C1,2

giving
Â l1 = C4,3 Â l2 = C2,2 Â l3 = C1,1

Â l4 = C5,1 Â l5 = C6,2

Â l6 = C7,1 Â l7 = C3,3 Â l8 = D1,1

Note  that  these  nine Ca, b s  (counting  D1,1  as  two  matrices)  are  exactly  the  matrices  for  which  the  first  row and
column is zero. These are actually 6x6 matrices, which is what you'd expect for a real representation of su(3).

Clearly this is not the only representation  of su(3). If we had chosen Â l8 = -D1,1  for  example, that would have
swapped the rolls of (l4 , l5 ) with (l6 , l7 ). And as always we can get seven distinct representations by increment-
ing the indices.

‡ Generators of G2

Cacciatori, et. al. [ref. 1, sec. 2] list their version of the generators of G2 , calling them C1  through C14 . They use
the doubling basis, so to compare them to ours we first have to convert them to the 7-cycle basis. (That conversion
is not unique, since the choice of Â  is not unique, but I'll use the same conventions as above.) After that it's easy to
show that

C3 = C1,1 C8 = -D1,1
C1 = -C4,3 C9 = -D4,3
C2 = C2,2 C10 = D2,2
C4 = C7,1 C11 = -D7,1
C5 = C3,3 C12 = D3,3
C6 = -C6,2 C13 = -D6,2
C7 = -C5,1 C14 = -D5,1
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An Intuitive Description of G2

The thing that makes rotations in four dimensions significantly different from three, is that you can have rotations
in two  completely  independent  planes  at  once.  Multiplying  by  a  unit  quaternion,  such  as  ‰ǹ q  where  ǹ  is  a  pure
imaginary unit quaternion, not only rotates in the plane of ǹ  and the real axis (call that rotation R0 ) but also in the
imaginary plane perpendicular to ǹ  (call  that rotation R1 ). Left and right multiplication  are different in how they
generate those rotations.

‰ǹ q  x Ø R0  R1 , and x ‰ǹ q Ø R0  R1
-1

You could, in a sloppy, intuitive, handwaving kind of way, think of R0  R1
-1  as an operation that takes rotation out

of  one  plane  and  moves  it  to  the  other,  at  least  with  regards  to  left  multiplication.  You  can  easily  use  a  right
multiply to move all the rotation onto one plane. Thus

‰ǹ q  x ‰ǹ q Ø R0
2 , and ‰ǹ q  x ‰-ǹ q Ø R1

2

In  eight  dimensions  a  general  rotation  will  have  four  completely  independent  rotation  planes.  Multiplying  by  a
unit octonian, which we will also write ‰ǹ q , can be written as a product of four plane rotations.

‰ǹ q  x Ø R0  R1  R2  R3 , and x ‰ǹ q Ø R0  R1
-1  R2

-1  R3
-1

We can isolate R0  just as we did for quaternions, but the other part is more complicated.

‰ǹ q  x ‰ǹ q Ø R0
2 , and ‰ǹ q  x ‰-ǹ q Ø R1

2  R2
2  R3

2

We know that the octonians can generate all possible eight dimensional rotations, so it must be possible to isolate
R1 , R2 , and R3 . The elements of G2  are precisely the tools we need. G2  contains operations equivalent to

 R1 R2
-1 , R2 R3

-1 , and R3 R1
-1

Thus, for any unit vector ‰ǹ q  (which has 7 parameters) there is a 2D subspace of G2  spanned by
R1 R2

-1  and 1ÅÅÅÅÅÅÅÅÅÅè!!!!3  HR2 R3
-1 - R3 R1

-1 L
which are rotations in 8-dimensions which you can't get with a single octonian multiplication, or even one left and
one right octonian multiplication. Similarly, given any rotation, you can use elements of G2  to compensate for the
rotation in two of three imaginary planes, leaving a 4D rotation which can always be described by one left and one
right multiplication. (I'm being overly sloppy here. Can I do better?)
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