Geometric structures on solution spaces of integrable distributions¹

Cathrine Vembre Jensen

Abstract. In this paper we will investigate invariant tensors of completely integrable distributions, in particular the Cartan distribution associated with a ordinary differential equation. For second order equations examples of invariant 1-forms, symplectic structure, metric structure and curvature is presented.

Keywords. Ordinary differential equations, Cartan distribution, symmetries, metric structure, symplectic structure.

MS classification. 34A26, 34A34, 34C14, 34C30.

1. Vector fields, symmetric 2-forms and curvature

Let P be a completely integrable distribution on a manifold M, specified by either of the locally free modules

$$\Delta(P) = \{ X \in D(M) | X_m \in P_m \ \forall m \in M \} \text{ or}$$

Ann $P = \{ \theta \in \Omega^1(M) | \theta(X) = 0 \ \forall X \in \Delta(P) \}.$

We denote

$$\mathcal{D}(P) = \operatorname{Sym}(P) / \Delta(P)$$

where Sym(P) is the collection of symmetries of *P*. We define the space of solutions of *P* to be

 $S = M / \sim$

where points $x, y \in M$ are equivalent if they belong to a connected integral manifold of M.

¹ This paper is in final form and no version of it will be submitted for publication elsewhere.

Denote $\mathcal{F}(P) = \{f \in C^{\infty}(M) \mid L_X(f) = 0\}$. It is an \mathbb{R} -algebra called the algebra of first integrals. Elements of $\mathcal{D}(P)$ act as derivations $\mathcal{F}(P) \to \mathcal{F}(P)$, by acting on functions by any representative in Sym(P). This action is well defined with respect to choice of representative. $\mathcal{D}(P)$ also inherits the Lie-algebra structure of Sym(P), with respect to the commutator bracket

$$[\cdot, \cdot]: \mathcal{D}(P) \longrightarrow \mathcal{D}(P)$$

taken on representatives modulo $\Delta(P)$. The operation is well defined.

Definition 1.1. A symmetric 2-form g is *P*-invariant if

$$g(X, \cdot) = 0$$
 and $L_X(g) = 0$ $\forall X \in \Delta(P)$.

The set of invariant 2-forms is an $\mathcal{F}(P)$ -module, denoted $S^2(P)$, and elements of $S^2(P)$ act as symmetric bilinear forms on $\mathcal{D}(P)$ into $\mathcal{F}(P)$. The action is well defined on representatives of classes in $\mathcal{D}(P)$. We say that g is positive if $g(X_a, X_a) >$ 0 for any $X_a \notin P_a$, $a \in M$. A positive g will induce a *connection*

$$\nabla: \mathcal{D}(P) \times \mathcal{D}(P) \longrightarrow \mathcal{D}(P)$$

with the Levi-Civita properties, that is:

- 1. $\nabla_{\overline{X}}(f\overline{Y} + h\overline{Z}) = f\nabla_{\overline{X}}\overline{Y} + h\nabla_{\overline{X}}\overline{Z} + \overline{X}(f)\cdot\overline{Y} + \overline{X}(h)\cdot\overline{Z}$
- 2. $\nabla_{f\bar{X}+h\bar{Y}}^{\Lambda}\bar{Z} = f\nabla_{\bar{X}}\bar{Z} + h\nabla_{\bar{Y}}\bar{Z}$
- 3. $[\bar{X}, \bar{Y}] = \nabla_{\bar{X}} \bar{Y} \nabla_{\bar{Y}} \bar{X}$
- 4. $\overline{X}(g(\overline{Y}, \overline{Z})) = g(\nabla_{\overline{X}} \overline{Y}, \overline{Z}) + g(\overline{Y}, \nabla_{\overline{X}} \overline{Z})$ for any $\overline{X}, \overline{Y}$ and $\overline{Z} \in \mathcal{D}(P), f, h \in \mathcal{F}(P).$

Defining ∇ on representatives of elements in $\mathcal{D}(P)$, and requiring that it is invariant with respect to choice of representatives will, together with the above requirements 1–4 determine ∇ completely. Let $m = \operatorname{codim} P$, and \mathcal{G} be an *m*-dimensional transversal subalgebra of $\mathcal{D}(P)$ generated by $\{\overline{X}_i\}_{i=1}^m$ where the commutators are

$$[\overline{X}_i, \overline{X}_j] = \sum_{s=1}^m c_{ij}^s \overline{X}_s.$$

We can find a (local) basis $\{X_i\}_{i=1}^{\dim M}$ of $\mathcal{D}(M)$ so that $\{X_i\}_{i=1}^m$ is a set of representatives of $\{\overline{X}_i\}$. We define ∇ in term of the functions Γ_{ij}^s by the equations

$$\nabla_{X_i} X_j = \sum_{s=1}^{\dim M} \Gamma_{ij}^s X_s.$$

We must have $\Gamma_{ij}^s = 0$ for i, j, s > m, then

$$\nabla_{X_i+Y}X_j = \nabla_{X_i}X_j = \nabla_{X_i}(X_j+Y)$$

for any $Y \in \Delta(P)$, by requirements 1 and 2. Furthermore, properties (3) and (4) are equivalent to

3'. $\Gamma_{ijl} = \Gamma_{jil} + c_{ijl}$ 4'. $X_i(g_{il}) = \Gamma_{iil} + \Gamma_{ili}$ where $g_{ij} = g(X_i, X_j)$, $\Gamma_{ijl} = \sum_{l=1}^{m} \Gamma_{ij}^s g_{sl}$ and $c_{ijl} = \sum_{l=1}^{m} c_{ij}^s g_{sl}$. Combining the two equations for different permutations of indices makes us arrive at the following:

(1)
$$\Gamma_{ijl} = \frac{1}{2} \left[\sum_{k} [c_{ij}^{k} g_{kl} - c_{jl}^{k} g_{ki} + c_{li}^{k} g_{kj}] + X_{j}(g_{il}) - X_{l}(g_{ij}) + X_{i}(g_{jl}) \right].$$

Thus

(2)
$$\Gamma_{ij}^{s} = \frac{1}{2} \sum_{l=1}^{m} [c_{ijl} - c_{jli} + c_{lij} + X_{j}(g_{il}) - X_{l}(g_{ij}) + X_{i}(g_{jl})] g^{ls}$$

where g^{ls} are entries of of $(g_{ij})^{-1}$. This gives us the local expression of ∇ by means of g and the local basis $\{X_i\}$. We can now define the *curvature operator*

$$R(X, Y) \stackrel{\text{def.}}{=} [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} : \mathcal{D}(P) \longrightarrow \mathcal{D}(P)$$

and the curvature tensor R of the distribution P

$$R(X, Y, Z, W) \stackrel{\text{def.}}{=} g(R(X, Y)(Z), W).$$

4.6

2. The algebra of invariant differential forms

Definition 2.1. We say that a *k*-form $\theta \in \Omega^1(M)$ is *P*-invariant if

$$i_X(\theta) = 0$$
 and $i_X(d\theta) = 0$

for all $X \in \Delta(P)$.

The set of invariant k-forms form a $\mathcal{F}(P)$ -module, denoted $\Omega^k(P)$.

Proposition 2.2. Locally any element $\theta \in \Omega^{l}(P)$ is on the form

$$\theta = \sum \alpha_{(i_1,\ldots,i_l)} \, \theta_{i_1} \wedge \cdots \wedge \theta_{i_l}$$

where the θ_{i_i} -s form a local basis of Ann(*P*).

Proof. Let $\{\theta_i\}_{i=1}^n$ be a local basis of $\Omega^1(M)$, $n = \dim M$, such that $\{\theta_i\}_{i=1}^m$ generates Ann(*P*). Take $\{E_j\}_{j=1}^n$ to be the dual local basis of $\mathcal{D}(M)$ such that $\{E_j\}_{j=m+1}^n$ generates $\Delta(P)$ and $\theta_i(E_j) = \delta_{ij}$. Any element θ of $\Omega^l(P)$ is on the form

$$\theta = \sum_{1 \le i_1 < \cdots < i_l \le n} \alpha_{(i_1, \dots, i_l)} \, \theta_{i_1} \wedge \cdots \wedge \theta_{i_l}$$

for some $\alpha_{(i_1,...,i_l)} \in C^{\infty}(M)$. By requiring that $i_{E_s}\theta = 0$, starting with s = n, and down to s = m + 1 we see that $\alpha_{(i_1,...,i_l)} = 0$ whenever any $i_i > m$. \Box

Corollary 2.3.

$$\Omega^l(P) = 0$$
 for $l > m = \operatorname{codim} P$.

Furthermore, we define $\Omega^0(P) = \mathcal{F}(P)$ and $\Omega^s(P) = 0$ for s < 0, and get the following.

Theorem 2.4.

$$\Omega^{\cdot}(P) = \bigoplus_{s \in Z} \Omega^{s}(P)$$

is a Z-graded σ -commutative algebra with the usual wedge product

 $\wedge: \Omega^{s}(P) \times \Omega^{t}(P) \longrightarrow \Omega^{s+t}(P).$

 σ -commutativity means that $\omega \wedge \theta = \sigma(s, t)(\theta \wedge \omega)$, where $\sigma(s, t) = (-1)^{st}$. Also, the differential d is a derivation of degree +1 of $\Omega^{-}(P)$.

Proof. Given $\theta \in \Omega^{s}(P)$, $\omega \in \Omega^{t}(P)$ and $X \in \Delta(P)$ we have that

$$i_X(\theta \wedge \omega) = (i_X\theta) \wedge \omega + (-1)^s \theta \wedge (i_X\omega) = 0.$$

Moreover, $d(\theta \wedge \omega) = d\theta \wedge \omega + (-1)^{s}\theta \wedge d\omega$, and by a calculation similar to the one above we get $i_X d(\theta \wedge \omega) = 0$, which implies that $\theta \wedge \omega \in \Omega^{s+t}(P)$. Direct calculation shows that $d\theta \in \Omega^{s+1}(P)$ whenever $\theta \in \Omega^s(P)$. Each $\Omega^s(P)$ is an $\mathcal{F}(P)$ -module; we have that $i_X(f\omega) = f(i_X\omega) = 0$ for every $X \in \Delta(P), \omega \in$ $\Omega^s(P), f \in \mathcal{F}(P)$ and $i_X d(f\omega) = i_X (df \wedge \omega) = 0$, since $df \wedge \omega \in \Omega^{s+1}(P)$. Thus $f\omega \in \Omega^s(P)$. It is obvious that $\Omega^s(P)$ is closed under addition of forms. \Box

Each invariant *l*-form $\theta \in \Omega^{l}(P)$ defines a $\mathcal{F}(P)$ -linear map

 $\theta: \mathcal{D}(P) \times \cdots \times \mathcal{D}(P) \longrightarrow \mathcal{F}(P)$

by $\theta(\overline{X_1}, \ldots, \overline{X_l}) = \theta(X_1, \ldots, X_l)$ for any choice of representatives X_i of $\overline{X_i} \in \mathcal{D}(P)$.

The derivation $d = d_s : \Omega^s(P) \longrightarrow \Omega^{s+1}(P)$ provides the notion of cohomology: with the *l*-th cohomology group of *P* defined by

$$H^{s}(P) \stackrel{\text{def.}}{=} \operatorname{Ker} d_{s} / \operatorname{Im} d_{s-1}.$$

Proposition 2.5. *With respect to the multiplication induced by the wedge product,*

$$H^{\cdot}(P) = \bigoplus_{l \in \mathbb{Z}} H^{l}(P)$$

is a \mathbb{Z} -graded σ -commutative algebra with

$$[\theta] \wedge [\omega] \stackrel{\text{def.}}{=} [\theta \wedge \omega]$$

for any choice of representatives $\theta \in \ker d_s$, $\omega \in \ker d_t$.

Let $\phi : M \to N$ be a smooth map of manifolds, equipped with integrable distributions *P* and *Q* respectively. If $\phi^*(Ann(Q)) \subset Ann(P)$, we say that ϕ is a *morphism of distributions*.

Theorem 2.6. A morphism of distributions $\phi : (M, P) \longrightarrow (N, Q)$ induces a graded-algebra-homomorphism

$$\phi^*: H^{\cdot}(Q) \longrightarrow H^{\cdot}(P)$$

 $by \, \phi^*([\theta]) = [\phi^*(\theta)].$

3. Equations of symmetry and cosymmetry

It is well known that associated with the ODE

(3)
$$y^{(k)} = F(x, y, y', \dots, y^{(k-1)})$$

is the Cartan distribution C generated by the Cartan forms

$$\omega_0 = dp_0 - p_1 dx, \ \omega_1 = dp_1 - p_2 dx, \dots, \ \omega_{k-1} = dp_{k-1} - F dx$$

 $F = F(x, p_0, ..., p_{k-1})$, or alternatively, by the characteristic line field

$$D = \frac{\partial}{\partial x} + p_1 \frac{\partial}{\partial p_0} + \dots + p_{k-1} \frac{\partial}{\partial p_{k-2}} + F \frac{\partial}{\partial p_{k-1}}$$

We know that symmetries modulo characteristic symmetries are all of the form:

$$X_{\phi} = \phi \partial_{p_0} + D(\phi) \partial_{p_1} + \dots + D^{k-1}(\phi) \partial_{p_{k-1}}$$

where $\phi = \phi(x, p_0, p_1, \dots, p_{k-1})$ solves the *Lie Equation*

(4)
$$L(\phi) = \left[D^k - \sum_{l=0}^{k-1} \frac{\partial F}{\partial p_l} D^l\right](\phi) = 0$$

Theorem 3.1. Any invariant 1-form $\theta \in \Omega^1(\mathcal{C})$ is of the form

$$\theta = \theta_{\psi} = \psi \omega_{k-1} + \sum_{l=2}^{k} H_l(\psi) \omega_{k-l}$$

where $\psi = \psi(x, p_0, p_1, \dots, p_{k-1})$ solves the adjoint equation

(5)
$$L^*(\psi) = \left[(D^k) - \sum_{r=0}^{k-1} (-1)^{r+k} D^r \cdot \frac{\partial F}{\partial_{p_r}} \right] (\psi) = 0$$

and where

$$H_{l} = (-1)^{l-1} D^{l-1} - \sum_{s=0}^{l-2} (-1)^{s} D^{s} \frac{\partial F}{\partial p_{k-l+1+s}}$$

(with $p_{-1} = x$ in this formula.)

Proof. The requirement $i_D(\theta) = 0$ implies that $\theta = \sum_{i=0}^{k-1} \alpha_i \omega_i$ for some functions α_i since the Cartan forms generate Ann(C). The second requirement then be-

comes $i_X d\theta = L_D \theta = 0$, and direct calculation of $L_D \theta$ gives exactly the equations on the α_i -s of the theorem. \Box

We will denote invariant 1-forms by *cosymmetries*, as they are dual objects to symmetries.

4. Second order ordinary differential equations

For the case k = 2 the characteristic field is

$$D = \partial_x + p\partial_u + F(x, u, p)\partial_p$$

and the Lie Equation becomes

(6)
$$L(\phi) = (D^2 - F_p D - F_u)(\phi) = 0.$$

A solution ϕ of (6) generates a symmetry

$$X = X_{\phi} = \phi \partial_{u} + D(\phi) \partial_{p} \,.$$

The adjoint equation becomes:

(7)
$$L^*(\psi) = (D^2 + D \cdot F_p - F_u)(\psi) = 0.$$

A solution ψ of (7) generates a cosymmetry

$$\theta_{\psi} = (-D - F_p)(\psi)\omega_0 + \psi\omega_1 \,.$$

For metric structure we get the following requirements. Denote $\partial F/\partial u$ by F_u , $\partial F/\partial p$ by F_p respectively.

Theorem 4.1. Any invariant symmetric 2-form is of the form

$$g = L_{00}(\eta) \,\omega_0^2 + 2L_{01}(\eta) \,\omega_0 \cdot \omega_1 + \eta \,\omega_1^2$$

where η , a generating function of g, is the solution of the equation

(8)
$$L_{11}(\eta) = \left[D^3 + [3F_p]D^2 + [5D(F_p) + 2F_p^2 - 4F_u]D + [2D^2(F_p) + 4F_pD(F_p) - 2D(F_u) - 4F_pF_u]\right](\eta) = 0$$

and the operators L_{00} and L_{01} are

$$L_{00} = \frac{1}{2} \left[D^2 + 3F_p D + 2 \left[D(F_p) + F_p^2 - F_u \right] \right],$$

$$L_{01} = -\frac{1}{2} \left(D + 2F_p \right).$$

Proof. This follows from the requirements $g(D, \cdot) = 0$ and $L_D(g) = 0$. The first implies that $g = \sum \alpha_{ij} \omega_i \cdot \omega_j$, where the ω_i are the Cartan forms, which generate Ann(C). The second gives the requirements of the theorem on the coefficient functions α_{ij} by direct calculation of $L_D(g)$. \Box

We call L_{11} the symmetric power of L^* . Given two solutions ψ_1 , ψ_2 of the L^* -equation, they generate cosymmetries θ_1 and θ_2 , which in turn provides us with an invariant symmetric 2-form $g = \theta_1^2 + \theta_2^2$. The functions ψ_1^2 , $\psi_1\psi_2$ and ψ_2^2 are solutions of the L_{11} -equation.

There is a large class of equations that possess a *symplectic structure* in the sense of an invariant 2-form, non-degenerated except on $\Delta(P)$.

Theorem 4.2. Equations of the form

(9) $y'' = \gamma(x)y' + \delta(x, y)$

where $\gamma(x)$ and $\delta(x, y)$ are arbitrary, have an invariant 2-form

$$\Lambda = e^{\alpha(x)} \omega_1 \wedge \omega_0$$

where α is any function such that $\alpha'(x) = -\gamma(x)$, and ω_0 and ω_1 are the Cartan forms.

Proof. We see that $i_D \Lambda = 0$ since $i_D \omega_0 = i_D \omega_1 = 0$. Direct calculation gives $i_D d\Lambda = L_D \Lambda = 0$, hence Λ is C-invariant. \Box

Note that by Corollary 2.3 we immediately get that $d\Lambda = 0$ since $\Omega^3(\mathcal{C}) = 0$. A produces a Poisson structure on the algebra of first integrals, in coordinates

$$\{f,g\} = e^{-\alpha} \left(\frac{\partial f}{\partial p} \frac{\partial g}{\partial u} - \frac{\partial f}{\partial u} \frac{\partial g}{\partial p} \right)$$

Also, we have the notion of Hamiltonian vector field; for any first integral f we get a corresponding symmetry $X_f = e^{-\alpha}((\partial f/\partial p)\partial_u - (\partial f/\partial u)\partial_p)$ that satisfies the condition $i_{X_f}\Lambda + df = 0$.

For equations as in Theorem 4.2 we have the following relation between the associated L and L^* -equations:

(10)
$$L(\phi) = 0 \quad \Leftrightarrow \quad L^*(e^{\alpha}\phi) = 0.$$

Thus, knowing a full set of symmetries of the equation gives us a corresponding set of cosymmetries, and vice versa.

5. (Co-)symmetries, connections and curvature: examples

In this section we first investigate equations of the type

$$y'' = y' + f(y)$$

where the function f(y) is non-linear. In [1], the problem of finding *p*-linear generating functions of symmetries is treated in full. All equations equipped with a two dimensional Lie-algebra of such symmetries are classified. $F_p = 1$, so Theorem 4.2 implies that

$$L(\phi) = 0 \quad \Leftrightarrow \quad L^*(e^{-x}\phi) = 0.$$

Theorem 5.1 ([1]). Non-linear equations on the form

$$y'' = y' + f(y)$$

that possess a two-dimensional Lie algebra of point-symmetries can be divided into the following two classes:

(11)
$$y'' = y' + ae^{by} - \frac{2}{b}$$

with $a, b \in \mathbb{R}$, $a, b \neq 0$ and

(12)
$$y'' = y' + a(y+b)^c - \frac{(2c+2)}{(c+3)^2}(y+b)$$

with $a, b, c \in \mathbb{R}$ and $a \neq 0, c \neq 0, 1, -3$.

These equations are equipped with the following structure, as listed below.

Type (11)

(i) Solutions of $L(\phi) = 0$:

$$\phi_1 = p$$
 and $\phi_2 = e^{-x} \left(p - \frac{2}{b} \right)$

(ii) Corresponding symmetries:

$$X_{1} = p \partial_{u} + \left(p + ae^{bu} - \frac{2}{b} \right) \partial_{p} ,$$

$$X_{2} = e^{-x} \left(p - \frac{2}{b} \right) \partial_{u} + e^{-x} ae^{bu} \partial_{p}$$

(iii) Solutions of $L^*(\psi) = 0$:

$$\psi_1 = e^{-x}p$$
 and $\psi_2 = e^{-2x}\left(p - \frac{2}{b}\right)$

(iv) Corresponding cosymmetries:

$$\theta_{1} = e^{-x} \left[\left(-p - ae^{bu} + \frac{2}{b} \right) \omega_{0} + p\omega_{1} \right],$$

$$\theta_{2} = e^{-2x} \left[-ae^{bu} \omega_{0} + \left(p - \frac{2}{b} \right) \omega_{1} \right]$$

(v) First integral:

$$f = \theta_1(X_2) = e^{-2x} \left[\frac{2a}{b} e^{bu} - p^2 + \frac{4}{b}p - \frac{4}{b^2} \right]$$

(vi) Symplectic form:

$$\Lambda = e^{-x} \,\omega_1 \wedge \omega_0$$

(vii) Metric structure:

$$g = \theta_1^2 + \theta_2^2 = e^{-2x} \left[a^2 (1 + e^{-2x}) e^{2bu} + \left(p - \frac{2}{b} \right)^2 + 2 \left(p - \frac{2}{b} \right) a e^{bu} \right] \omega_0^2$$
$$+ 2e^{-2x} \left[a e^{bu} \left(-p - e^{-2x} \left(p - \frac{2}{b} \right) \right) - p^2 + \frac{2}{b} p \right] \omega_0 \cdot \omega_1$$
$$+ e^{-2x} \left[p^2 + e^{-2x} \left(p - \frac{2}{b} \right)^2 \right] \omega_1^2$$

(viii) Connection symbols:

$$\Gamma_{11}^1 = \Gamma_{12}^2 = 2\,\Gamma_{21}^2 = -2\,\Gamma_{22}^1 = 2$$

(ix) Curvature:

$$R = \frac{-1}{f^2} (\theta_1 \wedge \theta_2)^2.$$

Type (12)

(i) Solutions of $L(\phi) = 0$:

$$\phi_1 = p$$
 and $\phi_2 = e^{\frac{(1-c)}{(c+3)^x}} \left(p - \frac{2}{(c+3)}(u+b) \right)$

(ii) Corresponding symmetries:

$$X_1 = p \,\partial_u + \left(p + a(u+b)^c - \frac{(2c+2)}{(c+3)^2}(u+b) \right) \partial_p \,,$$

$$X_{2} = e^{\frac{(1-c)x}{(c+3)}} \left[\left(p - \frac{2}{c+3}(u+b) \right) \partial_{u} + \left(\frac{2}{c+3}p + a(u+b)^{c} - \frac{4}{(c+3)^{2}}(u+b) \right) \partial_{p} \right]$$

(iii) Solutions of $L^*(\psi) = 0$:

$$\psi_1 = e^{-x}p$$
 and $\psi_2 = e^{\frac{(-2-2c)}{(c+3)}x} \left(p - \frac{2}{(c+3)}(u+b)\right)$

(iv) Corresponding cosymmetries:

$$\theta_{1} = e^{-x} \left[\left(-p - a(u+b)^{c} + \frac{(2c+2)}{(c+3)^{2}}(u+b) \right) \omega_{0} + p\omega_{1} \right],$$

$$\theta_{2} = e^{\frac{(-2-2c)x}{c+3}} \left[\left(-\frac{2}{c+3}p - a(u+b)^{c} + \frac{4}{(c+3)^{2}}(u+b) \right) \omega_{0} + \left(p - \frac{2(u+b)}{c+3} \right) \omega_{1} \right]$$

(v) First integral:

$$f = \theta_1(X_2) = e^{\frac{(-2-2c)x}{c+3}} \frac{(1+c)}{(c+3)} \left[-p^2 + \frac{4}{(c+3)}p(u+b) - \frac{4}{(c+3)^2}(u+b)^2 + \frac{2a}{(1+c)}(u+b)^{c+1} \right]$$

(vi) Symplectic form:

$$\Lambda = e^{-x}\omega_1 \wedge \omega_0$$

(vii) Metric structure:

$$g = \theta_1^2 + \theta_2^2$$

$$= \left[\left[e^{\frac{(-2-2c)x}{c+3}} \left(a(u+b)^c + \frac{2}{c+3}p - \frac{4}{(c+3)^2}(u+b) \right) \right]^2 \right] + \left[e^{-x} \left(a(u+b)^c - \frac{2+2c}{(c+3)^2}(u+b) + p \right) \right]^2 \right] \omega_0^2$$

$$- 2 \left[\left[e^{\frac{(-4-4c)x}{c+3}} \left(a(u+b)^c + \frac{2}{c+3}p - \frac{4}{(c+3)^2}(u+b) \right) \right] \left(p - \frac{2}{c+3}(u+b) \right) + e^{-2x} \left[a(u+b)^c - \frac{2+2c}{(c+3)^2}(u+b) + p \right] \right] \omega_0 \cdot \omega_1$$

$$+ e^{-2x} \left[p^2 + e^{\frac{(2-2c)x}{c+3}} \left(p - \frac{2}{c+3}(u+b) \right)^2 \right] \omega_1^2$$

(viii) Connection symbols:

$$\Gamma_{11}^1 = \Gamma_{12}^2 = 2\frac{(1+c)}{(c+3)}, \quad \Gamma_{21}^2 = -\Gamma_{22}^1 = 1$$

(ix) Curvature: $R = ((1 - c)/(c + 3))(1/f^2)(\theta_1 \wedge \theta_2)^2$

The last example is the harmonic oscillator equation

(13)
$$y'' + cy = 0$$

where $c \in \mathbb{R}$. We have the following structures:

(i) Symmetries:

$$X_1 = p \,\partial_u - c u \,\partial_p, \quad X_2 = u \,\partial_u + p \,\partial_p$$

(ii) Cosymmetries:

$$\theta_1 = cu\omega_0 + p\omega_1, \quad \theta_2 = -p\omega_0 + u\omega_1$$

(iii) First integral:

$$f = \theta_1(X_2) = cu^2 + p^2$$

(iv) Symplectic structure:

$$\Lambda = \omega_1 \wedge \omega_0$$

(v) Metric structures:

$$g_1 = \theta_1^2 + \theta_2^2 = (c^2 u^2 + p^2)\omega_0^2 + 2up(c-1)\omega_0 \cdot \omega_1 + (u^2 + p^2)\omega_1^2$$

and in addition $g_2 = c\omega_0^2 + \omega_1^2$ by Theorem 4.1. (vi) Connection symbols and curvature:

$$\Gamma_{ij}^k = 0$$
 for both g_1 and g_2 ,
 $R_1 = R_2 = 0$.

References

[1] S.V. Duzhin and V.V. Lychagin, Symmetries of distributions and quadrature of ordinary differential equations, Acta Appl. Math. 24 (1991) (1) 29-57.

Cathrine Vembre Jensen Department of Mathematics University of Tromsø N-9037 Tromsø Norway E-mail: cath@math.uit.no