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Geometric structures on solution spaces of
integrable distributions1
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Abstract. In this paper we will investigate invariant tensors of completely in-
tegrable distributions, in particular the Cartan distribution associated with a or-
dinary differential equation. For second order equations examples of invariant
1-forms, symplectic structure, metric structure and curvature is presented.
Keywords. Ordinary differential equations, Cartan distribution, symmetries,
metric structure, symplectic structure.
MS classification. 34A26, 34A34, 34C14, 34C30.

1. Vector fields, symmetric 2-forms and curvature

Let P be a completely integrable distribution on a manifoldM , specified by
either of the locally free modules

�(P) = {
X ∈ D(M)

∣∣Xm ∈ Pm ∀m ∈ M
}

or

Ann P = {
θ ∈ �1(M)

∣∣θ(X) = 0 ∀X ∈ �(P)
}
.

We denote

D(P) = Sym(P)/�(P)

where Sym(P) is the collection of symmetries ofP. We define the space of solu-
tions of P to be

S = M/∼
where pointsx, y ∈ M are equivalent if they belong to a connected integral mani-
fold of M .

1This paper is in final form and no version of it will be submitted for publication elsewhere.
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DenoteF(P) = { f ∈ C∞(M) | L X( f ) = 0}. It is an R-algebra called the
algebra offirst integrals. Elements ofD(P) act asderivationsF(P) → F(P),
by acting on functions by any representative in Sym(P). This action is well de-
fined with respect to choice of representative.D(P) also inherits the Lie-algebra
structure of Sym(P), with respect to the commutator bracket

[ · , · ] : D(P) −→ D(P)

taken on representatives modulo�(P). The operation is well defined.

Definition 1.1. A symmetric 2-formg is P-invariant if

g(X, · ) = 0 and L X(g) = 0 ∀X ∈ �(P).

The set of invariant 2-forms is anF(P)-module, denotedS2(P), and elements of
S2(P) act as symmetric bilinear forms onD(P) into F(P). The action is well de-
fined on representatives of classes inD(P). We say thatg is positive ifg(Xa, Xa) >

0 for anyXa ∈ Pa, a ∈ M . A positiveg will induce aconnection

∇ : D(P) × D(P) −→ D(P)

with the Levi-Civita properties, that is:
1. ∇X ( f Y + hZ ) = f ∇X Y + h∇X Z + X ( f ) · Y + X (h) · Z
2. ∇ f X+hY Z = f ∇X Z + h∇Y Z
3. [ X , Y ] = ∇X Y − ∇Y X
4. X (g(Y, Z )) = g(∇X Y, Z ) + g(Y, ∇X Z )

for any X , Y and Z ∈ D(P), f, h ∈ F(P).

Defining∇ on representatives of elements inD(P), and requiring that it is invari-
ant with respect to choice of representatives will, together with the above require-
ments 1–4 determine∇ completely. Letm = codimP, andG be anm-dimensional
transversal subalgebra ofD(P) generated by{Xi }m

i =1 where the commutators are

[ Xi , X j ] =
m∑

s=1

cs
i j Xs.

We can find a (local) basis{Xi }dim M
i =1 of D(M) so that{Xi }m

i =1 is a set of represen-
tatives of{Xi }. We define∇ in term of the functions�s

i j by the equations

∇Xi X j =
dim M∑
s=1

�s
i j Xs.

We must have�s
i j = 0 for i, j, s > m, then

∇Xi +Y X j = ∇Xi X j = ∇Xi (X j + Y)

for anyY ∈ �(P), by requirements 1 and 2. Furthermore, properties(3) and(4)

are equivalent to
3′. �i j l = � j i l + ci jl

4′. Xi (gjl ) = �i j l + �i l j



Invariant tensors of distributions 177

wheregi j = g(Xi , X j ), �i j l = ∑m
l=1 �s

i j gsl andci jl = ∑m
l=1 cs

i j gsl. Combining the
two equations for different permutations of indices makes us arrive at the following:

(1) �i j l = 1
2

[∑
k

[ck
i j gkl − ck

jl gki + ck
li gk j ] + X j (gil ) − Xl (gi j ) + Xi (gjl )

]
.

Thus

(2) �s
i j = 1

2

m∑
l=1

[ci jl − cjli + cli j + X j (gil ) − Xl (gi j ) + Xi (gjl )]g
ls

wheregls are entries of of(gi j )
−1. This gives us the local expression of∇ by means

of g and the local basis{Xi }. We can now define thecurvature operator

R(X, Y)
def.= [∇X, ∇Y] − ∇[X,Y] : D(P) −→ D(P)

and thecurvature tensor Rof the distributionP

R(X, Y, Z, W)
def.= g(R(X, Y)(Z), W).

2. The algebra of invariant differential forms

Definition 2.1. We say that ak-form θ ∈ �1(M) is P-invariant if

i X(θ) = 0 and i X(dθ) = 0

for all X ∈ �(P).

The set of invariantk-forms form aF(P)-module, denoted�k(P).

Proposition 2.2. Locally any elementθ ∈ �l (P) is on the form

θ =
∑

α(i1,...,i l ) θi1 ∧ · · · ∧ θi l

where theθi j -s form a local basis ofAnn(P).

Proof. Let {θi }n
i =1 be a local basis of�1(M), n = dim M , such that{θi }m

i =1
generates Ann(P). Take {Ej }n

j =1 to be the dual local basis ofD(M) such that
{Ej }n

j =m+1 generates�(P) andθi (Ej ) = δi j . Any elementθ of �l (P) is on the
form

θ =
∑

1≤i1<···<i l ≤n

α(i1,...,i l ) θi1 ∧ · · · ∧ θi l

for someα(i1,...,i l ) ∈ C∞(M). By requiring thati Esθ = 0, starting withs = n, and
down tos = m + 1 we see thatα(i1,...,i l ) = 0 whenever anyi j > m. �

Corollary 2.3.

�l (P) = 0 for l > m = codimP.
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Furthermore, we define�0(P) = F(P) and�s(P) = 0 for s < 0, and get the
following.

Theorem 2.4.

�·(P) =
⊕
s∈Z

�s(P)

is a Z-gradedσ -commutative algebra with the usual wedge product

∧ : �s(P) × �t(P) −→ �s+t(P).

σ -commutativity means thatω∧θ = σ(s, t)(θ ∧ω), whereσ(s, t) = (−1)st. Also,
the differential d is a derivation of degree+1 of �·(P).

Proof. Givenθ ∈ �s(P), ω ∈ �t(P) andX ∈ �(P) we have that

i X(θ ∧ ω) = (i Xθ) ∧ ω + (−1)sθ ∧ (i Xω) = 0.

Moreover,d(θ ∧ ω) = dθ ∧ ω + (−1)sθ ∧ dω, and by a calculation similar to the
one above we geti X d(θ ∧ ω) = 0, which implies thatθ ∧ ω ∈ �s+t(P). Direct
calculation shows thatdθ ∈ �s+1(P) wheneverθ ∈ �s(P). Each�s(P) is an
F(P)-module; we have thati X( f ω) = f (i Xω) = 0 for everyX ∈ �(P), ω ∈
�s(P), f ∈ F(P) and i Xd( f ω) = i X(d f ∧ ω) = 0, sinced f ∧ ω ∈ �s+1(P).
Thus f ω ∈ �s(P). It is obvious that�s(P) is closed under addition of forms.�

Each invariantl -form θ ∈ �l (P) defines aF(P)-linear map

θ : D(P) × · · · × D(P) −→ F(P)

by θ(X1, . . . , Xl ) = θ(X1, . . . , Xl ) for any choice of representativesXi of Xi ∈
D(P).

The derivationd = ds : �s(P) −→ �s+1(P) provides the notion of cohomol-
ogy: with thel -th cohomology group ofP defined by

Hs(P)
def.= Kerds/ Im ds−1.

Proposition 2.5. With respect to the multiplication induced by the wedge prod-
uct,

H ·(P) =
⊕
l∈Z

Hl (P)

is aZ-gradedσ -commutative algebra with

[θ ] ∧ [ω] def.= [θ ∧ ω]

for any choice of representativesθ ∈ kerds, ω ∈ kerdt .

Let φ : M → N be a smooth map of manifolds, equipped with integrable
distributionsP and Q respectively. Ifφ∗(Ann(Q)) ⊂ Ann(P),we say thatφ is a
morphism of distributions.
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Theorem 2.6. A morphism of distributionsφ : (M, P) −→ (N, Q) induces a
graded-algebra-homomorphism

φ∗ : H ·(Q) −→ H ·(P)

byφ∗([θ ]) = [φ∗(θ)].

3. Equations of symmetry and cosymmetry

It is well known that associated with the ODE

(3) y(k) = F(x, y, y′, . . . , y(k−1))

is the Cartan distributionC generated by the Cartan forms

ω0 = dp0 − p1dx, ω1 = dp1 − p2dx, . . . , ωk−1 = dpk−1 − Fdx

F = F(x, p0, . . . , pk−1), or alternatively, by the characteristic line field

D = ∂

∂x
+ p1

∂

∂p0
+ · · · + pk−1

∂

∂pk−2
+ F

∂

∂pk−1
.

We know that symmetries modulo characteristic symmetries are all of the form:

Xφ = φ∂p0 + D(φ)∂p1 + · · · + Dk−1(φ)∂pk−1

whereφ = φ(x, p0, p1, . . . , pk−1) solves theLie Equation

(4) L(φ) =
[

Dk −
k−1∑
l=0

∂F

∂pl
Dl

]
(φ) = 0 .

Theorem 3.1. Any invariant1-form θ ∈ �1(C) is of the form

θ = θψ = ψωk−1 +
k∑

l=2

Hl (ψ)ωk−l

whereψ = ψ(x, p0, p1, . . . , pk−1) solves the adjoint equation

(5) L∗(ψ) =
[
(Dk) −

k−1∑
r =0

(−1)r +k Dr · ∂F

∂pr

]
(ψ) = 0

and where

Hl = (−1)l−1Dl−1 −
l−2∑
s=0

(−1)sDs ∂F

∂pk−l+1+s

(with p−1 = x in this formula.)

Proof. The requirementi D(θ) = 0 implies thatθ = ∑k−1
i =0 αi ωi for some func-

tionsαi since the Cartan forms generate Ann(C). The second requirement then be-



180 C.V. Jensen

comesi Xdθ = L Dθ = 0, and direct calculation ofL Dθ gives exactly the equations
on theαi -s of the theorem. �

We will denote invariant 1-forms bycosymmetries, as they are dual objects to
symmetries.

4. Second order ordinary differential equations

For the casek = 2 the characteristic field is

D = ∂x + p∂u + F(x, u, p)∂p

and the Lie Equation becomes

(6) L(φ) = (D2 − FpD − Fu)(φ) = 0 .

A solutionφ of (6) generates a symmetry

X = Xφ = φ∂u + D(φ)∂p .

The adjoint equation becomes:

(7) L∗(ψ) = (D2 + D · Fp − Fu)(ψ) = 0 .

A solutionψ of (7) generates a cosymmetry

θψ = (−D − Fp)(ψ)ω0 + ψω1 .

For metric structure we get the following requirements. Denote∂F/∂u by Fu,
∂F/∂p by Fp respectively.

Theorem 4.1. Any invariant symmetric2-form is of the form

g = L00(η) ω2
0 + 2L01(η) ω0 · ω1 + η ω2

1

whereη, a generating function of g, is the solution of the equation

(8)
L11(η) =

[
D3 + [3Fp]D2 + [

5D(Fp) + 2F2
p − 4Fu

]
D

+ [
2D2(Fp) + 4FpD(Fp) − 2D(Fu) − 4FpFu

]]
(η) = 0

and the operators L00 and L01 are

L00 = 1

2

[
D2 + 3FpD + 2

[
D(Fp) + F2

p − Fu

]]
,

L01 = − 1

2
(D + 2Fp) .

Proof. This follows from the requirementsg(D, ·) = 0 andL D(g) = 0. The
first implies thatg = ∑

αi j ωi · ω j , where theωi are the Cartan forms, which gen-
erate Ann(C). The second gives the requirements of the theorem on the coefficient
functionsαi j by direct calculation ofL D(g). �
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We call L11 thesymmetric powerof L∗. Given two solutionsψ1, ψ2 of the L∗-
equation, they generate cosymmetriesθ1 and θ2, which in turn provides us with
an invariant symmetric 2-formg = θ2

1 + θ2
2 . The functionsψ2

1, ψ1ψ2 andψ2
2 are

solutions of theL11-equation.
There is a large class of equations that possess asymplectic structurein the sense

of an invariant 2-form, non-degenerated except on�(P).

Theorem 4.2. Equations of the form

(9) y′′ = γ (x)y′ + δ(x, y)

whereγ (x) andδ(x, y) are arbitrary, have an invariant2-form

� = eα(x)ω1 ∧ ω0

whereα is any function such thatα′(x) = −γ (x), andω0 andω1 are the Cartan
forms.

Proof. We see thati D� = 0 sincei Dω0 = i Dω1 = 0. Direct calculation gives
i Dd� = L D� = 0, hence� is C-invariant. �

Note that by Corollary 2.3 we immediately get thatd� = 0 since�3(C) = 0. �
produces a Poisson structure on the algebra of first integrals, in coordinates

{ f, g} = e−α

(
∂ f

∂p

∂g

∂u
− ∂ f

∂u

∂g

∂p

)
.

Also, we have the notion of Hamiltonian vector field; for any first integralf we get
a corresponding symmetryX f = e−α((∂ f /∂p)∂u − (∂ f /∂u)∂p) that satisfies the
conditioni X f � + d f = 0.

For equations as in Theorem 4.2 we have the following relation between the
associatedL andL∗-equations:

(10) L(φ) = 0 ⇔ L∗(eαφ) = 0 .

Thus, knowing a full set of symmetries of the equation gives us a corresponding set
of cosymmetries, and vice versa.

5. (Co-)symmetries, connections and curvature: examples

In this section we first investigate equations of the type

y′′ = y′ + f (y)

where the functionf (y) is non-linear. In [1], the problem of findingp-linear gener-
ating functions of symmetries is treated in full. All equations equipped with a two
dimensional Lie-algebra of such symmetries are classified.Fp = 1, so Theorem
4.2 implies that

L(φ) = 0 ⇔ L∗(e−xφ) = 0 .
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Theorem 5.1([1]). Non-linear equations on the form

y′′ = y′ + f (y)

that possess a two-dimensional Lie algebra of point-symmetries can be divided into
the following two classes:

(11) y′′ = y′ + aeby − 2

b

with a, b ∈ R, a, b = 0 and

(12) y′′ = y′ + a(y + b)c − (2c + 2)

(c + 3)2 (y + b)

with a, b, c ∈ R and a = 0, c = 0, 1, −3.

These equations are equipped with the following structure, as listed below.

Type (11)

(i) Solutions ofL(φ) = 0:

φ1 = p and φ2 = e−x

(
p − 2

b

)

(ii) Corresponding symmetries:

X1 = p∂u+
(

p+aebu− 2

b

)
∂p ,

X2 = e−x

(
p− 2

b

)
∂u+e−xaebu∂p

(iii) Solutions ofL∗(ψ) = 0:

ψ1 = e−x p and ψ2 = e−2x

(
p − 2

b

)

(iv) Corresponding cosymmetries:

θ1 = e−x

[(
−p − aebu + 2

b

)
ω0 + pω1

]
,

θ2 = e−2x

[
−aebuω0 +

(
p − 2

b

)
ω1

]

(v) First integral:

f = θ1(X2) = e−2x

[
2a

b
ebu − p2 + 4

b
p − 4

b2

]
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(vi) Symplectic form:

� = e−x ω1 ∧ ω0

(vii) Metric structure:

g = θ2
1 +θ2

2 = e−2x

[
a2(1+e−2x)e2bu+

(
p− 2

b

)
2

+2

(
p− 2

b

)
aebu

]
ω2

0

+2e−2x

[
aebu

(
−p−e−2x

(
p− 2

b

))
− p2+ 2

b
p

]
ω0·ω1

+e−2x

[
p2+e−2x

(
p− 2

b

)
2
]
ω2

1

(viii) Connection symbols:

�1
11 = �2

12 = 2�2
21 = −2�1

22 = 2

(ix) Curvature:

R = −1

f 2 (θ1 ∧ θ2)
2.

Type (12)

(i) Solutions ofL(φ) = 0:

φ1 = p and φ2 = e
(1−c)
(c+3)

x
(

p − 2

(c + 3)
(u + b)

)

(ii) Corresponding symmetries:

X1 = p ∂u +
(

p + a(u + b)c − (2c + 2)

(c + 3)2 (u + b)

)
∂p ,

X2 = e
(1−c)x

(c+3)

[(
p − 2

c + 3
(u + b)

)
∂u

+
(

2

c + 3
p + a(u + b)c − 4

(c + 3)2 (u + b)

)
∂p

]

(iii) Solutions ofL∗(ψ) = 0:

ψ1 = e−x p and ψ2 = e
(−2−2c)
(c+3)

x
(

p − 2

(c + 3)
(u + b)

)
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(iv) Corresponding cosymmetries:

θ1 = e−x

[(
−p − a(u + b)c + (2c + 2)

(c + 3)2 (u + b)

)
ω0 + pω1

]
,

θ2 = e
(−2−2c)x

c+3

[(
− 2

c + 3
p − a(u + b)c + 4

(c + 3)2 (u + b)

)
ω0

+
(

p − 2(u + b)

c + 3

)
ω1

]

(v) First integral:

f = θ1(X2) = e
(−2−2c)x

c+3
(1 + c)

(c + 3)

[
−p2 + 4

(c + 3)
p(u + b)

− 4

(c + 3)2 (u + b)2 + 2a

(1 + c)
(u + b)c+1

]

(vi) Symplectic form:

� = e−xω1 ∧ ω0

(vii) Metric structure:

g = θ2
1 +θ2

2

=
[[

e
(−2−2c)x

c+3

(
a(u+b)c+ 2

c+3
p− 4

(c+3)2 (u+b)

)]
2

+
[
e−x

(
a(u+b)c− 2+2c

(c+3)2 (u+b)+ p

)]
2
]

ω2
0

−2

[[
e

(−4−4c)x
c+3

(
a(u+b)c+ 2

c+3
p− 4

(c+3)2 (u+b)

)](
p− 2

c+3
(u+b)

)

+e−2x

[
a(u+b)c− 2+2c

(c+3)2 (u+b)+ p

]]
ω0·ω1

+e−2x

[
p2+e

(2−2c)x
c+3

(
p− 2

c+3
(u+b)

)
2
]

ω2
1

(viii) Connection symbols:

�1
11 = �2

12 = 2
(1 + c)

(c + 3)
, �2

21 = −�1
22 = 1

(ix) Curvature:R = ((1 − c)/(c + 3))(1/ f 2)(θ1 ∧ θ2)
2
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The last example is theharmonic oscillator equation

(13) y′′ + cy = 0

wherec ∈ R. We have the following structures:
(i) Symmetries:

X1 = p ∂u − cu∂p, X2 = u ∂u + p ∂p

(ii) Cosymmetries:

θ1 = cuω0 + pω1, θ2 = −pω0 + uω1

(iii) First integral:

f = θ1(X2) = cu2 + p2

(iv) Symplectic structure:

� = ω1 ∧ ω0

(v) Metric structures:

g1 = θ2
1 + θ2

2 = (c2u2 + p2)ω2
0 + 2up(c − 1)ω0 · ω1 + (u2 + p2)ω2

1

and in additiong2 = cω2
0 + ω2

1 by Theorem 4.1.
(vi) Connection symbols and curvature:

�k
i j = 0 forbothg1 andg2,

R1 = R2 = 0.
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