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Geometric structures on solution spaces of
integrable distributions?
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Abstract. In this paper we will investigate invariant tensors of completely in-
tegrable distributions, in particular the Cartan distribution associated with a or-
dinary differential equation. For second order equations examples of invariant
1-forms, symplectic structure, metric structure and curvature is presented.
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1. Vector fields, symmetric 2-forms and curvature

Let P be a completely integrable distribution on a maniféiy specified by
either of the locally free modules

A(P) = {X € D(M)|Xm € P Yme M} or

AnnP = {0 € QY (M)|6(X) = 0VX € A(P)}.
We denote

D(P) = Sym(P)/A(P)

where SyniP) is the collection of symmetries d?. We define the space of solu-
tions of P to be

S=M/~

where pointx, y € M are equivalent if they belong to a connected integral mani-
fold of M.

1This paper is in final form and no version of it will be submitted for publication elsewhere.
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Denote F(P) = {f € C®*(M) | Lx(f) = 0}. It is anRR-algebra called the
algebra offirst integrals Elements ofD(P) act asderivationsF(P) — F(P),
by acting on functions by any representative in $in This action is well de-
fined with respect to choice of representatif® P) also inherits the Lie-algebra
structure of SymP), with respect to the commutator bracket

[-.-]1:D(P) — D(P)
taken on representatives modul@P). The operation is well defined.
Definition 1.1. A symmetric 2-formg is P-invariantif
g(X,-)=0 and Lx(g)=0 VX e A(P).

The set of invariant 2-forms is af(P)-module, denote®?(P), and elements of
S?(P) act as symmetric bilinear forms dn(P) into F(P). The action is well de-
fined on representatives of classe®i(P). We say thag is positive ifg(Xa, Xa) >
0 forany X, ¢ P,, a € M. A positiveg will induce aconnection

V :D(P) x D(P) — D(P)

with the Levi-Civita properties, that is:
1. Vi (fY +hZ)=fVgY +hVgZ + X(f)-Y + X(h)-Z
2. Vigan Z = fVgZ +hvyZ
3. [X,Y]=VgY - V¢ X
4. XY, 2)) =9(VxY, Z) +9(Y, Vg Z)
forany X, Y andZ € D(P), f, h € F(P).

DefiningV on representatives of elementghiP), and requiring that it is invari-
ant with respect to choice of representatives will, together with the above require-
ments 1-4 determin€ completely. Lem = codimP, andg be anm-dimensional
transversal subalgebra Bf(P) generated by X; }™ , where the commutators are

J— J— m J—
[Xi,Xj]= Cisj Xs.
s=1
We can find a (local) basisX; }idi:”i"" of D(M) so that{X;}" , is a set of represen-
tatives of{ X;}. We defineV in term of the functiong™; by the equations

dimM
Vi Xj= Y TFXs.
s=1
We must have“isj = 0fori, j,s > m, then
Vxi+y Xj = Vx Xj = Vx (Xj +Y)

foranyY € A(P), by requirements 1 and 2. Furthermore, propert®<sand (4)
are equivalent to

3. Tij = Tjii +Gj

4. Xi(gj) = Liji + Tij
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whereg;; = g(Xi, X)), Tiji = >4 [f gst andcij = > ¢ gsi- Combining the
two equations for different permutations of indices makes us arrive at the following:

1) Tij = 3 I:Xk:[cikj O — Cfi G + Cff O + Xj (@) — Xi(Gij) + X (gjl)]-
Thus
(2) rs = %Z[Cm — Cjii + Gij + X (@) — Xi(@ij) + Xi(@j)]g'"®

1=1

whereg's are entries of ofg;j) 1. This gives us the local expressionwby means
of g and the local basigX;}. We can now define theurvature operator

R(X,Y) €' [Vx, V] = Vixy] : D(P) —> D(P)

and thecurvature tensor Pf the distributionP

R(X,Y, Z, W) et g(R(X, Y)(Z), W).

2. The algebra of invariant differential forms

Definition 2.1. We say that &-form 6 € Q(M) is P-invariantif
ix(@) =0 and ix(de) =0
forall X e A(P).
The set of invariank-forms form aF(P)-module, denote®@X(P).
Proposition 2.2. Locally any elemertt € Q' (P) is on the form
0= ay.inb, A AB
where they;; -s form a local basis oAnn(P).

Proof. Let {6}, be a local basis of2}(M), n = dimM, such that{;}" ,
generates An(P). Take{E,-}’j‘:1 to be the dual local basis dP(M) such that
{Ej}]_n.1 generates\(P) and6; (Ej) = &;. Any elementy of Q'(P) is on the
form

6= Z Qiq, i Gy Ao A G
1<ij<--<ij<n
for someq,. i,y € C>*(M). By requiring thaig,60 = 0, starting withs = n, and
down tos = m+ 1 we see thak, ;) = O wheneverany; > m. [
Corollary 2.3.

Q'(P)=0 for | > m=codimP.
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Furthermore, we defin@°(P) = F(P) andQS(P) = 0 fors < 0, and get the
following.

Theorem 2.4.
Q@ (P) =P P
seZ

is a Z-gradedr-commutative algebra with the usual wedge product
A Q3 (P) x QYP) — QSTY(P).

o-commutativity means thatAnf = o (s, t)(8 Aw), Whereo (s, t) = (—1)St. Also,
the differential d is a derivation of degregel of Q' (P).

Proof. Givené € Q5(P), w € Q!(P) andX € A(P) we have that
ix(@Aw) = (>(x0) Aw+ (=130 A (ixw) =0.

Moreover,d(® A w) = df A w + (—1)°0 A dw, and by a calculation similar to the
one above we gék d(@ A w) = 0, which implies tha® A » € Q%*(P). Direct
calculation shows thadd e QST1(P) wheneverd € Q3(P). EachQs(P) is an
F(P)-module; we have thaty(fw) = f(ixw) = 0 for everyX € A(P),w €
QS(P), f € F(P) andixd(fw) = ix(df A w) = 0, sincedf A w € QStL(P).
Thus fw € Q5(P). It is obvious that23(P) is closed under addition of forms.[J

Each invariant-form 6 € Q'(P) defines aF(P)-linear map
0 :DP)x---xD(P)— F(P)

by 0(X1, ..., X;) = 0(Xq,..., X)) for any choice of representativeég of X; e
D(P).

The derivationd = ds : Q5(P) — QST1(P) provides the notion of cohomol-
ogy: with thel-th cohomology group oP defined by

HS(P) ® Kerds/ Imds_;.

Proposition 2.5. With respect to the multiplication induced by the wedge prod-
uct,

H(P) =P H'(P)

leZ
is aZ-gradedo -commutative algebra with
[6] A [w] [0 A 0]
for any choice of representativése kerds, w € kerd;.

Let¢ : M — N be a smooth map of manifolds, equipped with integrable
distributionsP and Q respectively. If¢*(Ann(Q)) c Ann(P),we say thap is a
morphism of distributions
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Theorem 2.6. A morphism of distributions : (M, P) — (N, Q) induces a
graded-algebra-homomorphism

" H(Q — H'(P)
by *([6]) = [¢"©)].

3. Equations of symmetry and cosymmetry

It is well known that associated with the ODE
(3) y ¥ =Fx,y.y. .. y*)
is the Cartan distributiod generated by the Cartan forms

a)ozd[_'b— pldX, a)lzdpl— pde,..., a)k_lzdp(_l— Fdx

F=F(X, po, ..., px_1), Or alternatively, by the characteristic line field
0 +p 0 +---4+0p 9 + F 9
= 1 T k—1 .
X 9Po 0Pk—2 OPk-1

We know that symmetries modulo characteristic symmetries are all of the form:
Xp = ¢pdpy + D(@)dp, + - -+ + D@y, ,
whereg = ¢(X, po, P1, - - -, Pk_1) Solves theLie Equation
K1 9F
4 L(¢)=[DK—ZD'}<¢):0.
= 9P
Theorem 3.1. Any invariantl-formé € Q*(C) is of the form

K
0=0)=vor1+ Y HE)oc

1=2

whereyr = ¥ (X, po, P1, - - -, Pk_1) Solves the adjoint equation
k1 dF
(5) L*(y) = [(Dk> - (=)D a}w) =0
r=0 Pr
and where
1-2
HI — (_1)|—1D|—1 o Z(_l)SDSL
—0 9 Pk—1+1+s

(with p_1 = x in this formula.)

Proof. The requiremenity () = 0 implies thatt = Zik;g ajw;i for some func-
tionsa; since the Cartan forms generate Aén The second requirement then be-
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comes xdfé = Lp# = 0, and direct calculation df 50 gives exactly the equations
on theg;-s of the theorem. O

We will denote invariant 1-forms bgosymmetriesas they are dual objects to
symmetries.

4. Second order ordinary differential equations

For the cas& = 2 the characteristic field is

D = dx + pdy + F(X, U, p)dp

and the Lie Equation becomes

(6) L(¢) = (D*— F,D — Fy)(¢) = 0.

A solution¢ of (6) generates a symmetry
X = X4 = ¢dy + D(¢)dp.

The adjoint equation becomes:

) L*(¥) = (D*+ D - Fp — F)(¥) = 0.

A solutiony of (7) generates a cosymmetry
Oy = (=D — Fp)(Y)wo + Y1 .

For metric structure we get the following requirements. Deddi¢ou by F,,
dF /op by Fj respectively.

Theorem 4.1. Any invariant symmetri2-form is of the form
g = Loo(n) g + 2Lo1(n) wo - w1 + 0wl

wheren, a generating function of g, is the solution of the equation

Lii(n) = [Dg +[3Fp]D? + [BD(Fp) + 2[:5 — 4F,|D
(8)
+ [2D?(Fp) + 4F,D(Fp) — 2D(F,) — 4FpFu]](n) —0

and the operators §g and Ly, are

1
Loo= > [D?+3F,D + 2[D(Fy) + F2~ Fy]|.

1
Los=—5 (D +2Fp).

Proof. This follows from the requiremeniy(D, -) = 0 andLp(g) = 0. The
firstimplies thatg = ) ij w; - wj, where they; are the Cartan forms, which gen-
erate AnriC). The second gives the requirements of the theorem on the coefficient
functionse;j by direct calculation of. 5(g). O
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We call L1 the symmetric poweof L*. Given two solutions/, v, of the L*-
equation, they generate cosymmetmgsand 6,, which in turn provides us with
an invariant symmetric 2-forrg = 67 + 62. The functionsy?, ¥1y» and 2 are
solutions of the_1;-equation.

There is a large class of equations that possegaglectic structura the sense
of an invariant 2-form, non-degenerated excepiai®).

Theorem 4.2. Equations of the form
9) y' =y(y +8(x,y)
wherey (x) andé§(x, y) are arbitrary, have an invarian2-form
A =P A wp

whereq is any function such that'(x) = —y (x), andwg and w; are the Cartan
forms.

Proof. We see thaip A = 0 sinceipwg = ipw; = 0. Direct calculation gives
ipdA = LpA = 0, henceA isC-invariant. O

Note that by Corollary 2.3 we immediately get tliat = 0 sinceQ3(C) = 0. A
produces a Poisson structure on the algebra of first integrals, in coordinates
af 0 af 0
(t.9)= e-“<9 - 9) .
apaou  auap
Also, we have the notion of Hamiltonian vector field; for any first intedrale get
a corresponding symmety; = e “((af /ap)o, — (af /0u)dp) that satisfies the
conditionix, A +df = 0.
For equations as in Theorem 4.2 we have the following relation between the
associated. andL*-equations:

(10) Li¢)=0 <« L*(€"¢) =0.

Thus, knowing a full set of symmetries of the equation gives us a corresponding set
of cosymmetries, and vice versa.

5. (Co-)symmetries, connections and curvature: examples

In this section we first investigate equations of the type
y// — y/ + f(y)

where the functiorf (y) is non-linear. In [1], the problem of finding-linear gener-
ating functions of symmetries is treated in full. All equations equipped with a two
dimensional Lie-algebra of such symmetries are classifigd= 1, so Theorem
4.2 implies that

L)=0 <& L*€e*¢p)=0.
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Theorem 5.1([1]). Non-linear equations on the form
y// — y/ + f(y)
that possess a two-dimensional Lie algebra of point-symmetries can be divided into
the following two classes:

2
1 Y =y+ad-:

witha,be R, a,b# 0and

y ¢ (2+2
(12) y' =y +aly+b) 7(C+3)2(y+b)

witha,b,ce Randa#0,c#0,1, -3

These equations are equipped with the following structure, as listed below.

Type (11)

(i) Solutions ofL(¢) = 0:

_ 2
$1=p and ¢2=ex<p—b>

(i) Corresponding symmetries:

2

2
Xy = ex<p—b)au+exaeb“8p
(i) Solutions ofL*(y) = O:

y1=e"p and YYo= e_2X<p - i)
(iv) Corresponding cosymmetries:

2
0 =e% [(—p — aeb“ + b)a)o + pa)lj|,

O, = e [—aeb“a)o + (p - E)wl]

(v) Firstintegral:

2a 4 4
f — 9 X — e—2X 7ebu _ 2 - _ j|
l( 2) |: b p-+ bp bz
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(vi) Symplectic form:
A =e wAwg

(vii) Metric structure:

2\?2 2
g=02402 = [a2(1+e2")e2b“+ (p— b) +2(p— b)aep“]a)g

4267 [aeb“<— p—e‘z"(p— E)) — p2+§ p]a)o-wl
+e72x 2 | 2% _g 2 2
p~+€ p b) |“1

(viii) Connection symbols:
F%l = F%z = ngl = —2F§lz =2

(ix) Curvature:

-1
R= ?(91 A 0)°.

Type (12)

(i) Solutions ofL(¢) = 0:

(1-9

2
pr=p and ¢= e©td (p - m(u + b))
(i) Corresponding symmetries:
2c+2
X1=poy+ (|O+a(u4rb)C - ((C+3);(u+b))8p,

(1-o)x

2
X, = e 3 S b) )9
2=@€ [(p C+3(U+ ))u

2 c 4
* (c+3p+a(u+b) a (C+3)2(u+b)>8p}

(iii) Solutions ofL*(y) = 0:
(—2—2c)

Yyr=e*p and yp=e <p—

2
c+3 (u+ b))
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(iv) Corresponding cosymmetries:

01 =e* [(—p —au+b)’+ (( +3§3 (u+ b))(uo + pwl]

(—2—-20)x 2
O, =e °+3 [(—p—a(u+b)°+ (u+b)>a)o

4
c+3 (c + 3)?

2+ b)
“(p=7003 )]

(v) Firstintegral:

2—-2c)x
R T
~ fs)z( +b)* + (12fc) (u+ b>°+1]
(vi) Symplectic form:
A =¢e" w1 Awgy
(vii) Metric structure:
g=67+63
(=2-20)x 2 4 2
- He o (a(u+b)c+c+3 b= <c+3)2(”+b))}

2
+[e‘x(a(u+b)° (2+ ;:2( +b)+p)” 2

v o 2 4 2
— c+ c — -
ZHe (a(U+b) +C+3p (C+3)2(u+b)>}<p C+3(U+b))

2+2c
(c+3)2(u+b)+p]]wo‘w1

e g °©f3 ———(u+b
[p " (p cr3t )> ]w

(viii) Connection symbols:
(1+0
M =ri,=2-———, Ij=-T}=1
11 12 (C—l— 3) 21 22

(ix) Curvature:R = ((1—c)/(c+ 3))(1/F2) (01 A 62)?

+e X [a(u+b)°—
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The last example is thiearmonic oscillator equation
(13) y'+cy=0

wherec € R. We have the following structures:
() Symmetries:

Xy =pady—CuUdp, Xop=Udy+ padp
(i) Cosymmetries:
01 = CUwg + pwy, 62 = —Ppwo+ Uw;y
(iii) Firstintegral:
f =61(X) = cu? + p?
(iv) Symplectic structure:
A =w1 ANwg
(v) Metric structures:
G1 = 6 + 65 = (c°u’ + p?)wj + 2up(c — Do - w1 + (U + pHe]

and in additiong, = cw? + w? by Theorem 4.1.
(vi) Connection symbols and curvature:

Il =0 forbothg; andg,,
Rl = R2 = 0.
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