Geometric structures on solution spaces of integrable distributions ${ }^{1}$

Cathrine Vembre Jensen

Abstract

In this paper we will investigate invariant tensors of completely integrable distributions, in particular the Cartan distribution associated with a ordinary differential equation. For second order equations examples of invariant 1 -forms, symplectic structure, metric structure and curvature is presented.

Keywords. Ordinary differential equations, Cartan distribution, symmetries, metric structure, symplectic structure.
MS classification. 34A26, 34A34, 34C14, 34C30.

1. Vector fields, symmetric 2-forms and curvature

Let P be a completely integrable distribution on a manifold M, specified by either of the locally free modules

$$
\begin{aligned}
& \Delta(P)=\left\{X \in D(M) \mid X_{m} \in P_{m} \forall m \in M\right\} \quad \text { or } \\
& \text { Ann } P=\left\{\theta \in \Omega^{1}(M) \mid \theta(X)=0 \forall X \in \Delta(P)\right\} .
\end{aligned}
$$

We denote

$$
\mathcal{D}(P)=\operatorname{Sym}(P) / \Delta(P)
$$

where $\operatorname{Sym}(P)$ is the collection of symmetries of P. We define the space of solutions of P to be

$$
\mathcal{S}=M / \sim
$$

where points $x, y \in M$ are equivalent if they belong to a connected integral manifold of M.

[^0]Denote $\mathcal{F}(P)=\left\{f \in C^{\infty}(M) \mid L_{X}(f)=0\right\}$. It is an \mathbb{R}-algebra called the algebra of first integrals. Elements of $\mathcal{D}(P)$ act as derivations $\mathcal{F}(P) \rightarrow \mathcal{F}(P)$, by acting on functions by any representative in $\operatorname{Sym}(P)$. This action is well defined with respect to choice of representative. $\mathcal{D}(P)$ also inherits the Lie-algebra structure of $\operatorname{Sym}(P)$, with respect to the commutator bracket

$$
[\cdot, \cdot]: \mathcal{D}(P) \longrightarrow \mathcal{D}(P)
$$

taken on representatives modulo $\Delta(P)$. The operation is well defined.
Definition 1.1. A symmetric 2 -form g is P-invariant if

$$
g(X, \cdot)=0 \quad \text { and } \quad L_{X}(g)=0 \quad \forall X \in \Delta(P)
$$

The set of invariant 2-forms is an $\mathcal{F}(P)$-module, denoted $S^{2}(P)$, and elements of $S^{2}(P)$ act as symmetric bilinear forms on $\mathcal{D}(P)$ into $\mathcal{F}(P)$. The action is well defined on representatives of classes in $\mathcal{D}(P)$. We say that g is positive if $g\left(X_{a}, X_{a}\right)>$ 0 for any $X_{a} \notin P_{a}, a \in M$. A positive g will induce a connection

$$
\nabla: \mathcal{D}(P) \times \mathcal{D}(P) \longrightarrow \mathcal{D}(P)
$$

with the Levi-Civita properties, that is:

1. $\nabla_{\bar{X}}(f \bar{Y}+h \bar{Z})=f \nabla_{\bar{X}} \bar{Y}+h \nabla_{\bar{X}} \bar{Z}+\bar{X}(f) \cdot \bar{Y}+\bar{X}(h) \cdot \bar{Z}$
2. $\nabla_{f} \bar{X}_{+}+h \bar{Y} \bar{Z}=f \nabla_{\bar{X}} \bar{Z}+h \nabla_{\bar{Y}} \bar{Z}$
3. $[\bar{X}, \bar{Y}]=\nabla_{\bar{X}} \bar{Y}-\nabla_{\bar{Y}} \bar{X}$
4. $\bar{X}(g(\bar{Y}, \bar{Z}))=g\left(\nabla_{\bar{X}} \bar{Y}, \bar{Z}\right)+g\left(\bar{Y}, \nabla_{\bar{X}} \bar{Z}\right)$
for any \bar{X}, \bar{Y} and $\bar{Z} \in \mathcal{D}(P), f, h \in \mathcal{F}(P)$.
Defining ∇ on representatives of elements in $\mathcal{D}(P)$, and requiring that it is invariant with respect to choice of representatives will, together with the above requirements 1-4 determine ∇ completely. Let $m=\operatorname{codim} P$, and \mathcal{G} be an m-dimensional transversal subalgebra of $\mathcal{D}(P)$ generated by $\left\{\bar{X}_{i}\right\}_{i=1}^{m}$ where the commutators are

$$
\left[\bar{X}_{i}, \bar{X}_{j}\right]=\sum_{s=1}^{m} c_{i j}^{s} \bar{X}_{s}
$$

We can find a (local) basis $\left\{X_{i}\right\}_{i=1}^{\operatorname{dim} M}$ of $\mathcal{D}(M)$ so that $\left\{X_{i}\right\}_{i=1}^{m}$ is a set of representatives of $\left\{\bar{X}_{i}\right\}$. We define ∇ in term of the functions $\Gamma_{i j}^{s}$ by the equations

$$
\nabla_{X_{i}} X_{j}=\sum_{s=1}^{\operatorname{dim} M} \Gamma_{i j}^{s} X_{s} .
$$

We must have $\Gamma_{i j}^{s}=0$ for $i, j, s>m$, then

$$
\nabla_{X_{i}+Y} X_{j}=\nabla_{X_{i}} X_{j}=\nabla_{X_{i}}\left(X_{j}+Y\right)
$$

for any $Y \in \Delta(P)$, by requirements 1 and 2 . Furthermore, properties (3) and (4) are equivalent to
$3^{\prime} . \Gamma_{i j l}=\Gamma_{j i l}+c_{i j l}$
$4^{\prime} . X_{i}\left(g_{j l}\right)=\Gamma_{i j l}+\Gamma_{i l j}$
where $g_{i j}=g\left(X_{i}, X_{j}\right), \Gamma_{i j l}=\sum_{l=1}^{m} \Gamma_{i j}^{s} g_{s l}$ and $c_{i j l}=\sum_{l=1}^{m} c_{i j}^{s} g_{s l}$. Combining the two equations for different permutations of indices makes us arrive at the following:

$$
\begin{equation*}
\Gamma_{i j l}=\frac{1}{2}\left[\sum_{k}\left[c_{i j}^{k} g_{k l}-c_{j l}^{k} g_{k i}+c_{l i}^{k} g_{k j}\right]+X_{j}\left(g_{i l}\right)-X_{l}\left(g_{i j}\right)+X_{i}\left(g_{j l}\right)\right] \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\Gamma_{i j}^{s}=\frac{1}{2} \sum_{l=1}^{m}\left[c_{i j l}-c_{j l i}+c_{l i j}+X_{j}\left(g_{i l}\right)-X_{l}\left(g_{i j}\right)+X_{i}\left(g_{j l}\right)\right] g^{l s} \tag{2}
\end{equation*}
$$

where $g^{l s}$ are entries of of $\left(g_{i j}\right)^{-1}$. This gives us the local expression of ∇ by means of g and the local basis $\left\{X_{i}\right\}$. We can now define the curvature operator

$$
R(X, Y) \stackrel{\text { def. }}{=}\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}: \mathcal{D}(P) \longrightarrow \mathcal{D}(P)
$$

and the curvature tensor R of the distribution P

$$
R(X, Y, Z, W) \stackrel{\text { def. }}{=} g(R(X, Y)(Z), W)
$$

2. The algebra of invariant differential forms

Definition 2.1. We say that a k-form $\theta \in \Omega^{1}(M)$ is P-invariant if

$$
i_{X}(\theta)=0 \quad \text { and } \quad i_{X}(d \theta)=0
$$

for all $X \in \Delta(P)$.
The set of invariant k-forms form a $\mathcal{F}(P)$-module, denoted $\Omega^{k}(P)$.
Proposition 2.2. Locally any element $\theta \in \Omega^{l}(P)$ is on the form

$$
\theta=\sum \alpha_{\left(i_{1}, \ldots, i_{l}\right)} \theta_{i_{1}} \wedge \cdots \wedge \theta_{i_{l}}
$$

where the $\theta_{i_{j}}-s$ form a local basis of $\operatorname{Ann}(P)$.
Proof. Let $\left\{\theta_{i}\right\}_{i=1}^{n}$ be a local basis of $\Omega^{1}(M), n=\operatorname{dim} M$, such that $\left\{\theta_{i}\right\}_{i=1}^{m}$ generates $\operatorname{Ann}(P)$. Take $\left\{E_{j}\right\}_{j=1}^{n}$ to be the dual local basis of $\mathcal{D}(M)$ such that $\left\{E_{j}\right\}_{j=m+1}^{n}$ generates $\Delta(P)$ and $\theta_{i}\left(E_{j}\right)=\delta_{i j}$. Any element θ of $\Omega^{l}(P)$ is on the form

$$
\theta=\sum_{1 \leq i_{1}<\cdots<i_{l} \leq n} \alpha_{\left(i_{1}, \ldots, i_{l}\right)} \theta_{i_{1}} \wedge \cdots \wedge \theta_{i_{l}}
$$

for some $\alpha_{\left(i_{1}, \ldots, i_{l}\right)} \in C^{\infty}(M)$. By requiring that $i_{E_{s}} \theta=0$, starting with $s=n$, and down to $s=m+1$ we see that $\alpha_{\left(i_{1}, \ldots, i_{l}\right)}=0$ whenever any $i_{j}>m$.

Corollary 2.3.

$$
\Omega^{l}(P)=0 \quad \text { for } \quad l>m=\operatorname{codim} P
$$

Furthermore, we define $\Omega^{0}(P)=\mathcal{F}(P)$ and $\Omega^{s}(P)=0$ for $s<0$, and get the following.

Theorem 2.4.

$$
\Omega^{\prime}(P)=\bigoplus_{s \in Z} \Omega^{s}(P)
$$

is a Z-graded σ-commutative algebra with the usual wedge product

$$
\wedge: \Omega^{s}(P) \times \Omega^{t}(P) \longrightarrow \Omega^{s+t}(P)
$$

σ-commutativity means that $\omega \wedge \theta=\sigma(s, t)(\theta \wedge \omega)$, where $\sigma(s, t)=(-1)^{s t}$. Also, the differential d is a derivation of degree +1 of $\Omega(P)$.

Proof. Given $\theta \in \Omega^{s}(P), \omega \in \Omega^{t}(P)$ and $X \in \Delta(P)$ we have that

$$
i_{X}(\theta \wedge \omega)=\left(i_{X} \theta\right) \wedge \omega+(-1)^{s} \theta \wedge\left(i_{X} \omega\right)=0
$$

Moreover, $d(\theta \wedge \omega)=d \theta \wedge \omega+(-1)^{s} \theta \wedge d \omega$, and by a calculation similar to the one above we get $i_{X} d(\theta \wedge \omega)=0$, which implies that $\theta \wedge \omega \in \Omega^{s+t}(P)$. Direct calculation shows that $d \theta \in \Omega^{s+1}(P)$ whenever $\theta \in \Omega^{s}(P)$. Each $\Omega^{s}(P)$ is an $\mathcal{F}(P)$-module; we have that $i_{X}(f \omega)=f\left(i_{X} \omega\right)=0$ for every $X \in \Delta(P), \omega \in$ $\Omega^{s}(P), f \in \mathcal{F}(P)$ and $i_{X} d(f \omega)=i_{X}(d f \wedge \omega)=0$, since $d f \wedge \omega \in \Omega^{s+1}(P)$. Thus $f \omega \in \Omega^{s}(P)$. It is obvious that $\Omega^{s}(P)$ is closed under addition of forms.

Each invariant l-form $\theta \in \Omega^{l}(P)$ defines a $\mathcal{F}(P)$-linear map

$$
\theta: \mathcal{D}(P) \times \cdots \times \mathcal{D}(P) \longrightarrow \mathcal{F}(P)
$$

by $\theta\left(\overline{X_{1}}, \ldots, \overline{X_{l}}\right)=\theta\left(X_{1}, \ldots, X_{l}\right)$ for any choice of representatives X_{i} of $\overline{X_{i}} \in$ $\mathcal{D}(P)$.

The derivation $d=d_{s}: \Omega^{s}(P) \longrightarrow \Omega^{s+1}(P)$ provides the notion of cohomology: with the l-th cohomology group of P defined by

$$
H^{s}(P) \stackrel{\text { def. }}{=} \operatorname{Ker} d_{s} / \operatorname{Im} d_{s-1}
$$

Proposition 2.5. With respect to the multiplication induced by the wedge product,

$$
H^{\cdot}(P)=\bigoplus_{l \in \mathbb{Z}} H^{l}(P)
$$

is a \mathbb{Z}-graded σ-commutative algebra with

$$
[\theta] \wedge[\omega] \stackrel{\text { def. }}{=}[\theta \wedge \omega]
$$

for any choice of representatives $\theta \in \operatorname{ker} d_{s}, \omega \in \operatorname{ker} d_{t}$.
Let $\phi: M \rightarrow N$ be a smooth map of manifolds, equipped with integrable distributions P and Q respectively. If $\phi^{*}(\operatorname{Ann}(Q)) \subset \operatorname{Ann}(P)$, we say that ϕ is a morphism of distributions.

Theorem 2.6. A morphism of distributions $\phi:(M, P) \longrightarrow(N, Q)$ induces a graded-algebra-homomorphism

$$
\phi^{*}: H^{\cdot}(Q) \longrightarrow H^{\cdot}(P)
$$

by $\phi^{*}([\theta])=\left[\phi^{*}(\theta)\right]$.

3. Equations of symmetry and cosymmetry

It is well known that associated with the ODE

$$
\begin{equation*}
y^{(k)}=F\left(x, y, y^{\prime}, \ldots, y^{(k-1)}\right) \tag{3}
\end{equation*}
$$

is the Cartan distribution \mathcal{C} generated by the Cartan forms

$$
\omega_{0}=d p_{0}-p_{1} d x, \omega_{1}=d p_{1}-p_{2} d x, \ldots, \omega_{k-1}=d p_{k-1}-F d x
$$

$F=F\left(x, p_{0}, \ldots, p_{k-1}\right)$, or alternatively, by the characteristic line field

$$
D=\frac{\partial}{\partial x}+p_{1} \frac{\partial}{\partial p_{0}}+\cdots+p_{k-1} \frac{\partial}{\partial p_{k-2}}+F \frac{\partial}{\partial p_{k-1}} .
$$

We know that symmetries modulo characteristic symmetries are all of the form:

$$
X_{\phi}=\phi \partial_{p_{0}}+D(\phi) \partial_{p_{1}}+\cdots+D^{k-1}(\phi) \partial_{p_{k-1}}
$$

where $\phi=\phi\left(x, p_{0}, p_{1}, \ldots, p_{k-1}\right)$ solves the Lie Equation

$$
\begin{equation*}
L(\phi)=\left[D^{k}-\sum_{l=0}^{k-1} \frac{\partial F}{\partial p_{l}} D^{l}\right](\phi)=0 \tag{4}
\end{equation*}
$$

Theorem 3.1. Any invariant 1 -form $\theta \in \Omega^{1}(\mathcal{C})$ is of the form

$$
\theta=\theta_{\psi}=\psi \omega_{k-1}+\sum_{l=2}^{k} H_{l}(\psi) \omega_{k-l}
$$

where $\psi=\psi\left(x, p_{0}, p_{1}, \ldots, p_{k-1}\right)$ solves the adjoint equation

$$
\begin{equation*}
L^{*}(\psi)=\left[\left(D^{k}\right)-\sum_{r=0}^{k-1}(-1)^{r+k} D^{r} \cdot \frac{\partial F}{\partial_{p_{r}}}\right](\psi)=0 \tag{5}
\end{equation*}
$$

and where

$$
H_{l}=(-1)^{l-1} D^{l-1}-\sum_{s=0}^{l-2}(-1)^{s} D^{s} \frac{\partial F}{\partial p_{k-l+1+s}}
$$

(with $p_{-1}=x$ in this formula.)
Proof. The requirement $i_{D}(\theta)=0$ implies that $\theta=\sum_{i=0}^{k-1} \alpha_{i} \omega_{i}$ for some functions α_{i} since the Cartan forms generate $\operatorname{Ann}(\mathcal{C})$. The second requirement then be-
comes $i_{X} d \theta=L_{D} \theta=0$, and direct calculation of $L_{D} \theta$ gives exactly the equations on the α_{i}-s of the theorem.

We will denote invariant 1 -forms by cosymmetries, as they are dual objects to symmetries.

4. Second order ordinary differential equations

For the case $k=2$ the characteristic field is

$$
D=\partial_{x}+p \partial_{u}+F(x, u, p) \partial_{p}
$$

and the Lie Equation becomes

$$
\begin{equation*}
L(\phi)=\left(D^{2}-F_{p} D-F_{u}\right)(\phi)=0 . \tag{6}
\end{equation*}
$$

A solution ϕ of (6) generates a symmetry

$$
X=X_{\phi}=\phi \partial_{u}+D(\phi) \partial_{p} .
$$

The adjoint equation becomes:

$$
\begin{equation*}
L^{*}(\psi)=\left(D^{2}+D \cdot F_{p}-F_{u}\right)(\psi)=0 \tag{7}
\end{equation*}
$$

A solution ψ of (7) generates a cosymmetry

$$
\theta_{\psi}=\left(-D-F_{p}\right)(\psi) \omega_{0}+\psi \omega_{1}
$$

For metric structure we get the following requirements. Denote $\partial F / \partial u$ by F_{u}, $\partial F / \partial p$ by F_{p} respectively.

Theorem 4.1. Any invariant symmetric 2 -form is of the form

$$
g=L_{00}(\eta) \omega_{0}^{2}+2 L_{01}(\eta) \omega_{0} \cdot \omega_{1}+\eta \omega_{1}^{2}
$$

where η, a generating function of g, is the solution of the equation

$$
\begin{align*}
L_{11}(\eta)= & {\left[D^{3}+\left[3 F_{p}\right] D^{2}+\left[5 D\left(F_{p}\right)+2 F_{p}^{2}-4 F_{u}\right] D\right.} \\
& \left.+\left[2 D^{2}\left(F_{p}\right)+4 F_{p} D\left(F_{p}\right)-2 D\left(F_{u}\right)-4 F_{p} F_{u}\right]\right](\eta)=0 \tag{8}
\end{align*}
$$

and the operators L_{00} and L_{01} are

$$
\begin{aligned}
L_{00} & =\frac{1}{2}\left[D^{2}+3 F_{p} D+2\left[D\left(F_{p}\right)+F_{p}^{2}-F_{u}\right]\right] \\
L_{01} & =-\frac{1}{2}\left(D+2 F_{p}\right)
\end{aligned}
$$

Proof. This follows from the requirements $g(D, \cdot)=0$ and $L_{D}(g)=0$. The first implies that $g=\sum \alpha_{i j} \omega_{i} \cdot \omega_{j}$, where the ω_{i} are the Cartan forms, which generate $\operatorname{Ann}(\mathcal{C})$. The second gives the requirements of the theorem on the coefficient functions $\alpha_{i j}$ by direct calculation of $L_{D}(g)$.

We call L_{11} the symmetric power of L^{*}. Given two solutions ψ_{1}, ψ_{2} of the L^{*} equation, they generate cosymmetries θ_{1} and θ_{2}, which in turn provides us with an invariant symmetric 2-form $g=\theta_{1}^{2}+\theta_{2}^{2}$. The functions $\psi_{1}^{2}, \psi_{1} \psi_{2}$ and ψ_{2}^{2} are solutions of the L_{11}-equation.

There is a large class of equations that possess a symplectic structure in the sense of an invariant 2 -form, non-degenerated except on $\Delta(P)$.

Theorem 4.2. Equations of the form

$$
\begin{equation*}
y^{\prime \prime}=\gamma(x) y^{\prime}+\delta(x, y) \tag{9}
\end{equation*}
$$

where $\gamma(x)$ and $\delta(x, y)$ are arbitrary, have an invariant 2-form

$$
\Lambda=e^{\alpha(x)} \omega_{1} \wedge \omega_{0}
$$

where α is any function such that $\alpha^{\prime}(x)=-\gamma(x)$, and ω_{0} and ω_{1} are the Cartan forms.

Proof. We see that $i_{D} \Lambda=0$ since $i_{D} \omega_{0}=i_{D} \omega_{1}=0$. Direct calculation gives $i_{D} d \Lambda=L_{D} \Lambda=0$, hence Λ is \mathcal{C}-invariant.

Note that by Corollary 2.3 we immediately get that $d \Lambda=0$ since $\Omega^{3}(\mathcal{C})=0 . \Lambda$ produces a Poisson structure on the algebra of first integrals, in coordinates

$$
\{f, g\}=e^{-\alpha}\left(\frac{\partial f}{\partial p} \frac{\partial g}{\partial u}-\frac{\partial f}{\partial u} \frac{\partial g}{\partial p}\right)
$$

Also, we have the notion of Hamiltonian vector field; for any first integral f we get a corresponding symmetry $X_{f}=e^{-\alpha}\left((\partial f / \partial p) \partial_{u}-(\partial f / \partial u) \partial_{p}\right)$ that satisfies the condition $i_{X_{f}} \Lambda+d f=0$.

For equations as in Theorem 4.2 we have the following relation between the associated L and L^{*}-equations:

$$
\begin{equation*}
L(\phi)=0 \quad \Leftrightarrow \quad L^{*}\left(e^{\alpha} \phi\right)=0 \tag{10}
\end{equation*}
$$

Thus, knowing a full set of symmetries of the equation gives us a corresponding set of cosymmetries, and vice versa.

5. (Co-)symmetries, connections and curvature: examples

In this section we first investigate equations of the type

$$
y^{\prime \prime}=y^{\prime}+f(y)
$$

where the function $f(y)$ is non-linear. In [1], the problem of finding p-linear generating functions of symmetries is treated in full. All equations equipped with a two dimensional Lie-algebra of such symmetries are classified. $F_{p}=1$, so Theorem 4.2 implies that

$$
L(\phi)=0 \quad \Leftrightarrow \quad L^{*}\left(e^{-x} \phi\right)=0
$$

Theorem 5.1 ([1]). Non-linear equations on the form

$$
y^{\prime \prime}=y^{\prime}+f(y)
$$

that possess a two-dimensional Lie algebra of point-symmetries can be divided into the following two classes:

$$
\begin{equation*}
y^{\prime \prime}=y^{\prime}+a e^{b y}-\frac{2}{b} \tag{11}
\end{equation*}
$$

with $a, b \in \mathbb{R}, a, b \neq 0$ and

$$
\begin{equation*}
y^{\prime \prime}=y^{\prime}+a(y+b)^{c}-\frac{(2 c+2)}{(c+3)^{2}}(y+b) \tag{12}
\end{equation*}
$$

with $a, b, c \in \mathbb{R}$ and $a \neq 0, c \neq 0,1,-3$.
These equations are equipped with the following structure, as listed below.

Type (11)

(i) Solutions of $L(\phi)=0$:

$$
\phi_{1}=p \quad \text { and } \quad \phi_{2}=e^{-x}\left(p-\frac{2}{b}\right)
$$

(ii) Corresponding symmetries:

$$
\begin{aligned}
& X_{1}=p \partial_{u}+\left(p+a e^{b u}-\frac{2}{b}\right) \partial_{p} \\
& X_{2}=e^{-x}\left(p-\frac{2}{b}\right) \partial_{u}+e^{-x} a e^{b u} \partial_{p}
\end{aligned}
$$

(iii) Solutions of $L^{*}(\psi)=0$:

$$
\psi_{1}=e^{-x} p \quad \text { and } \quad \psi_{2}=e^{-2 x}\left(p-\frac{2}{b}\right)
$$

(iv) Corresponding cosymmetries:

$$
\begin{aligned}
& \theta_{1}=e^{-x}\left[\left(-p-a e^{b u}+\frac{2}{b}\right) \omega_{0}+p \omega_{1}\right], \\
& \theta_{2}=e^{-2 x}\left[-a e^{b u} \omega_{0}+\left(p-\frac{2}{b}\right) \omega_{1}\right]
\end{aligned}
$$

(v) First integral:

$$
f=\theta_{1}\left(X_{2}\right)=e^{-2 x}\left[\frac{2 a}{b} e^{b u}-p^{2}+\frac{4}{b} p-\frac{4}{b^{2}}\right]
$$

(vi) Symplectic form:

$$
\Lambda=e^{-x} \omega_{1} \wedge \omega_{0}
$$

(vii) Metric structure:

$$
\begin{aligned}
g=\theta_{1}^{2}+\theta_{2}^{2}= & e^{-2 x}\left[a^{2}\left(1+e^{-2 x}\right) e^{2 b u}+\left(p-\frac{2}{b}\right)^{2}+2\left(p-\frac{2}{b}\right) a e^{b u}\right] \omega_{0}^{2} \\
& +2 e^{-2 x}\left[a e^{b u}\left(-p-e^{-2 x}\left(p-\frac{2}{b}\right)\right)-p^{2}+\frac{2}{b} p\right] \omega_{0} \cdot \omega_{1} \\
& +e^{-2 x}\left[p^{2}+e^{-2 x}\left(p-\frac{2}{b}\right)^{2}\right] \omega_{1}^{2}
\end{aligned}
$$

(viii) Connection symbols:

$$
\Gamma_{11}^{1}=\Gamma_{12}^{2}=2 \Gamma_{21}^{2}=-2 \Gamma_{22}^{1}=2
$$

(ix) Curvature:

$$
R=\frac{-1}{f^{2}}\left(\theta_{1} \wedge \theta_{2}\right)^{2}
$$

Type (12)

(i) Solutions of $L(\phi)=0$:

$$
\phi_{1}=p \quad \text { and } \quad \phi_{2}=e^{\frac{(1-c)}{(c+3)} x}\left(p-\frac{2}{(c+3)}(u+b)\right)
$$

(ii) Corresponding symmetries:

$$
\begin{aligned}
X_{1}=p \partial_{u}+ & \left(p+a(u+b)^{c}-\frac{(2 c+2)}{(c+3)^{2}}(u+b)\right) \partial_{p} \\
X_{2}=e^{\frac{(1-c) x}{(c+3)}} & {\left[\left(p-\frac{2}{c+3}(u+b)\right) \partial_{u}\right.} \\
& \left.+\left(\frac{2}{c+3} p+a(u+b)^{c}-\frac{4}{(c+3)^{2}}(u+b)\right) \partial_{p}\right]
\end{aligned}
$$

(iii) Solutions of $L^{*}(\psi)=0$:

$$
\psi_{1}=e^{-x} p \quad \text { and } \quad \psi_{2}=e^{\frac{(-2-2 c)}{(c+3)} x}\left(p-\frac{2}{(c+3)}(u+b)\right)
$$

(iv) Corresponding cosymmetries:

$$
\begin{gathered}
\theta_{1}=e^{-x}\left[\left(-p-a(u+b)^{c}+\frac{(2 c+2)}{(c+3)^{2}}(u+b)\right) \omega_{0}+p \omega_{1}\right] \\
\theta_{2}=e^{\frac{(-2-2 c) x}{c+3}}\left[\left(-\frac{2}{c+3} p-a(u+b)^{c}+\frac{4}{(c+3)^{2}}(u+b)\right) \omega_{0}\right. \\
\left.\quad+\left(p-\frac{2(u+b)}{c+3}\right) \omega_{1}\right]
\end{gathered}
$$

(v) First integral:

$$
\begin{aligned}
f=\theta_{1}\left(X_{2}\right)= & e^{\frac{(-2-2 c) x}{c+3}} \frac{(1+c)}{(c+3)}\left[-p^{2}+\frac{4}{(c+3)} p(u+b)\right. \\
& \left.-\frac{4}{(c+3)^{2}}(u+b)^{2}+\frac{2 a}{(1+c)}(u+b)^{c+1}\right]
\end{aligned}
$$

(vi) Symplectic form:

$$
\Lambda=e^{-x} \omega_{1} \wedge \omega_{0}
$$

(vii) Metric structure:

$$
\begin{aligned}
g= & \theta_{1}^{2}+\theta_{2}^{2} \\
= & {\left[\left[e^{\frac{(-2-2 c) x}{c+3}}\left(a(u+b)^{c}+\frac{2}{c+3} p-\frac{4}{(c+3)^{2}}(u+b)\right)\right]^{2}\right.} \\
& \left.+\left[e^{-x}\left(a(u+b)^{c}-\frac{2+2 c}{(c+3)^{2}}(u+b)+p\right)\right]^{2}\right] \omega_{0}^{2} \\
- & 2\left[\left[e^{\frac{(-4-4 c) x}{c+3}}\left(a(u+b)^{c}+\frac{2}{c+3} p-\frac{4}{(c+3)^{2}}(u+b)\right)\right]\left(p-\frac{2}{c+3}(u+b)\right)\right. \\
& \left.+e^{-2 x}\left[a(u+b)^{c}-\frac{2+2 c}{(c+3)^{2}}(u+b)+p\right]\right] \omega_{0} \cdot \omega_{1} \\
+ & e^{-2 x}\left[p^{2}+e^{\frac{(2-2 c) x}{c+3}}\left(p-\frac{2}{c+3}(u+b)\right)^{2}\right] \omega_{1}^{2}
\end{aligned}
$$

(viii) Connection symbols:

$$
\Gamma_{11}^{1}=\Gamma_{12}^{2}=2 \frac{(1+c)}{(c+3)}, \quad \Gamma_{21}^{2}=-\Gamma_{22}^{1}=1
$$

(ix) Curvature: $R=((1-c) /(c+3))\left(1 / f^{2}\right)\left(\theta_{1} \wedge \theta_{2}\right)^{2}$

The last example is the harmonic oscillator equation

$$
\begin{equation*}
y^{\prime \prime}+c y=0 \tag{13}
\end{equation*}
$$

where $c \in \mathbb{R}$. We have the following structures:
(i) Symmetries:

$$
X_{1}=p \partial_{u}-c u \partial_{p}, \quad X_{2}=u \partial_{u}+p \partial_{p}
$$

(ii) Cosymmetries:

$$
\theta_{1}=c u \omega_{0}+p \omega_{1}, \quad \theta_{2}=-p \omega_{0}+u \omega_{1}
$$

(iii) First integral:

$$
f=\theta_{1}\left(X_{2}\right)=c u^{2}+p^{2}
$$

(iv) Symplectic structure:

$$
\Lambda=\omega_{1} \wedge \omega_{0}
$$

(v) Metric structures:

$$
g_{1}=\theta_{1}^{2}+\theta_{2}^{2}=\left(c^{2} u^{2}+p^{2}\right) \omega_{0}^{2}+2 u p(c-1) \omega_{0} \cdot \omega_{1}+\left(u^{2}+p^{2}\right) \omega_{1}^{2}
$$

and in addition $g_{2}=c \omega_{0}^{2}+\omega_{1}^{2}$ by Theorem 4.1.
(vi) Connection symbols and curvature:

$$
\begin{aligned}
& \Gamma_{i j}^{k}=0 \quad \text { for both } g_{1} \text { and } g_{2} \\
& R_{1}=R_{2}=0
\end{aligned}
$$

References

[1] S.V. Duzhin and V.V. Lychagin, Symmetries of distributions and quadrature of ordinary differential equations, Acta Appl. Math. 24 (1991) (1) 29-57.

Cathrine Vembre Jensen
Department of Mathematics
University of Troms \varnothing
N-9037 Tromsø
Norway
E-mail: cath@math.uit.no

[^0]: ${ }^{1}$ This paper is in final form and no version of it will be submitted for publication elsewhere.

