Geometrical structures on solution spaces of Ordinary Differential Equations

Cathrine Vembre Jensen

December 1, 1999

Contents

1 Preliminaries 5
1.1 Smooth manifolds 5
1.2 Jets of functions 6
1.3 Vector bundles 8
1.4 Diffeomorphisms: induced homomorphisms 13
1.5 Connections and curvature 16
2 The solution space of a distribution 20
2.1 Involutive distributions 20
2.2 The solution space of a distribution P 21
2.3 Functions and vectorfields on solution spaces 22
2.4 The algebra of differential forms on solution spaces 24
2.5 Further properties of $\Omega^{l}(P)$ 28
2.6 Morphisms of distributions 30
2.7 Cohomologies of solution spaces. 32
2.8 Examples 35
3 Riemannian structures on solution spaces. 39
3.1 Symmetric 2-forms on \mathcal{S} 39
3.2 Connection and curvature of (\mathcal{S}, \tilde{g}) 40
4 ODE-s as distributions 46
4.1 The Cartan distribution $\mathcal{C}_{\mathcal{E}}$ 46
4.2 Symmetries and cosymmetries of the Cartan distribution 47
4.3 Remarks on $S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$ 51
5 Algebraic picture -relations with \mathcal{D}-modules 52
5.1 $\quad A$-module E with a derivation 52
6 ODE-s of order two 55
6.1 Symmetry, cosymmmetry and g-equations 55
6.2 Equations with extra structure 58
6.3 Equations with constant coefficient g 60
6.4 Some equations with known co-/symmetries and g 62
6.5 Harmonic oscillator 64

Abstract

In this thesis we investigate some geometrical properties of quotient spaces connected to integrable distributions on manifolds. In particular we will consider Cartan distributions on the 1-jet space, connected to differential equations. We will play with tensors over our new quotient space - that is, tensors on the original manifold that are invariant under the factorization relation that produces the new space.

Introduction

The main goal for this thesis has been to establish an algebraic fundament to study geometrical structures related to differential equations, first of all ordinary differential equations. This, however, has led to more general constructions around integrable distributions on smooth manifolds.

There is a natural way to move the study of a k-th order ODE into the k-jet space. There is a one to one correspondence between solutions of the equation

$$
y^{(k)}-F\left(x, y, y^{\prime}, \ldots, y^{(k-1)}\right)=0
$$

and integral curves of the 1-dimensional Cartan distribution of the equation, in the k-jet space. The idea is to study the quotient space of the k-jet space that arises when we identify points that belong to the same integral curve of the Cartan distribution. This quotient space can be quite complicated, or sometimes even be a smooth manifold. To study the geometry of this space we need some algebraic tools. We get those from taking tensors on the k-jet space that are invariant on our distribution.

To provide an algebraic fundament we generalize our constructions to concern completely integrable distributions on any smooth manifold. This became the starting point of the discussion.

Chapter 1 includes a brief tour through some of the fundaments of differential geometry. We recall the notions of smooth manifolds, vector bundles and various tensor spaces connected to a manifold, including jet-spaces.

Chapter 2 starts with the fundamentals of completely integrable distributions on a manifold. It is in this chapter that we define the solution space of a distribution, and make our main algebraic constructions over this space. This includes functions $\mathcal{F}(P)$, vectorfields $\mathcal{D}(P)$, the algebra of differential l-forms $\Omega(P)$ and symmetric 2 -forms $S^{2}(P)$. These objects fit exactly into the usual algebraic picture, and we continue by defining the differential \tilde{d} of forms, and cohomology groups $H^{l}(P)$. We define morphisms of distributions, smooth maps between manifolds that map one distribution into another, and show that from this we get an induced graded algebra homomorphism on the
algebras of differential forms. We conclude the chapter with a couple of examples.

Chapter 3 introduces the notion of Riemannian structure on our solution space, in terms of a invariant positive symmetric 2 -form. We see that this provides us with the notion of a connection on our solution space, and a way to calculate this whenever we know a positive $g \in S^{2}(P)$.

Chapter 4 is where we introduce ODE-s to the discussion, and investigate the Cartan distribution of a differential equation. This leads us to the question of finding symmetries and cosymmetries of the distribution. We formulate the conditions on vectorfields and 1 -forms to be invariant on the Cartan distribution. It is known that any symmetry is given by a single generating function that must solve the Lie-equation $L \phi=0, L$ the Lieoperator. We prove that any cosymmetry (invariant 1 -form) is given by a single generating function, that must solve the equation $L^{*} \psi=0$, where L^{*} is calculated, and found to be the adjoint operator of the Lie-operator L.

Chapter 5 is a brief comparing between our constructions of Chapter 5, with the algebraic picture of \mathcal{D}-modules.

Chapter 6 is devoted to ODE-s of order 2. In the first section we formulate the equations for generating functions of symmetries, cosymmetries and invariant symmetric 2 -forms. For equations of the type

$$
y^{\prime \prime}=\gamma(x) y^{\prime}+\delta(x, y)
$$

, γ and δ arbitrary, we find an isomorphism between $\operatorname{ker} L$ and $\operatorname{ker} L^{*}$.
For a subclass of this class of equations, equations on the form

$$
y^{\prime \prime}=F(x, y)
$$

we find a symplectic structure given by the form $\Lambda=\omega_{0} \wedge \omega_{1}$, where ω_{0} and ω_{1} are the Cartan forms.

We find that the equations

$$
y^{\prime \prime}+\alpha y=f(x) \quad \text { with } g=\alpha \omega_{0}^{2}+\omega_{1}^{2}, \alpha \in \mathbb{R}
$$

and

$$
y^{\prime \prime}+\alpha y^{\prime}=f(x) \quad \text { with } g=\alpha^{2} \omega_{0}^{2}+2 \alpha \omega_{0} \cdot \omega_{1}+\omega_{1}^{2}, \alpha \in \mathbb{R}
$$

are the only ones that possess a Riemannian structure given by a constantcoefficient g in the Cartan basis.
The next section is devoted to equations on the form

$$
y^{\prime \prime}=y^{\prime}+f(y)
$$

where f is non-linear, that possess a two-dimensional Lie-algebra of point symmetries (generating function linear in p). There are only two such classes, and in this section we are able to list symmetries, cosymmetries and Riemannian structures of these.
The very last part of the chapter is about the harmonic oscillator equation

$$
y^{\prime \prime}+c y=0
$$

and includes symmetries, cosymmetries and two different Riemannian structures of this.

Chapter 1

Preliminaries

1.1 Smooth manifolds

In this chapter we recall some basic notions as smooth manifolds, tensors over manifolds etc.

We start by defining our primary object, the manifold.
Definition 1.1 A smooth manifold M of dimension n is a pair (M, \aleph) where M is a set, and $\aleph=\left\{\phi_{\alpha}: U_{\alpha} \longrightarrow O_{\alpha}\right\}$ is a collection of charts that satisfy the following conditions:
(i) $\mathrm{U}_{\alpha} U_{\alpha}=M$
(ii) $O_{\alpha} \subset \mathbb{R}^{n}$ is open, ϕ_{α} is set-isomorphism $\forall \alpha$
(iii) $\phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right), \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \subset \mathbb{R}^{n}$ are open $\forall \alpha, \beta$.
(iv) The charts are compatible: $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ are diffeomorphisms (smooth bijections) $\forall \alpha, \beta$ where they are defined.
\aleph is called a smooth atlas on M. We note that we get a topology on M the following way: let (U, ϕ) be a chart in M. We say that $V \subseteq U$ is open if $\phi(V) \subseteq \mathbb{R}^{n}$ is open. Sets of this kind generate a topology on M, by taking finite intesections and any unions of such sets. We consider only manifolds that are Hausdorff with respect to this topology. Two atlases $\left(\phi_{\alpha}, U_{\alpha}\right)$ and $\left(\psi_{\beta}, V_{\beta}\right)$ are equivalent if each pair of charts are compatible in the sense defined in (iv) above. Normally we don't wish to distinguish between equivalent atlases, but operate with equivalence classes of atlases: smooth structures.

Thus we can add to any atlas a compatible chart according to our needs.
The natural maps between smooth manifolds M and N of dimension m and n respectively are smooth maps:

Definition 1.2 A continous map $f: M \longrightarrow N$ is a smooth map of manifolds if

$$
\bar{f}=\psi \circ f \circ \phi^{-1}: \phi(U) \subset \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}
$$

is a smooth map \forall charts (ϕ, U) and (ψ, V) of M, N.
We call the category of smooth manifolds Sman. The objects are smooth manifolds, and the morphisms are smooth maps, as defined above. Given an n-dimensional manifold M, a chart (ϕ, U) is called a coordinate neighbourhood. To each point $q \in U$ we assign the (local) coordinates $\left(x_{1}(q), . ., x_{n}(q)\right)=$ $\phi(q)$. Note that the n functions $x_{i}=p r_{i} \circ \phi i=1 . . n$, where $p r_{i}=$ projection on i-th coordinate, are smooth functions on U.

1.2 Jets of functions

When discussing manifolds, an important object to us is the ring of smooth functions on $M, C^{\infty}(M)=C^{\infty}(M, \mathbb{R})$. It introduces us to the algebraic side of the discussion, and we will start with some local objects over our manifold. Remark: $C^{\infty}(M)$ is also an \mathbb{R}-algebra.

For each point $a \in M$ we have the maximal ideal

$$
\mu_{a}=\left\{f \in C^{\infty}(M) \mid f(a)=0\right\} \subset C^{\infty}(M)
$$

This provides us wtih the following chain of ideals related to M :

$$
\ldots \subset \mu_{a}^{k} \subset \mu_{a}^{k-1} \subset \ldots \subset \mu_{a} \subset C^{\infty}(M)
$$

Definition 1.3 Let $a \in M, k \geq 0$. The factor

$$
J_{a}^{k}(M)=C^{\infty}(M) / \mu_{a}^{k+1}
$$

is called the space of k-jets of functions at $a \in M$, and

$$
[f]_{a}^{k}=f \bmod \mu_{a}^{k+1}
$$

is called the k-jet of f at the point a.

Let (ϕ, U) with $a \in U$ be local coordinates, and $\phi(a)=\left(a_{1}, . ., a_{n}\right) \in \mathbb{R}^{n}$. Then every $f \in C^{\infty}(U)$ can be written

$$
f=\sum_{0 \leq|\sigma| \leq k} s_{\sigma}(a)(x-a)^{\sigma}+\epsilon_{k}
$$

where $\epsilon_{k} \in \mu_{a}^{k+1}, s_{\sigma} \in C^{\infty}(U)$ and $(x-a)^{\sigma}$ is a product of linear factors $\left(x_{i}-a_{i}\right)$ over multiindex σ.

Theorem 1.1 Given point $a \in M$ as above we have:
(1) $J_{a}^{k}(M)$ is an \mathbb{R}-vectorspace with respect to operations
(i) $[f]_{a}^{k}+[g]_{a}^{k}=[f+g]_{a}^{k}$
(ii) $\lambda \cdot[f]_{a}^{k}=[\lambda \cdot f]_{a}^{k}$
where $\lambda \in \mathbb{R}, f, g \in C^{\infty}(M)$
(2) $\operatorname{dim}_{\mathbb{R}} J_{a}^{k}(M)=\binom{n+k}{k}$, and we have basis

$$
\mathcal{B}=\left\{[1]_{a}^{k},\left[\left(x_{i}-a_{i}\right)\right]_{a}^{k}, \ldots,\left[(x-a)^{\sigma}\right]_{a}^{k}\right\}
$$

- classes of distinct products up to degree k of linear factors $\left(x_{i}-a_{i}\right)$, $i=1$..n.
(3) $J_{a}^{k}(M)$ is an \mathbb{R} - algebra with respect to multiplication

$$
[f]_{a}^{k} \cdot[g]_{a}^{k}=[f \cdot g]_{a}^{k}
$$

and with generators $[1]_{a}^{k},\left\{\left[x_{i}-a_{i}\right]_{a}^{k}\right\}_{i=1 . . n}$
Of special importance to us is 1-jet spaces over various manifolds. Given a manifold M as above, we have the following exact sequence for all $k \geq 1$:

$$
0 \longrightarrow \mu_{a}^{k} / \mu_{a}^{k+1} \xrightarrow{i} J_{a}^{k}(M) \xrightarrow{\pi_{k, k-1}} J_{a}^{k-1}(M) \longrightarrow 0
$$

where $\pi_{k, k-1}$ is the canonical map of factors that maps $[f]_{a}^{k} \mapsto[f]_{a}^{k-1}$, and i inclusion of the kernel of $\pi_{k, k-1}$.
Thus, for $k=1$ we have

$$
0 \longrightarrow \mu_{a} / \mu_{a}^{2} \xrightarrow{i} J_{a}^{1}(M) \xrightarrow{\pi_{1,0}} J_{a}^{0}(M) \longrightarrow 0
$$

which provides us with the following notion:

Proposition 1.1 For any $a \in M, T_{a}^{*} M=\mu_{a} / \mu_{a}^{2}$ is an n-dimensional vectorspace, called the cotangent space of M at a.

Given local coordinates as above, the set $\left\{d_{a} x_{i}=\left[x_{i}-a_{i}\right]_{a}^{1}\right\}_{i=1 . . n}$ is a basis of $T_{a}^{*}(M)$.

Definition 1.4 Given $f \in C^{\infty}(M)$, we call

$$
d_{a} f=[f-f(a)]_{a}^{1}
$$

the differential of f at the point a.
Remark: As a map $d_{a}: C^{\infty}(M) \rightarrow T_{a}^{*}$ is
(i) \mathbb{R} - linear and
(ii) $d_{a}(f g)=d_{a} f \cdot g(a)+f(a) \cdot d_{a} g$

Definition 1.5 We define $T_{a}(M)$ to be the dual vectorspace of $T_{a}^{*}(M)$. $T_{a}(M)$ is called the tangent space of M at a. Given local coordinates and $T_{a}^{*}(M)$-basis as above, we have the unique dual basis $\left\{\partial_{i, a}=\frac{\partial}{\partial x_{i, a}}\right\}_{i=1 . . n}$ with $\left\langle\partial_{i, a}, d_{a} x_{j}\right\rangle=\partial_{i, a}\left(d_{a} x_{j}\right)=\delta_{i j}$.

Proposition 1.2 Any element $v \in T_{a}(M)$ produces a derivation $\bar{v}=v \circ d_{a}$ of $C^{\infty}(M)$ at the point a. Conversely any derivation D of $C^{\infty}(M)$ at the point a is on the form $D=\bar{v}=v \circ d_{a}$ for some $v \in T_{a}(M)$.

If M is (some open subset of) \mathbb{R}^{n} it is easy to see that for any $f \in C^{\infty}(M)$ we have $d_{a} f=\sum_{i=1}^{n} \lambda_{i} d_{a} x_{i}$, where $\lambda_{i}=\frac{\partial f}{\partial x_{i}}(a)$, looking at the Taylor expansion of f. On the other hand we have: $\lambda_{i}=\left\langle\partial_{i, a}, d_{a} f\right\rangle=\partial_{i, a}(f)$ so, $d_{a} f=$ $\sum_{i=1}^{n} \partial_{i, a}(f) d_{a} x_{i}$, and the derivations $\partial_{i, a}$ are the usual partial derivatives.

1.3 Vector bundles

We shall look into the concept of a vector bundle over a manifold. Let B be an n-dimensional smooth manifold.

Definition 1.6 We say that

$$
\pi: E(\pi) \longrightarrow B
$$

is a vector bundle over B if
(i) $E(\pi) \in$ Sman and $\pi: E(\pi) \longrightarrow B$ is smooth and surjective.
(ii) \exists atlas $\left\{U_{i} \xrightarrow{\phi_{i}} O_{i}\right\}$ on B, and diffeomorphisms $\left\{\tilde{\phi}_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow O_{i} \times \mathbb{R}^{m}\right\}$ such that the diagram (a) commutes:

$$
\begin{array}{ccc}
\pi^{-1}\left(U_{i}\right) & \xrightarrow{\tilde{\phi}_{i}} & O_{i} \times \mathbb{R}^{m} \\
\left.\pi\right|^{2} & & \left.\right|_{\phi_{i}} \\
U_{i} & O_{i}
\end{array}
$$

and diagram (b) commutes:

$$
\begin{array}{cc}
\phi_{i}\left(U_{i} \cap U_{j}\right) \times \mathbb{R}^{m} & \xrightarrow[\tilde{\phi}_{j} \circ \tilde{\phi}_{i}^{-1}]{\longrightarrow}
\end{array} \phi_{j}\left(U_{i} \cap U_{j}\right)
$$

where $p r_{1}: O_{i} \times \mathbb{R}^{m} \rightarrow O_{i}$ is projection of O_{i}-part onto O_{i}.
(c) $\left(\tilde{\phi}_{j} \circ \tilde{\phi_{i}^{-1}}\right):(x ; v) \mapsto\left(\left(\phi_{j} \circ \phi_{i}^{-1}\right)(x) ; A_{x} v\right)$
where $A_{x}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}$ is a linear operator and an isomorphism.
We call $\pi^{-1}(x)=\pi_{x}$ the fibre over $x \in B$.
Proposition 1.3 For all $x \in B, \pi_{x}$ is a vectorspace w.r.t.
(i) $\operatorname{sum}\left(\pi_{x} \times \pi_{x} \xrightarrow{s_{x}} \pi_{x}\right): s_{x}\left(v_{1}, v_{2}\right)=\tilde{\phi}_{i}^{-1}\left(\phi_{i}(x), p r_{2}\left(v_{1}\right)+p r_{2}\left(v_{2}\right)\right)$
(ii) multiplication $\left(\mathbb{R} \times \pi_{x} \xrightarrow{\mu_{x}} \pi_{x}\right): \mu_{x}(\lambda, v)=\tilde{\phi}_{i}^{-1}\left(\phi_{i}(x), \lambda \cdot p r_{2}\left(v_{2}\right)\right)$

So: a vector bundle is a fibered set where the fibres are vectorspaces.

Figure 1.1 The "trivial bundle" over B:

π-projection B onto B

Section $s=$ smooth function $B \longrightarrow R$

Definition 1.7 Given a vector bundle $E \xrightarrow{\pi} B$, a section of the bundle π is a smooth map $s: B \longrightarrow E$ s.t. $\pi \circ s=I d_{B}$. We denote the sections of a bundle π by $C^{\infty}(\pi)=\{$ sections $s: B \rightarrow E\}$.
$C^{\infty}(\pi)$ is a locally free module. For any $b \in B$ there exists a neighbourhood U with $b \in U$, and $e_{1}, . ., e_{m} \in C^{\infty}(\pi)$ s.t. any $s \in C^{\infty}(\pi)$ can be written

$$
s=\sum_{i=1}^{m} f_{i} e_{i} \text { on } U
$$

where $f_{i} \in C^{\infty}(B), \mathrm{i}=1$..n. We call $\left\{e_{i}\right\}_{i=1}^{m}$ a local basis of $C^{\infty}(\pi)$.
Given a vector bundle $E(\pi) \xrightarrow{\pi} B$, we can construct a tensor bundle by making the following step: For every $b \in B, \pi_{b}$ is a vectorspace, so we can take the union over $b \in B$ of the following tensorproducts

$$
E\left(\pi^{\otimes k}\right)=\bigcup_{b \in B} \pi_{b}^{\otimes k}=\bigcup_{b \in B} \underbrace{\pi_{b} \otimes \ldots \otimes \pi_{b}}_{k}
$$

Every point in $E\left(\pi^{\otimes k}\right)$ is on the form $\left(b ; v=\sum a_{i}(b) v_{i, b}\right)$, where $b \in B$ and $\left\{v_{i, b}\right\}$ is a basis of $\pi_{b}^{\otimes k}$. We get coordinates by mapping
$\left(b ; v=\sum a_{i}(b) v_{i, b}\right) \xrightarrow{\tilde{\phi}}\left(\phi(b) ;\left(a_{i}(b)\right)\right) \in \mathbb{R}^{n+k^{2}}$, where ϕ is a coordinate chart of B around b. With the projection

$$
E\left(\pi^{\otimes k}\right) \xrightarrow{\pi^{\otimes k}} B
$$

where $\pi_{b}^{\otimes k} \mapsto b$, this is a vectorbundle.
Of particular interest to us are various tensors over manifolds:

Example 1.1 The cotangent bundle

$$
\begin{gathered}
\tau^{*}: T^{*} B \longrightarrow B \quad \text { where } T^{*} B=\bigcup_{b \in B} T_{b}^{*} B \\
\text { and } \tau^{*}:\left(d_{b} f \in T_{b}^{*} B\right) \mapsto b
\end{gathered}
$$

for any $b \in B$.
The sections of this bundle are the differential 1-forms on B :
$C^{\infty}\left(\tau^{*}\right)=\Omega^{1}(B)$ is a $C^{\infty}(B)$-module. Given local coordinates $x_{1}, . ., x_{n}$ in a neighbourhood of $b \in B$ we get local coordinates on $T^{*} B$ by taking

$$
\left(b ; d_{b} f=\sum_{i=1}^{n} \lambda_{i} d_{b} x_{i}\right) \stackrel{\tilde{\phi}}{\mapsto}\left(\phi(b) ; \lambda_{1}, . ., \lambda_{n}\right)
$$

By the section $d x_{i}$ we mean the map $b \mapsto d_{b} x_{i}$. The coordinates provide us with the local basis $\left\{d x_{i}\right\}_{i=1}^{n}$.

From this bundle we can build tensor bundles, and further, the differential \mathbf{k}-forms on B. For any $k \geq 1$ we have

$$
\bigwedge^{k}\left(T_{b}^{*} B\right) \subset\left(T_{b}^{*} B\right)^{\otimes n}
$$

which is a vectorspace for each $b \in B$, and a fibre of a new bundle $\tau_{\tilde{\phi}}^{\wedge k}: \wedge^{k}\left(T^{*} B\right) \longrightarrow B$. Like for the tensorbundles we get a coordinate chart $\tilde{\phi}$ on the new bundle taking a coordinate chart ϕ of B and the coefficient map of $v=\sum a_{i} v_{i, b} \in \Lambda^{k}\left(T_{b}^{*} B\right)$ so that $\tilde{\phi}:(b ; v) \mapsto\left(\phi(b) ;\left(a_{i}\right)\right)$
The sections of this bundle are the differential k-forms, $C^{\infty}\left(\tau^{\wedge k}\right)=\Omega^{k}(B)$, and a local basis is $\left\{d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}\right\}_{i_{1}<. .<i_{k}}$

Another tensorbundle of interest to us is the bundle of symmetric 2-forms

$$
S^{2}\left(T^{*} B\right)=\bigcup_{b \in B} S^{2}\left(T_{b}^{*} B\right)
$$

Sections here are the symmetric 2 -forms over B.
A local basis is $\left\{d x_{i} \cdot d x_{j}=\frac{1}{2}\left(d x_{i} \otimes d x_{j}+d x_{j} \otimes d x_{i}\right)\right\}_{i \leq j}$
Example 1.2 The tangent bundle

$$
\begin{gathered}
\tau: T B \longrightarrow B \text { where } T B=\bigcup_{b \in B} T_{b} B \\
\text { and } \quad \tau^{*}:\left(X_{b} \in T_{b} B\right) \mapsto b
\end{gathered}
$$

for any $b \in B$. The sections of this bundle are the vector fields on B : $C^{\infty}(\tau)=\mathcal{D}(B)$ is a $C^{\infty}(B)$-module, and is also a Lie-algebra w.r.t. the operation

$$
[X, Y]=X \circ Y-Y \circ X
$$

where X, Y are considered as operators on $C^{\infty}(B)$. Given local coordinates $x_{1}, . ., x_{n}$ on $U \subset B, b \in U$, we recall to have a basis $\left\{\partial_{i, b}=\frac{\partial}{\partial x_{i, b}}\right\}$ of the vectorspace $T_{b} B$. Thus we get local coordinates on $T B$ by taking $\tilde{\phi}$:

$$
\left(b ; X_{b}=\sum_{i=1}^{n} a_{i} \partial_{i, b}\right) \stackrel{\tilde{\oplus}}{\mapsto}\left(\phi(b) ; a_{1}, . ., a_{n}\right)
$$

By the section $\partial_{i}=\frac{\partial}{\partial x_{i}}$ we mean the map $b \mapsto \partial_{i, b}$. This provides us with the local basis $\left\{\frac{\partial}{\partial x_{i}}\right\}_{i=1}^{n}$ of $\mathcal{D}(B)$ in this coordinate neighbourhood.

Remark: for each manifold B we have the pairing

$$
\langle,\rangle: \Omega^{1}(B) \times \mathcal{D}(B) \longrightarrow C^{\infty}(B) \quad \text { where }\langle\theta, X\rangle(b)=\left\langle\theta_{b}, X_{b}\right\rangle \in \mathbb{R}
$$

In local coordinates: $\left\langle\sum_{i=1}^{n} \theta_{i} d x_{i}, \sum_{j=1}^{n} v_{j} \partial_{j}\right\rangle=\sum_{i=1}^{n} \theta_{i} \cdot v_{i}$

Example 1.3 The k-jet bundles

$$
\begin{gathered}
\pi_{k}: J^{k} B \longrightarrow B \quad \text { where } J^{k} B=\bigcup_{b \in B} J_{b}^{k} B \\
\text { and } \quad \pi_{k}:\left([f]_{b}^{k} \in J_{b}^{k} B\right) \mapsto b
\end{gathered}
$$

for any $b \in B$ is a vector bundle for each $k \geq 0$.
Example: $B=\mathbb{R}, k=1$. Then we can think about $J^{1}(\mathbb{R})$ as consisting of points $\left(a, f(a), f^{\prime}(a)\right)$ where $a \in \mathbb{R}$ and $f \in C^{\infty}(\mathbb{R})$. Thus we can identify $J^{1}(\mathbb{R})$ with \mathbb{R}^{3}.

1.4 Diffeomorphisms: induced homomorphisms

Let $M \in S m a n$, and $\phi, \psi: M \longrightarrow M$ be diffeomorphisms. We then get the following induced maps of various modules connected to the manifold:

Definition 1.8 We have the following induced module-homomorphisms:
(i) $\phi^{*}: C^{\infty}(M) \longrightarrow C^{\infty}(M) \quad$ with $f \mapsto f \circ \phi$
(ii) $\phi_{*}: C^{\infty}(M) \longrightarrow C^{\infty}(M) \quad$ with $f \mapsto f \circ \phi^{-1} \quad$ and:
$(\phi \circ \psi)_{*}=\phi_{*} \circ \psi_{*}$
(iii) $\phi^{*}: \mathcal{D}(M) \longrightarrow \mathcal{D}(M) \quad$ with $X \mapsto X \circ \phi^{*}$
$(\phi \circ \psi)^{*}=\psi^{*} \circ \phi^{*}$
(iv) $\phi_{*}: \mathcal{D}(M) \longrightarrow \mathcal{D}(M) \quad$ with $X \mapsto\left(\phi^{-1}\right)^{*} \circ X \circ \phi^{*} \quad$ and:
$(\phi \circ \psi)_{*}=\phi_{*} \circ \psi_{*}$
$\phi_{*}(f X)=\phi_{*}(f) \phi_{*}(X) \quad \forall f \in C^{\infty}(M)$
$\phi_{*}[X, Y]=\left[\phi_{*}(X), \phi_{*}(Y)\right]$ and $\phi^{*}[X, Y]=\left[\phi^{*}(X), \phi^{*}(Y)\right]$
(v) $\phi^{*}: \Omega^{1}(M) \longrightarrow \Omega^{1}(M) \quad$ with $\phi^{*}(\omega)$ given by
$\left\langle\phi^{*}(\omega), X\right\rangle=\phi^{*}\left\langle\omega, \phi_{*}(X)\right\rangle$
(vi) $\phi_{*}: \Omega^{1}(M) \longrightarrow \Omega^{1}(M)$
with $\phi_{*}(\omega)=\left(\phi^{-1}\right)^{*}(\omega) \quad$ and
$(\phi \circ \psi)_{*}=\phi_{*} \circ \psi_{*}$
$\phi_{*}(f \omega)=\phi_{*}(f) \phi_{*}(\omega) \quad \forall f \in C^{\infty}(M)$
In addition we have
$\phi_{*}\langle\omega, X\rangle=\left\langle\phi_{*}(\omega), \phi_{*}(X)\right\rangle \quad \forall \omega \in \Omega^{1}(M), X \in \mathcal{D}(M)$
Let w be a "word of length r " with letters 0,1 and $\mathcal{A}^{0}=\mathcal{D}(M), \mathcal{A}^{1}=$ $\Omega^{1}(M)$. By $\mathcal{A}^{\otimes w}$ we mean the "mixed" tensorproduct of modules according to the order of letters in w. Example: $w=(1,1,0) \Longrightarrow \mathcal{A}^{\otimes w}=$ $\Omega^{1}(M) \otimes \Omega^{1}(M) \otimes \mathcal{D}(M)$. The elements of this module are sections in the corresponding tensorbundle. We define
(vii) $\phi_{*}: \mathcal{A}^{\otimes w} \longrightarrow \mathcal{A}^{\otimes w}$ by defining $\phi_{*}\left(\theta_{1} \otimes \ldots \otimes \theta_{r}\right)=\phi_{*}\left(\theta_{1}\right) \otimes \ldots \otimes \phi_{*}\left(\theta_{r}\right)$ on decomposable elements of $\mathcal{A}^{\otimes w}$, and expanding as an \mathbb{R}-module homomorphism. Then
$(\phi \circ \psi)_{*}=\phi_{*} \circ \psi_{*}$
$\phi_{*}(f \theta)=\phi_{*}(f) \phi_{*}(\theta) \quad \forall f \in C^{\infty}(M), \theta \in \mathcal{A}^{\otimes w}$
We are now ready to define the Lie-derivative along a vectorfield $X \in \mathcal{D}(M)$ of any tensor $\theta \in \mathcal{A}^{\otimes w}$.

Definition 1.9 Let $\left\{A_{t}\right\}$ be the flow generated by the vectorfield $X \in \mathcal{D}(M)$. For each t this gives us a diffeomorphism $A_{t}: M \rightarrow M$ and thus an induced module-homomorphism $\left(A_{t}\right)_{*}: \mathcal{A}^{\otimes w} \longrightarrow \mathcal{A}^{\otimes w}$, where $\mathcal{A}^{\otimes w}$ as defined above. We define the operator

$$
L_{X}: \mathcal{A}^{\otimes w} \longrightarrow \mathcal{A}^{\otimes w}
$$

by the equation

$$
\left(A_{t}\right)_{*}(\theta)=\theta-t \cdot L_{X}(\theta)+o(t)
$$

We call $L_{X}(\theta)$ the Lie -derivative of θ along X, and it has the following properties:

Proposition 1.4 For $\theta_{i} \in \mathcal{A}^{\otimes w}$ we have:
(i) $L_{X}\left(\theta_{1}+\theta_{2}\right)=L_{X}\left(\theta_{1}\right)+L_{X}\left(\theta_{1}\right) \quad \mathbb{R}$ - linear
(ii) $L_{X}(f \theta)=L_{X}(f) \theta+f L_{X}(\theta) \quad$ Leibniz - rule
(iii) $L_{X}\left(\theta_{1} \otimes \theta_{2}\right)=L_{X}\left(\theta_{1}\right) \otimes \theta_{2}+\theta_{1} \otimes L_{X}\left(\theta_{2}\right) \quad$ which again implies

$$
\begin{aligned}
& L_{X}\left(\theta_{1} \wedge \theta_{2}\right)=L_{X}\left(\theta_{1}\right) \wedge \theta_{2}+\theta_{1} \wedge L_{X}\left(\theta_{2}\right) \\
& L_{X}\left(\theta_{1} \cdot \theta_{2}\right)=L_{X}\left(\theta_{1}\right) \cdot \theta_{2}+\theta_{1} \cdot L_{X}\left(\theta_{2}\right)
\end{aligned}
$$

(iv) $L_{X}(d \omega)=d\left(L_{X} \omega\right) \quad \forall \omega \in \Omega^{k}(M)$
(v) $L_{X}\langle\omega, Y\rangle=\left\langle L_{X} \omega, Y\right\rangle+\left\langle\omega, L_{X} Y\right\rangle \quad \forall \omega \in \Omega^{1}(M), X \in \mathcal{D}(M)$
(vi) For $Y \in \mathcal{D}(M), f \in C^{\infty}(M)$ and $\omega \in \Omega^{k}(M)$ we have

$$
\begin{aligned}
& L_{X}(f)=X(f) \\
& L_{X}(Y)=[X, Y] \\
& \left.\left.L_{X}(\omega)=d(X\lrcorner \omega\right)+X\right\lrcorner d \omega
\end{aligned}
$$

where \perp is the inner derivative defined by the equation:

$$
\begin{aligned}
\left\langle X \perp \omega ; X_{1}, \ldots, X_{k}\right\rangle & =\left\langle\omega ; X, X_{1}, \ldots, X_{k}\right\rangle \\
\text { for } \omega \in \Omega^{k+1}(M) \text { and } X, X_{1}, \ldots, X_{k} & \in \mathcal{D}(M) .
\end{aligned}
$$

(vii) The operator $i_{X}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ is defined by

$$
\left.i_{X}(\omega)=X\right\lrcorner \omega
$$

and satisfies the relation

$$
L_{X} \circ i_{Y}-i_{Y} \circ L_{X}=i_{[X, Y]}
$$

for $X, Y \in \mathcal{D}(M)$.
We will prove the statement (v) and how to find the Lie-derivatives of functions, vectorfields and 1-forms:
For functions we have:

$$
\left(A_{t}\right)_{*}(f)=\left(A_{-t}\right)^{*}=(1-t \cdot X+o(t))(f)=f-t \cdot X(f)+o(t)
$$

For vectorfields we have:

$$
\begin{gathered}
A_{t *}(Y)=A_{-t}^{*} \circ Y \circ A_{t}^{*}=(1-t \cdot X+o(t)) \circ Y \circ(1+t \cdot X+o(t))= \\
Y-t \cdot(X \circ Y-Y \circ X)+o(t)=Y-t \cdot[X, Y]+o(t)
\end{gathered}
$$

Given a 1-form ω we have the following:

$$
\begin{aligned}
& A_{t *}\langle\omega, Y\rangle=\left\langle A_{t *}(\omega), A_{t *}(Y)\right\rangle=\left\langle\omega-t \cdot L_{X}(\omega)+o(t), Y-t \cdot L_{X}(Y)+o(t)\right\rangle= \\
& \langle\omega, Y\rangle-t \cdot\left[\left\langle L_{X}(\omega), Y\right\rangle+\left\langle\omega, L_{X}(Y)\right\rangle\right]+o(t)=\langle\omega, Y\rangle-t \cdot L_{X}\langle\omega, Y\rangle+o(t)
\end{aligned}
$$

So $L_{X}(\omega)$ is defined through the pairing with Y :

$$
\left\langle L_{X}(\omega), Y\right\rangle=L_{X}\langle\omega, Y\rangle-\left\langle\omega, L_{X}(Y)\right\rangle
$$

and we note that this is exactly statement (v).
The rest of the properties follow by direct calculations from the properties of the homomorphisms, or combinations of these.

1.5 Connections and curvature

Let \mathcal{A} be a commutative ring, and P an \mathcal{A}-module. We consider the following:

$$
\mathcal{D}(\mathcal{A})=\{X: \mathcal{A} \rightarrow \mathcal{A} \text { derivation of } \mathcal{A}\}
$$

Definition 1.10 Given $X \in \mathcal{D}(\mathcal{A})$, we say that $\bar{X}: P \rightarrow P$ is a derivation over X if
(i) $\bar{X}\left(p_{1}+p_{2}\right)=\bar{X}\left(p_{1}\right)+\bar{X}\left(p_{2}\right) \quad \forall p_{i} \in P$
(ii) $\bar{X}(a p)=X(a) p+a \bar{X}(p) \quad \forall a \in \mathcal{A}, p \in P$

Sometimes we write (\bar{X}, X) to denote that \bar{X} is a derivation over X .
Proposition 1.5 Given \mathcal{A}, P as above:
(1) $\operatorname{Der}(P)=\{\bar{X}$ derivation over $X, X \in \mathcal{D}(\mathcal{A})\}$ is an \mathcal{A}-module with respect to operations

$$
\begin{aligned}
& \text { (i) } a \cdot(\bar{X}, X)=(a \bar{X}, a X) \quad a \in \mathcal{A},(\bar{X}, X) \in \operatorname{Der} P \\
& \text { (ii) }(\bar{X}, X)+(\bar{Y}, Y)=(\bar{X}+\bar{Y}, X+Y) \\
& (\bar{X}, X),(\bar{Y}, Y) \in \operatorname{Der} P
\end{aligned}
$$

(2) DerP is a Lie-algebra with respect to bracket

$$
[(\bar{X}, X),(\bar{Y}, Y)]=([\bar{X}, \bar{Y}],[X, Y])
$$

(3) The projection

$$
\operatorname{Der} P \xrightarrow{\kappa} \mathcal{D}(\mathcal{A})
$$

with $(\bar{X}, X) \stackrel{\kappa}{\mapsto} X$ is a \mathcal{A}-module and Lie-algebra homomorphism.
We want to connect this algebraic picture to vectorbundles and morphisms of bundles, tangentbundles especially.

Definition 1.11 Let $E(\pi) \longrightarrow M$ be a vectorbundle. An automorphism of the bundle π is a pair $(\phi, \bar{\phi})$ where $M \xrightarrow{\phi} M$ and $E(\pi) \xrightarrow{\bar{\phi}} E(\pi)$ are diffeomorphisms s.t.
(i) the diagram commutes

$$
\begin{array}{ccc}
E(\pi) & \xrightarrow{\bar{\phi}} & E(\pi) \\
\pi \mid & & \\
{ }^{2} & & \\
M & & \\
\phi & M
\end{array}
$$

(ii) and $\left.\bar{\phi}\right|_{\pi_{x}}: \pi_{x} \longrightarrow \pi_{\phi(x)}$ is linear.

Connected to each such bundle we have $\mathcal{A}=C^{\infty}(M)$ and $P=C^{\infty}(\pi)$, where P is an \mathcal{A}-module. Assuming we have an automorphism $(\phi, \bar{\phi})$ of the bundle, we get the following induced homomorphisms:

$$
\begin{array}{ll}
\phi^{*}: \mathcal{A} \longrightarrow \mathcal{A} & \text { by } f \mapsto f \circ \phi \quad \text { and } \\
\bar{\phi}^{*}: P \longrightarrow P & \text { by } p \mapsto\left(\bar{\phi}^{-1} \circ p \circ \phi\right)
\end{array}
$$

Then $\bar{\phi}^{*}(a p)=\phi^{*}(a) \bar{\phi}^{*}(p)$ for $a \in \mathcal{A}, p \in P$
Assume we have a family $\left\{A_{t}: M \longrightarrow M\right\}$ of (local) diffeomorphisms generated by some $X \in \mathcal{D}(M)=\mathcal{D}(\mathcal{A})$. Then we have $A_{t}^{*}=1+t \cdot X+o(t)$. If for each t we have an automorphism, $\left(A_{t}, \bar{A}_{t}\right)$ of the bundle, we can ask if there is some object that generates the family $\left\{\bar{A}_{t}\right\}$, as the vectorfield X is an infinitesimal generator of the family $\left\{A_{t}\right\}$. We define \bar{X} by the following equation:

$$
\bar{A}_{t}^{*}=1+t \cdot \bar{X}+o(t)
$$

It is then easy to check that \bar{X} is a derivation of P over X. So the question of lifting a diffeomorphism A_{t} to an automorphism of the bundle corresponds to asking if there is a lifting of the generating vectorfield $X \mapsto(\bar{X}, X)$. This brings us to the definition of a connection. Let $E(\pi) \xrightarrow{\pi} M$ be a vectorbundle where M is paracompact. Take $\mathcal{A}=C^{\infty}(M) \quad P=C^{\infty}(\pi)$. Then $\mathcal{D}(\mathcal{A})=\mathcal{D}(M)$. Let End P denote the endomorphisms of P. We have the following sequence, the Atiyah-sequence :

$$
0 \longrightarrow \operatorname{End} P \longrightarrow \operatorname{Der} P \xrightarrow{\kappa} \mathcal{D}(\mathcal{A}) \longrightarrow 0
$$

where $\kappa:(\bar{X}, X) \mapsto X$.

Definition 1.12 A connection in the vectorbundle $E(\pi) \xrightarrow{\pi} M$ is an \mathcal{A} module homomorphism

$$
\nabla: \mathcal{D}(\mathcal{A}) \longrightarrow D e r P
$$

that splits the Atiyah-sequence :

$$
0 \longrightarrow \operatorname{End} P \longrightarrow \operatorname{Der} P \xrightarrow{\kappa} \mathcal{D}(\mathcal{A}) \longrightarrow 0
$$

that is : $\quad \kappa \circ \nabla=1$
We will denote $\nabla(X)=\nabla_{X}$.
If we have a connection in our bundle, we can write

$$
\operatorname{Der} P \cong \mathcal{D}(\mathcal{A}) \oplus \operatorname{End} P
$$

and a pair $(\bar{X}, X)=\left(\nabla_{X}+h, X\right)$, for some $h \in \operatorname{End} P$.
But what happens to the Lie-algebra structure of $\mathcal{D}(\mathcal{A})$?
Definition 1.13 We define the curvature R_{∇} of ∇ by

$$
R_{\nabla}(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}
$$

Proposition 1.6 The curvature R_{∇} satisfies the following $\forall X, Y \in \mathcal{D}(\mathcal{A})$:
(i) $R_{\nabla}(X, Y)=-R_{\nabla}(Y, X)$ skew - symmetric
(ii) $R_{\nabla}\left(\sum_{i} a_{i} X_{i}, \sum_{j} b_{j} Y_{j}\right)=\sum_{i, j} a_{i} b_{j} R_{\nabla}\left(X_{i}, Y_{j}\right) \quad \mathcal{A}$ - additive (iii) $\kappa\left(R_{\nabla}(X, Y)\right)=0 \quad$ so $R_{\nabla}(X, Y) \in \operatorname{End} P$

Due to this properties we can think of the curvature as a tensor $R_{\nabla} \in \Omega^{2}(M) \otimes E n d P$: a skew-symmetric \mathcal{A}-additive operator with values in End P.

Example 1.4 If (M, g) is a Riemannian manifold with metric g, the fundamental theorem of Riemannian geometry gives that there exists a unique Riemannian (Levi-Civita)-connection in the tangentbundle over M. That is, there exists a unique operator

$$
\nabla: \mathcal{D}(M) \times \mathcal{D}(M) \longrightarrow \mathcal{D}(M)
$$

with $\nabla(X, Y)=\nabla_{X}(Y)$ that satisfies the following properties:
(1) ∇_{X} is a derivation of $\mathcal{D}(M)$ over X
(2) ∇ is $C^{\infty}(M)$-linear in X
the Levi-Civita properties
(3) $[X, Y]=\nabla_{X} Y-\nabla_{Y} X$ for all $X, Y \in \mathcal{D}(M)$
(4) $X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)$ for all $X, Y, Z \in \mathcal{D}(M)$

From this connection one gets the curvature tensor of the Riemmanian manifold.

Chapter 2

The solution space of a distribution

2.1 Involutive distributions

Let P be a distribution of dimension n and codimension k on a smooth manifold M. That is, $\operatorname{dim} M=n+k$ and at each $x \in M$ an n-dimensional subspace $P_{x} \subset T_{x} M$ is specified such that P_{x} varies smoothly with x. We define

$$
\begin{gathered}
\Delta(P)=\left\{X \in \mathcal{D}(M) \mid X_{m} \in P_{m}, \forall p \in M\right\} \\
\operatorname{Ann}(P)=\left\{\omega \in \Omega^{1}(M) \mid \omega(X)=0, \forall X \in \Delta(P)\right\}
\end{gathered}
$$

These are both $C^{\infty}(M)$-modules, always locally free. Our distribution is fixed whenever one specifies a (local) basis of either.

Definition 2.1 A submanifold $N \subset M$ is an integral manifold of the distribution P if $T_{x} N \subset P_{x}$ for every $x \in N . P$ is said to be completely integrable if $\forall x \in M, \exists$ integral manifold N through x such that $\operatorname{dim} N=n$.

Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a (local) basis of $\Delta(P)$. We say that the distribution P is in involution if

$$
\left[X_{i}, X_{j}\right]=\sum_{r=1}^{n} c_{i j}^{r} X_{r}
$$

for some $c_{i j}^{r} \in C^{\infty}(M)$.

Theorem 2.1 (Frobenius theorem) P is completely integrable if and only if it is in involution.

A proof of this theorem can be found in [Boo75].

2.2 The solution space of a distribution P

Assume we have a completely integrable distribution P on a smooth manifold M. P beeing completely integrable ensures us that through each $x \in M$ there passes a connected integral manifold $N=N(x)$ of P of dimension n. This gives us the following equivalence-relation defined on our manifold M :

$$
\text { Given } x, y \in M \text {, we say that } x \sim y \text {, if } y \in N=N(x)
$$

This relation is easily checked to be an equivalence relation. Given distribution P as above, we shall call

$$
\mathcal{S}=M / \sim
$$

the space of solutions of \mathbf{P}. Points in this quotientspace correspond to connected integral manifolds of our distribution. We will try to define functions and tensors on this "invisible" solution space in terms of M. The main idea is to consider objects over M which are invariant on our distribution, in the sense defined below. For a distribution on a manifold we have the notion of a symmetry. Let $\left\{A_{t}\right\}$ be the flow generated by $X \in \mathcal{D}(M)$ on M. X is a symmetry of the distribution P if for any t, and any $x \in M$, $\left(A_{t}\right)_{*}\left(P_{x}\right) \subset P_{A_{t} x}$ We denote the symmetries of P by $\operatorname{Sym}(P)$.

Theorem 2.2 The following are equivalent:
(1) $X \in \operatorname{Sym}(P)$
(2) $L_{X}(\Delta(P))=[X, \Delta(P)] \subset \Delta(P)$
(3) $L_{X}(\operatorname{Ann}(P)) \subset \operatorname{Ann}(P)$

For proof of the theorem, see [DL91].

Figure 2.1 Distribution P on manifold M

Our distribution P is in involution, so for all $1 \leq i, j \leq n$ we have $\left[X_{i}, X_{j}\right]=$ $\sum_{r=1}^{n} c_{i j}^{r} X_{r}$, where $\left\{X_{i}\right\}_{i=1}^{n}$ is a basis of $D(P)$. Thus $\Delta(P) \subset \operatorname{Sym}(P)$, and we define

$$
\operatorname{Char}(P)=\Delta(P) \cap \operatorname{Sym}(P)
$$

the characteristic symmetries of P.
Let

$$
\operatorname{Shuf}(P)=\operatorname{Sym}(P) / \operatorname{Char}(P)
$$

denote the shuffling symmetries of P. The characteristic symmetries of P leave each maximal integral manifold, whereas the shuffling symmetries will move one into another, hence the name. If our space \mathcal{S} possesses manifold structure, we can explain geometrically how to interpret a symmetry on M as a vector field on \mathcal{S}. But before we look into cases when $\mathcal{S} \in \operatorname{Sman}$ we will make some general constructions.

2.3 Functions and vectorfields on solution spaces

Definition 2.2 We define

$$
\left.\mathcal{F}(P)=\left\{f \in C^{\infty}(M) \mid X\right\lrcorner d f=0, \forall X \in \Delta(P)\right\}
$$

to be the algebra of 1st-integrals of P.
The requirement $X\lrcorner d f=d f(X)=X(f)=L_{X}(f)=0$ gives us functions that are constant on integral manifolds of P, so-called 1st-integrals of our distribution. Any such f will give a well-defined function on \mathcal{S}, and $\mathcal{F}(P)$ is precisely the set $\left\{f \in C^{\infty}(M) \mid f(x)=f(y) \forall x \sim y\right\}$.

Proposition 2.1 $\mathcal{F}(P)$ is an \mathbb{R}-algebra with respect to usual addition and multiplication of functions, and multiplication by reals.

Proof : We need only check that for all $f, g \in \mathcal{F}(P), f+g$ and $f g \in \mathcal{F}(P)$.
We have
$L_{X}(f+g)=L_{X}(f)+L_{X}(g)=0 \quad$ and
$L_{X}(f g)=f L_{X}(g)+g L_{X}(f)=0$
The rest of the properties are obvious.
We want to define the objects that should correspond to vector fields on \mathcal{S}. They should be derivations of $\mathcal{F}(P)$, and really give meaning as vector fields in the cases when $\mathcal{S} \in$ Sman.

Definition 2.3 Given P as above we define

$$
\mathcal{D}(P)=\operatorname{Shuf}(P)
$$

to be the Lie-algebra of vector fields of our distribution P.
Strictly speaking, the elements of $\mathcal{D}(P)$ are classes of vector fields modulo the characteristic vector fields. Two representatives Y and Y^{\prime} of a class in $\mathcal{D}(P)$ differ by an element $X \in \Delta(P), Y^{\prime}=Y+X$. The flows generated by Y and Y^{\prime} respectively will move an integral manifold of P into exactly the same new integral manifold. Thus two representatives of the same class in $\mathcal{D}(P)$ will move a point $[x]$ in \mathcal{S} to the same point $[y] \in \mathcal{S}$, so it is well-defined to consider this the action of the class of Y.
$\mathcal{D}(P)$ inherits the bracket of $\operatorname{Sym}(P)$ in the following way

$$
[\bar{X}, \bar{Y}] \stackrel{\text { def }}{=} \overline{[X, Y]}
$$

For any $X_{0} \in \Delta(P), X, Y \in \operatorname{Sym}(P)$ we get $\overline{\left[X+X_{0}, Y\right]}=\overline{[X, Y]}$ since $\left[X_{0}, Y\right] \in \Delta(P)$. Hence, the bracket operation on $\mathcal{D}(P)$ is well defined. It
inherits the Lie-algebra properties of the bracket on $\operatorname{Sym}(P)$.
Moreover, we can interpret the elements of $\mathcal{D}(P)$ as derivations of $\mathcal{F}(P)$.
Definition 2.4 Given $Y \in \operatorname{Sym}(P)$, a representative of an element $\bar{Y} \in \mathcal{D}(P)$, we define the operator

$$
\bar{Y}: \mathcal{F}(P) \longrightarrow \mathcal{F}(P)
$$

by taking $\bar{Y}(f)=Y(f)$.
Let $Y^{\prime}=Y+X$ be another representative of $\bar{Y}, X \in \Delta(P)$. Then $Y^{\prime}(f)=$ $Y(f)+X(f)=Y(f)$, so the operator is well-defined. The operator inherits the derivational properties of Y, and the only thing we have to check, is that $Y(f) \in \mathcal{F}(P)$ for all $f \in \mathcal{F}(P)$. But

$$
L_{X}(Y(f))=X(Y(f))=[X, Y](f)-Y(X(f))=0
$$

since $X,[X, Y] \in \Delta(P)$, so $Y(f) \in \mathcal{F}(P)$.
Also, $\mathcal{D}(P)$ is clearly a $\mathcal{F}(P)$-module.

2.4 The algebra of differential forms on solution spaces

Differential 1-forms on our space \mathcal{S} should be objects dual to vectorfields $\mathcal{D}(P)$. Thus we make the following step:

Definition 2.5 We define

$$
\Omega^{1}(P)=\left\{\omega \in \Omega^{1}(M) \left\lvert\, \begin{array}{rl}
X\lrcorner \omega=0 & \text { and } \\
X\lrcorner d \omega=0 & \forall X \in \Delta(P)
\end{array}\right.\right\}
$$

This ensures us that $L_{X}(\omega)=0$ for $X \in \Delta(P)$, and that $\langle\omega, Y\rangle \in \mathcal{F}(P)$ where Y is a representative of a class in $\mathcal{D}(P)$. We check the latter:

$$
L_{X}\langle\omega, Y\rangle=\left\langle L_{X}(\omega), Y\right\rangle+\left\langle\omega, L_{X}(Y)\right\rangle=0
$$

since $L_{X}(\omega)=0$ and $L_{X}(Y) \in \Delta(P)$. This gives us a way to find 1stintegrals of our distribution, provided we know elements of $\mathcal{D}(P)$ and $\Omega^{1}(P)$. Moreover, we can make the following definition.
2.4. THE ALGEBRA OF DIFFERENTIAL FORMS ON SOLUTION SPACES2

Definition 2.6 We define the pairing

$$
\langle,\rangle: \Omega^{1}(P) \times \mathcal{D}(P) \longrightarrow \mathcal{F}(P)
$$

by taking $\langle\omega, \bar{X}\rangle \stackrel{\text { def }}{=}\langle\omega, X\rangle=\omega(X)$, where $X \in \operatorname{Sym}(P)$ is any representative of $\bar{X} \in \mathcal{D}(P)$, and $\omega \in \Omega^{1}(P)$.

It is easy to see that this is well-defined, assume $\overline{X^{\prime}}=\bar{X}$ in $\mathcal{D}(P)$, then $X^{\prime}=X+X_{0}$ where $X_{0} \in \Delta(P)$. This gives

$$
\omega\left(X^{\prime}\right)=\omega\left(X+X_{0}\right)=\omega(X)+\omega\left(X_{0}\right)=\omega(X)
$$

The pairing is $\mathcal{F}(P)$-bilinear

$$
\langle f \omega, \bar{X}\rangle=\langle\omega, f \bar{X}\rangle=f\langle\omega, \bar{X}\rangle
$$

for any $f \in \mathcal{F}(P)$. Thus it plays the same role as the usual pairing of vectorfields and differentialforms.

We shall follow this line of construction further, and find out what corresponds to l-forms, differentials and symmetric 2 -forms in our picture.

Definition 2.7 We define

$$
\Omega^{l}(P)=\left\{\omega \in \Omega^{l}(M) \left\lvert\, \begin{array}{cl}
X\lrcorner \omega=0 & \text { and } \\
X\lrcorner d \omega=0 & \forall X \in \Delta(P)
\end{array}\right.\right\}
$$

and the operator

$$
\tilde{d}: \Omega^{l}(P) \longrightarrow \Omega^{l+1}(P) \quad l \geq 0
$$

by taking $\tilde{d}(\omega)=d \omega, \omega \in \Omega^{l}(P)$.
We define $\Omega^{0}(P)=\mathcal{F}(P)$, and $\Omega^{l}(P)=0$ when $l<0$.

Remark :

We have to show that \tilde{d} really maps $\Omega^{l}(P) \subset \Omega^{l}(M)$ into $\Omega^{l+1}(P)$. Let $\omega \in \Omega^{l}(P), X \in \Delta(P)$. Then

$$
X\lrcorner \tilde{d}(\omega)=X\lrcorner d \omega=0 \quad \text { and } \quad \tilde{d}(d \omega)=d^{2} \omega=0
$$

so $\tilde{d} \omega=d \omega \in \Omega^{l+1}(P)$. Moreover, \tilde{d} inherits the properties of the usual differential.

Proposition 2.2 Let P be an involutive distribution of $\operatorname{dim}=n$, $\operatorname{codim}=k$. Then locally any element $\theta \in \Omega^{l}(P)$ is on the form

$$
\theta=\sum \alpha_{\left(i_{1} \ldots i_{l}\right)} \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l}}
$$

where the $\theta_{i_{j}}-s$ form a local basis of Ann (P)

Proof :

Let $\left\{\theta_{i}\right\}_{i=1}^{k+n}$ be a local basis of $\Omega^{1}(M)$ such that $\left\{\theta_{i}\right\}_{i=1}^{k}$ generates $\operatorname{Ann}(P)$. Take $\left\{E_{j}\right\}_{j=1}^{k+n}$ to be the local basis of $\mathcal{D}(M)$ such that $\left\{E_{j}\right\}_{j=k+1}^{k+n}$ generates $\Delta(P)$ and $\theta_{i}\left(E_{j}\right)=\delta_{i j}$. Any element θ of $\Omega^{l}(P) \subset \Omega^{l}(M)$ is on the form

$$
\theta=\sum_{1 \leq i_{1}<\ldots<i_{l} \leq k+n} \alpha_{\sigma} \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l}}
$$

for some $\alpha_{\sigma} \in C^{\infty}(M)$, where $\sigma=\left(i_{1}, \ldots, i_{l}\right)$. By definition of $\Omega^{l}(P)$ we have that $\left.E_{s}\right\lrcorner \theta=0$ for $s=k+1, \ldots, k+n$. By calculation we have that

$$
\left.E_{s}\right\lrcorner \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l}}= \begin{cases}(-1)^{r-1} \theta_{i_{1}} \wedge . . \wedge \theta_{i_{r-1}} \wedge \theta_{i_{r+1}} \wedge . . \wedge \theta_{i_{l}} & \text { if } s=i_{r} \\ 0 & \text { otherwise }\end{cases}
$$

Thus for $k+1 \leq s \leq k+n$ we have

$$
\left.\left.E_{s}\right\lrcorner \theta=\sum_{\substack{1 \leq i_{1}<i_{2}<\ldots<i_{l} \\ i_{l}=k+1}}^{k+n} \alpha_{\sigma} E_{s}\right\lrcorner \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l}}
$$

By taking $s=k+n$, we get that

$$
\sum_{1 \leq i_{1}<\ldots<i_{l-1}<k+n}(-1)^{l-1} \alpha_{\left(i_{1}, ., i_{l-1}, k+n\right)} \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l-1}}=0
$$

This implies that $\alpha_{\left(i_{1}, \ldots, i_{l-1}, k+n\right)}=0$ for all $1 \leq i_{1}<\ldots<i_{l-1} \leq k+n-1$. Repeating this for $s=k+n-1$ and then consequently to $s=k+1$ we get that $\alpha_{\left(i_{1}, . ., i_{l}\right)}=0$ whenever $i_{l}>k$. Thus

$$
\theta=\sum_{\sigma} \alpha_{\sigma} \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l}}
$$

for $\alpha_{\sigma} \in C^{\infty}(M)$ and $\theta_{i_{j}} \in \operatorname{Ann}(P)$.
Remark: We only used part (i) of the requirements on elements of $\theta \in \Omega^{l}(P)$, namely that $\left.\Delta\right\lrcorner \theta=0$. Combining this with the requirement $L_{\Delta} \theta=0$ will give the conditions on the functions α_{σ}. These calculations will be done for the 1-forms $\Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)$ of a special distribution $\mathcal{C}_{\mathcal{E}}$ in Section 4.2.

Corollary 2.1

$$
\Omega^{l}(P)=0 \quad \text { for } \quad l>k
$$

This follows immediately from Proposition 2.2.

To sum up the algebraic properties of our constructions in this section, we state the following theorem.

Theorem 2.3 Given P as above

$$
\Omega^{\prime}(P)=\bigoplus_{s \in \mathbb{Z}} \Omega^{s}(P)
$$

is a \mathbb{Z}-graded σ-commutative algebra w.r.t. the usual wedge product

$$
\wedge: \Omega^{s}(P) \times \Omega^{t}(P) \longrightarrow \Omega^{s+t}(P)
$$

σ-commutativity means that $\omega \wedge \theta=\sigma(s, t)(\theta \wedge \omega)$ where $\sigma(s, t)=(-1)^{s t}$. Also, the operator \tilde{d} is a derivation of degree +1 of $\Omega(P)$

Proof :

We need to prove that $\theta \wedge \omega \in \Omega^{s+t}(P)$ for any $\theta \in \Omega^{s}(P), \omega \in \Omega^{t}(P)$. Let $X \in \Delta(P)$. Then

$$
\left.X\lrcorner(\theta \wedge \omega)=(X\lrcorner \theta) \wedge \omega+(-1)^{s} \theta \wedge(X\lrcorner \omega\right)=0
$$

Moreover, $d(\theta \wedge \omega)=d \theta \wedge \omega+(-1)^{s} \theta \wedge d \omega$, and by a calculation similar to the one above we get

$$
X\lrcorner d(\theta \wedge \omega)=0
$$

which implies that $\theta \wedge \omega \in \Omega^{s+t}(P)$.
Each $\Omega^{s}(P)$ is a $\mathcal{F}(P)$-module :

$$
X\lrcorner f \omega=f X\lrcorner \omega=0
$$

for every $X \in \Delta(P), \omega \in \Omega^{s}(P), f \in \mathcal{F}(P)$, and

$$
X\lrcorner \tilde{d}(f \omega)=X\lrcorner(d f \wedge \omega)=0
$$

since $d f \wedge \omega \in \Omega^{s+1}(P)$. Thus $f \omega \in \Omega^{s}(P)$.
It is obvious that $\Omega^{s}(P)$ is closed under usual addition of forms.
The properties of \wedge and \tilde{d} are clear.

2.5 Further properties of $\Omega^{l}(P)$

We wish to see if $\Omega^{l}(P)$ really fits into the algebraic picture of differentialforms versus vectorfields $\mathcal{D}(P)$, and functions $\mathcal{F}(P)$.
We shall see that the elements of $\Omega^{l}(P)$ algebraically play the role of l-forms.
Definition 2.8 Given an element $\theta \in \Omega^{l}(P)$ we define the following map:

$$
\tilde{\theta}: \underbrace{\mathcal{D}(P) \times \ldots \times \mathcal{D}(P)}_{l} \longrightarrow \mathcal{F}(P)
$$

by taking

$$
\tilde{\theta}\left(\bar{X}_{1}, \ldots, \bar{X}_{l}\right) \stackrel{\text { def }}{=} \theta\left(X_{1}, \ldots, X_{l}\right)
$$

where $X_{i} \in \operatorname{Sym}(P)$ are any representatives of elements $\bar{X}_{i} \in \mathcal{D}(P)$.
We will sometimes use the notations

$$
\tilde{\theta}\left(\bar{X}_{1}, \ldots, \bar{X}_{l}\right)=\left\langle\tilde{\theta} ; \bar{X}_{1}, \ldots, \bar{X}_{l}\right\rangle=\left\langle\theta ; X_{1}, \ldots, X_{l}\right\rangle
$$

and not distinguish between θ and $\tilde{\theta}$. To see that this is a well-defined operation we have to check independence of choice of representatives in $\operatorname{Sym}(P)$. Assume $\overline{X^{\prime}}{ }_{j}=\bar{X}_{j}$ for some $1 \leq j \leq l$. Then $X_{j}^{\prime}=X_{j}+X_{0}$ for some element $X_{0} \in \Delta(P)$. It follows that

$$
\begin{gathered}
\theta\left(X_{1}, ., X_{j}^{\prime}, ., X_{l}\right)= \\
\left.=\theta\left(X_{1}, ., X_{j}, ., X_{l}\right)+(-1)^{j}\left(X_{0}\right\lrcorner \theta\right)\left(X_{1}, ., X_{j-1}, X_{j+1}, ., X_{l}\right)= \\
=\theta\left(X_{1}, ., X_{j}, ., X_{l}\right)
\end{gathered}
$$

since $\left.X_{0}\right\lrcorner \theta=0$ by the definition of $\Omega^{l}(P)$. Thus $\tilde{\theta}$ is well-defined and clearly inherits the tensorproperties; it is an l-alternating, $\mathcal{F}(P)$-additive operator. What is left to check, is that $\theta\left(X_{1}, \ldots, X_{l}\right)$ is really an element of $\mathcal{F}(P)$ for any $X_{i} \in \operatorname{Sym}(P), \theta \in \Omega^{l}(P)$. Given $X \in \Delta(P)$, we make the following calculation:

$$
\begin{gathered}
L_{X}\left(\theta\left(X_{1}, \ldots, X_{l}\right)\right)=L_{X} \circ i_{X_{k}} \circ \ldots \circ i_{X_{1}}(\theta)= \\
{\left[i_{X_{k}} \circ L_{X_{k}} \circ \ldots \circ i_{X_{1}}+i_{\left[X, X_{k}\right]} \circ i_{X_{k-1}} \circ \ldots \circ i_{X_{1}}\right](\theta)} \\
=i_{X_{k}} \circ L_{X_{k}} \circ \ldots \circ i_{X_{1}}(\theta)=\ldots
\end{gathered}
$$

$$
\ldots=i_{X_{k}} \circ \ldots \circ i_{X_{1}} \circ L_{X}(\theta)=0
$$

since $L_{X} \circ i_{X_{i}}-i_{X_{i}} \circ L_{X}=i_{\left[X, X_{i}\right]}$ for all X_{i}, and in addition
$i_{X_{k}} \circ \ldots \circ i_{\left[X, X_{i}\right]} \circ \ldots \circ i_{X_{1}}(\theta)=0$ since $\left[X, X_{i}\right] \in \Delta(P)$ for all $i=1, . ., k$.

Let us consider tensorproducts of $\Omega^{1}(P)$ over $\mathcal{F}(P)$. A general element θ of $\left(\Omega^{1}(P)\right)^{\otimes l}$ is on the form $\theta=\sum \alpha_{i_{1} . . i_{l}} \theta_{i_{1}} \otimes \cdots \otimes \theta_{i_{l}}$ where $\theta_{i_{j}} \in \Omega^{1}(P)$ and $\alpha_{i_{1} . i_{l}} \in \mathcal{F}(P)$.

Definition 2.9 Let $\theta \in\left(\Omega^{1}(P)\right)^{\otimes l}$. We define

$$
\tilde{\theta}: \underbrace{\mathcal{D}(P) \times \ldots \times \mathcal{D}(P)}_{l} \longrightarrow \mathcal{F}(P)
$$

by taking

$$
\tilde{\theta}\left(\bar{X}_{1}, \ldots, \bar{X}_{l}\right) \stackrel{\text { def }}{=} \sum \alpha_{i_{1} . . i_{l}} \theta_{i_{1}}\left(X_{1}\right) \cdots \theta_{i_{l}}\left(X_{l}\right)
$$

for any representatives X_{i} of $\bar{X}_{i} \in \mathcal{D}(P)$.
It follows from our earlier investigations that this is well-defined with respect to choice of representatives X_{i}. To see that $\tilde{\theta}\left(\bar{X}_{1}, \ldots, \bar{X}_{l}\right)$ is an element in $\mathcal{F}(P)$, we need only observe that $\theta_{i_{j}}\left(X_{i}\right) \in \mathcal{F}(P)$ for $i=1$..l, and thus this is true also for the sum $\sum \alpha_{i_{1} . . i_{l}} \theta_{i_{1}}\left(X_{1}\right) \cdots \theta_{i_{l}}\left(X_{l}\right) . \tilde{\theta}$ inherits the tensorproperties of θ.

We note that the anti-symmetrisation operator

$$
\Lambda:\left(\Omega^{1}(P)\right)^{\otimes l} \longrightarrow \Omega^{l}(P)
$$

defined by

$$
\Lambda\left(\sum \alpha_{i_{1} \ldots i_{l}} \theta_{i_{1}} \otimes \cdots \otimes \theta_{i_{l}}\right)=\sum \alpha_{i_{1} \ldots i_{l}} \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l}}
$$

for $\alpha_{i_{1} \ldots i_{l}} \in \mathcal{F}(P), \theta_{i_{j}} \in \Omega^{1}(P)$ will map $\left(\Omega^{1}(P)\right)^{\otimes l}$ into $\Omega^{l}(P)$. That is, wedge products of elements in $\Omega^{1}(P)$ with coefficients in $\mathcal{F}(P)$, and their sums, will be elements of $\Omega^{l}(P)$. This follows from Theorem 2.3.

2.6 Morphisms of distributions

For manifolds the natural map between them are smooth maps. Any smooth map $\phi: M \longrightarrow N$ between smooth manifolds M and N induces the following homomorphism of tangentspaces for every $a \in M$

$$
\phi_{*, a}: T_{a} M \longrightarrow T_{\phi(a)} N
$$

called the differential of ϕ at a. It is defined by

$$
\phi_{*, a}\left(X_{a}\right)(f)=X_{a}(f \circ \phi)
$$

for any $X \in \mathcal{D}(M), f \in C^{\infty}(N)$. We will denote the dual linear map of $\phi_{*, a}$ by

$$
\phi_{\phi(a)}^{*}: T_{\phi(a)}^{*} N \longrightarrow T_{a}^{*} M
$$

Given $\omega \in \Omega^{1}(N), X \in \mathcal{D}(M)$ and $a \in M$ we have

$$
\left\langle\phi_{\phi(a)}^{*}\left(\omega_{\phi(a)}\right), X_{a}\right\rangle \stackrel{\text { def }}{=}\left\langle\omega_{\phi(a)}, \phi_{*, a}\left(X_{a}\right)\right\rangle
$$

This formula determines a smooth 1-form $\phi^{*}(\omega) \in \Omega^{1}(M)$, thus we have the induced homomorphism

$$
\phi^{*}: \Omega^{1}(N) \longrightarrow \Omega^{1}(M)
$$

This can be extended to tensor spaces, and to k-forms in particular, by taking

$$
\phi^{*}: \Omega^{l}(N) \longrightarrow \Omega^{l}(M)
$$

where

$$
\left\langle\phi^{*}(\omega) ; X_{1}, \ldots, X_{l}\right\rangle(a) \stackrel{\text { def }}{=}\left\langle\omega_{\phi(a)} ; \phi_{*, a}\left(X_{1, a}\right), \ldots, \phi_{*, a}\left(X_{l, a}\right)\right\rangle
$$

for any $\omega \in \Omega^{l}(N), X_{i} \in \mathcal{D}(M)$.
This homomorphism commutes with the differential d, and

$$
\phi^{*}(\theta \wedge \omega)=\phi^{*}(\theta) \wedge \phi^{*}(\omega)
$$

for any $\theta \in \Omega^{s}(N), \omega \in \Omega^{t}(N)$.
If we have two manifolds M and N equipped with the involutive distributions P and Q respectively, what should it mean that (M, P) maps to (N, Q) ? We make the following step.

Definition 2.10 Given pairs (M, P) and (N, Q), where M and N are manifolds, P and Q involutive distributions on M and N respectively, then we say that a smooth map $\phi: M \longrightarrow N$ is a morphism of distributions if

$$
\begin{equation*}
\phi^{*}(\operatorname{Ann}(Q)) \subset \operatorname{Ann}(P) \tag{2.1}
\end{equation*}
$$

where ϕ^{*} is the induced homomorphism $\phi^{*}: \Omega^{1}(N) \longrightarrow \Omega^{1}(M)$.
We will sometimes write $(M, P) \xrightarrow{\phi}(N, Q)$.
Geometrically, this means that a vector tangent to P is mapped into a vector tangent to Q by the differential of ϕ :
For any $a \in M, \phi_{*, a}\left(P_{a}\right) \subset Q_{b}$ where $b=\phi(a)$.
Proposition 2.3 The restriction of ϕ^{*} on $\Omega^{l}(Q) \subset \Omega^{l}(N)$ gives a $\mathcal{F}(P)$ module homomorphism

$$
d \phi^{*}: \Omega^{l}(Q) \longrightarrow \Omega^{l}(P)
$$

Proof: Let ω be an element of $\Omega^{l}(Q)$, that is,

$$
\Delta(Q)\lrcorner \omega=0 \quad \text { and } \quad \Delta(Q)\lrcorner d \omega=0
$$

Take any $X \in \Delta(P)$. Then

$$
\left.\left.X_{a}\right\lrcorner \phi_{a}^{*}\left(\omega_{\phi(a)}\right)=\phi_{*, a}\left(X_{a}\right)\right\lrcorner \omega_{\phi(a)}=0
$$

for any $a \in M$ since $\phi_{*, a}\left(X_{a}\right) \in Q_{\phi(a)}$. Likewise,

$$
\left.\left.X_{a}\right\lrcorner \phi_{a}^{*}\left(d \omega_{\phi(a)}\right)=\phi_{*, a}\left(X_{a}\right)\right\lrcorner d \omega_{\phi(a)}=0
$$

for any $a \in M$ for the same reason. Thus, $\phi^{*}(\omega) \in \Omega^{l}(P)$.

Corollary 2.2 A morphism of distributions $\phi:(M, P) \longrightarrow(N, Q)$ induces a graded algebra-homomorphism

$$
\phi^{*}: \Omega(Q) \longrightarrow \Omega(P)
$$

by restriction to $\Omega \cdot(Q) \subset \Omega \cdot(N)$ which commutes with \tilde{d}

$$
\phi^{*} \circ \tilde{d}=\tilde{d} \circ \phi^{*}
$$

Proof : All homomorphism-properties of ϕ^{*} are clear, and the Proposition 2.3 demonstrates that ϕ^{*} maps $\Omega^{l}(Q)$ into $\Omega^{l}(P)$ for each l.

2.7 Cohomologies of solution spaces.

We now have the \mathbb{Z}-graded algebra $\Omega(P)$ connected to our distribution, together with the derivation $\tilde{d}: \Omega(P) \rightarrow \Omega(P)$. Thus we have the following sequence:

$$
\begin{equation*}
0 \longrightarrow \mathcal{F}(P) \xrightarrow{\tilde{d}} \Omega^{1}(P) \xrightarrow{\tilde{d}} \ldots \ldots \xrightarrow{\tilde{d}} \Omega^{k}(P) \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

We will denote $\tilde{d}=\tilde{d}_{l}: \Omega^{l}(P) \longrightarrow \Omega^{l+1}(P)$.
Definition 2.11

$$
\begin{aligned}
Z^{l}(P) & =\operatorname{Ker}\left(\tilde{d}_{l}\right) \\
B^{l}(P) & =\operatorname{Im}\left(\tilde{d}_{l-1}\right)
\end{aligned}
$$

We know that $\tilde{d}^{2}=0$, thus $B^{l}(P)$ is a linear subspace of $Z^{l}(P)$ for any l. We form the following quotient

Definition 2.12 For every $l \in \mathbb{Z}$ we define

$$
H^{l}(P)=Z^{l}(P) / B^{l}(P)
$$

to be the l-th cohomology group of the solution space of \mathbf{P}.
It is clear that $H^{l}(P)=\{0\}$ for $l<0$ and $l>k$.
We can take the direct sum

$$
H^{\cdot}(P)=\bigoplus_{l \in \mathbb{Z}} H^{l}(P)=Z \cdot(P) / B \cdot(P)
$$

where $Z \cdot(P)=\bigoplus_{l \in \mathbb{Z}} Z^{l}(P)$ and $B \cdot(P)=\bigoplus_{l \in \mathbb{Z}} B^{l}(P)$.
Theorem 2.4 $H^{\cdot}(P)$ is a \mathbb{Z}-graded super-symmetric algebra with respect to the multiplication induced by the wedge product:

$$
[\theta] \wedge[\omega] \stackrel{\operatorname{def}}{=}[\theta \wedge \omega]
$$

for $\theta \in Z^{r}(P), \omega \in Z^{s}(P)$.

Proof: We have to show that the product is well-defined. Thus we prove that
(i) $Z^{r}(P) \wedge Z^{s}(P) \subset Z^{r+s}(P)$ and
(ii) $Z^{r}(P) \wedge B^{s}(P) \subset B^{r+s}(P)$ for all r, s.

Assume that $\theta \in Z^{r}(P)$ and $\omega \in Z^{s}(P)$.
Then $\tilde{d}(\theta \wedge \omega)=\theta \wedge d \omega+(-1)^{r} \theta \wedge d \omega=0$, which proves (i).
Let $\theta \in Z^{r}(P)$ and $\omega \in B^{s}(P)$.
That is, $d \theta=0$, and there exists a $\omega_{0} \in \Omega^{s-1}(P)$ such that $\omega=d \omega_{0}$. But then we have that $d\left(\omega_{0} \wedge \theta\right)=d \omega_{0} \wedge \theta+(-1)^{s-1} \omega_{0} \wedge d \theta=\omega \wedge \theta$, so $\omega \wedge \theta$ is in the image of \tilde{d}_{s+r-1}, which concludes the proof of (ii).
The rest of the properties are inherited from the wedge product.

We shall investigate a slightly different picture. Namely, what happens if we have a morphism of distributions, say

$$
\phi:(M, P) \longrightarrow(N, Q)
$$

Can we connect their cohomology groups? The answer to that is yes. We know that ϕ generates a homomorphism from $\Omega^{l}(Q)$ to $\Omega^{l}(P)$. Thus we may investigate what happens to the subspaces $Z^{l}(Q)$ and $B^{l}(Q)$, and in turn if ϕ^{*} can be extended to a map of cohomology groups.

Lemma 2.1 For any $l \in \mathbb{Z}$ we have that

$$
\phi^{*}\left(Z^{l}(Q)\right) \subset Z^{l}(P) \text { and } \phi^{*}\left(B^{l}(Q)\right) \subset B^{l}(P)
$$

Proof : Let $\omega \in Z^{l}(Q) \subset \Omega^{l}(Q)$. Then $\phi^{*}(\omega) \in \Omega^{l}(P)$, and

$$
\tilde{d}\left(\phi^{*}(\omega)\right)=d\left(\phi^{*}(\omega)\right)=\phi^{*}(d \omega)=0
$$

which proves the first part of the lemma. Now assume that $\theta \in B^{l}(Q)$. Then there exists a $\theta_{0} \in \Omega^{l-1}(Q)$ so that $d \theta_{0}=\theta$, and

$$
\phi^{*}(\theta)=\phi^{*}\left(d \theta_{0}\right)=d\left(\phi^{*}\left(\theta_{0}\right)\right)
$$

This implies that $\phi^{*}(\theta)$ is the image of the element $\phi^{*}\left(\theta_{0}\right) \in \Omega^{l-1}(P)$, which completes the proof.

Corollary 2.3 A morphism of distributions $\phi:(M, P) \longrightarrow(N, Q)$ induces a graded algebra-homomorphism

$$
\phi^{*}: H^{\cdot}(Q) \longrightarrow H^{\cdot}(P)
$$

$b y \phi^{*}([\theta]) \stackrel{\text { def }}{=}\left[\phi^{*}(\theta)\right]$

2.8 Examples

The following example will illustrate a distribution with a fairly complicated solutionspace.

Example 2.1 Let $M=T^{2}$, the torus with angular coordinates (θ, ρ). It can be interpreted as the quotient \mathbb{R}^{2} / \sim where $(\theta, \rho) \sim(\theta+2 \pi n, \rho+2 \pi m)$ for all $m, n \in \mathbb{Z}$. We will describe our torus as the quotient D / \sim of the fundamental domain $D=\left\{(\theta, \rho) \in \mathbb{R}^{2} \mid 0 \leq \theta, \rho \leq 2 \pi\right\}$. Given $\omega \in \mathbb{R} \backslash \mathbb{Q}$, the irrational flow on the torus is the flow generated by the vectorfield

$$
X_{\omega}=\partial_{\theta}+\omega \partial_{\rho}
$$

This gives us a distribution P of dimension 1 and codimension 1 on T^{2}. When ω is an irrational number, each integral curve of the distribution is dense in T^{2}. Thus, this provides us with a rather complicated solution space \mathcal{S} of the distribution. But it is possible to investigate $\mathcal{F}(P)$ and $\Omega^{1}(P)$ for our P. We have the following
$\mathcal{F}(P)=\left\{\begin{array}{l|l}f \in C^{\infty}\left(\mathbb{R}^{2}\right) & \begin{array}{l}f(\theta, \rho)=f(\theta+2 \pi n, \rho+2 \pi m) \\ \text { and } f_{\theta}=-\omega f_{\rho}\end{array}\end{array} \forall m, n \in \mathbb{Z}, ~\{\mathbb{R}\right.$
since the only smooth functions that are constant on a dense set in \mathbb{R}^{2} are the constant functions themselves.

$$
\Omega^{1}(P)=\{f(-\omega d \theta+d \rho) \mid f \in \mathcal{F}(P)\}=\mathbb{R}\{-\omega d \theta+d \rho\}
$$

and the sequence

$$
0 \longrightarrow \mathcal{F}(P) \xrightarrow{d_{0}} \Omega^{1}(P) \longrightarrow 0
$$

with $H^{0}(P)=\operatorname{ker} d_{0}=\mathcal{F}(P)=\mathbb{R}$
In order to illustrate the complicated geometry of \mathcal{S}, we will make a few pictures. Starting with the fundamental domain D, we see that we can describe \mathcal{S} in terms of a smaller fundamental domain for the equivalence relation \sim on D.

If $\omega<0$, then all equivalence classes of \sim are represented on the line $(\theta,-\theta), \theta \in[0,2 \pi]$ in D, and this line can again be identified with the interval $I=[0,2 \pi]$. If $\omega>0$, do the same for the line (θ, θ). Each integral
curve of X_{ω} leaves a dense set of crossing points on this line (see figure below) that should all be identified by \sim. Thus, we get our space \mathcal{S} by identifying all points on I that correspond to one integral curve in D. This will be a very complicated picture since each curve contributes with a dense set of points in I.

Figure 2.2

Illustration of $\mathcal{S}=I / \sim$ as quotient space of smallest fundamental domain.

We include yet another example of a 1-dimensional distribution on a two dimensional manifold.

Example 2.2 Let $M=\mathbb{R}^{2} \backslash\{0\}$ with coordinates x, y, and P be the distribution generated by the single vectorfield $X=\partial_{y}$. The integral curve through any point of M is obviously the vertical line through the point. Each point on the x-axis with $x \neq 0$ represents a point in S. But the points $(0, y)$ divide into two classes, one class for $y>0$, and one for $y<0$. Thus, our solution space is the so-called "line with double point". It looks like a copy of $\mathbb{R} \backslash\{0\}$ with
two points added at the origin, upper point denoted a, lower point denoted b.

Figure 2.3 Line with double point.

It is a non-Hausdorff manifold, covered by the following smooth charts. Take

$$
\mathcal{U}_{a}=S \backslash\{b\}
$$

and chart map ϕ_{a} by

$$
\operatorname{Id}_{\mathbb{R} \backslash\{0\}}: \mathbb{R} \backslash\{0\} \longrightarrow \mathbb{R} \quad \text { and } \quad a \mapsto 0 \in \mathbb{R}
$$

Similarly we define a chart $\left(\mathcal{U}_{b}, \phi_{b}\right)$ by changing the roles of the points. These charts cover S, and on their intersection $\mathcal{U}_{a} \cap \mathcal{U}_{b}=\mathbb{R} \backslash\{0\}$ the chartmaps are equal, and thus compatible. We see that it is thus impossible to differ between upper and lower point with continous functions. In these charts, the smooth functions are smooth functions on the line that have the same value at a an b. Both \mathcal{U}_{a} and \mathcal{U}_{b} are isomorphic to \mathbb{R}.

We want to calculate $\mathcal{F}(P), \mathcal{D}(P)$ and $\Omega^{1}(P)$.

$$
\begin{gathered}
\mathcal{F}(P)=\left\{f \in C^{\infty}(M) \mid X(f)=\partial_{y}(f)=0\right\} \cong C^{\infty}(\mathbb{R}) \\
\Omega^{1}(P) \cong \Omega^{1}(\mathbb{R})
\end{gathered}
$$

since $\omega=f(x, y) d x+g(x, y) d y \in \Omega^{1}(P)$ has to satisfy
(i) $\left\langle\omega, \partial_{y}\right\rangle=0$ and (ii) $\left.\left.d \omega\right\lrcorner \partial_{y}=\partial_{y}(f) d y \wedge d x\right\lrcorner \partial_{y}=0$
which implies that $f=f(x) \in C^{\infty}(\mathbb{R})$ and $g \equiv 0$, hence $\omega=f(x) d x$.

$$
\mathcal{D}(P) \cong \mathcal{D}(\mathbb{R})
$$

since any element $Y=f(x, y) \partial_{x}+g(x, y) \partial_{y}$ in $\operatorname{Sym}(P)$ has to satisfy

$$
\left[\partial_{y}, f(x, y) \partial_{x}+g(x, y) \partial_{y}\right]=h \partial_{y}
$$

for some function $h=h(x, y)$. This gives that $f=f(x)$, smooth function. Then $Y \bmod X=f(x) \partial_{x}$ is the form of any element of $\mathcal{D}(P)$.

Chapter 3

Riemannian structures on solution spaces.

3.1 Symmetric 2-forms on \mathcal{S}

We wish to investigate if it is possible to make further constructions similar to usual tensor calculus over our space \mathcal{S}. In this section we will look for the analogue of the Riemannian manifold, namely a space equipped with a symmetric (positive definite) 2-form.

Definition 3.1 We define

$$
S^{2}(P)=\left\{\theta \in S^{2}\left(\Omega^{1}(M)\right) \left\lvert\, \begin{array}{rl}
\theta(X, \cdot)=0 \quad \text { and } \\
L_{X}(\theta)=0 \quad \forall X \in \Delta(P)
\end{array}\right.\right\}
$$

We shall see that an element of $S^{2}(P)$ provides us with the following map:
Definition 3.2 Given $g \in S^{2}(P)$ we define

$$
\tilde{g}: \mathcal{D}(P) \times \mathcal{D}(P) \longrightarrow \mathcal{F}(P)
$$

by $\tilde{g}\left(\bar{X}_{1}, \bar{X}_{2}\right)=g\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are any representatives of $\bar{X}_{1}, \bar{X}_{2} \in \mathcal{D}(P)$.

It follows from the definition of $S^{2}(P)$ that the mapping is well-defined: $g\left(X+X_{0}, \cdot\right)=g(X, \cdot)$ for any $X_{0} \in \Delta(P)$. What we need to check, is that $g\left(X_{1}, X_{2}\right) \in \mathcal{F}(P)$ for any $X_{1}, X_{2} \in \operatorname{Sym}(P)$. For every $X \in \Delta(P)$ we have

$$
L_{X}\left(g\left(X_{1}, X_{2}\right)\right)=L_{X}(g)\left(X_{1}, X_{2}\right)+\gamma_{g}
$$

40CHAPTER 3. RIEMANNIAN STRUCTURES ON SOLUTION SPACES.
where $\gamma_{g}=g\left(L_{X} X_{1}, X_{2}\right)+g\left(X_{1}, L_{X} X_{2}\right)=0$, since $L_{X} X_{1}, L_{X} X_{2} \in \Delta(P)$. In addition, $L_{X}(g)=0$, so $L_{X}\left(g\left(X_{1}, X_{2}\right)\right)=0$ which implies $g\left(X_{1}, X_{2}\right) \in \mathcal{F}(P)$.

Remark : The mapping is symmetric, bilinear and $\mathcal{F}(P)$-additive.
Proposition 3.1 Any element $g \in S^{2}(P)$ is on the form

$$
g=\sum_{1 \leq i \leq j \leq k} a_{i j} \theta_{i} \cdot \theta_{j}
$$

where $\left\{\theta_{i}\right\}_{i=1}^{k}$ are generators of $\operatorname{Ann}(P)$, and $a_{i j}-s$ some functions.
The requirement $L_{\Delta}(g)=0$ will give requirements on the $a_{i j}$-s. A specific calculation of this will be done in the Section 4.2, for the Cartan distribution.

3.2 Connection and curvature of (\mathcal{S}, \tilde{g})

Assume we have a symmetric 2 -form $g \in S^{2}(P)$. We say that g is positive if it satisfies the condition

$$
g\left(X_{a}, X_{a}\right)>0 \quad \text { for any } X_{a} \notin P_{a}, a \in M
$$

For an ordinary Riemannian manifold (M, g), we have the unique Levi-Civita (Riemannian) connection (see Example 1.4 in Section 1.5). We wish to do a similar construction for our space (\mathcal{S}, \tilde{g}).

Definition 3.3 We say that a map

$$
\nabla: \mathcal{D}(P) \times \mathcal{D}(P) \longrightarrow \mathcal{D}(P)
$$

with $\nabla(\bar{X}, \bar{Y})=\nabla_{\bar{X}}(\bar{Y})$ is a connection on the solution space of \mathbf{P} if it satisfies the following:
(1) $\nabla_{\bar{X}}(f \bar{Y}+g \bar{Z})=f \nabla_{\bar{X}} \bar{Y}+g \nabla_{\bar{X}} \bar{Z}+\bar{X}(f) \cdot \bar{Y}+\bar{X}(g) \cdot \bar{Z}$
(2) $\nabla_{f \bar{X}+g \bar{Y}} \bar{Z}=f \nabla_{\bar{X}} \bar{Z}+g \nabla_{\bar{Y}} \bar{Z}$
for any \bar{X}, \bar{Y} and $\bar{Z} \in \mathcal{D}(P), f, g \in \mathcal{F}(P)$.
If our space \mathcal{S} is equipped with a positive $g \in S^{2}(P)$ we say that ∇ is a Levi -Civita connection if it in addition satisfies the properties (3) and (4) bleow
(3) $[\bar{X}, \bar{Y}]=\nabla_{\bar{X}} \bar{Y}-\nabla_{\bar{Y}} \bar{X}$
(4) $\bar{X}(\tilde{g}(\bar{Y}, \bar{Z}))=\tilde{g}\left(\nabla_{\bar{X}} \bar{Y}, \bar{Z}\right)+\tilde{g}\left(\bar{Y}, \nabla_{\bar{X}} \bar{Z}\right)$

To produce such a ∇, we assume that we have a connection on M, that is, an operator

$$
\widetilde{\nabla}: \mathcal{D}(M) \times \mathcal{D}(M) \longrightarrow \mathcal{D}(M)
$$

that satisfies properties (1) - (2). To define ∇ we take

$$
\nabla_{\bar{X}}(\bar{Y}) \stackrel{\text { def }}{=} \overline{\nabla_{X}(Y)}
$$

where X, Y are representatives of \bar{X} and \bar{Y}. We obviously need this to be invariant with respect to choice of representatives X, Y.
Our first step will be to define our connection on a local basis of $\mathcal{D}(P)$, and then expand by properties (1) and (2).

STEP 1 We need local basises for both differential forms and vectorfields. To get an appropriate basis we do the following. Locally we can always find k 1st-integrals of our distribution, f_{1}, \ldots, f_{k}. We choose coordinates $x_{1}=f_{1}, \ldots, x_{k}=f_{k}, x_{k+1}, \ldots, x_{k+n}$ so that $\left\{d x_{i}\right\}_{i=1}^{k+n}$ constitutes our local basis of $\Omega^{1}(M)$, and $\left\{\partial_{i}\right\}_{i=1}^{k+n}$ the dual basis for $\mathcal{D}(M)$. This assures that $\left\{\partial_{i}\right\}_{i=k+1}^{k+n}$ is a local basis of the module $\Delta(P)$, and that $\left\{d x_{i}\right\}_{i=1}^{k}$ is a local basis of the annihilating module $\operatorname{Ann}(P)$. Also, a local basis for $\mathcal{D}(P)$ is given by the classes of $\left\{\partial_{i}\right\}_{i=1}^{k}$. We define the functions $\Gamma_{i j}^{s}, 1 \leq s \leq k$ and $1 \leq i, j \leq k+n$ by the following equation

$$
\begin{equation*}
\widetilde{\nabla}_{\partial_{i}}\left(\partial_{j}\right)=\sum_{s=1}^{k} \Gamma_{i j}^{s} \partial_{s}+X_{i j} \tag{3.1}
\end{equation*}
$$

where $X_{i j} \in \Delta(P)$. Then

$$
\nabla_{\bar{\partial}_{i}}\left(\bar{\partial}_{j}\right)=\overline{\bar{\nabla}_{\partial_{i}}\left(\partial_{j}\right)}=\sum_{s=1}^{k} \Gamma_{i j}^{s} \bar{\partial}_{s}
$$

For our construction to work we need our $\Gamma_{i j}^{s}$-s to satisfy several conditions. First of all, they should be elements of $\mathcal{F}(P)$. We shall see that this will not
present a problem to us when all other conditions are satisfied. Second, we need that ∇ is well-defined. This is ensured if and only if we take

$$
\Gamma_{i j}^{s}=0 \quad \text { for } k<i \leq k+n \text { or } k<j \leq k+n
$$

This immediatly gives that

$$
\nabla_{\bar{X}}(0)=\nabla_{0}(\bar{Y}) \text { for all } \bar{X}, \bar{Y} \in \mathcal{D}(P)
$$

STEP 2 To require that ∇ satisfies properties (3) and (4) will give us the final conditions on the $\Gamma_{i j}^{s}$-s.

We should have

$$
\text { (3) } \quad\left[\bar{\partial}_{i}, \bar{\partial}_{j}\right]=\nabla_{\bar{\partial}_{i}}\left(\bar{\partial}_{j}\right)-\nabla_{\bar{\partial}_{j}}\left(\bar{\partial}_{i}\right)
$$

for $1 \leq i, j \leq k$. But our local basis $\left\{\partial_{i}\right\}$ commutes, thus

$$
\left[\bar{\partial}_{i}, \bar{\partial}_{j}\right]=0=\sum_{s=1}^{k}\left(\Gamma_{i j}^{s}-\Gamma_{j i}^{s}\right) \bar{\partial}_{s}
$$

which is equivalent to the condition

$$
\text { (3) } \Gamma_{i j}^{s}=\Gamma_{j i}^{s}
$$

In order to simplify some of our further calculations we will introduce the functions $g_{i j}=\tilde{g}\left(\bar{\partial}_{i}, \bar{\partial}_{j}\right)=g\left(\partial_{i}, \partial_{j}\right) \in \mathcal{F}(P)$. Our g is positive, so the matrix $G=\left(g_{i j}\right)$ is invertible. The functions $g^{i j}$ are the entrys of the inverse matrix, $G^{-1}=\left(g^{i j}\right)$. Defining $\Gamma_{i j l}=\sum_{s=1}^{k} \Gamma_{i j}^{s} g_{s l}$ gives us the following reformulation of (3)

$$
(3)^{\prime} \quad \Gamma_{i j l}=\Gamma_{j i l}
$$

The condition (4) becomes

$$
(4)^{\prime} \quad \partial_{i}\left(g_{j l}\right)=\Gamma_{i j l}+\Gamma_{i l j}
$$

Combining the two equations for different permutations of indices makes us arrive at the following

Lemma 3.1

$$
\Gamma_{i j l}=\frac{1}{2}\left[\partial_{j}\left(g_{i l}\right)-\partial_{l}\left(g_{i j}\right)+\partial_{i}\left(g_{j l}\right)\right]
$$

This means that our functions $\Gamma_{i j l}$ are completely determined by g in a given local basis $\left\{\bar{\partial}_{i}\right\}$ of $\mathcal{D}(P)$. This in turn determines the functions

$$
\Gamma_{i j}^{s}=\sum_{l=1}^{k} \Gamma_{i j l} g^{l s}
$$

and thus our connection ∇ locally. In ordinary Riemannian geometry the functions $\Gamma_{i j}^{s}$ are called the Christoffel symbols, and an approach to find that they are uniquely determined by g is found in [Boo75]. That approach has been the model of the construction above.

Remark : It is clear that every $\Gamma_{i j}^{s}$ is an element of $\mathcal{F}(P)$. All $g_{i j}$ and $g^{i j}$-s are elements of $\mathcal{F}(P)$, and all elements $\bar{\partial}_{i} \in \mathcal{D}(P)$ used on elements of $\mathcal{F}(P)$ will give elements of $\mathcal{F}(P)$. Thus, the $\Gamma_{i j}^{s}$, which are sums and products of such functions, will be elements of $\mathcal{F}(P)$. This concludes our construction.

Theorem 3.1 Let P be an involutive distribution, and \mathcal{S} its solution space. For any positive $g \in S^{2}(P)$ there is a uniquely determined Levi-Civita connection ∇ on the solution space of P.

Proof : The Lemma 3.1 proves that ∇ is uniquely determined locally in terms of the functions $\Gamma_{i j l}$, for any such g.

This procedure has shown the existence of a connection ∇ on \mathcal{S}. It can also be copied in a basis different from the one above.

Assume that we have a k-dimensional transversal Lie-algebra $\mathcal{G} \subset \mathcal{D}(P)$ with generators $\left\{\bar{X}_{i}\right\}_{i=1}^{k}$. Transversality is equivalent to the condition that the matrix $\left(\theta_{i}\left(X_{j}\right)\right)$ is nondegenerate, where $\left\{\theta_{i}\right\}_{i=1}^{k}$ are generators of $\operatorname{Ann}(P)$. The generators have the following commutator:

$$
\left[\bar{X}_{i}, \bar{X}_{j}\right]=\sum_{s=1}^{k} c_{i j}^{s} \bar{X}_{s}
$$

We can find a basis $\left\{X_{i}\right\}_{i=1}^{k+n}$ of $\mathcal{D}(M)$ so that $\left\{X_{i}\right\}_{i=1}^{k}$ is a set of representatives of $\left\{\bar{X}_{i}\right\}$. As in the approach above we define the functions $\Gamma_{i j}^{s}$,
$1 \leq i, j \leq n+k$, by the equations

$$
\widetilde{\nabla}_{X_{i}} X_{j}=\sum_{s=1}^{k} \Gamma_{i j}^{s} X_{s}+Y_{i j}
$$

where $Y_{i j} \in \Delta(P)$. As before, we have

$$
\nabla_{\bar{X}_{i}} \bar{X}_{j}=\overline{\bar{\nabla}_{X_{i}} X_{j}}=\sum_{s=1}^{k} \Gamma_{i j}^{s} \bar{X}_{s}
$$

and we must choose $\Gamma_{i j}^{s}=0$ for $k<i \leq k+n$ or $k<j \leq k+n$ to ensure that ∇ is well-defined.

To find the remaining $\Gamma_{i j}^{s}$-s we again investigate the properties (3) and (4) and get the following conditions. (3) is equivalent to

$$
(3)^{\prime} \quad \Gamma_{i j l}=\Gamma_{j i l}+c_{i j l}
$$

where $c_{i j l}=\sum_{s=1}^{k} c_{i j}^{s} g_{s l}$ The condition (4) becomes

$$
(4)^{\prime} \quad X_{i}\left(g_{j l}\right)=\Gamma_{i j l}+\Gamma_{i l j}
$$

Again, combining the two equations for different permutations of indices makes us arrive at the following:

Theorem 3.2

$$
\Gamma_{i j l}=\frac{1}{2}\left[c_{i j l}-c_{l j i}+c_{l i j}+X_{j}\left(g_{i l}\right)-X_{l}\left(g_{i j}\right)+X_{i}\left(g_{j l}\right)\right]
$$

for $1 \leq i, j, l \leq k$.
This gives us our connection in terms of the basis $\left\{\bar{X}_{i}\right\}$ and g, in the interesting case when we have a Lie-algebra of symmetries of our distribution.

We are now ready to define curvature of our ∇.
Definition 3.4 The curvature R_{∇} of ∇ is defined by

$$
R_{\nabla}(\bar{X}, \bar{Y})=\left[\nabla_{\bar{X}}, \nabla_{\bar{Y}}\right]-\nabla_{[\bar{X}, \bar{Y}]}
$$

R_{∇} has the following properties.
Proposition 3.2 For any $\bar{X}, \bar{Y} \in \mathcal{D}(P)$ we have
(1) $R_{\nabla}(\bar{X}, \bar{Y})=-R_{\nabla}(\bar{Y}, \bar{X})$
(2) R_{∇} is $\mathcal{F}(P)$-linear in both arguments.
(3) $R_{\nabla}(\bar{X}, \bar{Y})$ is a $\mathcal{F}(P)$-module homomorphism of $\mathcal{D}(P)$.

Proof : Property (1) is obvious, (2) and (3) will follow by direct calculation.
Thus, we can think of R_{∇} as an element of $\Omega^{2}(P) \otimes \operatorname{End}(\mathcal{D}(P))$.

Definition 3.5 We define the operator

$$
R: \mathcal{D}(P) \times \mathcal{D}(P) \times \mathcal{D}(P) \times \mathcal{D}(P) \longrightarrow \mathcal{F}(P)
$$

by

$$
R(\bar{X}, \bar{Y}, \bar{Z}, \bar{W})=\tilde{g}\left(R_{\nabla}(\bar{X}, \bar{Y})(\bar{Z}), \bar{W}\right)
$$

The operator R satisfies the following properties.
Proposition 3.3 For any $\bar{X}, \bar{Y}, \bar{Z}, \bar{W} \in \mathcal{D}(P)$ we have
(1) $R(\bar{X}, \bar{Y}, \bar{Z}, \bar{W})=-R(\bar{Y}, \bar{X}, \bar{Z}, \bar{W})$
(2) R is $\mathcal{F}(P)$-linear in all arguments.

Proof : The properties follow directly from the properties of R_{∇} and \tilde{g}.

Chapter 4

ODE-s as distributions

4.1 The Cartan distribution $\mathcal{C}_{\mathcal{E}}$

We wish to investigate ordinary differential equations of order k, preferably those that can be resolved with respect to the highest derivative:

$$
\begin{equation*}
y^{(k)}=F\left(x, y, y^{\prime}, \ldots, y^{(k-1)}\right) \tag{4.1}
\end{equation*}
$$

We connect this equation to a special distribution in the space $J^{k} \mathbb{R}$ in the following way.
$J^{k} \mathbb{R}$ is a $(k+2)$-dimensional space whose points are all $(k+2)$-tuples $\left(a, y(a), y^{\prime}(a), \ldots, y^{(k)}(a)\right)$ with $a \in \mathbb{R}, y \in C^{\infty}(\mathbb{R})$. Thus we can take $J^{k} \mathbb{R}=$ \mathbb{R}^{k+2} with coordinates x, p_{0}, \ldots, p_{k}. In $J^{k} \mathbb{R}$ we have the Cartan distribution \mathcal{C} of dimension 2 and codimension k defined by the $k 1$-forms

$$
\begin{align*}
\omega_{0} & =d p_{0}-p_{1} d x \\
\omega_{1} & =d p_{1}-p_{2} d x \tag{4.2}\\
\vdots & \\
\omega_{k-1} & =d p_{k-1}-p_{k} d x
\end{align*}
$$

Moreover, our equation 4.1 defines a hypersurface

$$
\mathcal{E}=\left\{\left(x, p_{0}, p_{1}, \ldots, p_{k}\right) \in J^{k} \mathbb{R} \mid p_{k}-F\left(x, p_{0}, p_{1}, \ldots, p_{k-1}\right)=0\right\}
$$

in $J^{k} \mathbb{R}$ on which we take coordinates $x, p_{0}, \ldots, p_{k-1}$. The distribution \mathcal{C} produces a 1-dimensional distribution $\mathcal{C}_{\mathcal{E}}$ when restricted to \mathcal{E}, and we call this

4.2. SYMMETRIES AND COSYMMETRIES OF THE CARTAN DISTRIBUT

the Cartan distribution of the equation \mathcal{E}. It has the same defining forms, except we take

$$
\omega_{k-1}=d p_{k-1}-F\left(x, p_{0}, . . p_{k-1}\right) d x
$$

Integral curves of $\mathcal{C}_{\mathcal{E}}$ that project to the x-axis without degeneration can only be curves of type

$$
p_{0}=y(x), p_{1}=y^{\prime}(x), \ldots, p_{k}=y^{(k)}(x)
$$

in $J^{k} \mathbb{R}$ where $y(x) \in C^{\infty}(\mathbb{R})$ is a solution of 4.1. The latter requirement ensures that the curve lies in \mathcal{E}. Thus finding solutions to the original differential equation is equivalent to finding integral curves of the distribution $\mathcal{C}_{\mathcal{E}}$, and this will be our opening towards the constructions presented in Section 2.2 .

4.2 Symmetries and cosymmetries of the Cartan distribution

We start with the investigation of $\mathcal{D}\left(\mathcal{C}_{\mathcal{E}}\right)$, and include ideas and results from [DL91].
First of all, we note that the $C^{\infty}\left(\mathbb{R}^{k+1}\right)$-module $\Delta\left(\mathcal{C}_{\mathcal{E}}\right)$ is generated by a single vectorfield

$$
\begin{equation*}
D=\frac{\partial}{\partial x}+p_{1} \frac{\partial}{\partial p_{0}}+\ldots . .+p_{k-1} \frac{\partial}{\partial p_{k-2}}+F \frac{\partial}{\partial p_{k-1}} \tag{4.3}
\end{equation*}
$$

In the quotient algebra $\operatorname{Shu}\left(\mathcal{C}_{\mathcal{E}}\right)$ we have the relation

$$
\frac{\partial}{\partial x} \equiv-p_{1} \frac{\partial}{\partial p_{0}}-\ldots . .-p_{k-1} \frac{\partial}{\partial p_{k-2}}-F \frac{\partial}{\partial p_{k-1}} \quad \bmod \operatorname{Char}\left(\mathcal{C}_{\mathcal{E}}\right)
$$

So we are only looking for symmetries on the form

$$
X=\alpha_{0} \frac{\partial}{\partial p_{0}}+\ldots . .+\alpha_{k-2} \frac{\partial}{\partial p_{k-2}}+\alpha_{k-1} \frac{\partial}{\partial p_{k-1}}
$$

Combining this, and employing Theorem 2.2 by investigating the Liederivatives $L_{D}\left(\omega_{i}\right), \quad i=0 . . k-1$, we arrive at the following. Any symmetry (modulo $\operatorname{Char}\left(\mathcal{C}_{\mathcal{E}}\right)$) has to be on the form

$$
\begin{equation*}
X=X_{\phi}=\sum_{i=0}^{k-1} D^{i}(\phi) \frac{\partial}{\partial p_{i}} \tag{4.4}
\end{equation*}
$$

where the function $\phi=\phi\left(x, p_{0}, \ldots, p_{k-1}\right)$ solves the Lie equation

$$
\begin{equation*}
L(\phi)=0 \tag{4.5}
\end{equation*}
$$

for

$$
\begin{equation*}
L=D^{k}-\sum_{i=0}^{k-1} \frac{\partial F}{\partial p_{i}} D^{i} \tag{4.6}
\end{equation*}
$$

the Lie operator. The function ϕ is called the generating function of the symmetry X_{ϕ}. The results above are shown more rigorously in the article [DL91]. The article mainly treats the problem of finding symmetries of the distribution by the approach explained above, and thereby finding solutions (1st-integrals) by quadrature. We will try to expand this picture by including some of our constructions.

As our distribution $\mathcal{C}_{\mathcal{E}}$ is 1-dimensional, it is completely integrable by Theorem 2.1 (the Frobenius theorem). We wish to place $\mathcal{C}_{\mathcal{E}}$ in the setting of Section 2.2. According to our definitions 1st-integrals are

$$
\mathcal{F}\left(\mathcal{C}_{\mathcal{E}}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{k+1}\right) \mid L_{D}(f)=0\right\}
$$

Furthermore, differential 1-forms are

$$
\left.\left.\Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)=\left\{\theta \in \Omega^{1}(\mathcal{E}) \mid D\right\lrcorner \theta=0 \text { and } D\right\lrcorner d \theta=0\right\}
$$

As a matter of fact, the forms in $\Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)$ are also given in terms of a generating function, as is the case for symmetries modulo characteristic symmetries. To recognize this we have to make the following steps.

The requirement $D\lrcorner \theta=0$ implies that θ has to be on the form

$$
\theta=\sum_{i=0}^{k-1} \beta_{i} \omega_{i}
$$

for some functions β_{i} since the Cartan forms $\left\{\omega_{i}\right\}$ generate the annihilating module $\operatorname{Ann}(P)$. Combining that, and the requirement $L_{D}(\theta)=0$ we get exactly the forms in $\Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)$. By calculation we have

$$
\begin{aligned}
L_{D}\left(\omega_{i}\right) & =\omega_{i+1} \quad i=0 \ldots k-2 \\
L_{D}\left(\omega_{k-1}\right) & =\sum_{i=0}^{k-1} \frac{\partial F}{\partial p_{i}} \omega_{i}
\end{aligned}
$$

The requirement $L_{D}(\theta)=0$ then gives the following set of $k-1$ equations on the functions β_{i} :

$$
\begin{align*}
D\left(\beta_{0}\right) & =-F_{0} \psi \tag{4.7}\\
\beta_{j} & =-D\left(\beta_{j+1}\right)-\psi F_{j+1}, \quad j=0 \ldots k-2 \tag{4.8}
\end{align*}
$$

where $F_{i}=\frac{\partial F}{\partial p_{i}}$ and $\psi=\beta_{k-1}$. It is clear that by combining these equations we get one equation on ψ alone, and the β_{j}-s are given from ψ. That is

$$
\begin{equation*}
\beta_{k-l}=H_{l}(\psi) \quad l=2 \ldots k \tag{4.9}
\end{equation*}
$$

where H_{l} is the operator

$$
\begin{equation*}
H_{l}=(-1)^{l-1} D^{l-1}-\sum_{s=0}^{l-2}(-1)^{s} D^{s} f_{s}^{l} \tag{4.10}
\end{equation*}
$$

with $f_{s}^{l}=F_{k-l+1+s}$.
Proof of equations (4.9) and (4.10). We will use induction on 1 .
For $\mathbf{l}=\mathbf{2}$ we have:

$$
\beta_{k-2}=\left(-D-F_{k-1}\right) \psi
$$

from (4.8). Our formula (4.10) gives

$$
H_{2}=-D-F_{k-1}
$$

which implies that (4.10) is correct for $\mathrm{l}=2$.
We will assume that it is also correct for l, and calculate $\beta_{k-(l+1)}=\beta_{k-l-1}$.

$$
\beta_{k-l-1}=-D\left(\beta_{k-l}\right)-F_{k-l} \psi
$$

by equation (4.8). Then

$$
\beta_{k-l-1}=\left(-D \cdot H_{l}-F_{k-l}\right) \psi
$$

By direct calculation (note that $f_{r-1}^{l}=f_{r}^{l+1}$) we get that

$$
\beta_{k-l-1}=\left[(-1)^{l} D^{l}-\sum_{s=0}^{l-1}(-1)^{s} D^{s} f_{s}^{l+1}\right] \psi
$$

which is exactly $H_{l+1} \psi$.
We can thus take $l=k$ and combine equations

$$
\beta_{0}=H_{k}(\psi)
$$

and

$$
D\left(\beta_{0}\right)+F_{0} \psi=0
$$

and get the following equation for ψ

$$
\begin{equation*}
L^{*}(\psi)=0 \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
L^{*}=(-1)^{k}\left(D^{k}\right)-\sum_{r=0}^{k-1}(-1)^{r} D^{r} F_{r} \tag{4.12}
\end{equation*}
$$

We can calculate the adjoint operator $\operatorname{Adj}(L)$ of L by the rules $\operatorname{Adj}(A B)=\operatorname{Adj}(B) \operatorname{Adj}(A)$ where $\operatorname{Adj}(f)=f$ for functions, and $\operatorname{Adj}(D)=-D$ else. This shows that L^{*} is actually equal to $\operatorname{Adj}(L)$.
L^{*} can be written in the following way, ordered by the degree of D :

$$
\begin{equation*}
L^{*}=(-1)^{k} D^{k}-\sum_{r=0}^{k-1}(-1)^{r} \sum_{s=0}^{r}\binom{r}{s} D^{s}\left(F_{r}\right) D^{r-s} \tag{4.13}
\end{equation*}
$$

Theorem 4.1 Any element in $\Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)$ is on the form

$$
\theta=\theta_{\psi}=\psi \omega_{k-1}+\sum_{l=2}^{k} H_{l}(\psi) \omega_{k-l}
$$

for some generating function ψ that solves equation (4.11), the H_{l}-s as given in equation (4.10)

We shall call such 1 -forms cosymmetries of our distribution, as they are "duals" to our symmetries. We know that any pairing

$$
f=\left\langle X_{\phi}, \theta_{\psi}\right\rangle
$$

of a symmetry and a cosymmetry will give a 1 st-integral of the distribution $\mathcal{C}_{\mathcal{E}}$. If we have k independent 1 st-integrals of $\mathcal{C}_{\mathcal{E}}$, we have a implicit solution of our equation. In general, if we have some number of symmetries and
cosymmetries, different pairing-combinations can give us functions that are just constants or constant-multiples of eachother. So, having k independent symmetries, and k independent cosymmetries is no guarantee to get k independent 1st-integrals.

4.3 Remarks on $S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$

How to find elements of $S^{2}(P)$? We can try to find such symmetric 2-forms directly from our definition. Assume $g \in S^{2}\left(\Omega^{1}(M)\right)$. The requirement $g(\Delta(P), \cdot)=0$ implies that

$$
g=\sum_{0 \leq i, j \leq k-1} a_{i j} \omega_{i} \cdot \omega_{j}
$$

where $\left\{\omega_{i}\right\}_{i=0}^{k-1}$ are the Cartan forms. The matrix $A=\left(a_{i j}\right)$ is symmetric. In addition we must have $L_{D}(g)=0$. This will give us a set of equations on the functions $a_{i j}$. These can be combined to give one equation on a generating $a_{i_{0} j_{0}}$, and the other $a_{i j}-s$ will be given by the generator in a way similar to (co)symmetries. This will be done for the Cartan distribution $\mathcal{C}_{\mathcal{E}}$ in the case $k=2$.

On the other hand, if we know k independent elements $\theta_{1}, . ., \theta_{k}$ of $\Omega^{1}(P)$, we get a symmetric, positive 2 -form

$$
g=\sum_{i=1}^{k} \theta_{i}^{2}
$$

immediately.

Chapter 5

Algebraic picture -relations with \mathcal{D}-modules

5.1 $\quad A$-module E with a derivation

Let A be a commutative algebra with a derivation $\delta: A \longrightarrow A$, and E an A-module. Assume that we have an operator

$$
\delta: E \longrightarrow E
$$

on our module such that

$$
\begin{equation*}
\delta(a x)=\delta(a) x+a \delta(x) \tag{5.1}
\end{equation*}
$$

for any $a \in A, x \in E$.
We denote this as a pair (E, δ), and call E a \mathcal{D}-module.
We define

$$
E^{\#}=\{x \in E \mid \delta x=0\} \quad \text { and } \quad A^{\#}=\{a \in A \mid \delta a=0\}
$$

Proposition 5.1 $E^{\#}$ is an $A^{\#}$-module.
Assume we have two such pairs $\left(E_{1}, \delta\right)$ and $\left(E_{2}, \delta\right)$. They give us new A modules with operators in the following ways
(1) Take the tensorproduct $E_{1} \otimes E_{2}$, which is again an A-module. The operator δ extends to the tensor product in the following way

$$
\delta\left(x_{1} \otimes x_{2}\right) \stackrel{\text { def }}{=} \delta\left(x_{1}\right) \otimes x_{2}+x_{1} \otimes \delta\left(x_{2}\right)
$$

on decomposable elements, and extend by property (5.1). Thus you get a new pair

$$
\left(E_{1} \otimes E_{2}, \delta\right)
$$

(2) Following (1), taking tensorproducts of E with itself gives us constructions like
$\left(S^{l}(E), \delta\right)$, where

$$
\delta\left(x_{1} \cdot \ldots \cdot x_{l}\right)=\delta\left(x_{1}\right) \cdot \ldots \cdot x_{l}+\ldots+x_{1} \cdot \ldots \cdot \delta\left(x_{l}\right)
$$

or $\left(\bigwedge^{l}(E), \delta\right)$, where

$$
\delta\left(x_{1} \wedge \ldots \wedge x_{l}\right)=\delta\left(x_{1}\right) \wedge \ldots \wedge x_{l}+\ldots .+x_{1} \wedge \ldots \wedge \delta\left(x_{l}\right)
$$

(3) Also, we can extend δ to the A-module $\operatorname{Hom}_{A}\left(E_{1}, E_{2}\right)$ by taking

$$
(\delta F)(x) \stackrel{\text { def }}{=} F(\delta(x))-\delta(F(x))
$$

for any $F \in \operatorname{Hom}_{A}\left(E_{1}, E_{2}\right)$, and thus get a new pair $\left(\operatorname{Hom}_{A}\left(E_{1}, E_{2}\right), \delta\right)$
The constructions above will provide us with several A-modules with induced operators starting only with one pair (E, δ).

We can define the dual

$$
E^{*}=\operatorname{Hom}_{A}(E, A)
$$

The induced operator δ is then given by the formula in (3).
Also, we can construct various tensorspaces of E and E^{*} like in (1) and (2), including

$$
E \otimes E^{*} \cong \operatorname{Hom}_{A}(E, E)
$$

The reason this piece of algebra is included, is the following observation. All our constructions $\mathcal{F}\left(\mathcal{C}_{\mathcal{E}}\right), \mathcal{D}\left(\mathcal{C}_{\mathcal{E}}\right), \Omega^{l}\left(\mathcal{C}_{\mathcal{E}}\right), S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$ in the previous section fits exactly into this algebraic picture. Namely, we take

$$
A=C^{\infty}\left(J^{1} \mathbb{R}\right) \quad \text { and } \quad E=\mathcal{D}\left(J^{1} \mathbb{R}\right) / D
$$

where D is the characteristic vectorfield of the distribution $\mathcal{C}_{\mathcal{E}}$. The operator in question is the Lie-derivative along $D, \delta=L_{D}$. So, starting with the pair

$$
\begin{equation*}
\left(E, L_{D}\right) \tag{5.2}
\end{equation*}
$$

we get all our well known tensorspaces.

- The dual space $E^{*}=\operatorname{Ann}\left(\mathcal{C}_{\mathcal{E}}\right)$
with the usual Lie-derivative L_{D} as induced operator.
- $A^{\#}=\mathcal{F}\left(\mathcal{C}_{\mathcal{E}}\right)$
- $E^{\#}=\mathcal{D}\left(\mathcal{C}_{\mathcal{E}}\right)$
- $\left(E^{*}\right)^{\#}=\Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)$
- $S^{2}\left(E^{*}\right)=\left\{\sum \alpha_{i j} \theta_{i} \cdot \theta_{j} \mid \theta_{i}, \theta_{j} \in \operatorname{Ann}\left(\mathcal{C}_{\mathcal{E}}\right), \alpha_{i j} \in A\right\}$
with the usual Lie-derivative L_{D} as induced operator.
- $S^{2}\left(E^{*}\right)^{\#}=S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$
- $\wedge^{l}\left(E^{*}\right)=\left\{\sum \alpha_{i_{1} . . i_{l}} \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{l}} \mid \theta_{i_{j}} \in \operatorname{Ann}\left(\mathcal{C}_{\mathcal{E}}\right), \alpha_{i_{1} . . i_{l}} \in A\right\}$
with the usual Lie-derivative L_{D} as induced operator.
- $\left(\Lambda^{l}\left(E^{*}\right)\right)^{\#}=\Omega^{l}\left(\mathcal{C}_{\mathcal{E}}\right)$

Chapter 6

ODE-s of order two

6.1 Symmetry, cosymmmetry and g-equations

Let our equation be of order two, and resolved with respect to the 2 nd derivative.

$$
\begin{equation*}
y^{\prime \prime}=F\left(x, y, y^{\prime}\right) \tag{6.1}
\end{equation*}
$$

In this section we will find the equations connected to its (co)symmetries and other constructions from Section 2.2. The distribution $\mathcal{C}_{\mathcal{E}}$ is of dimension 1 and codimension 2. We denote the coordinates on \mathcal{E} by x, u and p, thus our vectorfield D becomes

$$
D=\partial_{x}+p \partial_{u}+F \partial_{p}
$$

where $F=F(x, u, p)$. The Cartan-forms are

$$
\omega_{0}=d u-p d x, \quad \omega_{1}=d p-F d x
$$

Our Lie equation is the following

$$
\begin{equation*}
L(\phi)=0 \tag{6.2}
\end{equation*}
$$

with the operator L

$$
\begin{equation*}
L=D^{2}-F_{p} D-F_{u} \tag{6.3}
\end{equation*}
$$

Here F_{u} and F_{p} are the partial derivatives w.r.t. the variables u and p. If ϕ solves equation (6.2), it generates the symmetry

$$
X_{\phi}=\phi \partial_{u}+D(\phi) \partial_{p}
$$

To find cosymmetries we should find solutions of the equation

$$
\begin{equation*}
L^{*}(\psi)=0 \tag{6.4}
\end{equation*}
$$

where

$$
\begin{equation*}
L^{*}=D^{2}+D \cdot F_{p}-F_{u}=D^{2}+F_{p} D+\left[D\left(F_{p}\right)-F_{u}\right] \tag{6.5}
\end{equation*}
$$

which is equal to the adjoint operator $\operatorname{Adj}(L)$ of L. A solution ψ of (6.4) generates a cosymmetry

$$
\omega_{\psi}=-\left(D+F_{p}\right)(\psi) \omega_{0}+\psi \omega_{1}
$$

Before we investigate some examples of second order equations, we will find the conditions on a symmetric 2-form to be an element of $S^{2}(P)$. We recall that g has to be on the form

$$
g=a_{00} \omega_{0}^{2}+2 a_{01} \omega_{0} \cdot \omega_{1}+a_{11} \omega_{1}^{2}
$$

to ensure that $g(D, \cdot)=0$. In addition we need to have that $L_{D}(g)=0$. We do the calculation

$$
\begin{gathered}
L_{D}(g)= \\
{\left[D\left(a_{00}\right)+2 F_{u} a_{01}\right] \omega_{0}^{2}+} \\
+2\left[a_{00}+\left(D+F_{p}\right) a_{01}+F_{u} a_{11}\right] \omega_{0} \cdot \omega_{1}+\left[\left(D+2 F_{p}\right) a_{11}+2 a_{01}\right] \omega_{1}^{2}
\end{gathered}
$$

and see that $L_{D}(g)=0$ is equivalent to the set of equations $(i)-(i i i)$ on the functions $a_{i j}$

$$
\begin{align*}
\text { (i) } & D\left(a_{00}\right)+2 F_{u} a_{01} & =0 \tag{i}\\
\text { (ii) } & a_{00}+\left(D+F_{p}\right) a_{01}+a_{11} F_{u} & =0 \\
\text { (iii) } & 2 a_{01}+\left(D+2 F_{p}\right) a_{11} & =0
\end{align*}
$$

These equations can be written in the following way

$$
\begin{equation*}
D\left(a_{00}\right)=-2 F_{u} a_{01} \tag{i}
\end{equation*}
$$

$$
\text { (ii) } \quad a_{00} \quad=-\left(D+F_{p}\right) a_{01}-F_{u} a_{11}
$$

$$
\text { (iii) } \quad a_{01} \quad=-\frac{1}{2}\left(D+2 F_{p}\right) a_{11}
$$

Equation (iii) gives us a_{01} expressed in terms of a_{11}, and this we can substitute into equation (ii). Thereby we have both a_{01} and a_{00} expressed in terms of the function a_{11}. By substitution in equation (i) we arrive at the following conditions:
The function a_{11} must solve the equation

$$
\begin{equation*}
L_{11}\left(a_{11}\right)=0 \tag{6.6}
\end{equation*}
$$

where L_{11} is the following operator

$$
\begin{aligned}
L_{11} & =D^{3}+\left[3 F_{p}\right] D^{2}+\left[5 D\left(F_{p}\right)+2 F_{p}^{2}-4 F_{u}\right] D+ \\
& +\left[2 D^{2}\left(F_{p}\right)+4 F_{p} D\left(F_{p}\right)-2 D\left(F_{u}\right)-F_{p} F_{u}\right]
\end{aligned}
$$

Furthermore, the functions a_{00} and a_{01} are given by

$$
\begin{equation*}
a_{00}=L_{00}\left(a_{11}\right) \tag{6.7}
\end{equation*}
$$

with

$$
L_{00}=\frac{1}{2}\left(D^{2}+3 F_{p} D+2\left[D\left(F_{p}\right)+F_{p}^{2}-F_{0}\right]\right)
$$

and

$$
\begin{equation*}
a_{01}=L_{01}\left(a_{11}\right) \tag{6.8}
\end{equation*}
$$

with

$$
L_{01}=-\frac{1}{2}\left(D+2 F_{p}\right)
$$

Our calculations on g can be summarised in the following way.
Theorem 6.1 Any $g \in S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$ is on the form

$$
g=L_{00}(\eta) \omega_{0}^{2}+2 L_{01}(\eta) \omega_{0} \cdot \omega_{1}+\eta \omega_{1}^{2}
$$

where η solves the Equation (6.6).

Remark :

If we have two solutions ψ_{1}, ψ_{2} of the L^{*}-equation, this produces two cosymmetries θ_{1} and θ_{2}. Their symmetric products $\theta_{1}^{2}, \theta_{1} \cdot \theta_{2} \theta_{2}^{2}$, as well as their
sums, must be elements of $S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$.
Hence, the functions $\psi_{1}^{2}, \psi_{1} \psi_{2}$ and ψ_{2}^{2} must solve the equation

$$
L_{11} \eta=0
$$

We call the operator L_{11} the symmetric power of L^{*}.

We now know how all elements of $\mathcal{D}\left(\mathcal{C}_{\mathcal{E}}\right), \Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)$ and $S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$ must look for $k=2$; they are all given by generating functions that have to satisfy certain equations. These equations are in some sense more complicated than our original one. But we are not looking for general solutions of them: for example, to find a g for some equation $y^{\prime \prime}=F$ it suffices to find one solution of the L_{11}-equation. Therefore we can look for generating functions of special types, for example linear in p.
Also, we can try to investigate the problem, starting in the other end. Assume we have a specific 2 -form $g=a_{00} \omega_{0}^{2}+2 a_{01} \omega_{0} \omega_{1}+a_{11} \omega_{1}^{2}$. We can then try to find for which F-s these $a_{i j}$-s satisfy the conditions of Theorem 6.1. That is, we get a class of equations that possess this kind of structure.

6.2 Equations with extra structure

Investigating an equation along the lines of our constructions connected to the space \mathcal{S} will at this point consist in searching for elements of $\mathcal{D}\left(\mathcal{C}_{\mathcal{E}}\right), \Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right)$ and $S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$. This will, in one way or the other, mean investigation of the L, L^{*} and $L_{11^{-}}$equations. One might also find other things than solutions during such an investigation. One thing that was discovered conserning a wide class of equations is the following.

Theorem 6.2 Given an equation

$$
y^{\prime \prime}=\gamma(x) y^{\prime}+\delta(x, y)
$$

we have the following relation between the associated L and L^{*}-equations:

$$
L(\phi)=0 \quad \Leftrightarrow \quad L^{*}\left(e^{\alpha} \phi\right)=0
$$

where $\alpha=\alpha(x)$ is any function such that $\alpha^{\prime}(x)=-\gamma(x)$. The functions $\gamma(x)$ and $\delta(x, y)$ are arbitrary.

Proof : Let $F=\gamma(x) p+\delta(x, u)$. Then, for any ϕ we have

$$
L(\phi)=D^{2}(\phi)-\gamma D(\phi)-F_{u} \phi
$$

For any $\alpha=\alpha(x)$ we have by straightforward calculation that

$$
L^{*}\left(e^{\alpha} \phi\right)=e^{\alpha}\left[D^{2}(\phi)+\left(2 \alpha^{\prime}+\gamma\right) D(\phi)+\left(\alpha^{\prime \prime}+\left(\alpha^{\prime}\right)^{2}+\alpha^{\prime} \gamma+\gamma^{\prime}-F_{u}\right) \phi\right]
$$

Choosing α such that $\alpha^{\prime}=-\gamma$ implies that

$$
\left(2 \alpha^{\prime}+\gamma\right)=-\gamma \quad \text { and } \quad\left(\alpha^{\prime \prime}+\left(\alpha^{\prime}\right)^{2}+\alpha^{\prime} \gamma+\gamma^{\prime}-F_{u}\right)=-F_{u}
$$

thus for this choice of α we have that

$$
L^{*}\left(e^{\alpha} \phi\right)=e^{\alpha} L(\phi)
$$

which completes the proof.
Given an equation of the type in Theorem 6.2, we observe that we get the following map:

$$
\phi \in \operatorname{ker} L \mapsto e^{\alpha} \phi \in \operatorname{ker} L^{*}
$$

which in turn gives the corresponding map

$$
\begin{equation*}
\lambda: \mathcal{D}\left(\mathcal{C}_{\mathcal{E}}\right) \longrightarrow \Omega^{1}\left(\mathcal{C}_{\mathcal{E}}\right) \tag{6.9}
\end{equation*}
$$

defined by $X_{\phi} \mapsto \theta_{e^{\alpha} \phi}$. This map is obviously \mathbb{R}-linear.
We know that an element $\Lambda=\sum_{i} c_{i} \sigma_{i} \otimes \theta_{i} \in \Omega^{1}(M) \otimes \Omega^{1}(M)$
with $\sigma_{i}, \theta_{i} \in \Omega^{1}(M)$ and $c_{i} \in C^{\infty}(M)$ corresponds to a $C^{\infty}(M)$-linear mapping

$$
\Lambda: \mathcal{D}(M) \longrightarrow \Omega^{1}(M)
$$

given by $X \mapsto \sum_{i} c_{i} \sigma_{i}(X) \theta_{i}$.
We want to find such a Λ that maps X_{ϕ} into $\theta_{e^{\alpha} \phi}$ for every ϕ that solves $L(\phi)=0$. Calculating directly $\Lambda\left(X_{\phi}\right)$ we get that

$$
\begin{equation*}
\Lambda=-2 e^{\alpha} \omega_{0} \wedge \omega_{1} \tag{6.10}
\end{equation*}
$$

which is an element of $\Omega^{2}(M)$.

To check if Λ is an element of $\Omega^{2}(P)$ we calculate the Lie-derivative of Λ along D

$$
L_{D}(\Lambda)=4 \gamma e^{\alpha} \omega_{0} \wedge \omega_{1}
$$

which is zero only in the cases when $\gamma=0$. Thus we have that
Theorem 6.3 Equations of the type

$$
y^{\prime \prime}=F(x, y)
$$

where F is arbitrary, possess a symplectic structure on the space of solutions given by the non-degenerated 2 -form $\Lambda=\omega_{0} \wedge \omega_{1} \in \Omega^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$.

Remark:

We make the following observation about 1st-integrals. Assume we have an equation of the type in Theorem 6.2, with $F_{p}=\gamma(x)$. Assume $\alpha=\alpha(x)$ so that $\alpha^{\prime}=-\gamma$, and that we have a pair of symmetries $X_{\phi_{1}}, X_{\phi_{2}}$ and thus also cosymmetries $\theta_{e^{\alpha} \phi_{1}}, \theta_{e^{\alpha} \phi_{2}}$. Their pairings will be the following:

$$
\left\langle X_{\phi_{1}}, \theta_{e^{\alpha} \phi_{1}}\right\rangle=\left\langle X_{\phi_{2}}, \theta_{e^{\alpha} \phi_{2}}\right\rangle=0
$$

and

$$
\left\langle X_{\phi_{1}}, \theta_{e^{\alpha} \phi_{2}}\right\rangle=-\left\langle X_{\phi_{2}}, \theta_{e^{\alpha} \phi_{1}}\right\rangle=\phi_{1} D\left(\phi_{2}\right)-D\left(\phi_{1}\right) \phi_{2}
$$

Thus, this will only give us one (possibly) non-zero 1st-integral up to multiplication by constant.

6.3 Equations with constant coefficient g

Assume that our equation

$$
y^{\prime \prime}=F\left(x, y, y^{\prime}\right)
$$

posesses a metric structure where g is of the following form

$$
g=a_{00} \omega_{0}^{2}+2 a_{01} \omega_{0} \cdot \omega_{1}+a_{11} \omega_{1}^{2}
$$

where all the $a_{i j}$-S are constants, ω_{0}, ω_{1} the Cartan forms. We want to find all equations that can have such a g. To do this we have to examine the
equations for the $a_{i j}-\mathrm{s}$.
Take $c=a_{11} \in \mathbb{R}$. Then the equation (6.8) for a_{01} becomes

$$
a_{01}=-F_{p} a_{11}=-F_{p} c
$$

which implies that F_{p} is a constant

$$
\text { (i) } F_{p}=-\frac{a_{01}}{c}
$$

If we look at the equation (6.7) for a_{00} we get that

$$
a_{00}=\left(F_{p}^{2}-F_{u}\right) c
$$

which gives us the following requirement on F_{u}

$$
\text { (ii) } \quad F_{u}=\frac{\left(a_{01}^{2}-c a_{00}\right)}{c^{2}}
$$

that it is also constant. The final requirement on F comes from the equation (6.6) on a_{11}, namely that

$$
\text { (iii) }-2 F_{u} F_{p} c=\frac{2}{c^{2}} a_{01}\left(a_{01}^{2}-a_{00} c\right)=0
$$

We notice that a_{11} cannot be zero. If $a_{11}=0$, the immediately $a_{01}=a_{00}=0$. There are thus two possibilities for (iii) to be true:
(A) $a_{01}=0$ which corresponds to $F_{p}=0$
(B) $a_{00}=\frac{a_{01}^{2}}{c}$ which corresponds to $F_{u}=0$

This can be formulated in the following way.
Theorem 6.4 There are only two types of equations that possess a constantcoefficient g in the Cartan basis (up to multiplication by constants on g). They are
(A) Equation $y^{\prime \prime}+\alpha y=f(x)$ with $g=\alpha \omega_{0}^{2}+\omega_{1}^{2}$
(B) Equation $y^{\prime \prime}+\alpha y^{\prime}=f(x)$ with $g=\alpha^{2} \omega_{0}^{2}+2 \alpha \omega_{0} \omega_{1}+\omega_{1}^{2}$
where $f(x)$ is arbitrary and $\alpha \in \mathbb{R}$.

6.4 Some equations with known co-/symmetrie and g

In this section we are going to investigate equations of the type

$$
y^{\prime \prime}=y^{\prime}+f(y)
$$

where the function $f(y)$ is non-linear. That is, our $F(x, u, p)=p+f(u)$.
In the article [DL91] the problem of finding p-linear generating functions of symmetries is treated in full. All equations equipped with a two dimensional Lie-algebra of such symmetries are classified, although with a minor misprint.

The quest is to find solutions on the form $\phi=\alpha(x, u) p+\beta(x, u)$ to the Lie-equation

$$
L \phi=0
$$

and thus bescrive $\mathcal{D}\left(\mathcal{C}_{\mathcal{E}}\right)$ for this F.
But now we have also the problem of describing $\Omega^{l}\left(\mathcal{C}_{\mathcal{E}}\right)$ and finding element(s) of $S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$. We make the following observation about F.
$F_{p}=1$, which by Theorem 6.2 implies that

$$
L(\phi)=0 \quad \Leftrightarrow \quad L^{*}\left(e^{-x} \phi\right)=0
$$

Thus, solutions to the L-equation produces solutions to the L^{*}-equation and vice versa. Two independent solutions of the L^{*}-equation produce two independent cosymmetries, which in turn will give us an element of $S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$.

Theorem 6.5 Non-linear equations on the form $y^{\prime \prime}=y^{\prime}+f(y)$ that possess a two dimensional Lie-algebra of point-symmetries can be divided into classes (1) and (2).
(2) $y^{\prime \prime}=y^{\prime}+a(y+b)^{c}-\frac{(2 c+2)}{(c+3)^{2}}(y+b)$
with $a, b, c \in \mathbb{R}$ and $a \neq 0, c \neq 0,1,-3$
These equations are equipped with the following structure, as listed below.

Type (1)
(i) Solutions of $L^{*} \phi=0$:

$$
\phi_{1}=p \quad \text { and } \quad \phi_{2}=e^{-x}\left(p-\frac{2}{b}\right)
$$

Corresponding symmetries:
$X_{1}=p \partial_{u}+\left(p+a e^{b u}-\frac{2}{b}\right) \partial_{p} \quad$ and
$X_{2}=e^{-x}\left[\left(p-\frac{2}{b}\right) \partial_{u}+a e^{b u} \partial_{p}\right]$
(ii) Solutions of $L^{*} \psi=0$:
$\psi_{1}=e^{-x} p \quad$ and $\quad \psi_{2}=e^{-2 x}\left(p-\frac{2}{b}\right)$
Corresponding cosymmetries :
$\theta_{1}=e^{-x}\left[\left(-p-a e^{b u}+\frac{2}{b}\right) \omega_{0}+p \omega_{1}\right] \quad$ and
$\theta_{2}=e^{-2 x}\left[\left(-a e^{b u}\right) \omega_{0}+\left(p-\frac{2}{b}\right) \omega_{1}\right]$
(iii) Metric structure :
$g=\theta_{1}^{2}+\theta_{2}^{2} \quad$ which corresponds to $\quad a_{11}=\psi_{1}^{2}+\psi_{2}^{2}$.

$$
\begin{gathered}
g=e^{-2 x}\left[a^{2}\left(1+e^{-2 x}\right) e^{2 b u}+\left(p-\frac{2}{b}\right)^{2}+2\left(p-\frac{2}{b}\right) a e^{b u}\right] \omega_{0}^{2} \\
-2 e^{-2 x}\left[p\left(p-\frac{2}{b}+a\right)+a\left(p-\frac{2}{b}\right) e^{b u-2 x}\right] \omega_{0} \cdot \omega_{1}+e^{-2 x}\left[p^{2}+e^{-2 x}\left(p-\frac{2}{b}\right)^{2}\right] \omega_{1}^{2}
\end{gathered}
$$

Type (2)
(i) Solutions of $L^{*} \phi=0$:
$\phi_{1}=p \quad$ and $\quad \phi_{2}=e^{k x}\left(p-\frac{k+1}{2}(u+b)\right)$, where $k=\frac{1-c}{3+c}$
Corresponding symmetries:

$$
\begin{aligned}
& X_{1}=p \partial_{u}+\left[p+a(u+b)^{c}-\frac{(2 c+2)}{(c+3)^{2}}(u+b)\right] \partial_{p} \quad \text { and } \\
& X_{2}=e^{k x}\left[\left(p-\frac{k+1}{2}(u+b)\right) \partial_{u}+\left(\frac{k+1}{2} p+a(u+b)^{c}-\frac{4}{(c+3)^{2}}(u+b)\right) \partial_{p}\right]
\end{aligned}
$$

(ii) Solutions of $L^{*} \psi=0$:

$$
\psi_{1}=e^{-x} p \quad \text { and } \quad \psi_{2}=e^{(k-1) x}\left(p-\frac{k+1}{2}(u+b)\right)
$$

Corresponding cosymmetries :

$$
\begin{aligned}
& \theta_{1}=e^{-x}\left[\left(-p-a(u+b)^{c}+\frac{(2 c+2)}{(c+3)^{2}}(u+b)\right) \omega_{0}+p \omega_{1}\right] \quad \text { and } \\
& \theta_{2}=e^{(k-1) x}\left[\left(-\frac{k+1}{2} p-a(u+b)^{c}-\frac{2 c+2}{(c+3)^{2}}(u+b)\right) \omega_{0}+\left(p-\frac{k+1}{2}(u+b)\right) \omega_{1}\right]
\end{aligned}
$$

(iii) Metric structure :
$g=\theta_{1}^{2}+\theta_{2}^{2} \quad$ which corresponds to $\quad a_{11}=\psi_{1}^{2}+\psi_{2}^{2}$.

$$
\begin{gathered}
g=e^{-2 x}\left[\left(-p-a(u+b)^{c}+\frac{(2 c+2)}{(c+3)^{2}}(u+b)\right)^{2}+\right. \\
\left.+e^{2 k x}\left(-\frac{(k+1)}{2} p-a(u+b)^{c}-\frac{(2 c+2)}{(c+3)^{2}}(u+b)+\frac{(k+1)}{2}\right)^{2}\right] \omega_{0}^{2}+ \\
2 e^{-2 x}\left[p^{2}\left(-1-\frac{(k+1)}{2} e^{2 k x}\right)+a(u+b)^{c} p\left(-1-e^{2 k x}\right)+\right. \\
\left.e^{2 k x}\left(\frac{\left(k^{2}+4 k+3\right)}{4} p+\frac{(k+1)}{2} a(u+b)^{c}+\frac{(4 c+4)}{(c+3)^{3}}(u+b)-\frac{(k+1)^{2}}{4}\right)\right] \omega_{0} \cdot \omega_{1} \\
+e^{-2 x}\left[p^{2}+e^{2 k x}\left(p-\frac{(k+1)}{2}(u+b)\right)^{2}\right] \omega_{1}^{2}
\end{gathered}
$$

6.5 Harmonic oscillator

We shall investigate the class of equations on the form

$$
\begin{equation*}
y^{\prime \prime}+c y=0 \tag{6.11}
\end{equation*}
$$

where $c \in \mathbb{R}$. Whenever $c=a^{2}>0$ we have the famous harmonic oscillator equation.

Our first observation is that (6.11) is of type (A) in Theorem 6.4, and thus has a metric structure given by $g=c \omega_{0}^{2}+\omega_{1}^{2}$. This g is positive for $c>0$.

Second, we find the following if we search for p-linear solutions to the Lieequation. The functions

$$
\begin{equation*}
\phi_{1}=u \quad \text { and } \quad \phi_{2}=p \tag{6.12}
\end{equation*}
$$

solve $L \phi=0$. They generate the following symmetries

$$
\begin{equation*}
X_{1}=u \partial_{u}+p \partial_{p}, \quad X_{2}=p \partial_{u}-c u \partial_{p} \tag{6.13}
\end{equation*}
$$

We note that $F=-c u \Rightarrow F_{p}=0$ which by Theorem 6.2 implies that solutions of the L^{*} - equation must be scalar multiples of the solutions of the L-equation. Hence the functions

$$
\begin{equation*}
\psi_{1}=u \quad \text { and } \quad \psi_{2}=p \tag{6.14}
\end{equation*}
$$

solve the equation $L^{*} \psi=0$, and provides us with the cosymmetries

$$
\begin{equation*}
\theta_{1}=-p \omega_{0}+u \omega_{1}, \quad \theta_{2}=c u \omega_{0}+p \omega_{1} \tag{6.15}
\end{equation*}
$$

The pairing

$$
\left\langle X_{1}, \theta_{2}\right\rangle=-\left\langle X_{2}, \theta_{1}\right\rangle=c u^{2}+p^{2}
$$

is a 1st- integral of our equation. What is interesting, is that we get a new $g \in S^{2}\left(\mathcal{C}_{\mathcal{E}}\right)$ from our cosymmetries by taking

$$
g=\theta_{1}^{2}+\theta_{2}^{2}=\left[p^{2}+c^{2} u^{2}\right] \omega_{0}^{2}+2[u p(1-c)] \omega_{0} \omega_{1}+\left[u^{2}+p^{2}\right] \omega_{1}^{2}
$$

Bibliography

[ALAE91] D.V. Alekseevskij, V.V. Lychagin, A.M.Vinogradov, and R.V. Gamkrelidze (Ed.). Geometry I, volume 28 of Encyclopedia of Mathematical Sciences. Springer-Verlag, 1991.
[Boo75] William H. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry, volume 63 of Pure and Applied Mathematics. Academic Press, 1975.
[DL91] S. V. Duzhin and V. V. Lychagin. Symmetries of distributions and quadrature of ordinary differential equations. Acta Applicandae Mathematicae, 24:29-57, 1991.
[GHVa] Werner Greub, Stephen Halperin, and Ray Vanstone. Connections, Curvature and Cohomology I, volume 47 of Pure and Applied Mathematics. Academic Press.
[GHVb] Werner Greub, Stephen Halperin, and Ray Vanstone. Connections, Curvature and Cohomology II, volume 47 of Pure and Applied Mathematics. Academic Press.
[KL93] B. Komrakov and V. Lychagin. Symmetries and integrals. Preprint University of Oslo, 1993.
[Olv93] Peter Olver. Applications of Lie Groups to Differential Equations, volume 107 of Graduate Texts in Mathematics. Springer-Verlag, 1993.

