
Geometrical structures on solution spaces of
Ordinary Differential Equations

Cathrine Vembre Jensen

December 1, 1999



Contents

1 Preliminaries 5

1.1 Smooth manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Jets of functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Diffeomorphisms: induced homomorphisms . . . . . . . . . . . 13

1.5 Connections and curvature . . . . . . . . . . . . . . . . . . . . 16

2 The solution space of a distribution 20

2.1 Involutive distributions . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The solution space of a distribution P . . . . . . . . . . . . . 21

2.3 Functions and vectorfields on solution spaces . . . . . . . . . . 22

2.4 The algebra of differential forms on solution spaces . . . . . . 24

2.5 Further properties of Ωl(P ) . . . . . . . . . . . . . . . . . . . 28

2.6 Morphisms of distributions . . . . . . . . . . . . . . . . . . . . 30

2.7 Cohomologies of solution spaces. . . . . . . . . . . . . . . . . 32

2.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Riemannian structures on solution spaces. 39

3.1 Symmetric 2-forms on S . . . . . . . . . . . . . . . . . . . . . 39

3.2 Connection and curvature of (S, g̃) . . . . . . . . . . . . . . . 40

4 ODE-s as distributions 46

4.1 The Cartan distribution CE . . . . . . . . . . . . . . . . . . . . 46

4.2 Symmetries and cosymmetries of the Cartan distribution . . . 47

4.3 Remarks on S2(CE) . . . . . . . . . . . . . . . . . . . . . . . . 51

2



CONTENTS 3

5 Algebraic picture
-relations with D-modules 52
5.1 A-module E with a derivation . . . . . . . . . . . . . . . . . 52

6 ODE-s of order two 55
6.1 Symmetry, cosymmmetry and g-equations . . . . . . . . . . . 55
6.2 Equations with extra structure . . . . . . . . . . . . . . . . . . 58
6.3 Equations with constant coefficient g . . . . . . . . . . . . . . 60
6.4 Some equations with known co-/symmetries and g . . . . . . . 62
6.5 Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . 64



Abstract

In this thesis we investigate some geometrical properties of quotient spaces
connected to integrable distributions on manifolds. In particular we will
consider Cartan distributions on the 1-jet space, connected to differential
equations. We will play with tensors over our new quotient space - that is,
tensors on the original manifold that are invariant under the factorization
relation that produces the new space.
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Introduction

The main goal for this thesis has been to establish an algebraic fundament
to study geometrical structures related to differential equations, first of all
ordinary differential equations. This, however, has led to more general con-
structions around integrable distributions on smooth manifolds.

There is a natural way to move the study of a k-th order ODE into the
k-jet space. There is a one to one correspondence between solutions of the
equation

y(k) − F (x, y, y′, . . . , y(k−1)) = 0

and integral curves of the 1-dimensional Cartan distribution of the equation,
in the k-jet space. The idea is to study the quotient space of the k-jet space
that arises when we identify points that belong to the same integral curve
of the Cartan distribution. This quotient space can be quite complicated, or
sometimes even be a smooth manifold. To study the geometry of this space
we need some algebraic tools. We get those from taking tensors on the k-jet
space that are invariant on our distribution.

To provide an algebraic fundament we generalize our constructions to concern
completely integrable distributions on any smooth manifold. This became
the starting point of the discussion.

Chapter 1 includes a brief tour through some of the fundaments of differ-
ential geometry. We recall the notions of smooth manifolds, vector bundles
and various tensor spaces connected to a manifold, including jet-spaces.

Chapter 2 starts with the fundamentals of completely integrable distri-
butions on a manifold. It is in this chapter that we define the solution space
of a distribution, and make our main algebraic constructions over this space.
This includes functions F(P ), vectorfields D(P ), the algebra of differential
l-forms Ω·(P ) and symmetric 2-forms S2(P ). These objects fit exactly into
the usual algebraic picture, and we continue by defining the differential d̃ of
forms, and cohomology groups H l(P ). We define morphisms of distributions,
smooth maps between manifolds that map one distribution into another, and
show that from this we get an induced graded algebra homomorphism on the
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algebras of differential forms. We conclude the chapter with a couple of ex-
amples.

Chapter 3 introduces the notion of Riemannian structure on our solution
space, in terms of a invariant positive symmetric 2-form. We see that this
provides us with the notion of a connection on our solution space, and a way
to calculate this whenever we know a positive g ∈ S2(P ).

Chapter 4 is where we introduce ODE-s to the discussion, and investi-
gate the Cartan distribution of a differential equation. This leads us to the
question of finding symmetries and cosymmetries of the distribution. We
formulate the conditions on vectorfields and 1-forms to be invariant on the
Cartan distribution. It is known that any symmetry is given by a single
generating function that must solve the Lie-equation Lφ = 0 , L the Lie-
operator. We prove that any cosymmetry (invariant 1-form) is given by a
single generating function, that must solve the equation L∗ψ = 0 , where L∗

is calculated, and found to be the adjoint operator of the Lie-operator L.

Chapter 5 is a brief comparing between our constructions of Chapter 5,
with the algebraic picture of D-modules.

Chapter 6 is devoted to ODE-s of order 2. In the first section we for-
mulate the equations for generating functions of symmetries, cosymmetries
and invariant symmetric 2-forms. For equations of the type

y′′ = γ(x)y′ + δ(x, y)

, γ and δ arbitrary, we find an isomorphism between ker L and ker L∗.
For a subclass of this class of equations, equations on the form

y′′ = F (x, y)

we find a symplectic structure given by the form Λ = ω0 ∧ ω1, where ω0 and
ω1 are the Cartan forms.

We find that the equations

y′′ + αy = f(x) with g = αω2
0 + ω2

1 , α ∈ �

and

y′′ + αy′ = f(x) with g = α2ω2
0 + 2αω0 · ω1 + ω2

1 , α ∈ �
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are the only ones that possess a Riemannian structure given by a constant-
coefficient g in the Cartan basis.
The next section is devoted to equations on the form

y′′ = y′ + f(y)

where f is non-linear, that possess a two-dimensional Lie-algebra of point
symmetries (generating function linear in p). There are only two such classes,
and in this section we are able to list symmetries, cosymmetries and Rieman-
nian structures of these.
The very last part of the chapter is about the harmonic oscillator equation

y′′ + cy = 0

and includes symmetries, cosymmetries and two different Riemannian struc-
tures of this.



Chapter 1

Preliminaries

1.1 Smooth manifolds

In this chapter we recall some basic notions as smooth manifolds, tensors
over manifolds etc.

We start by defining our primary object, the manifold.

Definition 1.1 A smooth manifold M of dimension n is a pair (M,ℵ) where
M is a set, and ℵ = {φα : Uα −→ Oα} is a collection of charts that satisfy
the following conditions:

(i)
⋃
α Uα = M

(ii) Oα ⊂
� n is open, φα is set-isomorphism ∀α

(iii) φα(Uα ∩ Uβ) , φβ(Uα ∩ Uβ) ⊂ � n are open ∀α , β .
(iv) The charts are compatible: φα ◦ φ−1

β are diffeomorphisms (smooth bijec-
tions) ∀α , β where they are defined.

ℵ is called a smooth atlas on M . We note that we get a topology on M the
following way: let (U, φ) be a chart in M . We say that V ⊆ U is open if
φ(V ) ⊆ � n is open. Sets of this kind generate a topology on M , by taking
finite intesections and any unions of such sets. We consider only manifolds
that are Hausdorff with respect to this topology. Two atlases (φα, Uα) and
(ψβ, Vβ) are equivalent if each pair of charts are compatible in the sense de-
fined in (iv) above. Normally we don’t wish to distinguish between equivalent
atlases, but operate with equivalence classes of atlases: smooth structures.

5
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Thus we can add to any atlas a compatible chart according to our needs.

The natural maps between smooth manifolds M and N of dimension m
and n respectively are smooth maps:

Definition 1.2 A continous map f : M −→ N is a smooth map of manifolds
if

f = ψ ◦ f ◦ φ−1 : φ(U) ⊂ � m −→ � n

is a smooth map ∀ charts (φ, U) and (ψ, V ) of M, N.

We call the category of smooth manifolds Sman. The objects are smooth
manifolds, and the morphisms are smooth maps, as defined above. Given an
n-dimensional manifold M , a chart (φ, U) is called a coordinate neighbour-
hood. To each point q ∈ U we assign the (local) coordinates (x1(q), .., xn(q)) =
φ(q). Note that the n functions xi = pri ◦ φ i = 1..n, where pri = projection
on i-th coordinate, are smooth functions on U .

1.2 Jets of functions

When discussing manifolds, an important object to us is the ring of smooth
functions on M , C∞(M) = C∞(M,

�
). It introduces us to the algebraic side

of the discussion, and we will start with some local objects over our manifold.
Remark: C∞(M)is also an

�
-algebra.

For each point a ∈M we have the maximal ideal

µa = {f ∈ C∞(M)|f(a) = 0} ⊂ C∞(M)

This provides us wtih the following chain of ideals related to M :

.... ⊂ µka ⊂ µk−1
a ⊂ .... ⊂ µa ⊂ C∞(M)

Definition 1.3 Let a ∈M , k ≥ 0. The factor

Jka (M) = C∞(M)/µk+1
a

is called the space of k-jets of functions at a ∈M , and

[f ]ka = f mod µk+1
a

is called the k-jet of f at the point a.



1.2. JETS OF FUNCTIONS 7

Let (φ, U) with a ∈ U be local coordinates, and φ(a) = (a1, .., an) ∈ � n .
Then every f ∈ C∞(U) can be written

f =
∑

0≤|σ|≤k
sσ(a)(x− a)σ + εk

where εk ∈ µk+1
a , sσ ∈ C∞(U) and (x − a)σ is a product of linear factors

(xi − ai) over multiindex σ.

Theorem 1.1 Given point a ∈M as above we have:

(1) Jka (M) is an
�

-vectorspace with respect to operations

(i) [f ]ka + [g]ka = [f + g]ka

(ii) λ · [f ]ka = [λ · f ]ka

where λ ∈ �
, f, g ∈ C∞(M)

(2) dim � Jka (M) =
(
n+k
k

)
, and we have basis

B = {[1]ka, [(xi − ai)]ka, ..., [(x− a)σ]ka}

- classes of distinct products up to degree k of linear factors (xi − ai) ,
i = 1..n.

(3) Jka (M) is an
�

- algebra with respect to multiplication

[f ]ka · [g]ka = [f · g]ka

and with generators [1]ka , {[xi − ai]ka}i=1..n

Of special importance to us is 1-jet spaces over various manifolds. Given a
manifold M as above, we have the following exact sequence for all k ≥ 1:

0 −→ µka/µ
k+1
a

i−→ Jka (M)
πk,k−1−→ Jk−1

a (M) −→ 0

where πk,k−1 is the canonical map of factors that maps [f ]ka 7→ [f ]k−1
a , and i

inclusion of the kernel of πk,k−1.
Thus, for k = 1 we have

0 −→ µa/µ
2
a

i−→ J1
a(M)

π1,0−→ J0
a(M) −→ 0

which provides us with the following notion:
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Proposition 1.1 For any a ∈ M , T ∗aM = µa/µ
2
a is an n-dimensional vec-

torspace, called the cotangent space of M at a.

Given local coordinates as above, the set {daxi = [xi − ai]1a}i=1..n is a basis
of T ∗a (M).

Definition 1.4 Given f ∈ C∞(M), we call

daf = [f − f(a)]1a

the differential of f at the point a.

Remark: As a map da : C∞(M)→ T ∗a is
(i)

� − linear and
(ii) da(fg) = daf · g(a) + f(a) · dag

Definition 1.5 We define Ta(M) to be the dual vectorspace of T ∗a (M).
Ta(M) is called the tangent space of M at a. Given local coordinates and
T ∗a (M)-basis as above, we have the unique dual basis {∂i,a = ∂

∂xi,a
}i=1..n with

〈∂i,a, daxj〉 = ∂i,a(daxj) = δij.

Proposition 1.2 Any element v ∈ Ta(M) produces a derivation v = v ◦ da
of C∞(M)at the point a. Conversely any derivation D of C∞(M)at the point
a is on the form D = v = v ◦ da for some v ∈ Ta(M).

If M is (some open subset of)
� n it is easy to see that for any f ∈ C∞(M) we

have daf =
∑n
i=1 λidaxi , where λi = ∂f

∂xi
(a), looking at the Taylor expansion

of f . On the other hand we have: λi = 〈∂i,a, daf〉 = ∂i,a(f) so, daf =∑n
i=1 ∂i,a(f)daxi, and the derivations ∂i,a are the usual partial derivatives.

1.3 Vector bundles

We shall look into the concept of a vector bundle over a manifold. Let B be
an n-dimensional smooth manifold.

Definition 1.6 We say that

π : E(π) −→ B

is a vector bundle over B if
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(i) E(π) ∈ Sman and π : E(π) −→ B is smooth and surjective.

(ii) ∃ atlas
{
Ui

φi→ Oi

}
on B, and diffeomorphisms

{
φ̃i : π−1(Ui)→ Oi ×

� m
}

such that
the diagram (a) commutes:

π−1(Ui)
φ̃i−−−→ Oi ×

� m

π

y
ypr1

Ui −−−→
φi

Oi

and diagram (b) commutes:

φi(Ui ∩ Uj)×
� m φ̃j◦φ̃i

−1

−−−−→ φj(Ui ∩ Uj)
pr1

y
ypr1

φi(Ui ∩ Uj) −−−−→
φj◦φ−1

i

φj(Ui ∩ Uj)

where pr1 : Oi ×
� m → Oi is projection of Oi-part onto Oi.

(c) (φ̃j ◦ ˜φ−1
i ) : (x; v) 7→ ( (φj ◦ φ−1

i )(x) ; Axv)
where Ax :

� m −→ � m is a linear operator and an isomorphism.

We call π−1(x) = πx the fibre over x ∈ B.

Proposition 1.3 For all x ∈ B, πx is a vectorspace w.r.t.

(i) sum (πx × πx sx−→ πx) : sx(v1, v2) = φ̃i
−1

(φi(x), pr2(v1) + pr2(v2))

(ii) multiplication (
� × πx µx−→ πx) : µx(λ, v) = φ̃i

−1
(φi(x), λ · pr2(v2))

So: a vector bundle is a fibered set where the fibres are vectorspaces.
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Figure 1.1 The ”trivial bundle” over B :

projection  B onto B 

B x R

B

π   −

b

s(b)

 Section  s  = smooth function B           R

.

Definition 1.7 Given a vector bundle E
π→ B, a section of the bundle π

is a smooth map s : B −→ E s.t. π ◦ s = IdB. We denote the sections of a
bundle π by C∞(π) = {sections s : B → E}.

C∞(π) is a locally free module. For any b ∈ B there exists a neighbourhood
U with b ∈ U , and e1, .., em ∈ C∞(π) s.t. any s ∈ C∞(π) can be written

s =
m∑

i=1

fiei on U

where fi ∈ C∞(B), i=1..n. We call {ei}mi=1 a local basis of C∞(π).

Given a vector bundle E(π)
π−→ B, we can construct a tensor bundle

by making the following step: For every b ∈ B, πb is a vectorspace, so we can
take the union over b ∈ B of the following tensorproducts

E(π⊗k) =
⋃

b∈B
π⊗kb =

⋃

b∈B
πb ⊗ ...⊗ πb︸ ︷︷ ︸

k

Every point in E(π⊗k) is on the form (b; v =
∑
ai(b)vi,b), where b ∈ B and

{vi,b} is a basis of π⊗kb . We get coordinates by mapping
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(b; v =
∑
ai(b)vi,b)

φ̃−→ (φ(b); (ai(b))) ∈
� n+k2

, where φ is a coordinate chart
of B around b. With the projection

E(π⊗k)
π⊗k−→ B

where π⊗kb 7→ b, this is a vectorbundle.

Of particular interest to us are various tensors over manifolds:

Example 1.1 The cotangent bundle

τ ∗ : T ∗B −→ B where T ∗B =
⋃

b∈B
T ∗b B

and τ ∗ : ( dbf ∈ T ∗b B ) 7→ b

for any b ∈ B.
The sections of this bundle are the differential 1-forms on B:
C∞(τ ∗) = Ω1(B) is a C∞(B)-module. Given local coordinates x1, .., xn in a
neighbourhood of b ∈ B we get local coordinates on T ∗B by taking

(
b ; dbf =

n∑

i=1

λidbxi

)
φ̃7→ (φ(b);λ1, .., λn)

By the section dxi we mean the map b 7→ dbxi. The coordinates provide us
with the local basis {dxi}ni=1.

From this bundle we can build tensor bundles, and further, the differential
k-forms on B. For any k ≥ 1 we have

k∧
(T ∗b B) ⊂ (T ∗b B)⊗n

which is a vectorspace for each b ∈ B, and a fibre of a new bundle
τ∧k :

∧k(T ∗B) −→ B. Like for the tensorbundles we get a coordinate chart
φ̃ on the new bundle taking a coordinate chart φ of B and the coefficient
map of v =

∑
aivi,b ∈

∧k(T ∗b B) so that φ̃ : (b; v) 7→ (φ(b); (ai))
The sections of this bundle are the differential k-forms, C∞(τ∧k) = Ωk(B),
and a local basis is {dxi1 ∧ ... ∧ dxik}i1<..<ik

Another tensorbundle of interest to us is the bundle of symmetric 2-forms

S2(T ∗B) =
⋃

b∈B
S2(T ∗b B)
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Sections here are the symmetric 2-forms over B.
A local basis is

{
dxi · dxj = 1

2
(dxi ⊗ dxj + dxj ⊗ dxi)

}
i≤j

Example 1.2 The tangent bundle

τ : TB −→ B where TB =
⋃

b∈B
TbB

and τ ∗ : (Xb ∈ TbB ) 7→ b

for any b ∈ B. The sections of this bundle are the vector fields on B:
C∞(τ) = D(B) is a C∞(B)-module, and is also a Lie-algebra w.r.t. the
operation

[X, Y ] = X ◦ Y − Y ◦X
where X,Y are considered as operators on C∞(B). Given local coordinates

x1, .., xn on U ⊂ B, b ∈ U , we recall to have a basis
{
∂i,b = ∂

∂xi,b

}
of the

vectorspace TbB. Thus we get local coordinates on TB by taking φ̃ :
(
b;Xb =

n∑

i=1

ai∂i,b

)
φ̃7→ (φ(b); a1, .., an)

By the section ∂i = ∂
∂xi

we mean the map b 7→ ∂i,b. This provides us with the

local basis
{

∂
∂xi

}n
i=1

of D(B) in this coordinate neighbourhood.

Remark : for each manifold B we have the pairing

〈 , 〉 : Ω1(B)×D(B) −→ C∞(B) where 〈θ,X〉 (b) = 〈θb, Xb〉 ∈
�

In local coordinates:
〈∑n

i=1 θidxi,
∑n
j=1 vj∂j

〉
=
∑n
i=1 θi · vi

Example 1.3 The k-jet bundles

πk : JkB −→ B where JkB =
⋃

b∈B
JkbB

and πk : ( [f ]kb ∈ JkbB ) 7→ b

for any b ∈ B is a vector bundle for each k ≥ 0.

Example: B =
�

, k = 1. Then we can think about J 1(
�

) as consisting
of points (a, f(a), f

′
(a)) where a ∈ �

and f ∈ C∞(
�

). Thus we can identify
J1(

�
) with

� 3 .
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1.4 Diffeomorphisms: induced homomorphisms

Let M ∈ Sman, and φ, ψ : M −→ M be diffeomorphisms. We then get the
following induced maps of various modules connected to the manifold:

Definition 1.8 We have the following induced module-homomorphisms :

(i) φ∗ : C∞(M) −→ C∞(M) with f 7→ f ◦ φ

(ii) φ∗ : C∞(M) −→ C∞(M) with f 7→ f ◦ φ−1 and:

(φ ◦ ψ)∗ = φ∗ ◦ ψ∗

(iii) φ∗ : D(M) −→ D(M) with X 7→ X ◦ φ∗

(φ ◦ ψ)∗ = ψ∗ ◦ φ∗

(iv) φ∗ : D(M) −→ D(M) with X 7→ (φ−1)∗ ◦X ◦ φ∗ and:

(φ ◦ ψ)∗ = φ∗ ◦ ψ∗
φ∗(fX) = φ∗(f)φ∗(X) ∀f ∈ C∞(M)
φ∗[X, Y ] = [φ∗(X), φ∗(Y )] and φ∗[X, Y ] = [φ∗(X), φ∗(Y )]

(v) φ∗ : Ω1(M) −→ Ω1(M) with φ∗(ω) given by
〈φ∗(ω), X〉 = φ∗ 〈ω, φ∗(X)〉

(vi) φ∗ : Ω1(M) −→ Ω1(M) with φ∗(ω) = (φ−1)∗(ω) and

(φ ◦ ψ)∗ = φ∗ ◦ ψ∗
φ∗(fω) = φ∗(f)φ∗(ω) ∀f ∈ C∞(M)

In addition we have
φ∗ 〈ω,X〉 = 〈φ∗(ω), φ∗(X)〉 ∀ω ∈ Ω1(M) , X ∈ D(M)

Let w be a ”word of length r” with letters 0,1 and A0 = D(M),A1 =
Ω1(M). By A⊗w we mean the ”mixed” tensorproduct of modules ac-
cording to the order of letters in w. Example: w = (1, 1, 0) =⇒ A⊗w =
Ω1(M)⊗Ω1(M)⊗D(M). The elements of this module are sections in
the corresponding tensorbundle. We define
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(vii) φ∗ : A⊗w −→ A⊗w by defining φ∗(θ1 ⊗ ... ⊗ θr) = φ∗(θ1) ⊗ ... ⊗ φ∗(θr)
on decomposable elements of A⊗w, and expanding as an

�
-module ho-

momorphism. Then
(φ ◦ ψ)∗ = φ∗ ◦ ψ∗
φ∗(fθ) = φ∗(f)φ∗(θ) ∀f ∈ C∞(M), θ ∈ A⊗w

We are now ready to define the Lie-derivative along a vectorfield X ∈ D(M)
of any tensor θ ∈ A⊗w.

Definition 1.9 Let {At} be the flow generated by the vectorfield X ∈ D(M).
For each t this gives us a diffeomorphism At : M →M and thus an induced
module-homomorphism (At)∗ : A⊗w −→ A⊗w, where A⊗w as defined above.
We define the operator

LX : A⊗w −→ A⊗w

by the equation
(At)∗(θ) = θ − t · LX(θ) + o(t)

We call LX(θ) the Lie -derivative of θ along X, and it has the following
properties:

Proposition 1.4 For θi ∈ A⊗w we have:

(i) LX(θ1 + θ2) = LX(θ1) + LX(θ1)
� − linear

(ii) LX(fθ) = LX(f) θ + f LX(θ) Leibniz − rule

(iii) LX(θ1 ⊗ θ2) = LX(θ1)⊗ θ2 + θ1 ⊗ LX(θ2) which again implies

LX(θ1 ∧ θ2) = LX(θ1) ∧ θ2 + θ1 ∧ LX(θ2)

LX(θ1 · θ2) = LX(θ1) · θ2 + θ1 · LX(θ2)

(iv) LX(dω) = d(LXω) ∀ω ∈ Ωk(M)

(v) LX 〈ω, Y 〉 = 〈LXω, Y 〉+ 〈ω, LXY 〉 ∀ω ∈ Ω1(M), X ∈ D(M)

(vi) For Y ∈ D(M), f ∈ C∞(M) and ω ∈ Ωk(M) we have

LX(f) = X(f)

LX(Y ) = [X, Y ]

LX(ω) = d(X ω) +X dω
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where is the inner derivative defined by the equation:

〈X ω;X1, ..., Xk〉 = 〈ω;X,X1, ..., Xk〉

for ω ∈ Ωk+1(M) and X,X1, ..., Xk ∈ D(M).

(vii) The operator iX : Ωk(M)→ Ωk−1(M) is defined by

iX(ω) = X ω

and satisfies the relation

LX ◦ iY − iY ◦ LX = i[X,Y ]

for X, Y ∈ D(M).

We will prove the statement (v) and how to find the Lie-derivatives of func-
tions, vectorfields and 1-forms:
For functions we have:

(At)∗(f) = (A−t)
∗ = (1− t ·X + o(t))(f) = f − t ·X(f) + o(t)

For vectorfields we have:

At∗(Y ) = A∗−t ◦ Y ◦ A∗t = (1− t ·X + o(t)) ◦ Y ◦ (1 + t ·X + o(t)) =

Y − t · (X ◦ Y − Y ◦X) + o(t) = Y − t · [X, Y ] + o(t)

Given a 1-form ω we have the following:

At∗ 〈ω, Y 〉 = 〈At∗(ω), At∗(Y )〉 = 〈ω − t · LX(ω) + o(t), Y − t · LX(Y ) + o(t)〉 =

〈ω, Y 〉 − t · [〈LX(ω), Y 〉+ 〈ω, LX(Y )〉] + o(t) = 〈ω, Y 〉 − t · LX 〈ω, Y 〉+ o(t)

So LX(ω) is defined through the pairing with Y:

〈LX(ω), Y 〉 = LX 〈ω, Y 〉 − 〈ω, LX(Y )〉

and we note that this is exactly statement (v).
The rest of the properties follow by direct calculations from the properties
of the homomorphisms, or combinations of these.
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1.5 Connections and curvature

LetA be a commutative ring, and P anA-module. We consider the following:

D(A) = {X : A → A derivation of A}

Definition 1.10 Given X ∈ D(A), we say that X̄ : P → P is a derivation
over X if

(i) X̄(p1 + p2) = X̄(p1) + X̄(p2) ∀pi ∈ P

(ii) X̄(ap) = X(a)p+ aX̄(p) ∀a ∈ A, p ∈ P

Sometimes we write (X̄,X) to denote that X̄ is a derivation over X.

Proposition 1.5 Given A, P as above:

(1) Der(P ) =
{
X̄ derivation overX,X ∈ D(A)

}
is an A-module with re-

spect to operations

(i) a · (X̄,X) = (aX̄, aX) a ∈ A, (X̄,X) ∈ DerP
(ii) (X̄,X) + (Ȳ , Y ) = (X̄ + Ȳ , X + Y ) (X̄,X), (Ȳ , Y ) ∈ DerP

(2) DerP is a Lie-algebra with respect to bracket

[
(X̄,X), (Ȳ , Y )

]
=
([
X̄, Ȳ

]
, [X, Y ]

)

(3) The projection

DerP
κ−→ D(A)

with (X̄,X)
κ7→ X is a A-module and Lie-algebra homomorphism.

We want to connect this algebraic picture to vectorbundles and morphisms
of bundles, tangentbundles especially.

Definition 1.11 Let E(π) −→ M be a vectorbundle. An automorphism

of the bundle π is a pair (φ, φ̄) where M
φ−→ M and E(π)

φ̄−→ E(π) are
diffeomorphisms s.t.
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(i) the diagram commutes

E(π)
φ̄−−−→ E(π)

π

y
yπ

M −−−→
φ

M

(ii) and φ̄|πx : πx −→ πφ(x) is linear.

Connected to each such bundle we have A = C∞(M) and P = C∞(π), where
P is an A-module. Assuming we have an automorphism (φ, φ̄) of the bundle,
we get the following induced homomorphisms:

φ∗ : A −→ A by f 7→ f ◦ φ and

φ̄∗ : P −→ P by p 7→ (φ̄−1 ◦ p ◦ φ)

Then φ̄∗(ap) = φ∗(a)φ̄∗(p) for a ∈ A, p ∈ P

Assume we have a family {At : M −→ M } of (local) diffeomorphisms gen-
erated by some X ∈ D(M) = D(A). Then we have A∗t = 1 + t · X + o(t).
If for each t we have an automorphism, (At, Āt) of the bundle, we can ask if
there is some object that generates the family {Āt}, as the vectorfield X is
an infinitesimal generator of the family {At}. We define X̄ by the following
equation:

Āt
∗

= 1 + t · X̄ + o(t)

It is then easy to check that X̄ is a derivation of P over X. So the question of
lifting a diffeomorphism At to an automorphism of the bundle corresponds
to asking if there is a lifting of the generating vectorfield X 7→ (X̄,X).
This brings us to the definition of a connection. Let E(π)

π−→ M be a
vectorbundle where M is paracompact. Take A = C∞(M) P = C∞(π).
Then D(A) = D(M). Let EndP denote the endomorphisms of P . We have
the following sequence, the Atiyah-sequence :

0 −→ EndP −→ Der P
κ−→ D(A) −→ 0

where κ : (X̄,X)7→X.
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Definition 1.12 A connection in the vectorbundle E(π)
π−→ M is an A-

module homomorphism
∇ : D(A) −→ DerP

that splits the Atiyah-sequence :

0 −→ EndP −→ Der P
κ−→ D(A) −→ 0

that is : κ ◦ ∇ = 1

We will denote ∇(X) = ∇X .
If we have a connection in our bundle, we can write

Der P ∼= D(A)⊕ EndP

and a pair (X̄,X) = (∇X + h,X), for some h ∈ EndP .
But what happens to the Lie-algebra structure of D(A)?

Definition 1.13 We define the curvature R∇ of ∇ by

R∇(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

Proposition 1.6 The curvature R∇ satisfies the following ∀X, Y ∈ D(A):

(i) R∇(X, Y ) = −R∇(Y,X) skew − symmetric

(ii) R∇(
∑
i aiXi,

∑
j bjYj) =

∑
i,j aibjR∇(Xi, Yj) A− additive

(iii) κ(R∇(X, Y )) = 0 so R∇(X, Y ) ∈ EndP

Due to this properties we can think of the curvature as a tensor
R∇ ∈ Ω2(M) ⊗ EndP : a skew-symmetric A-additive operator with values
in EndP .

Example 1.4 If (M, g) is a Riemannian manifold with metric g, the fun-
damental theorem of Riemannian geometry gives that there exists a unique
Riemannian (Levi-Civita)-connection in the tangentbundle over M. That is,
there exists a unique operator

∇ : D(M)×D(M) −→ D(M)

with ∇(X, Y ) = ∇X(Y ) that satisfies the following properties:
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(1) ∇X is a derivation of D(M) over X
(2) ∇ is C∞(M)-linear in X
the Levi-Civita properties
(3) [X, Y ] = ∇XY −∇YX for all X, Y ∈ D(M)
(4) X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) for all X, Y, Z ∈ D(M)

From this connection one gets the curvature tensor of the Riemmanian man-
ifold.



Chapter 2

The solution space of a
distribution

2.1 Involutive distributions

Let P be a distribution of dimension n and codimension k on a smooth
manifold M . That is, dimM = n + k and at each x ∈ M an n-dimensional
subspace Px ⊂ TxM is specified such that Px varies smoothly with x. We
define

∆(P ) = {X ∈ D(M) | Xm ∈ Pm , ∀p ∈M}

Ann (P ) = {ω ∈ Ω1(M) | ω(X) = 0 , ∀X ∈ ∆(P ) }
These are both C∞(M)-modules, always locally free. Our distribution is
fixed whenever one specifies a (local) basis of either.

Definition 2.1 A submanifold N ⊂ M is an integral manifold of the distri-
bution P if TxN ⊂ Px for every x ∈ N . P is said to be completely integrable
if ∀x ∈M , ∃ integral manifold N through x such that dimN = n.

Let {Xi}ni=1 be a (local) basis of ∆(P ). We say that the distribution P is in
involution if

[Xi, Xj] =
n∑

r=1

crijXr

for some crij ∈ C∞(M) .

20
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Theorem 2.1 (Frobenius theorem)
P is completely integrable if and only if it is in involution.

A proof of this theorem can be found in [Boo75].

2.2 The solution space of a distribution P

Assume we have a completely integrable distribution P on a smooth manifold
M . P beeing completely integrable ensures us that through each x ∈M there
passes a connected integral manifold N = N(x) of P of dimension n. This
gives us the following equivalence-relation defined on our manifold M :

Given x, y ∈ M , we say that x ∼ y , if y ∈ N = N(x)

This relation is easily checked to be an equivalence relation. Given distribu-
tion P as above, we shall call

S = M/ ∼

the space of solutions of P. Points in this quotientspace correspond to
connected integral manifolds of our distribution. We will try to define func-
tions and tensors on this ”invisible” solution space in terms of M. The main
idea is to consider objects over M which are invariant on our distribution,
in the sense defined below. For a distribution on a manifold we have the
notion of a symmetry. Let {At} be the flow generated by X ∈ D(M) on
M . X is a symmetry of the distribution P if for any t, and any x ∈ M ,
(At)∗(Px) ⊂ PAtx We denote the symmetries of P by Sym(P ).

Theorem 2.2 The following are equivalent :

(1) X ∈ Sym(P )

(2) LX(∆(P )) = [X,∆(P )] ⊂ ∆(P )

(3) LX(Ann(P ) ) ⊂ Ann(P )

For proof of the theorem, see [DL91].
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Figure 2.1 Distribution P on manifold M

 M

N(x)

 x

y

P(x)

P(y)

Our distribution P is in involution, so for all 1 ≤ i, j ≤ n we have [Xi, Xj] =∑n
r=1 c

r
ijXr , where {Xi}ni=1 is a basis of D(P ). Thus ∆(P ) ⊂ Sym(P ), and

we define
Char(P ) = ∆(P ) ∩ Sym(P )

the characteristic symmetries of P .
Let

Shuf(P ) = Sym(P )/Char(P )

denote the shuffling symmetries of P . The characteristic symmetries of P
leave each maximal integral manifold, whereas the shuffling symmetries will
move one into another, hence the name. If our space S possesses manifold
structure, we can explain geometrically how to interpret a symmetry on M
as a vector field on S. But before we look into cases when S ∈ Sman we will
make some general constructions.

2.3 Functions and vectorfields on solution spaces

Definition 2.2 We define

F(P ) = {f ∈ C∞(M) | X df = 0 , ∀X ∈ ∆(P )}
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to be the algebra of 1st-integrals of P.

The requirement X df = df(X) = X(f) = LX(f) = 0 gives us functions
that are constant on integral manifolds of P , so-called 1st-integrals of our
distribution. Any such f will give a well-defined function on S , and F(P ) is
precisely the set { f ∈ C∞(M) | f(x) = f(y) ∀ x ∼ y}.

Proposition 2.1 F(P ) is an
�

-algebra with respect to usual addition and
multiplication of functions, and multiplication by reals.

Proof : We need only check that for all f, g ∈ F(P ), f +g and fg ∈ F(P ) .
We have
LX(f + g) = LX(f) + LX(g) = 0 and
LX(fg) = fLX(g) + gLX(f) = 0
The rest of the properties are obvious.

�

We want to define the objects that should correspond to vector fields on
S. They should be derivations of F(P ), and really give meaning as vector
fields in the cases when S∈ Sman.

Definition 2.3 Given P as above we define

D(P ) = Shuf(P )

to be the Lie-algebra of vector fields of our distribution P.

Strictly speaking, the elements of D(P ) are classes of vector fields modulo
the characteristic vector fields. Two representatives Y and Y ′ of a class in
D(P ) differ by an element X ∈ ∆(P ), Y ′ = Y + X. The flows generated
by Y and Y ′ respectively will move an integral manifold of P into exactly
the same new integral manifold. Thus two representatives of the same class
in D(P ) will move a point [x] in S to the same point [y] ∈ S , so it is
well-defined to consider this the action of the class of Y .

D(P ) inherits the bracket of Sym(P ) in the following way
[
X, Y

]
def
= [X, Y ]

For any X0 ∈ ∆(P ), X, Y ∈ Sym(P ) we get [X +X0, Y ] = [X, Y ] since
[X0, Y ] ∈ ∆(P ). Hence, the bracket operation on D(P ) is well defined. It
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inherits the Lie-algebra properties of the bracket on Sym(P ).

Moreover, we can interpret the elements of D(P ) as derivations of F(P ).

Definition 2.4 Given Y ∈ Sym(P ), a representative of an element
Y ∈ D(P ), we define the operator

Y : F(P ) −→ F(P )

by taking Y (f) = Y (f).

Let Y ′ = Y + X be another representative of Y , X ∈ ∆(P ). Then Y ′(f) =
Y (f) + X(f) = Y (f), so the operator is well-defined. The operator inherits
the derivational properties of Y, and the only thing we have to check, is that
Y (f) ∈ F(P ) for all f ∈ F(P ). But

LX(Y (f) ) = X(Y (f)) = [X, Y ](f)− Y (X(f)) = 0

since X, [X, Y ] ∈ ∆(P ), so Y (f) ∈ F(P ).
Also, D(P ) is clearly a F(P )-module.

2.4 The algebra of differential forms on solu-

tion spaces

Differential 1-forms on our space S should be objects dual to vectorfields
D(P ). Thus we make the following step:

Definition 2.5 We define

Ω1(P ) =

{
ω ∈ Ω1(M)

∣∣∣∣∣
X ω = 0 and
X dω = 0 ∀X ∈ ∆(P )

}

This ensures us that LX(ω) = 0 for X ∈ ∆(P ), and that 〈ω, Y 〉 ∈ F(P )
where Y is a representative of a class in D(P ). We check the latter:

LX 〈ω, Y 〉 = 〈LX(ω), Y 〉+ 〈ω, LX(Y )〉 = 0

since LX(ω) = 0 and LX(Y ) ∈ ∆(P ). This gives us a way to find 1st-
integrals of our distribution, provided we know elements of D(P ) and Ω1(P ).
Moreover, we can make the following definition.
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Definition 2.6 We define the pairing

〈 , 〉 : Ω1(P )×D(P ) −→ F(P )

by taking
〈
ω,X

〉
def
= 〈ω,X〉 = ω(X), where X ∈ Sym(P ) is any representa-

tive of X ∈ D(P ), and ω ∈ Ω1(P ).

It is easy to see that this is well-defined, assume X ′ = X in D(P ), then
X ′ = X +X0 where X0 ∈ ∆(P ). This gives

ω(X ′) = ω(X +X0) = ω(X) + ω(X0) = ω(X)

The pairing is F(P )-bilinear
〈
fω,X

〉
=
〈
ω, fX

〉
= f

〈
ω,X

〉

for any f ∈ F(P ). Thus it plays the same role as the usual pairing of vec-
torfields and differentialforms.

We shall follow this line of construction further, and find out what corre-
sponds to l-forms, differentials and symmetric 2-forms in our picture.

Definition 2.7 We define

Ωl(P ) =

{
ω ∈ Ωl(M)

∣∣∣∣∣
X ω = 0 and
X dω = 0 ∀X ∈ ∆(P )

}

and the operator

d̃ : Ωl(P ) −→ Ωl+1(P ) l ≥ 0

by taking d̃(ω) = dω, ω ∈ Ωl(P ).
We define Ω0(P ) = F(P ), and Ωl(P ) = 0 when l < 0.

Remark :
We have to show that d̃ really maps Ωl(P ) ⊂ Ωl(M) into Ωl+1(P ). Let
ω ∈ Ωl(P ), X ∈ ∆(P ). Then

X d̃(ω) = X dω = 0 and d̃(dω) = d2ω = 0

so d̃ω = dω ∈ Ωl+1(P ). Moreover, d̃ inherits the properties of the usual
differential.
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Proposition 2.2 Let P be an involutive distribution of dim= n, codim= k.
Then locally any element θ ∈ Ωl(P ) is on the form

θ =
∑

α(i1...il)θi1 ∧ ... ∧ θil
where the θij -s form a local basis of Ann(P )

Proof :
Let {θi}k+n

i=1 be a local basis of Ω1(M) such that {θi}ki=1 generates Ann(P ).

Take {Ej}k+n
j=1 to be the local basis of D(M) such that {Ej}k+n

j=k+1 generates

∆(P ) and θi(Ej) = δij. Any element θ of Ωl(P ) ⊂ Ωl(M) is on the form

θ =
∑

1≤i1<...<il≤k+n

ασθi1 ∧ ... ∧ θil

for some ασ ∈ C∞(M), where σ = (i1, ..., il). By definition of Ωl(P ) we have
that Es θ = 0 for s = k + 1, ..., k + n. By calculation we have that

Es θi1 ∧ ... ∧ θil =

{
(−1)r−1θi1 ∧ .. ∧ θir−1 ∧ θir+1 ∧ .. ∧ θil if s = ir
0 otherwise

Thus for k + 1 ≤ s ≤ k + n we have

Es θ =
k+n∑

1≤i1<i2<...<il
il=k+1

ασEs θi1 ∧ ... ∧ θil

By taking s = k + n, we get that
∑

1≤i1<...<il−1<k+n

(−1)l−1α(i1,..,il−1,k+n)θi1 ∧ ... ∧ θil−1
= 0

This implies that α(i1 ,..,il−1,k+n) = 0 for all 1 ≤ i1 < ... < il−1 ≤ k + n − 1.
Repeating this for s = k + n− 1 and then consequently to s = k + 1 we get
that α(i1,..,il) = 0 whenever il > k. Thus

θ =
∑

σ

ασθi1 ∧ ... ∧ θil

for ασ ∈ C∞(M) and θij ∈ Ann(P ).
�

Remark: We only used part (i) of the requirements on elements of
θ ∈ Ωl(P ), namely that ∆ θ = 0. Combining this with the requirement
L∆θ = 0 will give the conditions on the functions ασ. These calculations will
be done for the 1-forms Ω1(CE) of a special distribution CE in Section 4.2.
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Corollary 2.1

Ωl(P ) = 0 for l > k

This follows immediately from Proposition 2.2.

To sum up the algebraic properties of our constructions in this section, we
state the following theorem.

Theorem 2.3 Given P as above

Ω·(P ) =
⊕

s∈ �
Ωs(P )

is a
�

-graded σ-commutative algebra w.r.t. the usual wedge product

∧ : Ωs(P )× Ωt(P ) −→ Ωs+t(P )

σ-commutativity means that ω ∧ θ = σ(s, t)(θ ∧ ω) where σ(s, t) = (−1)st.
Also, the operator d̃ is a derivation of degree +1 of Ω·(P )

Proof :
We need to prove that θ ∧ ω ∈ Ωs+t(P ) for any θ ∈ Ωs(P ), ω ∈ Ωt(P ). Let
X ∈ ∆(P ). Then

X (θ ∧ ω) = (X θ) ∧ ω + (−1)sθ ∧ (X ω) = 0

Moreover, d(θ ∧ ω) = dθ ∧ ω + (−1)sθ ∧ dω, and by a calculation similar to
the one above we get

X d(θ ∧ ω) = 0

which implies that θ ∧ ω ∈ Ωs+t(P ).
Each Ωs(P ) is a F(P )-module :

X fω = fX ω = 0

for every X ∈ ∆(P ), ω ∈ Ωs(P ), f ∈ F(P ), and

X d̃(fω) = X (df ∧ ω) = 0

since df ∧ ω ∈ Ωs+1(P ). Thus fω ∈ Ωs(P ).
It is obvious that Ωs(P ) is closed under usual addition of forms.
The properties of ∧ and d̃ are clear.

�
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2.5 Further properties of Ωl(P )

We wish to see if Ωl(P ) really fits into the algebraic picture of differential-
forms versus vectorfields D(P ), and functions F(P ).
We shall see that the elements of Ωl(P ) algebraically play the role of l-forms.

Definition 2.8 Given an element θ ∈ Ωl(P ) we define the following map:

θ̃ : D(P )× ...×D(P )︸ ︷︷ ︸
l

−→ F(P )

by taking

θ̃(X1, ..., X l)
def
= θ(X1, ..., Xl)

where Xi ∈ Sym(P ) are any representatives of elements X i ∈ D(P ).

We will sometimes use the notations

θ̃(X1, ..., X l) =
〈
θ̃;X1, ..., X l

〉
= 〈θ;X1, ..., Xl〉

and not distinguish between θ and θ̃. To see that this is a well-defined oper-
ation we have to check independence of choice of representatives in Sym(P ).
Assume X ′j = Xj for some 1 ≤ j ≤ l. Then X ′j = Xj +X0 for some element
X0 ∈ ∆(P ). It follows that

θ(X1, ., X
′
j, ., Xl) =

= θ(X1, ., Xj, ., Xl) + (−1)j (X0 θ) (X1, ., Xj−1, Xj+1, ., Xl) =

= θ(X1, ., Xj, ., Xl)

since X0 θ = 0 by the definition of Ωl(P ). Thus θ̃ is well-defined and clearly
inherits the tensorproperties; it is an l-alternating, F(P )-additive operator.
What is left to check, is that θ(X1, ..., Xl) is really an element of F(P ) for
any Xi ∈ Sym(P ), θ ∈ Ωl(P ). Given X ∈ ∆(P ), we make the following
calculation:

LX (θ(X1, ..., Xl)) = LX ◦ iXk ◦ . . . ◦ iX1( θ ) =

[
iXk ◦ LXk ◦ . . . ◦ iX1 + i[X,Xk] ◦ iXk−1

◦ . . . ◦ iX1

]
( θ )

= iXk ◦ LXk ◦ . . . ◦ iX1( θ ) = . . .
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. . . = iXk ◦ . . . ◦ iX1 ◦ LX( θ ) = 0

since LX ◦ iXi − iXi ◦ LX = i[X,Xi] for all Xi, and in addition
iXk ◦ ... ◦ i[X,Xi] ◦ ... ◦ iX1( θ ) = 0 since [X,Xi] ∈ ∆(P ) for all i = 1, .., k.

Let us consider tensorproducts of Ω1(P ) over F(P ). A general element

θ of (Ω1(P ))
⊗l

is on the form θ =
∑
αi1..ilθi1 ⊗ · · ⊗θil where θij ∈ Ω1(P ) and

αi1..il ∈ F(P ).

Definition 2.9 Let θ ∈ (Ω1(P ))
⊗l

. We define

θ̃ : D(P )× ...×D(P )︸ ︷︷ ︸
l

−→ F(P )

by taking

θ̃
(
X1, ..., X l

)
def
=
∑

αi1..ilθi1(X1) · · · θil(Xl)

for any representatives Xi of X i ∈ D(P ).

It follows from our earlier investigations that this is well-defined with respect
to choice of representatives Xi. To see that θ̃

(
X1, ..., X l

)
is an element in

F(P ), we need only observe that θij (Xi) ∈ F(P ) for i = 1..l, and thus this

is true also for the sum
∑
αi1..ilθi1(X1) · · · θil(Xl) . θ̃ inherits the tensorprop-

erties of θ.

We note that the anti-symmetrisation operator

Λ :
(
Ω1(P )

)⊗l −→ Ωl(P )

defined by

Λ
(∑

αi1...ilθi1 ⊗ · · ⊗θil
)

=
∑

αi1...ilθi1 ∧ ... ∧ θil

for αi1...il ∈ F(P ), θij ∈ Ω1(P ) will map (Ω1(P ))
⊗l

into Ωl(P ). That is,
wedge products of elements in Ω1(P ) with coefficients in F(P ), and their
sums, will be elements of Ωl(P ). This follows from Theorem 2.3.
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2.6 Morphisms of distributions

For manifolds the natural map between them are smooth maps. Any smooth
map φ : M −→ N between smooth manifolds M and N induces the following
homomorphism of tangentspaces for every a ∈M

φ∗,a : TaM −→ Tφ(a)N

called the differential of φ at a. It is defined by

φ∗,a(Xa)(f) = Xa(f ◦ φ)

for any X ∈ D(M), f ∈ C∞(N). We will denote the dual linear map of φ∗,a
by

φ∗φ(a) : T ∗φ(a)N −→ T ∗aM

Given ω ∈ Ω1(N), X ∈ D(M) and a ∈M we have

〈
φ∗φ(a)(ωφ(a) ), Xa

〉
def
=
〈
ωφ(a), φ∗,a(Xa)

〉

This formula determines a smooth 1-form φ∗(ω) ∈ Ω1(M), thus we have the
induced homomorphism

φ∗ : Ω1(N) −→ Ω1(M)

This can be extended to tensor spaces, and to k-forms in particular, by taking

φ∗ : Ωl(N) −→ Ωl(M)

where

〈φ∗(ω); X1, ..., Xl 〉 (a)
def
=
〈
ωφ(a); φ∗,a(X1,a), ..., φ∗,a(Xl,a)

〉

for any ω ∈ Ωl(N), Xi ∈ D(M).
This homomorphism commutes with the differential d, and

φ∗(θ ∧ ω) = φ∗(θ) ∧ φ∗(ω)

for any θ ∈ Ωs(N), ω ∈ Ωt(N).

If we have two manifolds M and N equipped with the involutive distributions
P and Q respectively, what should it mean that (M,P ) maps to (N,Q)? We
make the following step.
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Definition 2.10 Given pairs (M,P ) and (N,Q), where M and N are man-
ifolds, P and Q involutive distributions on M and N respectively, then we
say that a smooth map φ : M −→ N is a morphism of distributions if

φ∗(Ann(Q) ) ⊂ Ann(P ) (2.1)

where φ∗ is the induced homomorphism φ∗ : Ω1(N) −→ Ω1(M).

We will sometimes write (M,P )
φ→ (N,Q).

Geometrically, this means that a vector tangent to P is mapped into a vector
tangent to Q by the differential of φ :
For any a ∈M , φ∗,a(Pa) ⊂ Qb where b = φ(a).

Proposition 2.3 The restriction of φ∗ on Ωl(Q) ⊂ Ωl(N) gives a F(P )-
module homomorphism

dφ∗ : Ωl(Q) −→ Ωl(P )

Proof: Let ω be an element of Ωl(Q), that is,

∆(Q) ω = 0 and ∆(Q) dω = 0

Take any X ∈ ∆(P ). Then

Xa φ∗a(ωφ(a)) = φ∗,a(Xa) ωφ(a) = 0

for any a ∈M since φ∗,a(Xa) ∈ Qφ(a). Likewise,

Xa φ∗a(dωφ(a)) = φ∗,a(Xa) dωφ(a) = 0

for any a ∈M for the same reason. Thus, φ∗(ω) ∈ Ωl(P ).
�

Corollary 2.2 A morphism of distributions φ : (M,P ) −→ (N,Q) induces
a graded algebra-homomorphism

φ∗ : Ω·(Q) −→ Ω·(P )

by restriction to Ω·(Q) ⊂ Ω·(N) which commutes with d̃

φ∗ ◦ d̃ = d̃ ◦ φ∗

Proof : All homomorphism-properties of φ∗ are clear, and the Proposition
2.3 demonstrates that φ∗ maps Ωl(Q) into Ωl(P ) for each l.

�
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2.7 Cohomologies of solution spaces.

We now have the
�

-graded algebra Ω·(P ) connected to our distribution,
together with the derivation d̃ : Ω·(P )→ Ω·(P ). Thus we have the following
sequence:

0 −→ F(P )
d̃−→ Ω1(P )

d̃−→ ......
d̃−→ Ωk(P ) −→ 0 (2.2)

We will denote d̃ = d̃l : Ωl(P ) −→ Ωl+1(P ).

Definition 2.11

Z l(P ) = Ker(d̃l)

Bl(P ) = Im(d̃l−1)

We know that d̃2 = 0, thus Bl(P ) is a linear subspace of Z l(P ) for any l. We
form the following quotient

Definition 2.12 For every l ∈ �
we define

H l(P ) = Z l(P )/Bl(P )

to be the l-th cohomology group of the solution space of P.

It is clear that H l(P ) = {0} for l < 0 and l > k.
We can take the direct sum

H ·(P ) =
⊕

l∈ �
H l(P ) = Z ·(P )/B·(P )

where Z ·(P ) =
⊕

l∈ � Z
l(P ) and B·(P ) =

⊕
l∈ � B

l(P ).

Theorem 2.4 H ·(P ) is a
�

-graded super-symmetric algebra with respect to
the multiplication induced by the wedge product:

[ θ ] ∧ [ω ]
def
= [ θ ∧ ω ]

for θ ∈ Zr(P ), ω ∈ Zs(P ).
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Proof: We have to show that the product is well-defined. Thus we prove
that
(i) Zr(P ) ∧ Zs(P ) ⊂ Zr+s(P ) and
(ii) Zr(P ) ∧ Bs(P ) ⊂ Br+s(P ) for all r, s.

Assume that θ ∈ Zr(P ) and ω ∈ Zs(P ).
Then d̃(θ ∧ ω) = θ ∧ dω + (−1)rθ ∧ dω = 0, which proves (i).

Let θ ∈ Zr(P ) and ω ∈ Bs(P ).
That is, dθ = 0, and there exists a ω0 ∈ Ωs−1(P ) such that ω = dω0. But
then we have that d(ω0 ∧ θ) = dω0 ∧ θ + (−1)s−1ω0 ∧ dθ = ω ∧ θ, so ω ∧ θ is
in the image of d̃s+r−1, which concludes the proof of (ii).
The rest of the properties are inherited from the wedge product.

�

We shall investigate a slightly different picture. Namely, what happens if
we have a morphism of distributions, say

φ : (M,P ) −→ (N,Q)

Can we connect their cohomology groups? The answer to that is yes. We
know that φ generates a homomorphism from Ωl(Q) to Ωl(P ) . Thus we may
investigate what happens to the subspaces Z l(Q) and Bl(Q), and in turn if
φ∗ can be extended to a map of cohomology groups.

Lemma 2.1 For any l ∈ �
we have that

φ∗(Z l(Q)) ⊂ Z l(P ) and φ∗(Bl(Q)) ⊂ Bl(P )

Proof : Let ω ∈ Z l(Q) ⊂ Ωl(Q). Then φ∗(ω) ∈ Ωl(P ), and

d̃(φ∗(ω)) = d(φ∗(ω)) = φ∗(dω) = 0

which proves the first part of the lemma. Now assume that θ ∈ B l(Q). Then
there exists a θ0 ∈ Ωl−1(Q) so that dθ0 = θ, and

φ∗(θ) = φ∗(dθ0) = d(φ∗(θ0))

This implies that φ∗(θ) is the image of the element φ∗(θ0) ∈ Ωl−1(P ), which
completes the proof.

�
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Corollary 2.3 A morphism of distributions φ : (M,P ) −→ (N,Q) induces
a graded algebra-homomorphism

φ∗ : H ·(Q) −→ H ·(P )

by φ∗([ θ ])
def
= [φ∗(θ) ]
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2.8 Examples

The following example will illustrate a distribution with a fairly complicated
solutionspace.

Example 2.1 Let M = T 2, the torus with angular coordinates (θ, ρ). It
can be interpreted as the quotient

� 2/ ∼ where (θ, ρ) ∼ (θ + 2πn, ρ+ 2πm)
for all m,n ∈ �

. We will describe our torus as the quotient D/ ∼ of the
fundamental domain D = {(θ, ρ) ∈ � 2 | 0 ≤ θ, ρ ≤ 2π}. Given ω ∈ � \ � ,
the irrational flow on the torus is the flow generated by the vectorfield

Xω = ∂θ + ω∂ρ

This gives us a distribution P of dimension 1 and codimension 1 on T 2. When
ω is an irrational number, each integral curve of the distribution is dense in
T 2. Thus, this provides us with a rather complicated solution space S of the
distribution. But it is possible to investigate F(P ) and Ω1(P ) for our P . We
have the following

F(P ) =

{
f ∈ C∞(

� 2)

∣∣∣∣∣
f(θ, ρ) = f(θ + 2πn, ρ+ 2πm) ∀m,n ∈ �

and fθ = −ωfρ

}
∼= �

since the only smooth functions that are constant on a dense set in
� 2 are

the constant functions themselves.

Ω1(P ) = { f(−ωdθ + dρ) | f ∈ F(P )} =
� {−ωdθ + dρ }

and the sequence

0 −→ F(P )
d0−→ Ω1(P ) −→ 0

with H0(P ) = ker d0 = F(P ) =
�

In order to illustrate the complicated geometry of S, we will make a few pic-
tures. Starting with the fundamental domain D, we see that we can describe
S in terms of a smaller fundamental domain for the equivalence relation ∼
on D.

If ω < 0, then all equivalence classes of ∼ are represented on the line
(θ,−θ), θ ∈ [0, 2π] in D, and this line can again be identified with the
interval I = [0, 2π]. If ω > 0, do the same for the line (θ, θ). Each integral
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curve of Xω leaves a dense set of crossing points on this line (see figure below)
that should all be identified by ∼. Thus, we get our space S by identifying
all points on I that correspond to one integral curve in D. This will be a very
complicated picture since each curve contributes with a dense set of points
in I.

Figure 2.2

I

2π

2π0

0 2π

~

D

 

Illustration of S = I/ ∼ as quotient space of smallest fundamental domain.

We include yet another example of a 1-dimensional distribution on a two
dimensional manifold.

Example 2.2 Let M =
� 2\{0} with coordinates x, y, and P be the distribu-

tion generated by the single vectorfield X = ∂y. The integral curve through
any point of M is obviously the vertical line through the point. Each point on
the x-axis with x 6= 0 represents a point in S. But the points (0, y) divide into
two classes, one class for y > 0, and one for y < 0. Thus, our solution space
is the so-called ”line with double point”. It looks like a copy of

� \{0} with
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two points added at the origin, upper point denoted a, lower point denoted b.

Figure 2.3 Line with double point.

 b

~
X 

Solution space 
2

M = R  \{0}                  S = M / ~  = Line  with  "double point"

x

y

a

It is a non-Hausdorff manifold, covered by the following smooth charts. Take

Ua = S\ {b}

and chart map φa by

Id � \{0} :
� \{0} −→ �

and a 7→ 0 ∈ �

Similarly we define a chart (Ub , φb ) by changing the roles of the points.
These charts cover S, and on their intersection Ua ∩ Ub =

� \{0} the chart-
maps are equal, and thus compatible. We see that it is thus impossible
to differ between upper and lower point with continous functions. In these
charts, the smooth functions are smooth functions on the line that have the
same value at a an b. Both Ua and Ub are isomorphic to

�
.

We want to calculate F(P ), D(P ) and Ω1(P ).

F(P ) = { f ∈ C∞(M) | X(f) = ∂y(f) = 0 } ∼= C∞(
�

)

Ω1(P ) ∼= Ω1(
�

)

since ω = f(x, y) dx+ g(x, y) dy ∈ Ω1(P ) has to satisfy

(i) 〈ω, ∂y〉 = 0 and (ii) dω ∂y = ∂y(f)dy ∧ dx ∂y = 0
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which implies that f = f(x) ∈ C∞(
�

) and g ≡ 0, hence ω = f(x)dx.

D(P ) ∼= D(
�

)

since any element Y = f(x, y)∂x + g(x, y)∂y in Sym(P ) has to satisfy

[ ∂y, f(x, y)∂x + g(x, y)∂y ] = h ∂y

for some function h = h(x, y). This gives that f = f(x), smooth function.
Then Y mod X = f(x)∂x is the form of any element of D(P ).



Chapter 3

Riemannian structures on
solution spaces.

3.1 Symmetric 2-forms on S
We wish to investigate if it is possible to make further constructions similar
to usual tensor calculus over our space S. In this section we will look for
the analogue of the Riemannian manifold, namely a space equipped with a
symmetric (positive definite) 2-form.

Definition 3.1 We define

S2(P ) =

{
θ ∈ S2(Ω1(M))

∣∣∣∣∣
θ(X, · ) = 0 and
LX(θ) = 0 ∀X ∈ ∆(P )

}

We shall see that an element of S2(P ) provides us with the following map:

Definition 3.2 Given g ∈ S2(P ) we define

g̃ : D(P )×D(P ) −→ F(P )

by g̃(X1, X2) = g(X1, X2), where X1, X2 are any representatives of
X1, X2 ∈ D(P ).

It follows from the definition of S2(P ) that the mapping is well-defined:
g(X +X0, · ) = g(X, · ) for any X0 ∈ ∆(P ). What we need to check, is that
g(X1, X2) ∈ F(P ) for any X1, X2 ∈ Sym(P ). For every X ∈ ∆(P ) we have

LX(g(X1, X2)) = LX(g)(X1, X2) + γg

39
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where γg = g(LXX1, X2)+g(X1, LXX2) = 0 , since LXX1, LXX2 ∈ ∆(P ). In
addition , LX(g) = 0, so LX(g(X1, X2)) = 0 which implies g(X1, X2) ∈ F(P ).

Remark : The mapping is symmetric, bilinear and F(P )-additive.

Proposition 3.1 Any element g ∈ S2(P ) is on the form

g =
∑

1≤i≤j≤k
aijθi · θj

where {θi}ki=1 are generators of Ann(P ), and aij-s some functions.

The requirement L∆(g) = 0 will give requirements on the aij-s. A specific
calculation of this will be done in the Section 4.2, for the Cartan distribu-
tion.

3.2 Connection and curvature of (S, g̃)

Assume we have a symmetric 2-form g ∈ S2(P ). We say that g is positive
if it satisfies the condition

g(Xa, Xa) > 0 for any Xa 6∈ Pa , a ∈M

For an ordinary Riemannian manifold (M, g), we have the unique Levi-Civita
(Riemannian) connection (see Example 1.4 in Section 1.5). We wish to do
a similar construction for our space (S, g̃).

Definition 3.3 We say that a map

∇ : D(P )×D(P ) −→ D(P )

with ∇(X, Y ) = ∇X(Y ) is a connection on the solution space of P
if it satisfies the following:

(1) ∇X(fY + gZ) = f∇XY + g∇XZ +X(f) · Y +X(g) · Z

(2) ∇fX+gYZ = f∇XZ + g∇YZ

for any X, Y and Z ∈ D(P ), f, g ∈ F(P ).
If our space S is equipped with a positive g ∈ S2(P ) we say that ∇ is a
Levi -Civita connection if it in addition satisfies the properties (3) and
(4) bleow



3.2. CONNECTION AND CURVATURE OF (S, G̃) 41

(3)
[
X, Y

]
= ∇XY −∇YX

(4) X
(
g̃(Y , Z)

)
= g̃(∇XY , Z ) + g̃(Y ,∇XZ )

To produce such a ∇, we assume that we have a connection on M , that is,
an operator

∇̃ : D(M)×D(M) −→ D(M)

that satisfies properties (1)− (2). To define ∇ we take

∇X(Y )
def
= ∇̃X(Y )

where X, Y are representatives of X and Y . We obviously need this to be
invariant with respect to choice of representatives X, Y .
Our first step will be to define our connection on a local basis of D(P ), and
then expand by properties (1) and (2).

STEP 1 We need local basises for both differential forms and vectorfields.
To get an appropriate basis we do the following. Locally we can always
find k 1st-integrals of our distribution, f1, ..., fk. We choose coordinates
x1 = f1, ..., xk = fk, xk+1, ..., xk+n so that {dxi}k+n

i=1 constitutes our local basis
of Ω1(M), and {∂i}k+n

i=1 the dual basis for D(M). This assures that {∂i}k+n
i=k+1

is a local basis of the module ∆(P ), and that {dxi}ki=1 is a local basis of the
annihilating module Ann(P ). Also, a local basis for D(P ) is given by the
classes of {∂i}ki=1. We define the functions Γsij, 1 ≤ s ≤ k and 1 ≤ i, j ≤ k+n
by the following equation

∇̃∂i(∂j) =
k∑

s=1

Γsij∂s +Xij (3.1)

where Xij ∈ ∆(P ). Then

∇∂i
(∂j) = ∇̃∂i(∂j) =

k∑

s=1

Γsij∂s

For our construction to work we need our Γsij-s to satisfy several conditions.
First of all, they should be elements of F(P ). We shall see that this will not
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present a problem to us when all other conditions are satisfied. Second, we
need that ∇ is well-defined. This is ensured if and only if we take

Γsij = 0 for k < i ≤ k + n or k < j ≤ k + n

This immediatly gives that

∇X(0) = ∇0(Y ) for all X, Y ∈ D(P )

STEP 2 To require that ∇ satisfies properties (3) and (4) will give us the
final conditions on the Γsij-s.

We should have
(3) [∂i, ∂j] = ∇∂i

(∂j)−∇∂j
(∂i)

for 1 ≤ i, j ≤ k. But our local basis {∂i} commutes, thus

[∂i, ∂j] = 0 =
k∑

s=1

(Γsij − Γsji)∂s

which is equivalent to the condition

(3) Γsij = Γsji

In order to simplify some of our further calculations we will introduce the
functions gij = g̃(∂i, ∂j) = g(∂i, ∂j) ∈ F(P ). Our g is positive, so the matrix
G = (gij) is invertible. The functions gij are the entrys of the inverse matrix,
G−1 = (gij). Defining Γijl =

∑k
s=1 Γsijgsl gives us the following reformulation

of (3)
(3)′ Γijl = Γjil

The condition (4) becomes

(4)′ ∂i(gjl) = Γijl + Γilj

Combining the two equations for different permutations of indices makes us
arrive at the following

Lemma 3.1

Γijl =
1

2
[∂j(gil)− ∂l(gij) + ∂i(gjl)]
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This means that our functions Γijl are completely determined by g in a given
local basis {∂i} of D(P ). This in turn determines the functions

Γsij =
k∑

l=1

Γijlg
ls

and thus our connection ∇ locally. In ordinary Riemannian geometry the
functions Γsij are called the Christoffel symbols, and an approach to find that
they are uniquely determined by g is found in [Boo75]. That approach has
been the model of the construction above.

Remark : It is clear that every Γsij is an element of F(P ). All gij and

gij-s are elements of F(P ), and all elements ∂ i ∈ D(P ) used on elements of
F(P ) will give elements of F(P ). Thus, the Γsij, which are sums and products
of such functions, will be elements of F(P ). This concludes our construction.

Theorem 3.1 Let P be an involutive distribution, and S its solution space.
For any positive g ∈ S2(P ) there is a uniquely determined Levi-Civita con-
nection ∇ on the solution space of P.

Proof : The Lemma 3.1 proves that ∇ is uniquely determined locally in
terms of the functions Γijl, for any such g.

This procedure has shown the existence of a connection ∇ on S. It can
also be copied in a basis different from the one above.

Assume that we have a k-dimensional transversal Lie-algebra G ⊂ D(P ) with
generators {X i}ki=1. Transversality is equivalent to the condition that the ma-
trix (θi(Xj)) is nondegenerate, where {θi}ki=1 are generators of Ann(P ). The
generators have the following commutator:

[
X i, Xj

]
=

k∑

s=1

csijXs

We can find a basis {Xi}k+n
i=1 of D(M) so that {Xi}ki=1 is a set of repre-

sentatives of {X i}. As in the approach above we define the functions Γs
ij,
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1 ≤ i, j ≤ n+ k, by the equations

∇̃XiXj =
k∑

s=1

ΓsijXs + Yij

where Yij ∈ ∆(P ). As before, we have

∇Xi
Xj = ∇̃XiXj =

k∑

s=1

ΓsijXs

and we must choose Γsij = 0 for k < i ≤ k + n or k < j ≤ k + n to ensure
that ∇ is well-defined.

To find the remaining Γsij-s we again investigate the properties (3) and (4)
and get the following conditions. (3) is equivalent to

(3)′ Γijl = Γjil + cijl

where cijl =
∑k
s=1 c

s
ijgsl The condition (4) becomes

(4)′ Xi(gjl) = Γijl + Γilj

Again, combining the two equations for different permutations of indices
makes us arrive at the following:

Theorem 3.2

Γijl =
1

2
[cijl − clji + clij +Xj(gil)−Xl(gij) +Xi(gjl)]

for 1 ≤ i, j, l ≤ k.

This gives us our connection in terms of the basis {X i} and g, in the inter-
esting case when we have a Lie-algebra of symmetries of our distribution.

We are now ready to define curvature of our ∇.

Definition 3.4 The curvature R∇ of ∇ is defined by

R∇(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]



3.2. CONNECTION AND CURVATURE OF (S, G̃) 45

R∇ has the following properties.

Proposition 3.2 For any X, Y ∈ D(P ) we have

(1) R∇(X, Y ) = −R∇(Y ,X)

(2) R∇ is F(P )-linear in both arguments.

(3) R∇(X, Y ) is a F(P )-module homomorphism of D(P ).

Proof : Property (1) is obvious, (2) and (3) will follow by direct calculation.

Thus, we can think of R∇ as an element of Ω2(P )⊗ End(D(P )).

Definition 3.5 We define the operator

R : D(P )×D(P )×D(P )×D(P ) −→ F(P )

by
R(X, Y , Z,W ) = g̃

(
R∇(X, Y )(Z),W

)

The operator R satisfies the following properties.

Proposition 3.3 For any X, Y , Z,W ∈ D(P ) we have

(1) R(X, Y , Z,W ) = −R(Y ,X, Z,W )

(2) R is F(P )-linear in all arguments.

Proof : The properties follow directly from the properties of R∇ and g̃.



Chapter 4

ODE-s as distributions

4.1 The Cartan distribution CE
We wish to investigate ordinary differential equations of order k, preferably
those that can be resolved with respect to the highest derivative:

y(k) = F (x, y, y′, ..., y(k−1)) (4.1)

We connect this equation to a special distribution in the space J k
�

in the
following way.
Jk

�
is a (k + 2)-dimensional space whose points are all (k + 2)-tuples

(a, y(a), y′(a), ..., y(k)(a)) with a ∈ �
, y ∈ C∞(

�
). Thus we can take Jk

�
=

� k+2 with coordinates x, p0, ...., pk. In Jk
�

we have the Cartan distribution
C of dimension 2 and codimension k defined by the k 1-forms

ω0 = dp0 − p1dx

ω1 = dp1 − p2dx (4.2)
...

ωk−1 = dpk−1 − pkdx

Moreover, our equation 4.1 defines a hypersurface

E = { (x, p0, p1, ..., pk) ∈ Jk
� | pk − F (x, p0, p1, ..., pk−1) = 0 }

in Jk
�

on which we take coordinates x, p0, ...., pk−1. The distribution C pro-
duces a 1-dimensional distribution CE when restricted to E , and we call this

46
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the Cartan distribution of the equation E . It has the same defining forms,
except we take

ωk−1 = dpk−1 − F (x, p0, ..pk−1)dx

Integral curves of CE that project to the x-axis without degeneration can only
be curves of type

p0 = y(x), p1 = y′(x), ... , pk = y(k)(x)

in Jk
�

where y(x) ∈ C∞(
�

) is a solution of 4.1. The latter requirement
ensures that the curve lies in E . Thus finding solutions to the original differ-
ential equation is equivalent to finding integral curves of the distribution CE ,
and this will be our opening towards the constructions presented in Section
2.2.

4.2 Symmetries and cosymmetries of the Car-

tan distribution

We start with the investigation of D(CE), and include ideas and results from
[DL91].
First of all, we note that the C∞(

� k+1)-module ∆(CE) is generated by a single
vectorfield

D =
∂

∂x
+ p1

∂

∂p0

+ .....+ pk−1
∂

∂pk−2

+ F
∂

∂pk−1

(4.3)

In the quotient algebra Shuf(CE) we have the relation

∂

∂x
≡ −p1

∂

∂p0
− .....− pk−1

∂

∂pk−2
− F ∂

∂pk−1
mod Char(CE)

So we are only looking for symmetries on the form

X = α0
∂

∂p0
+ ..... + αk−2

∂

∂pk−2
+ αk−1

∂

∂pk−1

Combining this, and employing Theorem 2.2 by investigating the Lie-
derivatives LD(ωi), i = 0..k − 1, we arrive at the following. Any symmetry
(modulo Char(CE)) has to be on the form

X = Xφ =
k−1∑

i=0

Di(φ)
∂

∂pi
(4.4)
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where the function φ = φ(x, p0, ..., pk−1) solves the Lie equation

L(φ) = 0 (4.5)

for

L = Dk −
k−1∑

i=0

∂F

∂pi
Di (4.6)

the Lie operator. The function φ is called the generating function of the
symmetry Xφ. The results above are shown more rigorously in the article
[DL91]. The article mainly treats the problem of finding symmetries of the
distribution by the approach explained above, and thereby finding solutions (
1st-integrals) by quadrature. We will try to expand this picture by including
some of our constructions.

As our distribution CE is 1-dimensional, it is completely integrable by The-
orem 2.1 (the Frobenius theorem). We wish to place CE in the setting of
Section 2.2. According to our definitions 1st-integrals are

F(CE) =
{
f ∈ C∞(

� k+1) | LD(f) = 0
}

Furthermore, differential 1-forms are

Ω1(CE) =
{
θ ∈ Ω1(E) | D θ = 0 and D dθ = 0

}

As a matter of fact, the forms in Ω1(CE) are also given in terms of a generat-
ing function , as is the case for symmetries modulo characteristic symmetries.
To recognize this we have to make the following steps.

The requirement D θ = 0 implies that θ has to be on the form

θ =
k−1∑

i=0

βiωi

for some functions βi since the Cartan forms {ωi} generate the annihilating
module Ann(P ). Combining that, and the requirement LD(θ) = 0 we get
exactly the forms in Ω1(CE). By calculation we have

LD(ωi) = ωi+1 i = 0...k − 2

LD(ωk−1) =
k−1∑

i=0

∂F

∂pi
ωi
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The requirement LD(θ) = 0 then gives the following set of k − 1 equations
on the functions βi :

D(β0) = −F0ψ (4.7)

βj = −D(βj+1)− ψFj+1 , j = 0...k − 2 (4.8)

where Fi = ∂F
∂pi

and ψ = βk−1. It is clear that by combining these equations
we get one equation on ψ alone, and the βj-s are given from ψ. That is

βk−l = Hl(ψ) l = 2...k (4.9)

where Hl is the operator

Hl = (−1)l−1Dl−1 −
l−2∑

s=0

(−1)sDsf ls (4.10)

with f ls = Fk−l+1+s.

Proof of equations (4.9) and (4.10). We will use induction on l.
For l=2 we have:

βk−2 = (−D − Fk−1)ψ

from (4.8). Our formula (4.10) gives

H2 = −D − Fk−1

which implies that (4.10) is correct for l = 2.
We will assume that it is also correct for l, and calculate βk−(l+1) = βk−l−1.

βk−l−1 = −D(βk−l)− Fk−lψ

by equation (4.8). Then

βk−l−1 = (−D ·Hl − Fk−l)ψ

By direct calculation (note that f lr−1 = f l+1
r ) we get that

βk−l−1 =

[
(−1)lDl −

l−1∑

s=0

(−1)sDsf l+1
s

]
ψ
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which is exactly Hl+1ψ.
�

We can thus take l = k and combine equations

β0 = Hk(ψ)

and
D(β0) + F0ψ = 0

and get the following equation for ψ

L∗(ψ) = 0 (4.11)

where

L∗ = (−1)k(Dk)−
k−1∑

r=0

(−1)rDrFr (4.12)

We can calculate the adjoint operator Adj(L) of L by the rules
Adj(AB) = Adj(B)Adj(A) where Adj(f) = f for functions, and
Adj(D) = −D else. This shows that L∗ is actually equal to Adj(L).

L∗ can be written in the following way, ordered by the degree of D :

L∗ = (−1)kDk −
k−1∑

r=0

(−1)r
r∑

s=0

(
r

s

)
Ds(Fr)D

r−s (4.13)

Theorem 4.1 Any element in Ω1(CE) is on the form

θ = θψ = ψωk−1 +
k∑

l=2

Hl(ψ)ωk−l

for some generating function ψ that solves equation (4.11), the Hl-s as given
in equation (4.10)

We shall call such 1-forms cosymmetries of our distribution, as they are
”duals” to our symmetries. We know that any pairing

f = 〈Xφ, θψ 〉

of a symmetry and a cosymmetry will give a 1st-integral of the distribution
CE . If we have k independent 1st-integrals of CE , we have a implicit solu-
tion of our equation. In general, if we have some number of symmetries and
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cosymmetries, different pairing-combinations can give us functions that are
just constants or constant-multiples of eachother. So, having k independent
symmetries, and k independent cosymmetries is no guarantee to get k inde-
pendent 1st-integrals.

4.3 Remarks on S2(CE)
How to find elements of S2(P )? We can try to find such symmetric 2-forms
directly from our definition. Assume g ∈ S2(Ω1(M)). The requirement
g(∆(P ), ·) = 0 implies that

g =
∑

0≤i,j≤k−1

aijωi · ωj

where {ωi}k−1
i=0 are the Cartan forms. The matrix A = (aij) is symmetric. In

addition we must have LD(g) = 0. This will give us a set of equations on the
functions aij. These can be combined to give one equation on a generating
ai0j0, and the other aij − s will be given by the generator in a way similar to
(co)symmetries. This will be done for the Cartan distribution CE in the case
k = 2.

On the other hand, if we know k independent elements θ1, .., θk of Ω1(P ),
we get a symmetric, positive 2-form

g =
k∑

i=1

θ2
i

immediately.



Chapter 5

Algebraic picture
-relations with D-modules

5.1 A-module E with a derivation

Let A be a commutative algebra with a derivation δ : A −→ A, and E an
A-module. Assume that we have an operator

δ : E −→ E

on our module such that

δ(ax) = δ(a)x + aδ(x) (5.1)

for any a ∈ A, x ∈ E.
We denote this as a pair (E, δ), and call E a D-module.
We define

E# = {x ∈ E | δx = 0} and A# = {a ∈ A | δa = 0}

Proposition 5.1 E# is an A#-module.

Assume we have two such pairs (E1, δ) and (E2, δ). They give us new A-
modules with operators in the following ways

(1) Take the tensorproduct E1⊗E2, which is again an A-module. The
operator δ extends to the tensor product in the following way

δ(x1 ⊗ x2)
def
= δ(x1)⊗ x2 + x1 ⊗ δ(x2)

52
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on decomposable elements, and extend by property (5.1). Thus you
get a new pair

(E1 ⊗ E2, δ)

(2) Following (1), taking tensorproducts of E with itself gives us construc-
tions like
(Sl(E), δ), where

δ(x1· . . . ·xl) = δ(x1) · ... · xl + ....+ x1 · ... · δ(xl)

or (
∧l(E), δ), where

δ(x1 ∧ ... ∧ xl) = δ(x1) ∧ ... ∧ xl + .... + x1 ∧ ... ∧ δ(xl)

(3) Also, we can extend δ to the A-module HomA(E1, E2) by taking

(δF )(x)
def
= F (δ(x))− δ(F (x))

for any F ∈ HomA(E1, E2), and thus get a new pair (HomA(E1, E2), δ)

The constructions above will provide us with several A-modules with induced
operators starting only with one pair (E, δ).

We can define the dual

E∗ = HomA(E,A)

The induced operator δ is then given by the formula in (3).

Also, we can construct various tensorspaces of E and E∗ like in (1) and
(2), including

E ⊗ E∗ ∼= HomA(E,E)

The reason this piece of algebra is included, is the following observation.
All our constructions F(CE), D(CE), Ωl(CE), S2(CE) in the previous section
fits exactly into this algebraic picture. Namely, we take

A = C∞(J1 �
) and E = D(J1 �

)/D
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where D is the characteristic vectorfield of the distribution CE . The operator
in question is the Lie-derivative along D, δ = LD. So, starting with the pair

(E,LD) (5.2)

we get all our well known tensorspaces.

• The dual space E∗ = Ann(CE)
with the usual Lie-derivative LD as induced operator.

• A# = F(CE)

• E# = D(CE)

• (E∗)# = Ω1(CE)

• S2(E∗) = {∑αijθi · θj | θi, θj ∈ Ann(CE), αij ∈ A }
with the usual Lie-derivative LD as induced operator.

• S2(E∗)# = S2(CE)

• ∧l(E∗) =
{∑

αi1..ilθi1 ∧ ... ∧ θil | θij ∈ Ann(CE ), αi1..il ∈ A
}

with the usual Lie-derivative LD as induced operator.

•
(∧l(E∗)

)#
= Ωl(CE)
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ODE-s of order two

6.1 Symmetry, cosymmmetry and g-equations

Let our equation be of order two, and resolved with respect to the 2nd deriva-
tive.

y′′ = F (x, y, y′) (6.1)

In this section we will find the equations connected to its (co)symmetries and
other constructions from Section 2.2. The distribution CE is of dimension 1
and codimension 2. We denote the coordinates on E by x, u and p, thus our
vectorfield D becomes

D = ∂x + p∂u + F∂p

where F = F (x, u, p). The Cartan-forms are

ω0 = du− pdx , ω1 = dp− Fdx

Our Lie equation is the following

L(φ) = 0 (6.2)

with the operator L

L = D2 − FpD − Fu (6.3)

Here Fu and Fp are the partial derivatives w.r.t. the variables u and p. If φ
solves equation (6.2), it generates the symmetry

Xφ = φ ∂u +D(φ) ∂p
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To find cosymmetries we should find solutions of the equation

L∗(ψ) = 0 (6.4)

where

L∗ = D2 +D · Fp − Fu = D2 + FpD + [D(Fp)− Fu] (6.5)

which is equal to the adjoint operator Adj(L) of L. A solution ψ of (6.4)
generates a cosymmetry

ωψ = −(D + Fp)(ψ)ω0 + ψ ω1

Before we investigate some examples of second order equations, we will find
the conditions on a symmetric 2-form to be an element of S2(P ). We recall
that g has to be on the form

g = a00ω
2
0 + 2a01ω0 · ω1 + a11ω

2
1

to ensure that g(D, · ) = 0. In addition we need to have that LD(g) = 0. We
do the calculation

LD(g) =

[D(a00) + 2Fua01 ] ω2
0+

+2 [ a00 + (D + Fp)a01 + Fua11 ]ω0 · ω1 + [ (D + 2Fp)a11 + 2a01 ]ω2
1

and see that LD(g) = 0 is equivalent to the set of equations (i)− (iii) on the
functions aij

(i) D(a00) + 2Fua01 = 0

(ii) a00 + (D + Fp)a01 + a11Fu = 0

(iii) 2a01 + (D + 2Fp)a11 = 0

These equations can be written in the following way

(i) D(a00) = −2Fua01

(ii) a00 = −(D + Fp)a01 − Fua11

(iii) a01 = −1

2
(D + 2Fp)a11
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Equation (iii) gives us a01 expressed in terms of a11, and this we can substi-
tute into equation (ii). Thereby we have both a01 and a00 expressed in terms
of the function a11. By substitution in equation (i) we arrive at the following
conditions:
The function a11 must solve the equation

L11(a11) = 0 (6.6)

where L11 is the following operator

L11 = D3 + [ 3Fp ]D2 + [ 5D(Fp) + 2F 2
p − 4Fu ]D+

+[ 2D2(Fp) + 4FpD(Fp)− 2D(Fu)− FpFu ]

Furthermore, the functions a00 and a01 are given by

a00 = L00(a11) (6.7)

with

L00 =
1

2

(
D2 + 3FpD + 2[D(Fp) + F 2

p − F0]
)

and

a01 = L01(a11) (6.8)

with

L01 = −1

2
(D + 2Fp)

Our calculations on g can be summarised in the following way.

Theorem 6.1 Any g ∈ S2(CE) is on the form

g = L00(η)ω2
0 + 2L01(η)ω0 · ω1 + η ω2

1

where η solves the Equation (6.6).

Remark :
If we have two solutions ψ1, ψ2 of the L∗-equation, this produces two cosym-
metries θ1 and θ2. Their symmetric products θ2

1, θ1 · θ2 θ
2
2, as well as their
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sums, must be elements of S2(CE).
Hence, the functions ψ2

1 , ψ1ψ2 and ψ2
2 must solve the equation

L11η = 0

We call the operator L11 the symmetric power of L∗.

We now know how all elements of D(CE), Ω1(CE) and S2(CE) must look for
k = 2; they are all given by generating functions that have to satisfy certain
equations. These equations are in some sense more complicated than our
original one. But we are not looking for general solutions of them: for exam-
ple, to find a g for some equation y” = F it suffices to find one solution of
the L11-equation. Therefore we can look for generating functions of special
types, for example linear in p.
Also, we can try to investigate the problem, starting in the other end. As-
sume we have a specific 2-form g = a00ω

2
0 + 2a01ω0ω1 + a11ω

2
1. We can then

try to find for which F -s these aij-s satisfy the conditions of Theorem 6.1.
That is, we get a class of equations that possess this kind of structure.

6.2 Equations with extra structure

Investigating an equation along the lines of our constructions connected to the
space S will at this point consist in searching for elements of D(CE), Ω1(CE)
and S2(CE). This will, in one way or the other, mean investigation of the
L, L∗ and L11- equations. One might also find other things than solutions
during such an investigation. One thing that was discovered conserning a
wide class of equations is the following.

Theorem 6.2 Given an equation

y′′ = γ(x)y′ + δ(x, y)

we have the following relation between the associated L and L∗-equations:

L(φ) = 0 ⇔ L∗(eαφ) = 0

where α = α(x) is any function such that α′(x) = −γ(x). The functions γ(x)
and δ(x, y) are arbitrary.
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Proof : Let F = γ(x)p + δ(x, u). Then, for any φ we have

L(φ) = D2(φ)− γD(φ)− Fuφ

For any α = α(x) we have by straightforward calculation that

L∗(eαφ) = eα
[
D2(φ) + (2α′ + γ)D(φ) + (α′′ + (α′)2 + α′γ + γ′ − Fu )φ

]

Choosing α such that α′ = −γ implies that

(2α′ + γ) = −γ and (α′′ + (α′)2 + α′γ + γ′ − Fu ) = −Fu

thus for this choice of α we have that

L∗(eαφ) = eαL(φ)

which completes the proof.
�

Given an equation of the type in Theorem 6.2 , we observe that we get the
following map:

φ ∈ kerL 7→ eαφ ∈ kerL∗

which in turn gives the corresponding map

λ : D(CE) −→ Ω1(CE) (6.9)

defined by Xφ 7→ θeαφ. This map is obviously
�

-linear.

We know that an element Λ =
∑
i ciσi ⊗ θi ∈ Ω1(M)⊗ Ω1(M)

with σi, θi ∈ Ω1(M) and ci ∈ C∞(M) corresponds to a C∞(M)-linear map-
ping

Λ : D(M) −→ Ω1(M)

given by X 7→ ∑
i ciσi(X)θi.

We want to find such a Λ that maps Xφ into θeαφ for every φ that solves
L(φ) = 0. Calculating directly Λ(Xφ) we get that

Λ = −2eαω0 ∧ ω1 (6.10)

which is an element of Ω2(M).
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To check if Λ is an element of Ω2(P ) we calculate the Lie-derivative of Λ
along D

LD(Λ) = 4γeαω0 ∧ ω1

which is zero only in the cases when γ = 0. Thus we have that

Theorem 6.3 Equations of the type

y′′ = F (x, y)

where F is arbitrary, possess a symplectic structure on the space of solutions
given by the non-degenerated 2-form Λ = ω0 ∧ ω1 ∈ Ω2(CE).

Remark:
We make the following observation about 1st-integrals. Assume we have an
equation of the type in Theorem 6.2, with Fp = γ(x). Assume α = α(x) so
that α′ = −γ, and that we have a pair of symmetries Xφ1 , Xφ2 and thus also
cosymmetries θeαφ1, θeαφ2 . Their pairings will be the following:

〈Xφ1, θeαφ1〉 = 〈Xφ2 , θeαφ2〉 = 0

and
〈Xφ1 , θeαφ2〉 = −〈Xφ2, θeαφ1〉 = φ1D(φ2)−D(φ1)φ2

Thus, this will only give us one (possibly) non-zero 1st-integral up to multi-
plication by constant.

6.3 Equations with constant coefficient g

Assume that our equation

y′′ = F (x, y, y′)

posesses a metric structure where g is of the following form

g = a00ω
2
0 + 2a01ω0 · ω1 + a11ω

2
1

where all the aij-s are constants, ω0, ω1 the Cartan forms. We want to find
all equations that can have such a g. To do this we have to examine the
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equations for the aij-s.

Take c = a11 ∈
�

. Then the equation (6.8) for a01 becomes

a01 = −Fpa11 = −Fpc

which implies that Fp is a constant

(i) Fp = −a01

c

If we look at the equation (6.7) for a00 we get that

a00 = (F 2
p − Fu)c

which gives us the following requirement on Fu

(ii) Fu =
(a2

01 − ca00)

c2

that it is also constant. The final requirement on F comes from the equation
(6.6) on a11, namely that

(iii) − 2FuFpc =
2

c2
a01(a2

01 − a00c) = 0

We notice that a11 cannot be zero. If a11 = 0, the immediately a01 = a00 = 0.
There are thus two possibilities for (iii) to be true:

(A) a01 = 0 which corresponds to Fp = 0

(B) a00 =
a2

01

c
which corresponds to Fu = 0

This can be formulated in the following way.

Theorem 6.4 There are only two types of equations that possess a constant-
coefficient g in the Cartan basis (up to multiplication by constants on g).
They are

(A) Equation y′′ + αy = f(x) with g = αω2
0 + ω2

1

(B) Equation y′′ + αy′ = f(x) with g = α2ω2
0 + 2αω0ω1 + ω2

1

where f(x) is arbitrary and α ∈ �
.
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6.4 Some equations with known co-/symmetries

and g

In this section we are going to investigate equations of the type

y′′ = y′ + f(y)

where the function f(y) is non-linear. That is, our F (x, u, p) = p+ f(u).
In the article [DL91] the problem of finding p-linear generating functions of
symmetries is treated in full. All equations equipped with a two dimensional
Lie-algebra of such symmetries are classified, although with a minor misprint.

The quest is to find solutions on the form φ = α(x, u)p + β(x, u) to the
Lie-equation

Lφ = 0

and thus bescrive D(CE) for this F .
But now we have also the problem of describing Ωl(CE) and finding element(s)
of S2(CE). We make the following observation about F .

Fp = 1, which by Theorem 6.2 implies that

L(φ) = 0 ⇔ L∗(e−xφ) = 0

Thus, solutions to the L-equation produces solutions to the L∗-equation and
vice versa. Two independent solutions of the L∗-equation produce two inde-
pendent cosymmetries , which in turn will give us an element of S2(CE).

Theorem 6.5 Non-linear equations on the form y ′′ = y′+ f(y) that possess
a two dimensional Lie-algebra of point-symmetries can be divided into classes
(1) and (2).

(1) y′′ = y′ + aeby − 2
b

with a, b ∈ �
, a, b 6= 0

(2) y′′ = y′ + a(y + b)c − (2c+2)
(c+3)2 (y + b)

with a, b, c ∈ �
and a 6= 0, c 6= 0, 1,−3

These equations are equipped with the following structure, as listed below.
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Type (1)

(i) Solutions of L∗φ = 0 :
φ1 = p and φ2 = e−x(p− 2

b
)

Corresponding symmetries:
X1 = p∂u + (p+ aebu − 2

b
)∂p and

X2 = e−x
[
(p− 2

b
)∂u + aebu∂p

]

(ii) Solutions of L∗ψ = 0:
ψ1 = e−xp and ψ2 = e−2x(p− 2

b
)

Corresponding cosymmetries :
θ1 = e−x

[
(−p− aebu + 2

b
)ω0 + pω1

]
and

θ2 = e−2x
[

(−aebu)ω0 + (p− 2
b
)ω1

]

(iii) Metric structure :
g = θ2

1 + θ2
2 which corresponds to a11 = ψ2

1 + ψ2
2 .

g = e−2x
[
a2(1 + e−2x)e2bu + (p− 2

b
)2 + 2(p− 2

b
)aebu

]
ω2

0

−2e−2x
[
p(p− 2

b
+ a) + a(p− 2

b
)ebu−2x

]
ω0·ω1 + e−2x

[
p2 + e−2x(p− 2

b
)2
]
ω2

1

Type (2)

(i) Solutions of L∗φ = 0 :
φ1 = p and φ2 = ekx(p− k+1

2
(u+ b) ) , where k = 1−c

3+c

Corresponding symmetries:
X1 = p ∂u +

[
p+ a(u+ b)c − (2c+2)

(c+3)2 (u+ b)
]
∂p and

X2 = ekx
[

(p− k+1
2

(u+ b))∂u + (k+1
2
p+ a(u+ b)c − 4

(c+3)2 (u+ b))∂p
]

(ii) Solutions of L∗ψ = 0:
ψ1 = e−xp and ψ2 = e(k−1)x(p− k+1

2
(u+ b))

Corresponding cosymmetries :
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θ1 = e−x
[

(−p− a(u+ b)c + (2c+2)
(c+3)2 (u+ b))ω0 + p ω1

]
and

θ2 = e(k−1)x
[

(−k+1
2
p− a(u+ b)c − 2c+2

(c+3)2 (u+ b))ω0 + (p− k+1
2

(u+ b))ω1

]

(iii) Metric structure :
g = θ2

1 + θ2
2 which corresponds to a11 = ψ2

1 + ψ2
2.

g = e−2x



(
−p− a(u+ b)c +

(2c+ 2)

(c+ 3)2
(u+ b)

)2

+

+ e2kx

(
−(k + 1)

2
p− a(u+ b)c − (2c+ 2)

(c+ 3)2
(u+ b) +

(k + 1)

2

)2

ω2

0 +

2e−2x

[
p2

(
−1− (k + 1)

2
e2kx

)
+ a(u+ b)cp(−1− e2kx) +

e2kx

(
(k2 + 4k + 3)

4
p+

(k + 1)

2
a(u+ b)c +

(4c+ 4)

(c+ 3)3
(u+ b)− (k + 1)2

4

)]
ω0·ω1

+ e−2x


 p2 + e2kx

(
p− (k + 1)

2
(u+ b)

)2

ω2

1

6.5 Harmonic oscillator

We shall investigate the class of equations on the form

y′′ + cy = 0 (6.11)

where c ∈ �
. Whenever c = a2 > 0 we have the famous harmonic oscilla-

tor equation.

Our first observation is that (6.11) is of type (A) in Theorem 6.4, and thus
has a metric structure given by g = cω2

0 + ω2
1. This g is positive for c > 0.

Second, we find the following if we search for p-linear solutions to the Lie-
equation. The functions

φ1 = u and φ2 = p (6.12)
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solve Lφ = 0 . They generate the following symmetries

X1 = u ∂u + p ∂p , X2 = p ∂u − cu ∂p (6.13)

We note that F = −cu ⇒ Fp = 0 which by Theorem 6.2 implies that
solutions of the L∗- equation must be scalar multiples of the solutions of the
L-equation. Hence the functions

ψ1 = u and ψ2 = p (6.14)

solve the equation L∗ψ = 0, and provides us with the cosymmetries

θ1 = −p ω0 + uω1 , θ2 = cu ω0 + p ω1 (6.15)

The pairing
〈X1, θ2〉 = −〈X2, θ1〉 = cu2 + p2

is a 1st- integral of our equation. What is interesting, is that we get a new
g ∈ S2(CE) from our cosymmetries by taking

g = θ2
1 + θ2

2 = [p2 + c2u2]ω2
0 + 2 [up(1− c)]ω0 ω1 + [u2 + p2]ω2

1
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