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Abstract

In this thesis we investigate some geometrical properties of quotient spaces
connected to integrable distributions on manifolds. In particular we will
consider Cartan distributions on the 1-jet space, connected to differential
equations. We will play with tensors over our new quotient space - that is,
tensors on the original manifold that are invariant under the factorization
relation that produces the new space.
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Introduction

The main goal for this thesis has been to establish an algebraic fundament
to study geometrical structures related to differential equations, first of all
ordinary differential equations. This, however, has led to more general con-
structions around integrable distributions on smooth manifolds.

There is a natural way to move the study of a k-th order ODE into the
k-jet space. There is a one to one correspondence between solutions of the
equation

y(k) - F(:I;7 y7 y/7 AR 7y(k_1)) = 0

and integral curves of the 1-dimensional Cartan distribution of the equation,
in the k-jet space. The idea is to study the quotient space of the k-jet space
that arises when we identify points that belong to the same integral curve
of the Cartan distribution. This quotient space can be quite complicated, or
sometimes even be a smooth manifold. To study the geometry of this space
we need some algebraic tools. We get those from taking tensors on the k-jet
space that are invariant on our distribution.

To provide an algebraic fundament we generalize our constructions to concern
completely integrable distributions on any smooth manifold. This became
the starting point of the discussion.

Chapter 1 includes a brief tour through some of the fundaments of differ-
ential geometry. We recall the notions of smooth manifolds, vector bundles
and various tensor spaces connected to a manifold, including jet-spaces.

Chapter 2 starts with the fundamentals of completely integrable distri-
butions on a manifold. It is in this chapter that we define the solution space
of a distribution, and make our main algebraic constructions over this space.
This includes functions F(P), vectorfields D(P), the algebra of differential
I-forms Q' (P) and symmetric 2-forms S*(P). These objects fit exactly into
the usual algebraic picture, and we continue by defining the differential d of
forms, and cohomology groups H'(P). We define morphisms of distributions,
smooth maps between manifolds that map one distribution into another, and
show that from this we get an induced graded algebra homomorphism on the
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algebras of differential forms. We conclude the chapter with a couple of ex-
amples.

Chapter 3 introduces the notion of Riemannian structure on our solution
space, in terms of a invariant positive symmetric 2-form. We see that this
provides us with the notion of a connection on our solution space, and a way
to calculate this whenever we know a positive g € S?(P).

Chapter 4 is where we introduce ODE-s to the discussion, and investi-
gate the Cartan distribution of a differential equation. This leads us to the
question of finding symmetries and cosymmetries of the distribution. We
formulate the conditions on vectorfields and 1-forms to be invariant on the
Cartan distribution. It is known that any symmetry is given by a single
generating function that must solve the Lie-equation L¢ = 0, L the Lie-
operator. We prove that any cosymmetry (invariant 1-form) is given by a
single generating function, that must solve the equation L*i = 0, where L*
is calculated, and found to be the adjoint operator of the Lie-operator L.

Chapter 5 is a brief comparing between our constructions of Chapter 5,
with the algebraic picture of D-modules.

Chapter 6 is devoted to ODE-s of order 2. In the first section we for-
mulate the equations for generating functions of symmetries, cosymmetries
and invariant symmetric 2-forms. For equations of the type

Y =y(x)y + (z,y)

, v and 0 arbitrary, we find an isomorphism between ker L and ker L*.
For a subclass of this class of equations, equations on the form

y' = F(z,y)

we find a symplectic structure given by the form A = wy A wq, where wy and
w; are the Cartan forms.

We find that the equations
y' +ay=f(r) with g=awi +w? ,a€R
and

y' +ay = f(r) with g =a’w] + 2wy -w; +w? ,a €R
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are the only ones that possess a Riemannian structure given by a constant-
coefficient g in the Cartan basis.
The next section is devoted to equations on the form

yv' =9+ f(y)

where f is non-linear, that possess a two-dimensional Lie-algebra of point
symmetries (generating function linear in p). There are only two such classes,
and in this section we are able to list symmetries, cosymmetries and Rieman-
nian structures of these.

The very last part of the chapter is about the harmonic oscillator equation

y' +cy=0

and includes symmetries, cosymmetries and two different Riemannian struc-
tures of this.



Chapter 1

Preliminaries

1.1 Smooth manifolds

In this chapter we recall some basic notions as smooth manifolds, tensors
over manifolds etc.

We start by defining our primary object, the manifold.

Definition 1.1 A smooth manifold M of dimensionn is a pair (M, R) where
M is a set, and X = {¢, : Uy, — O,} is a collection of charts that satisfy
the following conditions:

(i) UsUsa=M

(i) On CR"™ is open, ¢, is set-isomorphism Vo

(111) ¢o(Us NUgz) , ¢pg(U, NUs) CR™ are open Yo, (3 .

(iv) The charts are compatible: ¢, o gbgl are diffeomorphisms (smooth bijec-
tions) Vo , 3 where they are defined.

N is called a smooth atlas on M. We note that we get a topology on M the
following way: let (U, ¢) be a chart in M. We say that V' C U is open if
»(V) C R™ is open. Sets of this kind generate a topology on M, by taking
finite intesections and any unions of such sets. We consider only manifolds
that are Hausdorff with respect to this topology. Two atlases (¢n,U,) and
(1, V) are equivalent if each pair of charts are compatible in the sense de-
fined in (iv) above. Normally we don’t wish to distinguish between equivalent
atlases, but operate with equivalence classes of atlases: smooth structures.

Il
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Thus we can add to any atlas a compatible chart according to our needs.

The natural maps between smooth manifolds M and N of dimension m
and n respectively are smooth maps:

Definition 1.2 A continous map f : M — N is a smooth map of manifolds
of

f=vofo¢l:p(U)CcR" —R"
is a smooth map ¥ charts (¢,U) and (¢, V') of M, N.

We call the category of smooth manifolds Sman. The objects are smooth
manifolds, and the morphisms are smooth maps, as defined above. Given an
n-dimensional manifold M, a chart (¢,U) is called a coordinate neighbour-
hood. To each point g € U we assign the (local) coordinates (x1(q), .., z,(q)) =
#(q). Note that the n functions x; = pr; o ¢ i = 1..n, where pr; = projection
on i-th coordinate, are smooth functions on U.

1.2 Jets of functions

When discussing manifolds, an important object to us is the ring of smooth
functions on M, C*(M) = C*>(M,R). It introduces us to the algebraic side
of the discussion, and we will start with some local objects over our manifold.
Remark: C°(M)is also an R-algebra.

For each point a € M we have the maximal ideal
pa ={f € C*(M)|f(a) = 0} C C=(M)
This provides us wtih the following chain of ideals related to M :
L Cpt Tl C g c C(M)
Definition 1.3 Leta € M, k> 0. The factor
JEOM) = (M) /!

is called the space of k-jets of functions at a € M, and

[fla = fmod pg*!

1s called the k-jet of f at the point a.
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Let (¢,U) with a € U be local coordinates, and ¢(a) = (ay,..,a,) € R
Then every f € C*(U) can be written

f= > s.a)(z—a) +e

0<|o|<k

where ¢, € pttl s, € C°(U) and (z — a)? is a product of linear factors

(x; — a;) over multiindex o.

Theorem 1.1 Given point a € M as above we have:
(1) JE(M) is an R-vectorspace with respect to operations
(i) [f1e +l9le = [f + 9l
(i) A~ [fle =\~ fla
where A € R, f,g € C*(M)
(2) dimgJ5(M) = (”Zk), and we have basis

B = {[1)5, [(z;i — a)]k, ... [(x — a)°]F}

- classes of distinct products up to degree k of linear factors (z; — a;) ,
1 =1..n.

(3) JE(M) is an R- algebra with respect to multiplication

A1h - lole = 1f - glk

and with generators [1)* | {[z; — a;]*}izimn
Of special importance to us is 1-jet spaces over various manifolds. Given a
manifold M as above, we have the following exact sequence for all £ > 1:

0 — pk /bt s JE (M) S Y (M) — 0

k—1

o, and ¢

where 731 is the canonical map of factors that maps [f]¥ — [f]
inclusion of the kernel of 7y ;1.
Thus, for £k = 1 we have

0 — /12— JHM) Z% JO(M) — 0

which provides us with the following notion:
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Proposition 1.1 For any a € M, T)M = u,/p? is an n-dimensional vec-
torspace, called the cotangent space of M at a.

Given local coordinates as above, the set {d,z; = [z; — a;]}}i=1. is a basis
of TX(M).

Definition 1.4 Given f € C*(M), we call

dof = [f — f(a)]g
the differential of f at the point a.

Remark: Asamap d,: C>®(M)—T; is
(1) R—linear  and
(”) da(fQ) = daf ’ g(a’) + f(a’) ’ dag

Definition 1.5 We define T, (M) to be the dual vectorspace of T (M).
T.(M) is called the tangent space of M at a. Given local coordinates and
T (M)-basis as above, we have the unique dual basis {0;, = am—aia}iﬂ--n with
(@ﬂ, daﬂij) = &-ﬂ(daxj) = 6@] ’

Proposition 1.2 Any element v € T,(M) produces a derivation T = v o d,
of C=(M)at the point a. Conversely any derivation D of C*°(M)at the point
a is on the form D =v=wvod, for some v € T,(M).

If M is (some open subset of ) R" it is easy to see that for any f € C°(M) we
have d,f = Y1 Mida.x; , where \; = g—i(a), looking at the Taylor expansion
of f. On the other hand we have: A\, = (0,4,dof) = 0iu(f) s0, duf =
> 0ia(f)daz;, and the derivations 0;, are the usual partial derivatives.

1.3 Vector bundles

We shall look into the concept of a vector bundle over a manifold. Let B be
an n-dimensional smooth manifold.

Definition 1.6 We say that
m:FE(r)— B

is a vector bundle over B if
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(i) E(r) € Sman and 7 : E(w) — B is smooth and surjective.

(11) 3 atlas {Ui % Oi} on B, and diffeomorphisms {qu LN U;) — Oy x Rm}
such that
the diagram (a) commutes:

and diagram (b) commutes:

¢Z(UZQU]) x R™ & ¢](UZQU])

prll me

¢:(Ui N U;) P ¢; (Ui N Uj)

where pri : O; X R™ — O; is projection of O;-part onto O;.

() (d5007): (w30) = (¢ 07" (2) 5 Aw)

where A, : R™ — R™ is a linear operator and an isomorphism.
We call 77!(x) = 7, the fibre over x € B.
Proposition 1.3 For all x € B, 7, is a vectorspace w.r.t.
(1) sum (T X Tp —5 T) @ 841, v9) = 952‘_1(@(13)7177"2(7)1) + pra(v2))
(i5) multiplication (R x 1y 25 1) : pa( M v) = s (di(2), X - pro(vs))

So: a vector bundle is a fibered set where the fibres are vectorspaces.
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Figure 1.1 The "trivial bundle” over B :

B xR

T —projection B onto B

R

Section s = smooth function B

Definition 1.7 Given a vector bundle E = B, a section of the bundle
1s a smooth map s : B — E s.t. mos = Idg. We denote the sections of a
bundle m by C*(m) = {sections s : B — E}.

C*(m) is a locally free module. For any b € B there exists a neighbourhood
U with b € U, and ey, .., e, € C®°(7) s.t. any s € C*°(7) can be written

m
s = Zfl-el- on U
i=1

where f; € C*°(B), i=1..n. We call {e;}\", a local basis of C*(r).

1=

Given a vector bundle E(r) —— B, we can construct a tensor bundle
by making the following step: For every b € B, m, is a vectorspace, so we can
take the union over b € B of the following tensorproducts

E(7T®k) = U W?k = U Ty Q... ® Ty
beB BT

Every point in E(7®*) is on the form (b;v = 3 a;(b)v;p), where b € B and
{v;} is a basis of 7°*. We get coordinates by mapping
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(b;v =3 a;(b)vy) N (¢(b); (a;(b))) € R** | where ¢ is a coordinate chart
of B around b. With the projection

k
E(x®) =5 B
where 7% +— b, this is a vectorbundle.

Of particular interest to us are various tensors over manifolds:
Example 1.1 The cotangent bundle

7 :T*B— B where T"B= | T;B
beB
and 7" :(dpf €TyB) — b
for any b € B.
The sections of this bundle are the differential 1-forms on B:

C>=(1*) = QY(B) is a C°(B)-module. Given local coordinates 1, .., T, in a
neighbourhood of b € B we get local coordinates on T*B by taking

<b§ dyf = Z)\idbﬂﬂi) ,ﬂ (¢(b)§ AL, - >\n)
i=1
By the section dx; we mean the map b — dyx;. The coordinates provide us
with the local basis {dx;};_,.

From this bundle we can build tensor bundles, and further, the differential
k-forms on B. For any £ > 1 we have

N, B) C (T; B)*"

which is a vectorspace for each b € B, and a fibre of a new bundle

7 . A"(T*B) — B. Like for the tensorbundles we get a coordinate chart
¢ on the new bundle taking a coordinate chart ¢ of B and the coefficient
map of v = ¥ aivyy € AF(Ty B) so that ¢ : (biv) = (6(b); (ay))

The sections of this bundle are the differential k-forms, C>(r"*) = Q*(B),
and a local basis is {dz;, A ... Adzy }; o

Another tensorbundle of interest to us is the bundle of symmetric 2-forms

SH1"B) = |J S*(T7B)

beB
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Sections here are the symmetric 2-forms over B.
A local basis is {dmi cdxy = %(dxZ ®dx; +dr; ® dxz)}

i<j
Example 1.2 The tangent bundle

7:TB — B where TB = UTbB
beB

and T*Z(XbGTbB)l—)b
for any b € B. The sections of this bundle are the vector fields on B:
C>®(1) = D(B) is a C*(B)-module, and is also a Lie-algebra w.r.t. the

operation
(X, Y]=XoY —-YoX

where X, Y are considered as operators on C*(B). Given local coordmates
x1,.,xn on U C B,b € U, we recall to have a basis {8”,— Dor } of the

vectorspace TyB. Thus we get local coordinates on T'B by taking gzﬁ

<b; Xy = Zai&,b> 2 (6(0); an, .., an)
i=1

By the section 0; = % we mean the map b — 0;. This provides us with the

k3

local basis { For } of D(B) in this coordinate neighbourhood.

Remark : for each manifold B we have the pairing
(,) :QYB)xD(B) — C=(B) where (0,X)(b)={(0,X;) €R
In local coordinates: < y Oida;, 370 U]a]> =36
Example 1.3 The k-jet bundles
m:J"B— B where J'B=J JiB

beB
and m: ([f]f € JFB) — b
for any b € B is a vector bundle for each k > 0.

Example: B = R, k = 1. Then we can think about J'(R) as consisting
of points (a, f(a), f (a)) where a € R and f € C=(R). Thus we can identify
JYR) with R3.



1.4. DIFFEOMORPHISMS: INDUCED HOMOMORPHISMS 13

1.4 Diffeomorphisms: induced homomorphisms

Let M € Sman, and ¢,y : M — M be diffeomorphisms. We then get the
following induced maps of various modules connected to the manifold:

Definition 1.8 We have the following induced module-homomorphisms :

(i) ¢*: C®(M) — C®(M)  with f+> fo¢
(11) ¢ : C®(M) — C®(M) with f — fo¢™  and:
(¢O¢)*:¢*ow*

(i11) ¢* : D(M) — D(M) with X — X o ¢*
(pot))" =4 oo
(v) ¢s: D(M) — D(M) with X +— (¢~ 1)* o X 0o ¢*  and:
(pov)=0¢.0th
O(fX) = 0.(f)ou(X)  Vf e C>=(M)
¢ [X, Y] = [ «(X),0.(Y)] and  ¢*[X,Y] = [¢"(X), ¢"(V)]
(v) ¢* : QM) — QY (M) with ¢*(w) given by
(¢7(w), X) = ¢" (w, 6.(X))
() 6o (M) — QM) with 6u() = (67 (w) and

(¢0¢)*=¢*0¢*
¢:(fw) = ¢:(f)ds(w) Vfe (M)

In addition we have
P (0, X) = (¢u(w), ¢u(X)) VYw € Q'(M), X € D(M)

Let w be a "word of length r” with letters 0,1 and A° = D(M), A =
QY(M). By A®Y we mean the "mized” tensorproduct of modules ac-
cording to the order of letters in w. Example: w = (1,1,0) = A%" =
QY M) @ QY M) @ D(M). The elements of this module are sections in
the corresponding tensorbundle. We define
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(vii) ¢y : A%V — A®™ by defining ¢.(6h @ ... ®6,) = ¢.(01) @ ... @ ¢.(6,)
on decomposable elements of A%V, and expanding as an R-module ho-
momorphism. Then

(¢O¢)* = ¢. 0 Yy
¢:(f0) = 0.(f)(0)  Vf e C®(M), 6 € A%

We are now ready to define the Lie-derivative along a vectorfield X € D(M)
of any tensor § € A%,

Definition 1.9 Let {A;} be the flow generated by the vectorfield X € D(M).
For each t this gives us a diffeomorphism Ay : M — M and thus an induced
module-homomorphism (Ay), : A®Y — A%, where A®" as defined above.

We define the operator
Ly : A®Y — A®Y

by the equation
(Ap)«(0) =0 —1t- Lx(0)+ o(t)

We call Lx(0) the Lie -derivative of 6 along X, and it has the following
properties:

Proposition 1.4 For 0; € A®Y we have:
(i) Lx(6y +05) = Lx(01) + Lx(61) R — linear
(i1) Lx(f0) = Lx(f)0+ f Lx(6) Leibniz — rule
(i7i) Lx(01 ® 03) = Lx(01) @ 05+ 60, ® Lx(02)  which again implies

LX(91 AN 92) == LX(91) N 92 + 91 AN Lx(eg)
LX(HI . ‘92) - LX(6’1) . ‘92 + 01 . Lx(eg)

() Lx(dw) = d(Lxw) Vw € QF(M)
(v) Lx (w,Y) = {(Lxw,Y)+ (w,LxY) VYwe Q' (M),X € D(M)
(vi) ForY € D(M), f € C®°(M) and w € Q¥(M) we have
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where _I s the inner derivative defined by the equation:
(X 20w, X1, Xp) = (w; X, Xy, oy Xi)
for w € Q*YM) and X, X, ..., Xp € D(M).
(vii) The operator ix : QQ*(M) — QF1(M) is defined by
ix(w) =X Jw
and satisfies the relation
Ly oiy —iy o Lx = ijxy]
for XY € D(M).

We will prove the statement (v) and how to find the Lie-derivatives of func-
tions, vectorfields and 1-forms:
For functions we have:

(A)«(f) = (Ae)" = (1=t - X +0(t))(f) = f —1- X(f) +o(t)
For vectorfields we have:
An(Y) =A%, 0Y oAl =(1—t-X+o(t))oYo(l+t X +o(t)) =
Y-t (XoY—-YoX)+o(t)=Y —t-[X,Y]+o0(t)
Given a 1-form w we have the following:
Ap @,Y) = (A (w), A (Y)) = (w —t - Lx(w) +0o(t),Y —t- Lx(Y) +o(t)) =
(W, Y) —t-[(Lx(w),Y) + (w, Lx(Y))] + o(t) = (w,Y) =1 Lx (w,Y) + oft)
So Ly (w) is defined through the pairing with Y:
(Lx(w),Y) = Lx (w,Y) = (w, Lx(Y))

and we note that this is exactly statement (v).
The rest of the properties follow by direct calculations from the properties
of the homomorphisms, or combinations of these.
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1.5 Connections and curvature
Let A be a commutative ring, and P an A-module. We consider the following:
D(A) ={X: A— A derivation of A}

Definition 1.10 Given X € D(A), we say that X : P — P is a derivation
over X if

(i) X(pr+p2) = X(p1) + X(p2) Vpi€P

(ii) X(ap) = X(a)p+aX(p) VYae€ A peP
Sometimes we write (X, X) to denote that X is a derivation over X.
Proposition 1.5 Given A, P as above:

(1) Der(P) = {X derivation over X, X € D(.A)} is an A-module with re-
spect to operations

(i) a-(X,X)=(aX,aX) a€ A (X,X)€ DerP
(i) (X, X)+ (Y, V)=(X+Y,X+Y) (X, X),(Y,Y)€E DerP

(2) DerP is a Lie-algebra with respect to bracket
(X, X),(V,Y)] = ([X.Y],[x,Y])

(8) The projection
DerP -~ D(A)
with (X, X) > X is a A-module and Lie-algebra homomorphism.

We want to connect this algebraic picture to vectorbundles and morphisms
of bundles, tangentbundles especially.

Definition 1.11 Let E(r) — M be a vectorbundle. An automorphism

of the bundle m is a pair (¢,¢) where M <5 M and E(m) 2, () are
diffeomorphisms s.t.
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(i) the diagram commutes

E(r) —*— E(n)

M — M
@

(ii) and @ln, : T — Ty is linear.

Connected to each such bundle we have A = C*°(M) and P = C*(7), where
P is an A-module. Assuming we have an automorphism (¢, ¢) of the bundle,
we get the following induced homomorphisms:

prA— A by frfo¢p and

¢*:P—P byp— (¢ opog)
Then ¢*(ap) = ¢*(a)¢*(p) for a € A,p € P

Assume we have a family { A, : M — M } of (local) diffeomorphisms gen-
erated by some X € D(M) = D(A). Then we have A} =1+t X + o(t).
If for each ¢ we have an automorphism, (A4;, A;) of the bundle, we can ask if
there is some object that generates the family {4}, as the vectorfield X is
an infinitesimal generator of the family {A;}. We define X by the following
equation:

A =14+t-X +o(t)

It is then easy to check that X is a derivation of P over X. So the question of
lifting a diffeomorphism A; to an automorphism of the bundle corresponds
to asking if there is a lifting of the generating vectorfield X +— (X, X).
This brings us to the definition of a connection. Let E(r) —— M be a
vectorbundle where M is paracompact. Take A = C>*°(M) P = C*(m).
Then D(A) = D(M). Let End P denote the endomorphisms of P. We have
the following sequence, the Atiyah-sequence :

0 — End P — Der P 5 D(A) — 0

where x : (X, X)—X.
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Definition 1.12 A connection in the vectorbundle E(r) —— M is an A-
module homomorphism

V :D(A) — DerP
that splits the Atiyah-sequence :
0 — End P — Der P "5 D(A) — 0
thatis : KoV =1
We will denote V(X) = V.

If we have a connection in our bundle, we can write
Der P=D(A)® End P

and a pair (X, X) = (Vx + h, X), for some h € End P.
But what happens to the Lie-algebra structure of D(A)?

Definition 1.13 We define the curvature Ry of V by
Ry(X,Y) = [Vx, Vy| = Vixy
Proposition 1.6 The curvature Ry satisfies the following VX,Y € D(A):
(i) Rv(X,Y)=—Ry(Y,X) skew — symmetric
(i) Ry(X;aiXs, >0, 0;Y;) =, abjRy(X;,Y;) A — additive
(i1i) K(Ry(X,Y)) =0 soRy(X,Y) € EndP

Due to this properties we can think of the curvature as a tensor
Ry € (M) ® End P : a skew-symmetric A-additive operator with values
in End P.

Example 1.4 If (M, g) is a Riemannian manifold with metric g, the fun-
damental theorem of Riemannian geometry gives that there exists a unique
Riemannian (Levi-Civita)-connection in the tangentbundle over M. That is,
there exists a unique operator

V : D(M) x D(M) — D(M)

with V(X,Y) = Vx(Y) that satisfies the following properties:



1.5. CONNECTIONS AND CURVATURE 19

(1) Vx is a derivation of D(M) over X

(2) V is C*(M)-linear in X

the Levi-Chivita properties

(3) [X,Y] =VxY —VyX forall XY € D(M)

(4) X(g(Y, 2)) = g(VxY, Z) + g(Y,VxZ) for all X,Y,Z € D(M)

From this connection one gets the curvature tensor of the Riemmanian man-

ifold.



Chapter 2

The solution space of a
distribution

2.1 Involutive distributions

Let P be a distribution of dimension n and codimension k£ on a smooth
manifold M. That is, dimM = n + k and at each x € M an n-dimensional
subspace P, C T,M is specified such that P, varies smoothly with x. We
define

AP)={XeDM) | X,,e P, , Vpe M}

Ann (P) = {w € Q'(M) | w(X) =0, VX € A(P) }

These are both C'°°(M)-modules, always locally free. Our distribution is
fixed whenever one specifies a (local) basis of either.

Definition 2.1 A submanifold N C M s an integral manifold of the distri-
bution P if T,N C P, for everyx € N. P is said to be completely integrable
if Ve € M, 3 integral manifold N through x such that dim N = n.

Let {X;}.—, be a (local) basis of A(P). We say that the distribution P is in

involution if
n

(X, X5 =Y i X,
r=1

for some cj; € C*(M) .
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Theorem 2.1 (Frobenius theorem)
P is completely integrable if and only if it is in involution.

A proof of this theorem can be found in [Boo75].

2.2 The solution space of a distribution P

Assume we have a completely integrable distribution P on a smooth manifold
M. P beeing completely integrable ensures us that through each x € M there
passes a connected integral manifold N = N(z) of P of dimension n. This
gives us the following equivalence-relation defined on our manifold M :

Given z,y € M |, we say that v ~vy , if y € N = N(x)

This relation is easily checked to be an equivalence relation. Given distribu-
tion P as above, we shall call

S=M/~

the space of solutions of P. Points in this quotientspace correspond to
connected integral manifolds of our distribution. We will try to define func-
tions and tensors on this ”invisible” solution space in terms of M. The main
idea is to consider objects over M which are invariant on our distribution,
in the sense defined below. For a distribution on a manifold we have the
notion of a symmetry. Let {A;} be the flow generated by X € D(M) on
M. X is a symmetry of the distribution P if for any ¢, and any x € M,
(A)«(Py) C P4, We denote the symmetries of P by Sym(P).

Theorem 2.2 The following are equivalent :
(1) X € Sym(P)
(2) Lx(A(P)) = [X,A(P)] C A(P)
(3) Lx(Ann(P)) C Ann(P)

For proof of the theorem, see [DLI1].
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Figure 2.1 Distribution P on manifold M

Our distribution P is in involution, so for all 1 <4, j < n we have [X;, X;| =
Yoy ¢ X, , where { X} | is a basis of D(P). Thus A(P) C Sym(P), and
we define

Char(P) = A(P) N Sym(P)

the characteristic symmetries of P.
Let
Shuf(P) = Sym(P)/Char(P)

denote the shuffling symmetries of P. The characteristic symmetries of P
leave each maximal integral manifold, whereas the shuffling symmetries will
move one into another, hence the name. If our space S possesses manifold
structure, we can explain geometrically how to interpret a symmetry on M
as a vector field on §. But before we look into cases when & € Sman we will
make some general constructions.

2.3 Functions and vectorfields on solution spaces

Definition 2.2 We define
FP)={feC®M) | X 2df =0, VX € A(P)}



2.3. FUNCTIONS AND VECTORFIELDS ON SOLUTION SPACES 23

to be the algebra of 1st-integrals of P.

The requirement X 1 df = df(X) = X(f) = Lx(f) = 0 gives us functions
that are constant on integral manifolds of P, so-called 1st-integrals of our

distribution. Any such f will give a well-defined function on S, and F(P) is
precisely the set { f € C*(M) | f(z) = f(y) V= ~ y}.

Proposition 2.1 F(P) is an R-algebra with respect to usual addition and
multiplication of functions, and multiplication by reals.

Proof : We need only check that for all f,g € F(P), f+gand fg € F(P) .
We have

Lx(f+9)=Lx(f)+Lx(g)=0 and

Lx(fg) = fLx(g) +gLx(f) =0

The rest of the properties are obvious. O

We want to define the objects that should correspond to vector fields on
S. They should be derivations of F(P), and really give meaning as vector
fields in the cases when S€ Sman.

Definition 2.3 Given P as above we define
D(P) = Shuf(P)
to be the Lie-algebra of vector fields of our distribution P.

Strictly speaking, the elements of D(P) are classes of vector fields modulo
the characteristic vector fields. Two representatives Y and Y’ of a class in
D(P) differ by an element X € A(P), Y’ =Y + X. The flows generated
by Y and Y’ respectively will move an integral manifold of P into exactly
the same new integral manifold. Thus two representatives of the same class
in D(P) will move a point [z] in & to the same point [y] € S, so it is
well-defined to consider this the action of the class of Y.

D(P) inherits the bracket of Sym(P) in the following way

[7, ?] © XY

For any Xy € A(P), X,Y € Sym(P) we get [X + Xo,Y] = [X,Y] since
[Xo,Y] € A(P). Hence, the bracket operation on D(P) is well defined. It
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inherits the Lie-algebra properties of the bracket on Sym(P).

Moreover, we can interpret the elements of D(P) as derivations of F(P).

Definition 2.4 Given Y € Sym(P), a representative of an element
Y € D(P), we define the operator

7:./’7(P) — F(P)

by taking Y (f) = Y (f).

Let Y/ =Y + X be another representative of Y, X € A(P). Then Y'(f) =
Y(f)+ X(f) =Y(f), so the operator is well-defined. The operator inherits
the derivational properties of Y, and the only thing we have to check, is that
Y(f) € F(P) for all f € F(P). But

Lx(Y(f)) = XY (f) = [X,Y](f) =Y (X(f) =0

since X, [X,Y] € A(P), so Y(f) € F(P).
Also, D(P) is clearly a F(P)-module.

2.4 The algebra of differential forms on solu-
tion spaces

Differential 1-forms on our space S should be objects dual to vectorfields

D(P). Thus we make the following step:

Definition 2.5 We define

Wﬁvz{wemm@‘ X Jw=0 and }

X Jdw=0 VX €A(P)

This ensures us that Lx(w) = 0 for X € A(P), and that (w,Y) € F(P)
where Y is a representative of a class in D(P). We check the latter:

Ly W,Y) = (Lx(w),Y) + (w, Lx(Y)) = 0

since Lx(w) = 0 and Lx(Y) € A(P). This gives us a way to find Ist-
integrals of our distribution, provided we know elements of D(P) and Q!(P).
Moreover, we can make the following definition.
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Definition 2.6 We define the pairing

(,) : QP) xD(P) — F(P)
by taking <w,7> def (w, X) = w(X), where X € Sym(P) is any representa-
tive of X € D(P), and w € QY(P).

It is easy to see that this is well-defined, assume X’ = X in D(P), then
X' =X + Xy where X, € A(P). This gives

wX) =w(X + Xp) = w(X) +w(Xy) = w(X)

The pairing is F(P)-bilinear
(fo, X) = (0, JX) = f (@, X)

for any f € F(P). Thus it plays the same role as the usual pairing of vec-
torfields and differentialforms.
We shall follow this line of construction further, and find out what corre-
sponds to [-forms, differentials and symmetric 2-forms in our picture.
Definition 2.7 We define

QZ(P)z{wte(M)‘ X Jw=0 and }

X Jdvw=0 VX € A(P)
and the operator
d:Q(P) — Q*(P) 1>0

by taking d(w) = dw, w € Q(P).
We define Q°(P) = F(P), and Q{(P) =0 when | < 0.

Remark : .
We have to show that d really maps Q'(P) C QM) into QF1(P). Let
w e QY(P), X € A(P). Then

X 1dw)=X Jdw=0 and d(dw)=d’w=0

50 dw = dw € QFL(P). Moreover, d inherits the properties of the usual
differential.
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Proposition 2.2 Let P be an involutive distribution of dim= n, codim= k.
Then locally any element 0 € Q'(P) is on the form

0= Za(il---il)eil VANPYRAN Qil
where the 0;,-s form a local basis of Ann(P)

Proof :
Let {6;}1F" be a local basis of Q'(M) such that {6;}" | generates Ann(P).
Take {E]}f:” to be the local basis of D(M) such that {E; }f:,? ., generates
A(P) and 0;(E;) = §;;. Any element 0 of Q'(P) C Q!(M) is on the form

0 = Z ozc,é’il /\/\9”

1<i1 <. <3 <k+n

for some o, € C*°(M), where o = (iy, ...,4;). By definition of Q!(P) we have
that £, 1 0 =0 for s=k+1,...,k 4+ n. By calculation we have that
(1) 0, AN NG NN i s =1,

Es 10, N.oNO;, = { 0 otherwise

Thus for £k +1 < s < k+n we have

k+n
Es_l 0 = Z OégEsJ «9i1 /\/\9”

1<y <ig<...<ig
i=k+1

By taking s = k 4+ n, we get that
Z (—1)1_105(7;17__71'1717]@_,_”)92‘1 VANAN Qil_l = 0
1<i1 <. <i_1<k+n

This implies that o, i, en) = 0forall 1 <4 < ... <4y <k+n—1
Repeating this for s = k +n — 1 and then consequently to s = k 4+ 1 we get
that o, ;) = 0 whenever 4; > k. Thus

0 = ZOégeil VANPYRAN Qil
for a, € C*°(M) and 6;, € Ann(P). O

Remark: We only used part (i) of the requirements on elements of

6 € Q!(P), namely that A 1 § = 0. Combining this with the requirement
LA# = 0 will give the conditions on the functions «,. These calculations will
be done for the 1-forms Q!(C¢) of a special distribution Cg¢ in Section 4.2.



24. THE ALGEBRA OF DIFFERENTIAL FORMS ON SOLUTION SPACES:

Corollary 2.1
QUP)=0 for 1>k

This follows immediately from Proposition 2.2.

To sum up the algebraic properties of our constructions in this section, we
state the following theorem.

Theorem 2.3 Given P as above
Q(P) =D (P)
SEL
18 a Z-graded o-commutative algebra w.r.t. the usual wedge product
A Q(P) x QYP) — Q°T(P)
o-commutativity means that w A0 = o(s,t)(0 Aw) where o(s,t) = (—1)*".
Also, the operator d is a derivation of degree +1 of Q' (P)

Proof :
We need to prove that 6 Aw € Q*T'(P) for any 6 € Q*(P), w € QY(P). Let
X € A(P). Then

X210 Aw)=X10)Aw+(-1)0AN (X 2 w)=0

Moreover, d(f Aw) = df AN w + (—1)°0 A dw, and by a calculation similar to
the one above we get
X 1d@Aw)=0

which implies that 6 A w € Q5T(P).
Each Q°(P) is a F(P)-module :

X1 fo=fX_1w=0
for every X € A(P),w € Q*(P), f € F(P), and
X Jd(fw)=X 1 (df Aw)=0

since df Aw € Q*TH(P). Thus fw € Q°(P).
It is obvious that °(P) is closed under usual addition of forms.
The properties of A and d are clear.
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2.5 Further properties of Q/(P)

We wish to see if Q!(P) really fits into the algebraic picture of differential-
forms versus vectorfields D(P), and functions F(P).
We shall see that the elements of Q!(P) algebraically play the role of I-forms.

Definition 2.8 Given an element 6 € QY(P) we define the following map:

f:D(P) x ... x D(P) — F(P)
l

by taking

H(Xh "'771) déf 9(X17 3] Xl)
where X; € Sym(P) are any representatives of elements X; € D(P).

We will sometimes use the notations

(X1, ..., X)) = (6; X1, ., X1) = (6; X1, .., X))

and not distinguish between # and 6. To see that this is a well-defined oper-
ation we have to check independence of choice of representatives in Sym(P).
Assume 7]- = Yj for some 1 < 57 <[. Then X ]’ = X, + X for some element
Xo € A(P). It follows that

0(X:,., X,

j7‘7Xl) =
= G(Xl, .,Xj, .,Xl) + (—1>] (Xo _ 0) (Xl, . Xj—hXj—i-lu .,Xl) =
=0(X1,., Xj,., X))

since Xo 1 6 = 0 by the definition of Q'(P). Thus @ is well-defined and clearly
inherits the tensorproperties; it is an l-alternating, F(P)-additive operator.
What is left to check, is that (X7, ..., X;) is really an element of F(P) for
any X; € Sym(P),0 € Q(P). Given X € A(P), we make the following
calculation:

LX (G(Xl,,Xl)) = LX O’éXk o... Oixl(e) =

[iXkOLXkO“‘Oin + i[X,Xk]oikalo"'oin} (9)

:iXkOLXkO...Oixl(e):...
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:iXkO...OinoLX(e):O

since Ly oix, —ix, o Lx = i[x,x, for all X;, and in addition
ix, O ... 0d[x,x,] 0... 0ix,(0)=0since [ X, X;] € A(P) foralli=1,.. k.

Let us consider tensorproducts of Q!'(P) over F(P). A general element
0 of (Q'(P))® is on the form 6 = ¥ a;, ;,6;, ® - - @6;, where 0;, € Q'(P) and
ail..il c f(P)

l

Definition 2.9 Let 0 € (Q'(P))*'. We define

f:D(P)x ... x D(P) — F(P)

by taking .
0 (X1, X0) =3, a0, (X0) -+ 0,(X))

for any representatives X; of X; € D(P).

It follows from our earlier investigations that this is well-defined with respect
to choice of representatives X;. To see that 0 (X 1y ooy X z) is an element in

F(P), we need only observe that 0;,(X;) € F(P) for i = 1..[, and thus this

is true also for the sum Y- oy, 4,0, (X1) -+ -0, (X)) - 0 inherits the tensorprop-
erties of 6.

We note that the anti-symmetrisation operator
1 ®l !
A (QY(P))T —Q(P)
defined by
A (Z ozilmilﬁil & - ®921> = Zozilmilﬁil VANRAN Qil
for ay,.., € F(P), 0; € QY(P) will map (Ql(P))®l into Q!(P). That is,

wedge products of elements in Q!'(P) with coefficients in F(P), and their
sums, will be elements of Q!(P). This follows from Theorem 2.3.
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2.6 Morphisms of distributions

For manifolds the natural map between them are smooth maps. Any smooth
map ¢ : M — N between smooth manifolds M and N induces the following
homomorphism of tangentspaces for every a € M

Gsa 2 ToM — Ty N
called the differential of ¢ at a. It is defined by

Pra(Xa)(f) = Xa(f 0 )

for any X € D(M), f € C°(N). We will denote the dual linear map of ¢, ,
by

Given w € QY(N), X € D(M) and a € M we have
* def
< ¢¢(a) ( We(a) )a Xa > = <w¢(a)a Cb*,a(Xa) >

This formula determines a smooth 1-form ¢*(w) € Q'(M), thus we have the
induced homomorphism

¢ QL (N) — QY (M)

This can be extended to tensor spaces, and to k-forms in particular, by taking
¢ QUN) — QY (M)

where

% def
(6"(@); X1, X0) (@) < (Wia); bua(Xia)s o Gra(Xia) )
for any w € Q(N), X; € D(M).
This homomorphism commutes with the differential d, and
¢" (0 Aw) = ¢"(0) A ¢"(w)
for any 6 € Q°(N), w € QY(N).
If we have two manifolds M and N equipped with the involutive distributions

P and @ respectively, what should it mean that (M, P) maps to (N, Q)? We
make the following step.
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Definition 2.10 Given pairs (M, P) and (N, Q), where M and N are man-
ifolds, P and @) involutive distributions on M and N respectively, then we
say that a smooth map ¢ : M — N is a morphism of distributions if

¢ (Ann(Q)) C Ann(P) (2.1)
where ¢* is the induced homomorphism ¢* : QY(N) — QY (M).

We will sometimes write (M, P) 2, (N, Q).

Geometrically, this means that a vector tangent to P is mapped into a vector
tangent to () by the differential of ¢ :

For any a € M, ¢..(P,) C Qp where b = ¢(a).

Proposition 2.3 The restriction of ¢* on QY(Q) C QYN) gives a F(P)-
module homomorphism

d¢* : Q) — Q'(P)

Proof: Let w be an element of Q!(Q), that is,

AQ) Jw=0 and A(Q)J dw=0
Take any X € A(P). Then

Xa I 0, (Wo(a)) = Pra(Xa) I W) =0

for any a € M since ¢, o(X,) € Qpa). Likewise,

Xo o ¢5(dwya)) = bua(Xa) 2 dwga) =0
for any a € M for the same reason. Thus, ¢*(w) € Q'(P). O

Corollary 2.2 A morphism of distributions ¢ : (M, P) — (N, Q) induces
a graded algebra-homomorphism

¢" QA (Q) — (P)
by restriction to ' (Q) C Q' (N) which commutes with d
¢* o d~: d~0¢*

Proof : All homomorphism-properties of ¢* are clear, and the Proposition
2.3 demonstrates that ¢* maps Q(Q) into Q!(P) for each [. O



32 CHAPTER 2. THE SOLUTION SPACE OF A DISTRIBUTION

2.7 Cohomologies of solution spaces.

We now have the Z-graded algebra 2'(P) connected to our distribution,
together with the derivation d : ' (P) — Q'(P). Thus we have the following
sequence:

0— F(P) -5 ol(P) L L OM(P) — 0 (2.2)
We will denote d = d; : Q/(P) — Q*'(P).
Definition 2.11
Z!(P) = Ker(d))
BY(P) = Im(d;_,)

We know that d? = 0, thus B'(P) is a linear subspace of Z'(P) for any I. We
form the following quotient

Definition 2.12 For every | € Z we define
H'(P) = Z'(P)/B'(P)
to be the 1-th cohomology group of the solution space of P.

It is clear that H!/(P) = {0} for < 0 and [ > k.
We can take the direct sum

H(P) =D, H(P)=Z2(P)/B(P)
where Z'(P) = @ Z'(P) and B'(P) = @,y B'(P).

Theorem 2.4 H'(P) is a Z-graded super-symmetric algebra with respect to
the multiplication induced by the wedge product:

0] [w] 6w

for0 € Z"(P), w € Z5(P).
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Proof: We have to show that the product is well-defined. Thus we prove
that

(i) Z"(P)N Z*(P) C Z"*(P) and

(ii) Z"(P) A B5(P) C B""*(P) for all r, s.

Assume that 0 € Z7(P) and w € Z°(P).
Then d(6 Aw) = 0 Adw + (—1)"0 A dw = 0, which proves (i).

Let 0 € Z"(P) and w € B*(P).

That is, df = 0, and there exists a wy € Q*71(P) such that w = dwy. But
then we have that d(wg A 0) = dwo A0+ (—1)*lwg Adf = w A B, sow A0 is
in the image of JS+T_1, which concludes the proof of (ii).

The rest of the properties are inherited from the wedge product. O

We shall investigate a slightly different picture. Namely, what happens if
we have a morphism of distributions, say

¢: (M, P)— (N,Q)

Can we connect their cohomology groups? The answer to that is yes. We
know that ¢ generates a homomorphism from Q/(Q) to Q(P) . Thus we may
investigate what happens to the subspaces Z(Q) and BY(Q), and in turn if
¢* can be extended to a map of cohomology groups.

Lemma 2.1 For any | € Z we have that
¢*(Z'(Q)) C Z'(P) and ¢*(B'(Q)) C B'(P)
Proof : Let w € Z/(Q) C QY(Q). Then ¢*(w) € Q!(P), and
d(¢"(w)) = d(¢*(w)) = ¢"(dw) = 0

which proves the first part of the lemma. Now assume that § € B!(Q). Then
there exists a 6y € Q71(Q) so that dfy = 6, and

¢"(0) = ¢*(dbh) = d(¢7(6h))

This implies that ¢*(6) is the image of the element ¢*(6y) € Q'~!(P), which
completes the proof. O
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Corollary 2.3 A morphism of distributions ¢ : (M, P) — (N, Q) induces
a graded algebra-homomorphism

¢": H(Q) — H'(P)

by ¢*([0]) < [¢°(0)]
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2.8 Examples

The following example will illustrate a distribution with a fairly complicated
solutionspace.

Example 2.1 Let M = T?, the torus with angular coordinates (6, p). It
can be interpreted as the quotient R?/ ~ where (6, p) ~ (0 + 27n, p + 2mm)
for all m,n € Z. We will describe our torus as the quotient D/ ~ of the
fundamental domain D = {(0,p) € R? | 0 < 0,p < 27}. Given w € R\Q,
the irrational flow on the torus is the flow generated by the vectorfield

Xw = 89 +w8p

This gives us a distribution P of dimension 1 and codimension 1 on 7?. When
w is an irrational number, each integral curve of the distribution is dense in
T?. Thus, this provides us with a rather complicated solution space S of the
distribution. But it is possible to investigate F(P) and Q'(P) for our P. We
have the following

F(P) = {f € O (R)

f(0,p) = f(0+2mn,p+2wrm) YmneZ | .
= R
and fyp=—-wf,

since the only smooth functions that are constant on a dense set in R? are
the constant functions themselves.

ONP) ={f(~wdf+dp) | f € F(P)} = R{~wdf +dp}

and the sequence
0 — F(P) 2 Q' (P) — 0

with HY(P) = kerdy = F(P) =R

In order to illustrate the complicated geometry of S, we will make a few pic-
tures. Starting with the fundamental domain D, we see that we can describe
S in terms of a smaller fundamental domain for the equivalence relation ~
on D.

If w < 0, then all equivalence classes of ~ are represented on the line
(0,—0), 6 € [0,27] in D, and this line can again be identified with the
interval I = [0,27]. If w > 0, do the same for the line (6,6). Each integral
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curve of X, leaves a dense set of crossing points on this line (see figure below)
that should all be identified by ~. Thus, we get our space S by identifying
all points on [ that correspond to one integral curve in D. This will be a very
complicated picture since each curve contributes with a dense set of points
in /.

21

o o ¢ o o oo | |
Figure 2.2 0 2n
Hlustration of S = 1/ ~ as quotient space of smallest fundamental domain.

We include yet another example of a 1-dimensional distribution on a two
dimensional manifold.

Example 2.2 Let M = R?\{0} with coordinates z, y, and P be the distribu-
tion generated by the single vectorfield X = 0,. The integral curve through
any point of M is obviously the vertical line through the point. Each point on
the z-axis with x # 0 represents a point in S. But the points (0, y) divide into
two classes, one class for y > 0, and one for y < 0. Thus, our solution space
is the so-called ”line with double point”. It looks like a copy of R\{0} with
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two points added at the origin, upper point denoted a, lower point denoted b.

Figure 2.3 Line with double point.

oo
X
Lo ~ .a
L
X /'\b
L Solution space
M =\R2\{0} S=M/~ =Line with "double point"

It is a non-Hausdorff manifold, covered by the following smooth charts. Take
Uy = S\ {b}
and chart map ¢, by
Idp\foy : R\{0} — R and a—0€R

Similarly we define a chart (U, ¢p) by changing the roles of the points.
These charts cover S, and on their intersection U, N U, = R\{0} the chart-
maps are equal, and thus compatible. We see that it is thus impossible
to differ between upper and lower point with continous functions. In these
charts, the smooth functions are smooth functions on the line that have the
same value at a an b. Both U/, and U, are isomorphic to R.

We want to calculate F(P), D(P) and Q'(P).

F(P)={feC*M)|X(f)=0,(f) =0} = C*R)
QNP) = QR
since w = f(z,y)dr+ g(z,y)dy € Q'(P) has to satisfy

(i) (w,0y) =0 and () dw 2 0, = 0y(f)dy Ndx 1 0, =0
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which implies that f = f(z) € C*°(R) and g = 0, hence w = f(z)dx.
D(P) = D(R)
since any element Y = f(z,y)0, + g(x,y)0d, in Sym(P) has to satisfy
[0y, f2,9)0: + g(x,9)0,] = h 0,

for some function h = h(z,y). This gives that f = f(x), smooth function.
Then Y mod X = f(x)0, is the form of any element of D(P).
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Riemannian structures on
solution spaces.

3.1 Symmetric 2-forms on §

We wish to investigate if it is possible to make further constructions similar
to usual tensor calculus over our space S. In this section we will look for
the analogue of the Riemannian manifold, namely a space equipped with a
symmetric (positive definite) 2-form.

Definition 3.1 We define

S*(P) = {9 c SQ(Ql(M))‘ 0(X,-)=0 and }

Lx(0) =0 VX € A(P)
We shall see that an element of S?(P) provides us with the following map:
Definition 3.2 Given g € S?(P) we define

g : D(P) x D(P) — F(P)

by §(X1, X2) = g(X1, Xy), where X1, Xy are any representatives of
71,72 c D(P)

It follows from the definition of S?(P) that the mapping is well-defined:
g(X + Xo, -) = g(X, -) for any Xy € A(P). What we need to check, is that
9(X1, Xs) € F(P) for any Xy, Xy € Sym(P). For every X € A(P) we have

Lx(9(X1,X2)) = Lx(g)(X1, X2) + 74

OON
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where v, = g(Lx X1, X2)+9(X1, LxX2) =0, since Lx Xy, Lx Xy € A(P). In
addition , Lx(g) = 0, so Lx(g(X1, X2)) = 0 which implies g(X, X3) € F(P).

Remark : The mapping is symmetric, bilinear and F(P)-additive.

Proposition 3.1 Any element g € S?(P) is on the form

g= > ajb;i-0;

1<i<y<k
where {0;}5_| are generators of Ann(P), and a;;-s some functions.

The requirement La(g) = 0 will give requirements on the a;;-s. A specific
calculation of this will be done in the Section 4.2, for the Cartan distribu-
tion.

3.2 Connection and curvature of (S, g)

Assume we have a symmetric 2-form g € S?(P). We say that g is positive
if it satisfies the condition

9(Xa, Xo) >0 forany X, € P,, ae M

For an ordinary Riemannian manifold (), g), we have the unique Levi-Civita
(Riemannian) connection (see Example 1.4 in Section 1.5). We wish to do
a similar construction for our space (S, g).

Definition 3.3 We say that a map
V :D(P) x D(P) — D(P)

with V(X,Y) = V+(Y) is a connection on the solution space of P
if it satisfies the following:
(1) Vx(fY +9Z) = [V5Y +gV5Z + X(f) Y + X(g) - Z
(2) VixivZ = [VxZ +9V5Z
for any X,Y and Z € D(P), f,g € F(P).
If our space S is equipped with a positive g € S*(P) we say that V is a

Levi -Civita connection if it in addition satisfies the properties (3) and
(4) bleow
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To produce such a V, we assume that we have a connection on M, that is,
an operator .
V:D(M)x D(M) — D(M)

that satisfies properties (1) — (2). To define V we take

def
Vx(Y) =

Vx(Y)

where X,Y are representatives of X and Y. We obviously need this to be
invariant with respect to choice of representatives X, Y.

Our first step will be to define our connection on a local basis of D(P), and
then expand by properties (1) and (2).

STEP 1 We need local basises for both differential forms and vectorfields.
To get an appropriate basis we do the following. Locally we can always
find k Ist-integrals of our distribution, fi,..., fr. We choose coordinates
1= f1, s Tk = fr, That, -, Thon SO that {dx;}; k+” constitutes our local basis
of Q'(M), and {9;}}77* the dual basis for D(M) ThlS assures that {9;}F17
is a local basis of the module A(P), and that {dx;}%_, is a local basis of the
annihilating module Ann(P). Also, a local basis for D(P) is given by the
classes of {0;}¥_,. We define the functions [, 1<s<kand1<i,j <k+n
by the following equation

erﬁ + Xij (3.1)

where X;; € A(P). Then

V3,@) = Va(0) = 2 T5

For our construction to work we need our I';;-s to satisfy several conditions.
First of all, they should be elements of F(P). We shall see that this will not
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present a problem to us when all other conditions are satisfied. Second, we
need that V is well-defined. This is ensured if and only if we take

Fszo for k<i<k+4+nor k<j<k+n
This immediatly gives that
V+(0) = Vy(Y) forall X,Y € D(P)

STEP 2 To require that V satisfies properties (3) and (4) will give us the
final conditions on the I';;-s.

We should have o B B
(3)  10:,9;] = V5,(9;) — V5,(9;)

for 1 <1i,7 < k. But our local basis {0;} commutes, thus

[0:,0;] =0 = Ek:(ﬁ —T5,)0,

which is equivalent to the condition
(3) Pfj = F;i

In order to simplify some of our further calculations we will introduce the
functions g;; = §(9;,9;) = ¢(9;,0;) € F(P). Our g is positive, so the matrix
G = (gi;) is invertible. The functions g are the entrys of the inverse matrix,
G~!' = (¢"). Defining I'yy; = Y8 ¢, gy gives us the following reformulation
of (3)

(3)" Tiji=Tjau

The condition (4) becomes
(4 0ilgje) = Tiji + Ty

Combining the two equations for different permutations of indices makes us
arrive at the following

Lemma 3.1

i = = [05(gi) — 0i(9i5) + 0i(g51)]

N —
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This means that our functions I';; are completely determined by g in a given
local basis {0;} of D(P). This in turn determines the functions

k
s ls
Fij = Zrijlg
=1

and thus our connection V locally. In ordinary Riemannian geometry the
functions I'{; are called the Christoffel symbols, and an approach to find that
they are uniquely determined by g is found in [Boo75]. That approach has
been the model of the construction above.

Remark : It is clear that every I'j; is an element of F(P). All g;; and
g"-s are elements of F(P), and all elements 9; € D(P) used on elements of
F(P) will give elements of F(P). Thus, the I'j;, which are sums and products
of such functions, will be elements of F(P). This concludes our construction.

Theorem 3.1 Let P be an involutive distribution, and S its solution space.
For any positive g € S?(P) there is a uniquely determined Levi-Civita con-
nection V on the solution space of P.

Proof : The Lemma 3.1 proves that V is uniquely determined locally in
terms of the functions I';;;, for any such g.

This procedure has shown the existence of a connection V on S. It can
also be copied in a basis different from the one above.

Assume that we have a k-dimensional transversal Lie-algebra G C D(P) with
generators { X; }*_,. Transversality is equivalent to the condition that the ma-
trix (6;(X;)) is nondegenerate, where {6;}*_, are generators of Ann(P). The
generators have the following commutator:

k
[YZ‘,YJ‘} = 2231 ijys

We can find a basis {X;}4" of D(M) so that {X;}% | is a set of repre-

sentatives of {X;}. As in the approach above we define the functions I'j;,
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1 <1,7 <n+k, by the equations
. k
Vi X = T5X+Y
s=1
where Y;; € A(P). As before, we have

k
Vfiyj - VXin — Z Fijs
s=1

and we must choose Ffj =0fork<i<k+4+nork<j<k+n toensure
that V is well-defined.

To find the remaining I'j;-s we again investigate the properties (3) and (4)
and get the following conditions. (3) is equivalent to

(3)" Tij=Tju+ciy
where c;;; = Y8 cijg9s1 The condition (4) becomes
(4 Xi(gj) = Lij + Ty

Again, combining the two equations for different permutations of indices
makes us arrive at the following:

Theorem 3.2
1
L = 3 lciji — ciji + cuij + X5 (ga) — Xi(gi5) + Xi(g51)]
for1 <i,5,1 <k.

This gives us our connection in terms of the basis {X;} and g, in the inter-
esting case when we have a Lie-algebra of symmetries of our distribution.

We are now ready to define curvature of our V.

Definition 3.4 The curvature Ry of V is defined by

Ry(X,Y) = [Vx, V¥| = Viz 7
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Ry has the following properties.
Proposition 3.2 For any X,Y € D(P) we have
(1) Ry(X,)Y) = —Ry(Y,X)
(2) Ry is F(P)-linear in both arguments.
(3) Ry(X,Y) is a F(P)-module homomorphism of D(P).

Proof : Property (1) is obvious, (2) and (3) will follow by direct calculation.

Thus, we can think of Ry as an element of Q%(P) ® End(D(P)).

Definition 3.5 We define the operator
R:D(P) x D(P) x D(P) x D(P) — F(P)

by

R(Ya 77 77 W) = g (RV(X7 ?) (7)7 W)
The operator R satisfies the following properties.

Proposition 3.3 For any X,Y,Z,W € D(P) we have

(1) RIX,)Y,Z,W)=—-R(Y,X,Z,W)
(2) R is F(P)-linear in all arguments.

Proof : The properties follow directly from the properties of Ry and g.
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ODE-s as distributions

4.1 The Cartan distribution C¢

We wish to investigate ordinary differential equations of order k, preferably
those that can be resolved with respect to the highest derivative:

y® = F(x,y,y/,...,y" V) (4.1)

We connect this equation to a special distribution in the space J*R in the
following way.

JFR is a (k + 2)-dimensional space whose points are all (k + 2)-tuples
(a,y(a),y'(a), ...,y (a)) with a € R, y € C*(R). Thus we can take J*R =
R*?2 with coordinates z, pq, ...., pr. In J*R we have the Cartan distribution
C of dimension 2 and codimension k defined by the k 1-forms

wop = dpy— prdx
w; = dp; — padx (4.2)
Wr—1 = dpg—1 — prdx

Moreover, our equation 4.1 defines a hypersurface

&= { (xvaapla 7pk) € ‘]kR ‘ Pr — F($7p0,p1, "'7pk:—1) =0 }

in J*R on which we take coordinates z, po, ...., px—1. The distribution C pro-
duces a 1-dimensional distribution C¢ when restricted to £, and we call this
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the Cartan distribution of the equation £. It has the same defining forms,
except we take

Wr—1 = dpr—1 — F(x,po, .-pr—1)dx
Integral curves of Cg¢ that project to the z-axis without degeneration can only
be curves of type

Po = y($)> P11 = y/(x)7 vy P = y(k)('r>

in J*R where y(x) € C*(R) is a solution of 4.1. The latter requirement
ensures that the curve lies in £. Thus finding solutions to the original differ-
ential equation is equivalent to finding integral curves of the distribution Cg,
and this will be our opening towards the constructions presented in Section
2.2

4.2 Symmetries and cosymmetries of the Car-
tan distribution

We start with the investigation of D(C¢), and include ideas and results from
[DLI1].

First of all, we note that the C°°(R¥*!)-module A(Cs) is generated by a single
vectorfield

0 0 0 0
D=—+4+p—+... + Pr— + F 4.3
O b1 e Pr—1 ET e ( )

In the quotient algebra Shuf(Cs) we have the relation
0 0 0 0

p = _plﬁ—po — — pk_l@pk_Q — Fapk_1 mod Char(Cg)
So we are only looking for symmetries on the form
X = aoi 4+ . + o 0 + a1 0
Ipo Opr—2 Opr—1

Combining this, and employing Theorem 2.2 by investigating the Lie-
derivatives Lp(w;), ¢ = 0..k — 1, we arrive at the following. Any symmetry
(modulo Char(C¢)) has to be on the form

k—1 ) a
X=X,= D*
& ;) (®) o,

(4.4)
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where the function ¢ = ¢(z, po, ..., pr_1) solves the Lie equation

L(¢) =0 (4.5)
for

k—1 0F
Z o ” (4.6)

the Lie operator. The function ¢ is called the generating function of the
symmetry X,. The results above are shown more rigorously in the article
[DLI1]. The article mainly treats the problem of finding symmetries of the
distribution by the approach explained above, and thereby finding solutions (
Ist-integrals) by quadrature. We will try to expand this picture by including
some of our constructions.

As our distribution Cg¢ is 1-dimensional, it is completely integrable by The-
orem 2.1 (the Frobenius theorem). We wish to place Ce¢ in the setting of
Section 2.2. According to our definitions lst-integrals are

F(Ce)={ feC®*™) | Lp(f)=0}
Furthermore, differential 1-forms are

Q'(Ce) ={0€Q€)| D1 0=0 and D 1 df =0}

As a matter of fact, the forms in Q2'(C¢) are also given in terms of a generat-
ing function , as is the case for symmetries modulo characteristic symmetries.
To recognize this we have to make the following steps.

The requirement D _1 § = 0 implies that 8 has to be on the form

k-1
0 = Z Biw;
i=0

for some functions ; since the Cartan forms {w;} generate the annihilating
module Ann(P). Combining that, and the requirement Lp(f) = 0 we get
exactly the forms in Q'(C¢). By calculation we have

LD(WZ') = Wi+1 1=0.k—2

k—1 0F
LD(wk—1) = Z%wz

1=0
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The requirement Lp(#) = 0 then gives the following set of k — 1 equations
on the functions f; :

D(B) = —Foy (4.7)
Bi = —=D(Bjt1) —¥Fjp, j=0.k-2 (4.8)

where F; = g—; and ¢ = (,_1. It is clear that by combining these equations
we get one equation on 1 alone, and the §;-s are given from . That is

Br—=Hi(v) 1=2.k (4.9)
where H; is the operator
1—2
H = (-1)"'D" =3 (-1)*D* f! (4.10)
s=0

with fsl = Friqi14s

Proof of equations (4.9) and (4.10). We will use induction on L.
For 1=2 we have:

Bi—2 = (=D — F—1)¢
from (4.8). Our formula (4.10) gives
Hy=—-D — Fj

which implies that (4.10) is correct for | = 2.
We will assume that it is also correct for 1, and calculate SBy_41) = Br—i—1-

Br—1-1 = =D (Br—1) — Fi—t)
by equation (4.8). Then
Br—11= (=D H — Fp)¢
By direct calculation (note that f! ; = f*!) we get that

-1

ﬁk—l—l _ (_1)1Dl . Z(_1)8D5f3l+1 w

s=0
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which is exactly H; 1. O

We can thus take [ = k and combine equations

Bo = Hi (1))

and
D(Bo) + Fotp =0
and get the following equation for v

L(4) =0 (4.11)
where
L= (CONDH) = S (1Y DU, (4.12)

We can calculate the adjoint operator Adj(L) of L by the rules
Adj(AB) = Adj(B)Adj(A) where Adj(f) = f for functions, and
Adj(D) = —D else. This shows that L* is actually equal to Adj(L).

L* can be written in the following way, ordered by the degree of D :
k—1 r
L= (-1D)"D" =S (-1 <r> D*(F,)D"* (4.13)
r=0 s=0 \°

Theorem 4.1 Any element in Q'(C¢) is on the form

k
0 =0y =vwp_1+ Y H(¢)wk

=2

for some generating function v that solves equation (4.11), the H;-s as given
in equation (4.10)

We shall call such 1-forms cosymmetries of our distribution, as they are
"duals” to our symmetries. We know that any pairing

f=(Xs,04)

of a symmetry and a cosymmetry will give a 1st-integral of the distribution
Ce. If we have k independent 1st-integrals of Cg¢, we have a implicit solu-
tion of our equation. In general, if we have some number of symmetries and
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cosymmetries, different pairing-combinations can give us functions that are
just constants or constant-multiples of eachother. So, having k£ independent
symmetries, and k independent cosymmetries is no guarantee to get k inde-
pendent 1st-integrals.

4.3 Remarks on S?(C¢)

How to find elements of S?(P)? We can try to find such symmetric 2-forms
directly from our definition. Assume g € S?(Q'(M)). The requirement
g(A(P),-) =0 implies that

g= 2 aywi-w;
0<i,j<k—1

where {w;}#= are the Cartan forms. The matrix A = (a;;) is symmetric. In
addition we must have Lp(g) = 0. This will give us a set of equations on the
functions a;;. These can be combined to give one equation on a generating

@5, and the other a;; — s will be given by the generator in a way similar to

(co)symmetries. This will be done for the Cartan distribution C¢ in the case
k=2.

On the other hand, if we know k independent elements 61, ..,0; of Q(P),
we get a symmetric, positive 2-form

k
g=>06;
=1

immediately.
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Algebraic picture
-relations with D-modules

5.1 A-module FE with a derivation

Let A be a commutative algebra with a derivation § : A — A, and E an
A-module. Assume that we have an operator

0:F —F
on our module such that
d(ax) = d(a)x + ad(x) (5.1)

forany a € A, x € E.
We denote this as a pair (E,d), and call F a D-module.
We define

E¥ ={r € E|ér=0} and A" ={a € A|da =0}
Proposition 5.1 E# is an A% -module.

Assume we have two such pairs (E1,0) and (Es,d). They give us new A-
modules with operators in the following ways

(1) Take the tensorproduct E;®FE,, which is again an A-module. The
operator 9 extends to the tensor product in the following way

5(z1 @ 12) & 6(11) @ g + 11 ® 8(2)
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on decomposable elements, and extend by property (5.1). Thus you
get a new pair

(B ® Es,0)

(2) Following (1), taking tensorproducts of E with itself gives us construc-
tions like
(SYE),d), where

Oy oooom) =60(xy) ooty + e+ 2y 0(1)
or (A/(E), ), where

i Ne Axy) =60(x) Ao A+ oo + 21 Ao AS()

(3) Also, we can extend d to the A-module Hom4(E,, Ey) by taking
(6F)(z) = F(d(x)) — 0(F(x))
for any I’ € Hom(E1, E»), and thus get a new pair (Hom(E1, E»), d)

The constructions above will provide us with several A-modules with induced
operators starting only with one pair (£, J).

We can define the dual
E* = Homu(E, A)

The induced operator 0 is then given by the formula in (3).
Also, we can construct various tensorspaces of E and E* like in (1) and

(2), including
E® E*= Homu(E, FE)

The reason this piece of algebra is included, is the following observation.
All our constructions F(Cg), D(Ce), Q(Ce), S?(Ce) in the previous section
fits exactly into this algebraic picture. Namely, we take

A=C®J'R) and E =D(J'R)/D
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where D is the characteristic vectorfield of the distribution C¢. The operator
in question is the Lie-derivative along D, 6 = Lp. So, starting with the pair

(E,Lp) (5.2)

we get all our well known tensorspaces.

e The dual space E* = Ann(Cs)
with the usual Lie-derivative L as induced operator.

o A% = F(C¢)
o B% =D(C¢)
° (E*)# = QYC¢)

o SQ(E*) = {ZOKUQZ . 9]' | 91-,9]- & A?’L?’L(Cg),aij € A}
with the usual Lie-derivative L as induced operator.

o SHE")F = 5%(Ce)

o N(E*) ={ T aiiy A .. A | 6; € Ann(Ce), i, s € A}
with the usual Lie-derivative L as induced operator.

(/\Z(E*)># _ Ql(Cg)
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ODE-s of order two

6.1 Symmetry, cosymmmetry and g-equations

Let our equation be of order two, and resolved with respect to the 2nd deriva-
tive.

y'=F(z,y,y) (6.1)

In this section we will find the equations connected to its (co)symmetries and
other constructions from Section 2.2. The distribution C¢ is of dimension 1
and codimension 2. We denote the coordinates on £ by x,u and p, thus our

vectorfield D becomes
D =0, + po, + Fo,

where F' = F(z,u,p). The Cartan-forms are
wo=du—pdr, w;=dp— Fdx
Our Lie equation is the following
L(p) =0 (6.2)
with the operator L
L=D?-F,D—F, (6.3)

Here F, and F), are the partial derivatives w.r.t. the variables u and p. If ¢
solves equation (6.2), it generates the symmetry

Xy =0¢0,+ D(¢)0,

|l
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To find cosymmetries we should find solutions of the equation
L*(y) =0 (6.4)
where
L*=D*+D-F,— F,=D*+F,D+[D(F,) — F)] (6.5)

which is equal to the adjoint operator Adj(L) of L. A solution 1 of (6.4)
generates a cosymmetry

wy = —(D + Fp)(Y)wo + Y wy

Before we investigate some examples of second order equations, we will find
the conditions on a symmetric 2-form to be an element of S?(P). We recall
that ¢ has to be on the form

2 2
g = QoW + QClole s W1 + a11Wy

to ensure that g(D, -) = 0. In addition we need to have that Lp(g) = 0. We
do the calculation
Lp(g) =

[ D(ag) + 2F,a01 ] wi+
+2 [CI,OO + (D + Fp)&ol + Fuall ] Wo - W + [(D + 2Fp)&11 + 2&01 ] w%

and see that Lp(g) = 0 is equivalent to the set of equations (i) — (4i7) on the
functions a;;

(’l) D(aoo) + 2Fu&01 =0
(Z’L) apo + (D + Fp)am + CLHFU =0
(i) 2a01 + (D + 2F,))ay =0

These equations can be written in the following way

(Z) D(CL(]o) = —ZFUCL(H
(44) agw = —(D+ Fp)ag — Fuan

1
(ZZZ) ap1 = —§(D —+ 2Fp)a11



6.1. SYMMETRY, COSYMMMETRY AND G-EQUATIONS o7

Equation (7ii) gives us ag; expressed in terms of aj;, and this we can substi-
tute into equation (zi). Thereby we have both ag; and ago expressed in terms
of the function ay;. By substitution in equation (i) we arrive at the following
conditions:

The function a;; must solve the equation

Lu(au) = 0 (66)
where L7 is the following operator
Ly = D* + [3F,] D* + [5D(F,) +2F; — 4F,] D+

+[2D*(F,) + 4F,D(F,) — 2D(F,) — F,F,]

Furthermore, the functions agy and ag; are given by

Qoo = Loo(au) (67)
with
Lop = (D?+3F,D +2[D(F,) + F? — Fy])
00 — 92 P P P 0
and
aor = Lo1(anr) (6.8)
with

1
Lo = —§(D +2F,)

Our calculations on g can be summarised in the following way.
Theorem 6.1 Any g € S*(C¢) is on the form

9= Loo(n) wg + 2Lo1(n) wo - w1 + nwi
where 1 solves the Equation (6.6).

Remark :
If we have two solutions 11, ¥ of the L*-equation, this produces two cosym-
metries 0, and 6. Their symmetric products 6%, 6, - 65 62, as well as their
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sums, must be elements of S%(C¢).
Hence, the functions 12, 11 and 12 must solve the equation

Lyn=0

We call the operator L;; the symmetric power of L*.

We now know how all elements of D(C¢), Q'(Ce) and S?(Ce¢) must look for
k = 2; they are all given by generating functions that have to satisfy certain
equations. These equations are in some sense more complicated than our
original one. But we are not looking for general solutions of them: for exam-
ple, to find a g for some equation y” = F' it suffices to find one solution of
the Lq;i-equation. Therefore we can look for generating functions of special
types, for example linear in p.

Also, we can try to investigate the problem, starting in the other end. As-
sume we have a specific 2-form g = agwi + 2agwow; + ajw?. We can then
try to find for which F-s these a;;-s satisty the conditions of Theorem 6.1.
That is, we get a class of equations that possess this kind of structure.

6.2 Equations with extra structure

Investigating an equation along the lines of our constructions connected to the
space S will at this point consist in searching for elements of D(C¢), Q'(C¢)
and S?(C¢). This will, in one way or the other, mean investigation of the
L, L* and Lq;- equations. One might also find other things than solutions
during such an investigation. One thing that was discovered conserning a
wide class of equations is the following.

Theorem 6.2 Given an equation

"

y' =)y +i(z,y)
we have the following relation between the associated L and L*-equations:
L(¢)=0 < L*(e"¢) =0

where o = a(x) is any function such that o' (x) = —y(z). The functions v(z)
and §(z,y) are arbitrary.
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Proof : Let F' = y(x)p + d(z,u). Then, for any ¢ we have
L(¢) = D*(¢) —1D(¢) — Fu¢
For any o = a(z) we have by straightforward calculation that
L*(e%9) = e* [ D*(0) + (20" +7)D(@) + (" + (o)’ + oy +7' = F,)o)
Choosing « such that o/ = —v implies that
2/ +v) =—y and (" + ()P +dv++ —F,) =-F,
thus for this choice of o we have that
L*(e*¢) = e*L(9)
which completes the proof. O

Given an equation of the type in Theorem 6.2 , we observe that we get the
following map:
¢ € kerlL — e%p¢€ kerl”

which in turn gives the corresponding map
A :D(Ce) — Q(Ce) (6.9)
defined by X, +— 0cap. This map is obviously R-linear.

We know that an element A = 3, c;o; ® 0; € QY (M) @ QY(M)
with o;,60; € QY(M) and ¢; € C°°(M) corresponds to a C°°(M)-linear map-
ping

A:D(M) — QM)

given by X — > ¢;04(X)6;.

We want to find such a A that maps Xy into 0.y for every ¢ that solves
L(¢) = 0. Calculating directly A(Xy4) we get that

A= —2e%y A wy (6.10)

which is an element of Q?(M).
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To check if A is an element of Q?(P) we calculate the Lie-derivative of A
along D
Lp(A) = 4ve®wy A wy

which is zero only in the cases when v = 0. Thus we have that

Theorem 6.3 FEquations of the type

y' = F(z,y)

where F is arbitrary, possess a symplectic structure on the space of solutions
given by the non-degenerated 2-form A = wy A w; € Q2(Ce).

Remark:

We make the following observation about 1st-integrals. Assume we have an
equation of the type in Theorem 6.2, with F,, = y(x). Assume a = a(x) so
that o/ = —v, and that we have a pair of symmetries Xy, , X4, and thus also
cosymmetries Gcag,, Ocag,. Their pairings will be the following:

<X¢17 ‘96“¢1> = <X¢27 96“(252) =0

and
<X¢17‘9€“¢2> = = <X¢27 ‘96“¢1> = ¢1D(¢2) - D(¢1)¢2

Thus, this will only give us one (possibly) non-zero 1lst-integral up to multi-
plication by constant.

6.3 Equations with constant coefficient g
Assume that our equation
y'=F(z,y.y)
posesses a metric structure where g is of the following form
g = aoow(z) + 2a01wp - w1 + a11w?

where all the a;;-s are constants, wy,w; the Cartan forms. We want to find
all equations that can have such a g. To do this we have to examine the
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equations for the a;;-s.

Take ¢ = a;; € R. Then the equation (6.8) for ag; becomes
ap]p — —FpCLH = —FpC

which implies that F}, is a constant

. o1
(Z) F, = _T

If we look at the equation (6.7) for agy we get that
Qoo — (Fp2 — Fu)C
which gives us the following requirement on F,

(ag; — cag)

(i) P, =0

that it is also constant. The final requirement on F' comes from the equation
(6.6) on aj;, namely that

2
(ti9) —2F,F,c= gam(agl —agpc) =0

We notice that a;; cannot be zero. If a;; = 0, the immediately ag; = agg = 0.
There are thus two possibilities for (iii) to be true:

(A) apy = 0 which corresponds to F, =0

(B) agy = % which corresponds to F,, =0

This can be formulated in the following way.

Theorem 6.4 There are only two types of equations that possess a constant-
coefficient g in the Cartan basis (up to multiplication by constants on g).
They are

(A) Equation "+ ay= f(x) with g¢=aw?+ w}
(B) Equation y” +ay’ = f(x) with g = a’w?+ 2awow; + w?

where f(x) is arbitrary and o € R.
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6.4 Some equations with known co-/symmetrie
and g

In this section we are going to investigate equations of the type

yv' =y + fy)

where the function f(y) is non-linear. That is, our F(z,u,p) = p+ f(u).

In the article [DLI1] the problem of finding p-linear generating functions of
symmetries is treated in full. All equations equipped with a two dimensional
Lie-algebra of such symmetries are classified, although with a minor misprint.

The quest is to find solutions on the form ¢ = a(x,u)p + B(x,u) to the
Lie-equation

Lé=0
and thus bescrive D(Cg) for this F.

But now we have also the problem of describing Q!(C¢) and finding element(s)
of S?(C¢). We make the following observation about F'.

F, =1, which by Theorem 6.2 implies that
L(¢)=0 <« L' (e"9)=0

Thus, solutions to the L-equation produces solutions to the L*-equation and
vice versa. Two independent solutions of the L*-equation produce two inde-
pendent cosymmetries , which in turn will give us an element of S?(Cg).

Theorem 6.5 Non-linear equations on the form y” =y’ + f(y) that possess
a two dimensional Lie-algebra of point-symmetries can be divided into classes

(1) and (2).

(1) y' =y +ae® —2  with a,b€R, a,b#0

(2) Y=y +aly+b)°— 222y +1)
with a,b,c e R and a#0, c#0,1,-3

These equations are equipped with the following structure, as listed below.
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Type (1)

(1) Solutions of L*¢ =0 :
¢r=p and ¢ =e""(p—3)

Corresponding symmetries:
X1 = poy + (p+ ae™ — 2)0, and
Xy = e~ [(p— 2)0u + ac™d,]

(ii) Solutions of L*i) = 0:
Yr=e"p and Py =e*(p—3)
Corresponding cosymmetries :
O =e " [(—p — ae + %)wo +pw1} and
Oy = e [(_aebu)wo + (- %)Wl}

(i7i) Metric structure :
g="0?+02 which corresponds to aj; = ¥} + 3.

2 2
g=¢e* [a2(1 + e ) e 4 (p — 3)2 +2(p— E)aeb“] w?
—2x 2 2 bu—2x —2x 2 —2z 2 2 2
—2e {p(p—g—i—a)jLa(p—g)e wowy +e {p +e (p—g) } Wy

Type (2)

(i) Solutions of L*¢ =0 :
opr=p and ¢ =e"(p—EL(u+1b)), where k= é—jri

Corresponding symmetries:

X1 =p0u+ [p+alu+b)— 22 (w+b)]9, and

Xy =" [(p— E2(u+ ) + (Mp + a(u +b)° — 5z (u+0))9, |

(ii) Solutions of L*1) = 0:
Y1 =e*p and oy =" V7 (p — Bl (y 4 b))

Corresponding cosymmetries :



64 CHAPTER 6. ODE-S OF ORDER TWO
0 =e* | (—p— ey (2c42)
1=e€ {( p—a(u—+b) —|—(C+3)2(u—|—b))w0 +pw1} and

Oy = e [(—Ep — a(u+b)° — 22 (u+b)wy + (p— 2 (u+b))wi |

(i7i) Metric structure :
g=0?+02 which corresponds to aj; = I + 3.

g=e2 K—p—a(wb)w ((ing;) (u+b)> 4
+ ek <—(k;1)p—a(u+b)c— Eic++3§2>(u+b)+ Uf;”) wi +

o2k <(k2 +jjﬁ%)pﬂt (kgl)a(u+b)c+ (4C+4)(u+b) _k 1)2” wo Wi

+ 6—296

Wy
6.5 Harmonic oscillator
We shall investigate the class of equations on the form
v'+cy=0 (6.11)

where ¢ € R. Whenever ¢ = a? > 0 we have the famous harmonic oscilla-
tor equation.

Our first observation is that (6.11) is of type (A) in Theorem 6.4, and thus
has a metric structure given by ¢ = cw? + w?. This g is positive for ¢ > 0.

Second, we find the following if we search for p-linear solutions to the Lie-
equation. The functions

¢p1=u and G2=p (6.12)
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solve L¢ = 0. They generate the following symmetries
X1 =u0,+p0, , Xo=p0,—cui, (6.13)

We note that /' = —cu = F, = 0 which by Theorem 6.2 implies that
solutions of the L*- equation must be scalar multiples of the solutions of the
L-equation. Hence the functions

Yr=u and Pp=p (6.14)
solve the equation L*1) = 0, and provides us with the cosymmetries
0 = —pwotuwr , by =cuwy+puw (6.15)

The pairing
(X1,05) = — (X5,01) = cu® 4 p?

is a 1st- integral of our equation. What is interesting, is that we get a new
g € S?(C¢) from our cosymmetries by taking

g = 0B+0; = [p*+Au]wi+2[up(l — )] wow + [u? + p?]wi
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