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HARMONICALLY IMMERSED SURFACES OF Rn 

GARY R. JENSEN AND MARC0 RIGOLI 

ABSTRACT. Some generalizations of classical results in the theory of minimal 
surfaces f :  M -+ Rn are shown to  hold in the more general case of harmoni- 
cally immersed surfaces. 

Introduction. Let (M,  g) be a connected Riemann surface with a prescribed 
metric g in its conformal class and let f :  M -+ Rn be an immersion. It is well 
known that f realizes M ,  with the induced metric from Rn, as a minimal surface 
if and only if f is a conformal (with respect to g) harmonic map (cf., for example, 
[3 or 81). That is, the theory of minimal surfaces is substantially the theory of 
conformally immersed harmonic surfaces. Our purpose is to analyze the case when 
f is simply a harmonic immersion, to introduce an appropriate Gauss map and, 
as the main achievement, to establish in this new setting the analogue of three 
fundamental results (cf. Theorems 1.1 and 2.1, and $3) in the theory of minimal 
surfaces: the harmonicity of the Gauss map (Ruh and Vilms [13]), equidistribution 
properties of the Gauss map in CPn (Chern and Osserman [land l l ] ) ,  and the 
Enneper-Weierstrass representation formulas recently due, for arbitrary codimen- 
sion, to Hoffman and Osserman [?I. The last two topics (the third for n = 3) have 
already been treated by T. K. Milnor (see for instance her survey article [9]),but 
as we remark in $2, our results complement hers in an interesting way. 

The method of the moving frame as well as the Einstein summation convention 
are used throughout this paper. 

1. The Gauss map and first properties. Let (M, g) be as in the Introduc- 
tion. We fix the index ranges 1 < A, B, . . . 5 n,  1 5 i,3 , .  . . < 2, 3 5 a,p,. . . < n. 
With K,  dV, and A we will indicate the Gaussian curvature, the volume element, 
the Laplace-Beltrami operator relative to  the metric g. The geometry of Rn is 
described by its homogeneous realization E(n) /SO(n)  via the components of the 
Maurer-Cartan form of E (n ) ,  the group of proper rigid motions of Rn. Briefly, 
under a local section of the bundle T :  E ( n )  --+ Rn 2 E(n) /SO(n) ,  the pulled back 
forms O A  and w i  with w i  + ~2 = 0, reflecting the structure of the Lie algebra 
of E(n) ,  describe respectively, a local orthonormal coframe and the corresponding 
Levi-Civita connection forms, while the structure equations reduce to the pull-back 
of the Maurer-Cartan equations of E(n) .  Let f :  M --+ Rn be an immersion. A 
Darboux frame along f is a map E :  U c M --+ E(n ) ,  U open in M ,  such that 
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T O E= f and 

on U ,  where we have dropped, and usually will, the pull-back notation E*.  Thus 
if {$) is a local orthonormal coframe for the metric g and if we set 

(1.2) f*oA = R ~ ~ Z ,  
then condition (1.1) becomes 

(1.3) R$ = 0. 


Furthemore, we suppose that E preserves the orientation of M ,  that is, 0' A O2 on 

M gives the correct orientation. Thus if ds2 is the metric induced by f ,  dli its 
volume element, and K its Gaussian curvature, we have 

(1.4) ds2 = R , ~ R ~ ~ ~ ~ J ,  

(1.5) d P  = udV, 

where to simplify notation we have set 

On the intersection of their domains of definition, if not empty, any other Darboux 
frame E is related to E by 

Here K- is an E(n)-valued function of the form 

A E S0(2 ) ,  and D E SO(n - 2), where we are realizing E(n)  as the subgroup of 
GL(n+1, R )  given by the elements ( E  ), where e = (eA)E SO(n) and eA, b E Rn .  
Therefore, under the general change of Darboux frame along f given by (1.7), 
and of orthonormal (oriented) coframe on M under the orthogonal transformation 
C E S0(2 ) ,  the matrix R = (R;) changes according to the law 

where " refers to quantities computed in the new frame E. From now on, quantities 
and computations will be with respect to a (local) Darboux frame E = ( E  {), along 
f. 


It is easy to verify that the map y f :  M --,CPn- '  defined by 

where square brackets denote the equivalence class, is independent of the frame. 
We call yf the Gauss map of the harmonic immersion f :  (M, g) -+ Rn.  Letting 
Qn-2 denote the quadric in CPn- ' ,  

Qn-2 = {[z]E cpn-I: tzz = 01, 

observe that yj(p) E Qn-2 if and only if R(p) = (R:(p)) is a positive scalar 
multiple of an element of SO(2). In other words yf : M --, Qn-2 if and only if 
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f is conformal. In case M is compact, it is proved in [12] that f is conformal if 
and only if ( f , r ( f )- 2 u ~ )> 0, where ( , ) is the scalar product in R n ,  H is the 
mean curvature vector of the isometric immersion f : (M,ds2) + R n ,  and r(f )  is 
the tension field of the map f (cf. [4]). That is, r ( f )  is the trace with respect to g 
of the generalized second fundamental tensor Vdf, which we determine as follows. 
Take the exterior differential of (1.2) and use the structure equations on R n  and 
(M,g) to obtain 

( d ~ f- + R F w ~ )  = 0,R:(o~ A (gk 

where pi are the connection forms of g relative to the orthonormal coframe {p". 
Cartan's Lemma then gives 

(1.10) ~ R ~ - R : ( O : + R ~ W ~ = R ~ $ ~ ~ ,R ~ . = R $ ,  

for some (local) functions R$ which are exactly the coefficients of Vdf, that is, 

A k i
Vdf = Rki(O (O @ e ~ .  

As an immediate consequence we deduce that 

proving the well-known fact that f is harmonic if and only if each one of its com- 
ponents is a harmonic function in the usual sense. 

As f is an immersion, splits into a tangential and a normal part, which 
decomposes Vdf into tangential, T ,  and normal, N ,  components given by 

Observe that T is the image under df of the difference of the Levi-Civita covariant 
derivatives associated, respectively, to ds2 and g, so that T = 0 if and only if the two 
connections have the same parametrized geodesics. An immersion f : (M, g) + R n  
such that T = 0 will be called affine. 

Using (1.3) in (1.10), we obtain 

But {oA} is a Darboux coframe along the isometric immersion f :  (M, ds2) -,R n .  
Hence, if h z  are the coefficients of the corresponding second fundamental tensor 
11, we have 

(1.13) w," = h ~ ~ j ,he. = 3%'23 ha. 

and using (1.2), (1.3), (1.13) in (1.12) we deduce, in matrix notation, that 

where Ra = (R;), R = (R t ) ,  and ha = (h;). Such an equation clearly relates 
N to 11. For instance, since by (1.6) R is invertible, we have N = 0 if and only if 
f (M)  is contained in a two dimensional plane of R n .  

For later use we take the exterior derivative of (1.10) and use the structure 
equations to obtain 
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where Skijlare the components of the Riemann curvature tensor of the metric g 
on M .  Setting 

then from the symmetry R: = R$ of (1.10) we deduce that 

(1.17) R A  -23k - R A  j a k ,  

while from (1.15) we obtain the commutation relations 

Let p :  Cn + Cpn-' be the natural projection. Then from the definition (1.9) 
of ~ f ,the structure equations, and (1.10) we have 

(1.19) dyf = ( ~ 2+ iRtk)(ok8PteA .  

Thus if dF2  is the Fubini-Study metric of CPn-' (normalized to have holomorphic 
sectional curvature 4), then 

where A is the invariant given by 

In particular, we recognize that if f :  (M,g) -+ Rn is an isometry, then A is the 
Gaussian curvature of g. 

Taking the exterior differential of (1.19) (i.e., its homogeneous variables version) 
and using (1.16), we compute the tension field 

of ~f which, using the commutation relations (1.17), (1.18), can be rewritten as 

DEFINITION. Let f :  (M,g) --, Rn be an immersion with tension field r ( f ) .  
Then we say that f has parallel tension field if V r ( f )  - 0, where V is the covariant 
derivative operator in f -'TR". 

In terms of coefficients, from (1.16) we see that V r ( f )  = 0 is equivalent to the 
equations 

Together, (1.23) and (1.24) prove the following. 

THEOREM 1 . 1 .  Let f :  (M, g) -+ Rn be a n  i m m e r s i o n .  T h e n  i ts  G a u s s  m a p  
~f : (M, g) --, CPn-' i s  harmonic  i f  and  only  if f has  parallel t ens ion  field. 

REMARK. When 1 is an isometry, we easily recover the result of Ruh and Vilms 

1131. 
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THEOREM1 . 2 .  Let f : (M,g) -+R n  be an immersion. Then the following are 
equivalent. 

(i) yf : (M,g) --t CPn- '  is antiholomorphic; 
(ii) y ; d ~ '  = -Ag; 
(iii) f is harmonic. 

PROOF. (i) is equivalent to (iii): in fact, from (1.19), yf is antiholomorphic if 
and only if 

o = (RA + iR!,)pk A j ~ ,= - i (~ f ,  + R A ) ~ 'A p2 

for each A, where (o = p1+ip2is a local basis for the (1,O) forms on the Riemann 
surface M .  But this happens if and only if r ( f )  = 0. 

By (1.20), (iii) implies (ii). On the other hand by (1.20), (ii) implies 

giving R;Rtk = 0 for each i and j ,  so that CA(Rfk) '  = 0. Thus (iii) follows from 
(ii). 

REMARKS1. By (ii), in case f is a harmonic immersion we have that A is the 
negative of the area magnification under the Gauss map yf .  

2. In case f is harmonic, A is also given by A = - $ ( l ~ d f( I 2 .  Furthermore, by 
the definition (1.21) of A ,  together with equations (1.14), (1.11), and (1.6) we have 

where the the last equality holds because f is harmonic. 
As observed above, if f is an isometry, then A = K = K; and if f is harmonic, 

then either K = 0 or the zeros of K are isolated and of finite order, that is, K is of 
analytic type (21. We do not know if A is always of analytic type, but we have the 
following partial result. 

PROPOSITION1 . 1 .  If f :  (M,g) -+ R n  is an afine harmonic immersion, then 
A is of analytic type. 

PROOF. Since f is harmonic and affine, A is the negative of the square of the 
length of the Cn-' vector with components Ryl + iRy2. Observe that because of 
(1.17) and (1.18) we have that RPz2 = RFz1 and Ry2] = Ry12. Since f is harmonic, 
(1.24) holds, and an easy computation using (1.16), (1.3) and T E 0 gives 

d(RE + iRy2) = (Rf1 + iRf2)(2i6$(o~-u,L;) mod p. 

A result of Chern (21 completes the proof of the proposition. O 

COROLLARY1 . 1 .  Let f : (M,g) -+ R n  be an afine harmonic immersion. Then 
its Gauss map y j :  (M,g) -+ CPn-I  is weakly conformal (in the sense of Gulliver, 
Osserman and Royden 151). 

PROOF.Immediate from Theorem 1.2 and Proposition 1.1. 
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2. Generalization of a theorem of Chern. The result we wish to establish 
is the following. 

THEOREM 2 .1 .  Let  f : (M, g) -, R n  be a harmonic  i m m e r s i o n  of a complete,  
oriented, s imply  connected surface M i n t o  R n  such  that  f ( M )  does n o t  lie in a 
plane. Let 7f: (M, g) -+ CPn-' be i t s  G a u s s  m a p  a n d  let  (CPn-')* be the  space 
of hyperplanes of CPn-' . If 

o n  M ,  t h e n  the  subset of hyperplanes  mee t ing  (M)  i s  dense  in (CPn-I)*.  

PROOF. We follow Chern [I]with some modifications. Suppose the conclusion 
of the theorem be false. If {zA) are homogeneous coordinates in CPn- l ,  then we 
can suppose that there is a neighborhood of the hyperplane z1 = 0 in (CPn-')* 
whose hyperplanes do not meet y f (M) .  Thus, the function 

satisfies 

(2.3) v 2 E 

on M for some E > 0. Since by Theorem 1.2 yf is antiholomorphic, we have 

with the usual meaning of the operators d and 8. It is well known that if K is the 
Kaehler form of CPn- l  then in homogeneous coordinates, 

so that in the open set z1 # 0 of CPn-I  

Therefore, on M ,  (2.2), (2.4) and (2.5) give 

(2.6) 7jn = 288 log V .  

On the other hand, since yf is antiholomorphic, (ii) from Theorem 1.2 yields 

It is well known, and easy to prove by using isothermal coordinates for the metric 
g on M ,  that 

2id8 log t = (A log t ) ~ '  A p2 .  

Hence comparing (2.7) with (2.6) gives 

(2.8) A logv = 2A. 
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Define a new metric j on M by setting j = vg. On M ,  j 2 ~ g ,so completeness 
of g implies completeness of j i. If K is the Gaussian curvature of j, then by a 
well-known formula we have 

that is, by (2.8); 
K = ( K  - A)/v. 

Thus under assumption (2.1) K 2 0, and therefore (M,g) is parabolic by a result 
of Huber [6]. But A I0 and by (2.8) and (2.3), log v is a superharmonic func-
tion bounded below. The maximum principle implies log v constant, and therefore 
A 0. This in particular implies that N defined in (1.11) is identically 0 so that 
f (M)  lies in a plane, a contradiction. 

REMARKS.1. Theorem 2.1 generalizes a result of Chern [I]proved under the 
additional hypothesis that f is an isometry. In this case A = K and assumption 
(2.1) of the theorem is automatically satisfied. 

2. Theorem 2.1 provides an interesting complement to  some results of T.  K. 
Milnor, namely to Theorems 2 and 3 in [9].In her theorems she assumes the com-
pleteness of the induced metric ds2,while we assume the completeness of g together 
with the inequality (2.1). Although completeness of ds2 implies completeness of her 
energy one metric, which is conformally equivalent to g, nevertheless there are many 
cases for which the induced metric is incomplete while our hypotheses hold. For 
example, if g is the usual flat metric on M = C ,  then our hypotheses hold for 
any harmonic map f :  C --t R n .  In general, the induced metric of such maps is 
not complete, as illustrated, for example, by taking n = 3, f = ( f l ,f 2 ,  f3), where 
f l  + if 2  = eZ and f3 = ~ e ( e ~ / ~ ) .(Thanks to  Albert Baernstein for this example.) 

3. The generalized Enneper representation. Let f :  (M,g) --t R n  be a 
harmonic immersion. Then from Theorem 1.2 we have that the map 7f:M --+ 

CPn-I  is holomorphic and we can construct a Cn-valued Abelian differential a on 
M by setting 

In fact, each component aAis well defined on all of M ;  that is, the above definition 
is independent of the choice of p and of the Darboux frame E along f .  This follows 
immediately from (1.7) and (1.8). One also easily verifies that each aAhas purely 
imaginary periods; that is, for any closed curve 7 in M 

J 7 

A simple computation shows that if ( , ) is the symmetric product in C n ,  then 

where R1 and Rz are the column vectors of the matrix R = (R;) and e(f)  is 
the energy density of f .  In particular, observe that (a,a) = 0 if and only if f is 
conformal. 
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Since M is connected, we can recover f up to an additive constant vector from 
the Abelian differentials a A .  Fixing a point p E M and letting 7 be any curve 
connecting p to the generic point q E M ,  set 

Then uA is single-valued because of (3.2) and uA + ivA is locally holomorphic. Let 
f A be the Ath component of f ,  and U a neighborhood of p on which the Darboux 
frame E along f is defined as well as the coframe pi of (M,  g) with corresponding 
dual frame Ei. Furthermore, let z = x + iy be a local complex coordinate so that 
(O = X 2  dz, for some nowhere zero function X on U .  Then 

a dEl = A-2- and E2= x-~ - - .ax dy 

But from the definition of a, 

If z(p) = 0 and z(q) = z, then 

because of the Cauchy-Riemann equations. From (3.5) we get 

proving, for U connected, that f A  and uA differ by an additive constant cA. By 
standard arguments on prolongation along a curve we obtain that 

(3.6) u = R e  S, a 

recovers the original immersion f up to a translation. 
On the other hand, suppose we are given on (M,  g) a Cn-valued Abelian differen- 

tial a with purely imaginary periods, so that (3.2) holds and such that (a,a)# 0 on 
M .  Then f defined as in (3.6) is an immersion and is harmonic because a Abelian 
implies that Af = 0. Furthermore, f will be conformal if and only if (a, a) = 0, 
and the energy density of f can be obtained via (3.4). 

The point is to  find a simple procedure to give a Cn-valued Abelian differen- 
tial on (M,  g) with the above properties. Again, start with a harmonic immersion 
f : (M,  g) -+ R n  and consider the Abelian differential a on M associated to f .  Sup- 
pose a1is not identically equal to i a 2 .  Then define a nonzero Abelian differential 
11 and meromorphic functions gP, 1 5 p 5 n - 2, by setting 
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Observe that the gp can have poles only where 7 vanishes. Furthermore, introduce 
the quadratic Abelian differential 

An easy computation shows that we can express the aAin terms of 77: gp, and p by 

Observe that the right-hand sides of equations (3.10) are holomorphic. Therefore, 
given an Abelian differential 77 (not identically zero): a quadratic Abelian differential 
p ,  and n - 2 meromorphic functions gp on M ,  such that (3.10) defines Abelian 
differentials aA,with (a,6) # 0 on M ,  and with purely imaginary periods, then 
equation (3.6) gives a harmonic immersion f : (M: g) -+ R n  whose energy density 
is related to (a:&) by (3.4). Such an immersion is conformal if and only if p - 0. 
A simple condition to guarantee that the differentials given by (3.10) are Abelian 
is as follows. 

At p, let pp be the order of the zero of 4: and let up be the maximum order 
of the poles of the gP and of C p ( g p ) 2  + p/q2.  Then the aAgiven by (3.10) are 
holomorphic if and only if pp > v, for every p E M .  Furthermore, if M is simply 
connected, then the aAhave no periods. 

We now analyze the case a' = i a 2  on M .  Consider the function 

where f i  = Re S7 a': i = 1:2. We have: with respect to a local coordinate z ,  

so that the function h : M -+ C is holomorphic, and (a')2+ (a2)2= 0 on M .  
Hence either h defines a minimal surface (possibly branched) or else a' = a2= 0 
on M, and f ( M )  is contained in R n P 2 .  Moreover: the map Y : (M,g)  Rn-2-+ 

given by Y = ( f o ) ,  2 5 /3 5 n,  is harmonic and, since f :  (M,g) -+ R n  is an 
immersion, the map X = ( fZ )  is regular if and only if Y is not. On the other 
hand, suppose we are given a holomorphic map h :  (M,  g) C and a harmonic -+ 

m a p Y :  (M:g)  -+RnP2.Define f = t ( f i ,  f a ) ,  where h =  f ' + i f 2  and Y =t ( f " ) .  
Then of course f : (M,  g) -+ R n  is a harmonic map and it is an immersion provided 
that Y is regular whenever the derivative of h is 0. 

REMARK.The results in this section generalize results of Hoffman and Osserman 
171. 
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