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Introduction

Over the past two decades, the geometry of surfaces and, more generally,
submanifolds in Möbius geometry has (re)gained popularity. It was prob-
ably T. Willmore’s 1965 conjecture [306] that stimulated this increased in-
terest: Many geometers have worked on this conjecture, and in the course
of this work it turned out (see for example [67] and [40]) that the Willmore
conjecture is in fact a problem for surfaces in Möbius geometry and that
the corresponding local theory was already developed by the classical ge-
ometers (cf., [218]). A crucial classical reference was [29]; however, it may
not be very easy to obtain and, once found, may not be very easy to read,
especially for non-German—speaking colleagues.

A similar story could be told about the recent developments on isothermic
surfaces — here, it was the relation with the theory of integrable systems,
first pointed out in [71], that made the topic popular again; also in this case
[29] turned out to be a treasure trove, but many more results are scattered
in the classical literature.

The present book has a twofold purpose:
– It aims to provide the reader with a solid background in the Möbius
geometry of surfaces and, more generally, submanifolds.

– It tries to introduce the reader to the fantastically rich world of classical
(Möbius) differential geometry.

The author also hopes that the book can lead a graduate student, or any
newcomer to the field, to recent research results.

Before going into details, the reader’s attention shall be pointed to three1)

other textbooks in the field. To the author’s knowledge these are the only
books that are substantially concerned with the Möbius geometry of surfaces
or submanifolds:
1. W. Blaschke [29]: Currently, this book is a standard reference for the

geometry of surfaces in 3-dimensional Möbius geometry where many fun-
damental facts (including those concerning surface classes of current in-
terest) can be found. Möbius geometry is treated as a subgeometry of
Lie sphere geometry.

2. T. Takasu [275]: Nobody seems to know this book; like [29], it is in
German, and the presented results are similar to those in Blaschke’s
book — however, Möbius geometry is treated independently.

1) Apparently there is another classical book [95] by P. C. Delens on the subject that the
present author was not able to obtain so far.



2 Introduction

3. M. Akivis and V. Goldberg [4]: This is a modern account of the theory,
generalizing many results to higher dimension and/or codimension. Also,
different signatures are considered, which is relevant for applications in
physics. In this book the authors also discuss nonflat conformal struc-
tures; almost Grassmann structures, a certain type of Cartan geometry,
are considered as a closely related topic (compare with the survey [7]).

Besides these three textbooks, there is a book with a collection of (partially
introductory) articles on Möbius or conformal differential geometry [170].
Here, Möbius geometry is mainly approached from a Riemannian viewpoint
(see, for example, J. Lafontaine’s article [173]), which is similar to the way
it is touched upon in many textbooks on differential geometry but in much
greater detail and including a description of the projective model.

A more general approach to Möbius geometry than the one presented
in this book may be found in [254], see also the recent paper [50]: There,
Möbius geometry is treated as an example of a Cartan geometry.

I.1 Möbius geometry: models and applications

In Möbius geometry there is an angle measurement but, in contrast to Eu-
clidean geometry, no measurement of distances. Thus Möbius geometry of
surfaces can be considered as the geometry of surfaces in an ambient space
that is equipped with a conformal class of metrics but does not carry a
distinguished metric. Or, taking the point of view of F. Klein [160], one can
describe the Möbius geometry of surfaces as the study of those properties
of surfaces in the (conformal) n-sphere Sn that are invariant under Möbius
(conformal) transformations of Sn. Here, “Möbius transformation” means
a transformation that preserves (hyper)spheres in Sn, where a hypersphere
can be understood as the (transversal) intersection of an affine hyperplane
in Euclidean space n+1 with Sn ⊂ n+1.

Note that the group of Möbius transformations of Sn ∼= n ∪ {∞} is
generated by inversions, that is, by reflections in hyperspheres in Sn.

The lack of length measurement in Möbius differential geometry has in-
teresting consequences; for example, from the point of view of Möbius ge-
ometry, the planes (as spheres that contain ∞) and (round) spheres of
Euclidean 3-space are not distinguished any more.

At this point we can already see how Euclidean geometry is obtained as a
subgeometry of Möbius geometry when taking the Klein point of view: The
group of Möbius transformations is generated by inversions; by restricting
to reflections in planes (as “special” spheres), one obtains the group of
isometries of Euclidean space.

Also, the usual differential geometric invariants of surfaces in space lose
their meaning; for example, the notion of an induced metric on a surface
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as well as the notion of curvature lose their meanings as the above exam-
ple of spheres and planes in 3 illustrates — the reason is, of course, that
these notions are defined using the metric of the ambient space. But the
situation is less hopeless than one might expect at first: Besides the angle
measurement (conformal structure) that a surface or submanifold inherits
from the ambient space, there are conformal invariants that encode some of
the curvature behavior of a surface. However, it is rather complicated and
unnatural to consider submanifolds in Möbius geometry as submanifolds
of a Riemannian (or Euclidean) space and then to extract those proper-
ties that remain invariant under the larger symmetry group of conformal
transformations.2)

I.1.1 Models of Möbius geometry. Instead, one can describe Möbius
geometry in terms of certain “models” where hyperspheres (as a second
type of “elements” in Möbius geometry, besides points) and the action of
the Möbius group are described with more ease. For example, we can de-
scribe hyperspheres in Sn ⊂ n+1 by linear equations instead of quadratic
equations as in Sn ∼= n∪{∞}— however, it is still unpleasant to describe
the Möbius group acting on Sn ⊂ n+1.

Let us consider another example to clarify this idea: In order to do
hyperbolic geometry, it is of great help to consider a suitable model of the
hyperbolic ambient space, that is, a model that is in some way adapted to
the type of problems that one deals with. One possibility would be to choose
the Klein model of hyperbolic space whereHn is implanted into projective n-
space Pn; then the hyperbolic motions become projective transformations
that map Hn to itself, that is, projective transformations that preserve the
infinity boundary ∂∞Hn of the hyperbolic space, and hyperplanes become
the intersection of projective hyperplanes in Pn with Hn. In this model,
for example, it is obvious that the Euclidean Parallel Postulate does not
hold in hyperbolic geometry. Another possibility would be to consider Hn

as one of the connected components of the 2-sheeted hyperboloid

{y ∈ n+1
1 | 〈y, y〉 = −1}

in Minkowski (n+1)-space n+1
1 = ( n+1, 〈., .〉). In this model3) it is rather

simple to do differential geometry. A third possibility, which we will come

2) This will become obvious when we take this viewpoint in the “Preliminaries” chapter that
is meant as an introduction for those readers who have a background in Riemannian geometry
but are new to Möbius geometry.
3) It is a matter of taste whether one wants to consider this as a different model for hyperbolic
geometry: Of course there is a simple way to identify this “model” with the Klein model; it is
just a convenient choice of homogeneous coordinates for the Klein model after equipping the
coordinate n+1 with a scalar product.
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across in the present text more often, will be to use the Poincaré (half-space
or ball) model of hyperbolic geometry, where Hn is considered as a subspace
of the conformal n-sphere. In this model, the hyperbolic hyperplanes be-
come (the intersection of Hn ⊂ Sn with) hyperspheres that intersect the
infinity boundary ∂∞Hn ⊂ Sn of the hyperbolic space orthogonally and
reflections in these hyperplanes are inversions.

In this book we will elaborate three and a half models4) for Möbius
geometry.

I.1.2 The projective model. This is the approach that the classical
differential geometers used, and it is still the model that is used in many
modern publications in the field. In fact, it can be considered as the model,
because all other “models” can be derived from it.5) A comprehensive treat-
ment of this model can be found in the book by M. Akivis and V. Goldberg
[4], which the reader is also encouraged to consult; our discussions in Chap-
ter 1 will follow instead the lines of W. Blaschke’s aforementioned book
[29].

To obtain this projective model for Möbius geometry the ambient (con-
formal) n-sphere Sn is implanted into the projective (n+ 1)-space Pn+1.
In this way hyperspheres will be described as the intersection of projective
hyperplanes with Sn ⊂ Pn+1, in a similar way as discussed above, and
Möbius transformations will be projective transformations that preserve Sn

as an “absolute quadric” so that, in homogeneous coordinates, the action
of the Möbius group is linear. This is probably the most important reason
for describing Möbius geometry as a subgeometry of projective geometry.6)

I.1.3 The quaternionic approach. Here the idea is to generalize the
description of Möbius transformations of S2 ∼= P1 ∼= ∪{∞} as fractional
linear transformations from complex analysis to higher dimensions. For
dimensions 3 and 4, this can be done by using quaternions — this approach
can be traced back to (at least) E. Study’s work [262]. Recently, the use
of the quaternionic model for Möbius geometry has provided remarkable
progress in the global Möbius geometry of surfaces [113].

One of the main difficulties in establishing this quaternionic approach
to Möbius geometry is the noncommutativity of the field of quaternions.
Besides that, it is rather seamless to carry over much of the complex theory.

4) As mentioned above, it is, to a certain extent, a matter of taste of what one considers as
different “models” and what one considers to be just different incarnations of one model.
5) Therefore, one could consider this model to be the only model and all other “models” to
be different representations or refinements of it; however, this is not the author’s viewpoint.
6) In [160], F. Klein undertakes it to describe many geometries as subgeometries of projective
geometry and, in this way, to bring order to the variety of geometries (compare with [254]).
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An important issue will be the description of (hyper)spheres in this
model. For this it is convenient to link the quaternionic model to the projec-
tive model by using quaternionic Hermitian forms; for the important case of
2-spheres, there will be a second description based on Möbius involutions.

I.1.4 The Clifford algebra approach. After describing Möbius geom-
etry as a subgeometry of projective geometry it is rather natural to use the
Clifford algebra of the (n+2)-dimensional space of homogeneous coordinates
of the host projective space, equipped with a Minkowski scalar product, in
order to describe geometric objects (cf., [155] and [154]) — just notice that
the development of this algebra, initiated by H. Grassmann in [130] and
[133] and by W. K. Clifford in [77], was originally motivated by geometry,
as its original name, “geometric algebra,” suggests. For example, the de-
scription of spheres of any codimension becomes extremely simple using this
approach. Our discussions in Chapter 6 on this topic were motivated by an
incomplete 1979 manuscript by W. Fiechte [117].

More common is an enhancement7) of this Clifford algebra model by
writing the elements of the Clifford algebra of the coordinate Minkowski
space n+2

1 of the classical model as 2 × 2 matrices with entries from the
Clifford algebra of the Euclidean n-space n. This approach can be traced
back to a paper by K. Vahlen [288]; see also [2] and [3] by L. Ahlfors.

In some sense this model can also be understood as an enhancement of
the quaternionic model (for 3-dimensional Möbius geometry): Möbius trans-
formations, written as Clifford algebra 2× 2 matrices, act on the conformal
n-sphere Sn ∼= n ∪ {∞} by fractional linear transformations.8) The de-
scription of Möbius transformations by 2× 2 matrices makes this approach
to Möbius geometry particularly well suited for the discussion of the geome-
try of “point pair maps” that arise, for example, in the theory of isothermic
surfaces as developed in the excellent paper by F. Burstall [47].

I.1.5 Applications. The description of each model in turn is comple-
mented by a discussion of applications to specific problems in Möbius dif-
ferential geometry. The choice of these problems is certainly influenced by
the author’s preferences, his interest and expertise — however, the author
hopes to have chosen applications that are of interest to a wider audience
and that can lead the reader to current research topics.

Conformally flat hypersurfaces are discussed in Chapter 2. Here we already
touch on various topics that will reappear in another context or in more
generality later; in particular, we will come across curved flats, a particularly

7) Thus we count the two descriptions as one and a half “models.”
8) This matrix representation of the Clifford algebra A n+2

1 corresponds to its “conformal
split” (see [154]); this choice of splitting provides a notion of stereographic projection (cf., [47]).
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simple type of integrable system, and Guichard nets, that is, a certain type
of triply orthogonal system.

Willmore surfaces are touched on as a solution of a Möbius geometric prob-
lem that we will refer to as “Blaschke’s problem.” In this text we will cover
only basic material on Willmore surfaces; in particular, we will not get into
the large body of results concerning the Willmore conjecture.

Isothermic surfaces will appear as another solution of Blaschke’s problem.
A first encounter of the rich transformation theory of isothermic surfaces is
also given in Chapter 3, but a comprehensive discussion is postponed until
the quaternionic model is available in Chapter 5; in the last two sections of
Chapter 8 we will reconsider isothermic surfaces and show how to generalize
the results from Chapter 5 to arbitrary codimension. We will make contact
with the integrable systems approach to isothermic surfaces, and we will
discuss a notion of discrete isothermic nets in the last section of Chapter 5.

Orthogonal systems will be discussed in Chapter 8. We will generalize the
notion of triply orthogonal systems to m-orthogonal systems in the con-
formal n-sphere and discuss their Ribaucour transformations, both smooth
and discrete. The discussion of discrete orthogonal nets is somewhat more
geometrical than that of discrete isothermic nets, and it demonstrates the
interplay of geometry and the Clifford algebra formalism very nicely.

I.1.6 Integrable systems. A referee of the present text very rightly made
the remark that “the integrable systems are not far beneath the surface in
the current text.” This fact shall not be concealed: As already mentioned
above, conformally flat hypersurfaces as well as isothermic surfaces are re-
lated to a particularly simple type of integrable system in a symmetric space,
“curved flats,” that were introduced by D. Ferus and F. Pedit in [112].

However, the corresponding material is scattered in the text, and we will
not follow up on any implications of the respective integrable systems de-
scriptions but content ourselves by introducing the spectral parameter that
identifies the geometry as integrable. Instead we will discuss the geometry
of the spectral parameter in more detail:

Conformally flat hypersurfaces in S4 are related to curved flats in the space
of circles, and the corresponding spectral parameter can already be found
in C. Guichard’s work [136]. In this case, a curved flat describes a circle’s
worth of conformally flat hypersurfaces, and the associated family of curved
flats yields a 1-parameter family of such cyclic systems with conformally
flat orthogonal hypersurfaces.

Isothermic surfaces are related to curved flats in the space of point pairs
in the conformal 3-sphere S3 (or, more generally, in Sn), and the existence
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of the corresponding spectral parameter will turn out to be intimately re-
lated to the conformal deformability of isothermic surfaces [62] and to the
Calapso transformation, see [53] and [55]. In fact, the associated family of
curved flats (Darboux pairs of isothermic surfaces) yields one of Bianchi’s
permutability theorems [20] that intertwines the Christoffel, Darboux, and
Calapso transformations of an isothermic surface.

For more information about the respective integrable systems approaches,
the reader shall be referred to [142] and to F. Burstall’s paper [47].

I.1.7 Discrete net theory. More recently, discrete net theory has become
a field of active research. In the author’s opinion, discrete net theory, as it
is discussed in the text, is of interest for various reasons: An obvious reason
may be the application of the theory in computer graphics and experimental
mathematics; however, the author thinks that it is also very interesting for
methodological reasons — the proofs of “analogous” results in corresponding
smooth and discrete theories are usually rather different. While proofs
in (smooth) differential geometry are often very computational in nature,
the proofs of the corresponding discrete results may be done by purely
(elementary) geometric arguments. In this way proofs from discrete net
theory sometimes resemble the proofs of the classical geometers when they
applied geometric arguments to “infinitesimal” quantities (cf., [70]).

As already mentioned above, we will discuss two discrete theories, one of
which is a special case — with more structure — of the other:

Discrete isothermic nets will be discussed in the last section of Chapter 5.
We will see that much of the theory of smooth isothermic surfaces can be
carried over to the discrete setup; in fact, many proofs can be carried over
directly when using the “correct” discrete version — discrete quantities
usually carry more information than their smooth versions. In this way,
the analogous smooth and discrete theories can motivate and inspire each
other.9) Note that the fact that computations can be carried over from one
setup to the other so seamlessly relies on using the quaternionic model for
Möbius geometry.10)

Discrete orthogonal nets will be treated more comprehensively, in Chap-
ter 8. This topic demonstrates nicely the interplay of analytic and geomet-
ric methods in discrete net theory, as well as the interplay of algebra and
geometry in the Clifford algebra model. In this way, its presentation serves
a twofold purpose. A highlight of the presentation shall be the discrete ana-
log of Bianchi’s permutability theorem for the Ribaucour transformation of

9) Despite the order of presentation, some of the proofs on smooth isothermic surfaces in the
present text were obtained from their discrete counterparts.
10) Or, equally, the Vahlen matrix approach should work just as well.



8 Introduction

orthogonal systems.

I.1.8 Symmetry-breaking. Finally, the author would like to draw the
reader’s attention to a phenomenon that he considers to be rather inter-
esting and that appears at various places in the text. First note that the
metric (hyperbolic, Euclidean, and spherical) geometries are subgeometries
of Möbius geometry.11) Now, imposing two Möbius geometric conditions
on, say, a surface may break the symmetry of the problem and yield a
characterization of the corresponding surface class in terms of a (metric)
subgeometry of Möbius geometry. The most prominent example for such a
symmetry-breaking may be Thomsen’s theorem, which we discuss in Chap-
ter 3: A surface that is Willmore and isothermic at the same time is (Möbius
equivalent to) a minimal surface in some space of constant curvature. Other
examples are Guichard cyclic systems, which turn out to come from parallel
Weingarten surfaces in space forms, and isothermic or Willmore channel
surfaces, which are Möbius equivalent to surfaces of revolution, cylinders,
or cones in Euclidean geometry.

I.2 Philosophy and style

In the author’s opinion, geometry describes certain aspects of an ideal world
where geometric configurations and objects “live.” In order to describe
that ideal world, one needs to use some language or model — that may
change even though the described objects or facts remain the same. Thus
a geometer may choose from a variety of possibilities when carrying out his
research or presenting his results to colleagues or students. In this choice he
may be led by different motivations: sense of beauty, curiosity, pragmatism,
ideology, ignorance, and so on.

I.2.1 Methodology. This book shall be an advertisement for “method-
ological pluralism”: It will provide the reader with three and a half “models”
for Möbius (differential) geometry that may be used to formulate geometric
facts. In order to compare the effect of choosing different models, the reader
may compare the treatment of isothermic surfaces — in terms of the classi-
cal projective model in Chapter 3, in terms of the quaternionic approach in
Chapter 5, and in terms of the Vahlen matrix setup in Chapter 8. The au-
thor hopes that the chance of comparing these different descriptions of the
geometry of isothermic surfaces compensates the reader for the repetitions
caused by the multiple treatment.

However, we will also pursue this program of “methodological pluralism”
in the details. Very often we will (because of the author’s pragmatism, sense

11) For the hyperbolic geometry, we already touched on this when discussing the Poincaré
model of hyperbolic geometry above.
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of beauty, or ignorance) use Cartan’s method of moving frames to describe
the geometry of surfaces or hypersurfaces. However, we will always try to
find an “adapted frame” that fits the geometric situation well. This notion
of an adapted frame, which is central to many computations in the text,
will change depending on the context. The discussion of isothermic and
Willmore channel surfaces in the last section of Chapter 3 may serve as
a typical example: Depending on the viewpoint we wish to take, we will
use frames that are, to an attuned degree, adapted to the surface or to the
enveloped sphere curve, respectively.

I.2.2 Style. Note that a “model” should always be distinguished from
what it describes, and that it is unlikely that a description using a model
will be optimal in any sense. This is even more the case as long as an
author has not stopped working and learning about his topic — here is
where the ignorance issue comes in. Therefore, the present text does not
claim to provide the optimal description of a subject, and the reader is
warmly invited to figure out better ways to think about, say, isothermic
surfaces. However, there is another issue related to the aim of this book
to make the classical literature more accessible to the reader: In this text
we will try to adopt certain habits of the classical authors and make a
compromise between modern technology and classical phrasing; in this way
a reader may be better prepared to study the classical literature — which
is sometimes not very easy to access.

I.2.3 Prerequisites. There is some background material that the reader
is expected to be familiar with: some basics in semi-Riemannian geometry,
on Lie groups and homogeneous spaces, and some vector bundle geometry.
All the needed background material can be found in the excellent textbook
[209]. Also, the reader shall be referred to [189], which is a treasure trove
for algebraic (and historic) background material, in particular on Clifford
algebras and quaternions.

In the “Preliminaries” chapter we will summarize some material on con-
formal differential geometry from the Riemannian point of view, mainly
following ideas from [173]. It is meant to be a preparation for those readers
who have some background in Riemannian geometry but who are new to
conformal differential geometry; the author took this approach when giving
a course for graduate students at TU Berlin in the winter of 1999—2000.
This chapter also serves to collect some formulas and notions for later ref-
erence, and a discussion of certain conformal invariants of surfaces in the
conformal 3-sphere is provided.12)

12) However, it shall be pointed out that this chapter is not meant as an introduction to nonflat
conformal differential geometry; for this the reader is referred to [254] and [50].
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I.2.4 Further reading. At the end of the book the author gives a selec-
tion of references for further reading, with comments.

Also, the list of references contains many more references than are cited
in the text: In particular, many classical references are provided to facilitate
the search for additional literature — in the author’s experience it can be
rather difficult to locate relevant (classical) references. For the reader’s con-
venience the coordinates of reviews are provided where the author was able
to locate a review, and some cross-references to occurrences of a reference
in the text are compiled into the Bibliography.13)

I.3 Acknowledgments

Many people have contributed, in one way or another, to this book — more
than I could possibly mention here. However, I would like to express my
gratitude to at least some of them.

First, I would like to thank my teacher, Ulrich Pinkall, who got me
interested in Möbius differential geometry in the first place. For helpful dis-
cussions or suggestions concerning the covered topics, for constructive crit-
icism and other helpful feedback on the manuscript, or for some other kind
of support I warmly thank the following friends and/or colleagues: Alexan-
der Bobenko, Christoph Bohle, Fran Burstall, Susanne Hannappel, Gary
Jensen, Catherine McCune, Patrick McDonough, Emilio Musso, Lorenzo
Nicolodi, Franz Pedit, Paul Peters, Boris Springborn, Yoshihiko Suyama,
Ekkehard Tjaden, Konrad Voss; as well as my wife, Heike Jeromin.

Special thanks also go to F. Burstall for many helpful discussions, in
particular on isothermic surfaces, and for his suggestion to investigate the
“retraction form”; Y. Suyama for providing me with a new explicit example
of a generic conformally flat hypersurface and for allowing me to include
it; E. Tjaden for always having the time to discuss and optimize explicit
examples, as well as for his help with computing/-er questions; and K. Voss
for allowing me to include joint unpublished results on Willmore channel
surfaces.

I am grateful for hospitality while (and for) working on this text at the
Mathematisches Forschungsinstitut Oberwolfach and the Forschungsinstitut
für Mathematik at ETH Zürich. This book is based on lecture notes of a
course given by the author at TU Berlin (1999—2000) and on the author’s
Habilitation thesis, “Models in Möbius differential geometry,” TU Berlin
(2002).

The text was typeset using plain TEX, the sketches were prepared using
xfig, and the surface graphics were produced using Mathematica.

13) Of course, this does not reflect all relevant text passages; for example, Blaschke’s book [29]
is not cited in every relevant paragraph, while other references only provide a technical detail.
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versity Press, who sent it to this referee and with whom it was a pleasure to
work anyway. For revising my English and for help during the preparation
of the final manuscript, I would like to thank Elise Oranges.



Preliminaries

The Riemannian point of view

As already mentioned before, this book grew out of the lecture notes of
a course given for graduate students who had previously taken a course
in Riemannian geometry. This preliminary chapter is meant to be of a
didactical (and historical) nature rather than to be a modern conceptual
introduction to conformal geometry; a modern treatment1) of conformal
geometry may be found in [254] or [50].

Thus, in this chapter, we will discuss basic notions and facts of conformal
geometry from the point of view of Riemannian geometry: This is a point
of view that most readers will be familiar with. The main goal will be
to introduce the notion of the “conformal n-sphere” — this is the ambient
space of the submanifolds that we are going to investigate — and to get some
understanding of its geometry. In particular, we will discuss Riemannian
spaces that are “conformally flat,” that is, look locally like the conformal
n-sphere.

In the second part of this chapter we will discuss the conformal geometry
of submanifolds from the Riemannian point of view: We will deduce how
the fundamental quantities of a submanifold change when the metric of the
ambient space is conformally altered, and we will discuss various conformal
and “Möbius invariants” that appear in the literature. Totally umbilical
submanifolds will be treated in detail because they will serve as a main tool
in our approach to Möbius geometry presented in the following chapters.

Much of the material in this chapter can be found in the two papers by
R. Kulkarni [170] and J. Lafontaine [173]; see also the textbook [122].

The contents of this chapter are organized as follows:
Section P.1. The notions of conformal maps and conformal structures on

manifolds are introduced and illustrated by various examples. The most
important conformal map given in this section may be the stereographic
projection. The metrics of constant curvature are discussed as represen-
tatives of the conformal structure given by the Euclidean metric. The
term “conformal n-sphere” is defined.

Section P.2. In this section, the transformation formulas for the Levi-Civita
connection and the curvature tensor under a conformal change of the
Riemannian metric are derived.

1) However, to appreciate the modern treatment of conformal geometry as a Cartan geome-
try, it should be rather helpful to be familiar with the classical model of Möbius differential
geometry as it will be presented in Chapter 1 of the present book.
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Section P.3. The Weyl and Schouten tensors are introduced via a decompo-
sition of the Riemannian curvature tensor that conforms with the trans-
formation behavior of the curvature tensor under conformal changes of
the Riemannian metric.

Section P.4. The notion of conformal flatness is introduced and related to
the existence of conformal coordinates. Then Lichtenstein’s theorem on
the conformal flatness of every surface (2-dimensional Riemannian mani-
fold) is presented and two proofs are sketched. One of the proofs is based
on the relation between conformal structures and complex structures on
2-dimensional manifolds.

Section P.5. The conformal flatness of higher dimensional Riemannian man-
ifolds is discussed: The Weyl-Schouten theorem provides conditions for
a Riemannian manifold of dimension n ≥ 3 to be conformally flat. A
proof of this theorem is given. As examples, spaces of constant sectional
curvature and of 3-dimensional Riemannian product manifolds are given;
the last example will become important when investigating conformally
flat hypersurfaces in Chapter 2.

Section P.6. The geometric structures induced on a submanifold of a Rie-
mannian manifold are introduced via the structure equations: the in-
duced connection and the normal connection, the second fundamental
form, and the Weingarten tensor field; and their transformation behav-
ior under a conformal change of the ambient Riemannian structure is
investigated. Some conformal and Möbius invariants are discussed. In
particular, we arrive at Fubini’s conformal fundamental forms for sur-
faces in the conformal 3-sphere, and we investigate Wang’s “Möbius
form,” which turns out to be a Möbius invariant but not a conformal
invariant; however, Rothe gave a conformally invariant formulation for
Wang’s Möbius form in the 2-dimensional case. Finally, it is shown
that the notions of curvature direction and of umbilic are conformally
invariant.

Section P.7. Using the conformal invariance of umbilics, we introduce hy-
perspheres as totally umbilic hypersurfaces that are maximal in an ap-
propriate sense. As examples, we discuss the hyperspheres of the spaces
of constant curvature — of particular interest may be the hyperspheres
in hyperbolic space. Using Joachimsthal’s theorem, spheres of higher
codimension are then characterized in two equivalent ways. An ad-hoc
definition is given for hyperspheres in the conformal 2-sphere S2.

Section P.8. In this final section the notion of Möbius transformation is in-
troduced, and Liouville’s theorem on the relation between Möbius trans-
formations and conformal transformations is formulated; a proof will be
given later.

Remark. As indicated above, in this chapter the reader is expected to have
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some background in Riemannian geometry. On the other hand, most of the
presented material will be familiar to the reader, so that this chapter may be
omitted from a first reading; it may rather serve for reference. However, this
chapter may be a good introduction when giving a course on the subject.

P.1 Conformal maps

First, we recall the notion of a conformal map between Riemannian mani-
folds and the notion of conformal equivalence of metrics:

P.1.1 Definition. A map f : (M, g)→ (M̃, g̃) between Riemannian mani-
folds is called conformal2) if the induced metric f∗g̃ = g̃(df, df) = e2ug with
some function u : M → .

Two metrics g and g̃ on M̃ = M are said to be conformally equivalent if
the map f = id is conformal.

RI
n

Sn

σ_

σ_

Fig. P.1. The stereographic projection

P.1.2 Note that a map f : (M, g) → (M̃, g̃) is conformal iff it preserves
angles iff it preserves orthogonality: Clearly, a conformal map preserves
angles, and hence it preserves orthogonality. It remains to understand that
f preserving orthogonality forces f to be conformal. For that purpose, let
(e1, . . . , en) denote an orthonormal basis of TpM , with respect to g; then,
0 = f∗g̃p(ei, ej) and 0 = f∗g̃p(ei + ej , ei − ej) = f∗g̃p(ei, ei) − f∗g̃p(ej , ej)
for i �= j, showing that the df(ei) are orthogonal and have the same lengths.
Hence f is conformal.

P.1.3 Examples. The stereographic projections σ±, defined in terms of

2) Note that, by definition, the conformal factor e2u > 0 — allowing zeros of the conformal
factor, the map is called “weakly conformal.”
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their inverses by

σ−1
± : n → Sn ⊂ n+1 = × n, p �→ 1

1+|p|2 (∓(1− |p|2), 2p),

are conformal (cf., Figure P.1).
The Mercator map of the world (assuming the world is a 2-sphere), given

by the parametrization (u, v) �→ ( 1
coshu cos v,

1
coshu sin v, tanhu), is confor-

mal;3) the Archimedes-Lambert projection (projection of the sphere to the
cylinder along lines perpendicular to the axis) is area-preserving but not
conformal. Note that the system of meridians and parallels of latitude still
forms an orthogonal net (see [260]).

The metrics gk|p = 4dp2

(1+k|p|2)2 , k ≥ k0 for some k0 ∈ , are conformally
equivalent on {p ∈ n | 1 + k0|p|2 > 0}; in particular, the standard metrics
of constant curvature4) k ≥ − 1

r2 (cf., [122]) are conformally equivalent on
the ball B(r) := {p | |p| < r}. The Poincaré ball model of hyperbolic space
of curvature k = − 1

r2 is obtained as the only complete space in the family.
The metric 1

p20
(dp20+dp2) on (0,∞)× n is clearly conformally equivalent

to the standard Euclidean metric on that set as a subset of n+1. This met-
ric has constant sectional curvature −1 (cf., [162]) as one either computes
directly or one concludes by defining an isometry onto the Poincaré ball
model (B(1), g−1) given above; this can be done by using a suitable “inver-
sion” (we will learn about inversions later). This is the Poincaré half-space
model of hyperbolic space.

P.1.4 Definition. A conformal equivalence class of metrics on a manifold
M is called a conformal structure on M .

P.1.5 Clearly, “conformally equivalent” defines an equivalence relation for
Riemannian metrics on a given manifold M . Thus, this definition makes
sense.

Note that in [170] a slightly more general definition is given: There,
a conformal structure is defined via locally defined metrics; however, any
conformal structure in this wider sense contains a globally defined represen-
tative by a partition of the unity argument (see [170]).

One particular example of such a conformal structure on a specific man-
ifold will become very important to us — as the ambient space of the sub-
manifolds or hypersurfaces that we are going to examine:

3) Note that the lines v = const give unit speed geodesics in the Poincaré half-plane model
(see the next example); the sphere is then isometrically parametrized as a surface in the
space S1 ×H2, which is conformally equivalent to 3 \ {(0, 0, t)} equipped with the standard
Euclidean metric.
4) We will see later how to describe these models via “generalized stereographic projections.”
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P.1.6 Definition. The n-sphere Sn equipped with its standard conformal
structure will be called the conformal n-sphere.

P.2 Transformation formulas

Our next goal is to give the transformation formulas for the Levi-Civita con-
nection and the curvature tensor of a Riemannian manifold under conformal
changes of the metric.

P.2.1 Lemma. If g̃ = e2ug, then ∇̃ = ∇ + B with the symmetric (2, 1)-
tensor field B(x, y) := du(x)y + du(y)x− g(x, y)gradu.

P.2.2 Proof. Obviously, ∇̃ := ∇+B defines a torsion-free connection as B
is symmetric. Since

(∇̃xg̃)(y, z) = e2u[2du(x)g(y, z)− g(B(x, y), z)− g(y,B(x, z))] = 0,

this is the Levi-Civita connection for g̃. -

The next definition is of a rather technical nature but allows us to write
the transformation formulas for the curvature tensor in a much more con-
densed form (cf., [173]):

P.2.3 Definition. Let b1, b2 : V ×V → be two symmetric bilinear forms
on a vector space. The Kulkarni-Nomizu product of b1 and b2 is defined as

(b1 ∧ b2)(x, y, z, w) :=
∣∣∣∣ b1(x, z) b1(x,w)
b2(y, z) b2(y, w)

∣∣∣∣+ ∣∣∣∣ b2(x, z) b2(x,w)
b1(y, z) b1(y, w)

∣∣∣∣ .
P.2.4 Note that the Kulkarni-Nomizu product is bilinear (thus it qualifies
as a “product”) and symmetric, b1 ∧ b2 = b2 ∧ b1, and that it satisfies the
same (algebraic) identities as a curvature tensor:
1. b1 ∧ b2(x, y, w, z) = b1 ∧ b2(y, x, z, w) = −b1 ∧ b2(x, y, z, w),
2. b1 ∧ b2(x, y, z, w) = b1 ∧ b2(z, w, x, y),
3. b1 ∧ b2(x, y, z, w) + b1 ∧ b2(y, z, x, w) + b1 ∧ b2(z, x, y, w) = 0.

These statements are proven by straightforward computation.
With this, the transformation formula for the curvature tensor reads

P.2.5 Lemma. If g̃ = e2ug, then the (4, 0)-curvature tensor of g̃ is given
by r̃ = e2u(r − bu ∧ g), with5) the symmetric bilinear form

bu(x, y) := hessu(x, y)− du(x)du(y) + 1
2g(gradu, gradu)g(x, y).

5) We use the following sign convention: R(x, y)z = −[∇x∇yz −∇y∇xz −∇[x,y]z].
Also note that, b̃−u = −bu so that changing the metric conformally and then changing it back
has no effect on the curvature tensor — as it should be.



P.3 The Weyl and Schouten tensors 17

P.2.6 Proof. Write B = ∇̃ − ∇; then,

R̃(x, y)z −R(x, y)z
= −(∇xB)(y, z) + (∇yB)(x, z)−B(x,B(y, z)) +B(y,B(x, z)).

With B(y, z) = du(y)z + du(z)y − g(y, z)gradu,

g((∇xB)(y, z), w)
= hessu(x, y)g(z, w) + hessu(x, z)g(y, w)− hessu(x,w)g(y, z),

g(B(x,B(y, z)), w)
= [du(x)du(y)g(z, w)− g(x, y)du(z)du(w)]

+ [du(x)du(z)g(y, w) + 2g(x,w)du(y)du(z)− g(x, z)du(y)du(w)]
− g(x,w)g(y, z)g(gradu, gradu).

Adding the respective terms up, the claim follows. -

P.2.7 Corollary. For the sectional curvatures, a conformal change of the
metric g → g̃ = e2ug yields6) K̃(x ∧ y) = e−2u(K(x ∧ y)− tr bu|x∧y).

If dimM = 2, then K̃ = e−2u(K −∆u).

P.2.8 Proof. With an orthonormal basis (e1, e2) of x∧ y with respect to g,
we have

K̃(x ∧ y) = r̃(e1,e2,e1,e2)
g̃(e1,e1)g̃(e2,e2)

= e−2u(r(e1, e2, e1, e2)− bu(e1, e1)− bu(e2, e2))
= e−2u(K(x ∧ y)− tr bu|x∧y).

If dimM = 2, then tr bu = tr hessu = ∆u. -

P.3 The Weyl and Schouten tensors

From the transformation formula for the (4, 0)-curvature tensor we see that
a conformal change of metric effects only the “trace part” of the curvature
tensor, while the trace-free part is just scaled. This suggests a decomposition
of the curvature tensor into a “trace part” and a “trace-free part” that is
adapted to conformal geometry (cf., [122] or [173]).

P.3.1 Definition. Let (M, g) be an n-dimensional Riemannian manifold.
Then, the Weyl and Schouten tensors are defined as

s := 1
n−2 (ric−

scal
2(n−1)g) (Schouten tensor),

w := r − s ∧ g (Weyl tensor).

6) For the moment, “x ∧ y” just denotes the 2-plane spanned by the two vectors x and y.
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P.3.2 The Weyl tensor is “trace-free”: With an orthonormal basis ei at
p, we have

∑
i w(x, ei, y, ei) = ric(x, y) − (n − 2)s(x, y) − tr s · g(x, y) = 0

indeed. On the other hand, if r = w + s ∧ g with a “trace-free” tensor w,
then

ric = (n− 2)s+ tr s · g
scal = 2(n− 1)tr s,

which implies that s is the Schouten tensor and w is the Weyl tensor
(cf., [122]).

The transformation behavior of the curvature tensor is now easily de-
scribed by that of the Weyl and Schouten tensors:

P.3.3 Lemma. Under a conformal change g → g̃ = e2ug of the metric,
the Weyl and Schouten tensors transform as follows:

w → w̃ = e2uw ,
s → s̃ = s− bu.

In particular, the (3, 1)-Weyl tensor W , w = g(W., .), is invariant under
conformal changes of the metric; therefore, it is also called the “conformal
curvature tensor.”

P.4 Conformal flatness

As a first application of our notions, we want to discuss conformal flatness
of a Riemannian manifold and give, in the following section, a criterion for
conformal flatness in terms of the Weyl and Schouten tensors.

P.4.1 Definition. A Riemannian manifold (M, g) is called conformally
flat if, for any point p ∈ M , there is a neighbourhood U of p and some
function u : U → so that the (local) metric g̃ = e2ug is flat on U .

P.4.2 Note that some authors define conformal flatness globally; that is, the
conformal structure associated with the given metric is required to contain
a (global) flat representative.

P.4.3 Lemma. A manifold (M, g) is conformally flat if and only if, around
each point p ∈ M , there exist conformal coordinates; that is, there is a
coordinate map x : M ⊃ U → n and a function u : U → such that the
metric g|U = e2u

∑n
i=1 dx

2
i .

P.4.4 Proof. Obviously, a metric of the form g = e2u
∑n
i=1 dx

2
i is confor-

mally flat; on the other hand, to a flat metric e−2ug, there always exist local
coordinates x such that e−2ug =

∑n
i=1 dx

2
i (any flat manifold is locally iso-

metric to n, via the exponential map; cf., [122]). -
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P.4.5 Any 1-dimensional Riemannian manifold (M1, g) is conformally flat
(actually: flat — there exist arc length parameters).

P.4.6 Theorem (Lichtenstein [183]). Any 2-dimensional Riemannian
manifold (M2, g) is conformally flat.7)

P.4.7 Proof. According to the transformation formula for the Gauss curva-
ture from §P.2.7, we have to (locally) solve the partial differential equation
K = ∆u for u. Then the (locally defined) metric g̃ := e2ug will be flat.

P.4.8 Here is a sketch of a proof for the existence of local solutions:
On a 2-torus (T 2, g), the total curvature 〈1,K〉 =

∫
T 2 1 · K dA = 0

(Gauss-Bonnet theorem), that is, K ∈ ker⊥∆ = {u : T 2 → |u ≡ const}.
By the Hodge decomposition theorem [298], ker⊥∆ = im∆ in C∞(T 2, );
thus there exists a (global!) solution u ∈ C∞(T 2) of ∆u = K.

On an arbitrary (M2, g) choose coordinates x : M ⊃ U → 2 around a
point p ∈M with x(U) ⊂ (0, 1)2 and introduce a metric ĝ on T 2 = 2/ 2

such that x∗ĝ = g on some neighborhood Û ⊂ U of p (partition of unity).
By the above argument, there exists a function û : T 2 → such that e2ûĝ
is flat on T 2; since x : (Û , g)→ (x(Ũ), ĝ) is an isometry, the metric e2ug|Û ,
with u = û ◦ x, is then flat on Û . -

P.4.9 The theorem of §P.4.6 establishes a relation between 2-dimensional
manifolds equipped with a conformal structure and Riemann surfaces, that
is, with 1-dimensional complex manifolds: Given isothermal (conformal)
coordinates (x, y) around some p ∈ M on (M2, g), complex coordinates
can be defined by z := x + iy. The transition functions of such complex
coordinates are (as angle-preserving maps) either holomorphic or antiholo-
morphic; restricting to holomorphic (orientation preserving: M has to be
orientable) transition functions, an atlas of complex coordinates is obtained.
This identifies 2-dimensional (orientable) Riemannian manifolds as complex
curves.

On the other hand, the pullback of the multiplication by i,

Jp : TpM → TpM, dpz ◦ Jp = i · dpz,

provides, if it can be extended to a global tensor field (that is, if M is
orientable), 90◦ rotations (isometries with J2

p = −id) on each tangent space:
an “almost complex structure.” The above theorem states that any almost
complex structure J on M (as it defines a conformal structure) comes from
complex coordinate charts (that is, it is a “complex structure”).

7) Compare also [182]. Concerning the realization of (compact) Riemann surfaces as subman-
ifolds of Euclidean 3-space, see [124] and [125].
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P.4.10 By using the concept of an almost complex structure, another (more
constructive) proof for the existence of isothermal coordinates can be given
(cf., [260]):

Suppose we are given8) a harmonic function x1 : M2 ⊃ U → on a
simply connected neighborhood U around p ∈ M such that dx1 �= 0; then
we find9)

d(8dx1) := d(dx1 ◦ J) = dg(gradx1, J.) = −∆x1 dA = 0,

so that there is a function x2 : U → with dx2 = 8dx1, the “conjugate
harmonic function.” Then, (x1, x2) : U → 2 define isothermal coordinates
since ∂

∂x2
= −J ∂

∂x1
yields 0 = g( ∂∂x1 ,

∂
∂x2

) and g( ∂∂x2 ,
∂
∂x2

) = g( ∂∂x1 ,
∂
∂x1

).

P.5 The Weyl-Schouten theorem

In higher dimensions, the Weyl-Schouten theorem gives a characterization
of conformally flat Riemannian manifolds (cf., [81], [82], [300], [301], [252]):

P.5.1 Theorem (Weyl-Schouten). A Riemannian manifold (Mn, g) of
dimension n ≥ 3 is conformally flat if and only if
– the Schouten tensor is a Codazzi tensor, (∇xs)(y, z) = (∇ys)(x, z), in

the case n = 3; and
– the Weyl tensor vanishes, w ≡ 0, in the case n > 3.

P.5.2 Proof. (cf., [173]). By the transformation formula for the curvature
tensor from §P.2.5, (M, g) is conformally flat if and only if w = 0 and there
exists (locally) a function u with s = bu.

We divide the proof into three steps:

P.5.3 Step 1. If n = 3, then w = 0, by algebra.
Let (e1, e2, e3) be an orthonormal basis of some TpM ; then10)

r(ei, ej , ei, ej) = ric(ei, ei) + ric(ej , ej)− 1
2scal = (s ∧ g)(ei, ej , ei, ej)

8) Of course, to obtain a complete proof, one would have to show that such nonconstant
harmonic functions (locally) always exist.
9) Note that ∇J = 0 because, for any vector field v, g((∇J)v, v) = 0 and g((∇J)v, Jv) = 0.

10) The computation is best done from right to left.
Another, more conceptual proof was pointed out by Konrad Voss: Let Sym(V ) denote the
space of symmetric bilinear forms on a vector space V , and note that Sym(Λ2V ) is the space
of algebraic curvature tensors on V if dimV = 3 (the first Bianchi identity follows from the
other symmetries in this case). Now, observe that

Sym(V ) � s �→ r(s) = s ∧ g ∈ Sym(Λ2V ) and Sym(Λ2V ) � r �→ s(r) ∈ Sym(V )

are linear maps. Since Sym(V ) � s �→ s(r(s)) = s ∈ Sym(V ) is the identity, the linear map
s �→ r(s) injects and hence is an isomorphism since dimSym(V ) = dimSym(Λ2V ) in the case
dimV = 3.




