Algebraic Aspects of Prolongations

H. H. Johnson

Proceedings of the American Mathematical Society, Vol. 16, No. 1. (Feb., 1965), pp. 123-125.

Stable URL:
http://links.jstor.org/sici?sici=0002-9939\(196502\)16\%3A1\<123\%3AAAOP\>2.0.CO\%3B2-E

Proceedings of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@ jstor.org.

ALGEBRAIC ASPECTS OF PROLONGATIONS

H. H. JOHNSON

Exterior differential systems and their prolongations were introduced by E. Cartan [2, pp. 585 ff .]. They have been studied by E. Kähler [3, pp. 50-51], Y. Matsushima [6], M. Kuranishi [4], [5] and E. Cartan himself [2, Chapter 6]. Two viewpoints seem to predominate in modern treatments. One approach is geometric [4], [6]. The prolonged system is defined on a submanifold of a Grassmann bundle. In [1], [5] the equivalence between exterior differential systems and partial differential equations is emphasized, as one uses for new variables the partials of the given dependent variables with respect to the independent variables. [5] uses jets to accomplish this.

In many of E . Cartan's applications of prolongations, however, a purely algebraic flavor prevails [1, pp. 116-119], [2, p. 585]. This is particularly true in infinite continuous groups [1, pp. 638-639 and the examples following]. The author seems to be merely introducing as many new variables as possible. Indeed, in [2, p. 1361] after defining prolongations according to the first method above, he states that this can be obtained by solving certain equations in the most general possible way, which is a purely algebraic problem.

It is our purpose to discuss this algebraic problem and show that E. Cartan's "normal prolongation" does indeed possess the maximal property among all possible prolongations. We begin as he did in [$1, \mathrm{pp} .577-578$], assuming that the system is of the form

$$
d \theta^{i} \equiv a_{j \rho}^{j} \omega^{j} \wedge \pi^{\rho} \text { modulo }\left(\theta^{1}, \cdots, \theta^{m}\right) .
$$

Then d can be considered linear over the ring of C^{ω} or C^{∞} functions, since

$$
d\left(f \theta^{i}\right) \equiv f d \theta^{i} \text { modulo }\left(\theta^{1}, \cdots, \theta^{m}\right)
$$

Hence the problem reduces to the study of linear transformations between certain modules.
A is a fixed commutative ring with identity element. All modules are unitary A-modules. I is a fixed module called the module of independent variables.

Definition 1. A differential system (S, d, T) consists of two modules S and T together with a linear transformation $d: S \rightarrow I \otimes T . T$ is said to be minimal when it contains no proper submodule T^{\prime} such that $d(S) \subset I \otimes T^{\prime}$.

Received by the editors August 19, 1963.

Let $j: I \otimes I \rightarrow I \wedge I$ be the defining epimorphism. i will denote the identity transformation on various modules.

Definition 2. A prolongation of (S, d, T) is a differential system (T, δ, U) such that if $i \otimes \delta: I \otimes T \rightarrow I \otimes I \otimes U, j \otimes i: I \otimes I \otimes U \rightarrow(I \wedge I)$ $\otimes U$, then $(j \otimes i)(i \otimes \delta) d=0$.

Proposition 1. If (T, δ, U) is a prolongation of (S, d, T) and $\phi: U \rightarrow U^{\prime}$ is a linear transformation on U to a module U^{\prime}, then $\left(T,(i \otimes \phi) \delta, U^{\prime}\right)$ is a prolongation of (S, d, T).

Proof. This follows from commutativity in the diagram

$$
\begin{aligned}
S \xrightarrow{d} I \otimes T \xrightarrow{i \otimes \delta} & I \otimes I \otimes U \xrightarrow{j \otimes i} I \wedge I \otimes U \\
& i \otimes \phi \downarrow \\
& I \otimes I \otimes U^{\prime} \xrightarrow{j \otimes i} I \wedge I \otimes U^{\prime} . \text { Q.E.D. }
\end{aligned}
$$

Let U^{*}, I^{*}, T^{*}, etc., denote the dual modules to U, I, T, etc.
Definition 3. The prolongation (T, ∂, U^{\prime}) is said to be obtained from the prolongation (T, δ, U) if there exists ϕ in $\operatorname{Hom}\left(U, U^{\prime}\right)$ so that $\partial=(i \otimes \phi) \delta$.

Proposition 2. Let V be a submodule of $\operatorname{Hom}(T, I)$. Then there exists a canonical linear transformation $\delta: T \rightarrow I^{* *} \otimes V^{*}$. If X and Y are any two modules and ϕ is in $\operatorname{Hom}(X, Y), \xi$ is in $X \otimes T, \lambda$ is in $Y^{*} \otimes I^{*}$, and θ is in V, then

$$
\begin{equation*}
\langle(\phi \otimes \delta)(\xi), \lambda \otimes \theta\rangle=\langle(\phi \otimes \theta)(\xi), \lambda\rangle . \tag{1}
\end{equation*}
$$

Proof. Given t in T, we define $\delta(t)$ to be that element of $I^{* *} \otimes V^{*}$ $=\left(I^{*} \otimes V\right)^{*}$ whose value on $\omega^{*} \otimes \theta$ in $I^{*} \otimes V$ is given by $\left\langle\delta(t), \omega^{*} \otimes \theta\right\rangle$ $=\left\langle\theta(t), \omega^{*}\right\rangle$. Since this is bilinear in ω^{*} and θ, it defines an element of $\left(I^{*} \otimes V\right)^{*}$.
In order to prove (1), it suffices to suppose $\xi=x \otimes t, \lambda=y^{*} \otimes \omega^{*}$. Then

$$
\begin{aligned}
\langle(\phi & \left.\otimes \delta)(x \otimes t), y^{*} \otimes \omega^{*} \otimes \theta\right\rangle=\left\langle\phi(x) \otimes \delta(t), y^{*} \otimes \omega^{*} \otimes \theta\right\rangle \\
& =\left\langle\phi(x), y^{*}\right\rangle\left\langle\delta(t), \omega^{*} \otimes \theta\right\rangle=\left\langle\phi(x), y^{*}\right\rangle\left\langle\theta(t), \omega^{*}\right\rangle \\
& =\left\langle(\phi \otimes \theta)(x \otimes t), y^{*} \otimes \omega^{*}\right\rangle .
\end{aligned} \quad \text { Q.E.D. } \quad \text {. }
$$

Proposition 3. Let $V=\{\theta \in \operatorname{Hom}(T, I) \mid j(i \otimes \theta) d=0\}$. If $I^{* *}=I$, then $\left(T, \delta, V^{*}\right)$ is a prolongation of (S, d, T).

Proof. We must prove that for any s in $S, 0=(j \otimes i)(i \otimes \delta) d(s)$ $\in I \wedge I \otimes V^{*}=\left(I^{*} \wedge I^{*} \otimes V\right)^{*}$. Let $\mu \otimes \theta$ be an element of $I^{*} \wedge I^{*} \otimes V$. Then

$$
\begin{align*}
\langle(j \otimes i)(i \otimes \delta) d(s), \mu \otimes \theta\rangle & =\left\langle(i \otimes \delta) d(s), j^{*}(\mu) \otimes \theta\right\rangle \\
& =\left\langle(i \otimes \theta) d(s), j^{*}(\mu)\right\rangle \tag{1}\\
& =\langle j(i \otimes \theta) d(s), \mu\rangle
\end{align*}
$$

However, $j(i \otimes \theta) d(s)=0$ by the definition of V. Q.E.D.
Definition 4. $\left(T, \delta, V^{*}\right)$ is the normal prolongation.
Theorem. Assume that I has a finite basis. Let (T, ∂, W) be any minimal prolongation of (S, d, T) where $W=W^{* *}$. Then (T, ∂, W) is obtained from the normal prolongation of (S, d, T).

Proof. There exists a canonical linear transformation ψ : W^{*} $\rightarrow \operatorname{Hom}(T, I)$ defined as follows. For w^{*} in W^{*}, t in T and ω^{*} in I^{*}, $\left\langle\psi\left(w^{*}\right)(t), \omega^{*}\right\rangle=\left\langle\partial(t), \omega^{*} \otimes w^{*}\right\rangle$. Since $I^{* *}=I$, this is well-defined.

Suppose w_{0}^{*} is in $\operatorname{ker} \psi$. Then for all t in T, all ω^{*} in $I^{*},\left\langle\partial(t), \omega^{*} \otimes w_{0}^{*}\right\rangle$ $=0$. Let $W_{1}=\left\{w \in W \mid\left\langle w, w_{0}^{*}\right\rangle=0\right\}$. Let $\omega_{1}, \cdots, \omega_{n}$ be a basis of I, $\omega_{1}^{*}, \cdots, \omega_{n}^{*}$ the dual basis. Suppose $\xi=\sum a_{j}\left(\omega_{j} \otimes w_{j}\right) \in I \otimes W$ satisfies $\left\langle\xi, \omega^{*} \otimes w_{0}^{*}\right\rangle=0$ for every ω^{*} in I^{*}. When $\omega^{*}=\omega_{k}^{*},\left\langle\xi, \omega_{k}^{*} \otimes w_{0}^{*}\right\rangle$ $=a_{k}\left\langle w_{j}, w_{0}^{*}\right\rangle=0$. Hence ξ is in $I \otimes W_{1}$. Hence $\partial(T) \subset I \otimes W_{1}$. Since W is minimal, $W=W_{1}$, so $w_{0}^{*}=0$. Thus, ker $\psi=0$, and we may consider $W^{*} \subset \operatorname{Hom}(T, I)$. Furthermore, under this identification, ∂ is the map δ of Proposition 2.

If θ is in W^{*}, μ is in $I^{*} \wedge I^{*}$ and s is in S, then since (T, ∂, W) is a prolongation of (S, d, T),

$$
\begin{aligned}
0 & =\langle(j \otimes i)(i \otimes \delta) d(s), \mu \otimes \theta\rangle=\left\langle(i \otimes \delta) d(s), j^{*}(\mu) \otimes \theta\right\rangle \\
& =\left\langle(i \otimes \theta) d(s), j^{*}(\mu)\right\rangle, \quad \text { by Proposition } 2 \\
& =\langle(j \otimes \theta\rangle d(s), \mu\rangle .
\end{aligned}
$$

Hence θ is in V, so $W^{*} \subset V$. The dual map to the injection $i_{n}: W^{*} \rightarrow V$ then satisfies $\partial=\left(i \otimes i_{n}^{*}\right) \delta$. Q.E.D.

References

1. E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945.
2. -, Oeuvres complètes. III, Vol. 2, Gauthier-Villars, Paris, 1953.
3. E. Kähler, Einfuhrung in die Theorie der Systeme von Differentialgleichungen, Teubner, Leipzig, 1934.
4. M. Kuranishi, On E. Cartan's prolongation theorem of exterior systems, Amer. J. Math. 79 (1957), 1-47.
5. -, On the abstract approach to the local theory of continuous infinite pseudo groups. II, Nagoya Math. J. 19 (1961), 55-91.
6. Y. Matsushima, On a theorem concerning the prolongation of a differential system, Nagoya Math. J. 6 (1953), 1-16.

University of Washington

