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ALGEBRAIC ASPECTS OF PROLONGATIONS 

H. H. JOHNSON 

Exterior differential systems and their prolongations were intro-
duced by 2. Cartan [2, pp. 585 ff.]. They have been studied by  
E. Kahler [3, pp. 50-511, Y. Matsushima [6], M. Kuranishi 141, [5] 
and a. Cartan himself [2, Chapter 61. Two viewpoints seem to pre-
dominate in modern t rea tment~ .One approach is geometric [4], [6]. 
The prolonged system is defined on a submanifold of a Grassmann 
bundle. In [I],  [5] the equivalence between exterior differential sys-
tems and partial differential equations is emphasized, as  one uses for 
new variables the partials of the given dependent variables with 
respect to the independent variables. [5] uses jets to accomplish this. 

In many of a. Cartan's applications of prolongations, however, a 
purely algebraic flavor prevails [I, pp. 116-1191, [2, p. 5851. This is 
particularly true in infinite continuous groups [I,  pp. 638-639 and 
the examples following]. The author seems to be merely introducing 
as many new variables as  possible. Indeed, in [2, p. 13611 after de-
fining prolongations according to the first method above, he states 
that  this can be obtained by solving certain equations in the most 
general possible way, which is a purely algebraic problem. 

I t  is our purpose to discuss this algebraic problem and show tha t  
2. Cartan's '(normal prolongation" does indeed possess the maximal 
property among all possible prolongations. We begin as  he did in 
[I, pp. 577-5781, assuming that  the system is of the'form 

I 1dOi r ajpu /\ rPmodulo (0 ,.. . ,Om). 

Then d can be considered linear over the ring of Coor Cwfunctions, 
since 

d u d 9  r fdOi modulo (01, ,8"). 

Hence the problem reduces to the study of linear transformations 
between certain modules. 

A is a fixed commutative ring with identity element. All modules 
are unitary A-modules. I is a fixed module called the module of 
independent variables. 

DEFINITION1.A diferential system (S, d, T) consists of two modules 
Sand T together with a linear transformation d: S+I@ T. T is said 
to be minimal when i t  contains no proper submodule TI such that  
d(S)CI@T1.  
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Let j: I @ I - + I A I  be the defining epimorphism. i will denote the 

identity transformation on various modules. 


DEFINITION2. A prolongation of (S , d ,  T )  is a differential system 

( T ,  6 ,  U ) such that  if i86:I@T+I@I€3 U, j@i:  I @ I @  U+(IAI)  

€3 U, then (j@i)(i@6)d=O. 


PROPOSITION1. If ( T ,  6 ,  U)  i s  a prolongation of ( S ,  d ,  T )  and 
@:U+Uf i s  a linear transformation on U to a module U', then 
( T ,  (i€34)6,U') i s  a prolongation of (S ,d ,  T ) .  

PROOF. This follows from commutativity in the diagram 

i @ O l  l i s 4@ 

I @  I @  U'-+I A I @  U'. Q.E.D. 

Let U*, I*, T*, etc., denote the dual modules to U, I ,  T, etc. 
DEFINITION3. The prolongation ( T ,  13, U') is said to be obtained 

from the prolongation ( T , 6 ,  U)  if there exists @ in Hom(U, U') so 
that  d =(i€34)6. 

PROPOSITION2. Let V be a submodule of Hom(T, I ) .  Then there 
exists a canonical linear transformation 6 : T-+I** €3 V*. If X and Y 
are any two modules and 4 i s  in Hom(X, Y ) ,  $ i s  in  X€3T ,  X i s  in 
Y*€3 I*, and 8 i s  in V ,  then 

PROOF. Given t in T ,  we define 6 ( t )  to  be that  element of I** €3 V* 
= (I*€3 V )* whose value on w* €3 % in I* €3 V is given by ( 6 ( t ) ,w* €3 8 )  
= (%( t ) ,w*). Since this is bilinear in w* and 8,  i t  defines an element of 
(I*€3 V )*. 

In order to prove ( I ) ,  i t  suffices to suppose $ =x@t,X =  y* €3 w*. 
Then 

= ( 4 ( ~ ) ,  w* €3 8 )Y * ) ( ~ ( L ) ,  = (44x1, y*)(W), o*) 

= ((4€3 e)(x€3 t ) ,  y* €3 w*). Q.E.D. 

PROPOSITION I ) I j(i@ 8 ) d = 0 f .  If I**= I ,  3. Let V =  { % G H o ~ ( T ,  
then ( T ,  6 ,  V*) i s  a prolongation of ( S ,d ,  T ) .  

PROOF.We must prove that  for any s in S,  0 = (j@i)(i@G)d(s) 
E I A I @  V* = (I*AI*€3 V)*. Let ~ € 3 0be an element of I*AI*@V. 
Then 

mailto:(j@i)(i@6)d=O
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= ( j ( i  €3 W(s),  P). 

However, j(i@%)d(s) =0 by the definition of V. Q.E.D. 
DEFINITION4. (T, 6, V*) is the normal prolongation. 

THEOREM.Assume that I has a Jinite basis. Let (T, dl W) be any 
minimal prolongation of (S, d, T) where W =  W**. Then (T, d, W) is 
obtained from the normal prolongation of (S,d, T). 

PROOF. There exists a canonical linear transformation $: W* 
+Hom(T, I )  defined as follows. For w* in W*, t in T and w* in I*, 
($(w*)(t), w*) = (d(t), w*@w*). Since I** =I,this is well-defined. 

Suppose w,* is in ker $. Then for all t in T, all w* in I*,  (d(t) ,w* €3 w,*) 
=O. Let WI= { W E W I  (w, W,*)=O].  Let wl, . . . , wn be a basis of I, 
w:, . - - , w; the dual basis. Suppose ,$ = aj(wj€3wj)G I @W satis- 
fies (El w*€3w,*)=0 for every w* in I*. When w*=w,*, (E, w,*@w,*) 
=ak(wj, wz) =0. Hence E is in I @  Wl. Hence d(T) C I€3 Wl. Since W 
is minimal, W =  Wl, so w,* =0. Thus, ker 11=0, and we may consider 
W*CHom(T, I) .  Furthermore, under this identification, d is the map 
6 of Proposition 2. 

If 8 is in W*, p is in I*/\  I *  and s is in S, then since (T, a, W) is a 
prolongation of (S,dl  T), 

= ((i €3 0)d(s), j*(p)), by Proposition 2 

= ( ( j  €3 0)d(sI7 P). 
Hence 8 is in V, so W * C  V. The dual map to the injection in:  W*+V 
then satisfies d = (i @i,*)6. Q.E. D. 
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