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Abstract

We study the general applicability of the Clarkson—Kruskal’s direct method, which
is known to be related to symmetry reduction methods, for the similarity solutions
of nonlinear evolution equations (NEEs). We give a theorem that will, when satis-
fied, immediately simplify the reduction procedure or ansatz before performing any
explicit reduction expansions. We shall apply the method to both scalar and vector
NEEs in either 1+1 or 241 dimensions, including in particular, a variable coefficient
KdV equation and the 2+1 dimensional Khokhlov-Zabolotskaya equation. Explicit
solutions that are beyond the classical Lie symmetry method are obtained, with com-
parison discussed in this connection.

1 Introduction

It is now well know that the classical Lie symmetry method can be used to find similarity
solutions systematically, see, e.g., [1]. Recent years also saw a resurgence [2] of the so-
called nonclassical Lie method due to Bluman and Cole [3]. Related to these two methods
is also a direct similarity reduction method, introduced by Clarkson and Kruskal [4]. It
is shown in various literature that the direct similarity reduction may lead to similarity
solutions by classical and nonclassical Lie methods [1-12]. Some connections have also
been established for the direct method and the nonclassical method [11,13].

Although the direct method has been successfully applied to a number of interesting non-
linear evolution equations (NEEs), the reduction procedure is highly equation-dependent.
In this work, we shall introduce and prove a reduction theorem that will help us make
some critical reduction ansatz without having to do any tedious calculation first. In other
words, by just the inspection of a nonlinear PDE, the theorem may enable us to imme-
diately make certain reductions which will significantly reduce the amount of calculation
required to eventually find the similarity solutions. It is worth noting that even if the so-
lutions are obtainable via the classical Lie method, the calculations in the direct method
under the reduction theorem to be introduced in section 2 often turn out to be simpler.
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This paper is organized as follows. In section 2, we shall first introduce several no-
tations and definitions as the preliminaries and then set up our main reduction theorem
there. The mKdV type and coupled KdV equations are then exemplified for direct applica-
tions. Then in section 3, we shall study the variable coefficient KdV equation and the 2+1
dimensional Khokhlov-Zabolotskaya (KZ) equation. New similarity solutions that are be-
yond the classical Lie method are obtained there. Finally, a brief summary is made in secti-
on 4.

2 Reduction Theorem

Let us consider the following system of nonlinear PDEs of a polynomial type

Flu] = (Fi[u), ., F[u]) = 0 2.1)
with u=(u1, ..., u;) and x=(z1, ..., 2, ). Let N be the set of non-negative integers and let
I](Z) = (I](,?, I]( ) € N™. Then the index for a typical term
o Ii) m 7™
(O w) - (Ox M ur) - (O wm) - (Ox ) (2.2)
0] IS
with obviously 0% u; = -+ 04" ug, has the form
1 (1) | 7(2) 2)
I=< I{ ),...,IK1 |1 I T T (2.3)

We define the order and the rank of I, respectively, by
Il=Ki+-+K,, |I|= ijk. (2.4)
’]7
Index T in (2.3) is termed canonical if it is ‘lexically’ ordered: one has for any 7 and j

cither |1 y|—y| +ly| and I{) = 1\), , (k=1,.,L) with I\'} ., <I\'); ; ., for some L or

simply ||I || < || +1|| Because every term of the form (2.2) will have a unique canonical
index, we shall from now on assume that all indices are canonical.

For any index I of form (2.3), we may rewrite it as
I=<IWID | 1M >= Iy @ Ig @ &1y, (2.5)

where I() =< T fi), . Igg > corresponds to u; alone and I(; is obtained from I by setting
all the non-z; indices to 0. For example, the term w1z, U1 5 2,U3 5,2, for m = 3 and
n = 2 has the corresponding index I =< (0,0), (1,0), (1,1)| |(0,2) > with

I =< (0,0, (1,0),(1,1) >, I® =<>, 163 =<(0,2) >
I(l) =< (070)7 (170)7 (170)| |(070) >, I(2) =< (070)7 (070)7 (07 ]-)| |(072) > .
For convenience, we shall denote the terms corresponding to I and [ () by Ol ou and

3}1(@ o u;, respectively. When no confusion is to occur, we may also denote the index I in
(2.3) simply by its totality form

1 1 m
L=< | Iy, NN e L™ ey N2 > (2.6)
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and may even use an index and the corresponding term interchangeably. Thus, we may
sometimes just write, for instance, ||u z, U3 zou,| =3.

m . .
Let I=J I and I) be the set of indices corresponding to all the terms in Fj[u]. An
i=1

index I € Iis called pure if there are no mixed (i.e., cross) partial derivatives in any factors
in 0L o u. An index I is said to be reachable from another index J w.r.t. I, if I, J € 1(io)
for some ip and that I can be obtained from .J, at least in terms of the totality form,
by decreasing some subindices in J and perhaps removing some entries [ j(-z) completely.
An index [ is regarded as being prime w.t.r. I if I is not reachable from any J € I\{I}.
Index I is said to be a pure tail of I if I can be obtained by decreasing just one positive

subindex I ](Z,z by 1 and I ](-i) is a pure index. Index I* will be called a shrunk index of I if

I* is obtained by removing from I exactly one entry, say I ](Z) An index I is said to have

a maximal rank in I if ||.J|| < ||I|| whenever I,J € I). And finally, an index I is said to
be a sole index of maximal rank in I if ||.J|| < ||I|| whenever I,.J € I¥, I # J, and J is
reachable from I. With the above definitions, we are ready to introduce the following

Reduction Theorem Suppose a system of nonlinear PDEs of a polynomial type is given
by (2.1) and I=J", I?) is the corresponding index set with I) containing indices of all
terms in Fj[u]. We seek reduction of the PDEs into ODEs w.r.t. z(x) with 0,,2(x) # 0.

(i) Suppose that

u;i(x) = Uj(x, w;(2(x))), i=1,..,m, (Ty)

reduce the PDEs into ODEs in w;(z)’s. Suppose for any i, 1 <4 < m, there exists at
least one sole index of maximal rank such that ||I()|| > 0, then all similarity solutions
of the PDEs induced by (7}) can also be obtained by the reduction

u; (%) = (%) + Bi(x)w; (2(x)), i=1,...,m. (T3)

(ii) Suppose I,J € 10°) for some iy are two prime indices, |I| # |J|, and the coefficients
of the corresponding terms in Fj [u] are constant multiple of each other. Then (T5)
reduces the PDEs into ODEs that implies we may set without loss of generality

JO 1™ (m)| | 1(m) Iy lI=117 )l 1) 1= 1) I
5|1 |- \,_,ﬁlﬁi =y _ ol M (n) (T3)

1 Tn
where I() J00), Iy and J(;) are defined via (2.5). In the case of m=1, (T3) reads

17y =117 gyl Ty 1= 11Tyl
J|=1T JI=11
,B(x):zmll” 2 [J1=1T] . (T4)

n

(iii) Suppose there exist ig, jo, and I € I(k0) such that
Bjo(x) :’Y(lea"7$i0717xi0+17"7$n)z1:1:7i0 (X) , P> 0 ) (T5)

index I has a pure tail I w.r.t. uj, and x;, and that I is not reachable elsewhere in I.
Then (T3) reduces the PDEs into ODEs that implies

2(x) = 0(T1, s Tig—1, Tigt 1y - Tn)Tig + O(T1, oo, Tig—1, Tig4+1s --» Tn) - (Ts)
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(iv) Suppose there exists an I € I such that it has a shrunk index I'* (w.r.t. u;,) of same
rank (i.e. |[I*| = ||I]| and O% o u = u;,0L ou ) that is not reachable elsewhere. Then
(T3) reduces the PDEs into ODEs that implies we may set without loss of generality

o (x) =0. (T7)

The complete proof is somewhat long, we shall thus give only the proof of (ii) whose
idea will be used later on as well. Notice that I,.J € 100) are prime implies

Fip[ul = f(x)ofou+g(x)d{ou+ >  Bs(x)diou=
seI\(1,1}

JASY 1m)| [Tyl [17(ny I
f(x)/B|1 .. ﬁ?‘n ‘Zm(l) T an(n) WA+

JW T Tl 1Ty
Q(X)ﬁl |"'/37|n ‘le() ooz MW B

where w* and w? are certain power products of wy’s and their derivatives, which are
independent of each other and of all other terms on the right hand-side of the above
equation. Hence in order that the above equation be an ODE, we need

Jm T Tyl [Tyl I 1) [yl [Tyl
g(x)BY B g el = ) plT L gl O ()

for some function I'(z). Thus if f(x)/g(x)=constant and |J| # |I|, then we can
assume without loss of generality that |JU0)| # [IU0)|. By absorbing I'(z)f(x)/g(x)
into wj, (#), we finally obtain (73). This completes the proof of (ii).

In order to exemplify the definitions and results related to the Reduction Theorem,
we first briefly consider a simple NEE of the mKdV type

Flu] = uy + v’uy + tggy =0, s>2. (2.7)
S

The index set is obviously I={< (0,1) >,< (0,0),...,(0,0),(1,0) >,< (0,3) >} if
we take x=(x,t). In fact, we shall in this case write it simply in the totality form
I={<1><0,..0,1 > <3 >}. We now observe that 1° Index < 0,..,0,1 > or
term u®u, has the order p + 1 and the rank 1. 2° All indices in I for (2.7) are pure
indices. 3° Index < 1 > is reachable from either < 0,..,0,1 > or < 3 >, which is
tantamount to saying u; is reachable from either u*u; or ugy,. 4° Indices < 0,..,0,1 >
and < 3 > are both prime w.r.t. I. 5° Index < 3 > has a pure tail < 2 > not reachable

elsewhere, i.e., u,, is a pure tail of u,., and wu., is not reachable from u; or u*u,.
s—1 s

6° < 0,..,0,1 > is a shrunk index of < 0,..,0,1 > and is unreachable elsewhere due

to s > 2. 7° Index < 3 > or term ug;z,; has the maximal rank 3 and is also the sole

index or term of maximal rank. Hence, from the above theorem, a reduction of (2.7)

into ODE by v = U(z,t,w(z(z,t)) can be simplified without loss of generality to

u(z,t) = alz,t) + Bz, t)w(z(x,t)); 4° implies

I<3>]|—I<0,..,0,1>]|
_ ,, 1<0,.,01>[=[<3>] __ _ 2/s
B(x,t)—zx _ZI/ )
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5° implies z(z,t) = 0(t)z + o(t) and 6° implies a(x,t) = 0. Hence, we conclude that

u(z, t) = 02 w(B(t)z + o(t)) (2.8)

is the most general form to reduce (2.7) to an ODE with the direct method. Inserting
(2.8) into (2.7), one obtains with simple calculations that (2.8) is the solution of (2.7)
if

A§ By
O(t) = —20 H=—"2 __(
O=Grwm D= Gagym @
and that w(z) is a solution of
2 1
w" + w'w' — z+ Cop)w' =0.

3sA3° v 3A3S (

In comparison with the original CK procedure [4] for s=2, our Reduction Theorem
will enable us to start with a form similar to (2.8) without any messy expansion first.
Thus, the application of the theorem significantly reduces the overall bulk of tedious
calculations. We note that the above derived similarity solution via (2.8) can also
be obtained by the classical Lie method. However, our procedure in this case seems
much simpler.

Let us now examine a simple system of NEEs, the coupled-KdV equations,
UL + Ugpy + Ouug + 200, =0,  vp + Vppe + 3uvy, =0 (2.9)

which is equivalent to the form given in [14] under some rescaling. In this case, we
observe that 1° ug,, and v, are both sole terms of maximal rank. Hence the direct
method with the form (77) implies one may just set u=ca;+ 51U (z) and U:012+,62V(Z).
2° Uy, Ugypr and vv, are all prime in (2.9a). From (T3), the first pair implies 31 = 22
and the second pair implies G = z . 3° Uy, has pure tail u,, unreachable elsewhere
implies z = 0(t)z + o (t). 4° vv, has shrunk form v, unreachable elsewhere implies we
may set as = 0. To summarize, we may set

u=a(z,t)+0t)%U(z), v=00)>V(z), z=0t)x+o(t). (2.10)

For simplicity, we shall denote by f ~ g for any f and g if f = gI'(z) for some I'(2).
Eq.(2.9) be an ODE when inserted by (2.10) requires § ~ 0* and 3a6 + 0z + & ~ 62,
whose solutions, when inserted back into (2.9), will give rise to an extra equation
Ox — 35 (t + to) ~ 1. The solutions of these three equations are

0(t) = Ag/(t+t0)' /3, o(t) = Bo/(t+1t0)'/> = Co, a(z,t) = —(0z +5)/360 (2.11)

which will reduce (2.9) into two ODEs

2—r)(z+ Ch) 2(1—r) (2—3r)

U" +2vv' +6UU’ ( U’ U Cp) =0

+ + + 347 + 347 + AT (z + Cy) ;
V" 430V — o 0. (2.12)

3A3
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We note that we can solve U from (2.12b) and insert it into (2.12a) to derive a
single ODE, whose solution will give rise to similarity solutions to the coupled KdV
equations (2.9) via (2.10) and (2.11).

We note that the Reduction Theorem is directly applicable to various NEEs, among
them are the Sawada—Kotera, KdV, Burgers, Boussinesq, Kupershmidt, and KP, and
many other equations. For some NEEs such as the Fitzhugh-Nagumo equation [9],
the theorem is only partially applicable. All these mentioned (apart from the Sawada—
Kotera) equations are already solved without the use of the above theorem [4-12].
However, the use of the Reduction Theorem will significantly reduce the amount of
entailed calculation.

3 Variable coefficient KAV and Khokhlov—Zabolotskaya
equations

We now concentrate on similarity solutions of the following variable coefficient KdV equa-
tion [15]

ug + t"ung + M ugpy = 0, m,n € R.. (3.1)
Eq.(3.1) reduces to the KAV equation in the trivial case of m=n=0 and also reduces
via u = V/tv for the case of m = 0 and n = —1/2 to the Cylindrical KdV equation
Vg + Uy + Ugye + v/(2t) = 0. The similarity solutions via classical Lie symmetries are
already obtained in [15]. Our purpose here is to derive new solutions with the direct
method, with the assistance of the Reduction Theorem.

In applying the direct method to (3.1), we can easily see that only (i) and (iii) of the
Reduction Theorem are directly applicable, though (ii) is only indirectly applicable. Nev-
ertheless, we shall in this section work through the direct method to obtain two new cases
of similarity solutions:

(I) If m # —1, the (3.1) has the similarity solution

m—3n—2

u(z,t) = ag + A5 (™! 4 19) 30D w(z(x, 1)) (3.2)

where tg = 0 if n # m,

. A() t A%B(ﬂ'm n
Z(m‘,t)—m{fﬂ-l-/ [W—QOT :|dT+C()}, (33)

w(z) is a solution of

w" +ww' + (By — TT;T—’_S:[z)w' + (%%_2)11) =0 (3.4)
and that ay, tg, Ag, By and Cj are all real constants.
(IT) If m = n = —1, then (3.1) has the similarity solution
w(x,t) = g + A2(Int + By) "2 Pw(z) (3.5)

where

B A t AZD, 1
z(z,t) = (nit Bo) /3 {ac + / [(lnT B2 ao] TdT + Co} ; (3.6)
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w(z) is a solution of

z /

w” +ww' + (Dy — B—AS)w

and that ay, tg, Ag, Bo, Cp and Dy are all real constants.

Both (I.) and (II.) are essentially new solutions, although by setting in (I.) ag = By =
Co = tg = 0, one obtains a known self-similarity solution not obtainable from the classical
Lie method according to [15].

We now proceed with the derivation of (3.2)-(3.7). As usual, we start with v =
U(z,t,w(z(x,t))). Because < 3 > is a sole index of maximal rank for (3.1) and that
< 3 > has the pure tail < 2 > unreachable elsewhere, we may, according to the Reduction
Theorem in section 2, assume simply

u = a(r,t) + fz, t)w(z(z,t)), z(z,t) =0(t)z +o(t) . (3.8)
We thus obtain from (3.8) and (3.1)
Ut MUty + MUy = B0 4 3t B0%w" + 17 (20w’ + 7 BB w +
(B0 + 360,0t™ + 502 + 05 — 60) |0 + [(0w + )" + Braat™+ (3.9
Brlw + (ot + agprt™ + ) =0

Similar to the proof of (ii) of the reduction theorem, by comparing the coefficients of w"’
and ww', we obtain t"3%20 ~ t™363. Hence, we may set

Bz, t) = t™ (1) . (3.10)
In order that (3.9) be an ODE in w(z), we require
"B + (0z + 06 — 00)3/0 ~ t™B63,
Pogf+ B ~ tAEY, (3.11)
t"aay + M0+ ~ tTEO3 .

First we notice that ap, = ay = 0 solves (3.11c). Hence we set a(z,t) = ap and insert it
along with (3.10) into (3.11a). We then obtain

"B + (06 — 00)3/0 — 280/0 = t™ 6% (Az + B)

for some constant A and B. In other words, we need to solve

d d /o
—0 = At"9* t"a+ —(—) =t"0’B . 3.12
dt ’ 7 (9) (3.12)
The solution of (3.12) will be separated into two cases. In the first case, m # —1, we

obtain from (3.12a) and (3.11b)

Ay

s e = Bo(t™ ! + to)? (3.13)

o(t) =
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for some constant p, ty, Ag and Sy. The compatibility of (3.13) with (3.10) then requires

m —3n + 2

p:

Inserting (3.8) into (3.1) with (3.13), (3.14) and (3.12b), i.e., inserting (3.2) into (3.1) with
(3.3), we obtain simply (3.4). Hence (I.) is a similarity solution of (3.1).

In the second case, m = —1, the solution of (3.12a) and (3.11b) reads

Ao
0t) = ——— t) = Bo(Int + By)P 3.15
()= G Alent) = ot + ) (3.15)
whose compatibility with (3.10) gives
2
n=m=-1, p=—3, fo=A7. (3.16)

Inserting (3.8) into (3.1) with (3.15), (3.16) and (3.12b), i.e., inserting (3.5) into (3.1)
with (3.6), we obtain (3.7). Hence (II.) is also a similarity solution of (3.1). We have
thus obtained two new similarity solutions for (3.1). As a result, we have also obtained a
new similarity solution for the Cylindrical KdV equation. We note that there is another
reduction procedure which does not need to impose any conditions like & = . Although
the final results are equivalent, the procedure explicitly presented above turns out to be
simpler. Hence we see that an early reduction may not be the best choice in some cases
in the sense of solution convenience.

We now move to study very briefly a 2+1 dimensional NEE, the KZ equation [16]
Uzt + (Ulg )y + Uyy =0 . (3.17)

Notice that there are four indices of maximal rank and that although I'=< 0,2 > and
J=< 1,1 > are prime, they are not very useful due to ||I|| = ||.J|| and |I| = |J|. Hence,
eq.(3.17) will be an example for which the Reduction Theorem is not directly applicable.
For the direct method, we shall nevertheless still seek the solution in the form of v =
a(z,y,t) + B(x,y, t)w(z(x,y,t)). Since the reduction procedure for (3.17) to become an
ODE is somewhat technical and lengthy, we shall instead report here only a special case

u = a(t)y + b(t) + %w(f(t)x + g(t)y? + h(t)y + m(t)). (3.18)
Since (3.18) reduces (3.17) into
| ot + (wag)g + ] fo(t)? = w + (') + [(6f + 2¢g) /(feA) '+
({73 = fa+40)/(ePly? + [as? + i — i+ g /ey (3.19)

(o + 90+ hy +m)/(ef) + (b + fiin— frn 1) (el o' =0,
eq.(3.19) be an ODE in w requires

f=Acf, 2cg+éf =BA3f, fg—fg+4g> =0,
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fla+ fh—fh+4gh =0, f2b+ fin— fm+h>=Ccf (3.20)

for some constant A, B and C. Notice that eqgs.(3.20a,b,c) give for f(¢) the following
equation

BAZF(f")? = BA(A+ B)F(f)°f" = A f2f'f" + (A+2B)(A+ B)(f)' =0. (3.21)

It is easy to see that for any solution f(t) of (3.21), functions ¢(t), ¢(t), a(t) and b(¢) can
be obtained immediately from (3.20a,b,d,e), respectively, with m(¢) being arbitrary. The
K7 equation (3.17) will then reduce to

(w+ Az + C)w' + (B — A)w= D

for some constant D. We note that a particular solution of (3.21) is f(¢) = (¢ + ¢9)® with
(A+sB)(A+2sB) = 0, which will correspond to a class of similarity solutions for (3.17).
The simplest nontrivial case is given by s = —1 and A = B = —1 and a = b = 0, for
which we have c¢(t) = f(t) = 1/(t+10), g(t) =0, h(t) = yo/(t +1o) and m(t) = zo/(t + o).
Hence we conclude that

dw

(w—z+yd)— =D, (3.22)

z—i—yoy+z0)
’ dz

ula,yt) = w(—

for constant g, 2o, to and D, is a similarity solution of (3.17). Incidentally, the solution of
(3.22b) is determined by D(w — (2 + D) +42) exp(w/D) = E (with constant E) for D # 0,
and by w(z) = z —y3 for D = 0. Obviously, these solutions are beyond those obtained by
the classical Lie method in [15]. New nonclassical ansatzes for the Khohklov-Zabolotskaya
equation were constructed in [17].

Conclusion

In this work, we re-examined the direct method of Clarkson—Kruskal. We presented a
reduction theorem for the direct method so that a significant part of tedious calcula-
tions entailed by the direct method may be avoided for many NEEs. Direct applications
were performed for the mKdV-type NEE and couple KdV equations, which give rise
to similarity solution derivable from the classical Lie method. The variable coefficient
KdV equation, transformable to the Cylindrical KAV equation in a special case, has been
studied thoroughly with the direct method, for which the reduction theorem is only par-
tially applicable. We have finally presented a special case of similarity solutions for the
Khokhlov—Zabolotskaya equation, for which the reduction theorem is no longer directly
applicable. The similarity solutions obtained in this work for the variable coefficient KdV
equation and for the KZ equation seem new and not obtainable from the classical Lie
symmetry method (see also [17]).
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