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Abstract. We determine the nonclassical potential symmetries for a number of equations that arise in the literature.
A large number of these are obtained for some equations which only admit a single potential (classical) symmetry
(e.g., the wave equation and the motion of waves through some medium). However, we show that some of the
exact solutions invariant under the nonclassical potential symmetries are equivalent to known solutions but these
solutions are not obtainable through the classical point or potential symmetries. The Korteweg—deVries equation,
it is shown, does not admit nonclassical potential symmetries — as in the classical case.
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1. Introduction

It is well known that the symmetry group method plays an important role in the analysis
of differential equations. It has been shown in [1-4], how one can use Lie symmetry group
method for finding symmetry reductions of partial differential equations and this method is
generally referred to as the classical method. By a classical or strong symmetry group of a
system of partial differential equations we mean a continuous group of transformations acting
on the space of independent and dependent variables which transforms solutions of the system
to other solutions.

There have been several advances on the classical method for symmetry reductions of
partial differential equations. Some of these are the nonclassical method of Bluman and Cole
[5], the direct method of Clarkson and Kruskal [6] and its generalization to the differential
constraint approach by Olver and Rosenau [7].

The nonclassical symmetries are the usual symmetries of the new system of PDEs obtained
by appending to the original PDE, the invariant surface conditions sometimes called ‘side
conditions’, which is a system of first order differential equations satisfied by all functions
invariant under a certain vector field [8]. The first approach to these symmetries was made by
Bluman and Cole [5]. In general, the number of determining equations for the nonclassical
method is smaller than the classical method, so that it is difficult to find all possible solutions
to the overdetermined system. By this method, a much wider class of groups is potentially
available, and hence there is a possibility of further kinds of group-invariant solutions being
found by the same reduction technique. The set of nonclassical symmetries do not form a Lie
algebra [8].
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In [9], Bluman et al. introduced an algorithmic method which yields new classes of sym-
metries of a given PDE that are neither Lie point nor Lie—Bicklund symmetries. They are
nonlocal symmetries.

That is, by embedding a given system of PDEs in an auxiliary covering system with ad-
ditional dependent variables, useful nonlocal symmetries can be found. A nonlocal symmetry
of the given system is obtained, when a Lie point symmetry of the auxiliary system is acting
on the space consisting of the independent and dependent variables of the given system and
also the auxiliary variables. The auxiliary system is obtained by the replacement of the given
PDE by an equivalent conservation law and the corresponding nonlocal symmetries are called
‘potential symmetries’ of the given system.

We now present the essence of the notions of potential and nonclassical symmetries [1, 8,
11] and in Section 2, we consider the notion of nonclassical potential symmetries as applied
to some well-known examples.

Consider a scalar kth-order PDE R{x, u}, which is written in a conserved form

Dilf (x, u,uqy, - ug—1y] =0, (.1
with n > 2 independent variables x = (x, ..., x,), a single dependent variable u and u;),
j=1,...,k—1,is acollection of jth-order partial derivative: u.) = (Ui, ..., U,), Uz =
(M11, U125 - -, Upp), - .., (e.g. for two independent variables ¢ and x, u ) = (U, Uy, Uy,) and
Uay = (uttt, Uttxs Urxxs uxxx)) and

D 0 +u 0 + 0 T+t 9 1,2

s I m— Uu; e M"‘..."_—’ 1 = R .. ’n
i Bx,- lal/t ij a 10102, .eeyik—1 auiliz,_,_,ikfl

Since the PDE (1.1) is in a conserved form, there exist (1/2)n(n — 1) functions W’/ com-
ponents of an antisymmetric tensor (i < j), such that (1.1) can be expressed in the form

[1]

fi(X,U,u(l),---,u(k—l))
=> (- 1)/ \11”+Z( 1)‘1 W j=1,2,...,n. (1.2)
i<j j<i
Setting

Wil =0, for j#£i+1
and introducing
=W =12, n— 1,

the system (1.2) associated with R{x,u} given by (1.1) becomes the following auxiliary
system of PDEs, S{x, u, v}, given by

fl=—v, j=12...,k—1,

. ) 0 . 0 .
= (—1)"1[a v/ + vJ_l], l<j<n,
Xjt+1 0x;j_1

n o __ n—1 0 n—1
ff= (D (VA (1.3)

axn—l
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In the sequel, we will consider e.g.s of a time and single space variables. To this end, we spell
out the above formulation for the case n = 2 (see [1, 11]).

Forn = 2, let

' = fOuuay, - ug—n),

2= —pluuqy, ... ug—), (1.4)
so that R{x, u} becomes

Di(f) — D2(p) = 0. (1.5)

By the introduction of the potential variable v = v! = W2, the auxiliary system S{x, u, v} is
written as

v ov
—=f — =np. 1.6
o5 f ox P (1.6)

Assume now that the system S{x, u, v} given by (1.6) admits a Lie point symmetry
0 0 0 el
X=t@x,u,v)— +&x,u,v)— +d&x,u,v)— +{(x,u,v)—, (1.7)
0x] 0x7 ou ov

which can be calculated by solving the determining equations for the exact symmetries

xle=11 (a_” _ f)' — 0,
P W ds=r =)

dxy

:
XW”Gi—O" =0 (1.8)
2Ny

If the infinitesimals 7, &, ¢ depend on v explicitly (the condition is not required for ¢), the
generator (1.7) defines a nontrivial potential symmetry of R{x, u}.

Now in order to determine the nonclassical potential symmetries of the system of first-
order differential equations (1.6), obtained from Equation (1.5), we also append the invariant
surface conditions:

Tul+'§ux_¢ = Ov
v +Ev, — ¢ = 0, (1.9)

to the first-order differential equations (1.6). That is, the variables u,, u,, v;, v, found from
(1.6) and (1.9) must be substituted into both Equations (1.8). Consequently, the nonclassical
potential symmetries have joint characteristics of potential and nonclassical symmetries.

We note that nonclassical potential symmetry generators have not been studied previously.
In the following examples we consider two cases: first when T = 1 and the second case when
T =0 and £ = 1. These cases are the only cases that need to be considered [8].
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2. Applications

Here, we consider, with a view to applications of the theory in section 1, some well-known
examples which have been analysed previously, using the standard symmetry methods.

EXAMPLE 2.1. We shall first find the nonclassical potential symmetries of the (1+1)-dimen-
sional wave equation,

Uy — Uy = 0. (2.1)
Writing in a conserved form the PDE (2.1) becomes

D (uy) — Dy (uyx) = 0. (2.2)
Now consider the corresponding (potential) system of first-order differential equations

Vi = Uy, Uy = U;. (2.3)

Equation (2.3) admits the principle Lie algebra o;, d,, ud, + vd, of which none is a potential
symmetry of (2.1). We investigate the existence of nonclassical potential symmetries of (2.1).
For the vector field (1.7), the invariant surface conditions are

tu, +&u, —¢ = 0,

v, +&v,—¢ = 0. 2.4)
From Equations (1.8), we obtain

XM, —u)|as =0,

1.e.,

(T3 +-§i +¢i +§i +¢ti +¢xi +§ti +¢* ’ ) (v —uy)les =0,
ot 0x ou ov ou; ou, dv; dv,
ie.,

&' = ¢Mlas =0,
which in expanded form becomes

G Gults + Sotty — Tty — Tultgty — Tytty — Eety — Gyt — Euttyity — by

— Quuy — Gyu, + T, + T U U + Tvutz + Euy + Suui + &usu, = 0. (2.5)

Similarly,

X" (v, —u)l s =0,
i.e.,

(¢*—9¢") 3 =0,
which in expanded form becomes

Co A Gulkx + oty — Talty — Tty — Tyttt — Extty — Sultyity — §yit] — ¢y

- ¢uut - ¢vux + T Uy + Tuu;z + TylUrUy + gtux + Suutux + gvui =0. (26)
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Following the procedure and justification given in [8], we consider the following specific
cases.

Case l:t =1
Now, from (2.4), we obtain
ut:(ﬁ_é{ _{=¢d £ £ 1. (2.7)

1_52’ u"_l_é—z’
Substituting (2.7) into (2.5) and (2.6) yields
é‘ud) - %‘{é‘u Cvé‘ - {véd’ 5:55 - d)g:t 2¢Su§§ - §u¢2 - §M§2§-2 .

o+ T + e + s + & b«
N é%ld)_—s ;bug“ N s¢lic_—§fv¢ N csi: s;xq’) N suzz—zs{,is?;szsmz _0, 28)
and
[+ g*;i - g;qu N ;Udii?zs; N sxsl;_—;xqs L 2598¢ —1 sjqb;—svs%z 4,
N ¢u51§_—;2bu¢ +¢>vsl¢_—g<zz>v; +s,;1: i’fd) +sv§2—2slvg_sg>2+ §8°¢° _ 2.9

Now, we will restrict ourselves to finding nonclassical potential symmetries (1.7) for Ex-
amples 2.1 and 2.2, for which £ = A(t,x), ¢ = B({t,x)u + C(t,x)v, { = D, x)u +
E(t, x)v.

After substitutions and then separating by the coefficients of # and v in both Equations (2.8)
and (2.9), we obtain the following two pairs of nonlinear equations:

DB AD? DE ABE AA,D A,B

bt T et e st o B
N AB? _ _BD N ACD  BC N A:D  ABA, _o, 2.10)
A2 1—a 1 1—ati-a 1-a
v B . DC__ADE  E* ACE AAE _ AC .
—A2 1-a "1T-a 1-a2'1-a2 1-a
, ABC _ BE ACE  _C  AE _AAC o

1—A2 1—A2 1-A2 1—A2 1-A2 1_A2

- D2 ABD  BE _ ADE  AAD AB
S L Y R B R Y B B R IV R B B

ABD B? ABC CcD A,D AAB

_ _ _ =0, 2.12
Tl el el 1A (2.12)
E 4 DE ACD N CE AE? _I_AAxE A, C c
v: X - - - -
1—A2 1—A2 1—A2 1-—A2 1—-A2 1-A2 !
ABE BC AC? CE AE AA,C
+ ! T —0. (2.13)

—A2 -2 12 12712 1-=a
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Here, it is clear that obtaining precise forms of the functions A, B, C, D and E will be tedious.
Hence, we choose some specific forms to demonstrate some of the nontrivial nonclassical
potential symmetries that arise for which we later give some invariant solutions.

If A= D = E = 0 (the nonclassical potential symmetries are then of the form (d/0¢) +
(Bu + Cv)(0/0u)), then Equations (2.10), (2.11), (2.12) and (2.13) yield

B, + BC =0, (2.14)
C,+C*=0, (2.15)
B, + B> =0, (2.16)
and
C,+ BC =0. (2.17)

Solving Equations (2.14-2.17), we obtain

1
= 671, C=——— (2.18)
X +cit+c X +cit+c;
Hence the nonclassical potential symmetries are
0 u+v\) 9
X =— —, 2.19
: 8t+<t+x)8u 19
0 v a
Xy =— —. 2.20
Y * <x + 1) ou (2:20)
fA=B=E=0andC =D =1, we get
X 0 + 0 + 0 (2.21)
=—4v— —. .
ST ou T e
If A=0,B =C = D = E =1, then the nonclassical potential symmetry is
0 a 0
X4 =— — —. 222
4 at+(u+v)au+(u+v)av (2.22)

fA=1/2,B =D =FE =0and C = 3/(4x — 2t + c3), then the nonclassical potential
symmetry is

xs= 2 1o SV 9 (2.23)
ST ot T 20x  \dx—2t+c¢3) ou '

Case2:1=0,E=1
Then from (2.4) we obtain

Uy =¢, u =vy=2¢. (2.24)
Substituting Equation (2.24) in (2.5) and (2.6) yields

&+ Cug +§v¢ _¢x _¢u¢_¢v§ =0 (225)
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and

§x+§u¢+§v§_¢t_¢u§_¢v¢:0-

(2.26)

After substitutions and then separating by the coefficients of u and v yield from Equa-

tions (2.25) and (2.26), the following nonlinear equations
u: D,+ D*+ BE—B,— B>~ CD =0,
v:. E,+DE+CE—-C,—BC—-CE=0,
u: D+ BD+ DE — B, —BD — BC =0,
v: E,+CD+E*—~C,—BE-C*=0.

If D=E =0and B # 0, then Equations (2.27), (2.28), (2.29) and (2.30) yield

B, + B* =0,
C,+ BC =0,
B, +BC =0,
and
C,+C*=0.

Solving Equations (2.31-2.34), we obtain

C4 1
CttaxHtcs CttaxHtoes

Hence the nonclassical potential symmetries are
0 u+vy) 0
X¢ = —+ —,
¢ dx <t +x ) ou

X_8+ v 0
7_8x t+1) ou’

If B=C = D = E = 1, then the nonclassical potential symmetry is

Xy = b+ D)+ ()
ST T T T Ty

If B=E =0and C = D = 1, then the nonclassical potential symmetry is

a a a
+v—+u—.

Xg=—
ox ou ov

(2.27)
(2.28)
(2.29)

(2.30)

(2.31)
(2.32)

(2.33)

(2.34)

Remark. We show that the nonclassical potential symmetries obtained above for the wave

equation (2.1) give rise to group-invariant solutions of the wave equation.
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(1) Firstly, we consider the symmetry generator Xs. The invariants of the generator X3 are

y =X,
1
w = —t +log (v +u) — =log (v — u?). (2.35)

2

Differentiating Equation (2.35b) w.r.t. £, we obtain v = (uu,)/u,. Now differentiating
Equation (2.35c) w.r.t. f and then substituting v = (uu,)/u, into the equation and solving for
u yields u = «(t) exp x. Since, v; = uy, v, = u,, it follows that &” () — «(t) = 0. Hence we
obtain

u(t,x) =(Aexp(x+1)+ Bexp(x — 1)),

where A, B are constants.
(2) The symmetry generator X4 has invariants

y=x, z=v—u and w = -2t log(v+ u).

Similar calculations yield
1 )
u(t,x) = Eexp(Zt +2x + k) — 3

where k, [ are constants.
(3) The symmetry generators Xs and X give group-invariant solutions u(f, x) = kx — [,
and u(t, x) = k(4t — 2x) + [, respectively, where [, k are constants.

EXAMPLE 2.2. Now we consider the wave equation which arises in the study of small
transverse vibrations of a string with variable density, with wave speed c(x) = x in an
inhomogeneous medium, that is,

U, — x2uy, = 0. (2.36)

Writing in a conserved form the PDE (2.36) becomes,

D, (%u,) — Dy (u,) =0. (2.37)
x

Then the system of first-order differential equations obtained from Equation (2.37) is

1

x—zu,, (2.38)

Uy = Uy, Uy =

Equation (2.38) admits the following four symmetries

~ d ~ 0 0
X1 = — Xo=x——v—,
ot ox v
~ d ;L0
X; = 2tx— 4+ 2logx— + [tu — xv]— — [tv + (x) " u]—,
X ot ov
~ 0 0
X4y = u— +v—,

ou v
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of which )?3 is the only potential symmetry of (2.36) [1].
Following the procedure applied to Example 2.1, we investigate the existence of
nonclassical potential symmetries of (2.36). A summary of results is provided below.

Casel:t =1
If A= D = E = 0, then we determine

c1x X

= , C=—m
citx +cx — 1 citx +cx — 1

Hence the nonclassical potential symmetries are

0 xu+xv\ 0
e (5

ar ix—1 ) ou’
X — ad . xv d
*Tor T \x—1)ou
If A= B =D = E =0 and c = —x, then the nonclassical potential symmetry is
0 a
X7 =— —xv—.
ot ou

fA=B=E=0,c=xand D = %, then the nonclassical potential symmetry is
X 0 . a + 2u 9
= —+xv—+——.
LY du | x ov

Case2: 1 =0, £ =1
If D = E = 0, then we determine

. C3 C = 1
Ct4extoes Ct4exHtes

Hence the nonclassical potential symmetries are
a u+vy) 0
X = + PN
° 7 ax (t +x ) au

¥ _8+ v 0
“’_ax t+1) ou’

If B=E=0,C=1and D= 1/x? then

¥ 0 N a N u 0
=—4v—+ —=—.
T o ou  x%ov
Remark. The group-invariant solutions corresponding to the nonclassical symmetries
obtained above for the wave equation (2.36) are presented below.
(1) The invariants of the symmetry generator Xg are

1 1
y=x, 2= Exzv2 —u?® and w=—-V2t+ log (xv + \/Eu) —3 log (x20? = 2u®).
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Similar calculations as we have done in Example 2.1 yield
u(t, x) = (Aexp (V21) + Bexp (—v/21))x?,

where A, B are constants.
(2) The symmetry generator X;; gives the group-invariant solution

u(t,x) = <C1x(l+‘/§)/2 + sz(l_“/g)ﬂ) expt,

where Cy, C, are constants.
(3) The symmetry generators Xs, X¢ and X7 all give the group-invariant solution
u(t,x) = kt — 1, where k, [ are constants.

EXAMPLE 2.3. Now we consider the Korteweg—deVries equation
U — Uyyy — Uty = 0. (2.39)

Writing in a conserved form the PDE (2.39) becomes,

1
Dt(u) — D, (uxx + 5142) = 0. (240)
Then the system of first-order differential equations
1,
Uy = Uyy + Eu , Uy =1U, (2.41)

obtained from Equation (2.40), from which no potential symmetries for (2.39) are obtained
(see [10]).

The calculations are straight forward and we obtain

Casel:t =1
& = A(t,x,v)u + B(t, x,v),

1
¢ = A’ + 5Bl,u2 +C(t, x,v)u + D(t, x,v),
L,
¢ = EAM + E(t, x,v).
There arises two subcases; A =0Qor A = —1.

Subcase A = 0: We obtain for the above case, B, = 0, C, = 0 and D, = 0. Thus, £ and ¢ are
independent of v. Hence there are no nonclassical potential symmetries for Equation (2.39).

Subcase A = —1: For this case we obtain only one symmetry, that is,
9 a
S 9t Ax’

which is not a potential symmetry.
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Case2:t1 =0, £ =1
For this case by separation by powers of u, leads to contradiction and hence, there are no
nonclassical potential symmetries.

Remarks. One can consider other e.g.s such as Burgers’ equation whose nonclassical sym-
metries with corresponding invariant solutions are presented in [8]. Also, it is known (see [1])
that Burgers’ equation has potential symmetries. Thus, it would not be surprising that Burgers’
equation has nonclassical potential symmetries in which case one can also investigate a similar
situation for the heat equation by transforming Burgers’ equation to the heat equation via the
Hopf—Cole transformation (see [3]).

3. Conclusion

We have shown that equations may display interesting properties, when studied through their
nonclassical potential symmetries. The combination of potential symmetries and nonclassical
symmetries has not, previously, been considered and we conclude that additional informa-
tion about equations may be obtained by studying the nonclassical potential symmetries. We
demonstrated this for equations that are considered differently in the literature. It should be
noted that the specific cases of T = 1 and arbitrary £ (Case 1) or t = 0 and £ = 1 (Case 2) is
followed in response to the justification of these choices given in [8]. That is, exact ‘invariant’
solutions for (2.39) are not obtainable as was demonstrated in the above e.g.s. As in the case
of potential symmetries, different conservation laws for a given system may produce different
sets of these symmetries.
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