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jejon@mai.liu.se
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Abstract

The Cauchy–Riemann equations admit a bilinear multiplication of solu-
tions, since the product of two holomorphic functions is again holomorphic.
This multiplication plays the role of a nonlinear superposition principle for
solutions, allowing for construction of new solutions from already known
ones, and it leads to the exceptional property of the Cauchy–Riemann equa-
tions that all solutions can locally be built from power series of a single
solution z = x+ iy ∈ C.

In this thesis we have found a differential algebraic characterization of
linear first order systems of partial differential equations admitting a bilin-
ear ∗-multiplication of solutions, and we have determined large new classes
of systems having this property. Among them are the already known quasi-
Cauchy–Riemann equations, characterizing integrable Newton equations,
and the gradient equations ∇f = M∇g with constant matrices M . A sys-
tematic description of linear systems of PDEs with variable coefficients have
been given for systems with few independent and few dependent variables.

An important property of the ∗-multiplication is that infinite families
of solutions can be constructed algebraically as power series of known so-
lutions. For the equation ∇f = M∇g it has been proved that the general
solution, found by Jodeit and Olver, can be locally represented as conver-
gent power series of a single simple solution similarly as for solutions of the
Cauchy–Riemann equations.
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Populärvetenskaplig sammanfattning

Multiplikation av lösningar till system av partiella dif-

ferentialekvationer

En partiell differentialekvation är en ekvation som beskriver en relation
mellan funktioner av flera variabler och deras derivator. Partiella differ-
entialekvationer används för att konstruera modeller av verkliga fenomen
s̊aväl inom de naturvetenskapliga disciplinerna som inom ekonomi. N̊agra
välkända exempel p̊a differentialekvationer och deras tillämpningar är
Navier–Stokes ekvationer inom strömningsmekanik, Black–Scholes ekva-
tion inom finansmatematik, värmeledningsekvationen, v̊agekvationen, och
Maxwells elektromagnetiska ekvationer.

I allmänhet är det omöjligt att explicit beskriva alla lösningar till
en differentialekvation, vilket medför att olika metoder för att konstruera
speciella lösningar spelar en central roll när man vill beskriva lösnings-
rummet till en differentialekvation. I detta forskningsprojekt har vi stud-
erat en speciell metod, kallad ∗-multiplikation, för att generera nya lösningar
fr̊an redan kända lösningar till en stor klass av system av partiella differen-
tialekvationer. Denna “multiplikation” av lösningar tillskriver p̊a ett rent
algebraiskt vis, till varje par V , W av lösningar, en ny lösning genom bil-
dandet av ∗-produkten V ∗W . Speciellt kan denna metod användas för
att konstruera oändliga följder av lösningar fr̊an en given enkel lösning V
genom bildandet av ∗-potenser

V n
∗ = V ∗ V ∗ · · · ∗ V

︸ ︷︷ ︸

n faktorer

,

där n är ett godtyckligt positivt heltal.
De välkända Cauchy–Riemanns ekvationer utgör ett exempel p̊a sys-

tem med ∗-multiplikation. Dessa ekvationer används för att karakterisera
analytiska (mycket reguljära) komplexa funktioner, vilka ing̊ar i m̊anga
beskrivningar av fysikaliska processer och tekniska tillämpningar. Ett an-
nat exempel som vi studerat i denna avhandling är kvasi-Cauchy–Riemann-
ska ekvationer. Dessa ekvationer beskriver viktiga klasser av mekaniska
system p̊a Newtonform vilka kan lösas genom separation av variabler.
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Introduction

This dissertation consists of four research papers [9, 11, 12, 10], pre-
ceded by an introduction.

1 Background

When studying systems of partial differential equations (PDEs), the first
question a mathematician is concerned about is the conditions guaranteeing
existence of solutions. There are many fundamental results about existence
of solutions for analytic PDEs [2].

When existence is established, the next goal is to describe all solutions
of the system of PDEs and, possibly, a general solution containing all other
solutions. Such general solutions usually depend on arbitrary functions.
For the majority of PDEs and systems of PDEs, this is an impossible task
since there is no general description of solutions in terms of quadratures.

For this reason, when studying properties of solutions, we usually have
to be satisfied when it is possible to find particular solutions, possibly ful-
filling some additional conditions (initial, boundary, etc.) relevant for the
model where they are used. There are several techniques of searching for
special solutions of systems of PDEs such as separation of variables [19],
symmetry methods [20], and certain classes of equations admit superposi-
tion of solutions.

For linear systems of PDEs, any linear combination of solutions is again
a solution, and this property (called the linear superposition principle)
is the basis of the Fourier method of solving linear PDEs like the heat
equation, the wave equation, and many other equations of mathematical
physics.

For a nonlinear PDE, a linear combination of solutions is not a solu-
tion, but there are many known equations admitting a nonlinear superposi-
tion of solutions that allows for construction of new solutions from already
known ones. The best known examples are soliton equations such as the
sine–Gordon equation and the KdV equation [13].

In this dissertation, we study systems of linear PDEs which, in addi-
tion to the linear superposition principle, admits a special kind of bilinear
superposition principle, here called ∗-multiplication. If such a superposi-
tion exists, then one can build complex solutions as polynomials and power
series of certain simple solutions, and in this way describe a large subset of
the whole solution space.
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A prototype example are the Cauchy–Riemann equations for which all
solutions are obtained from the single solution (x, y) through power series
of the complex function z = x+ iy.

2 Nonlinear superposition principles for dif-

ferential equations

We shall start with presenting a few examples of known differential equa-
tions admitting nonlinear superposition of solutions.

2.1 The Riccati equation

Consider the nonlinear first order ordinary differential equation

V ′ + a(x)V 2 + b(x)V + c(x) = 0, (1)

known as the Riccati equation. If V1 is a particular solution, a change of
dependent variable, W = (V − V1)

−1, transforms the equation (1) into the
linear equation

W ′ + ã(x)W + b̃(x) = 0, (2)

where ã = −2V1 − b and b̃ = −a. If V2 is another particular solution
of the Riccati equation, the function W1 = (V2 − V1)

−1 is a particular
solution of the linearized equation (2). Thus, with two particular solutions
available, the problem of describing the general solution of (1) is reduced
to the problem of solving the linear homogeneous equation

W ′ + ã(x)W = 0. (3)

The general solution of (2) can be written as W = cf1(x) + f2(x), where
f1 and f2 are fixed functions and c is an arbitrary constant. Therefore, by
transforming back to the original dependent variable V , we see that the
general solution of the Riccati equation (1) can be written as

V (x) = V1(x) +
1

cf1(x) + f2(x)
=
cf3(x) + f4(x)

cf1(x) + f2(x)
,

where f3 and f4 are also fixed functions. Thus, since the anharmonic ratio
is invariant under Möbius transformations, any four particular solutions
V1, V2, V3, V4, with corresponding constants c1, c2, c3, c4, satisfy the relation

V4 − V1

V4 − V2

/
V3 − V1

V3 − V2
=
c4 − c1
c4 − c2

/
c3 − c1
c3 − c2

.

September 28, 2007 (9:12)
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Hence, the general solution of the Riccati equation is obtained from any
three particular solutions V1, V2, V3 by solving the algebraic equation

V − V1

V − V2

/
V3 − V1

V3 − V2
= c, (4)

where c is an arbitrary constant.
Thus, for the Riccati equation, when one particular solution is known,

the general solution can be obtained with the use of two quadratures by
solving the inhomogeneous first order equation (2). When two particular
solutions are known, the general solution can be obtained with the use of
one quadrature by solving the homogeneous first order equation (3). But
when three particular solutions are known, the general solution is deter-
mined without any quadrature by the nonlinear superposition formula (4).
We say that the Riccati equation admits a nonlinear superposition of so-
lutions. A similar superposition principle is established for a large class of
systems of ODEs, known as matrix Riccati equations [7].

2.2 Bäcklund transformations as nonlinear superposi-

tion principle

A Bäcklund transformation for a second order PDE is a system of first
order PDEs, which relates each solution of the original PDE with a solu-
tion of another differential equation. A rigorous and elementary survey of
Bäcklund transformations can be found in [5]. Sometimes Bäcklund trans-
formation equations can be used in order to find the general solution of an
equation by linking it to a simpler equation that can be solved. One such
example is the Liouville equation.

Example 1. The Liouville equation ∂2V/∂x∂y = expV, is associated with
the wave equation ∂2Ṽ /∂x∂y = 0 through the Bäcklund transformation

∂V

∂x
−
∂Ṽ

∂x
= a exp

(

V + Ṽ

2

)

∂V

∂y
+
∂Ṽ

∂y
= −

2

a
exp

(

Ṽ − V

2

)

,

(5)

where a is an arbitrary constant. By inserting the general solution Ṽ =
φ(x) + ψ(y) of the wave equation in the Bäcklund transformation, the re-
sulting overdetermined system for V can be integrated and the general so-
lution

expV = 2
φ′(x)ψ′(y)

(φ(x) + ψ(y))2

of the Liouville equation is obtained [15].

September 28, 2007 (9:12)



4

Bäcklund transformations can also map solutions of a given equation
to different solutions of the same equation. These so-called auto-Bäcklund
transformations can be useful since they give a method for constructing
new solutions from known particular solutions.

Example 2. The sine–Gordon equation is the nonlinear second order par-
tial differential equation

∂2V

∂x∂y
= sinV (6)

for the unknown function V (x, y). This equation was first studied in dif-
ferential geometry, where it is related to surfaces of constant curvature [4].
The sine–Gordon equation can be integrated with inverse scattering methods
[15], but it also allows a nonlinear superposition of solutions. The Bäcklund
transformation equations for the sine–Gordon equation are

∂V

∂x
−
∂Ṽ

∂x
= 2a sin

(

V + Ṽ

2

)

∂V

∂y
+
∂Ṽ

∂y
=

2

a
sin

(

V − Ṽ

2

) (7)

where a is an arbitrary non-zero constant. We note that if (V, Ṽ ) is a
solution of (7), then

∂2V

∂x∂y
=

∂2

∂x∂y

(

V − Ṽ

2
+
V + Ṽ

2

)

= a
∂

∂y
sin

(

V + Ṽ

2

)

+
1

a

∂

∂x
sin

(

V − Ṽ

2

)

= cos

(

V + Ṽ

2

)

sin

(

V − Ṽ

2

)

+ cos

(

V − Ṽ

2

)

sin

(

V + Ṽ

2

)

= sinV.

Analogously, Ṽ is also a solution of the sine–Gordon equation. Conversely,
one can prove that for any solution V of (6), there exists a unique “conju-
gate” solution Ṽ such that (V, Ṽ ) is a solution of (7). In fact, the Bäcklund
transformations for both the sine–Gordon equation and the Liouville equa-
tion are special cases of a more general class of first order system of PDEs
which are proven in [2] to be equivalent to single second order equations for
one unknown function. Thus, given a particular solution V0 (for instance
we can choose the trivial solution V0 = 0) of the sine–Gordon equation, a
second solution V1 can be found by quadrature by solving the Bäcklund trans-
formation equations for any choice of constant a = a1 and with Ṽ = V0 held

September 28, 2007 (9:12)
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fixed. A third solution can then be obtained by integrating (7) with a = a2

and Ṽ = V1. By continuing this process, an infinite family of solutions is
obtained by quadrature (figure 1).

V0��
��

-
a1

V1��
��

-
a2

V2��
��

-
a3

· · ·

Figure 1: Generating an infinite sequence of solutions from one solution V0.

However, like for the Riccati equation, there is also a way to obtain
particular solutions of the sine–Gordon equation without using quadrature.
This is done by relating different solutions through the so called theorem
of permutability. Starting with a solution V0 and going two steps in the
process illustrated in figure 1, with the constants a1 and a2, will give the
same result as using the constants in reversed order. This is illustrated by
the diagram in figure 2. By algebraic manipulation of the corresponding

V0��
��

�
�

�3

Q
Q

Qs

V1��
��

V2��
��

a1

a2 �
�

�3

Q
Q

Qs
V3��

��a2

a1

Figure 2: The same solution V3 is obtained from V0 by using the constants
a1, a2, regardless of in which order the constants are taken.

Bäcklund transformations (7), one finds [14] that the solutions in figure 2
satisfy the relation

tan

(
V3 − V0

4

)

=
a1 + a2

a1 − a2
tan

(
V1 − V2

4

)

. (8)

The formula (8) is known as the theorem of permutability for the sine–
Gordon equation. Thus, for any given three solutions V0, V1, V2, a fourth
solution V3 may be constructed algebraically from (8). By constructing sin-
gle soliton solutions from the trivial solution V0 = 0 through integration of
the corresponding Bäcklund transformation for different constants a, more
complex multisoliton solutions can be constructed algebraically by repeated
use of the theorem of permutability. This nonlinear superposition principle
is illustrated in figure 3 below. By starting with several single soliton so-
lutions, higher order multisoliton solutions can be constructed in the same
way.

September 28, 2007 (9:12)
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V0��
��

�
�

�3

Q
Q

Qs

V1��
��

V2��
��

a1

a2 �
�

�3

Q
Q

Qs
V4��

��a2

a1

��
��

�
�

�3a2

Q
Q

Qsa3

V0

��
����

�3

a2
V3

��
��

Q
Q

Qs

a3

��
��
V5

��
�� ��

��
Q

Q
Qs

a3
V4

��
��a1�

�
�3

V5

��
��
V6

Figure 3: The single soliton solutions V1, V2, V3 are found by quadrature
from the trivial solution V0 = 0 and the two-soliton solutions V4, V5 and the
three-soliton solution V6 can then be obtained algebraically by the theorem
of permutability.

Both the sine–Gordon equation and the Riccati equation are well
known examples of nonlinear differential equations having a nonlinear su-
perposition principle. We give now an example of a linear system of PDEs,
admitting a nonlinear superposition of solutions

2.3 The Cauchy–Riemann equations

The Cauchy–Riemann equations (CR)

∂V

∂x
=
∂W

∂y

∂V

∂y
= −

∂W

∂x

are a system of two linear homogeneous first order PDEs for two unknown
functions V (x, y) and W (x, y). Since the system is linear, it admits the
linear superposition principle. But in addition, as a consequence of the
multiplication of holomorphic functions, CR also admits a bilinear super-
position principle.

There is a 1 − 1 correspondence between continuously differentiable
solutions of CR and holomorphic functions of one complex variable, so that
for each holomorphic function f = V + iW , the pair (V,W ) is a solution of
CR. Since the product fg = (V + iW )(Ṽ + iW̃ ) = (V Ṽ −WW̃ ) + i(V W̃ +
WṼ ) of two holomorphic functions is again holomorphic, solutions of CR
can also be “multiplied” as

(V,W ) ∗ (Ṽ , W̃ ) := (V Ṽ −WW̃, V W̃ +WṼ )

September 28, 2007 (9:12)
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prescribing a new solution (V,W ) ∗ (Ṽ , W̃ ) to any two solutions. By us-
ing the linear and the bilinear superposition, new solutions of CR can be
built as convergent power series of simple solutions. Since any holomorphic
function can be expressed (locally) as a power series of z = x + iy ∈ C, it
follows that the whole solution space of CR can, in fact, be described in
terms of these power series. In a neighborhood of origin, every solution of
CR can be built by forming power series of the simple solution (x, y)

(V,W ) =

∞∑

r=0

ar(x, y)
r
∗, where (x, y)r

∗ = (x, y) ∗ (x, y) ∗ · · · ∗ (x, y)
︸ ︷︷ ︸

r factors

, (9)

and ar are real constants.

2.4 The quasi-Cauchy–Riemann equations

Another example of a linear system of PDEs having a bilinear superposition
of solutions is the quasi-Cauchy–Riemann equation (QCR), defined on a
Riemannian manifold Q with a metric (gij), of the form

J

det J
∇V =

J̃

det J̃
∇W, (10)

where J and J̃ are special conformal Killing tensors and ∇ is the gradient
operator ((∇V )i = gij∂jV ). In Euclidean space with Cartesian coordinates

qi, J and J̃ are square matrices, with quadratic entries, of the form

J = αq ⊗ q + β ⊗ q + q ⊗ β + γ, α ∈ R, β ∈ R
n, γ ∈ R

n×n,

where q = [q1 q2 · · · qn]T . For fixed tensors J and J̃ , the QCR equation
(10) is a linear first order system of PDEs for two unknown functions V (q)
and Ṽ (q), and the solutions characterize all cofactor pair systems

q̈i + Γi
jk q̇

j q̇k = F i, where F = −
J

det J
∇V = −

J̃

det J̃
∇W.

Cofactor pair systems constitute an important class of Newton equations
[21, 17, 18, 22, 3, 1], containing all classical separable potential systems. A
generic cofactor pair system is equivalent, in the sense of Levi-Civita, to a
potential system which is separable in the Hamilton–Jacobi sense [1].

A recursive formula for certain cofactor pair systems was found in [24],
and later generalized to all cofactor pair systems [21, 17]. This recursion
allows, for any given solution of a QCR equation, construction of an infinite
family of solutions. Lundmark [16] realized later that the recursion was only
a special case of a multiplicative structure on the solution space, possessed
by any QCR equation. For n = 2, this multiplication formula is particularly

September 28, 2007 (9:12)
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simple. Given any two solutions (V,W ) and (Ṽ , W̃ ) of (10), a new solution
is defined by

(V,W ) ∗ (Ṽ , W̃ ) =
(

V Ṽ −det (J̃−1J)WW̃, V W̃ +WṼ − tr (J̃−1J)WW̃
)

.

The infinite family of solutions that is generated from a given solution
(V,W ) through the recursion formula can also be expressed through the
multiplication by forming “products”

(V,W ) ∗ (0, 1) ∗ (0, 1) ∗ · · · ∗ (0, 1)
︸ ︷︷ ︸

r factors

for different powers of the trivial solution (0, 1). When n > 2, both the
recursion and multiplication exist but they are defined for a related param-
eter dependent equation

J + µJ̃

det (J + µJ̃)
∇Vµ =

J̃

det J̃
∇W, (11)

where µ is a real parameter and the unknown function Vµ is a polynomial
of degree n− 1 in µ. There is a 1 − 1 correspondence between solutions of
(11) and solutions of the original equation (10). Equation (11) can also be
written as

(

J̃−1J + µI
)

∇Vµ = det (J̃−1J + µI)∇W,

which in turn can be expressed as a congruence equation

(

J̃−1J + µI
)

∇Vµ ≡ 0
(

mod det (J̃−1J + µI)
)

, (12)

which means that Vµ is a solution if the vector (J̃−1J + µI)∇Vµ can be

written as a product of the function det (J̃−1J + µI) and a vector which
does not depend on µ. The ∗-product of two solutions Vµ and Wµ is then
defined as the remainder of the ordinary product VµWµ after polynomial

division by det (J̃−1J + µI).

Example 3. Consider the QCR equation (10) on a 3-dimensional Eu-
clidean space with Cartesian coordinates (x, y, z) where

J =





1 0 x
0 0 y
x y 2z





and J̃ = I is the identity matrix. Written out in components, we get the
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following overdetermined system of PDEs (when y 6= 0):

0 =
∂V

∂x
+ x

∂V

∂z
+ y2 ∂W

∂x

0 = y
∂V

∂z
+ y2 ∂W

∂y

0 = x
∂V

∂x
+ y

∂V

∂y
+ 2z

∂V

∂z
+ y2 ∂W

∂z
.

(13)

The related parameter dependent equation (12) is then given by




1 + µ 0 x
0 µ y
x y 2z + µ



∇(V + Uµ+Wµ2) ≡ 0 (mod Zµ), (14)

where Zµ = −y2 + (2z − y2)µ+ (1 + 2z)µ2 + µ3, and the ∗-product of two

solutions V + Uµ+Wµ2 and Ṽ + Ũµ+ W̃µ2 is given by the expression

V Ṽ + y2(V Ũ + UṼ ) − y2(1 + 2z)WW̃

+ µ
(

V Ũ + UṼ + (x2 + y2 − 2z)(UW̃ +WŨ)

+(4z2 − x2 − 2z(x2 + y2 − 1))WW̃
)

+ µ2
(

V W̃ +WṼ + UŨ − (1 + 2z)(UW̃ +WŨ)

+(2z(2z + 1) + 1 + x2 + y2)WW̃
)

For instance, the ∗-product of the trivial solutions µ+µ2 and µ is given by
the non-trivial solution

(µ+ µ2) ∗ µ = y2 + (x2 + y2 − 2z)µ+ 2zµ2.

For any solution V + Uµ + Wµ2 of the parameter dependent QCR equa-
tion (14), (V,W ) is a solution of the original QCR equation (13).

A detailed study of this peculiar multiplication, defined on the solution
space of every QCR equation, has been presented in [9].

3 Systems of linear first order homogeneous

partial differential equations

The purpose of this dissertation is study of bilinear multiplication of solu-
tions (like for QCR equations) for systems of homogeneous linear partial
differential equations of first order of the form

m∑

i=1

n∑

j=1

aijk(x1, x2, . . . , xn)
∂Vi

∂xj
= 0, k = 1, 2, . . . , r, (15)
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where x1, x2, . . . , xn are independent variables (real or complex) and V1, V2,
. . . , Vm are dependent variables, and aijk are given functions of (at least)
class C1. In this section we shall recall [2, 6] a few properties of such systems
of PDEs. Let r′ ≤ r be the maximal number of linearly independent
equations of (15). The system is overdetermined if m < r′, determined if
m = r′, and underdetermined if m > r′.

The case when (15) has only one unknown function (m = 1) is con-
siderably simpler than the general case when there are several unknown
functions. This special case of (15) is discussed in detail in [6], and we
present below the main facts for these systems.

3.1 m = 1, one dependent variable

When m = 1, (15) reduces to a system

X1(V ) := a11
∂V

∂x1
+ a12

∂V

∂x2
+ · · · + a1n

∂V

∂xn
= 0

X2(V ) := a21
∂V

∂x1
+ a22

∂V

∂x2
+ · · · + a2n

∂V

∂xn
= 0

...

Xr(V ) := ar1
∂V

∂x1
+ ar2

∂V

∂x2
+ · · · + arn

∂V

∂xn
= 0,

(16)

where Xi = ai1
∂

∂x1
+ ai2

∂
∂x2

+ · · · + ain
∂

∂xn
denote vector fields acting on

the dependent variable V . The coefficients aij are assumed to be analytic
functions of the independent variables.

When r = 1, the system (16) reduces to a single equation

a1
∂V

∂x1
+ a2

∂V

∂x2
+ · · · + an

∂V

∂xn
= 0. (17)

Solving the equation (17) is equivalent to solving the system

dx1

ds
= a1,

dx2

ds
= a2, . . . ,

dxn

ds
= an (18)

of ordinary differential equations. The general solution of (17) can be writ-
ten as φ(f1, f2, . . . , fn−1), where φ is an arbitrary function and f1, f2, . . .,
fn−1 are functionally independent integrals of motion of (18), i.e., they
satisfy the condition

d

ds
fi(x1, . . . , xn) =

∂fi

∂x1

dx1

ds
+ · · · +

∂fi

∂xn

dxn

ds
= 0

for any solution x1(s), . . . , xn(s) of (18).
We can assume that equations (16) are linearly independent, since

otherwise we could discard equations which are linear combinations of the
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other equations. There can be at most n independent linear equations, so
r ≤ n. Since there can be no solutions except the trivial constant solutions
when r = n, we can assume that r < n.

All commutator equations

[Xi, Xj ](V ) := Xi (Xj(V )) −Xj (Xi(V )) = 0, 1 ≤ i < j ≤ r (19)

are also linear homogeneous first order equations for V , which are satis-
fied for any solution of (16). Thus, by extending the system (16) with the
maximal number of equations (19) so that the resulting equations are still
linearly independent, we obtain a new system of the form (16) consisting of
r′ ≥ r independent equations with the same solution space as the original
system. By repeating this procedure of adding equations (19) so that the
equations in the extended system are independent, we will, after a finite
number of iterations, reach a new system of the form (16) for which all com-
mutator equations (19) are linear combinations of the equationsXi(V ) = 0.
Such a system is said to be complete. Henceforth, we will assume that the
system (16) is complete.

A system Y1(V ) = 0, Y2(V ) = 0, . . . , Yr(V ) = 0, defined by linear
combinations

Yi(V ) = λ1iX1(V ) + λ2iX2(V ) + · · · + λriXr(V ), i = 1, 2, . . . , r,

where λij = λij(x1, x2, . . . , xn) are functions of the independent variables
such that det (λij) 6= 0, is equivalent to (16).

Suppose now that y2, y3, . . . , yn are functionally independent integrals
of the first equation X1(V ) = 0 (which is an equation of the form (17)),
and choose a function y1 in such a way that y1, y2, . . . , yn define new inde-
pendent variables. The equation X1(V ) = 0 then reduces to ∂V/∂y1 = 0,
and the system (16) can be replaced with an equivalent system of the form

Y1(V ) =
∂V

∂y1
= 0

Y2(V ) =
∂V

∂y2
+ b21

∂V

∂yr+1
+ · · · + b2,n−r

∂V

∂yn
= 0

...

Yr(V ) =
∂V

∂yr
+ br1

∂V

∂yr+1
+ · · · + br,n−r

∂V

∂yn
= 0.

(20)

Completeness for a system is an invariant property under both equivalence
of systems and under changes of independent variables. Therefore, (20) is
again a complete system, which can only be the case if the vector fields
Y1, Y2, . . . Yr commute, i.e., [Yi, Yj ] = 0. (since they will only contain the
derivatives ∂V/∂yr+1, . . . , ∂V/∂yn). Especially, we have

[Y1, Yi](V ) =
∂bi1
∂y1

∂V

∂yr+1
+ · · · +

∂bi,n−r

∂y1

∂V

∂yn
≡ 0, i = 2, 3, . . . , r,
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from which we conclude that the coefficients bij are independent of y1.
Hence, the equations Y2(V ) = 0, Y3(V ) = 0, . . . , Yr(V ) = 0 form a com-
plete system of r−1 equations in n−1 independent variables, which in turn
can be reduced to a complete system of r − 2 equations in n− 2 variables.
By repeating this procedure we conclude that any complete system (16) can
be reduced to a single equation in n−r+1 independent variables, and that
the general solution therefore is an arbitrary function of n− r independent
particular solutions that are integrals of motions of the related dynamical
system (18). We note especially that, by using this procedure, it is possible
to determine without quadrature whether a system (16) admits non-trivial
solutions.

When the system (15) contains more than one dependent variable
(m > 1), there is no general procedure, like the one described above, for
obtaining the general solution. Therefore, the discovery of other methods
of constructing exact solutions becomes highly important.

4 Multiplication of solutions

Most of this thesis is devoted to study of a bilinear superposition principle,
which we call ∗-multiplication, that generates new solutions for systems of
the kind (15). In other words, if we let S denote the solution space for a
certain system of the form (15), we consider an operation

∗ : S × S → S
(

(V1, . . . , Vm), (W1, . . . ,Wm)
)

7→ (V1, . . . , Vm) ∗ (W1, . . . ,Wm),

which, as a consequence of the required bilinearity, must have the form

(V1, . . . , Vm) ∗ (W1, . . . ,Wm) =





m∑

i,j=1

f1
ijViWj , . . . ,

m∑

i,j=1

fm
ij ViWj



 (21)

where the coefficients fk
ij = fk

ij(x1, x2, . . . , xn) are functions of the indepen-
dent variables. Since the system (15) is linear, the presence of a multiplica-
tion turns the solution space S into an algebra over the current field (R or
C). Not every system (15) admits a non-trivial ∗-multiplication, and the
question about existence of a multiplication leads to a number of compli-
cated differential relations among the functions fk

ij . For instance, since a
constant vector (c1, . . . , cm) is a solution of (15), all ∗-products of constant
solutions must again be solutions

(c1, . . . , cm) ∗ (d1, . . . , dm) =
m∑

i,j=1

cidj(f
1
ij , . . . , f

m
ij ).
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This entails that Fab := (f1
ab, . . . , f

m
ab) must be a solution of (15) for every

choice of a and b. One can then go further and study the higher degree
polynomials of fk

ij , obtained by forming higher order ∗-products

(c11, . . . , c
1
m) ∗ (c21, . . . , c

2
m) ∗ · · · ∗ (cr1, . . . , c

r
m), r = 1, 2, . . . , (22)

of constant solutions. Since all possible products (22) must be solutions,
we obtain an infinite number of restrictive equations for the functions fk

ij .
Surprisingly, large classes of systems with ∗-multiplication exist. Both the
Cauchy–Riemann equations and the more general quasi-Cauchy–Riemann
equations [9] are non-trivial examples of systems of partial differential equa-
tions which allow multiplication of solutions.

We give here a simple example of an overdetermined system that ad-
mits a ∗-multiplication but is not a QCR equation.

Example 4. Consider the following system of differential equations for the
unknown functions U(x, y), V (x, y) and W (x, y):

0 = x
∂U

∂x
+ (y2 + 1)

∂U

∂y
+ x

∂W

∂x

0 = −x
∂U

∂x
− y

∂U

∂y
+ x

∂W

∂y

0 = −
∂V

∂x
+ (y + 1)

∂W

∂x
+ (y + 1)

∂W

∂y

0 = −
∂V

∂y
− x

∂W

∂x
+ (1 − x)

∂W

∂y
.

This system admits a multiplication of solutions, where the ∗-product

(U, V,W ) ∗ (Ũ , Ṽ , W̃ ) =: (P,Q,R)

of two solutions is defined by

P = UŨ − xV W̃ − xWṼ + (x+ xy − x2)WW̃

Q = UṼ + V Ũ − yV W̃ − yWṼ +
(
y − x+ y2 − xy

)
WW̃

R = UW̃ + V Ṽ +WŨ + (x− 1 − y)(V W̃ +WṼ )

+
(
(1 + y − x)2 − y

)
WW̃.

Thus, for example, forming the ∗-product of the two trivial solutions (0, 1, 0)
and (0, 0,−1) gives the non-trivial solution

(0, 1, 0) ∗ (0, 0,−1) = (x, y, 1 + y − x).

For the Cauchy–Riemann equations all coefficients fk
ij in the ∗-multipli-

cation formula (21) are constant (f1
11 = f2

12 = f2
21 = 1, f1

22 = −1, f1
12 =

f1
21 = f2

11 = f2
22 = 0), so that products of trivial (constant) solutions
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are again trivial. On the other hand, when the coefficients fk
ij are not all

constant, which is the case in example 3 and example 4, products of trivial
solutions will in general give non-trivial solutions.

By combining the ∗-multiplication with the linear superposition prin-
ciple of solutions, it is possible to form ∗-polynomials

N∑

j=0

ajV
j
∗ , where V j

∗ = V ∗ V ∗ · · · ∗ V,
︸ ︷︷ ︸

j factors

(23)

of any solution V = (V1, . . . , Vm). Thus, given a solution V , infinite families
of solutions may be constructed by forming ∗-polynomials (23). It is also
possible to construct ∗-power series

∞∑

j=0

ajV
j
∗ ,

which define new solutions.
In papers [9, 11, 12], we study three main problems about ∗-multiplica-

tion:

1. The study of relations between the coefficients fk
ij in (21) that must be

satisfied for a system (15) to admit ∗-multiplication. For certain types
of linear systems of PDEs (15), we give equivalent characterizations
of systems admitting ∗-multiplication that leads to determination of
explicit families of systems of PDEs having ∗-multiplication. We give
also methods for constructing, from known systems, new systems of
PDEs admitting ∗-multiplication.

2. The search for a canonical form of systems of linear PDEs having
∗-multiplication. The most ideal situation would be to have a com-
plete set of canonical systems, such that any system admitting a
∗-multiplication could be transformed (for instance by a change of
independent variables) into a unique member of this set. We have
not been able to give such a classification in the most general situ-
ations and it seems to be a difficult problem. Instead, we describe
classes of certain generic (typical) systems, into which most systems
having ∗-multiplication can be transformed.

3. The study of the operation ∗ as a tool for construction of new solu-
tions from known solutions of system (15). For some systems with
∗-multiplication, interesting infinite families of solutions may be con-
structed as ∗-polynomials of certain simple solution which is easy to
find. We also study the natural question about which solutions are
∗-analytic, i.e., about which solutions can be represented locally as
∗-power series of certain simple solutions. Recall that any solution
of the Cauchy–Riemann equations is locally a ∗-power series of the
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linear solution (x, y) (9). The choice of “simple” solution, used for
building ∗-power series, depends on the type of system of linear PDEs.
In some cases it is sufficient to construct power series of a constant
solution, while for systems with constant coefficients fk

ij (like the CR
equations), one has to build power series of suitable non-trivial solu-
tions.

5 Overview of research papers

In the first paper [9], we study multiplication for solutions of quasi-Cauchy–
Riemann equations (10), that are related to the cofactor pair systems. We
give the following characterization of systems admitting ∗-multiplication:
any system, on a Riemannian manifold, of the form

(X + µI)∇Vµ ≡ 0 (mod det (X + µI)) ,

where X is a (1, 1) tensor, admits ∗-multiplication of solutions if and only
if

(X + µI)∇det (X + µI) ≡ 0 (mod det (X + µI)) . (24)

The ∗-product Vµ ∗ Wµ of two solutions is defined as the remainder in
the polynomial division of the ordinary product VµWµ with the divisor
det (X + µI).

The characterizing equation (24) is studied and it is proven that it is
satisfied by several families of rank two tensors X, beyond the ones which
were already known in the theory of quasi-Cauchy–Riemann equations.
Especially, it has been shown that any tensor X with vanishing Nijenhuis
torsion satisfies (24), due to validity of the following relation:

2
(

Xd(detX) − detXd(trX)
)

i
= (NX)k

ijC
j
k,

where NX is the Nijenhuis torsion ofX and C = (detX)X−1 is the cofactor
tensor of X.

Cofactor pair systems are closely related to the concept of equivalence
for dynamical systems, and we discuss in [9] which role the multiplication
of QCR equations plays in this relation. In particular we give examples of
infinite families of separable Lagrangian systems which are generated by
∗-multiplication from a single system.

In the second paper [11], it is shown that the ∗-multiplication is ad-
mitted by a much larger class of equations than the one described in [9].
Any system

Aµ∇Vµ ≡ 0 (mod Zµ) , (25)

September 28, 2007 (9:12)



16

admits a ∗-multiplication whenever the (1, 1) tensor Aµ and the smooth
function Zµ (both depending polynomially on the parameter µ) satisfy the
relation

Aµ∇Zµ ≡ 0 (mod Zµ) .

We give in [11] a classification of systems admitting ∗-multiplication, de-
pending on the dimension of the manifold, and on the polynomial degrees
of Aµ and Zµ, respectively.

By combining the ∗-multiplication and the ordinary linear superposi-
tion principle of solutions, ∗-polynomials

N∑

r=0

ar(Vµ)r
∗, where (Vµ)r

∗ = Vµ ∗ Vµ ∗ · · · ∗ Vµ
︸ ︷︷ ︸

r factors

, (26)

of a simple solution Vµ are constructed. This means that infinite families of
non-trivial solutions are constructed from a simple solution Vµ. Sufficient
conditions for a ∗-power series (obtained by letting N → ∞ in (26)), of
a constant solution, to converge and to define a new solution have been
established with the use of a matrix notation, introduced in [11] specially
for this purpose.

In the third paper [12] of this dissertation, we study matrix equations

∇f = M∇g, (27)

where M is a n×n matrix with constant entries, in a open convex domain
of a vector space over the real or complex numbers. The general solution of
the equation (27) is described in [8] and some further results are also given
in [23]. We show that every equation of the form (27) can be extended to
a system which admits ∗-multiplication on the solution space. The main
result in [12] is that every analytic solution is also ∗-analytic, meaning that
it can be expressed locally through power series, with respect to the ∗-
multiplication, of simple solutions.

The last paper [10] presents an explicit formula for the remainder of
polynomial division, using the companion matrix of the divisor. Let Z(x) =
xn + an−1x

n−1 + · · · + a0 be a monic polynomial over some commutative
ring. For each polynomial p(x), according to the Euclidean algorithm, there
exist unique polynomials q(x) and r(x) such that

p(x) = q(x)Z(x) + r(x), deg r < n.

Traditionally, the residue r(x) is constructed through a recursive algorithm.
We show that r(x) can be described explicitly as

r(x) =
[
1 x · · · xn−1

]
p(C)[1 0 · · · 0]T ,
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where C is the companion matrix of Z(x)

C = C[Z] :=











0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1
. . .

...
...

...
. . . 0 −an−2

0 0 · · · 1 −an−1











and p(C) is the matrix polynomial obtained by formally substituting the
matrix C in the place of the variable x.

This result is a generalization of the method used in [11] to prove
convergence of the constructed ∗-power series solutions of the equation
(25).

6 Conclusions

In this dissertation we have discovered that large classes of linear systems
of first order PDEs admit, beside the linear superposition of solutions, a
new kind of bilinear superposition called ∗-multiplication. We show that,
by combining these two superpositions, one can construct large families of
explicit solutions by forming ∗-power series of certain simple solutions. For
the subclass of equations of the form ∇f = M∇g, where M is a constant
matrix, every analytic solution is also ∗-analytic, but in more general cases
it remains an open question how large part of the whole solution space is
generated by ∗-power series of simple solutions.

We have also in this dissertation attempted to classify the systems of
PDEs that admit ∗-multiplication. This description of systems is the first
of this kind and it is still an interesting future problem to give a more
complete characterization of such PDEs.

The ∗-multiplication is a new valuable tool of algebraically construct-
ing large classes of explicit solutions for a wide family of systems of PDEs,
where the general solution is not explicitly known.
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intégrabilité et comportement qualitatif, volume 102 of Sém. Math.
Sup., pages 294–327. Presses Univ. Montréal, Montreal, QC, 1986.
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