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The aim of physics is to write down the Hamiltonian of
the universe. The rest is mathematics.

Mathematics wants to discover and investigate universal
structures. Which of them are realized in nature is left to
physics.

Preface

Perhaps, this is a bad book. As a mathematician, you will not find a systematic
theory with complete proofs, and, even worse, the standards of rigor established for
mathematical writing will not always be maintained. As a physicist, you will not
find coherent computational schemes for arriving at predictions.

Perhaps even worse, this book is seriously incomplete. Not only does it fall short
of a coherent and complete theory of the physical forces, simply because such a the-
ory does not yet exist, but it also leaves out many aspects of what is already known
and established.

This book results from my fascination with the ideas of theoretical high energy
physics that may offer us a glimpse at the ultimate layer of reality and with the
mathematical concepts, in particular the geometric ones, underlying these ideas.

Mathematics has three main subfields: analysis, geometry and algebra. Analysis
is about the continuum and limits, and in its modern form, it is concerned with quan-
titative estimates establishing the convergence of asymptotic expansions, infinite se-
ries, approximation schemes and, more abstractly, the existence of objects defined in
infinite-dimensional spaces, by differential equations, variational principles, or other
schemes. In fact, one of the fundamental differences between modern physics and
mathematics is that physicists usually are satisfied with linearizations and formal
expansions, whereas mathematicians should be concerned with the global, nonlin-
ear aspects and prove the convergence of those asymptotic expansions. In this book,
such analytical aspects are usually suppressed. Many results have been established
through the dedicated effort of generations of mathematicians, in particular by those
among them calling themselves mathematical physicists. A systematic presentation
of those results would require a much longer book than the present one. Worse, in
many cases, computations accepted in the physics literature remain at a formal level
and have not yet been justified by such an analytical scheme. A particular issue
is the relationship between Euclidean and Minkowski signatures. Clearly, relativ-
ity theory, and more generally, relativistic quantum field theory require us to work
in Lorentzian spaces, that is, ones with an indefinite metric, and the corresponding
partial differential equations are of hyperbolic type. The mathematical theory, how-
ever, is easier and much better established for Riemannian manifolds, that is, for
spaces with positive definite metrics, and for elliptic partial differential equations.
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viii Preface

In the physics literature, therefore, one often carries through the computations in
the latter situation and appeals to a principle of analytic continuation, called Wick
rotation, that formally extends the formulae to the Lorentzian case. The analytical
justification of this principle is often doubtful, owing, for example, to the profound
difference between nonlinear elliptic and hyperbolic partial differential equations.
Again, this issue is not systematically addressed here.

Algebra is about the formalism of discrete objects satisfying certain axiomatic
rules, and here there is much less conflict between mathematics and physics. In
many instances, there is an alternative between an algebraic and a geometric ap-
proach. The present book is essentially about the latter, geometric, approach. Geom-
etry is about qualitative, global structures, and it has been a remarkable trend in
recent decades that some physicists, in particular those considering themselves as
mathematical physicists (in contrast to the mathematicians using the same name
who, as mentioned, are more concerned with the analytical aspects), have employed
global geometric concepts with much success. At the same time, mathematicians
working in geometry and algebra have realized that some of the physical concepts
equip them with structures that are at the same time rich and tightly constrained and
thereby afford powerful tools for probing old and new questions in global geometry.

The aim of the present book is to present some basic aspects of this powerful in-
terplay between physics and geometry that should serve for a deeper understanding
of either of them. We try to introduce the important concepts and ideas, but as men-
tioned, the present book neither is completely systematic nor analytically rigorous.
In particular, we describe many mathematical concepts and structures, but for the
proofs of the fundamental results, we usually refer to other sources. This keeps the
book reasonably short and perhaps also aids its coherence. – For a much more sys-
tematic and comprehensive presentation of the fundamental theories of high-energy
physics in mathematical terms, I wish to refer to the forthcoming 6-volume treatise
[111] of my colleague Eberhard Zeidler.

As you will know, the fundamental problem of contemporary theoretical physics1

is the unification of the physical forces in a single, encompassing, coherent “The-
ory of Everything”. This focus on a single problem makes theoretical physics more
coherent, and perhaps sometimes also more dynamic, than mathematics that tradi-
tionally is subdivided into many fields with their own themes and problems. In turn,
however, mathematics seems to be more uniform in terms of methodological stan-
dards than physics, and so, among its practioners, there seems to be a greater sense
of community and unity.

Returning to the physical forces, there are the electromagnetic, weak and strong
interactions on one hand and gravity on the other. For the first three, quantum field
theory and its extensions have developed a reasonably convincing, and also rather
successful unified framework. The latter, gravity, however, more stubbornly resists
such attempts at unification. Approaches to bridge this gap come from both sides.
Superstring theory is the champion of the quantum camp, ever since the appearance

1More precisely, we are concerned here with high-energy theoretical physics. Other fields, like
solid-state or statistical physics, have their own important problems.
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of the monograph [50] of Green, Schwarz and Witten, but many people from the
gravity camp seem unconvinced2 and propose other schemes. Here, in particular
Ashtekar’s program should be mentioned (see e.g. [92]). The different approaches
to quantum gravity are described and compared in [74]. A basic source of the dif-
ficulties that these two camps are having with each other is that quantum theory
does not have an ontology, at least according to the majority view and in the hands
of its practioners. It is solely concerned with systematic relations between observa-
tions, but not with any underlying reality, that is, with laws, but not with structures.
General relativity, in contrast, is concerned with the structure of space–time. Its
practioners often consider such ideas as extra dimensions, or worse, tunneling be-
tween parallel universes, that are readily proposed by string theorists, as too fanciful
flights of the imagination, as some kind of condensed metaphysics, rather than as
honest, experimentally verifiable physics. Mathematicians seem to have fewer diffi-
culties with this, as they are concerned with structures that are typically believed to
constitute some higher form of ‘Platonic’ reality than our everyday experience. In
the present book, I approach things from the quantum rather than from the relativity
side, not because of any commitment at a philosophical level, but rather because
this at present offers the more exciting mathematical perspectives. However, this is
not meant to deny that general relativity and its modern extensions also lead to deep
mathematical structures and challenging mathematical problems.

While I have been trained as a mathematician and therefore naturally view things
from a structural, mathematical rather than from a computational, physical perspec-
tive, nevertheless I often find the physicists’ approach more insightful and more to
the point than the mathematicians’ one. Therefore, in this book, the two perspectives
are relatively freely mixed, even though the mathematical one remains the dominant
one. Hopefully, this will also serve to make the book accessible to people with either
background. In particular, also the two topics, geometry and physics, are interwoven
rather than separated. For instance, as a consequence, general relativity is discussed
within the geometry part rather than the physics one, because within the structure of
this book, it fits into the geometry chapter more naturally.

In any case, in mathematics, there is more of a tradition of explaining theoretical
concepts, and good examples of mathematical exposition can provide the reader
with conceptual insights instead of just a heap of formulae. Physicists seem to make
fewer attempts in this direction. I have tried to follow the mathematical style in this
regard.

I have assembled a representative (but perhaps personally biased) bibliography,
but I have made no attempt at a systematic and comprehensive one. In the age of the
Arxiv and googlescholar, such a scholarly enterprise seems to have lost its useful-
ness. In any case, I am more interested in the formal structure of the theory than in
its historical development. Therefore, the (rather few) historical claims in this book
should be taken with caution, as I have not checked the history systematically or
carefully.

2For an eloquent criticism, see for example Penrose [85].
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Chapter 1
Geometry

1.1 Riemannian and Lorentzian Manifolds

1.1.1 Differential Geometry

We collect here some basic facts and principles of differential geometry as the foun-
dation for the sequel. For a more penetrating discussion and for the proofs of var-
ious results, we refer to [65]. Classical differential geometry as expressed through
the tensor calculus is about coordinate representations of geometric objects and the
transformations of those representations under coordinate changes. The geometric
objects are invariantly defined, but their coordinate representations are not, and re-
solving this contradiction is the content of the tensor calculus.

We consider a d-dimensional differentiable manifold M (assumed to be con-
nected, oriented, paracompact and Hausdorff) and start with some conventions:

1. Einstein summation convention

aibi :=
d∑

i=1

aibi . (1.1.1)

The content of this convention is that a summation sign is omitted when the same
index occurs twice in a product, once as an upper and once as a lower index. This
rule is not affected by the possible presence of other indices; for example,

�i
jb

j =
d∑

j=1

�i
jb

j . (1.1.2)

The conventions about when to place an index in an upper or lower position will
be given subsequently. One aspect of this, however, is:

2. When G = (gij )i,j is a metric tensor (a notion to be explained below) with in-
dices i, j , the inverse metric tensor is written as G−1 = (gij )i,j , that is, by raising
the indices. In particular

gij gjk = δik :=
{

1 when i = k,

0 when i �= k,
(1.1.3)

the so-called Kronecker symbol.
3. Combining the previous rules, we obtain more generally

vi = gij vj and vi = gij v
j . (1.1.4)

J. Jost, Geometry and Physics,
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2 1 Geometry

4. For d-dimensional scalar quantities (φ1, . . . , φd), we can use the Euclidean met-
ric δij to freely raise or lower indices in order to conform to the summation
convention, that is,

φi = δijφ
j = φi. (1.1.5)

A (finite-dimensional) manifold M is locally modeled after R
d . Thus, locally, it

can be represented by coordinates x = (x1, . . . , xd) taken from some open subset
of R

d . These coordinates, however, are not canonical, and we may as well choose
other ones, y = (y1, . . . , yd), with x = f (y) for some homeomorphism f . When the
manifold M is differentiable—as always assumed here—we can cover it by local co-
ordinates in such a manner that all such coordinate transitions are diffeomorphisms
where defined. Again, the choice of coordinates is non-canonical. The basic content
of classical differential geometry is to investigate how various expressions repre-
senting objects on M like tangent vectors transform under coordinate changes. Here
and in the sequel, all objects defined on a differentiable manifold will be assumed
to be differentiable themselves. This is checked in local coordinates, but since coor-
dinate transitions are diffeomorphic, the differentiability property does not depend
on the choice of coordinates.

Remark For our purposes, it is often convenient, and in the literature, it is custom-
ary, to mean by “differentiability” smoothness of class C∞, that is, to assume that all
objects are infinitely often differentiable. The ring of (infinitely often) differentiable
functions on M is denoted by C∞(M). Nonetheless, at certain places where analy-
sis is more important, we need to be more specific about the regularity classes of the
objects involved. But for the moment, we shall happily assume that our manifold M

is of class C∞.

A tangent vector for M at some point p represented by x0 in local coordinates1

x is an expression of the form

V = vi ∂

∂xi
. (1.1.6)

This means that it operates on a function φ(x) in our local coordinates as

V (φ)(x0)= vi
∂φ

∂xi |x=x0

. (1.1.7)

The summation convention (1.1.1) applies to (1.1.7). The i in ∂
∂xi is considered to

be a lower index since it appears in the denominator.
The tangent vectors at p ∈M form a vector space, called the tangent space TpM

of M at p. A basis of TpM is given by the ∂
∂xi , considered as derivative operators

1We shall not always be so careful in distinguishing a point p as an invariant geometric object from
its representation x0 in some local coordinates, but frequently identify p and x0 without alerting
the reader.
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at the point p represented by x0 in the local coordinates, as in (1.1.7).2 Whereas,
as should become clear subsequently, this tangent space and its tangent vectors are
defined independently of the choice of local coordinates, the representation of a tan-
gent space does depend on those coordinates. The question then is how the same
tangent vector is represented in different local coordinates y with x = f (y) as be-
fore. The answer comes from the requirement that the result of the operation of the
tangent vector V on a function φ, V (φ), be independent of the choice of coordinates.
Always applying the chain rule, here and in the sequel, this yields

V = vi
∂yk

∂xi

∂

∂yk
. (1.1.8)

Thus, the coefficients of V in the y-coordinates are vi ∂y
k

∂xi . This is verified by the
following computation:

vi ∂y
k

∂xi

∂

∂yk
φ(f (y))= vi ∂y

k

∂xi

∂φ

∂xj

∂xj

∂yk
= vi

∂xj

∂xi

∂φ

∂xj
= vi

∂φ

∂xi
(1.1.9)

as required.
More abstractly, changing coordinates by f pulls a function φ defined in the x-

coordinates back to f �φ defined for the y-coordinates, with f �φ(y)= φ(f (y)). If
then W =wk ∂

∂yk is a tangent vector written in the y-coordinates, we need to push it
forward as

f�W =wk ∂x
i

∂yk

∂

∂xi
(1.1.10)

to the x-coordinates, to have the invariance

(f�W)(φ)=W(f �φ) (1.1.11)

which is easily checked:

(f�W)φ =wk ∂x
i

∂yk

∂φ

∂xi
=wk ∂

∂yk
φ(f (y))=W(f �φ). (1.1.12)

In particular, there is some duality between functions and tangent vectors here. How-
ever, the situation is not entirely symmetric. We need to know the tangent vector
only at the point x0 where we want to apply it, but we need to know the function φ

in some neighborhood of x0 because we take its derivatives.
A vector field is then defined as V (x) = vi(x) ∂

∂xi , that is, by having a tangent
vector at each point of M . As indicated above, we assume here that the coefficients
vi(x) are differentiable. The vector space of vector fields on M is written as �(TM).
(In fact, �(TM) is a module over the ring C∞(M).)

2As here, we shall usually simply write ∂
∂xi in place of ∂

∂xi (p) or ∂
∂xi (x0), that is, we assume that

the point where a derivative operator acts is clear from the context or the coefficient.
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Later, we shall need the Lie bracket [V,W ] := VW −WV of two vector fields
V (x)= vi(x) ∂

∂xi ,W(x)=wj(x) ∂
∂xj ; its operation on a function φ is

[V,W ]φ(x) = vi(x)
∂

∂xi

(
wj(x)

∂

∂xj
φ(x)

)
−wj(x)

∂

∂xj

(
vi(x)

∂

∂xi
φ(x)

)

=
(
vi(x)

∂wj (x)

∂xi
−wi(x)

∂vj (x)

∂xi

)
∂φ(x)

∂xj
. (1.1.13)

In particular, for coordinate vector fields, we have
[

∂

∂xi
,

∂

∂xj

]
= 0. (1.1.14)

Returning to a single tangent vector, V = vi ∂
∂xi at some point x0, we consider a cov-

ector or cotangent vector ω = ωidx
i at this point as an object dual to V , with the

rule

dxi

(
∂

∂xj

)
= δij (1.1.15)

yielding

ωidx
i

(
vj

∂

∂xj

)
= ωiv

j δij = ωiv
i . (1.1.16)

This expression depends only on the coefficients vi and ωi at the point under con-
sideration and does not require any values in a neighborhood. We can write this as
ω(V ), the application of the covector ω to the vector V , or as V (ω), the application
of V to ω.

The cotangent vectors at p likewise constitute a vector space, the cotangent
space T �

pM .
We have the transformation behavior

dxi = ∂xi

∂yα
dyα (1.1.17)

required for the invariance of ω(V ). Thus, the coefficients of ω in the y-coordinates
are given by the identity

ωidx
i = ωi

∂xi

∂yα
dyα. (1.1.18)

Again, a covector ωidx
i is pulled back under a map f :

f �(ωidx
i)= ωi

∂xi

∂yα
dyα. (1.1.19)

The transformation rules (1.1.10), (1.1.19) apply to arbitrary maps f :M →N from
M into a possibly different manifold N , not only to coordinate changes or diffeo-
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morphisms. So, we can always pull back a function or a covector and always push
forward a vector under a map, but not always the other way around.

The transformation behavior of a tangent vector as in (1.1.8) is called contravari-
ant, the opposite one of a covector as (1.1.18) covariant.

A 1-form then assigns a covector to every point in M , and thus, it is locally given
as ωi(x)dx

i .
Having derived the transformation of vectors and covectors, we can then also de-

termine the transformation rules for other tensors. A lower index always indicates
covariant, an upper one contravariant transformation. For example, the metric
tensor, written as gij dx

i ⊗ dxj ,3 with gij = 〈 ∂
∂xi ,

∂
∂xj 〉 being the inner product of

those two basis vectors, operates on pairs of tangent vectors. It therefore transforms
doubly covariantly, that is, becomes

gij (f (y))
∂xi

∂yα

∂xj

∂yβ
dyα ⊗ dyβ. (1.1.20)

The purpose of the metric tensor is to provide a Euclidean product of tangent vec-
tors,

〈V,W 〉 = gij v
iwj (1.1.21)

for V = vi ∂
∂xi , W = wi ∂

∂xi . As a check, in this formula, vi and wi transform con-
travariantly, while gij transforms doubly covariantly, so that the product as a scalar
quantity remains invariant under coordinate transformations.

Similarly, we obtain the product of two covectors ω,α ∈ T �
x M as

〈ω,α〉 = gijωiαj . (1.1.22)

We next introduce the concept of exterior p-forms and put

�p :=�p(T �
x M) := T �

x M ∧ · · · ∧ T �
x M︸ ︷︷ ︸

p times

(exterior product). (1.1.23)

On �p(T �
x M), we have the exterior product with η ∈ T �

x M =�1(T �
x M):

�p(T �
x M)−→�p+1(T �

x M)

ω 
−→ ε(η)ω := η ∧ω.
(1.1.24)

An exterior p-form is a sum of terms of the form

ω(x)= η(x)dxi1 ∧ · · · ∧ dxip

3Subsequently, we shall mostly leave out the symbol ⊗, that is, write simply gij dx
idxj in place

of gij dxi ⊗ dxj .
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where η(x) is a smooth function and (x1, . . . , xd) are local coordinates. That is,
a p-form assigns an element of �p(T �

x M) to every x ∈M . The space of exterior
p-forms is denoted by 
p(M).

When M carries a Riemannian metric gij dx
i ⊗ dxj , the scalar product on the

cotangent spaces T �
x M induces one on the spaces �p(T �

x M) by

〈dxi1 ∧ · · · ∧ dxip , dxj1 ∧ · · · ∧ dxjp 〉 := det(〈dxiμ, dxjν 〉) (1.1.25)

and linear extension.
Given a Riemannian metric gij dx

i ⊗ dxj , also, in local coordinates, we can
define the volume form

dvolg :=
√

det(gij )dx
1 ∧ · · · ∧ dxd. (1.1.26)

This volume form depends on an ordering of the indices 1,2, . . . , d of the local co-
ordinates: since the exterior product is antisymmetric, dxi ∧ dxj = −dxj ∧ dxi ,
it changes its sign under an odd permutation of the indices. Thus, when we have

a coordinate transformation x = f (y) where the Jacobian determinant det( ∂xi

∂yα ) is
negative, dvol changes its sign; otherwise, it is invariant. Therefore, in order to have
a globally defined volume form on the Riemannian manifold M , we need to exclude
coordinate changes with negative Jacobian. The manifold M is called oriented when
it can be covered by coordinates such that all coordinate changes have a positive Ja-
cobian. In that case, the volume form is well defined, and we can define the integral
of a function φ on M by

∫
φ(x)dvolg(x). (1.1.27)

We shall therefore assume the manifold M to be oriented whenever we carry out
such an integral. We can then also define the L2-product of p-forms ω,α ∈
p(M):

(ω,α) :=
∫
〈ω(x),α(x)〉dvolg(x). (1.1.28)

We now assume that the dimension d = 4, the case of particular importance for the
application of our geometric concepts to physics. Then when ω is a 2-form, ω ∧ ω

is a 4-form. We call ω self-dual or antiself-dual when the + resp. − sign holds in

ω ∧ω=±〈ω,ω〉dvolg. (1.1.29)

When ω+ is self-dual, and ω− antiself-dual, we have

〈ω+,ω−〉 = 0 (1.1.30)

that is, the spaces of self-dual and antiself-dual forms are orthogonal to each other.
Every 2-form ω on a 4-manifold can be decomposed as the sum of a self-dual and
an antiself-dual form,

ω= ω+ +ω−. (1.1.31)
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We return to arbitrary dimension d .

Definition 1.1 The exterior derivative d :
p(M)→
p+1(M) (p = 0, . . . ,dimM)

is defined through the formula

d(η(x)dxi1 ∧ · · · ∧ dxip )= ∂η(x)

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip (1.1.32)

and extended by linearity to all of 
p(M).

The exterior derivative enjoys the following product rule: If ω ∈ 
p(M),ϑ ∈

q(M), then

d(ω ∧ ϑ)= dω ∧ ϑ + (−1)pω ∧ dϑ, (1.1.33)

from the formula ω ∧ ϑ = (−1)pqϑ ∧ω and (1.1.32).
Let x = f (y) be a coordinate transformation,

ω(x)= η(x)dxi1 ∧ · · · ∧ dxip ∈
p(M).

In the y-coordinates, we then have

f ∗(ω)(y)= η(f (y))
∂xi1

∂yα1
dyα1 ∧ · · · ∧ ∂xip

∂yαp
dyαp (1.1.34)

which is the transformation formula for p-forms. The exterior derivative is compat-
ible with this transformation rule:

d(f ∗(ω))= f ∗(dω), (1.1.35)

which follows from the transformation invariance

∂η(x)

∂xj
dxj = ∂η(f (y))

∂xj

∂f j

∂yα
dyα = ∂η(f (y))

∂yα
dyα. (1.1.36)

Thus, d is independent of the choice of coordinates. d satisfies the following impor-
tant rule:

Lemma 1.1

d ◦ d = 0. (1.1.37)

Proof We check (1.1.37) for forms of the type

ω(x)= f (x)dxi1 ∧ · · · ∧ dxip
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from which it extends by linearity to all p-forms. Now

d ◦ d(ω(x))= d

(
∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip

)

= ∂2f

∂xj ∂xk
dxk ∧ dxj ∧ dxi1 ∧ · · · ∧ dxip = 0,

since ∂2f

∂xj ∂xk = ∂2f

∂xk∂xj and dxj ∧ dxk =−dxk ∧ dxj . �

In the preceding, we have presented one possible way of conceptualizing trans-
formations, the one employed by mathematicians: The same point p is written in dif-
ferent coordinate systems x and y, which are then functionally related by x = x(y).
Another view of transformations, often taken in the physics literature, is to move the
point p and consider the induced effect on tensors. Let us discuss the example of a
1-form ω(x)dx. Within the fixed coordinates x, we vary the points represented by
these coordinates by

x 
→ x + εξ(x)=: x + εδx (1.1.38)

for some map ξ and some small parameter ε, and we want to take the limit ε→ 0.
We have the induced variation of our 1-form

ω(x)dx 
→ ω(x + εξ(x))d(x + εξ(x))=: ω(x)+ εδω(x). (1.1.39)

By Taylor expansion, we have

ω(x + εξ(x))d(x + εξ(x))=
(
ωi(x)+ ε

∂ωi

∂xk
ξk(x)

)(
dxi + ε

∂ξ i

∂xk
dxk

)

+ higher order terms (1.1.40)

from which we conclude that for ε→ 0

δω= ∂ωi

∂xk
ξkdxi +ωi

∂ξ i

∂xk
dxk. (1.1.41)

Of course, since ∂ξ i

∂xk dx
k = dξ i , the last term in (1.1.41) agrees with the one required

by (1.1.18).
To put the preceding into a slogan: For setting up transformation rules in geom-

etry, mathematicians keep the point fixed and change the coordinates, while physi-
cists keep the same coordinates, but move the point around. The first approach is
well suited to identifying invariants, like the curvature tensor. The second one is
convenient for computing variations, as in our discussion of actions below.

So far, we have computed derivatives of functions. We have also talked about
vector fields V (x) = vi(x) ∂

∂xi as objects that depend differentiably on their ar-
guments x. Of course, we can do the same for other tensors, like the metric
gij (x)dx

i ⊗ dxj . This naturally raises the question about how to compute their
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derivatives. This encounters the problem, however, that in contrast to functions, the
representation of such tensors depends on the choice of local coordinates, and we
have described in some detail that and how they transform under coordinate changes.
Precisely because of that transformation, they acquire a coordinate invariant mean-
ing; for example, the operation of a vector on a function or the metric product be-
tween two vectors are both independent of the choice of coordinates.

It now turns out that on a differentiable manifold, there is in general no single
canonical way of taking derivatives of vector fields or other tensors in an invariant
manner. There are, in fact, many such possibilities, and they are called connections
or covariant derivatives. Only when we have additional structures, like a Riemannian
metric, can we single out a particular covariant derivative on the basis of its com-
patibility with the metric. For our purposes, however, we also need other covariant
derivatives, and therefore, we now develop that notion. We shall treat this issue
from a more abstract perspective in Sect. 1.2 below, and so the reader who wants to
progress more rapidly can skip the discussion here.

Let M be a differentiable manifold. We recall that �(TM) denotes the space of
vector fields on M . An (affine) connection or covariant derivative on M is a linear
map

∇ : �(TM)⊗R �(TM)→ �(TM),

(V,W) 
→ ∇VW

satisfying:

(i) ∇ is tensorial in the first argument:

∇V1+V2W =∇V1W +∇V2W for all V1,V2,W ∈ �(TM),

∇fVW = f∇VW for all f ∈C∞(M),V,W ∈ �(TM);
(ii) ∇ is R-linear in the second argument:

∇V (W1 +W2)=∇VW1 +∇VW2 for all V,W1,W2 ∈ �(TM)

and it satisfies the product rule

∇V (fW)= V (f )W + f∇VW for all f ∈ C∞(M),V,W ∈ �(TM).

(1.1.42)

∇VW is called the covariant derivative of W in the direction V . By (i), for any
x0 ∈M , (∇VW)(x0) only depends on the value of V at x0. By way of contrast, it also
depends on the values of W in some neighborhood of x0, as it naturally should as
a notion of a derivative of W . The example on which this is modeled is the Euclidean
connection given by the standard derivatives, that is, for V = V i ∂

∂xi ,W =Wj ∂
∂xj ,

∇eucl
V W = V i ∂W

j

∂xi

∂

∂xj
.
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However, this is not invariant under nonlinear coordinate changes, and since a gen-
eral manifold cannot be covered by coordinates with only linear coordinate trans-
formations, we need the above more general and abstract concept of a covariant
derivative.

Let U be a coordinate chart in M , with local coordinates x and coordinate vec-
tor fields ∂

∂x1 , . . . ,
∂

∂xd (d = dimM). We then define the Christoffel symbols of the
connection ∇ via

∇ ∂

∂xi

∂

∂xj
=: �k

ij

∂

∂xk
. (1.1.43)

Thus,

∇VW = V i ∂W
j

∂xi

∂

∂xj
+ V iWj�k

ij

∂

∂xk
. (1.1.44)

In order to understand the nature of the objects involved, we can also leave out
the vector field V and consider the covariant derivative ∇W as a 1-form. In local
coordinates

∇W =W
j

;i
∂

∂xj
dxi, (1.1.45)

with

W
j

;i :=
∂Wj

∂xi
+Wk�

j
ik. (1.1.46)

If we change our coordinates x to coordinates y, then the new Christoffel symbols,

∇ ∂

∂yl

∂

∂ym
=: �̃n

lm

∂

∂yn
, (1.1.47)

are related to the old ones via

�̃n
lm(y(x))=

{
�k
ij (x)

∂xi

∂yl

∂xj

∂ym
+ ∂2xk

∂yl∂ym

}
∂yn

∂xk
. (1.1.48)

In particular, due to the term ∂2xk

∂yl∂ym , the Christoffel symbols do not transform as

a tensor. However, if we have two connections 1∇ , 2∇ , with corresponding Christof-
fel symbols 1�k

ij , 2�k
ij , then the difference 1�k

ij − 2�k
ij does transform as a tensor.

Expressed more abstractly, this means that the space of connections on M is an
affine space.

For a connection ∇ , we define its torsion tensor via

T (V,W) := ∇VW −∇WV − [V,W ] for V,W ∈ �(TM). (1.1.49)

Inserting our coordinate vector fields ∂
∂xi as before, we obtain

Tij := T

(
∂

∂xi
,

∂

∂xj

)
=∇ ∂

∂xi

∂

∂xj
−∇ ∂

∂xj

∂

∂xi
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(since coordinate vector fields commute, i.e., [ ∂
∂xi ,

∂
∂xj ] = 0)

(�k
ij − �k

ji)
∂

∂xk
.

We call the connection ∇ torsion-free or symmetric if T ≡ 0. By the preceding
computation, this is equivalent to the symmetry

�k
ij = �k

ji for all i, j, k. (1.1.50)

Let c(t) be a smooth curve in M , and let V (t) := ċ(t) (= ċi (t) ∂
∂xi (c(t)) in local

coordinates) be the tangent vector field of c. In fact, we should instead write V (c(t))

in place of V (t), but we consider t as the coordinate along the curve c(t). Thus, in

those coordinates ∂
∂t
= ∂ci

∂t
∂

∂xi , and in the sequel, we shall frequently and implicitly
make this identification, that is, switch between the points c(t) on the curve and
the corresponding parameter values t . Let W(t) be another vector field along c, i.e.,
W(t) ∈ Tc(t)M for all t . We may then write W(t)= μi(t) ∂

∂xi (c(t)) and form

∇ċ(t)W(t)= μ̇i(t)
∂

∂xi
+ ċi (t)μj (t)∇ ∂

∂xi

∂

∂xj

= μ̇i(t)
∂

∂xi
+ ċi (t)μj (t)�k

ij (c(t))
∂

∂xk

(the preceding computation is meaningful as we see that it depends only on the
values of W along the curve c(t), but not on other values in a neighborhood of
a point on that curve).

This represents a (nondegenerate) linear system of d first-order differential oper-
ators for the d coefficients μi(t) of W(t). Therefore, for given initial values μi(0),
there exists a unique solution W(t) of

∇ċ(t)W(t)= 0.

This W(t) is called the parallel transport of W(0) along the curve c(t). We also say
that W(t) is covariantly constant along the curve c.

Now, let W be a vector field in a neighborhood U of some point x0 ∈M . W is
called parallel if for any curve c(t) in U , W(t) :=W(c(t)) is parallel along c. This
means that for all tangent vectors V in U ,

∇VW = 0,

i.e.,

∂

∂xi
Wk +Wj�k

ij = 0 identically in U, for all i, k,

with W =Wi ∂

∂xi
in local coordinates.
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This now is a system of d2 first-order differential equations for the d coefficients
of W , and so, it is overdetermined. Therefore, in general, such W do not exist. Of
course, they do exist for the Euclidean connection, because in Euclidean coordi-
nates, the coordinate vector fields ∂

∂xi are parallel.
We define the curvature tensor R by

R(V,W)Z := ∇V∇WZ −∇W∇V Z −∇[V,W ]Z, (1.1.51)

or in local coordinates

Rk
lij

∂

∂xk
:=R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xl
(i, j, l = 1, . . . , d). (1.1.52)

The curvature tensor can be expressed in terms of the Christoffel symbols and their
derivatives via

Rk
lij =

∂

∂xi
�k
jl −

∂

∂xj
�k
il + �k

im�m
jl − �k

jm�m
il . (1.1.53)

We also note that, as the name indicates, the curvature tensor R is, like the torsion
tensor T , but in contrast to the connection ∇ represented by the Christoffel sym-
bols, a tensor. This means that when one of its arguments is multiplied by a smooth
function, we may simply pull out that function without having to take a derivative of
it. Equivalently, it transforms as a tensor under coordinate changes; here, the upper
index k stands for an argument that transforms as a vector, that is contravariantly,
whereas the lower indices l, i, j express a covariant transformation behavior. The
curvature tensor will be discussed in more detail in Sect. 1.1.5.

A curve c(t) in M is called autoparallel or geodesic if

∇ċ ċ= 0. (1.1.54)

Geodesics will be discussed in detail and from a different perspective in Sect. 1.1.4.
Here, we only display their equation and define the exponential map. In local coor-
dinates, (1.1.54) becomes

c̈k(t)+ �k
ij (c(t))ċ

i (t)ċj (t)= 0 for k = 1, . . . , d. (1.1.55)

This constitutes a system of second-order ODEs, and given x0 ∈ M , V ∈ Tx0M ,
there exist a maximal interval IV ⊂ R containing an open neighborhood of 0 and
a geodesic

cV : IV →M

with cV (0)= x0, ċV (0)= V . We can then define the exponential map expx0
on some

star-shaped neighborhood of 0 ∈ Tx0M :

expx0
: {V ∈ Tx0M : 1 ∈ IV }→M,

V 
→ cV (1).
(1.1.56)

We then have expx0
(tV )= cV (t) for 0≤ t ≤ 1.
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A submanifold S of M is called autoparallel or totally geodesic if for all x0 ∈ S,
V ∈ Tx0S for which expx0

V is defined, we have

expx0
V ∈ S.

The infinitesimal condition needed for this property is that

∇VW(x) ∈ TxS

for any vector field W(x) tangent to S and V ∈ TxS.
Now, let M carry a Riemannian metric g = 〈·, ·〉.
We say that ∇ is a Riemannian connection if it satisfies the metric product rule

Z〈V,W 〉 = 〈∇ZV,W 〉 + 〈V,∇ZW 〉. (1.1.57)

For any Riemannian metric g, there exists a unique torsion-free Riemannian con-
nection, the so-called Levi-Cività connection ∇g . It is given by

〈∇g
VW,Z〉 = 1

2
{V 〈W,Z〉 −Z〈V,W 〉 +W 〈Z,V 〉

− 〈V, [W,Z]〉 + 〈Z, [V,W ]〉 + 〈W, [Z,V ]〉}. (1.1.58)

The Christoffel symbols of ∇g can be expressed through the metric; in local coor-
dinates, with gij = 〈 ∂

∂xi
∂

∂xj 〉, we use the abbreviation

gij,k := ∂

∂xk
gij (1.1.59)

and have

�k
ij =

1

2
gkl(gil,j + gjl,i − gij,l), (1.1.60)

or, equivalently,

gij,k = gjl�
l
ik + gil�

l
jk = �ikj + �jki . (1.1.61)

The Levi-Cività connection ∇g respects the metric in the sense that if V (t),W(t)

are parallel vector fields along a curve c(t), then

〈V (t),W(t)〉 ≡ const, (1.1.62)

that is, products between tangent vectors remain invariant under parallel transport.

1.1.2 Complex Manifolds

We start with complex dimension 1. The Euclidean space R
2 can be made into the

complex vector space C
1 on which multiplication by complex numbers of the form

a + ib is defined, with i =√−1. Conventions:

z= x + iy = x1 + ix2, z̄= x − iy. (1.1.63)
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In the physics literature, z and z̄ are formally viewed as independent coordinates.
We define

∂z := ∂

∂z
= 1

2
(∂x − i∂y), ∂z̄ = ∂

∂z̄
= 1

2
(∂x + i∂y). (1.1.64)

This is arranged so that

∂zz= 1, ∂zz̄= 0, (1.1.65)

and so on. A function f :C→C is called holomorphic if

∂z̄f = 0. (1.1.66)

Mathematicians write f (z) for any function of the complex variable z. Physicists
instead write f (z, z̄), reserving the notation f (z) for a holomorphic function, that
is, one satisfying (1.1.66) because that relation formally expresses independence of
the coordinate z̄. Similarly, g :C→C is antiholomorphic if

∂zg = 0. (1.1.67)

Another reason for the physics convention is to consider the complexification C
2

with coordinates (z, z′) of the Euclidean plane C= R
2. The slice defined by z̄= z′

then yields the Euclidean plane, while (z, z′)= i(s + t, s − t) gives the Minkowski
plane with metric dt2 − ds2.

When we use the conformal transformation z = ew , with w = τ + iσ , −∞ <

τ <∞ and 0 ≤ σ < 2π , and pass from w = τ + iσ to the light cone coordinates
ζ+ = τ + σ , ζ− = τ − σ (a so-called Wick rotation), we obtain the Minkowski
metric in the form dζ+dζ−.

In complex coordinates, the Laplace operator (see (1.1.103), (1.1.105) below)
becomes

�= ∂2

∂x2
+ ∂2

∂y2
= 4

∂2

∂z∂z̄
. (1.1.68)

We next have the 1-forms

dz= dx + idy, dz̄= dx − idy. (1.1.69)

This is arranged so that

dz(∂z)= 1, dz(∂z̄)= 0, (1.1.70)

and so on, the analogs of (1.1.15). For a vector v1 ∂
∂x
+ v2 ∂

∂y
, we write

vz := v1 + iv2, vz̄ := v1 − iv2, (1.1.71)

and (in flat space)

vz := 1

2
(v1 − iv2), vz̄ := 1

2
(v1 + iv2). (1.1.72)
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In this notation, the Euclidean (flat) metric on R
2, g11 = g22 = 1, g12 = 0, becomes

gzz̄ = gz̄z = 1

2
, gzz = gz̄z̄ = 0, gzz̄ = gz̄z = 2, gzz = gz̄z̄ = 0.

(1.1.73)
This is set up to be compatible with (1.1.4). Thus, (1.1.72) becomes a special case
of

vz = gzzv
z + gzz̄v

z̄. (1.1.74)

The area form for this metric is

i

2
dz∧ dz̄= dx ∧ dy. (1.1.75)

The conventions become clearer when we observe
√
g11g22 − g2

12 dx ∧ dy =
√
gzzgz̄z̄ − g2

zz̄ dz∧ dz̄. (1.1.76)

Also, for a twice covariant tensor,

Vzz = 1

4
(V11 + 2iV12 − V22), Vz̄z̄ = 1

4
(V11 − 2iV12 − V22),

Vzz̄ = Vz̄z = 1

4
(V11 + V22)

(1.1.77)

of which (1.1.73) is a special case.
The divergence is (in flat space)

∂x1v
1 + ∂x2v

2 = ∂zv
z + ∂z̄v

z̄. (1.1.78)

The divergence theorem (integration by parts, a special case of Stokes’ theorem) is
here

∫




(∂zv
z + ∂z̄v

z̄)
i

2
dz∧ dz̄= i

2

∮

∂


(vzdz̄− vz̄dz) (1.1.79)

with a counterclockwise contour integral around 
.
We now turn to the higher-dimensional situation. The model space is now C

d , the
d-dimensional complex vector space. The preceding expressions defined for d = 1
then get equipped with coordinate indices:

z= (z1, . . . , zd), with zj = xj + iyj (1.1.80)

using (x1, y1, . . . , xd, yd) as Euclidean coordinates on R
2d , and

zj̄ := xj − iyj .

Likewise

∂k̄ :=
∂

∂zk̄
:= 1

2

(
∂

∂xk
+ i

∂

∂yk

)
, (1.1.81)
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and so on. Then, a function f :Cd →C is holomorphic if

∂k̄f = 0 (1.1.82)

for k = 1, . . . , d .

Definition 1.2 A complex manifold of complex dimension d (dimC M = d) is a dif-
ferentiable manifold of (real) dimension 2d (dimR M = 2d) whose charts take val-
ues in open subsets of C

d with holomorphic coordinate transitions.

A one-dimensional complex manifold is also called a Riemann surface, but that
subject will be taken up in more depth in Sect. 1.4.2 below.

Let M again be a complex manifold of complex dimension d . Let T R
z M := TzM

be the ordinary (real) tangent space of M at z. We define the complexified tangent
space

T C

z M := T R

z M ⊗R C (1.1.83)

which we then decompose as

T C

z M =C

{
∂

∂zj
,

∂

∂zj̄

}
=: T ′zM ⊕ T ′′z M, (1.1.84)

where T ′zM = C{ ∂
∂zj
} is the holomorphic and T ′′z M = C{ ∂

∂zj̄
} the antiholomor-

phic tangent space. In T C
z M , we have a conjugation mapping ∂

∂zj
to ∂

∂zj̄
, and so

T ′′z M = T ′zM . The same construction is possible for the cotangent space, and we
have analogously

T �C
z M =C{dzj , dzj̄ } =: T �′

z M ⊕ T �′′
z M. (1.1.85)

The important point is that these decompositions are invariant under coordinate
changes because those coordinate changes are required to be holomorphic. In par-
ticular, we have the transformation rules

dzj = ∂zj

∂wl
dwl, dzk̄ =

(
∂zk

∂wm

)
dwm̄ = ∂zk̄

∂wm̄
dwm̄ (1.1.86)

when z= z(w).
The complexified space 
k(M;C) of k-forms can be decomposed into subspaces


p,q(M) with p+ q = k. 
p,q(M) is locally spanned by forms of the type

ω(z)= η(z)dzi1 ∧ · · · ∧ dzip ∧ dzj̄1 ∧ · · · ∧ dzj̄q . (1.1.87)

Thus


k(M)=
⊕

p+q=k


p,q(M). (1.1.88)
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We can then let the differential operators

∂ = 1

2

(
∂

∂xj
− i

∂

∂yj

)
(dxj + idyj ) and

∂̄ = 1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxj − idyj )

(1.1.89)

operate on such a form by

∂ω= ∂η

∂zi
dzi ∧ dzi1 ∧ · · · ∧ dzip ∧ dzj̄1 ∧ · · · ∧ dzj̄q (1.1.90)

and

∂̄ω= ∂η

∂zj̄
dzj̄ ∧ dzi1 ∧ · · · ∧ dzip ∧ dzj̄1 ∧ · · · ∧ dzj̄q . (1.1.91)

∂ and ∂̄ yield a decomposition of the exterior derivative d :

Lemma 1.2

d = ∂ + ∂̄ . (1.1.92)

Moreover,

∂∂ = 0, ∂̄ ∂̄ = 0, (1.1.93)

∂∂̄ =−∂̄∂. (1.1.94)

Proof

∂ + ∂̄ = 1

2

(
∂

∂xj
− i

∂

∂yj

)
(dxj + idyj )+ 1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxj − idyj )

= ∂

∂xj
dxj + ∂

∂yj
dyj = d.

Consequently,

0= d2 = (∂ + ∂̄)(∂ + ∂̄)= ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2

and decomposing this into types yields (1.1.93), (1.1.94). �

1.1.3 Riemannian and Lorentzian Metrics

In local coordinates x = (x1, . . . , xd), a metric is represented by a nondegenerate,
symmetric matrix

(gij (x))i,j=1,...,d (1.1.95)
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smoothly depending on x. Being symmetric, this matrix has d real eigenvalues, and
being nondegenerate, none of them is 0. When they are all positive, the metric is
called Riemannian. When only one is positive, and therefore d − 1 ones are nega-
tive, it is called Lorentzian.4 The prototype of a Riemannian manifold is Euclidean
space, R

d equipped with its Euclidean metric; the model for a Lorentz manifold is
Minkowski space, namely R

d equipped with the inner product

〈x, y〉 = x0y0 − x1y1 − · · · − xd−1yd−1

for x = (x0, x1, . . . , xd−1), y = (y0, y1, . . . , yd−1). (It is customary to use the in-
dices 0, . . . , d − 1 in place of 1, . . . , d in the Lorentzian case, in order to better
distinguish the time direction corresponding to 0 from the spatial ones.) This space
is often denoted by R

1,d−1.
The product of two tangent vectors v,w ∈ TpM with coordinate representations

(v1, . . . , vd) and (w1, . . . ,wd) (i.e. v = vi ∂
∂xi ,w =wj ∂

∂xj ) is then, as in (1.1.21),

〈v,w〉 := gij (x(p))v
iwj . (1.1.96)

In particular, 〈 ∂
∂xi ,

∂
∂xj 〉 = gij . In a Lorentzian manifold, a vector v with 〈v, v〉> 0

is called time-like, one with 〈v, v〉< 0 space-like, and a nontrivial one with ‖v‖ = 0
light-like.

A (smooth) curve γ : [a, b] →M ([a, b] a closed interval in R) is called time-
like when 〈γ̇ (t), γ̇ (t)〉> 0 for all t ∈ [a, b]. Light- or space-like curves are defined
analogously.

Similarly, the length or norm of v is given by

‖v‖ := 〈v, v〉 1
2 (1.1.97)

if 〈v,w〉 ≥ 0, and

‖v‖ := −(−〈v, v〉) 1
2 (1.1.98)

if 〈v,w〉< 0. On a Riemannian manifold, of course all vectors v �= 0 have positive
length.

Starting from the product (1.1.96), a metric then also induces products on other
tensors. For example, for cotangent vectors ω= ωidx

i, λ= λidx
i ∈ T ∗pM , we have

〈ω,λ〉 = gij (x(p))ωiλj , (1.1.99)

4The conventions are not generally agreed upon in the literature (see [81] for a systematic survey
of the older literature). The one employed here seems to be the one followed by the majority
of physicists. Sometimes, however, for a Lorentzian metric, one requires d − 1 positive and 1
negative eigenvalues. Of course, this simply changes the convention adopted here by a minus sign,
without affecting the geometric or physical content. The latter convention looks natural when one
wants to add a temporal dimension to already present spatial ones. The convention adopted here,
in contrast, is natural when one starts with kinetics described by ordinary differential equations
derived from a positive definite Lagrangian. Thus, the temporal dimension is the primary one and
counted positively, whereas the additional spatial ones then lead to field theories.
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that is, the induced product on the cotangent space is given by the inverse of the
metric tensor. As a check, the reader should verify that this expression is invariant
under coordinate transformations, with the transformation behavior of the metric
now presented (or recalled from (1.1.20)).

Let y = f (x). v and w then have representations (ṽ1, . . . , ṽd ) and (w̃, . . . , w̃d)

with ṽj = vi
∂f j

∂xi , w̃
j = wi ∂f

j

∂xi . The metric in the new coordinates, denoted by
hk�(y), then satisfies

hk�(f (x))ṽkw̃� = 〈v,w〉 = gij (x)v
iwj . (1.1.100)

Therefore, the transformation rule is the one given in (1.1.20),

hk�(f (x))
∂f k

∂xi

∂f �

∂xj
= gij (x). (1.1.101)

Given a metric (gij (x))i,j=1,...,d , we put

√
g :=

√
det(gij ) (1.1.102)

and define the Laplace–Beltrami operator (Laplacian for short) acting on C∞(M)

as

� :=�g := 1√
g

∂

∂xi

(√
ggij ∂

∂xj

)
. (1.1.103)

We assume that our manifold M is compact (and, as always, without boundary). We
then have the integration by parts formula, using 〈., .〉 for the product on 1-forms
induced by the Riemannian metric g,

∫
〈df,dg〉√gdx1 · · ·dxd =

∫
gij ∂f

∂xi

∂g

∂xj

√
gdx1 · · ·dxd

=−
∫

f�g
√
gdx1 · · ·dxd (1.1.104)

where
√
gdx1 . . . dxd is the volume form dvolg for the Riemannian metric as de-

fined in (1.1.26). (Note that we are always assuming that our manifold M is oriented.
This avoids sign ambiguities in the volume form and permits global integration as
in (1.1.104).)

In the Euclidean case, the Laplacian is simply the sum of the pure second deriv-
atives,

�=
d∑

i=1

∂2

(∂xi)2
(1.1.105)

(cf. also (1.1.68) above). For the Minkowski metric, we have

�= ∂2

∂(x0)2
−

d−1∑

i=1

∂2

∂(xi)2
, (1.1.106)

and this operator is often denoted by � in the literature.
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Generalizing (1.1.98), the metric g induces a product 〈ω,ν〉 on p-forms, see
(1.1.25), and we can then define the formal adjoint d∗ of the exterior derivative d

via
∫
〈dμ,ν〉dvolg =

∫
〈μ,d∗ν〉dvolg (1.1.107)

for a (p− 1)-form μ and a p-form ν. (Since d :
p(M)→
p+1(M), i.e., d maps
p-forms to (p + 1)-forms, d∗ : 
p+1(M) → 
p(M) maps (p + 1)-forms to p-
forms.) On functions, we then have

�f =−d∗df. (1.1.108)

More generally, one defines the Hodge Laplacian on p-forms by

dd∗ + d∗d. (1.1.109)

Since d∗f = 0 for functions, i.e, 0-forms f (for the simple reason that there do
not exist forms of degree −1), this is a generalization of (1.1.108)—up to the sign,
and these differing sign conventions unfortunately cause a lot of confusion. We then
have the general integration by parts formulae for p-forms

∫
〈d∗dμ,ν〉dvolg =

∫
〈dμ,dν〉dvolg =

∫
〈μ,d∗dν〉dvolg (1.1.110)

and
∫
〈(dd∗ + d∗d)μ, ν〉dvolg =

∫
(〈dμ,dν〉 + 〈d∗μ,d∗ν〉) dvolg

=
∫
〈μ, (dd∗ + d∗d)ν〉dvolg. (1.1.111)

Let us briefly explain the relation with the cohomology of the (compact, oriented)
manifold M . A p-form ω is called closed if

dω= 0, (1.1.112)

and it is called exact if there exists some (p− 1)-form η with

ω= dη. (1.1.113)

Because of d ◦ d = 0, see (1.1.37), any exact form is closed. Two closed p-forms
ω1,ω2 are considered as cohomologically equivalent if their difference is exact, i.e.,
if there exists some (p− 1)-form η with

ω1 −ω2 = dη. (1.1.114)

The equivalence classes of p-forms constitute a group, the pth (de Rham) cohomol-
ogy group Hp(M) of M . When M carries a Riemannian metric g, one can identify
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a natural representative for each cohomology class as the unique form μ that mini-
mizes

∫

M

〈ω,ω〉dvolg (1.1.115)

in its equivalence class. This minimizing form μ is then harmonic in the sense that

(dd∗ + d∗d)μ= 0, (1.1.116)

or equivalently (as follows from (1.1.111) and the nonnegativity of the two terms in
the middle integral)

dμ= 0 and d∗μ= 0. (1.1.117)

Thus, a harmonic form is closed (dμ= 0) and coclosed (d∗μ= 0).
Since M is compact, the dimension bp(M) (called the pth Betti number of M) of

Hp(M) is finite. This follows for instance from the fact that the elements of Hp(M)

are identified with the solutions of the elliptic differential equation (1.1.116). It is
a general result in the theory of elliptic partial differential equations that their solu-
tion spaces satisfy a compactness principle.

1.1.4 Geodesics

The length of a smooth (or at least rectifiable) curve γ : [a, b]→M is

L(γ ) :=
∫ b

a

∥∥∥∥
dγ

dt
(t)

∥∥∥∥dt =
∫ b

a

√
gij (x(γ (t)))ẋi (t)ẋj (t)dt (1.1.118)

where we abbreviate ẋi (t) := d
dt
(xi(γ (t))). Thus, time-, light-, or space-like curves

have positive, vanishing, or negative length, respectively
The action of a time-like curve γ is

S(γ ) := 1

2

∫ b

a

∥∥∥∥
dγ

dt
(t)

∥∥∥∥
2

dt = 1

2

∫ b

a

gij (x(γ (t)))ẋi (t)ẋj (t)dt. (1.1.119)

Here, γ is considered as the orbit of a mass point, which explains the name “ac-
tion”. In the mathematical literature, the action is often called energy, an unfortunate
choice of terminology.

A massive particle in a Lorentzian manifold travels along a world line x(τ) with
arclength

s =
∫ τ1

τ0

(
gαβ(x(τ ))ẋ

α(τ )ẋβ(τ )
) 1

2 dτ,

where we assume gαβẋ
αẋβ > 0 along the world line. Thus, the movement is time-

like. When in place of gαβẋαẋβ > 0, we have

gαβẋ
αẋβ = 0,



22 1 Geometry

then the particle is massless, that is, a photon. gαβẋαẋβ < 0 would correspond to
a movement with speed higher than that of light and is excluded.

By Hölder’s inequality, for a time-like curve γ ,

∫ b

a

∥∥∥∥
dγ

dt

∥∥∥∥dt ≤ (b− a)
1
2

(∫ b

a

∥∥∥∥
dγ

dt

∥∥∥∥
2

dt

) 1
2

(1.1.120)

with equality precisely if ‖ dγ
dt
‖ ≡ const. This means that

L(γ )2 ≤ 2(b− a)S(γ ), (1.1.121)

again with equality only if γ has constant norm.
The distance between p,q ∈M is

d(p,q) := inf{L(γ ) : γ : [a, b]→M with γ (a)= p,γ (b)= q}. (1.1.122)

By the change of variables formula, if γ : [a, b]→M is a curve, and σ : [a′, b′] →
[a, b] is a change of parameter, then

L(γ ◦ σ)= L(γ ). (1.1.123)

This is no longer so for the action, as follows with a little reflection on the equality
discussion in (1.1.121). It is instructive to look at the stationary points of the action:

Lemma 1.3 The Euler–Lagrange equations (see Sect. 2.3.1 below) for the action S

are

ẍi (t)+ �i
jk(x(t))ẋ

j (t)ẋk(t)= 0, i = 1, . . . , d, (1.1.124)

where �i
jk are the Christoffel symbols (1.1.60).

Proof As will be derived in Sect. 2.3.1 below, the Euler–Lagrange equations of
a functional

I (x)=
∫ b

a

f (t, x(t), ẋ(t))dt

are given by

d

dt

∂f

∂ẋi
− ∂f

∂xi
= 0, i = 1, . . . , d.

Thus, for our action S,

d

dt
(gik(x(t))ẋ

k(t)+ gji(x(t))ẋ
j (t))− gjk,i(x(t))ẋ

j (t)ẋk(t)= 0

for i = 1, . . . , d,
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hence

gikẍ
k + gji ẍ

j + gik,�ẋ
�ẋk + gji,�ẋ

�ẋj − gjk,i ẋ
j ẋk = 0.

Renaming indices and using gik = gki, we get

2g�mẍm + (g�k,j + gj�,k − gjk,�)ẋ
j ẋk = 0

and from this

gi�g�mẍm + 1

2
gi�(g�k,j + gj�,k − gjk,�)ẋ

j ẋk = 0.

Because of gi�g�m = δim and thus gi�g�mẍm = ẍi , (1.1.124) follows. �

Definition 1.3 A geodesic is a curve γ = [a, b] →M that is a critical point of the
action S, that is, satisfies (1.1.124).

Briefly interrupting our discussion, we point out that (1.1.124) is the same as
(1.1.55). In other words, taking up the discussion at the end of Sect. 1.1.1, for the
Levi-Cività connection, the two definitions of a geodesic, being autoparallel as in
Sect. 1.1.1, or being a critical point of the action functional S as defined here, are
equivalent. In particular, we can also write the geodesic equation invariantly, as in
(1.1.54), with a slight change of notation:

∇ d
dt
ẋ = 0. (1.1.125)

We now return to the discussion of geodesics as critical points of S. We say that
a curve γ is parametrized proportionally to arc length if 〈ẋ, ẋ〉 ≡ const.

Lemma 1.4 Each geodesic is parametrized proportionally to arc length.

Proof For a solution of (1.1.124),

d

dt
〈ẋ, ẋ〉 = d

dt
(gij (x(t))ẋ

i (t)ẋj (t))

= gij ẍ
i ẋj + gij ẋ

i ẍj + gij,kẋ
i ẋj ẋk

= −(gjk,� + g�j,k − g�k,j )ẋ
�ẋkẋj + g�j,kẋ

kẋ�ẋj

= 0, since gjk,�ẋ
�ẋkẋj = g�k,j ẋ

�ẋkẋj .

Consequently, 〈ẋ, ẋ〉 ≡ const., and hence the curve is parametrized proportionally
to arc length. �

As already discussed in Sect. 1.1.1, the next result follows from the Picard–
Lindelöf theorem about the local existence and uniqueness of solutions of systems
of ODEs.
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Lemma 1.5 For each p ∈M , v ∈ TpM , there exist ε > 0 and precisely one geodesic

c : [0, ε]→M

with c(0)= p and ċ(0)= v. This geodesic c depends smoothly on p and v.

We now assume that the metric g on M is Riemannian, even though results corre-
sponding to those stated below also hold in the case of other signatures, in particular
for Lorentzian metrics.

If x(t) is a solution of (1.1.124), so is x(λt) for any constant λ ∈R. Denoting the
geodesic of Lemma 1.5 by cv ,

cv(t)= cλv

(
t

λ

)
for λ > 0, t ∈ [0, ε].

In particular, cλv is defined on [0, ε
λ
].

Since cv depends smoothly on v, and {v ∈ TpM : ‖v‖ = 1} is compact, there
exists ε0 > 0 with the property that for ‖v‖ = 1, cv is defined at least on [0, ε0].
Therefore, for any w ∈ TpM with ‖w‖ ≤ ε0, cw is defined at least on [0,1]. Thus,
as in (1.1.56):

Definition 1.4 Let p ∈M , Vp := {v ∈ TpM : cv is defined on [0,1]}.
expp : Vp →M,

v 
→ cv(1)
(1.1.126)

is called the exponential map of M at p.

One observes that the derivative of the exponential map expp at 0 ∈ TpM is the
identity. Therefore, with the help of the inverse function theorem, one checks that
the exponential map expp maps a neighborhood of 0 ∈ TpM diffeomorphically onto
a neighborhood of p ∈M. Since TpM is a vector space isomorphic to R

d (on which
we choose a Euclidean orthonormal basis), we can consider the local inverse exp−1

p

as defining local coordinates in a neighborhood of p. These local coordinates are
called normal coordinates with center p. In these coordinates, a basis of TpM that is
orthonormal with respect to the Riemannian metric g is identified with a Euclidean
orthonormal basis of R

d . This is the first part of the next lemma:

Lemma 1.6 In normal coordinates, the metric satisfies

gij (0) = δij , (1.1.127)

�i
jk(0) = 0 (and also gij,k(0)= 0) for all i, j, k. (1.1.128)

Proof (1.1.127) follows from the fact that the above identification � : TpM ∼= R
d

maps an orthonormal basis of TpM w.r.t. the metric g (that is, a basis e1, . . . ed with
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〈ei, ej 〉 = δij onto an orthonormal basis of R
d . For (1.1.128), in normal coordinates,

the straight lines through the origin of R
d are geodesic, as the line tv, t ∈R, v ∈R

d ,
is mapped onto ctv(1) = cv(t), where cv(t) is the geodesic, parametrized by arc
length, with ċv(0)= v.

Inserting now x(t) = tv into the geodesic equation (1.1.124), we obtain, using
ẍ(t)= 0,

�i
jk(tv)v

j vk = 0, for i = 1, . . . , d.

In particular at 0, i.e., for t = 0,

�i
jk(0)v

j vk = 0 for all v ∈R
d , i = 1, . . . , d.

Using the symmetry �i
jk = �i

kj , this implies

�i
�m(0)= 0

for all i and also for all �,m. By definition of �i
jk , at 0 ∈R

d , we obtain

gi�(gj�,k + gk�,j − gjk,�)= 0

for all free indices, hence also

gjm,k + gkm,j − gjk,m = 0.

Permuting the indices yields

gkj,m + gmj,k − gkm,j = 0,

which we add to obtain, for all indices,

gjm,k(0)= 0. �

This is a very useful result. When one has to check tensor equations, one can
do this in arbitrary coordinates because by the definition of a tensor, results are
coordinate independent. Now, it is often much easier to check such identities in
normal coordinates at the point under consideration, making use of the vanishing of
all first derivatives of the metric and all Christoffel symbols. We shall often employ
this strategy in the sequel.

In fact, we can even achieve a little more: Let c(s) : (−a, a)→M be a geodesic
parametrized by arclength, that is, 〈ċ(s), ċ(s)〉 = 1 for−a < s < a (see Lemma 1.4).
Let v1(0), . . . , vd(0) be an orthonormal basis of Tc(0)M with v1 = ċ(0), and let
vi(t) ∈ Tc(t)M be the parallel transport of vi(0) along the geodesic c(s). We define
coordinates by mapping (x1, . . . , xd) in some neighborhood of 0 ∈R

d to

(c(x1), expc(x1)(x
2v2(x1)+ · · · + xdvd(x1))). (1.1.129)
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Lemma 1.7 The coordinates just described satisfy

gij (x
1,0, . . . ,0) = δij , (1.1.130)

�i
jk(x

1,0, . . . ,0) = 0, (1.1.131)

(and also gij,k(x
1,0, . . . ,0) = 0) (1.1.132)

for all −a < x1 < a, i, j, k.

Proof By Lemma 1.4, g11(x
1,0, . . . ,0) is constant, in fact ≡ 1 by our ar-

clength assumption, as a function of x1. Therefore, also g11,1(x
1,0, . . . ,0) = 0.

Moreover, since the Levi-Cività connection ∇ respects the metric (see (1.1.62)),
gjk(x

1,0, . . . ,0)
= 〈vi(x1), vj (x1)〉 = δjk for the other values of j, k. Therefore, also

gjk,1(x
1,0, . . . ,0)= 0 for all j, k. (1.1.133)

We continue to evaluate all expressions at (x1,0, . . . ,0). All rays tv for v in the
span of v2, . . . , vd are mapped to geodesics, because the exponential map is applied
to them. So, we obtain, as in the proof of Lemma 1.6, that

�i
�m(x1,0, . . . ,0)= 0

for i = 2, . . . , d and all �,m. By definition of �i
jk, we obtain gi�(gj�,k +

gk�,j − gjk,�) = 0 at (x1,0, . . . ,0) ∈ R
d for all free indices, hence also gjm,k +

gkm,j − gjk,m = 0 for m = 2, . . . , d . Permuting the indices to get gkj,m + gmj,k −
gkm,j = 0, adding these relations and combining them with (1.1.133) finally yields
gjm,k(x

1,0, . . . ,0)= 0 for all indices. �

1.1.5 Curvature

We now want to discuss the curvature tensor R of the Levi-Cività connection ∇ . We
recall (1.1.51):

R(X,Y )Z =∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (1.1.134)

In local coordinates (cf. (1.1.52)),

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂x�
=Rk

�ij

∂

∂xk
. (1.1.135)

We put

Rk�ij := gkmRm
�ij , (1.1.136)
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i.e.

Rk�ij =
〈
R

(
∂

∂xi
,

∂

∂xj

)
∂

∂x�
,

∂

∂xk

〉
. (1.1.137)

There exist different sign conventions for the curvature tensor in the literature. We
have adopted here a convention that hopefully minimizes conflict between them.
As a consequence, the indices k and l appear in different orders at the two sides
of (1.1.137).

The curvature tensor satisfies the following symmetries:

R(X,Y )Z =−R(Y,X)Z, i.e. Rk�ij =−Rk�ji (1.1.138)

for vector fields X,Y,Z,W .

R(X,Y )Z +R(Y,Z)X+R(Z,X)Y = 0, (1.1.139)

or with indices

Rk�ij +Rkij� +Rkj�i = 0 (1.1.140)

(the first Bianchi identity).

〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉, (1.1.141)

with indices

Rk�ij =−R�kij . (1.1.142)

〈R(X,Y )Z,W 〉 = 〈R(Z,W)X,Y 〉, (1.1.143)

with indices

Rk�ij =Rijk�. (1.1.144)

∂

∂xh
Rk�ij + ∂

∂xk
R�hij + ∂

∂x�
Rhkij = 0 (1.1.145)

(the second Bianchi identity). In order to practice tensor calculus, we give a proof
of (1.1.145) in local coordinates. We recall (1.1.53):

Rk
lij =

∂

∂xi
�k
jl −

∂

∂xj
�k
il + �k

im�m
jl − �k

jm�m
il . (1.1.146)

Since all expressions are tensors, we may choose normal coordinates around the
point x0 under consideration, i.e., for all indices

gij (x0)= δij , gij,k(x0)= 0= �k
ij (x0) (1.1.147)

(1.1.146) then becomes

Rk�ij = 1

2
(gjk,�i + g�k,ij − gj�,ki − gik,�j − g�k,ij + gi�,kj )
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= 1

2
(gjk,�i + gi�,kj − gj�,ki − gik,�j ), (1.1.148)

and also, differentiating (1.1.146) and using once more the vanishing of all terms
containing first derivatives of gij at x0,

Rk�ij,h = 1

2
(gjk,�ih + gi�,kjh − gj�,kih − gik,�jh). (1.1.149)

This yields the second Bianchi identity:

Rk�ij,h +R�hij,k +Rhkij,� = 1

2
(gjk,�ih + gi�,kjh − gj�,kih − gik,�jh

+ gj�,hik + gih,�jk − gjh,�ik − gi�,hjk

+ gjh,ki� + gik,hj� − gjk,hi� − gih,kj�)

= 0.

The sectional curvature of the plane spanned by the (linearly independent) tangent
vectors X = ξ i ∂

∂xi , Y = ηi ∂
∂xi ∈ TxM is defined as

K(X ∧ Y) := 〈R(X,Y )Y,X〉 1

|X ∧ Y |2 , (1.1.150)

(|X ∧ Y |2 = 〈X,X〉〈Y,Y 〉 − 〈X,Y 〉2), with indices

K(X ∧ Y)= Rijk�ξ
iηj ξkη�

gikgj�(ξ iξ kηjη� − ξ iξ j ηkη�)
= Rijk�ξ

iηj ξkη�

(gikgj� − gij gk�)ξ iηj ξkη�
.

(1.1.151)
The Ricci curvature in the direction X = ξ i ∂

∂xi ∈ TxM is defined as the average of
the sectional curvatures of all planes in TxM containing X,

Ric(X,X)= gj�

〈
R

(
X,

∂

∂xj

)
∂

∂x�
,X

〉
, (1.1.152)

and the Ricci tensor is thus the contraction of the curvature tensor,

Rik = gj�Rijk� =R
j
ijk. (1.1.153)

(1.1.144) implies the symmetry

Rik =Rki. (1.1.154)

The scalar curvature is the contraction of the Ricci curvature,

R = gikRik =Ri
i . (1.1.155)

For d = dimM = 2, the curvature tensor is determined by the scalar curvature:

Rijk� =R(gikgj� − gij gk�). (1.1.156)
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For d = 3, the curvature tensor is determined by the Ricci tensor. For d > 3, the part
of the curvature tensor not yet determined by the Ricci tensor is given by the Weyl
tensor

Wijk� =Rijk� + 2

d − 2
(gi�Rkj − gikR�j + gjkR�i − gj�Rki)

+ 2

(d − 1)(d − 2)
R(gikg�j − gi�gkj ). (1.1.157)

1.1.6 Principles of General Relativity

General relativity describes the physical force of gravity and its relation with the
structure of space–time. The fundamental physical insight behind the theory of gen-
eral relativity is that the effects of acceleration cannot be distinguished from those
of gravity. The presence of matter changes the geometry of space, and acceleration
is experienced in relation to that geometry. In particular, the geometry of space and
time is dynamically determined by the physical laws, and in contrast to other phys-
ical theories, is thus not assumed as independently given. These physical laws in
turn are deduced from symmetry principles, more precisely from the principle of
general covariance, that is, that the physics should be independent of its coordinate
description. For this, Riemannian geometry has developed the appropriate formal
tools.

Let M be a Lorentz manifold with local coordinates (x0, x1, x2, x3) and metric

(gαβ)α,β=0,...,3.

We recall the Christoffel symbols

�α
βγ =

1

2
gαδ(gβδ,γ + gγ δ,β − gβγ,δ),

and those objects from which the essential invariants of a metric come, that is, the
curvature tensor Rα

βγ δ = �α
βδ,γ − �α

βγ,δ + �α
ηγ �

η
βδ − �α

ηδ�
η
βγ , and its contractions,

the Ricci tensor (1.1.154), Rαβ = R
γ
αγβ , and the scalar curvature (1.1.156), R =

gαβRαβ .
The Einstein field equations couple the metric gαβ of the underlying differen-

tiable manifold with the matter and fields on that manifold. These equations involve
the Ricci curvature and are

Rαβ − 1

2
gαβR = κT αβ. (1.1.158)

Here, κ = 8πg

c4 where g is the gravitational constant. (T αβ)α,β is the energy–
momentum tensor. It describes the matter and fields present. When T is given,
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the Einstein equations then determine the metric of space–time.5 The presence of
a nonvanishing energy–momentum tensor in the field equations makes space–time
curved. The curvature in turn leads to gravity. (1.1.158) is equivalent to

Rαβ − 1

2
gαβR = κTαβ. (1.1.159)

Taking the trace in (1.1.159) leads to R − 2R = κT , that is,

R =−κT . (1.1.160)

(T = gαβTαβ ; note that the dimension of M is 4.) Using (1.1.160), (1.1.159) be-
comes equivalent to

Rαβ = κ

(
Tαβ − 1

2
gαβT

)
. (1.1.161)

In the special case where (Tαβ) = 0, that is, when neither matter nor fields are
present, (1.1.161) becomes

Rαβ = 0, (1.1.162)

i.e., the Ricci curvature of M vanishes.
Hilbert discovered that the Einstein field equations can be derived from a varia-

tional principle. In fact, they are the Euler–Lagrange equations for the action func-
tional

L0(g)=
∫

M

R
√−g dx =

∫

M

RdVolM(x), (1.1.163)

called the Einstein–Hilbert functional. To see this, we consider a family

gt
αβ = gαβ + thαβ

of metrics with (hαβ) having compact support if M is not compact itself. Quantities
obtained from the metric gt

αβ will always carry a superscript t ; for example,

Rt
αβ

is the Ricci tensor of gt
αβ . We also put

δgαβ = d

dt
(gt

αβ)|t=0
= hαβ,

δRαβ = d

dt
(Rt

αβ)|t=0
, etc.

5Classically, the topology of M is assumed fixed. However, it turns out that the equations may
lead to space–time singularities, like black holes, which will then affect the underlying topology.
Such singularities can occur and are sometimes even inevitable, even if suitable and physically
natural restrictions are imposed on the energy–momentum tensor, like nonnegativity. We do not
pursue that issue here, however, but refer to [56]. There, also the cosmological implications of
such singularities are discussed.
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Finally, we shall use the abbreviation

γ := √−g.

We then have

d

dt
L0(g

t )|t=0 =
∫

M

δ(Rγ )dx. (1.1.164)

Now

δ(Rγ )= δ(gαβRαβγ )= gαβγ δRαβ +Rαβδ(g
αβγ ).

We now claim that

gαβδRαβ = divV

(
= 1

γ

∂

∂xα
(γ V α)

)
(1.1.165)

for the vector field V with components

V γ = gαβδ�
γ
αβ − gγαδ�

β
βα. (1.1.166)

Proof of (1.1.165): Let p ∈M . We introduce normal coordinates near p; thus, at p,
the metric tensor is diagonal and

gαβ,γ (p)= 0 and �α
βγ (p)= 0 for all α,β, γ.

In particular, at p

∂

∂xα
γ = 0 for all α.

In these coordinates, (1.1.165) then follows from the definition of the Ricci ten-
sor. While the Christoffel symbols �α

βγ , as the components of a connection, do not
transform tensorially, the δ�α

βγ do transform tensorially as derivatives, that is, as
infinitesimal differences of connections. The right-hand side of (1.1.165) is thus
a tensor, and so is the left-hand side. The equality of two tensors can be checked in
arbitrary coordinates. Since we have just verified (1.1.165) in normal coordinates,
(1.1.165) then also holds in arbitrary coordinates, and we have completed its proof.

We now get
∫

M

δ(Rγ ) =
∫

gαβγ δRαβ dx +
∫

Rαβδ(g
αβγ )dx

=
∫

divV γ dx +
∫

Rαβδ(g
αβγ )dx

=
∫

Rαβδ(g
αβγ )dx (1.1.167)

by Gauss’s theorem, since V has compact support.
Now

δγ =−1

2
γ−1δdet(gαβ)= 1

2
γgαβδgαβ
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and moreover

δgαβ =−gαγ gβγ δgγ δ (from gαβgβγ = δαγ )

and therefore

δ(gαβγ )= γ

(
1

2
gαβgγ δ − gαγ gβδ

)
δgγ δ. (1.1.168)

(1.1.164), (1.1.167), (1.1.168) imply

δL0 =
∫

M

(
1

2
gαβR −Rαβ

)
γ δgαβ dx = 0. (1.1.169)

If this holds for all variations δgαβ with compact support, we have

Rαβ − 1

2
gαβR = 0, (1.1.170)

which implies, as in the derivation of (1.1.162), that

Rαβ = 0. (1.1.171)

Einstein also tentatively introduced a cosmological constant � that has the effect of
changing the Einstein–Hilbert functional (1.1.163) to

L�(g)=
∫

M

(R − 2�)
√−g dx (1.1.172)

and the Einstein field equations (1.1.158) to

Rαβ − 1

2
gαβR+�gαβ = κT αβ. (1.1.173)

While a nontrivial cosmological constant is presently appearing in some cosmolog-
ical models, we put it to 0 for our present discussion. It is straightforward, however,
to include a nontrivial � in the subsequent formulas.

In the presence of some matter fields φ, we assume a Lagrangian

L1 =
∫

M

F(g,φ,∇gφ)
√−g dx (1.1.174)

depending on the fields and their covariant derivatives w.r.t. the Levi-Cività connec-
tion, as well as possibly also directly on the metric g. When we consider a variation
δgαβ of the metric that does not change the fields, we put

δL1 = 1

2

∫

M

T αβδgαβdx. (1.1.175)

In other words, the energy–momentum tensor is defined as the variation of the matter
Lagrangian w.r.t. the metric. In order to fully justify (1.1.175), we need to observe
that all the variations of all metric dependent terms in L1 are proportional to δgαβ .
For the volume form, this has been verified in (1.1.168). The covariant derivative ∇g

occurring in (1.1.175) also depends on the metric (see (1.1.60)). One easily com-
putes, for example in normal coordinates, that the variation δ�α

βδ of the Christoffel
symbol is proportional to a combination of covariant derivatives of δgαβ , and that
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the covariant derivatives can then be integrated away by parts in the computation of
δL1. When one then considers the full Lagrangian

L := L0 + κL1, (1.1.176)

with κ as a coupling constant, we thus obtain from (1.1.169) and (1.1.175), for
variations δgαβ of the metric,

δL=
∫

M

(
1

2
gαβR−Rαβ + κT αβ

)
γ δgαβ dx. (1.1.177)

Thus, when δL= 0 for all variations of the metric, we obtain (1.1.158).
For a more extended discussion of this variational principle, we refer to the pre-

sentation in [81] or [56].
Finally, we mention the so-called semiclassical Einstein equations

Rαβ − 1

2
gαβR = κ〈ψ |T̂αβ |ψ〉 (1.1.178)

where the energy momentum tensor Tαβ in (1.1.159) is replaced by the expectation
value of the energy–momentum operator with respect to some quantum state ψ . This
quantum state in turn depends on the metric g through the Schrödinger equation.
Here, we are invoking concepts that find their natural place in the second part of
this book. Equation (1.1.178) arises in the context of quantum fields on an external
space–time. The coupling of a quantum system to a classical one in (1.1.178) leads
to questions of consistency which we do not enter here. We refer to the discussion
in [74].

Variational principles will be taken up in more generality below in Sect. 2.3.1,
and in Sect. 2.4, the energy–momentum tensor will appear again. Also, we shall see
there that a consequence of Noether’s theorem (see Sect. 2.3.2) is that under the
fundamental assumption of general relativity, namely invariance of L under coordi-
nate transformations—that is, diffeomorphism invariance—the energy–momentum
tensor is divergence free.

1.2 Bundles and Connections

1.2.1 Vector and Principal Bundles

Let M be a differentiable manifold. In this section, we present the basic aspects of
the theory of vector and principal bundles. We point out that we have already studied
one particular vector bundle over M in Sect. 1.1.1, its tangent bundle TM .

A fiber bundle (or simply, a bundle) over M consists of a total space E, a fiber
F (both of them also differentiable manifolds), and a projection π : E →M such
that each x ∈M has a neighborhood U for which E|U = π−1(U) is diffeomorphic
to U × F such that the fibers are preserved. This means that there exists a diffeo-
morphism

ϕ : π−1(U)→U × F
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with

π = p1 ◦ ϕ. (1.2.1)

(p1 :U × F →U is the projection onto the first factor.)
ϕ is called a local trivialization of the bundle over U . Let {Uα} be an open cov-

ering of M with local trivializations {ϕα}. If

Uα ∩Uβ �= ∅,
we obtain transition maps

ϕβα :Uα ∩Uβ →Diff(F ) (= group of diffeomorphisms of F)

via

ϕβ ◦ ϕ−1
α (x, v)= (x,ϕβα(x)v). (1.2.2)

Omitting the base point, which is fixed by (1.2.1), from our notation, we shall usu-
ally simply write

ϕβα = ϕβ ◦ ϕ−1
α .

We have

for x ∈Uα: ϕαα(x)= idF , (1.2.3)

for x ∈Uα ∩Uβ : ϕαβ(x)ϕβα(x)= idF , (1.2.4)

for x ∈Uα ∩Uβ ∩Uγ : ϕαγ (x)ϕγβ(x)ϕβα(x)= idF . (1.2.5)

E can be reconstructed from its transition maps:

E =
∐

α

Uα × F/∼ (1.2.6)

with

(x, v)∼ (y,w) :⇔ x = y and w = ϕβα(x)v

(x ∈Uα,y ∈Uβ,v,w ∈ F).

When we have some (differentiable) fα :Uα →Diff(F ), we can replace the trivial-
ization ϕα over Uα by

ϕ′α = fα ◦ ϕα, (1.2.7)

and conversely, we can obtain any trivialization ϕ′α over Uα in this manner via

fα := ϕ′α ◦ ϕ−1
α

(ϕ−1
α assigns to each x the diffeomorphism inverse to ϕα(x)). (1.2.8)

If fα,fβ are as above, the transition maps change according to

ϕ−1
βα = ϕ′β ◦ ϕ′α−1 = fβ ◦ ϕβα ◦ f−1

α . (1.2.9)
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The special case where all transition maps take their values in an Abelian subgroup
A of Diff(F ) yields some additional structure: The transition maps {ϕβα} then define
a Čech cocycle on M with values in A, because (1.2.4) and (1.2.5) imply

δ({ϕβα})= 0

for the boundary operator δ. By (1.2.9), two such cocycles {ϕβα} and {ϕ′βα} define

the same bundle if {ϕ−1
βα ◦ ϕ′βα} is a coboundary. Thus, in this case, we can consider

a bundle as a cohomology class in H 1(M,A).6

A section of E is a smooth map

s :M →E

satisfying

π ◦ s = id.

We denote the space of sections by C∞(E) or �(E).
For our purposes, we shall only need two special (closely related) types of fiber

bundles. The fiber F will be either a vector space V or a Lie group G. The important
general principle here is to require that the transition maps respect the corresponding
structure. Thus, they are not allowed to assume arbitrary values in Diff(F ), but only
in some fixed Lie group G. G is called the structure group of the bundle.

According to this principle, the fiber of a vector bundle is a real or complex
vector space V of some real dimension n, and the structure group is Gl(n,R) or
some subgroup. A bundle whose fiber is a Lie group G is called a principal bundle,
and the total space is denoted by P . The structure group is G or some subgroup, and
it operates by left multiplication on the fiber G. Right multiplication on G induces
a right action of G on P via local trivializations:

P ×G→ P, (x, g) ∗ h= (x, gh) for p = (x, g) ∈ P,

with the composition rule (p ∗ g)h = p ∗ gh. This action is free, that is, p ∗ g =
p ⇔ g = e (neutral element). The projection π : P → M is obtained by simply
identifying x ∈M with an orbit of this action, that is,

π : P → P/G=M.

The groups Gl(n,R), O(n), SO(n), U(n) and SU(n) will be the ones of interest
for us. Acting as linear groups on a vector space, they preserve linear, Euclidean, or
Hermitian structures. For example, a Euclidean structure, that is, a (positive definite)
scalar product, is an additional structure on a vector space. According to the general
principle, if we have such a structure on our fiber, it has to be respected by the tran-
sition maps. As before, this restricts the transformations permitted. In our example,
we thus allow only O(n) in place of Gl(n,R). Such a restriction of the admissi-
ble transformations by imposing an additional structure that has to be preserved is
called a reduction of the structure group.

6We assume here that M is connected; otherwise, in place of A itself, we should utilize the locally
constant sheaf of A.
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Principal and vector bundles are closely related. Let P →M be a principal bun-
dle with fiber G, and let the vector space V carry a representation of G. We then
construct a vector bundle E with fiber V using the following free right action of G
on P × V :

P × V ×G→ P × V,

(p, v) ∗ g = (p ∗ g,g−1v).

The projection

P × V → P →M

is invariant under this action, and

E := P ×G V := (P × V )/G→M

is a vector bundle with fiber

G×G V = (G× V )/G= V

and structure group G. Via the left action of G on V , the transition maps for P yield
transition maps for E. Conversely, if we have a vector bundle with structure group
G, we construct a G-principal bundle P by

∐

α

Uα ×G/∼

with

(xα, gα)∼ (xβ, gβ) :⇔ xα = xβ in Uα ∩Uβ and gβ = ϕβα(x)gα.

(Here, {Uα} is a local trivialization of E with transition maps ϕβα ; these transition
maps are in Gl(n,R). Since the elements gα are in the structure group G which
is assumed to be a linear group, that is, a subgroup of Gl(n,R), we can form the
product ϕβα(x)gα .) P can be viewed as the bundle of admissible bases of E. In
a local trivialization, each fiber of E is identified with R

n or C
n, and each admissible

base is represented by a matrix with coefficients in R or C. The transition maps then
effect a base change. In each local trivialization, the action of G on P is given by
matrix multiplication.

All standard operations on vector spaces extend to vector bundles. If we have
a vector bundle E with fiber Vx over x, we can form the dual bundle E� with fiber
the dual space V �

x of Vx . Applying this construction to the tangent bundle TM

yields the cotangent bundle T �M . If E1 and E2 are vector bundles, we can form the
bundles E1⊕E2, E1⊗E2 and E1∧E2 by performing the corresponding operations
on the fibers. In particular, from the cotangent bundle T �M , we obtain the bundle
�p(M) introduced in (1.1.23), whose sections are the exterior p-forms.
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1.2.2 Covariant Derivatives

Let E be a vector bundle over M . We may view E as a family of vector spaces
parametrized by M . A local trivialization ϕ over U identifies the fibers over U with
each other. Changing the local trivialization then also changes this identification of
the fibers. The identification thus depends on the choice of a local trivialization and
is therefore not canonical. Hence, while we can decide whether a section of E is
differentiable because all transition maps depend differentiably on x and therefore
do not affect the differentiability of a section in some local trivialization, there is
no canonical way to specify the value of its derivative. In particular, we do not have
a criterion for a section being constant along a curve in M .

Therefore, in order to be able to differentiate a section, we need to introduce and
specify an additional structure on E, a so-called covariant derivative or connection.
We point out that this includes and generalizes the concept of a covariant derivative
developed in Sect. 1.1.1 for the tangent bundle.

A covariant derivative is an operator

D : �(E)→ �(E)⊗C∞(M) �(T ∗M)

with the following properties: For σ ∈ �(E),V ∈ TxM , we write

Dσ(V )=:DV σ

and require (for all x ∈M):

(i) D is tensorial in V :

DV+Wσ =DV σ +DWσ ∀V,W ∈ TxM, σ ∈ �(E),

DfV σ = fDV σ ∀V ∈ TxM, f ∈ C∞(M), σ ∈ �(E).

(Remark: It does not really make sense to multiply an element V ∈ TxM by
a function f ∈ C∞(M). What the preceding rule means is that when we take
a section V ∈ �(TM) of the tangent bundle, the value (DV σ)(x) depends only
on the value of V at the point x, but not on the values at other points. This is
not so for σ as rule (iii) shows.)

(ii) D is linear in σ :

DV (σ + τ)=DV σ +DV τ ∀V ∈ TxM, σ, τ ∈ �(E).

(iii) D satisfies the product rule:

DV (f σ)= V (f )σ + fDV σ ∀V ∈ TxM, f ∈C∞(M), σ ∈ �(E).

An example, which is not really typical, but in a certain sense a local model, is the
trivial bundle M ×R over M , where we can put

DV σ := dσ(V )= V (σ)

to obtain a covariant derivative. In the general case, let ϕ be a trivialization of E

over U ,

E|U ∼=U ×R
n (=ϕ(π−1(U))).
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Via this local identification, a base of R
n yields a base μ1, . . . ,μn of sections of E|U .

Any section σ can then be written over U as

σ(x)= ak(x)μk(x).

Then

Dσ = (dak)μk + akDμk. (1.2.10)

Since (μj )j=1,...,n is a base of sections, we can write

Dμk =A
j
kμj . (1.2.11)

Here, for each x, A(x)= (A
j
k(x))j,k=1,...,n is a T ∗x M-valued matrix, that is, an ele-

ment of gl(n,R)⊗ T ∗x M . In symbols,

A ∈ �
(
gl(n,R)⊗ T ∗M|U

)
.

In our trivialization, we write this as

D = d +A. (1.2.12)

We now wish to determine the transformation behavior of A under a change of the
local trivialization. Let {Uα} be an open covering of M that yields a local trivializa-
tion with transition maps

ϕβα :Uα ∩Uβ →Gl(n,R).

D defines a T ∗M-valued matrix Aα on Uα . Let the section μ be represented by
μα on Uα . A Greek index α here is not a coordinate index, but refers to the chosen
covering {Uα}. Thus

μβ = ϕβαμα on Uα ∩Uβ.

This implies

ϕβα(d +Aα)μα = (d +Aβ)μβ on Uα ∩Uβ. (1.2.13)

On the left-hand side, we have first computed Dμ in the local trivialization deter-
mined by Uα and then transformed the result into the local trivialization determined
by Uβ , while on the right-hand side, we have directly expressed Dμ in the latter.
We conclude

Aα = ϕ−1
βα dϕβα + ϕ−1

βαAβϕβα. (1.2.14)

We have thus found the transformation behavior. Aα does not transform as a ten-
sor, because of the term ϕ−1

βα dϕβα . The difference of two connections, however,
does transform as a tensor. The space of all connections on a given vector bundle
is therefore an affine space. The difference of two connections is a gl(n,R)-valued
1-form.

Having a connection D on a vector bundle E, it is now our aim to extend D

to associated bundles, requiring suitable compatibility conditions. We start with the
dual bundle E∗. Let

(·, ·) :E ⊗E∗ →R
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be the bilinear pairing between E and E∗. The base dual to some base μ1, . . . ,μn

of E is denoted by μ∗1, . . . ,μ∗n, i.e.,

(μi,μ
∗j )= δ

j
i . (1.2.15)

We then define the connection D∗ on E∗ by requiring

d(μ, ν∗)= (Dμ,ν)+ (μ,D∗ν) (1.2.16)

for all μ ∈ �(E), ν ∈ �(E∗). In our above notation

D = d +A, D∗ = d +A∗. (1.2.17)

From (1.2.15) (cf. (1.2.11)) we then compute

0= d(μi, μ̂
j ) = (Ak

i μk,μ
∗j )+ (μi,A

∗
l
j
μ∗l )

= A
j
i +A∗i

j
,

i.e.,

A∗ = −A. (1.2.18)

We now construct a connection on a product bundle from connections on the fac-
tors. If E1 and E2 are vector bundles over M with connections D1, D2, we obtain
a connection D on E :=E1 ⊗E2 by

D(μ1 ⊗μ2)=D1μ1 ⊗μ2 +μ1 ⊗D2μ2

(μi ∈ �(Ei), i = 1,2). (1.2.19)

We apply this construction to End(E)=E⊗E∗ to obtain a connection that is again
denoted by D. For a section σ = σ i

jμi ⊗μ∗j , we then have

D(σ i
jμi ⊗μ∗j ) = dσ i

jμi ⊗μ∗j + σ i
jA

k
i μk ⊗μ∗j − σ i

jA
j
kμi ⊗μ∗k

= dσ + [A,σ ]. (1.2.20)

Thus, the connection induced on End(E) operates via the Lie bracket. In a slightly
different interpretation, we can view a connection D as a map

D : �(E)→ �(E)⊗
1(M).

Using the notation


p(E) := �(E)⊗
p(M),

we extend D to a map

D :
p(E)→
p+1(E)

by

D(μω)=Dμ∧ω+μdω (1.2.21)
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(where μ ∈ �(E),ω ∈
p(M), and we have written μω in place of μ⊗C∞(M) ω.7)
The curvature of a connection D is now defined as

F :=D2 :
0(E)→
2(E).

D is called flat if

F = 0.

Since the exterior derivative d satisfies (1.1.37), i.e.,

d ◦ d = 0

we obtain the de Rham complex


0 d−→
1 d−→
2 d−→ . . . (
p =
p(M)).

The sequence


0(E)
D−→
1(E)

D−→
2(E)
D−→ . . .

however, is not necessarily a complex, since in general F �= 0. For μ ∈ �(E)

(=
0(E)), we compute

F(μ) = (d +A) ◦ (d +A)μ

= (d +A)(dμ+Aμ)

= (dA)μ−A dμ+A dμ+A∧Aμ

(the minus sign arises because A takes values in 1-forms), that is,

F = dA+A∧A. (1.2.22)

If we write

A=Aj dx
j

in local coordinates, with Aj ∈ �(gl(n,R))= �(End(E)), (1.2.22) becomes

F = 1

2

(
∂Aj

∂xi
− ∂Ai

∂xj
+ [Ai,Aj ]

)
dxi ∧ dxj . (1.2.23)

F is a map from 
0(E) to 
2(E), i.e.,

F ∈
2(E)⊗ (
0(E))
∗ =
2(End(E)

)
.

Therefore, according to our rules (1.2.20) and (1.2.21),

DF = dF + [A,F ]
= dA∧A−A∧ dA+ [A,dA+A∧A] (by (1.2.22))

= dA∧A−A∧ dA+A∧ dA− dA∧A+ [A,A∧A]

7We leave it to the reader to (easily) verify that (1.2.21) is well defined, even though the decompo-
sition μ⊗C∞(M) ω is not canonical.
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= [A,A∧A]
= [Ai dx

i,Aj dx
j ∧Ak dx

k]
= AiAjAk(dx

i ∧ dxj ∧ dxk − dxj ∧ dxk ∧ dxi

− dxi ∧ dxk ∧ dxj + dxk ∧ dxj ∧ dxi)

= 0.

We thus obtain the Bianchi identity:

Theorem 1.1 The curvature of a connection D satisfies

DF = 0. (1.2.24)

The Bianchi identity can also be derived in a conceptually more interesting man-
ner from the equivariance of the curvature (f ∗FD = Ff ∗D , FD = curvature of D)
under bundle automorphisms f , that is, diffeomorphisms commuting with the group
action (cf. [95]).

Using the notation of (1.2.13), we now wish to determine the transformation
behavior of the curvature F of a connection D. From (1.2.14),

Fα = dAα +Aα ∧Aα

= d(ϕ−1
βα dϕβα)+ d(ϕ−1

βαAβϕβα)

+ ϕ−1
βα dϕβα ∧ ϕ−1

βα dϕβα + ϕ−1
βα dϕβα ∧ ϕ−1

βαAβϕβα

+ ϕ−1
βαAβ ∧ dϕβα + ϕ−1

βαAβ ∧Aβϕβα.

Because of

d(ϕ−1
βα )=−ϕ−1

βα dϕβαϕ
−1
βα

the derivatives of ϕβα cancel, and we obtain

Fα = ϕ−1
βαFβϕβα. (1.2.25)

Thus, F transforms as a tensor, in contrast to A.

1.2.3 Reduction of the Structure Group.
The Yang–Mills Functional

We now wish to implement the general principle formulated above that additional
structures on the fibers of a bundle lead to restrictions on the admissible transfor-
mations. In the previous section, Gl(n,R) was the structure group of our vector
bundle. This reflected the fact that we only had a linear (vector space) structure on
our fibers, but nothing else. We shall now consider vector spaces with a structure
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group G⊂ Gl(n,R). The group G will then be interpreted as the invariance group
of some structure on the fibers. Let g be the Lie algebra of G. For a connection
D on the vector bundle E with fiber R

n, we then require compatibility with the
G-structure. To make this more precise, we consider local trivializations

ϕ : π−1(U)→U ×R
n

of E whose transition functions preserve the G-structure, that is, ones that trans-
form G-bases μ1, . . . ,μn (meaning that the matrix with the columns μ1, . . . ,μn is
contained in G) into G-bases. Linear algebra (Gram-Schmidt) tells us that we can
always construct such trivializations. In such a trivialization, we also require of

D = d +A

that

A ∈ �(g⊗ T ∗M|U). (1.2.26)

Let us consider some examples. G = O(n) means that each fiber of E possesses
a Euclidean scalar product 〈·, ·〉. Via a corresponding local trivialization, for each
x ∈ U , we then obtain an orthonormal base e1(x), . . . , en(x) of the fiber Vx over x

depending smoothly on x, namely ϕ−1(x, e1, . . . , en), where e1, . . . , en is an ortho-
normal base of R

n w.r.t. the standard Euclidean scalar product. We then want that
the Leibniz rule holds, i.e.,

d〈σ, τ 〉 = 〈Dσ,τ 〉 + 〈σ,Dτ 〉, (1.2.27)

that is, we require that 〈·, ·〉 is covariantly constant. This implies in particular

0= d〈ei, ej 〉 = 〈A ei, ej 〉 + 〈ei,A ej 〉, (1.2.28)

that is, A is skew symmetric, A ∈ o(n). A connection D satisfying the Leibniz rule
is called a metric connection.

Analogously, for G= U(n) we have a Hermitian product on the fibers, and the
corresponding Leibniz rule implies

A ∈ u(n). (1.2.29)

We then speak of a Hermitian connection.
AdE is defined to be the bundle with fibers (AdE)x ⊂ End(Vx) consisting of

those endomorphisms of Vx that are contained in G. AdE = P ×G g, where P is the
associated principal bundle G acts on g by the adjoint representation. Analogously,
Aut(E) is the bundle with fiber G, now considered as the automorphism group of
Vx , that is,

Aut(E)= P ×G G,

where G acts by conjugation. (Thus, Aut(E) is not a principal bundle.) (The reason
for this action is the compatibility with the action

P × V ×G→ P × V, (p, v) ∗ g = (pg,g−1v),
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because with (p,h) ∗ g = (pg,g−1hg), we obtain g−1hg(g−1v)= g−1(hv), since
G acts on V from the left.) Sections of Aut(E) are called gauge transformations,
and the group of gauge transformations is called the gauge group.

A section s ∈ �(Aut(E)) operates on a connection D by

s∗D = s−1 ◦D ◦ s, (1.2.30)

hence, for μ ∈ �(E)

s∗(D)μ= s−1D(sμ), (1.2.31)

and, with D = d +A

s∗(A)= s−1ds + s−1A s. (1.2.32)

In our present notation, the transformation rule (1.2.25) for the curvature F of D

becomes

s∗(F )= s−1 ◦ F ◦ s. (1.2.33)

Here, we consider F as an element of 
2(AdE)= �(AdE ⊗�2T ∗M), and s acts
trivially on the factor �2T ∗M . The induced product on the fibers AdEx ⊗�2T ∗x M

that comes from the bundle metric of E and the Riemannian metric of M will be
denoted by 〈. , .〉.

Definition 1.5 Let M be a compact Riemannian manifold with metric g, E a vector
bundle with a bundle metric over M, D a metric connection on E with curvature
FD ∈
2(AdE). The Yang–Mills functional applied to D is

YM(D) :=
∫

M

〈FD,FD〉dvolg. (1.2.34)

We now recall from Sect. 1.2.2 that the space of all connections on E is an affine
space; the difference of two connections is contained in 
1(EndE). Therefore, the
space of all metric connections on E is an affine space as well; the difference of
two metric connections is contained in 
1(AdE). For deriving the Euler–Lagrange
equations for the Yang–Mills functional, the variations to consider are therefore

D + tB with B ∈
1(AdE).

For σ ∈ �(E)=
0(E),

FD+tB(σ )= (D + tB)(D + tB)σ

=D2σ + tD(Bσ)+ tB ∧Dσ + t2(B ∧B)σ

= (FD + t (DB)+ t2(B ∧B))σ, (1.2.35)
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as D(Bσ)= (DB)σ −B ∧Dσ . Therefore,

d

dt
YM(D + tB)|t=0 = d

dt

∫
〈FD+tB,FD+tB〉|t=0

= 2
∫
〈DB,FD〉. (1.2.36)

Using the definition of D∗ (1.2.17), this becomes

d

dt
YM(D+ tB)|t=0 = 2

∫
〈B,D∗FD〉.

This vanishes for all variations B if

D∗FD ≡ 0. (1.2.37)

Definition 1.6 A metric connection D on the vector bundle E with a bundle metric
over the Riemannian manifold M satisfying (1.2.37) is called a Yang–Mills connec-
tion.

In tensor notation, FD = Fij dx
i ∧ dxj , and we want to express (1.2.37) in local

coordinates with the normalization gij (x)= δij . In such coordinates,

d∗(Fij dx
i ∧ dxj )=−∂Fij

∂xi
dxj ,

and hence from (1.2.18)

D∗FD =
(
−∂Fij

∂xi
− [Ai,Fij ]

)
dxj .

The Yang–Mills equation (1.2.37) in local coordinates thus reads

∂Fij

∂xi
+ [Ai,Fij ] = 0 for j = 1, . . . , d. (1.2.38)

In the preceding, we have defined the Yang–Mills functional for metric connec-
tions, i.e., ones with structure group G = O(n). Obviously, the same construction
works for other compact structure groups, in particular for U(m) and SU(m). Those
groups operate on the fibers of complex vector bundles. For a complex vector bun-
dle, one has the structure group Gl(m,C), that is, those of complex linear maps,
and a Hermitian structure then, as explained, is a reduction of the structure group
to U(m). We now consider complex vector bundles, as for them, we can define im-
portant cohomology classes from the curvature of a connection, the so-called Chern
classes, as we shall now explain. Thus, E now is a complex vector bundle of Rank
m, that is, with fiber C

m, over the compact manifold M . D is a connection on E

with curvature

F =D2 :
0 →
2(E). (1.2.39)

F satisfies the transformation rule (1.2.25):

Fα = ϕ−1
βαFβϕαβ. (1.2.40)
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Therefore, we can consider F as an element of AdE. Since E is a complex vector
bundle with structure group gl(m,C), AdE = EndE =HomC(E,E). Thus,

F ∈
2(AdE), (1.2.41)

that is, F is a 2-form with values in the endomorphisms of E. Therefore, i
2π F

(the factor is simply chosen for convenient normalization) has eigenvalues λk, k =
1, . . . ,m, which are 2-forms. We then define exterior forms cj (E) ∈ 
2j (M),
j = 1, . . . ,m, on M via

m∑

j=0

cj (E)tj = det

(
i

2π
tF + Id

)
=

m∏

k=1

(1+ λkt). (1.2.42)

From the Bianchi identity (1.2.24), i.e., DF = 0, one concludes that dcj (E) = 0
for all j . Thus, the cj (E) are closed and therefore represent cohomology classes.
One also verifies that these classes do not depend on the choice of the connection D

on E. These cohomology classes are called the Chern classes of the complex vector
bundle E over M . Thus, from an arbitrary Hermitian connection on the bundle E,
we can compute topological invariants of E and M .

For j = 1,2, we get

c1(E)= i

2π
trF, (1.2.43)

c2(E)− m− 1

2m
c1(E)∧ c1(E)= 1

8π2
tr(F0 ∧ F0), (1.2.44)

where

F0 := F − 1

m
trF · IdE is the trace-free part of F . (1.2.45)

We now consider a U(m) vector bundle E over a four-dimensional oriented Rie-
mannian manifold M . We let D be a Hermitian connection on E with curvature
F =D2. As explained in (1.1.29), (1.1.31), we can decompose F0 into its self-dual
and antiself-dual components

F0 = F+
0 + F−

0 . (1.2.46)

We recall (1.1.30), i.e., that the exterior product of a self-dual 2-form with an
antiself-dual one vanishes, and obtain

tr(F0 ∧ F0)= tr(F+
0 ∧ F+

0 )+ tr(F−
0 ∧ F−

0 )

=−|F+
0 |2 + |F−

0 |2 (1.2.47)

by (1.1.29) (note that the trace is the negative of the Killing form of the Lie alge-
bra u(m), that is, A · B =− tr(AB), which explains the difference in sign between
(1.2.47) and (1.1.29)).

From (1.2.44), we obtain by integration over M

(c2(E)− m− 1

2m
c1(E)2)[M] = − 1

8π2

∫
(|F+

0 |2 − |F−
0 |2)

√
gdx1 ∧ · · · ∧ dxd.

(1.2.48)
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The Yang–Mills functional then can be decomposed as

YM(D)=
∫

M

(
1

m
| trF |2 + |F0|2

)√
gdx1 ∧ · · · ∧ dxd

=
∫

M

(
1

m
| trF |2 + |F+

0 |2 + |F−
0 |2
)√

g dx1 ∧ · · · ∧ dxd. (1.2.49)

Since trF represents the cohomology class −2πic1(E), the cohomology class of
trF is fixed, and

∫

M

| trF |2√g dx1 ∧ · · · ∧ dxd

becomes minimal if trF minimizes the L2-norm in this class (trF therefore has
to be a harmonic 2-form, see (1.1.115), (1.1.117)). Next, because of the constraint
(1.2.48), that is, because the difference of the two integrals of F+

0 and F−
0 is fixed

by the topology of M and E, and therefore,
∫ |F0|2 becomes minimal if one of them

vanishes, i.e.,

F+
0 = 0 or F−

0 = 0, (1.2.50)

i.e. if F0 is antiself-dual or self-dual. Which of these two alternatives can hold de-
pends on the sign of (c2(E)− m−1

m
c1(E)2)[M].

We now assume that the structure group of the complex vector bundle E is re-
duced to SU(m). Thus, the fiber of AdE is su(m) which is trace-free. Therefore, if
D is an SU(m) connection, its curvature F ∈
2(AdE) satisfies

trF = 0. (1.2.51)

Consequently, by (1.2.43)

c1(E)= 0,

and by (1.2.44), (1.2.48)

c2(E)[M] = − 1

8π2

∫

M

(|F+|2 − |F−|2)√gdx1 ∧ · · · ∧ dxd.

Thus again, the difference of the two parts of the Yang–Mills functional is topolog-
ically fixed, and as in (1.2.49),

YM(D)=
∫

M

(|F+|2 + |F−|2)√gdx1 ∧ · · · ∧ dxd

is therefore minimized if F is (anti)self-dual; again, which of the two possibilities
can hold depends on the sign of c2(E)[M]. We conclude that:

Theorem 1.2 For a vector bundle E with structure group SU(m) over a compact
oriented four-dimensional manifold M , an SU(m) connection D on E yields an
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absolute minimum for the Yang–Mills functional if its curvature F is self-dual or
antiself-dual.

For a systematic presentation of four-dimensional Yang–Mills theory, we refer
to [31].

1.2.4 The Kaluza–Klein Construction

Here, we take up the discussion of Sect. 1.1.6 and combine it with a bundle construc-
tion. The idea was first put forward by Theodor Kaluza in order to unify gravity with
electromagnetism. Although this was not successful in its original form, the general
idea is still important and alive today.

Kaluza’s ansatz was to consider, in place of the Lorentz manifold M , a fiber
bundle M̄ over M . Kaluza took the real axis R as the fiber. This was then modified
by Oscar Klein who chose the fiber S1, that is, the compact Abelian Lie group U(1),
and this is also what we shall do here. Subsequently, we shall consider more general
fibers. Following the physics literature, we shall always assume that M̄ is a principal
fiber bundle.

We obtain a metric

ḡ = π∗g + Ā⊗ Ā (1.2.52)

on M̄ where π : M̄ →M is the projection, g is the Lorentz metric on M , and Ā is
the 1-form for some U(1) connection on M̄ . (More precisely, Ā= π∗A where A is
the connection form on M .) As in Sect. 1.1.6, we take the total scalar curvature as
our action functional, that is,

L(ḡ)=
∫

M̄

R̄
√−ḡ dx0 · · ·dx3dξ, (1.2.53)

where R̄ is the scalar curvature of ḡ and ξ is the fiber coordinate. To rewrite this
functional, we first give the formulae for the Ricci curvature of ḡ. Let V̄ be a unit
vector field in the fiber direction. Because of the form (1.2.52) of the metric, this
simply means that V̄ is dual to Ā. For each tangent vector field X on M , we consider
the horizontal lift X̄h determined by

π∗X̄h =X and ḡ(X̄h, V̄ )= 0.

Let F be the curvature form for the connection A, i.e.,

F = dA (and π∗F = dĀ)

(note that A is a U(1) connection, hence Abelian, and so, here we do not have an
A∧A term in the formula for the curvature).

We then have, for the Ricci tensor R̄(·, ·) of ḡ,

R̄(X̄h, Ȳh)=R(X,Y )+ 2F ◦ F(X,Y ), (1.2.54)
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where R(·, ·) is the Ricci tensor of M , and in local coordinates with

F = Fαβ dxα ∧ dxβ,

we have

(F ◦ F)αβ = gγ δFαγ Fδβ =−gγ δFαγ Fβδ (1.2.55)

and

R̄(X̄h, V̄ ) = −d∗F(X), (1.2.56)

R̄(V̄ , V̄ ) = |F |2 = FαβFαβ. (1.2.57)

In particular, the scalar curvature satisfies

R̄ = tr R̄(·, ·)=R− |F |2, (1.2.58)

where, of course, R is the scalar curvature of g. Upon integration over the fibers,
(1.1.177) hence becomes

L(ḡ)=
∫

M

(R − |F |2)√−g dx, (1.2.59)

that is, the sum of the Einstein–Hilbert functional of the base and the Yang–Mills
functional of the fiber. If the Einstein field equations for the vacuum hold for such
a metric on M̄ , then, by (1.1.162), M̄ has to have vanishing Ricci curvature, and then
by (1.2.57), F has to vanish. Since F is supposed to represent the electromagnetic
field, this does not constitute a desirable physical consequence of this ansatz.8

We can extend this construction to principal fiber bundles π : M̄ →M with com-
pact non-Abelian structure group G. For that purpose, let g′ be a G-invariant metric
on the fiber, which we can then extend to all of T M̄ with the help of a connection
(given by a 1-form A). Let g again be a metric on the base M . For tangent vectors
W̄ , Z̄ on M̄ , we put

ḡ(Z̄, W̄ )= g(π∗Z̄,π∗W̄ )+ g′(Z,W)

(where Z,W denote the projections of Z̄, W̄ onto the fibers), obtaining a metric
on M̄ . If Ū and V̄ are tangential to a fiber, we obtain, with notation analogous to
that above,

R̄(X̄h, Ȳh)=R(X,Y )− 2gγ δg′(Fαγ ,Fβδ)X
αYβ

(
X =Xα ∂

∂xα
,Y = Yα ∂

∂xα

)
, (1.2.60)

8In an alternative interpretation, one might consider ḡ as consisting of g and A and interpret the
Euler–Lagrange equations for (1.2.59) as coupled Einstein–Maxwell equations for the metric g

and the potential A. In that case, the undesired consequence that F has to vanish does not follow,
but then we have a coupling rather than a unification of gravity and electromagnetism.
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R̄(X̄h, V̄ )=−g′(d∗F(X), V̄ ) (1.2.61)

R̄(Ū , V̄ )= R̄′(Ū , V̄ )+ det(gγ δ)
1
2
∑

α,β

g′(Fαβ, Ū)g′(Fαβ, V̄ ). (1.2.62)

The action functional becomes

L(ḡ)=
∫

M̄

(R +R′ − |F |2) dvolM̄ . (1.2.63)

(Here, R is integrated on the base and the result is multiplied with the volume of the
fiber, whereas R′ can be integrated on any fiber, by G-invariance, and the result is
multiplied with the volume of M—assuming M to be compact again.)

The Einstein field equations for the vacuum now no longer require the vanishing
of F . |F |2 has to be constant, however, when those equations hold, and base and
fiber must have constant scalar curvature. In fact, taking the trace in (1.2.62) yields
constant scalar curvature in the fiber direction when the field equations hold, and
because the scalar curvature of the metric on the fiber bundle is constant, the scalar
curvature in the fiber direction also has to be constant. Taking the trace in (1.2.60)
then yields constant scalar curvature on the base.

1.3 Tensors and Spinors

1.3.1 Tensors

We have already encountered the tangent bundle TM of a manifold M ; its dual
bundle is the cotangent bundle T �M . The fiber of the tangent bundle over p ∈M is
the tangent space TpM , and the fiber of the cotangent bundle is the cotangent space
T �
pM .

Definition 1.7 A p times contravariant and q times covariant tensor (field) on
a differentiable manifold M is a section of

TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
p times

⊗T �M ⊗ · · · ⊗ T �M︸ ︷︷ ︸
q times

. (1.3.1)

We recall that on a complex manifold, we have the decompositions

T CM = T ′M ⊕ T ′′M, T �CM = T �′M ⊕ T �′′M, (1.3.2)

which are invariant under (holomorphic) coordinate changes, and the transformation
rules (1.1.86),

dzj = ∂zj

∂wl
dwl, dzk̄ = ∂zk̄

∂wm̄
dwm̄ (1.3.3)
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when z = z(w). We can therefore also speak of covariant tensors of type (r, s),
meaning sections of

T �′M ⊗ · · · ⊗ T �′M︸ ︷︷ ︸
r times

⊗T �′′M ⊗ · · · ⊗ T �′′M︸ ︷︷ ︸
s times

. (1.3.4)

(Contravariant tensors are defined analogously, with the tangent bundle in place of
the cotangent bundle.)

For simplicity, we now consider the case of complex dimension 1, that is, of
a Riemann surface, in order not to have to bother with too many indices. The reader
will surely be able to transfer the subsequent considerations to the case of an arbi-
trary (finite) dimension. We return to the conceptualization of variations described
in (1.1.22), (1.1.39), (1.1.41) and perform a variation

z 
→ z+ εf (z)=: z+ εδz (1.3.5)

with a holomorphic f . We want to determine the induced variation δω of an (r, s)-
form, that is, of an object of the type


(z, z̄)= ω(z, z̄)(dz)r (dz̄)s . (1.3.6)

Here, r and s are called the conformal weights of ω. Analogously to (1.1.41), we
obtain the induced variation

δf,f̄ 
(z, z̄)= (r(∂zf )+ s(∂z̄f̄ )+ f ∂z + f̄ ∂z̄)
(z, z̄). (1.3.7)

r + s is called the scaling dimension, because for z 
→ λz,λ ∈R,


= ω(z, z̄)(dz)r (dz̄)s 
→ λr+sω(λz,λz̄)(dz)r (dz̄)s . (1.3.8)

r − s is called the conformal spin, because for z 
→ e−iϑ z,


= ω(z, z̄)(dz)r (dz̄)s 
→ e−i(r−s)ϑω(e−iϑz, eiϑ z̄)(dz)r (dz̄)s . (1.3.9)

1.3.2 Clifford Algebras and Spinors

Let V be a vector space of dimension n over a field F , which we shall take to be R

or C in the sequel, equipped with a quadratic form Q : V × V → F . We then form
the Clifford algebra Cl(Q) as the quotient of the tensor algebra

⊕
k≥0 V ⊗ · · · ⊗ V︸ ︷︷ ︸

k times
of V by the two-sided ideal generated by all elements of the form

v⊗ v−Q(v,v). (1.3.10)

In other words, the product in the Clifford algebra is

{v,w} := vw+wv = 2Q(v,w). (1.3.11)

Let e1, . . . , en be a basis of V . This basis then satisfies

eiej + ej ei = 2Q(ei, ej ). (1.3.12)
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The dimension of Cl(Q) is 2n, a basis being given by

e0 := 1, eα1eα2 · · · eαk
, with 1≤ α1 < · · ·< αk ≤ n. (1.3.13)

We define the degree of eα1 · · · eαk
to be k. The degree of e0 is 0. We let Clk(Q)

be the vector space of elements of Cl(Q) of degree k. We also let Clev(Q) and
Clodd(Q) denote the space of elements of even and odd degree, resp. We have

Cl0(Q)=R or C

Cl1(Q)= V,
(1.3.14)

whereas

Cl2(Q)=: spin(Q) (1.3.15)

is a Lie algebra with bracket

[a, b] := ab− ba. (1.3.16)

It acts on Cl1(Q)= V via

τ(a)v := [a, v] = av − va. (1.3.17)

(Using (1.3.11), one verifies that for a ∈ Cl2(V ), v ∈ Cl1(V ), we have av − va ∈
Cl1(V ).)

The simply connected Lie group with Lie algebra spin(Q) is then denoted by
Spin(Q) and called the spin group. According to the general theory of represen-
tations of Lie groups (see e.g. [45]), representations of spin(Q) lift to ones of
Spin(Q).

Example

1. Q= 0: This yields the so-called Grassmann algebra with multiplication rule

ϑiϑj + ϑjϑi = 0,

for some basis ϑ1, . . . , ϑn.
2. For F =R, consider the quadratic form Q with

Q(ei, ei)=
{

1 for i = 1, . . . p,

−1 for i = p+ 1, . . . , n,
Q(ei, ej )= 0 for i �= j

for some basis e1, . . . , en of V . Putting q := n−p, we denote the corresponding
Clifford algebra by

Cl(p, q).

p = 0 yields the Clifford algebra Cl(0, n) usually considered in Riemannian
geometry. Of course, for given n, the Clifford algebra Cl(p, q)(p + q = n) de-
pends on the choice of p ∈ {0, . . . , n}. This is no longer so for the complexifica-
tion

ClC(n) := Cl(p, q)⊗R C (p+ q = n).
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In fact, we have

ClC(m)∼=C
2n×2n

for m= 2n,

ClC(m)∼=C
2n×2n ⊕C

2n×2n

for m= 2n+ 1.

We define the Pauli matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

(1.3.18)
They form a basis of the space of 2× 2 Hermitian matrices. We have

{σi, σj } := σiσj + σjσi = 2δij σ0 for i, j = 1,2,3. (1.3.19)

(Note the + sign here: {σi, σj } is an anticommutator, not a commutator.)
The correspondence

e0 
→ σ0, e1 
→ σ1, e2 
→ σ3, e1e2 
→ −iσ2

thus yields a two-dimensional representation of Cl(2,0), whereas mapping

e1 
→ σ1, e2 
→ iσ2, e1e2 
→ −σ3

yields one of Cl(1,1) and

e1 
→ iσ1, e2 
→ iσ2, e1e2 
→ −iσ3

yields one of Cl(0,2). The representations of Cl(2,0) and Cl(1,1) are both isomor-
phic to the algebra of real 2 × 2 matrices, whereas that of Cl(0,2) is isomorphic
to the quaternions H. In particular, for later reference, we emphasize that we have
displayed here real representations of Cl(2,0) and Cl(1,1).

Looking at Cl(2,0), which will be of particular interest for us, and extending the
representation to the complexification, we make the following observation which
we will subsequently place in a general context. ie1e2 is represented by σ2, and
it anticommutes with both e1 and e2. Therefore, the representation of Cl2(2,0) =
spin(2,0) leaves the eigenspaces of ie1e2 invariant. In contrast, e1 and e2, that is,
the elements of Cl1(2,0), interchange them. (In particular, as a representation of
spin(2,0), the representation is reducible; the two parts themselves are irreducible,
however. Here, this is trivial, because they are one-dimensional, but the pattern is
general.) The eigenvalues of ie1e2 are ±1, and its eigenspaces are generated in our
representation by the vectors

(
1
i

)
and

(
1
−i

)
.

The correspondence

e0 
→ σ0, . . . , e3 
→ σ3

yields a two-dimensional representation of Cl(3,0).
We define the Dirac matrices

γ 0 =
(
σ0 0
0 −σ0

)
, γ j =

(
0 σj

−σj 0

)
, for j = 1,2,3,
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γ 5 = iγ 0γ 1γ 2γ 3 =
(

0 σ0
σ0 0

)
,

where each 0 represents a 2× 2 block; i.e., the γ i are 4× 4 matrices. The matrix γ 0

is Hermitian, while γ 1, γ 2, γ 3 are skew Hermitian. (This is expressed in the formula
γ 0γ μγ 0 = γ μ†

for μ= 0,1,2,3.) They satisfy

{γ 0, γ 0} = 2I = {γ 5, γ 5},
{γ j , γ j } = −2I for j = 1,2,3,

{γ i, γ k} = 0 for i �= k,

where I is the 4× 4 identity matrix. Thus, we obtain a four-dimensional represen-
tation of Cl(1,3) and ClC(4), called the Dirac representation, by

ei 
→ γ i−1 for i = 1,2,3,4.

(Note: it might be better to denote the Dirac matrices by γ 1, . . . , γ 4 instead of
γ 0, . . . , γ 3. Here, however we follow the convention in the physics literature;
γ 5 will subsequently be denoted by � when we consider arbitrary dimensions.)
We also consider

σμν = 1

2
[γ μ, γ ν],

where [., .] is an ordinary commutator. (Note: in the physics literature, there is an
additional factor i in the definition of σμν .)

In the Dirac representation, we have

σ 0i =
(

0 σi

σi 0

)
, σ ij =−

∑

k

εijki

(
σk 0
0 σk

)

(
εijk :=

⎧
⎪⎨

⎪⎩

1 if (i, j, k) is an even permutation of (1,2,3)

−1 if (i, j, k) is an odd permutation of (1,2,3)

0 otherwise.

)

In the Weyl representation, we instead define

γ 0 =
(

0 −σ0
−σ0 0

)
, γ j =

(
0 σj

−σj 0

)
, for j = 1,2,3,

γ 5 = iγ 0γ 1γ 2γ 3 =
(
σ0 0
0 −σ0

)
.

In this case, we have

σ 0i =
(
σi 0
0 −σi

)
, σ ij =−

∑

k

εijki

(
σk 0
0 σk

)
.

Therefore, the action of the σμν is reducible into two subspaces of (complex) di-
mension 2 each. Finally, we have the pseudo-Majorana representation, where all γ μ
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are purely imaginary:

γ 0 =
(

0 σ2
σ2 0

)
, γ 1 =

(
iσ3 0
0 iσ3

)
,

γ 2 =
(

0 −σ2
σ2 0

)
, γ 3 =

(−iσ1 0
0 −iσ1

)
.

We now wish to consider representations of Cl(2n,0) and ClC(2n) more abstractly.
We consider the algebra generated by a basis γ1, . . . , γ2n of R

2n satisfying

{γμ, γν} = 2δμν

and set

a1 : = 1

2
(γ1 + iγ2), a

†
1 :=

1

2
(γ1 − iγ2),

...
...

an : = 1

2
(γ2n−1 + iγ2n), a

†
n := 1

2
(γ2n−1 − iγ2n)

in R
2n ⊗ C. In the physics literature, the ai, a

†
i are called fermion annihilation

and creation operators. We equip C
n with the coordinates z1 = x1 + ix2, . . . , zn =

x2n−1 + ix2n. We let �(0,q)
C

n be the space of (0, q)-forms, i.e. the vector space of
differential forms generated by

dzī1 ∧ · · · ∧ dzīq , 1≤ i1 < · · ·< iq ≤ n (dz1̄ = dx1 − idx2, etc.)

We let ε(dzj̄ ) denote the exterior multiplication by dzj̄ from the left, i.e.,

ε(dzj̄ )(dzj̄1 ∧ · · · ∧ dzj̄q )= dzj̄ ∧ dzj̄1 ∧ · · · ∧ dzj̄q ,

sending (0, q)-forms to (0, q + 1)-forms. Likewise, we let ι(dzj̄ ) be the adjoint of
ε(dzj̄ ) w.r.t. the natural metric on C

n; thus

ι(dzj̄ )(dzj̄1 ∧ · · · ∧ dzj̄q )

=
{

0 if j �∈ {j1, . . . , jq},
(−1)μ−1dzj̄1 ∧ · · · ∧ ̂

dzj̄μ ∧ · · · ∧ dzj̄q ) if j = jμ.

We then obtain the desired representation by

a
†
j 
→ ε(dzj̄ ),

ak 
→ ι(dzk̄).

Of course, one verifies that the formulae

{ai, aj } = 0, {a†
i , a

†
j } = 0, {ai, a†

j } = δij

are represented by

{ε(dzj̄ ), ε(dzk̄)} = 0, {ι(dzj̄ ), ι(dzk̄)} = 0, {ε(dzj̄ ), ι(dzk̄)} = δjk.
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The space

S :=�(0,·)
C

n :=
n⊕

q=0

�(0,q)
C

n

on which ClC(2n) thus acts is called spinor space. The elements of S are called
((complex) Dirac) spinors. Since by (1.3.14), V is a subspace of its Clifford algebra,
it therefore operates by multiplication on any representation of that Clifford algebra,
in particular on S. This is called Clifford multiplication.

The representation S is not irreducible as a representation of spin(2n,0), how-
ever. To see this, we consider the “chirality operator”

� := i
n
2 γ1 · · ·γ2n

(for 2n= 4, one often writes γ5 in place of � as explained above)

(with the usual exponential series, we can also write � = exp(iπN), with the “num-
ber operator” N :=∑n

j=1 a
†
j aj ).

{�,γμ} = 0 for μ= 1, . . . ,2n,

�2 = 1.

Thus, we may decompose ClC(n) into the eigenspaces ClC(n)± of � for the eigen-
values ±1, and these eigenspaces are interchanged by Clifford multiplication with
any v ∈C

n\{0}. Thus

P± := 1

2
(1± �)

project onto the eigenspaces of �, and we get a corresponding decomposition

S = S+ ⊕ S−

into “positive and negative chirality spinors” (also called right- and left-handed
spinors), or “Weyl spinors”. If p − q ≡ 0,1,2 mod 8, one may also find a real
representation of Cl(p, q). The corresponding spinors are called real or Majorana
spinors. An important example is n= 4,p = 3, q = 1. Likewise, for q −p ≡ 0,1,2
mod 8, there exist imaginary or pseudo-Majorana spinors.

The Lie algebra so(n) consists of skew symmetric matrices. It is generated by
the matrices Mij with coefficients

(Mij )ab = δiaδ
j
b − δ

j
aδ

i
b.

They satisfy the commutation rules

[Mij ,Mkl] = −δikMjl + δjkMil + δilMjk − δjlMik.

These rules are also satisfied by

σij := −1

4
(γiγj − γjγi)
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where γ1, . . . , γn are a basis of R
n with {γi, γj } = −δij . (Note that this differs by

a factor − 1
2 from the convention employed in the definition of the Dirac and Weyl

representations above.)
Thus

Mij 
→ σij

yields a representation of so(n) on R
n; in fact, we may identify so(n) with

spin(0, n). Since spin(0, n) = Cl2(0, n) we thus get an induced representation of
so(n) on the spinor space S. This representation, however, does not lift to one of
SO(n), but only to one of Spin(0, n), the two-sheeted cover of SO(n).

In the case when n is even, since each σij is a sum of products of two γi , and
since Clifford multiplication with each γi interchanges the eigenspaces of S± of �,
σij leaves these eigenspaces invariant.

To summarize: We have established an isomorphism so(n)←→ spin(n). Thus,
so(n) operates on Cl1(0, n), and each representation of the Clifford algebra Cl(0, n)
therefore induces a representation of so(n). In particular, in this manner, we obtain
the spinor representation of so(n) (which induces a double valued representation of
SO(n)).

Remark The presentation here partly follows that of [22]. The original reference for
Clifford modules is [6].

1.3.3 The Dirac Operator

As explained, since the vector space V is a subspace of the Clifford algebra Cl(Q), it
operates on any representation of that Clifford algebra. We can thus multiply a vec-
tor, an element of V , with a spinor, an element of S, that is, we have Clifford multi-
plication

V × S→ S. (1.3.20)

In fact, since multiplication by an element of V interchanges S+ and S−, we have
an operation

V × S± → S∓. (1.3.21)

Denoting the representation by γ and letting ∂
∂xi be the partial derivative in the

direction of ei , we can define the Dirac operator

/D := γ (ei)
∂

∂xi
, (1.3.22)

which operates on spinor fields. The square /D ◦ /D of the Dirac operator is then
a linear combination of second derivatives; that linear combination depends on the
quadratic form Q defining the Clifford algebra. If the quadratic form Q is repre-
sented by the identity matrix, that is, if we consider the Clifford algebra Cl(n,0),
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the square of the Dirac operator is the (negative definite) Laplace operator (see
(1.1.103), (1.1.105))

�=
∑

i

∂2

∂x2
i

. (1.3.23)

In order to develop some structural insights, it is now useful to start with the com-
plex case, or more precisely with a complex vector space V with a nondegenerate
quadratic form Q. As Q is nondegenerate, it induces a nondegenerate bilinear form
〈., .〉, w.r.t. which V is self-dual. Moreover, on a representation S of the Clifford al-
gebra Cl(Q), we can find a nondegenerate bilinear form (., .) that is invariant under
multiplication by v ∈ V = Cl1(Q):

(vs, t)= (s, vt) (1.3.24)

for all s, t ∈ S. We can then use (., .) to identify S with its dual S�, and (1.3.20) then
induces morphisms

� : S� × S� → V (1.3.25)

and

�̃ : S × S→ V. (1.3.26)

In (1.3.25), to any two elements of S�, we assign a vector v ∈ V that operates on
a pair σ, τ of elements of S by (vσ, τ ), cf. (1.3.20), (1.3.24).

Using bases {sa} and {eμ} of S� and V , we write (1.3.25) as

�(sa, sb)= �
μ
abeμ. (1.3.27)

These morphisms are symmetric and equivariant w.r.t. the representation of Cl(Q).
Turning to the real case, the situation is not as convenient: we cannot always find real
versions of these morphisms; they only exist in certain cases. This depends on the
classification of Clifford algebras. They always exist for the Minkowski signature,
that is, for the Clifford algebra Cl(1, n− 1), in any dimension n. They also exist for
Cl(2,0), the case of particular interest for us.

1.3.4 The Lorentz Case

Let us also exhibit the relation between the orthogonal group and the spin group
in the Lorentz case. There exist many references on this topic, including the clas-
sic [81]. Let x = (x0, x1, x2, x3) ∈R

1,3. We put

〈x, x〉 = x0x0 − x1x1 − x2x2 − x3x3. (1.3.28)

The subgroup of Gl(4,R) that preserves 〈x, x〉 is the Lorentz group O(1,3). It con-
sists of two components that are distinguished by the value of the determinant, +1
or −1, and have otherwise the same properties. Thus, we consider the identity com-
ponent SO(1,3) where the determinant is +1, without essential loss of generality.
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We shall see that the corresponding spin group is Sl(2,C), the group of complex
2× 2-matrices with determinant 1. To x, we associate the Hermitian matrix

X := xμσμ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (1.3.29)

where σ0, . . . , σ3 are the Pauli matrices. We first note that

〈x, x〉 = detX. (1.3.30)

Since we have

Tr(σμσν)= 2δμν, (1.3.31)

we obtain

xμ = 1

2
Tr(Xσμ) (1.3.32)

as the inverse of the equation expressing X in terms of x.
In the physics literature, one writes the Hermitian matrix X as

(
X11̇ X12̇

X21̇ X22̇

)
. (1.3.33)

By the Hermitian condition, Xαβ̇ =Xβα̇ so that X11̇ and X22̇ are real. In this nota-
tion, (1.3.32) becomes

x0 = 1

2
(X11̇ +X22̇), x1 = 1

2
(X12̇ +X21̇),

x2 = i

2
(X12̇ −X21̇), x3 = 1

2
(X11̇ −X22̇).

We may use the relation (1.3.29) between a vector x and a Hermitian matrix X

to define an operation of Sl(2,C) on R
1,3 as follows:

For A ∈ Sl(2,C), we put

T (A)X :=X′ :=AXA†. (1.3.34)

With indices, this is written as

X′σ τ̇ =Aσ
βĀ

τ̇
γ̇ X

βγ̇ . (1.3.35)

Here, the dotted indices refer to the transformation according to the conjugate com-
plex of A, and this then explains the convention employed in (1.3.33). The fact that
two As appear in (1.3.34) suggests that one consider this expression as a product:
Instead of the 4-vector X, we take two spinors φ,χ that transform according to

φ′α =Aα
βφ

β, χ ′γ̇ =A
γ̇

δ̇
χ δ̇. (1.3.36)

Their product then transforms like X in (1.3.35),

φ′σχ ′τ̇ =Aσ
βĀ

τ̇
γ̇ φ

βχγ̇ . (1.3.37)
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Using the above formulae, we can express (1.3.34) as a transformation of the
vector x:

x′μ = 1

2
Tr(Xσ′μ)= 1

2
Tr(AXA†σμ)= 1

2
xν Tr(AσνA

†σμ). (1.3.38)

Thus,

x′ = Bx, (1.3.39)

with

Bμ
ν =

1

2
Tr(AσνA

†σμ)= 1

2
Tr(σμAσνA

†) (1.3.40)

as the trace is invariant under cyclic permutations.
One may check from this that (1.3.34) induces a Lorentz transformation, but this

can more easily be derived from the fact that (1.3.34) maps Hermitian matrices to
Hermitian matrices and preserves the determinant (since A ∈ Sl(2,C) has deter-
minant 1), and (1.3.30) then implies that 〈·, ·〉 = x0x0 − x1x1 − x2x2 − x3x3 (see
(1.3.28)) is preserved.

Also, this yields a homomorphism

T : Sl(2,C)→ SO(1,3)

with kernel {±1} (± identity in Sl(2,C) leads to the identity in SO(1,3) in (1.3.34)),
and image the identity component of the Lorentz group.9 Sl(2,C) is the universal
cover of the identity component of the Lorentz group, which is doubly connected.
Therefore, in the physics literature, representations of Sl(2,C) are usually consid-
ered as double-valued representations of SO(1,3).

We also observe that the homomorphism T in (1.3.34) maps SU(2) to SO(3).
Namely we have, for A ∈ SU(2),

Tr(T (A)X)= Tr(AXA†)= Tr(AXA−1)= Tr(X)= 2x0

in the notations of (1.3.29). Thus, T (A) preserves x0, and since 〈x, x〉 = x0x0 −
x1x1 − x2x2 − x3x3 is also preserved, it preserves

x1x1 + x2x2 + x3x3

and therefore yields an orthogonal transformation of the x1, x2, x3 space. As before,
this yields a twofold covering of SO(3), and SU(2)∼= Spin(3).

Since SO(1,3) acts by automorphisms on R
1,3 which can be considered as

a group of translations, we can form the semidirect product SO(1,3) � R
1,3 where

(B,b) ∈ SO(1,3) � R
1,3 operates on R

1,3 via x 
→ Bx + b and where “semidi-
rect product” refers to the obvious composition rule. The group of all isometries
of Minkowski space is the semidirect product O(1,3) � R

1,3, the Poincaré group,
but it suffices for our purposes to consider its connected component containing the
identity. Again, it is covered by Sl(2,C) � R

1,3.

9The Lorentz group has four connected components, all isomorphic to SO(1,3), and we obtain the
other components by space- and time-like reflections from the identity component.
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The irreducible unitary representations of Sl(2,C) � R
1,3 were classified by

Wigner. We sketch here those aspects of the representation theory that are directly
relevant for elementary particle physics. A mathematical treatment to which we re-
fer for further details and which emphasizes the applications in physics is given
in [98], whereas a comprehensive presentation from the perspective of physics can
be found in [103]. Since R

1,3 is a normal subgroup of Sl(2,C) � R
1,3, the study

of the representations proceeds by describing the orbits of the action of Sl(2,C)

on R
1,3, identifying the isotropy group of a point on each orbit, called the “little

group” in physics, and then finding the representations of those isotropy groups. We
know from (1.3.28) that

m2 := 〈x, x〉 = x0x0 − x1x1 − x2x2 − x3x3 (1.3.41)

is preserved by the action of Sl(2,C) on R
1,3. In particular, each orbit must be

contained in a level set of m2. Physically, m is the mass of the particle defined
by the representation, and it then suffices to consider the case m ≥ 0. Using the
identification (1.3.29) of x ∈R

1,3 with the matrix

X := xμσμ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

for m2 > 0, we can select the point
(±m 0

0 ±m

)
,

depending on whether x0 > 0 or < 0. Since this is a multiple of the identity matrix,
its isotropy group, that is, the group of matrices leaving it invariant under conjuga-
tion, see (1.3.34), is SU(2). As described for instance in [45, 75, 98], the irreducible
unitary representations of SU(2) come in a discrete family, parametrized by a half
integer

L= 0,
1

2
,1,

3

2
, . . . (1.3.42)

which can be identified with the spin of the particle. Thus, the class of representa-
tions corresponding to an orbit with m2 > 0 is described by the continuous parame-
ter m2 and the discrete parameter L from (1.3.42).

A point on an orbit with m2 = 0 is
(

2 0
0 0

)
,

and its isotropy group is defined by the invariance condition

A

(
2 0
0 0

)
A† =

(
2 0
0 0

)
.

This implies that A has to be of the form

A=
(
eiθ z

0 eiθ

)
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for some z ∈C, θ ∈R. Looking at the conjugation
(
eiθ 0
0 eiθ

)(
1 z

0 1

)(
eiθ 0
0 eiθ

)
=
(

1 ze2iθ

0 1

)
,

we see that the isotropy group, denoted by Ẽ(2), is a double cover (because of the
angle 2θ ) of the group of Euclidean motions SO(2) � C. By the same strategy as
before, for determining its representations, we should look at the orbits of the SO(2)
action on C which are the origin 0 and the concentric circles about 0. The repre-
sentations corresponding to the latter do not occur in elementary particle physics.
So, we are left with the origin whose isotropy group, the little group, is SO(2). Its
irreducible representations are all one-dimensional and labeled by

s = 0,±1

2
,±1, . . . (1.3.43)

where the factor 1
2 corresponds to the fact that the rotations were about an angle 2θ .

The key for understanding the representations of SU(2) is the following. The Lie
algebra su(2) is generated by

tμ := i

2
σμ, μ= 1,2,3 (1.3.44)

with the Pauli matrices σμ, see (1.3.18). They satisfy

[tμ, tν] = εμνσ tσ (1.3.45)

with the totally antisymmetric tensor εμνσ . The real matrices

e+ := −i(t1 − it2)=
(

0 1
0 0

)
, e+ := −i(t1 + it2)=

(
0 0
1 0

)
, (1.3.46)

h := −it3 = 1

2

(
1 0
0 −1

)
, (1.3.47)

yield a basis of the Lie algebra sl(2,R) and satisfy

[h, t+] = t+, [h, t−] =−t−, [t+, t−] = 2h. (1.3.48)

From this, one deduces that when ρ is a representation of sl(2,C) on a vector space
V and vλ is an eigenvector of ρ(h) with eigenvalue λ, then ρ(t±)vλ are eigenvec-
tors of ρ(h) with eigenvalues λ ± 1. One then finds that the possible values of λ

are L,L − 1, . . . ,−L for some half integer L = 0, 1
2 ,1, . . . , see e.g. [45, 75, 98].

Since the eigenvalues are nondegenerate, the dimension of this representation is
then 2L+ 1.

1.3.5 Left- and Right-handed Spinors

We now put the transformation rule (1.3.37) for the product of two spinors into
a more general perspective that will be needed below in Sect. 2.2.1 for defining La-
grangians for spinors. According to our previous general discussion, in the present
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case of R
4 ∼=C

2, the spinor space is a four-dimensional complex vector space, i.e.,
isomorphic to C

4. We have already seen in Sect. 1.3.2 that the spinor representation
is not irreducible as a representation of the spin group, but splits into the direct sum
of two chiral representations, i.e., each spinor can be written as

ψ =
(
ψL

ψR

)
. (1.3.49)

ψL is called a left-handed, ψR a right-handed spinor.
A ∈ Sl(2,C) then acts via

ψL 
→AψL,

ψR 
→ (A†)−1ψR.
(1.3.50)

With A= (A
j
k)j,k=1,2, we have

ψi
L 
→Ai

kψ
k
L,

ψi
R 
→ Ãi

kψ
k
R with Ãi

kĀ
j
k = δij .

From (1.3.40), we also get with the help of (1.3.31)

Bμ
ν σν =A†σμA (1.3.51)

(note that here the summation convention is used even though the position of the
indices is not right—it would be better to write the σ s with upper indices, but we
refrain here from changing an established convention). Putting

S(A)=
(
A 0
0 (A†)−1

)
, ψ =

(
ψL

ψR

)
, (1.3.52)

the action of A is described by

ψ 
→ S(A)ψ. (1.3.53)

In the Weyl representation, with

γ 0 =
(

0 −σ0
−σ0 0

)
,

we then have

S−1 = γ 0S†γ 0. (1.3.54)

Finally (1.3.51) implies

S−1γ μS = Bμ
ν γ ν. (1.3.55)

For two left-handed spinors (see (1.3.49)) φ,χ,

φχ := εαβφ
αχβ (1.3.56)

transforms as a scalar under the spinor representation; namely
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εαβA
α
γ φ

γA
β
δ χ

δ =A1
γ A

2
δφ

γ χδ −A2
γ A

1
δφ

γ χδ

= (A1
1A

2
2 −A2

1A
1
2)φ

1χ2 + (A1
2A

2
1 −A2

2A
1
1)φ

2χ1

= det A(φ1χ2 − φ2χ1)

= εαβφ
αχβ (since det A= 1 for A ∈ Sl(2,C)).

Similarly

φασμ,αα̇χ̄
α̇ (1.3.57)

transforms as a vector, for μ= 0,1,2,3. This can be better understood by consid-
ering full spinors

ψ =
(
ψL

ψR

)
. (1.3.58)

Following the physics notation, in the Lorentzian case, we define ψ† as the complex
conjugate of ψ , and the Dirac-conjugated spinor as

ψ̄ :=ψ†γ 0. (1.3.59)

In the Riemannian case, the γ 0 is omitted, that is,

ψ̄ :=ψ†. (1.3.60)

Thus, returning to the Lorentzian case, ψ̄ω = ψ̄LωR + ψ̄RωL. Then in the Weyl
representation,

ψ̄γ μω (1.3.61)

transforms as a vector. In fact, applying a transformation A ∈ Sl(2,C), we get

ψ†S(A)†γ 0γ μS(A)ω= ψ̄γ 0S(A)†γ 0γ μS(A)ω

= ψ̄S−1γ μSω by (1.3.54)

= Bμ
ν ψ̄γ νω by (1.3.55),

which is the required formula. Since ψ̄γ μω = ψ†γ 0γ μω = ψ
†
LσμωL − ψ

†
RσμωR ,

we also see why (1.3.57) transforms as a vector.

1.4 Riemann Surfaces and Moduli Spaces

1.4.1 The General Idea of Moduli Spaces

We start with some general principles; their meaning may become apparent only
after reading the rest of this section, and the reader is advised to proceed when these
principles are unclear and return to them later. It may be helpful, however, to try to
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understand the sequel in the light of these principles. In any case, the present section
is more abstract and has more of a survey character than the preceding ones.

One is given a mathematical object with some varying structure. An example of
such an object is a differentiable manifold S, and the structure could be a complex
structure, a Riemannian metric—perhaps of a particular type—and so on. One wants
to divide out all invariances; for example, one wants to identify all isometric metrics.
The invariances usually constitute a (discrete or Lie) group. The resulting space
of invariance classes is then a moduli space. This already suggests that there will
be a problem (more precisely, singularities of the moduli space) caused by those
particular instances of the structure that possess more invariances than the typical
ones, for example, those Riemannian metrics that are highly symmetric. The reason
is obvious, namely that for those instances, we need to divide out a larger group of
invariances than for the other ones.

Heuristic guiding principle
The moduli space for structures of some given type carries a structure of the same
type.

So, for example, we expect a moduli space of Riemannian metrics to carry a Rie-
mannian metric itself, a moduli space of complex structures to be a complex space
itself, a moduli space of algebraic varieties to be an algebraic variety itself.

Typically, the space of such structures is not compact, that is, these structures
can degenerate. One then wishes to compactify the moduli space. The compact-
ifying boundary then also contains (certain) degenerate versions of the structure.
The choice of admissible degenerate structures—which need not be unique—can be
subtle and should be carried out so that the resulting space is a Hausdorff space.

Often, one also wishes to get a fine moduli space Mfine . Let p be a point in
the (ordinary, or coarse) moduli space M representing an instance g of a structure.
Mfine then should be the fibration over M with the fiber over p being that g.

1.4.2 Riemann Surfaces and Their Moduli Spaces

A Riemann surface can be defined in several different ways, that is, through differ-
ent types of structures. While these notions turn out to be equivalent in the end, they
lead to different approaches to the moduli space of Riemann surfaces and equip that
moduli space with different structures, according to the above principle. We shall
now explain these different structures and also illustrate why they are interesting, in
particular how they lead to different mathematical constructions and applications.
For more details and proofs, we refer to [64] and other references cited subsequently.
A profound knowledge of Riemann surface theory is useful for understanding con-
formal field theory and string theory mathematically. Let S be a compact differen-
tiable orientable surface of genus p. If not explicitly stated otherwise, we assume
p > 1.

The basic point is that one and the same such differentiable surface can carry
a continuum of different Riemann surface structures. That is, there are many pairs
"1,"2 of Riemann surfaces that are both diffeomorphic to S, but not equivalent as
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Riemann surfaces. The moduli problem then consists of defining and understanding
the space of all such Riemann surfaces (modulo holomorphic equivalence).

1. A Riemann surface " is a discrete (fixed point free, cocompact) faith-
ful representation of the fundamental group π1(S) into G := PSL(2,R), deter-
mined up to conjugation by an element of G. The moduli space is the space of
such representations modulo conjugation.

More precisely: A Riemann surface " is a quotient H/�, where H = {z =
x + iy ∈ C : y > 0} is the Poincaré upper half plane and � is a discrete group of
isometries with respect to the hyperbolic metric

1

y2
dz∧ dz̄. (1.4.1)

� is a subgroup of the isometry group PSL(2,R) of H .10 Here, PSL(2,R) =
SL(2,R)/±1, acting on H via z 
→ az+b

cz+d
, with a, b, c, d satisfying ad − bc = 1

describing an element of SL(2,R). � should operate properly discontinuously and
freely. It thus should not contain elliptic elements. This excludes singularities of the
quotient H/� arising from fixed points of the action of �. In order to exclude cusps,
that is, in order to ensure that H/� is compact, parabolic elements (see insertion
below) of � also have to be excluded. Thus, all elements of � different from the
identity should be hyperbolic.

Insertion: Here, a transformation z 
→ az+b
cz+d

of H is called hyperbolic if it has

two fixed points on the extended real axis R̄ = ∂H ∪ {∞}, parabolic if it has one
fixed point on R̄, and elliptic if it has a fixed point in H . Since the fixed points
are computed to be a−d

2c ± 1
2c

√
(a + d)2 − 4, the transformation is hyperbolic iff

|a + d|> 2. The standard example of a hyperbolic transformation is z 
→ 2z, with
fixed points at 0 and ∞, and a parabolic one is given by z 
→ z

z+1 , which has its
unique fixed point at 0. A hyperbolic transformation γ maps the hyperbolic geo-
desic l between its two fixed points p1,p2 (the semicircle through p1 and p2 or-
thogonal to the real axis) into itself, that is, it is a translation along the hyperbolic
geodesic l. We can then easily visualize the operation of γ on H ; it simply maps
each geodesic orthogonal to l to another such geodesic orthogonal to l, with the
shift already determined by the operation of γ on l. When we consider the example
z 
→ 2z, the invariant geodesic is the imaginary axis. The invariant geodesic in H

becomes a closed geodesic on the surface H/�, with length given by the length
of the shift. A parabolic transformation does not have a fixed geodesic, but instead
rotates any geodesic through its fixed point into another such geodesic. Therefore,
a parabolic transformation does not produce a closed geodesic in the quotient.

� is isomorphic to the fundamental group π1(S). Thus, a Riemann surface is
described by a faithful representation ρ of π1(S) in G := PSL(2,R). This essen-
tially leads to the approach of Ahlfors and Bers to Teichmüller theory. Here, we
need to identify any two representations that only differ by a conjugation with an

10The isometries of H are the same as the conformal automorphisms of H , because of the confor-
mal invariance of the metric.
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element of G. Thus, we consider the space of faithful representations up to conju-
gacy. A representation can be defined by the images of the generators, that is, by
2p elements of G, and this induces a natural topology on the moduli space. In par-
ticular, this allows us to compute the dimension of the moduli space: Each of the
2p generator images is described by three real degrees of freedom (a, b, c, d sat-
isfying the relation ad − bc = 1) which altogether yields 6p degrees of freedom.
From this, we first need to subtract 3, the degrees of freedom for one generator,
because the generators a1, b1, . . . , ap, bp of π1(") are not independent, but satisfy
the relation a1b1a

−1
1 b−1

1 · · ·apbpa−1
p b−1

p = 1. We also need to subtract another 3
to account for the freedom of conjugating by an element g of PSL(2,R). Thus, the
(real) dimension of the moduli space of representations of π1(") in PSL(2,R) mod-
ulo conjugations is 6p−6. This moduli space of representations of the fundamental
group yields the Teichmüller space Tp . The moduli space Mp is a branched quotient
of that space.

Singularities of the moduli space arise when the image � of ρ has more automor-
phisms than such a generic subgroup of G (whose only automorphisms are given
by conjugations). Degenerations arise from limits of sequences of faithful, that is,
injective representations ρn that are no longer injective. Just as the Riemann sur-
faces are obtained as quotients H/�, the moduli space Mp itself is likewise a quo-
tient Tp/C of the Teichmüller space Tp by a discrete group, the so-called mapping
class group. (This Teichmüller space Tp is a complex space diffeomorphic—but not
biholomorphic—to C

3p−3. The complex structure was described by Bers through a
holomorphic embedding into some complex Banach space. For recent results about
this complex structure, we refer to [14]. Tp parametrizes marked Riemann surfaces,
that is, Riemann surfaces together with a choice of generators of the first homology
group. Since all automorphisms of a hyperbolic Riemann surface act nontrivially on
the first homology, Teichmüller space does not suffer from the problem of the mod-
uli space, that Riemann surfaces with nontrivial automorphism groups can create
singularities.)

This approach is also useful because it can be generalized to moduli spaces of
representations of the fundamental group of a Kähler manifold in some linear al-
gebraic group G. This is called non-Abelian Hodge theory and leads to profound
insights into the structure of Kähler manifolds. In particular, because such repre-
sentations can be shown to factor through holomorphic maps, this leads to the at
present strongest approach to a general structure theory of Kähler manifolds via the
Shafarevitch conjecture, see, e.g., [70–72].

2. A Riemann surface " is a 1-dimensional complex manifold. The moduli
space is the semi-universal deformation space for such complex structures.

More precisely: A Riemann surface " is S equipped with an (almost) complex
structure. The relationship with 1 depends on the Poincaré uniformization theorem,
which states that each compact Riemann surface of genus p > 1 can be represented
as a quotient of H as in 1. Conversely, each quotient H/� as in 1 obviously inherits
a complex structure from H , since � operates by complex automorphisms on H .

The moduli space Mp is then constructed as a universal space for variations of
complex structures. This means that if N is a complex space fibering over some
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base B with the generic (=regular) fiber being a Riemann surface of genus p, we
then obtain a holomorphic map h : B0 →Mp where B0 ⊂ B are the points with
regular fibers. In this manner, Mp , as a moduli space of complex structures, acquires
a complex structure itself that is determined by the requirement that all these h

be holomorphic. Ideally, we would also like to have a holomorphic map hf ine :
N0 →Mp,f ine, N0 being the space of regular fibers in N , mapping the fiber over
q ∈ B0 to the fiber over h(q) in Mp,f ine, but this is not always possible due to the
difficulties with Riemann surfaces with nontrivial automorphisms. More precisely,
Mp,f ine does not exist as such. A slight modification, however, leads to such a fine
moduli space; namely, we only need to equip our Riemann surfaces additionally
with some choice of a root of the canonical bundle in order to prevent nontrivial
automorphisms. This is called a level structure. This gives a finite ramified cover
of Mp . That cover is free of singularities and then yields a fine moduli space. (The
Teichmüller space briefly described above is also a singularity-free cover of the
moduli space, but, in contrast to the fine moduli space just introduced, it is an infinite
cover and therefore not amenable to the constructions and techniques of algebraic
geometry.) It is more subtle to understand what happens at the singular fibers. Here,
we need a suitable compactification Mp of Mp through certain singular Riemann
surfaces. This, however, is better understood through the subsequent approaches to
Mp described below.

This construction is useful because, for example, it allows a geometric proof of
the theorems of Arakelov-Parshin and Manin on the finiteness of the number of such
fibrations of genus p over a given compact base B and the finiteness of the number
of holomorphic sections of any given such fibration, see [69]. The idea is to show
that because of the geometric properties of Mp and Mp , there can only be finitely
many such holomorphic maps h : B →Mp or (after taking care of the above need
to take finite covers) from N into a compactified fine moduli space.

3. A Riemann surface is an algebraic curve, described by homogeneous poly-
nomial equations. The moduli space is the space of coefficients of these polyno-
mials modulo projective automorphisms.

More precisely, a Riemann surface can be locally described as the common zero
set of two homogeneous polynomials in three variables. The relationship with 2
depends on the Riemann–Roch theorem, which yields the existence of meromorphic
functions.

Insertion: We briefly describe the relevant concepts. A line bundle L on " is
given by an open covering {Ui}i=1,...,m of " and transition functions gij ∈ O∗(Ui ∩
Uj ) (O∗ denoting the nonvanishing holomorphic functions) satisfying

gij · gji ≡ 1 on Ui ∩Uj for all i, j, (1.4.2)

gij · gjk · gki ≡ 1 on Ui ∩Uj ∩Uk for all i, j, k. (1.4.3)

Two line bundles L, L′ with transition functions gij and g′ij , resp., are called iso-
morphic if there exist functions φi ∈ O∗(Ui) for each i with

g′ij =
φi

φj

gij on each Ui ∩Uj .
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By multiplying transition functions we can define products of line bundles. The
Abelian group of line bundles on " is called the Picard group of ", Pic("). The
Picard group Pic(") is isomorphic to the group of divisors Div(") modulo linear
equivalence. (Divisors are finite formal sums

∑
nαpα with nα ∈ Z,pα ∈". The ad-

dition in Z induces a group structure on these divisors. Divisors are linearly equiva-
lent when their difference is the divisor defined by a meromorphic function. This is
verified when one expresses a divisor D in terms of its local defining functions:

{
(Ui, fi) : fi

fj

∈ O∗(Ui ∩Uj )

}
.

The function fi is meromorphic on Ui . When pα ∈Ui , we require that fi has a zero
(pole) of order nα at pα if nα > 0(< 0). At all other points, fi has to be holomorphic
and nonzero.

We put

gij := fi

fj

on Ui ∩Uj

to define a line bundle, denoted by [D].
Let L be a line bundle with transition functions gij . A holomorphic section h of

L is given by a collection {hi ∈ O(Ui)} of holomorphic functions on Ui satisfying

hi = gijhj on Ui ∩Uj .

The zeros of a holomorphic section of a line bundle L define an effective (i.e., all
ni > 0) divisor E, and when L= [D], that divisor is linearly equivalent to D, that
is, E −D is the divisor of a meromorphic function. In general, the zeros and poles
of a meromorphic section of L define a divisor D with [D] = L. The degree of
a divisor is the sum of its coefficients, and from this one then defines also the degree
of the line bundle [D]. Thus, the degree of a line bundle counts the zeros minus the
poles of a meromorphic section.

The Riemann–Roch theorem for line bundles is then

Theorem 1.3 Let L be a line bundle on the compact Riemann surface " of genus p.
Then the dimension of the space of holomorphic sections of L satisfies the relation

h0(L)= degL− p+ 1+ h0(K ⊗L−1) (1.4.4)

where K is the canonical bundle of ", that is, the line bundle of holomorphic
1-forms.

The equivalent formulation in terms of divisors replaces h0(L) by h0(D), the
dimension of the space of effective divisors linearly equivalent to D.

Thus, the Riemann–Roch theorem can be viewed as an existence theorem for
meromorphic functions, or, equivalently, for holomorphic sections of line bun-
dles, whenever the right-hand side of (1.4.4) is positive. For example, degK =
2p−2 and h0(K)= p, degK2 = 2 degK = 4p−4 and h0(K2)= 3p−3 for p > 1;
K2 is the line bundle whose sections are holomorphic quadratic differentials, that
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is, locally of the form ϕ(z)dz2 with a holomorphic ϕ. Collections of holomorphic
sections of a line bundle L define mappings into projective spaces because a change
of the local representation of L multiplies them all by the same factor. One then
needs sufficiently many independent sections to make such a map injective and thus
to define an embedding of the Riemann surface into a projective space. In fact, one
can show that every compact Riemann surface can be holomorphically embedded
into CP

3. Moreover, since by Chow’s theorem every complex subvariety of CP
n is

algebraic, our Riemann surface can then be represented by polynomial equations.
The relationship with 1 again goes via 2, that is, via the uniformization theorem.

That theorem, however, is of a transcendental nature and thus outside the realm of
algebraic geometry.

So, a Riemann surface becomes a (projective) algebraic variety in CP
3, the zero

set of algebraic equations. Such equations of a given degree can then be character-
ized by their coefficients. As automorphisms of CP

3 lead to equivalent algebraic
curves, one needs to divide these out. A difficulty emerges because the automor-
phism group of CP

3 is not compact. Building upon the ideas of Hilbert, Mum-
ford [83, 84] then developed geometric invariant theory to obtain the moduli space
of algebraic curves. One then obtains the compactified Mumford–Deligne moduli
space Mp as the moduli space of so-called stable curves, see [25]. As a moduli
space of algebraic varieties, it is an algebraic variety itself, in agreement with the
general principle.

4. A Riemann surface is a collection of branch points on the Riemann
sphere S2 with branching orders satisfying the Riemann–Hurwitz formula.
The moduli space is obtained from those collections by factoring out automor-
phisms of S2.

More precisely: Via some meromorphic function (whose existence again comes
from the Riemann–Roch theorem), a Riemann surface is a branched cover of S2, the
Riemann sphere, which can also be identified with CP

1. Again, we need to divide
out automorphisms, this time those of S2; they have the effect of moving the branch
points around. This approach already led Riemann to count the number of moduli
for Riemann surfaces of a given genus, that is, the dimension of the moduli space.
This is explained in [51], for example.

5. A Riemann surface is a finite algebraic extension of the field of rational
functions C(x) in one variable over C.

From the algebraic representation in 3, one deduces that the field k(") of mero-
morphic functions on " is a finite algebraic extension of the field of rational func-
tions C(x) in one variable over C. More precisely,

k(")∼C(x)[y]/P (x, y) (1.4.5)

for some irreducible polynomial P . For example, an elliptic curve, that is, a Rie-
mann surface of genus 1, can be described by a cubic polynomial

y2 − x(x − 1)(x − λ) (1.4.6)

for some λ ∈ C − {0,1}. For z ∈ ", we let Rz be those meromorphic functions
that are holomorphic at z. Rz is then a subring of k(") and has a unique maximal
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ideal given by those functions that vanish at z. This means that, conversely, we
can start with the field k(") and define the points of " as the maximal ideals of
local subrings of k("), and we may define a Riemann surface as a field of the form
C(x)[y]/P (x, y) for some irreducible polynomial P . This encodes the functorial
aspects: Let "1,"2 be compact Riemann surfaces, and let

φ : k("2)→ k("1) (1.4.7)

be a homomorphism whose restriction to C is the identity. Then there exists a unique
holomorphic map

h :"1 →"2 (1.4.8)

with

φ(f )(z)= f (h(z)) (1.4.9)

for all z ∈"1 and all f ∈ k("2).
This algebraic definition of a Riemann surface, which goes back to Dedekind

and Weber, has the advantage that C can be replaced by any other algebraically
closed field as the ground field. We may take finite fields Zp , and we can consider
an algebraic equation P(x, y) giving our Riemann surface as above, modulo p.
Doing this for all prime numbers p simultaneously yields important insights into the
algebraic properties of such equations, see [36], and this was at the heart of Faltings’
proof of the Mordell conjecture [35]. We can also take, instead of C, a field of
meromorphic functions on some variety B , in order to obtain an algebraic curve over
a function field. In more elementary terminology, we now consider a polynomial
P(x, y) whose coefficients depend on the variable w ∈ B . We thus obtain a family of
Riemann surfaces as in 2, but now from an algebraic point of view. The unification of
those two possibilities of considering varying ground fields (depending on a prime
number p or on a variable w in some algebraic variety) leads to arithmetic algebraic
geometry.

6. A Riemann surface " is (defined by) an Abelian variety with a principal
polarization, its Jacobian, that can be identified as the group of divisors of de-
gree 0 on " modulo linear equivalence or, equivalently, as the subgroup of the
Picard group of line bundles of degree 0. Since not every principally polarized
Abelian variety arises in this manner as the Jacobian of some Riemann surface,
however, the moduli space of the latter is only a subvariety of the moduli space
of principally polarized Abelian varieties. By considering periods of holomorphic
1-forms, we can associate to a Riemann surface a principally polarized Abelian va-
riety, its Jacobian. By Torelli’s theorem, each Riemann surface is determined by its
Jacobian. This means that we can identify a Riemann surface with this Abelian va-
riety, and the space of Riemann surfaces becomes a subspace of the moduli space of
principally polarized Abelian varieties. What is not so nice about this is that the so-
lution of the Schottky problem, that is, the question of characterizing those Abelian
varieties that are Jacobians of Riemann surfaces, is rather complicated [97].

Insertion: We explain the above concepts in some more detail. H 0(",
1,0)

is the space of holomorphic 1-forms on our compact Riemann surface ", that is,
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the holomorphic sections of the canonical bundle K . Thus, h0(
1) := h0(K) =
dimC H 0(",
1,0)= p by Riemann–Roch.

Let α1, . . . , αp be a basis of H 0(",
1,0), and a1, b1, . . . , ap, bp a canonical
homology basis for ". Then the period matrix of " is defined as

⎛

⎜⎜⎝

∫
a1

α1 · · · ∫
bp

α1

...
...∫

a1
αp · · · ∫

bp
αp

⎞

⎟⎟⎠ .

The column vectors of π ,

Pi :=
(∫

ai

α1, . . . ,

∫

ai

αp

)
and Pi+p :=

(∫

bi

α1, . . . ,

∫

bi

αp

)
, i = 1, . . . , p,

are called the periods of ". P1, . . . ,P2p are linearly independent over R and thus
generate a lattice

� := {n1P1 + · · · + n2pP2p, nj ∈ Z
}

in C
p .

Definition 1.8 The Jacobian variety J (") of " is the torus C
p/�.

For each z0 in ", we have the Abel map (a holomorphic embedding)

j :"→ J (")

with

j (z) :=
(∫ z

z0

α1, . . . ,

∫ z

z0

αp

)
mod�.

Here j (z) is independent of the choice of the path from z0 to z, since a different
choice changes the vector of integrals only by an element of �.

By the theorems of Abel and Jacobi, we obtain an isomorphism ϕ from the group
Pic0(") of line bundles of degree 0, that is, from the group Div0(") of divisors of
degree 0 modulo linear equivalence, into the Jacobian J (") by writing a divisor D
of degree 0 as

D =
∑

ν

(zν −wν),

where zν,wν ∈" are not necessarily distinct, and putting

ϕ(D) :=
(∑

ν

∫ zν

wν

α1, . . . ,
∑

ν

∫ zν

wν

αp

)
mod�.

7. A Riemann surface is a conformal structure on S, that is, a possibility
to measure angles. Equivalently, it is an isometry class of Riemannian metrics
modulo conformal factors. The moduli space is obtained by dividing the space
of all Riemannian metrics on S by isometries and conformal changes. More
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precisely: As already discovered by Gauss, a two-dimensional Riemannian mani-
fold defines a conformal structure, that is, a Riemann surface. Different Riemannian
metrics can lead to the same conformal structure, and so we need to divide out
such equivalences. This is the approach of Tromba and Fischer, see [101]. Thus, we
consider the space Rp of all Riemannian metrics on S. As a space of Riemannian
metrics, it carries itself a Riemannian metric. If g is a Riemannian metric on S and
h : S→ S is a diffeomorphism, h�g is isometric to g via h. Thus, we need to divide
out the action of the diffeomorphism group Dp of S. It acts isometrically on Rp

equipped with its Riemannian metric. Moreover, when we multiply a given metric
g by some positive function λ, the metric λg leads to the same conformal structure
as g. Such multiplication by a positive function, however, does not induce an isom-
etry of Rp (and this is at the heart of the anomalies in string theory that ultimately
force a particular dimension (26 in bosonic string theory)).

Insertion: Some details: Let g ∈Rp be some Riemannian metric on S. Suppress-
ing the issues of the precise regularity class of the objects encountered, the tangent
space TgRp is given by symmetric 2 × 2 tensors h = (hij ). Each such h can be
decomposed into its trace and trace-free parts:

h= ρg+ h′ ρ : S→R, (1.4.10)

h′ij = hij − 1

2
gij g

k�hkl . (1.4.11)

The decomposition (1.4.10) is orthogonal w.r.t. the natural Riemannian structure on
TgRp:

((hij ), (�ij ))g,κ :=
∫

(gijkm + κgij gkm)hij �km
√

detg dz1 dz2 (1.4.12)

with κ > 0 and

gijkm := 1

2
(gikgjm + gimgjk − gij gkm).

Since the value of κ will make no difference for us, we put κ = 1
2 so that (1.4.12)

becomes

((hij ), (�ij ))g :=
∫

S

gij gkmhik�jm
√

detg dz1 dz2. (1.4.13)

As it stands, this is only a weak Riemannian metric on the infinite-dimensional space
Rp , as (1.4.13) yields only an L2-product, but Clarke [20] showed that it becomes
a metric space with respect to the distance function induced by the Riemannian
product of (1.4.13). (The completion of this metric space is identified in [19].)

From (1.4.13), we see that the Riemannian metric (., .)g on TgRp is invariant
under the action of the diffeomorphism group, but not under conformal transforma-
tions.

In order to get rid of the ambiguity of the conformal factor, we need to find a suit-
able slice in Rp transversal to the conformal changes. By Poincaré’s theorem, any
Riemannian metric on our surface S of genus p > 1 is conformally equivalent to
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a unique hyperbolic metric, that is, S becomes a quotient H/� as above. This met-
ric has constant curvature −1. With some differential geometry, one verifies that −1
is a regular value of the curvature functional, and so, by the implicit function theo-
rem, the hyperbolic metrics yield a regular slice. Thus, we obtain the moduli space
Mp as the space Rp,−1 of metrics of curvature −1 divided by the action of Dp . In
this way, the geometric structures on Rp induce corresponding geometric structures
on Mp as described in Tromba’s book [101]. Rp is the space of symmetric, positive
definite 2×2 tensors (gij ) on S. As already explained, a tangent vector to Rp is then
a symmetric 2× 2 tensor (hij ), not necessarily positive definite. It is orthogonal to
the conformal multiplications when it is trace-free, and it is orthogonal to the action
of Dp when it is divergence-free. Such a trace- and divergence-free symmetric ten-
sor then can be identified with a holomorphic quadratic differential on the Riemann
surface.

Insertion: Some details: We recall the decomposition

h= ρg+ h′, (1.4.14)

where h′ is trace-free. As we have seen, this decomposition is orthogonal w.r.t. the
natural Riemannian metric on TgRp . In particular, since we only want to keep those
directions that are orthogonal to conformal reparametrizations, we only need to con-
sider the trace-free part h′. We next consider the infinitesimal action of the diffeo-
morphism group, with the aim of determining those h′ that are orthogonal to the
action of that group as well. For that purpose, let (ϕt )⊂Dp,ϕ0 = id , be a smooth
family of diffeomorphisms, generated by the vector field

V (z) := d

dt
ϕt (z)|t=0 . (1.4.15)

The infinitesimal change of the metric g under (ϕt ) is then given by

d

dt
(ϕ∗t g)|t=0. (1.4.16)

(This is the Lie derivative LV g of the metric in the direction of the vector field V .)
With ∇ denoting the covariant derivative for the metric g,

d

dt
((ϕ∗t g)|t=0)ij = gik(∇ ∂

∂zj
V )k + gjk(∇ ∂

∂zi
)k

= gij,kV
k + gikV

k
zj
+ gjkV

k
zi
. (1.4.17)

In the above decomposition of Rp , the directions corresponding to conformal
changes are given by the tensors ρg, whereas those representing Dp are of the form
(1.4.17). It remains to identify the Teichmüller directions, i.e., those that are orthog-
onal to the preceding two types.

Our computations simplify considerably if we use conformal coordinates so that
the metric (gij ) is of the form

gij (z)= λ2(z)δij . (1.4.18)

If a symmetric tensor h′′ is orthogonal to all multiples ρg of g, it has to be trace-
free. If it is orthogonal to all tensors that arise from the infinitesimal action of the
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diffeomorphism group, that is, of type (1.4.16), we get, using the symmetry of h′′

0=
∫

gij gklh′′ik(gj�,mV m + 2gjmV m
z�
)
√

detg dz1 dz2

=
∫

1

λ2
h′′ik
(
δik

(
∂

∂zm
λ2
)
Vm + 2λ2V i

zk

)
dz1 dz2

=
∫

2h′′ikV i
zk

dz1 dz2, since h′′ is traceless.

If this holds for all vector fields V , we conclude

∂

∂zk
h′′ik = 0 for i = 1,2. (1.4.19)

This means that h′′ik is divergence free.
Thus, h′′ is symmetric, trace-free, and divergence free. These conditions can be

interpreted in a more concise manner as follows:

Being symmetric and trace-free, h′′ is of the form
(
h′′11 h′′12

h′′12 h′′22

)
=:
(
u v

v −u

)
.

Being divergence free, this tensor then has to satisfy

uz1 =−vz2, uz2 = vz1 .

Thus, u− iv is holomorphic, or, as a tensor,

h′′ = u(dz1)2 − u(dz2)2 + 2v dz1 dz2

= Re((u− iv)(dz1 + idz2)2) (1.4.20)

is the real part of a holomorphic quadratic differential

φ dz2 = (u− iv) dz2.

Thus, we have identified the tangent directions of Rp that correspond to nontrivial
deformations of the complex structure as the (real parts of) holomorphic quadratic
differentials on the Riemann surface defined by (S, g).

Thus, the cotangent11 space of Mp at a point representing a Riemann surface
" is given by the holomorphic quadratic differentials on ". (This issue will be
taken up again in Sect. 2.4 from a different point of view that also clarifies the re-
lation between tangent and cotangent directions to the moduli space.) The complex
dimension of this space is 3p− 3 the Riemann–Roch theorem. Mp then also inher-
its a Riemannian structure from that of Rp . The induced metric is the Petersson–
Weil metric originally introduced in the context of approach 1. In a more abstract

11It is not very transparent from our preceding considerations that we have constructed the cotan-
gent and not the tangent space, but a careful accounting of the transformation behaviors can clarify
this issue.
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framework, the so-called L2-geometry of moduli spaces is investigated in [67]. Let
�dz2 = (u1 − iv1) dz

2 and # dz2 = (u2 − iv2) dz
2 be two such differentials. Let

ρ2(z) dz dz̄ be the hyperbolic metric. Then their Petersson–Weil product is

(�dz2,# dz2)g = 2
∫

(u1u2 + v1v2) · 1

ρ2(z)
dz dz̄= 2 Re

∫
�#̄

1

ρ2(z)
dz dz̄.

(1.4.21)

We have now listed seven rather different approaches for defining what a Rie-
mann surface is. It is a very remarkable and profound fact that all these approaches
give fully compatible structures on the moduli space Mp . In each of them, one
can construct a complex structure on Mp , and they all agree, and together with
the Petersson–Weil metric, one then finds a Kähler structure on Mp .

Nevertheless, some remarks are in order here:

• From an algebraic point of view, the hyperbolic metric is a transcendental ob-
ject and should be replaced by an algebraic one. There are also certain other
natural metrics on a Riemann surface, like the Bergmann metric obtained from
an L2-orthonormal basis of holomorphic 1-forms, that is, the metric induced by
embedding the Riemann surface into its Jacobian, or the Arakelov metric de-
fined from an asymptotic expansion of the Green function, a rather natural object
in string theory. One may replace the hyperbolic metric in (1.4.21) by another
metric uniquely associated to each Riemann surface and still obtain a natural Rie-
mannian metric on Mp . First steps in the direction of a systematic investigation
have been done in [54, 55]. For more recent results in this direction, see [58, 59].
Let us briefly describe some of these constructions here. The Bergmann metric is
given by

ρ2
Bdz∧ dz̄ :=

p∑

i=1

θi ∧ θ̄i (1.4.22)

where the θi are an L2-orthonormal basis of the space of holomorphic 1-forms
on ", that is,

i

2

∫

"

θi ∧ θ̄j = δij . (1.4.23)

Equivalently, the metric is induced from the flat metric on the Jacobian J (")

via the period map j :"→ J ("). This latter description also shows that it does
not depend on the choice of orthonormal basis—which, of course, is also readily
checked directly. Moreover, the expression for the Bergmann metric is indeed
positive definite, that is, it defines a metric, or equivalently, the derivative of the
period map j has maximal rank. This follows from the fact that there is no point
on " where all holomorphic 1-forms vanish simultaneously; this can be deduced
from the Riemann–Roch theorem.
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The Arakelov metric (references are [4, 18]) γ 2dzdz̄ is characterized by the
property that its curvature is proportional to the Bergmann metric,

∂2

∂z∂z̄
logγ = cpρ

2
B, (1.4.24)

for some constant cp that depends only on p and can, of course, be explicitly
computed.12 Alternatively, it is given in terms of an asymptotic expansion of the
Green function of the Bergmann metric,

logγ (z)=− lim
w→z

(2πG(z,w)− log |z−w|), (1.4.25)

with G satisfying

∂2

∂z∂z̄
G(z,w)= i

2
δw(z)+ cpρ

2
B, (1.4.26)

where δw is the Dirac functional supported at w, plus the normalization13

∫

"

G(z,w)
i

2
ρ2
Bdz∧ dz̄= 0. (1.4.27)

The Green function is regular for z �= w and becomes −∞ at z = w.
exp 2πG(z,w) vanishes to first-order at z=w. The first term in the expansion of
exp 2πG(z,w) is the universal term |z − w|, while the next one, γ (z), encodes
the geometry of the Riemann surface ".

If �B is the Laplace operator for the Bergmann metric, and if φ0, φ1, . . . is an
L2-orthonormal basis of eigenfunctions with eigenvalues 0 = λ0 < λ1 ≤ λ2 . . . ,
then the Green function is given by the expansion

G(z,w)=
∞∑

j=1

1

λj

φj (z)φj (w). (1.4.28)

In fact, one can perform this construction of the Green function and the associated
metric on the basis of any conformal metric on " in place of the Bergmann one.
Arakelov discovered, however, that the Bergmann metric is distinguished here by
the following property: When we use the Green function of a metric g to define
a metric on the canonical bundle K by putting

‖dz‖(z0) :=
(

lim
z→z0

exp 2πG(z, z0)

|z− z0|
)−1

, (1.4.29)

where the absolute value on the right-hand side is taken w.r.t. to local coordinates,
that is, in C, then the curvature of this metric on K is a multiple of g if and only

12In the sequel, cp will denote a generic such constant whose value can change between formulas.
13The characterization of the Arakelov metric in terms of its curvature likewise needs an additional
normalization to fully determine it.
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if we started with the Bergmann metric. In other words, we have the formula

1

2πi

∂2

∂z∂z̄
log‖s‖2dz∧ dz̄= cpρ

2
Bdz∧ dz̄ (1.4.30)

for any locally nonvanishing holomorphic section s of K , and this is no longer
valid for other metrics g used to construct a Green function.

More generally, for a line bundle L over " with transition functions gij , a Her-
mitian metric λ2 on L is a collection of positive, smooth, real-valued functions
λ2
i on Ui with

λ2
j = λ2

i gij gij on Ui ∩Uj . (1.4.31)

The norm of a section h of L given by the local collection hi is then defined via

‖h(z0)‖2 := |hi(z0)|2
λ2
i (z0)

for z ∈Ui. (1.4.32)

The curvature or first Chern form is given by

c1(L,λ2) := 1

2πi

∂2

∂z∂z̄
log‖h‖2dz∧ dz̄ (1.4.33)

for any meromorphic section h and local coordinates z, and this is independent
of the choices of h and z. Arakelov called a Hermitian line bundle L admissible
w.r.t. a metric ρ2dz∧ dz̄ on " if

c1(L,λ2)= degLρ2 dz∧ dz̄. (1.4.34)

Let z0 ∈ ", and let z be local coordinates mapping z0 to 0. We can put a Her-
mitian metric on the line bundle [z0] by defining the norm of the local section z

in a neighborhood of z0 as

|z|(z1)= expG(z1, z0). (1.4.35)

This metric is then admissible for the Bergmann metric. So, what is special about
the Bergmann metric here is that if we start the construction of the Arakelov
metric from the Green function of that metric then the curvature formula recovers
that metric. This only holds for the Bergmann metric and not for any other one.

• We noted in 6 that we can inject the moduli space Mp of Riemann surfaces of
genus p into the moduli space Ap of principally polarized Abelian varieties of
dimension p. The latter also carries a natural (locally Hermitian symmetric) met-
ric. Since the map j :Mp →Ap , while being injective by Torelli’s theorem, is not
of maximal rank everywhere, the pullback of that metric via j has some singular-
ities. Also, its behavior is qualitatively different from that of the Weil–Petersson
metric, as will become clear below when we investigate degenerations of Rie-
mann surfaces and their associated Jacobians.
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1.4.3 Compactifications of Moduli Spaces

Some of the preceding approaches also naturally lead to compactifications of Mp .

1. We already mentioned the Mumford–Deligne compactification Mp as an al-
gebraic variety. It consists of so-called stable curves, that is, possibly singular
curves, but with a finite automorphism group. The sphere with no, one, or two
punctures and the torus are thereby excluded. This is necessary for the Hausdorff
property.

The difficulty here can be seen from the following easy example: We con-
sider annuli, and by the uniformization theorem, each annulus is characterized
by a single modulus, a real number 0 < r < 1; that is, it is conformally equiva-
lent to an annulus

Ar := {z ∈C : r < |z|< 1}. (1.4.36)

Thus, the moduli space of annuli is (0,1). It seems obvious how to compactify it,
namely by simply adding the boundary points r = 0 and r = 1. Now r = 1 does
not correspond to a Riemann surface anymore, and so this is not a good limit.
The annulus Ar , however, is conformally equivalent to the annulus

A′r :=
1

1− r
Ar =

{
z ∈C : r

1− r
< |z|< 1

1− r

}
, (1.4.37)

which for r → 1 converges to an infinite strip, that is, the limit can be identified
with {x+ iy ∈C : 0 < y < 1}. The boundary point r = 0 seems harmless because
it simply corresponds to the punctured disk

D∗ = {z ∈C : 0 < |z|< 1}. (1.4.38)

However, the annulus Ar is also conformally equivalent to the annulus

A′′r :=
1√
r
Ar =

{
z ∈C : √r < |z|< 1√

r

}
, (1.4.39)

and if we now let r tend to 0, the limit is the punctured plane

C
∗ = {z ∈C : z �= 0}, (1.4.40)

which is not conformally equivalent to the punctured disk D∗. Thus, from the
same limit r → 0, we obtain two different limits, D∗ and C

∗, and therefore, we
lose the Hausdorff property. Mumford’s insight was that this problem essentially
arises from the fact that the putative limit C

∗ has a noncompact automorphism
group. In fact, its automorphism group contains all transformations of the form
z→ λz for any λ ∈ C

∗. Mumford’s theory then declared such limits as unsta-
ble and disallowed them. The problem of the noncompact automorphism group,
however, will re-emerge later when we consider conformally invariant variational
problems. The essential point is the following: We consider any Riemann surface
" and choose local coordinates z in the open unit disk U = {z ∈ C : |z| < 1}
around some point p0, such that p0 corresponds to 0. We then replace the co-
ordinate z by zλ := λz ∈ λU = {z ∈ C : |z| < λ}. When we let λ ∈ R tend to
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∞, we obtain z∞ ∈C, but these are not coordinates for a local neighborhood of
p0 anymore because any fixed z∞ ∈ C now corresponds to p0 itself. In a sense
to be made precise, they thus parametrize an infinitesimal neighborhood of p0.
We can compactify this infinitesimal coordinate patch C by adding the point at
∞ to obtain the sphere S2. Thus, we have created a nontrivial Riemann surface,
the sphere S2, by blowing up a neighborhood of our point p0 ∈ ". Again, if
we allowed such processes in the construction of the moduli space, we would
need to consider the union of " and S2 as a limit of the constant sequence ".
(As this so-called “bubbling off” can be repeated, we should then even allow
for infinitely many blown-up spheres.) At this point, as mentioned, this can sim-
ply be excluded by fiat, but the situation changes when these blown-up spheres
carry some additional data, for example some part of the Lagrangian action in
a variational problem.

2. We recall from 2 in Sect. 1.4.2 that if N is a complex space fibering over some
base B with the generic (=regular) fiber being a Riemann surface of genus p,
then we obtain a holomorphic map h : B0 →Mp where B0 ⊂ B are the points
with regular fibers. The fibers over B1 := B\B0 are then singular, and we hope
to extend h across B1, that is, obtain a holomorphic map h : B → M̄p . Cer-
tain difficulties arise here from the possibility that not all such singular fibers in
a holomorphic family need to be stable in the sense of Mumford. Thus, in partic-
ular, we cannot expect that the image of some point in B1 is given by the complex
structure of that singular fiber. Nevertheless, after lifting to finite covers so that
the quotient singularities of Mp disappear, one can extend h to a holomorphic
map h : B → M̄p . This depends on certain hyperbolicity properties coming from
the negative curvature of the Weil–Petersson metric on Mp that lead to general
extension properties for holomorphic maps, see [69].

3. While the preceding is a global aspect, one also has a convenient local model for
degenerations of Riemann surfaces within 2. We consider two unit disks D1 =
{z ∈ C : |z|< 1} and D2 = {w ∈ C : |w|< 1}. For t ∈ C, |t |< 1, we remove the
interior disks {|z| ≤ |t |}, {|w| ≤ |t |} and glue the rest by identifying z with w by
the equation zw = t to obtain an annular region At . For t → 0, At degenerates
into the union of the two disks D1,D2 joined at the point z=w = 0. This is the
local model for degeneration. The connection with the consideration of families
as advocated in the preceding item of course comes from considering the smooth
two-dimensional variety N := {(z,w, t) : zw− t = 0, |z|, |w|, |t |< 1} for which
(z,w) yield global coordinates. N fibers over the base B := {t : |t | < 1}, with
a single singular fiber over B0 = {0}.

This local model is easily implemented in the context of compact Rie-
mann surfaces as follows. We let "0 be either a connected Riemann surface
of genus p − 1 > 0 with two distinguished points x1, x2, called punctures, or
the disjoint union of two Riemann surfaces "1,"2 of genera p1,p2 > 0 with
p1 + p2 = p and one puncture xi ∈"i each. We choose disjoint neighborhoods
U1,U2 of the punctures and local coordinates z : U1 →D1,w : U2 → D2 with
z(x1) = 0,w(x2) = 0. By performing the above grafting process on the coordi-
nate disks D1 and D2, we obtain a Riemann surface "t of genus p for t �= 0. The
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correspondence

t 
→"t (1.4.41)

induces a map of D∗ = {t ∈ C : 0 < |t | < 1} onto a complex curve in the mod-
uli space Mp which extends to a map from D = {t ∈ C : |t | < 1} = D∗ ∪ {0}
into the compactification Mp . (Because of the genus restrictions imposed, these
degenerations all yield stable curves.)

4. Approaches 1 and 7 suggested looking at the moduli space of hyperbolic metrics.
A hyperbolic metric on a compact surface can degenerate into a noncompact but
complete hyperbolic metric of finite area with cusps. In the local model described
in the previous item, this looks as follows. On the annulus At = {|t |< z < 1}, we
have the hyperbolic metric

dz∧ dz̄

|z|2 log2 |z|
(

π
log |z|
log |t |

sin(π log |z|
log |t | )

)2

. (1.4.42)

For |t | → 0, this converges to the hyperbolic metric on the punctured disk {z :
0 < |z|< 1} given by

dz∧ dz̄

|z|2 log2 |z| . (1.4.43)

This metric is complete at 0, that is, the cusp 0 is at infinite distance from the
points in the punctured disk. Also, the area of every punctured subdisk {z : 0 <

|z|< ρ},0 < ρ < 1 is finite.
For the hyperbolic metric (1.4.42) on the annulus At , the middle curve

|z| = √|t | is the shortest of all the concentric circles, hence a closed geodesic,
denoted by c. The reflection z 
→ t

z
is then an isometry leaving c fixed. Its length

l goes to 0 as t → 0, while its distance from the boundary |z| = 1 goes to ∞.
Thus, as t goes to 0, the geodesic c degenerates into a point curve at infinite
distance from the interior. Therefore, in geometric terms, the degeneration is
described by pinching a closed geodesic on some annulus inside our Riemann
surface equipped with the hyperbolic metric. In fact, a hyperbolic metric on an
annulus that is symmetric about a closed geodesic is uniquely determined by the
length of that geodesic. That means that the hyperbolic on the annulus At is in-
duced by the metric of the Riemann surface "t as described above. Thus, even
though we have presented it here as a local model, it captures the essential global
aspects.

This consideration of varying hyperbolic metrics leads to the same compact-
ification Mp of Mp as a topological space, see [12]. The noncompact surfaces
can be compactified as Riemann surfaces by adding a point at each cusp. We thus
see that elements in the compactifying boundary of Mp correspond to surfaces of
lower topological type with additional distinguished points, so-called punctures.

Insertion: The degeneration can also be described in terms of the generators
of the discrete group � considered in 1. Since hyperbolic elements are character-
ized by |a+d|> 2 and parabolic ones by |a+d| = 2, the relevant degeneration is
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one where we have a sequence �n of surface groups with hyperbolic elements γn
converging to a parabolic element γ0. An example is the sequence of hyperbolic
transformations

γn : z 
→
(1+ 1

n
)z+ 1

n

z+ 1
(1.4.44)

converging to the parabolic transformation

γ0 : z 
→ z

z+ 1
. (1.4.45)

In the limit, the two fixed points of γn merge into the single fixed point 0 of
γ0. Also, the length of the invariant geodesic for γn approaches 0 as n→∞.
Thus, again, the degeneration is described by pinching a closed geodesic on our
Riemann surface equipped with the hyperbolic metric induced from H .

We now want to relate the geometric description of degeneration just es-
tablished to the analytic model described previously. We first describe how to
get from the analytic model to the geometric one. The behavior of the hyper-
bolic closed geodesic |z| = √|t | for the hyperbolic metric (1.4.42) on the an-
nulus At translates into the following picture for hyperbolic isometries of H .
We consider the hyperbolic isometry γλ : z 
→ λz for some λ > 1. This leaves
the imaginary axis in H invariant, and so its image on the quotient H/� by
the group � generated by γλ is a closed geodesic of length

∫ λ

1
dy
y
= logλ. Via

z 
→ logλ exp( 2πi
logλ

(log(−iz)+ logλ)), H/� is mapped onto C
∗, and the closed

geodesic is mapped onto the circle |w| = logλ.
In order to see how the geometric model can be translated into the analytic

one, one uses the collar lemma, which says that if " =H/� is a compact Rie-
mann surface with a simple14 closed geodesic c of length l, then " contains an
annular region, called a collar, about c isometric to At with the hyperbolic metric
At , c corresponding to the middle curve |z| = √|t |. The boundary curves of the
collar then are at a distance from c of at least arcsinh( 1

sinh(l/2) ) which goes to ∞
as l→ 0. Thus, we are in the local situation described by the analytic model.

In fact, a theorem of Mumford says that pinching a simple closed geodesic is
the only way a sequence of compact Riemann surfaces "n = H/�n of fixed
genus p can degenerate. Namely, if the lengths of (simple) closed geodesics
on "n are uniformly bounded below, then after selection of a subsequence, �n

converges to a subgroup �0 of PSL(2,R) for which "0 = H/�0 is a compact
Riemann surface of the same genus p.

5. Since we have equipped Mp in approach 7 with a Riemannian metric, the
Petersson–Weil metric, we can study its compactification as a metric space.
Again, as follows from the computations and estimates of Masur [80], this leads
to the same Mp viewed as a topological space, see [107]. In particular, Mp

is not a complete metric space, that is, the boundary Mp\Mp is at finite dis-
tance from the interior. Moreover, when we approach that boundary orthogonally

14That is, non-self-intersecting.
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along some curve c, the tangent directions orthogonal to c converge to bound-
ary tangent directions. For a survey of some recent refinements of these results,
see [108]. For the relation with the completion of the space Rp of Riemannian
metrics, see [19].

6. As explained in 6 of Sect. 1.4.1, by Torelli’s theorem, the correspondence be-
tween a Riemann surface and its Jacobian leads to an injective mapping from
Mp into the moduli space Ap of principally polarized Abelian varieties of di-
mension p. Ap is a quotient Hp/�p of the Siegel upper half space by a discrete
group (H1 is simply the Poincaré upper half plane, and Hp/�p is then a higher-
dimensional generalization of the modular curve H/SL(2,Z). Hp is the space of
symmetric complex (p × p) matrices with positive definite imaginary part. The
discrete group �p is Sp(2p,Z), the group of real (2p × 2p) matrices M with
integer entries that satisfy MJMt = J for J = ( 0 Id

−Id 0

)
). It admits a compactifi-

cation first studied by Satake. Baily [8] then studied the induced compactification

Mp . This is different from Mp and, in fact, highly singular. It can be obtained
from Mp by forgetting the positions of the punctures or cusps of the limiting Rie-
mann surfaces in Mp . This is useful for the study of minimal surfaces of varying
topological type, see [60, 61, 68], because the punctures would correspond to
removable singularities. We shall discuss this issue briefly below in our study of
the Dirichlet integral, our fundamental action functional, see Sect. 2.4.

Also, in string theory, one ultimately wishes to extend the partition function
over all possible genera, and one therefore needs some kind of universal mod-
uli space that includes surfaces of all possible genera. The problem with the
Mumford–Deligne compactification is that as the genus increases one gets sur-
faces with more and more punctures in the low boundary strata, in fact infinitely
many in the limit of the genus going to infinity. This is avoided in the Satake–
Baily compactification just described.

There is another issue of interest here: We have described the degeneration of
a family of Riemann surfaces by pinching a closed geodesic, that is, letting its
length shrink to 0. These geodesics can be topologically of two different kinds.
The first possibility is that it corresponds to a nontrivial homology class. When
we pinch such a geodesic to a point and compactify the resulting surface by in-
serting two points, in the limit we still have a connected surface, but of lower
genus, and therefore its space of holomorphic 1-forms has a smaller dimension.
Therefore, the limiting surface also has a Jacobian of smaller dimension, and so
we move into the boundary of Ap . The other possibility is that we pinch a curve
that is homologically trivial, i.e., a commutator in the fundamental group π1(").
If we pinch such a curve and again compactify by inserting two points, the re-
sulting surface is disconnected, but the genus p is not lowered, that is, the sum
p1 + p2 of the genera of the pieces "1 and "2 equals p. Therefore, also the di-
mension of the Jacobian is not lowered, and although we move to the boundary
of the moduli space Mp , we stay inside the moduli space Ap . The Jacobian of
our disconnected surface is simply the product of the Jacobians of the pieces "1

and "2. Of course, in order to substantiate these contemplations, we need to clar-
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ify in which sense the Jacobians of the family of degenerating surfaces converge
to the Jacobian of the compactified limiting surface.

1.5 Supermanifolds

1.5.1 The Functorial Approach

We present here the abstract mathematical setting of supermanifolds. We consider
a super vector space (over a ground field of characteristic 0, like R or C)

W =W0 ⊕W1

that is Z/2Z graded. Elements w of W0 are called even, with parity p(w) = 0,
those of W1 odd, with parity p(w)= 1. Morphisms between super vector spaces are
required to preserve the grading.

A super algebra A is a super vector space together with a product A⊗ A→ A

which is a morphism in the above sense. It is also required to be associative and to
have a unit, in the ordinary sense.

Now, the important point about super objects is that whenever an operation
changes the order of two odd elements, a minus sign is introduced. In this sense,
the super algebra A is (super)commutative if for any two a, b ∈A,

ab= (−1)p(a)p(b)ba. (1.5.1)

(Here and in the sequel, whenever the parity of an element enters a formula, that
element is implicitly assumed to be of pure type, that is, either odd or even, but not
a nontrivial sum of an odd and an even term. Generally, definitions are extended to
inhomogeneous elements by linearity.)

The basic example of a commutative super algebra is a Grassmann algebra with
generators v1, . . . , vN satisfying

vivj =−vjvi for all i, j (1.5.2)

and thus, in particular,

v2
i = 0 for all i. (1.5.3)

Hence, every element of this Grassmann algebra can be expanded as

v = a0 +
N∑

i=1

aivi + · · · + a12...Nv1v2 · · ·vN . (1.5.4)

Since the square of any generator vanishes by (1.5.4), the expansion terminates.
Similarly to (1.5.1), the rules defining Lie algebras pick up signs in the super

context: The bracket of a super Lie algebra has to satisfy

[v,w] + (−1)p(v)p(w)[w,v] = 0 (1.5.5)
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and the super Jacobi identity reads

[v, [w,u]] + (−1)p(v)(p(w)+p(u))[w, [u,v]] + (−1)p(u)(p(v)+p(w))[u, [v,w]] = 0.
(1.5.6)

We now consider a complex super vector space W . A real structure on W is given
by a C-antilinear automorphism

κ :W →W

with

κ2w = (−1)p(w)w. (1.5.7)

This should be considered as complex conjugation. We point out, however, that on
the odd part, we obtain a minus sign in (1.5.7). As an example, let us assume that
over R, the odd part W1 has two generators ϑ1 and ϑ2; we may then put

κ(ϑ1)= ϑ2, κ(ϑ2)=−ϑ1. (1.5.8)

A supersymmetric bilinear form15 (·, ·) on W is given by a symmetric form (·, ·)0
on W0 and an alternating form (·, ·)1 on W1 with

(κv, κw)i = (v,w)i for i = 0 and 1. (1.5.9)

This implies

(v, κv)i = (κv, κ2v)i = (−1)i(κv, v)i = (v, κv)i, (1.5.10)

that is

(v, κv) is real for all v ∈W. (1.5.11)

We may thus call the form (·, ·) positive if

(v, κv) > 0 for all v �= 0. (1.5.12)

We can then define (v, κv) as a “norm” on a complex super vector space. The point
is that (v, v) = 0 if v is odd. We therefore need κ which is only meaningful if W

is defined over C so that each odd coordinate has two real components, as in our
example. In that example, we could put

(ϑ1, ϑ2)= 1. (1.5.13)

Then ϑ1 and ϑ2 would both have “norm” 1.
If we have a complex super algebra A, we could then require that κ(ab) =

κ(a) κ(b). If we wish to also include non-commutative algebras, like matrix al-
gebras with their complex conjugation, it seems preferable to take as the basis ob-
ject a star-operation, a C-antilinear isomorphism from A to the opposite algebra16

satisfying

(ab)∗ = (−1)p(a)p(b)b∗a∗. (1.5.14)

15Forms always take their values in C.
16If the product in A of a and b is ab, the product in the opposite algebra is defined as
(−1)p(a)p(b)ba.
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A Hermitian form 〈·, ·〉 on a complex super vector space is C-antilinear in the first
variable, C-linear in the second one and satisfies

〈v,w〉 = (−1)p(v)p(w)〈w,v〉. (1.5.15)

We have, since 〈·, ·〉 is assumed to be even, that

〈v,w〉 = 0 if p(v) �= p(w), (1.5.16)

and also

〈v, v〉 ∈R for v even, 〈v, v〉 ∈ iR for v odd. (1.5.17)

Then a super Hilbert space H is a super vector space with a Hermitian form satisfy-
ing

〈v, v〉> 0 for v even, (1.5.18)

i−1〈v, v〉> 0 for v odd (1.5.19)

and for which the ordinary Hilbert space structure defined by

〈〈v,w〉〉 = 〈v,w〉 for v,w even,
〈〈v,w〉〉 = i−1〈v,w〉 for v,w odd,
〈〈v,w〉〉 = 0 for v,w of different parities

is complete. In the present treatise, we shall be concerned only with finite-
dimensional super Hilbert spaces,17 and the completeness is not an issue then be-
cause finite-dimensional Euclidean spaces are always complete.

1.5.2 Supermanifolds

As for ordinary manifolds, there are several approaches to the definition of su-
permanifolds, and it is instructive to understand the relations between them. The
standard model is R

m|n with even coordinates (x1, . . . , xm) and odd coordinates
(ϑ1, . . . , ϑn). Its sheaf of functions is C∞[ϑ1, . . . , ϑn], the sheaf of commutative
super algebras freely generated by odd quantities ϑ1, . . . , ϑn over the sheaf C∞ of
smooth functions on R

m. Since the square of any ϑj vanishes, they generate a nilpo-
tent ideal in this sheaf.

The functions in C∞[ϑ1, . . . , ϑn] then admit expansions in the nilpotent vari-
ables. To explain this, we first consider x = (x1, . . . , xm) ∈ U (open in R

m)
and ξ = (ξ1, . . . , ξm) where the ξ i are even nilpotent elements, i.e., of the form∑

α1,α2
aα1,α2ϑ

α1ϑα2+ higher even-order terms, that is, the expansion starts with
products of two ϑis. For a function that depends only on the even variables, we then
require

F(x1 + ξ1, . . . , xm + ξm)

=
∑

γγγ

1

γ1! · · ·γm!∂
γ1

x1 · · ·∂γm
xmF (x1, . . . , xm)(ξ1)γ1 · · · (ξm)γm (1.5.20)

17Perhaps, one should better speak of super Euclidean spaces in that case.
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where F as a function of x = (x1, . . . , xm) is of class C∞(U). Alternatively, we
can view this as the rule for extending or pulling back a function of the ordinary
coordinates x = (x1, . . . , xm) to one of the coordinates x+ ξ = (x1 + ξ1, . . . , xm+
ξm). When the function is also allowed to depend on the odd variables, we have the
expansion

F(x1 + ξ1, . . . , xm + ξm,ϑ1, . . . , ϑn)

=
∑

ααα

∑

γγγ

1

γ1! · · ·γm!∂
γ1

x1 · · ·∂γm
xmF

ααα(x1, . . . , xm)(ξ1)γ1 · · · (ξm)γmϑα1 . . . ϑαk

(1.5.21)

where the functions Fααα are of class C∞(U). In these expansions, we may also allow
for functions Fααα taking their values in a supercommutative algebra with unit in
place of R. Usually, these functions will then be even. We note that the expansions
(1.5.20) and (1.5.21) contain a number of derivatives that depend on n. Since we
want to reserve the flexibility to keep n variable, we must work with C∞- instead
of Ck-functions for some finite k.

There also exists a notion of (formal) integration, the Berezin integral, that inverts
differentiation.

If F is only a function of one odd variable ϑ , we have

F(ϑ)= a + bϑ (1.5.22)

where a, b are constants, i.e., independent of ϑ . The integral of F w.r.t. ϑ is then
defined by linearity and the basic rules

∫
dϑ = 0,

∫
ϑdϑ = 1. (1.5.23)

This makes the integral translation invariant, i.e. for an odd ε,
∫

F(ϑ + ε)dϑ =
∫

(a + bϑ + bε)dϑ = b

∫
ϑdϑ =

∫
F(ϑ)dϑ. (1.5.24)

Similarly, for a function F of n odd variables ϑ1, . . . , ϑn,

F(ϑ1, . . . , ϑn)=
∑

ααα

bαααϑ
ααα

(
with ααα = 0 or ααα = (α1, . . . , αk)

1≤ α1 < α2 . . . < αk ≤ n

)
(1.5.25)

the integral is computed via the rules
∫

dϑi = 0,
∫

ϑidϑj = δij . (1.5.26)

Thus, we have
∫

bαααϑ
αααdϑαk · · ·dϑα1 = bααα for ααα = (α1, . . . , αk). (1.5.27)

A supermanifold of dimension m|n can be defined by an atlas whose lo-
cal charts are open domains of R

m|n, that is, subsets with sheaf of functions
C∞(U0)[ϑ1, . . . , ϑn], where U0 is an open subset of R

m. In terms of functions,
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we are restricting the sheaf C∞[ϑ1, . . . , ϑn] to U0. This will of course be the gen-
eral procedure for defining sub-supermanifolds. Note that we are restricting the even
coordinates x1, . . . , xm here, but not the odd ones. So, we have coordinate charts;
coordinate transformations are then given by isomorphisms f :U → V , U,V open
in R

m|n. Such an isomorphism is given by even functions f 1, . . . , f m and odd func-
tions φ1, . . . , φn. To be an isomorphism, f must be invertible, and the functions
must be smooth, as always. And a morphism is invertible iff the underlying mor-
phism defined by the f 1, . . . , f m is invertible; the odd functions do not play a role
for invertibility.

Based on this, if F is a function on the chart U , and if f 1, . . . f m,φ1, . . . , φn

are coordinate functions on our supermanifold, we can compute the values
F(f 1, . . . , f m,φ1, . . . , φn). We can therefore equivalently define a supermanifold
as a topological space M0 with a sheaf OM of super (R)-algebras that is locally
isomorphic to R

m|n. Functions on M are then sections of the structure sheaf OM .
Morphisms between supermanifolds f : M → N are then morphisms of ringed
spaces, that is continuous maps f0 :M0 → N0 with a morphism of sheaves of su-
per algebras from f ∗0 ON to OM . The odd functions generate a nilpotent ideal J of
OM , because the square of any odd coordinate is 0. The space M0 with the sheaf
OM/J is then a smooth manifold of dimension m, called the reduced manifold Mr .
A function f on M projects to a function fr on Mr , that is, a smooth function on
M0. The sheaf morphism determines the function. In particular, the evaluation of an
odd function at a point of M0 always yields 0. This also means that any map from
an ordinary manifold, that is, a supermanifold of dimension m|0, into one of dimen-
sion 0|n vanishes identically. This can be remedied through the functor of points
approach to supermanifolds. For a supermanifold S, an S-point of a supermanifold
M is a morphism S →M . This construction is functorial in the sense that a mor-
phism ψ : T → S induces a map from M(S), the set of S-points of M , to M(T ) via
m 
→m ◦ψ . Similarly, a morphism f :M →N induces fS :M(S)→N(S), again
functorially in S. In order to understand this more abstractly, we consider the so-
called superpoints, the supermanifolds R

0|n defined as the space with structure sheaf
R[ϑ1, . . . , ϑn] (with anticommuting ϑj , as always). Expressed differently, these are
the supermanifolds ({�},�n) where {�} is an ordinary point and �n is a Grassmann
algebra of n generators. Then, see [93], these superpoints generate the category of
finite-dimensional supermanifolds, that is, any such supermanifold is completely
described by its superpoints. For supermanifolds M,N , one then defines (or, more
precisely, shows the existence of) the inner Hom object Hom(M,N) satisfying

Hom(R0|n,Hom(M,N))=Hom(R0|n ×M,N) (1.5.28)

for all n ∈N and then also

Hom(S,Hom(M,N))=Hom(S ×M,N) (1.5.29)

for all supermanifolds S. In this way, the space of morphisms M →N also becomes
a functor: For a supermanifold S, a morphism M × S → N , that is, a morphism
M → N depending on a parameter in S, is then an S-point of Hom(M,N). The
morphisms R

0|n ×M → N are then the superpoints of the supermanifold of mor-
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phisms Hom(M,N) (in contrast to Hom(M,N) which is not a supermanifold, but
rather the reduced space (see below) underlying the supermanifold Hom(M,N)).

In that way, we see that there also exist nontrivial odd functions on an ordinary
manifold, say R, even though their values vanish on all points of R. To be concrete,
consider S = R

0|n. R × S then has the sheaf C∞(R)⊗ R[ϑ1, . . . , ϑn]. Now take
another space T that is odd like S, with sheaf R[η1, . . . , ηm]. We consider a map
ψ :R× S→ T , that is ψ :R1|n →R

0|m, given by

C∞(T )=R[η1, . . . , ηm]→ C∞(R)⊗R[ϑ1, . . . , ϑn],
ηj 
→ a

j
k (t)ϑ

k

which we can also write as

ηj (t)= a
j
k (t)ϑ

k.

Of course, this vanishes at all points of R= (R× S)0, but nevertheless it is a non-
trivial morphism.

In the converse direction, let us take n= 1, i.e., consider S =R
0|1, the space with

sheaf R[ϑ] (ϑ2 = 0), and a morphism

S→M0

into some ordinary manifold M0. This is given by an algebra homomorphism

C∞(M0)→R[ϑ],
f 
→ a0(f )+ a1(f )ϑ.

The homomorphism condition implies first that

a0 : C∞(M0)→R,

f 
→ a0(f )

is an algebra homomorphism, and, as is easily derived, it is therefore given by the
evaluation at some point x ∈M0, that is a0(f )= f (x). Secondly we obtain, using
the homomorphism condition,

a0(fg)+ a1(fg)ϑ = (a0(f )+ a1(f )ϑ)(a0(g)+ a1(g)ϑ)

= f (x)g(x)+ (f (x)a1(g)+ g(x)a1(f ))ϑ,

which means that a1 is a derivation over functions, that is, the derivative in the
direction of some tangent vector vx ∈ TxM0,

a1(f )= vxf.

Thus, we could view the super point S with its sheaf R[ϑ] as an abstract (odd)
tangent vector. The maps S→M0 correspond to points in the tangent bundle TM0.
If M is a general supermanifold, the same applies, except that we get a sign from
the odd functions, that is,

a1(fg)= a1(f )g(x)+ (−1)p(f )f (x)a1(g).



1.5 Supermanifolds 89

Thus, a1 is an odd homomorphism from the local ring at x to R.
In any case, we have a projection M →Mr from a supermanifold to its reduced

manifold Mr . Conversely, by Batchelor’s theorem, any smooth supermanifold is
(non-canonically) isomorphic to one of the form (Mr,∧∗V ). Thus, we can obtain
M from the smooth ordinary manifold Mr and a locally free module V over the
sheaf C∞(Mr); namely, M can be obtained as Mr with the sheaf ∧∗V graded by
the exterior degree mod 2, and the inclusion of C∞(Mr) into ∧∗V defines a mor-
phism M →Mr that retracts the embedding of Mr into M . It is important to realize
that these constructions are not canonical, since they are not invariant under auto-
morphisms of M if m ≥ 1, n ≥ 2. Namely, simply consider R

1|2 with coordinates
(x,ϑ1, ϑ2) and the automorphism

(x,ϑ1, ϑ2) 
→ (x + ϑ1ϑ2, ϑ1, ϑ2).

This example also shows us that decompositions of functions according to their
degree are not invariant under automorphisms, and thus not invariant under coor-
dinate transformations. Namely, if we have a function f that, in the coordinates
(x,ϑ1, ϑ2), only depends on x, and if we denote its expression in the new coordi-
nates (x + ϑ1ϑ2, ϑ1, ϑ2) by g, we have

f (x)= g(x + ϑ1ϑ2, ϑ1, ϑ2)

= g0(x)+ g′0(x)ϑ1ϑ2 + g1(x)ϑ
1ϑ2.

Here, we have used the rule (1.5.20) for the Taylor expansion for a function g0 of
the even coordinates, and we then need to add a counter-term g1(x) = −g′0(x) in
order to compensate for the ϑ1ϑ2 term from the Taylor expansion of g0. Note that
here we work over a trivial base S.

If we are Taylor-expanding functions as explained, then if M0 is an ordinary
manifold, that is, a supermanifold with odd dimension 0, and if we consider a map
fS :M0 × S→N , then the odd dimension of S determines the maximal degree oc-
curring in that expansion of fS . In the physics literature, one expresses this by fixing
the number N of Grassmann generators. In the present framework, this corresponds
to the odd dimension of S.

One should also note that a super vector space W =W0 ⊕W1 is not a superman-
ifold, unless the odd part W1 is trivial. If the even and odd part have dimensions m

and n, resp., then W has the underlying structure of an m+ n-dimensional ordinary
vector space, whereas the ordinary manifold Mr underlying an (m|n)-dimensional
supermanifold is only m-dimensional. Of course, one can canonically construct a su-
permanifold from a super vector space, but as such, the two structures of a super
vector space and of a supermanifold are different.

A super Lie group is a supermanifold that is functorially characterized by the
property that for all supermanifolds S, Hom(S,M) is a group such that the group
operations are smooth morphisms of supermanifolds. It can be obtained by exponen-
tiation from a super Lie algebra. More precisely, however, for that exponentiation,
we also need to be able to multiply the elements of the super Lie algebra by the odd
variables ϑj , that is, on the super Lie algebra, we also need the structure of a left
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supermodule over the algebra spanned by the ϑj .18 For a super Lie group H , we
can consider left multiplication by an element h

Lh :H →H, Lh(k)= hk for k ∈H. (1.5.30)

This induces a map (Lh)� on the vector fields on H , given by

((Lh)�X)F :=X(F ◦Lh) for functions F. (1.5.31)

When (Lh)�X = X for all h ∈ H , the vector field is called left-invariant. The left-
invariant vector fields then span a super Lie algebra (with the graded commutator of
vector fields as the bracket) that is also a super module over the odd variables.

To see the principle, we consider R
1|1 with coordinates t, ϑ . This space carries

a super Lie group structure given by

(t1, ϑ1)(t2, ϑ2)= (t1 + t2 + ϑ1ϑ2, ϑ1 + ϑ2). (1.5.32)

The translation in the t -direction is generated by the vector field

∂t

(
:= ∂

∂t

)
, (1.5.33)

the one in the ϑ -direction by

D := ∂ϑ − ϑ∂t . (1.5.34)

We note that D does not induce a morphism in our sense as it changes the parity.
We have the relation

[D,D] = 2D2 =−2∂t . (1.5.35)

(D, ∂t ) constitute a basis of the left invariant vector fields on the super Lie group,
while (Q := ∂ϑ +ϑ∂t , ∂t ) is a basis for the right invariant ones. We shall meet these
vector fields when we consider supersymmetry transformations. The important point
is that they generate diffeomorphisms of the superspace R

1|1.

Remark The treatment of supermanifolds presented here has been developed by
Leites [76], Manin [79], Bernstein, Deligne and Morgan [24], and Freed [39, 40].
Another reference is [102]. The comprehensive presentation of the subject is [11].
The superdiffeomorphism group is investigated in [94].

1.5.3 Super Riemann Surfaces

As an example, we now consider super Riemann surfaces (SRSs). While above,
we have defined supermanifolds over R, it is straightforward to develop the same
constructions over C. An SRS then has one commuting complex coordinate z and

18We only have a supermodule instead of a super vector space because that algebra is only a ring,
but not a field.
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one anticommuting one ϑ . In addition, the coordinate transformations are required
to be superconformal. To explain this, we start with the coordinate transformation
formula for a single supercomplex manifold M of complex dimension (1|1), which
has to be even, that is, of the form

z̃= f (z),

ϑ̃ = ϑh(z)
(1.5.36)

with holomorphic functions f and h where f is required to have a nonvanish-
ing derivative, that is, to be conformal. The structure sheaf is thus of the form
OM =OM,0⊕OM,1 where OM,0 is the sheaf of holomorphic functions on the under-
lying Riemann surface Mr and OM,1 is a sheaf of locally free modules of rank 0|1
over OM,0. Up to a change of parity, this then defines a line bundle L over Mr , and
conversely, given such a line bundle L over Mr , changing the parity of its sections
from even to odd then defines the structure sheaf of supercomplex manifold of di-
mension (1|1). Thus, such (1|1)-dimensional supercomplex manifolds and ordinary
Riemann surfaces with a line bundle L stand in bijective correspondence. When we
look at families of such supercomplex manifolds, however, we may also take base
spaces with odd directions, and we have the more general transformation formula

z̃= f (z)+ ϑk(z),

ϑ̃ = g(z)+ ϑh(z)
(1.5.37)

with holomorphic functions f, k, g,h and f again conformal.
In order to define a super Riemann surface, we require in addition that the struc-

ture be superconformal. This means the following: We look at the derivative opera-
tors ∂z and τ := ∂ϑ + ϑ∂z; they satisfy

1

2
[τ, τ ] = τ 2 = ∂z. (1.5.38)

We have the transformation rule

τ = (τ ϑ̃)τ̃ + (τ z̃− ϑ̃τ ϑ̃)τ̃ 2. (1.5.39)

(To see this, one computes

∂z = (fz + ϑkz)∂z̃ + (gz + ϑhz)∂ϑ̃ , (1.5.40)

∂ϑ = h∂ϑ̃ + k∂z̃, (1.5.41)

τ ϑ̃ = h+ ϑgz, (1.5.42)

τ z̃ = k+ ϑfz (1.5.43)

from which

τ = ∂ϑ + ϑ∂z = (h+ ϑgz)∂ϑ̃ + (k + ϑfz)∂z̃

= (h+ ϑgz)(∂ϑ̃ + ϑ̃∂z̃)− (g + ϑh)(h+ ϑgz)∂z̃ + (k + ϑfz)∂z̃

= (τ ϑ̃)τ̃ + (τ z̃− ϑ̃τ ϑ̃)τ̃ 2 (1.5.44)
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which is the required formula.) In the same manner as for an ordinary Riemann
surface, that is, one with transition functions z̃ = f (z), the holomorphicity of f

implies that ∂z is a multiple of ∂z̃, ∂z = ∂zf ∂z̃. We now require for an SRS that
τ transforms homogeneously, that is, τ is a multiple of τ̃ . In view of (1.5.39), for
a family, this leads to the transformation law

z̃= f (z)+ ϑg(z)h(z),

ϑ̃ = g(z)+ ϑh(z)
(1.5.45)

with

h2(z)= ∂zf (z)+ g(z)∂zg(z). (1.5.46)

Here, f (z) is a commuting holomorphic function with ∂
∂z
f �= 0, i.e., f is conformal,

and g(z) is an anticommuting one.
These transformations then leave the line element dz+ϑdϑ invariant up to con-

formal scaling. (The conformal factor is ∂
∂z
f (z)+ g(z) ∂

∂z
g(z), and one has to use

(1.5.46).)
Given a single SRS ", we can put all the g = 0 and obtain the transformation

rules

z̃= f (z),

ϑ̃ = ϑh(z)
(1.5.47)

with h2(z) = ∂zf (z). The holomorphic transformation functions f of z define an
ordinary Riemann surface "r , but the transformations of the odd coordinate ϑ ad-
ditionally require the choice of a square root h(z) of ∂

∂z
f (z). In other words, they

determine a spin structure on "r . If p is the genus of "r , we have 22p different spin
structures on "r . In particular, we see that the super Teichmüller space of super
Riemann surfaces of genus p has at least 22p components (this does not hold for the
super moduli space, because modular transformations can mix the spin structures).
By the Riemann–Roch theorem (stated in 3 of Sect. 1.4.2 and recalled below), the
number of even moduli (over C) minus the number of conformal transformations of
"r is 3p−3 while the number of odd moduli minus the number of odd superconfor-
mal transformations is 2p−2. (The even moduli here can be identified with sections
of K2, where K is the canonical bundle of the underlying Riemann surface, while
the odd ones correspond to sections of K3/2. The Riemann–Roch theorem says that
the space of sections of a line bundle L over a Riemann surface " of genus p has
dimension

h0(",L)= degL− p+ 1+ h0(",K ⊗L−1) (1.5.48)

and the degree of the canonical bundle is 2p− 2.)
On a sphere, we have no nontrivial spin structures and no super moduli, but, in

agreement with the Riemann–Roch theorem, the superconformal transformations
are of the form f (z) = az+b

cz+d
(with the normalization ad − bc = 1), g(z) = γ z+δ

cz+d
,

that is, 3 even and 2 odd parameters.
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More generally, on the supersphere, when, instead of (1.5.47), we allow for the
general type of coordinate transformations (1.5.37), we obtain the orthosymplectic
group OSp(1/2):

T =
⎛

⎝
a b α

c d β

γ δ t

⎞

⎠ ,

a, b, c, d, t even (commuting), α,β, γ, δ odd (anticommuting).

T stKT =K (T st supertransposed),

with the orthosymplectic form

K =
⎛

⎝
0 1 0
−1 0 0
0 0 1

⎞

⎠ .

The transformation

z 
→ a z+ b+ αϑ

cz+ d + βϑ
, ϑ 
→ γ z+ δ + tϑ

cz+ d + βϑ

leaves the line element dz+ ϑ dϑ invariant up to conformal scaling.
In that case, just to see some formulae,

dz 
→ dz

(cz+ d + βϑ)2
,

z12 = z1 − z2 − ϑ1ϑ2 
→ z12

(cz1 + d + βϑ1)(cz2 + d + βϑ2)
,

dz∧ dϑ 
→ dz∧ dϑ

cz+ d + βϑ
.

Obviously, this extends the operation of Sl(2,C) to the super case.
The supersphere can be covered by two coordinate patches, with transition

z̃= 1

z
, ϑ̃ = iϑ

z
.

(Cf. (1.5.45): Here, h=
√

∂
∂z
f .)

Genus 1 is next. A torus with a spin structure is described by the rigid super
conformal transformation

(z,ϑ)∼= (z+ 1, η1ϑ)∼= (z+ τ, η2ϑ),

where τ is taken from the usual period domain, and the ηi =±1 determine the spin
structure. Since the only holomorphic functions on a torus are the constants, we
obtain a nontrivial supermodulus ν only in the case of a trivial spin structure, that
is, η1 = 1= η2. In that case, the periodicities are

(z,ϑ)∼= (z+ 1, ϑ)∼= (z+ τ + ϑν,ϑ + ν).
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In agreement with Riemann–Roch, we then also have the odd superconformal trans-
formation given infinitesimally as

(z,ϑ) 
→ (z+ ϑε,ϑ + ε).

In particular, we see that there can exist nontrivial odd moduli, and the supermoduli
space is bigger than just the moduli space of ordinary Riemann surfaces with spin
structures. We observe, however, that ε 
→ −ε is a superconformal transformation,
and so the supertori corresponding to ε and−ε are equivalent. Thus, the correspond-
ing component of the supermoduli space is a Z2 super orbifold, with a singularity at
ε = 0.

When we look at functions on this super torus, we obtain the periodicity condi-
tion

f (z,ϑ)= f (z+ τ + ϑν,ϑ + ν),

that is, after Taylor expanding,

f0(z)+ f1(z)ϑ = f0(z+ τ)+ f ′0(z+ τ)ϑν + f1(z+ τ)(ϑ + ν)

which implies that f ′0 vanishes when ν �= 0, that is, f0 is constant (over a trivial base
S again). f1 is less trivial. The situation becomes richer when we look at mappings
between two such supertori, with moduli (τ, ν) and (τ̃ , ν̃), resp. We then expand to
obtain

f0(z)+ τ̃ + f1(z)ϑν̃ = f0(z+ τ)+ f ′0(z+ τ)ϑν

and

f1(z)ϑ + ν̃ = f1(z+ τ)(ϑ + ν).

The first equation expresses f ′0 in terms of f1 or conversely, while the second one
restricts f1. However, we should be careful here as f0 need not be holomorphic, and
so f ′0 stands for a (2× 2)-matrix.

Remark For a treatment of super Riemann surfaces as needed for superstring theory,
we refer to Crane and Rabin [21, 89] and Polchinski [88]. A general mathematical
perspective is developed by Leites and his coauthors in [32]. A very lucid discussion,
which we have also partly utilized here, can be found in [93].

We should note that the above definition is not the only possible for an SRS. In
fact, there are several superextensions of the conformal algebra, and each of them
could be taken as the basis for the definition of an SRS. The one used here corre-
sponds to the superconformal algebra kL(1|1) and yields the N = 1 worldsheets of
superstring theory and 2D supergravity.

1.5.4 Super Minkowski Space

Now assume that we have a vector space V with a quadratic form Q and a represen-
tation of the Clifford algebra Cl(Q) for which a symmetric equivariant morphism �
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as in (1.3.25) exists. Following the presentation in [22], we may then construct an
object that captures deeper aspects of the physical concept of supersymmetry than
just a supermanifold, namely a space that incorporates the symmetry between vec-
tors and spinors as representations of bosons and fermions, resp. For that purpose,
we consider the vector space V as the Lie algebra of its translations, and construct
the super Lie algebra

l := V ⊕ S� (1.5.49)

and the bracket [., .]. This bracket is trivial on V (that is, V is central) and is given
by

[s, t] = −2�(s, t) ∈ V (1.5.50)

on S�. Super Minkowski space M is then defined as the supermanifold underlying
the Lie group exp(l); its reduced space is thus given by the affine space V , and its
odd directions are given by S�.

In the Minkowski case, the super Lie algebra (1.5.49) leads to the super Poincaré
algebra

(V ⊕ so(V ))⊕ S�. (1.5.51)
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Chapter 2
Physics

2.1 Classical and Quantum Physics

2.1.1 Introduction

In this section, we will describe some important principles at a heuristic level. We
hope this will be useful as a guide to some of the sequel which is more formal, but
whenever the meaning of this section appears unclear, the reader should proceed
to the more formal treatment below. There are many textbooks available on the
mathematical aspects of quantum mechanics, for instance [53].

Classically, a particle is represented as or described by a point in some state
space M . It moves in time along some trajectory x(t) that is a solution of a system
of second-order ODEs (a dot denoting a derivative with respect to time t ),

ẍ(t)= f (x, ẋ) (2.1.1)

that is derived from an action principle. This principle consists in minimizing the
Lagrangian action

S(x) :=
∫
F(x(t), ẋ(t)) dt, (2.1.2)

the integral w.r.t. time over some Lagrangian that is a function of x and its first tem-
poral derivative.1 As will be discussed in more detail in Sect. 2.3.1 below, a mini-
mizing x(t) satisfies the corresponding Euler–Lagrange equations

d

dt

dF

dẋ
− dF

dx
= 0. (2.1.3)

Here, the space M is d-dimensional, and in local coordinates x = (x1, . . . , xd).
Alternatively, one may utilize the 2d-dimensional phase space N with coordinates
(x1, . . . , xd, xd+1 = ẋ1, . . . , x2d = ẋd ).

dF
dẋ

stands for the covector of partial derivatives ( ∂F
∂ẋ1 , . . . ,

∂F
∂ẋd
). When one intro-

duces this covector as a new variable, that is, puts

p := dF

dẋ
, i.e., pj := ∂F

∂ẋj
(2.1.4)

1We consider here only the autonomous case; in the non-autonomous case, the density may also
explicitly depend on t , F(t, x(t), ẋ(t)), and not only implicitly through its dependence on x(t)
and ẋ(t).
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one arrives at the Hamiltonian formulation. This involves the Hamiltonian

H(p,x) := ẋ dF
dẋ

− F (2.1.5)

where ẋ dF
dẋ

=∑
j ẋ
j ∂F
∂ẋj

=∑
j ẋ
jpj . A solution is then obtained from the Hamilton

equations

ṗ = −dH
dx
, ẋ = dH

dp
. (2.1.6)

The Hamiltonian formalism singles out time and is therefore not relativistically in-
variant. Consequently, in our treatment of QFT, we shall mainly employ the La-
grangian formalism.

The standard example is

F = m

2
|ẋ|2 − V (x), (2.1.7)

where m is the mass of the particle and V the potential. The Euler–Lagrange equa-
tions (2.1.3) are then

mẍ = −dV
dx

(2.1.8)

(in components: mẍi = − ∂V
∂xi

). The Hamiltonian is then

H = m

2
|ẋ|2 + V (x)= p2

2m
+ V (x), (2.1.9)

and (2.1.6) becomes

ṗ = −dV
dx
, ẋ = p

m
. (2.1.10)

For a solution (x(t),p(t)) of (2.1.6), we can then also compute the time evolution
of any function A(x,p) via

dA

dt
= ∂A

∂xi
ẋi + ∂A

∂pi
ṗi = ∂A

∂xi

∂H

∂pi
− ∂A

∂pi

∂H

∂xi
=: {A,H }, (2.1.11)

where the last expression is called the Poisson bracket. It satisfies all the proper-
ties of a Lie bracket, as well as the canonical relations (Heisenberg commutation
relations)

{xi, xj } = 0 = {pi,pj } and {xi,pj } = δij . (2.1.12)

Equation (2.1.11) is obviously a generalization of (2.1.6) (in the sense that ẋi =
{xi,H }, ṗj = {pj ,H }), and it also tells us that conserved quantities, that is, time-
independent quantities, are precisely those whose Poisson bracket with the Hamil-
tonian H vanishes.
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Quantum mechanics was discovered by Heisenberg and developed with Born and
Jordan as the description of quantum theory through the correspondence with clas-
sical mechanics via matrix algebra. We now describe this, employing more modern
terminology, of course. Quantum mechanically, in place of a point x inM , we have
a probability distribution |φ(x)|2 derived from a function φ :M → C with

‖φ‖2
L2

(
=
∫

M

|φ|2(x)dvol(x)

)
= 1. (2.1.13)

|φ(x)|2 can thus be interpreted as the probability density for finding the particle un-
der consideration at the point x. Here, for the L2-norm, we need a volume form dvol
on M ; that volume form could come from a Riemannian metric. The classical case
is recovered as the limit where this probability distribution becomes concentrated at
a single point, that is, a delta function(al). In quantum mechanics, the observables
are self-adjoint operators on the Hilbert space H := L2(M,C). As self-adjoint op-
erators, they have a purely real spectrum. The eigenvalues corresponding to eigen-
states of such an operator then represent sharp observations. These operators, how-
ever, are typically unbounded which leads to certain mathematical difficulties, as
will be described in more detail in Sect. 2.1.3 below.

In the formalism of canonical quantization, the momentum pj becomes the op-
erator �

i
∂
∂xj

. The total energy, the Hamilton function above, thus also becomes an
operator, the Hamiltonian operator H , and the state φ evolves in time t according to
the Schrödinger equation

i�
∂φ(x, t)

∂t
=Hφ(x, t). (2.1.14)

For the Lagrangian (2.1.7), the Schrödinger equation (2.1.14) becomes

i�
∂φ(x, t)

∂t
= − �

2

2m
�φ(x, t)+ V (x)φ(x, t). (2.1.15)

The ansatz φ(x, t)= φ(x) exp(− i
�
Et) of separated variables leads to

− �
2

2m
�φ(x)+ V (x)φ(x)=Eφ(x), (2.1.16)

the time-independent Schrödinger equation.
We can arrive at (2.1.15) from the ansatz of representing φ(x, t) as a wave:

φ(x, t)= 1

2π3/2
exp

i

�
(pνx

ν −Et)=: 〈x, t |p,E〉, (2.1.17)

where we have already introduced Dirac’s notation to be explained below. Then

∂

∂xν
φ(x, t) = i

�
pjφ(x, t), (2.1.18)
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∂

∂t
φ(x, t) = − i

�
Eφ(x, t). (2.1.19)

On the basis of this computation, we then put

∂

∂xν
= i

�
pj , (2.1.20)

∂

∂t
= − i

�
E. (2.1.21)

For the Hamiltonian (2.1.9), we are then naturally led to (2.1.15), and with the ansatz
φ(x, t)= φ(x) exp(− i

�
Et) at (2.1.16).

Remark We use here the so-called Schrödinger picture where the states φ are evolv-
ing in time. In the complementary Heisenberg picture, instead the observables, rep-
resented as self-adjoint operators A, evolve according to

i�
dA

dt
= [A,H ], (2.1.22)

in analogy to (2.1.11), see (2.1.92), (2.1.93).

In the quantum mechanical view, the field φ :M → C is obtained from the quantiza-
tion of a point particle. There is, however, another interpretation of φ that turns out
to be more fruitful for our purposes. Namely, we can view φ also as a classical field
on M . It then need no longer satisfy the normalization ‖φ‖L2 = 1. Also, it need no
longer take its values in C only, but it can also assume values in the fibers of some
vector or principal bundle or some manifold. As a classical situation, it can then be
quantized again, and one then speaks of a second or field quantization. The analog
of the Schrödinger equation is then a PDE on some function space, that is, a PDE
with infinitely many variables.

There is an important generalization of this picture: When the particle possesses
some internal symmetry, described by some Lie group G, the space C gets re-
placed by a (Hermitian) vector space that carries a (unitary) representation of G.
Thus, a particle is described by some ψ ∈ L2(M,V ), again of norm 1, so that ‖ψ‖2

(where ‖.‖ is the Hermitian norm) can again be interpreted as a probability density.
The vector space V enters here in order to distinguish different states that are not
G-invariant, asG leaves the space V invariant, but not the individual elements of V .
This is needed because not all physical forces will beG-invariant. An example is the
electron with its spin. Since there are only two possible values of the spin, here the
vector space is finite, Z2, and the corresponding Hilbert space is finite-dimensional,
C

2. Quantum electrodynamics (QED) then couples the Maxwell equation with the
Dirac equation for the electron spin on a relativistic space time. The standard model
of elementary particle physics interprets the observed multitude of particles through
symmetry breaking from some encompassing Lie group Ḡ that contains all the sym-
metry groups of the individual particles. Of course, we shall explain this in more
detail below. A quick and useful introduction to the topics of this section can be
found in [90].
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2.1.2 Gaussian Integrals and Formal Computations

Before proceeding with quantum physics, we introduce a basic formal tool,
Gaussian integrals, that serve as a heuristic transmission line from finite-dimensional
exponential integrals to infinite-dimensional functional integrals.

We start with the bosonic case. Let A be a symmetric n× n-matrix with eigen-
values

λi > 0, (2.1.23)

and let b be a vector.
The Gaussian integral (x = (x1, . . . , xn)) is

I (A) :=
∫

exp

(
−1

2
xtAx

)
dx1 · · ·dxn =

(
(2π)n

detA

) 1
2

(2.1.24)

with detA=∏n
i=1 λi , as follows easily by diagonalizing A. A formal extension of

this formula to infinite dimensions is often based on expressing the determinant of
A in terms of a zeta function; we define the zeta function of the operator A as

ζA(s) :=
n∑

k=1

1

λsk
, for s ∈ C. (2.1.25)

Since λ−s
k = e−s log s , we obtain for the derivative of the zeta function

ζ ′
A(s)= −

n∑

k=1

logλk
λsk

. (2.1.26)

Therefore, we can express the determinant of A in terms of the derivative of the zeta
function at 0:

detA=
n∏

i=1

λi = e−ζ ′
A(0). (2.1.27)

The general Gaussian integral

I (A,b) :=
∫
dx1 · · ·dxn exp

(
−1

2
xtAx + btx

)
(2.1.28)

is reduced to this case by putting

x :=A−1b+ y
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(note that x0 := A−1b minimizes the quadratic form 1
2x
tAx − btx). Namely, we

obtain

I (A,b)= exp

(
1

2
btA−1b

)∫
exp

(
−1

2
ytA y

)
dy1 · · ·dyn

= exp

(
1

2
btA−1b

)(
(2π)n

detA

) 1
2

= (2π)n/2 exp

(
1

2
btA−1b

)
e

1
2 ζ

′
A(0), (2.1.29)

using (2.1.27) for the last line.
In many cases, the vector b has an auxiliary or dummy role. Namely, we wish to

compute moments

〈xi1 · · ·xim〉 :=
∫
xi1 · · ·xim exp(− 1

2x
tAx)dx1 · · ·dxn

∫
exp(− 1

2x
tAx)dx1 · · ·dxn

= 1

I (A)

∂

∂bi1
· · · ∂

∂bim
I (A,b)|b=0. (2.1.30)

In particular, the second-order moment or propagator is

〈xixj 〉 = (
A−1)

ij
. (2.1.31)

When m is odd, the moment (2.1.30) vanishes because the (quadratic) exponential
is even at b= 0.

For even m, we have Wick’s theorem

〈xi1 · · ·xim〉 =
∑

all possible
pairings of
(i1,...,im)

(
A−1)

ip1 ip2
· · · (A−1)

ipm−1 ipm
(2.1.32)

as follows directly from (2.1.29) and (2.1.30).
As a preparation for the functional integrals to follow, we now wish to consider

xi as an operator on the finite-dimensional Hilbert spaceEn = R
n with its Euclidean

product. We then have the matrix elements

〈ei |xi1 · · ·xim |ej 〉

=
∫
xi1 · · ·ximδ(xi − 1)δ(xj − 1) exp(− 1

2x
tAx)dx1 · · ·dxn

∫
exp(− 1

2x
tAx)dx1 · · ·dxn .

Instead of the δ-functions, one can then also make arbitrary insertions into the func-
tional integral, that is, functions of x.
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In the Grassmann case, we start with a Grassmann algebra generated by
η1, . . . , ηn, η̄1, . . . , η̄n

J0(A) :=
∫
dη1 dη̄1 · · ·dηn dη̄n exp

(−η̄tAη)

=
∫
dη1 dη̄1 · · ·dηn dη̄n

n∏

i=1

n∏

j=1

(
1 − η̄iAij ηj

)

=
∑

permutations p

sign(p)A1p(1) · · ·Anp(n)

= detA. (2.1.33)

We next compute, for a Grassmann algebra generated by ϑ1, . . . , ϑ2n,

J (A)=
∫
dϑ1 · · ·dϑ2n exp

(
−1

2
ϑtAϑ

)
. (2.1.34)

We may assume that A is antisymmetric, as the symmetric terms cancel because the
ϑ ’s anticommute:

J (A)=
∫
dϑ1 · · ·dϑ2n

∏

i<j

(
1 − ϑiAijϑj

)

=
∑

permutations p
with p(2i−1)<p(2i),
p(2i−1)<p(2i+1)

for i=1,...,n, or n−1, resp.

sign(p)Ap(1)p(2)Ap(3)p(4) · · ·Ap(n−1)p(n)

=: Pf(A) (Pfaffian). (2.1.35)

We have

J 2(A)=
∫
dϑ1 · · ·dϑ2n dϑ ′1 · · ·ϑ ′2n exp

(
−1

2

(
ϑtAϑ + ϑ ′tAϑ ′)

)
. (2.1.36)

The coordinate transformation

ηk := 1√
2

(
ϑk + iϑ ′k),

η̄k := 1√
2

(
ϑk − iϑ ′k),

has the Jacobian (−1)n and satisfies ϑiϑj + ϑ ′iϑ ′j = η̄iηj − η̄j ηi .
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Using the antisymmetry of A, we obtain

J 2(A)=
∫
dη1 dη̄1 · · ·dηn dη̄n exp

(−η̄tAη)

= detA (2.1.37)

from (2.1.33). From (2.1.34), (2.1.35), (2.1.37) we see

Pf2(A)= detA, (2.1.38)

that is,

J (A)= (detA)
1
2 . (2.1.39)

As in the ordinary case, we also have

J (A,b)=
∫
dϑ1 · · ·dϑ2n exp

(
−1

2
ϑtAϑ + btϑ

)

= J (A) exp

(
1

2
btA−1b

)
(2.1.40)

and likewise

〈ϑiϑj 〉 = 1

J (A)

∂

∂bj

∂

∂bi
J (A,b)|b=0

= (A−1)ij .

Another formal tool that is useful in this context are formal computations with
Dirac functions. In the physics literature, linear functionals on space of functions are
systematically expressed by their integral kernels. Thus, the evaluation of a function
ϕ at a point y

ϕ 	→ ϕ(y) (2.1.41)

is written in terms of the Dirac δ-functional

ϕ(y)=
∫
dzϕ(z)δ(z− y)= δy(ϕ). (2.1.42)

If we change the variable z= f (w), this becomes

ϕ(y)=
∫
dw

∣∣∣∣det
∂f

∂w

∣∣∣∣ϕ(f (w))δ(f (w)− y). (2.1.43)

This formula is useful for calculating ϕ(f (w)) at f (w)= y, without having to solve
the latter equation explicitly.

In analogy to (2.1.42), we also have

∂

∂yj
ϕ(y)=

∫
dz

∂

∂yj
ϕ(z)δ(z− y)= −

∫
dzϕ(z)

∂

∂yj
δ(z− y) (2.1.44)
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if we formally integrate by parts. Thus, we can define the derivative ∂
∂yj
δ(z− y) of

the delta function δ(z− y) as the functional

ϕ 	→ − ∂

∂yj
ϕ(y). (2.1.45)

We now consider a functional �

ϕ 	→�(ϕ)

defined on some Banach or Fréchet space B. The Gateaux derivative δ� in the
direction δϕ is defined as

δ�(ϕ)(δϕ) := δ�(ϕ)

δϕ
:= lim

t→0

1

t
(�(ϕ + tδϕ)−�(ϕ)), (2.1.46)

provided this limit exists. Here, δϕ is, of course, also assumed to be in B. When the
limit in (2.1.46) exists uniformly for all variations δϕ in some neighborhood of 0,
we speak of a Fréchet derivative. Some formal examples:

δϕ(f )n(δϕ) = nδϕ(f )ϕ(f )n−1, (2.1.47)

δeϕ(f )(δϕ) = δϕ(f )eϕ(f ). (2.1.48)

We are usually interested in Lagrangian functionals,

L(u) :=
∫
F(ξ,u(ξ), du(ξ)) dξ. (2.1.49)

L is usually defined on some Sobolev space of functions. We then have

δL(u)(δu)= δL(u)

δu
= d

ds

∫
F(ξ,u(ξ)+ sδu(ξ), d(u(ξ)+ sδu(ξ))) dξ|s=0.

(2.1.50)
The question arises as to which variations δu one may take here. One class of vari-
ations is given by the test functions, that is, the functions from the space D := C∞

0
of infinitely often differentiable functions with compact support. That space is not
a Banach space, but only a limit of Fréchet spaces with topology generated by
the seminorms |f |k,K := supx∈K |Dkf (x)| for nonnegative integers k and compact
sets K . Its dual space D′, that is, the space of continuous functionals on D, is the
space of distributions. The best-known distribution is of course the Dirac distrib-
ution already displayed in (2.1.42) above. Conceiving the Dirac functional as an
element of D′, that is, as an operation on smooth functions (in fact, continuous
functions are good enough here), is the Schwartz point of view. A different point of
view, which does not need topologies with unpleasant properties (for example, the
implicit function theorem is very cumbersome in Fréchet spaces) and is more useful
in nonlinear analysis, is the one of Friedrichs, which considers the Dirac function as
a limit of smooth integral kernels with compact support that in the limit shrinks to
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a point. One then, in effect, never needs to carry out any formal manipulation with
the Dirac function(al) itself, but only ones with such smooth integral kernels. The
Dirac point of view, finally, simply performs formal operations with the Dirac func-
tion. Thus, the different approaches consist in justifying, avoiding, or performing the
Dirac function computations. The Dirac approach is prominent in the physics litera-
ture, and we shall also follow that here, because we are assured that these operations
can be made mathematically rigorous by either of the other two approaches.

Having said that, we then also take functional derivatives in the direction of Dirac
functions. That means considering

δ�

δϕ(z)
:= lim

t→0

1

t
(�(ϕ(y)+ tδ(y − z))−�(ϕ(y))) . (2.1.51)

For (2.1.49), (2.1.50), we then have the formal relation

δL(δu)=
∫
dξδu(ξ)

δL

δu(ξ)
, (2.1.52)

with the consistency relation

δL

δu(z)
=
∫
dξδ(z− ξ) δL

δu(ξ)
. (2.1.53)

Thus, δL
δu(z)

measures the response of L to a change in u supported at z.
We also have

δ

δϕ(z)
ϕ(x)= δ(x − z) (2.1.54)

and

δ

δϕ(z)

∫
dxϕn(x)= nϕn−1(z). (2.1.55)

Looking at (2.1.42), (2.1.51), (2.1.54), we see that the operations with the Dirac δ-
function are simply formal extensions of the ones with the Kronecker symbol in the
finite-dimensional case.

In the Grassmann case, the Dirac δ-function is

δ(ϑ)= ϑ =
∫
dη exp(ηϑ) (2.1.56)

satisfying
∫
dϑδ(ϑ)f (ϑ)= f (0), for f (ϑ)= f (0)+ aϑ. (2.1.57)

For more details on the formal calculus, see [114].
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2.1.3 Operators and Functional Integrals

In this section, we want to amplify the discussion of Sect. 2.1.1 and introduce
path integrals. We want to investigate the time evolution of a quantized particle.
This is described by a complex-valued wave function φ(x, t) whose squared norm
|φ(x, t)|2 represents the probability density for finding the particle at time t at the
position x ∈M . Here, φ(x, t) is assumed to be an L2-function of x so that the total
probability can be normalized:

∫

M

|φ(x, t)|2dvol(x)= 1 (2.1.58)

for all t . For a measurable subset B of M , the probability for finding the particle in
B at time t is then given by

∫

B

|φ(x, t)|2dvol(x). (2.1.59)

More abstractly, a pure state |ψ〉 of a quantum mechanical system is a one-
dimensional subspace, which we then represent by a unit vector ψ , in some Hilbert
space H. The scalar product is written as 〈φ|ψ〉; here, by duality, we may also con-
sider 〈φ| as an element of the dual space H∗. For a pure state ψ , we let Pψ be the
projection onto the one-dimensional subspace defined by ψ . As a projection, Pψ is
idempotent, that is, P 2

ψ = Pψ . Then

|〈φ,ψ〉|2 = 〈Pφψ,ψ〉 = trPφPψ (2.1.60)

is the probability of finding the system in the state φ when knowing that it is in the
state ψ . Let us assume that for some map T on the states of H, we have

|〈T φ,T ψ〉|2 = |〈φ,ψ〉|2 (2.1.61)

for all φ,ψ , that is, the probabilities are unchanged by applying T to all states. By
a theorem of Wigner, T can then be represented by a unitary or antiunitary operator
UT of H, that is T ψ =UT ψ for all ψ .2

The observables are self-adjoint (Hermitian) operators A on H, typically un-
bounded. Being self-adjoint, their spectrum is real. The state |ψ〉 then also defines
an observable, the projection Pψ . The expectation value of the observable A in the
state |ψ〉 is given by

〈ψ,Aψ〉 = trAPψ (2.1.62)

2In particular, connected groups of automorphisms G of H are represented by unitary transforma-
tions of H—with the following note of caution: UT is determined by T only up to multiplication
by a factor of norm 1. Therefore, in general, we only obtain a projective representation ofG, that is,
we only obtain the group law Ugh = c(g,h)UgUh for some scalar factor c(g,h) of absolute value
1. It is, however, possible, to obtain an honest unitary representation by enlarging the group G.
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(assuming that ψ is contained in the domain of definition of A). This includes
(2.1.60) as a special case. When ψ is an eigenstate of A, that is,

Aψ = λψ (2.1.63)

for some (real) eigenvalue λ, then this λ is the expectation value of A in the state ψ .
The variance of the probability distribution for the observations of the values of A
for a system in state ψ is then

〈ψ,A2ψ〉 − 〈ψ,Aψ〉2. (2.1.64)

This variance vanishes iff (2.1.63) holds, that is, iff ψ is an eigenstate of A. That
means that an observable A takes precise values precisely on its eigenstates.

Let G be a group, like SO(3) or SU(2), acting on H by unitary transformations.
An observable A is called a scalar operator when it commutes with the action of G.
Then, if ψ is an eigenstate of A with eigenvalue λ, for all g ∈G,

Agψ = gAψ = gλψ = λgψ. (2.1.65)

Thus, the space of eigenstates with eigenvalue λ is invariant under the action of G.
As such an invariant subspace, it could be reducible or irreducible. In the latter case,
the degeneracy of the eigenvalue λ equals the dimension of the corresponding irre-
ducible representation of G. These dimensions are known by representation theory,
see [45, 75]. If one then perturbs the operatorA to an operatorA′ that is no longer in-
variant under the action ofG, the multiplicity of the eigenvalue λwill decrease. This
is important for understanding many experimental results. The operator A might be
the Hamiltonian H0 of a system invariant under some group G, say of spatial ro-
tations. Its eigenvalues are the energy levels, and because of the invariance, they
are degenerate. H0 then is perturbed to H = H0 +H1 by some external magnetic
field in some direction which then destroys rotational invariance. Then the energy
levels, the eigenvalues of the new Hamiltonian H split up into several values. Often
H1 is small compared to H0, and one can then approximate these energy levels by
a perturbative expansion of H around H0.

We return to the general theory. When the spectrum of A is discrete, and |a〉 runs
through a complete set of orthonormal eigenvectors of A, we have the relation

∑

|a〉
|a〉〈a| = id, (2.1.66)

the identity operator on H. Applying this to |ψ〉 ∈ H yields

∑

|a〉
|a〉〈a|ψ〉 = |ψ〉, (2.1.67)

which is simply the expansion of |ψ〉 in terms of a Hilbert space basis. When the
eigenvalue of A corresponding to the eigenstate |a〉 is denoted by a, that is, A|a〉 =
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a|a〉, we have the relationships

A|ψ〉 =
∑

|a〉
A|a〉〈a|ψ〉 =

∑

|a〉
a|a〉〈a|ψ〉 and (2.1.68)

〈φ|A|ψ〉 =
∑

|a〉
〈φ|A|a〉〈a|ψ〉 =

∑

|a〉
a〈φ|a〉〈a|ψ〉. (2.1.69)

When the spectrum of the operator A is continuous, the sums in the preceding rela-
tions are replaced by integrals; for instance

〈φ|A|ψ〉 =
∫

a

da a〈φ|a〉〈a|ψ〉. (2.1.70)

This is rigorously investigated in von Neumann’s spectral theory of (unbounded)
self-adjoint operators on Hilbert spaces. Let us briefly describe this, referring e.g.
to [100, 110] for details (the knowledgeable reader may of course skip this).

A family of projections E(a) (−∞ < a <∞) in a Hilbert space H is called
a resolution of the identity iff for all a, b ∈ R

1.

E(a)E(b)=E(min(a, b)), (2.1.71)

2.

E(−∞)= 0, E(∞)= Id (2.1.72)

(here, E(−∞)|φ〉 := lima↓−∞E(a)|φ〉, E(∞)|φ〉 := lima↑∞E(a)|φ〉 for |φ〉 ∈
H),

3.

E(a + 0)=E(a) (2.1.73)

(E(a + 0)|φ〉 := limb↓0E(b)|φ〉).
For a continuous function f : R → C, one can then define
∫ A2

A1

f (a)dE(a)|φ〉 := lim
max |ak+1−ak |→0

∑

k

f (αk)(E(ak+1)−E(ak))|φ〉 (2.1.74)

for A1 = a1 < a2 · · ·< an =A2 and αk ∈ (ak, ak+1] (a limit of Riemann sums), and
∫
f (a)dE(a)|φ〉 := lim

A1↓−∞,A2↑∞

∫ A2

A1

f (a)dE(a)|φ〉 (2.1.75)

whenever that limit exists. This is the case precisely if
∫

|f (a)|2 d‖E(a)|φ〉‖2 <∞ (2.1.76)

where ‖.‖ is the norm in the Hilbert space H. For such |φ〉,
|ψ〉 →

∫
f (a)d〈ψ |E(a)|φ〉 (2.1.77)
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defines a bounded linear functional on H. In other words, we have a self-adjoint
operator G with

〈ψ |G|φ〉 =
∫
f (a)d〈ψ |E(a)|φ〉 (2.1.78)

defined for those |φ〉 and all |ψ〉 ∈ H. The central result is that every self-adjoint
operator A on the Hilbert space H admits a unique spectral resolution, that is, can
be uniquely written as

A=
∫
a dE(a), (2.1.79)

in the sense that

〈ψ |A|φ〉 =
∫
a d〈ψ |E(a)|φ〉 (2.1.80)

for all |φ〉 in the domain of definition of A and all |ψ〉 ∈ H. This is the meaning
of (2.1.70).

On this basis, one can define the functional calculus for self-adjoint operators
and put

f (A) :=
∫
f (a)dE(a) (2.1.81)

for a function f : R → C when (E(a)) is the spectral resolution of A. f (A) is
then also a self-adjoint operator. When f is an exponential function, for example,
this leads to the same result as defining eA directly through the power series of the
exponential function.

The correspondence between classical and quantum mechanics consists in the
requirement that the quantum mechanical operators x̂, p̂ corresponding to position
x and momentum p satisfy the operator analogs of (2.1.12), that is,

[x̂i , x̂j ] = 0 = [p̂i , p̂j ] and [x̂j , p̂k] = i�δjk , (2.1.82)

with the commutator of operators,

[A,B] =AB −BA (2.1.83)

in place of the Poisson bracket. The factor i in (2.1.82) comes from the fact that the
commutator of two Hermitian operators is skew Hermitian.

|x〉 then denotes the state where the particle is localized at the point x ∈M , i.e.,
the probability to find it at x is 1, and 0 elsewhere. When M is the real line R, that
is, one-dimensional, this is an eigenstate of the position operator x̂, that is,

x̂|x〉 = |x〉x (2.1.84)

corresponding to the eigenvalue x. In R
d , the components xi , i = 1, . . . , d, are the

eigenvalues of the corresponding operators x̂i , and

x̂i |x〉 = |x〉xi . (2.1.85)
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One should note that these operators are unbounded, and in our above L2-space,
the states |x〉 are represented by Dirac functionals δ(x), that is, they are not
L2-functions. Functional analysis provides concepts for making this entirely rigor-
ous. In fact, according to spectral theory as presented above, we consider the Hilbert
space L2(R) and write the operator as

A|φ〉(x)= x|φ〉(x), (2.1.86)

which then admits the spectral resolution

A=
∫
a dE(a) (2.1.87)

with

E(a)|φ〉(x)=
{

|φ〉(x) for x ≤ a,
0 for x > a.

(2.1.88)

Returning to (2.1.84), we see that the spectrum of the position operator x̂ on R

consists of the entire real line.
The established notation usually leaves out the hats, that is, writes x both for the

position at a point inM and the corresponding operator on H that has been called x̂
in (2.1.84). We shall also do that from this point on.

With these conventions, the Schrödinger equation (2.1.14) becomes

i�
∂

∂t
|ψ(t)〉 =H |ψ(t)〉. (2.1.89)

H , the Hamiltonian, here is a self-adjoint (Hermitian) operator, that is, an observ-
able, in fact the most basic one of the whole theory.

The solution of (2.1.89) can be expressed by functional calculus as

|ψ(t)〉 = e− i
�
tH |ψ(0)〉. (2.1.90)

Here the exponential of −H is defined through the usual power series of the expo-

nential function, or better, via (2.1.81). Since H is Hermitian, the operators e− i
�
tH

are unitary. Thus, the state |ψ〉 evolves by unitary transformations.
By taking ∂

∂t
of (2.1.90), we see that formally it satisfies the Schrödinger equation

(2.1.89), indeed. From (2.1.90), we also infer the semigroup property

|ψ(t)〉 = e− i
�
(t−τ)H |ψ(τ)〉 = e− i

�
(t−τ)H |e− i

�
τH |ψ(0)〉. (2.1.91)

Thus, the solution at time t is obtained from the solution at time τ by applying the
solution operator for the remaining time t − τ (0 < τ < t). We express the rela-
tion between (2.1.110) and (2.1.109) also by saying that − i

�
H is the infinitesimal

generator of the semigroup e− i
�
tH . For an account of the mathematical theory of

semigroups for partial differential equations, we refer to [63].
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In this Schrödinger picture, the states evolve in time, whereas the observables
don’t. In the Heisenberg picture, this relation is reversed. The states are time-
independent, whereas the operators representing the observables change in time,
according to

i�
dA

dt
= [A,H ] (2.1.92)

whose solution is

A(t)= e i�HtA(0)e− i
�
Ht . (2.1.93)

The Schrödinger and the Heisenberg picture are equivalent insofar as they yield the
same probability density for the outcome of observations. This is expressed by the
relation

〈φ(t)|A(0)|ψ(t)〉 = 〈φ(0)|e i�HtA(0)e− i
�
Ht |ψ(0)〉 = 〈φ(0)|A(t)|ψ(0)〉 (2.1.94)

where we have used (2.1.90) and (2.1.93).
From (2.1.92), we also see that A is conserved precisely if it commutes with H .

In that case, the quantity in (2.1.94) is constant in time, equaling

〈φ(0)|A(0)|ψ(0)〉. (2.1.95)

Experimental interactions are formally described by the S-matrix. It is assumed that
a state is prepared to have a definite particle content α for t → −∞ (that is, before
the interaction takes place); this is the in state ψ+

α . The interactions take place at fi-
nite time, and one then measures the out state ψ−

β with particle content β for t → ∞
(that is, after the interaction has taken place). Then, the probability amplitude for the
transition is

Sβα = 〈ψ−
β ,ψ

+
α 〉. (2.1.96)

The Sβα are the components of the S-matrix. It is assumed here that these values are
computed for complete sets of orthonormal in and out states, so that the S-matrix
has to be unitary.

We consider once more the Hamiltonian (2.1.9). x is the position operator, and
a particle that is located at a point x ∈M (note that we use the same symbol for
the position and the position operator) is then in the eigenstate |x〉 of the position
operator (note that this eigenstate in general will not be contained in the Hilbert
space L2(M), but is instead given by a delta functional δx ). If the particle is in the
state |x〉 at time 0, then by the solution of the Schrödinger equation (2.1.90), at time
t it will be in the state

e−
i
�
tH |x〉. (2.1.97)

More generally, the probability amplitude 〈x′′, t ′′|x′, t ′〉 that a particle starting at x′
at time t ′ will be at x′′ at the time t ′′ > t ′ is given by

〈x′′, t ′′|x′, t ′〉 = 〈x′′|e− i
�
H(t ′′−t ′)|x′〉, (2.1.98)
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the projection of the state e− i
�
H(t ′′−t ′)|x′〉 obtained from the solution of the

Schrödinger equation onto the state |x′′〉.
By formal functional calculus, this is expressed as a Feynman functional integral

〈x′′|e− i
�
H(t ′′−t ′)|x′〉 =

∫
Dx exp

(
i

�
L(x)

)
(2.1.99)

=
∫
Dx exp

(
i

�

∫ t ′′

τ=t ′

(
m

2
|ẋ(τ )|2 − V (x(τ))

)
dτ

)
(2.1.100)

for our standard example (2.1.7). Here, Dx symbolizes a formal measure on the
space of all paths starting at time t ′ at x′ and ending at time t ′′ at x′′, according to
the interpretation given in many texts. One should point out here, however, that this
measure by itself is not well defined. What one can hope to attach a mathematical
meaning to is only the entire integrand Dx exp(iL(x)) in (2.1.99) as a functional
measure on the path space. This is in analogy with the Wiener measure where one
considers the probability density p(x′′, t ′′|x′, t ′) for a particle starting at time t ′ at
x′ and ending up at time t ′′ at x′′ under the influence of the potential V (x), that is,
governed by the Lagrangian (2.1.7),

F = m

2
|ẋ|2 − V (x). (2.1.101)

The probability density evolves according to the heat equation

∂φ(x, t)

∂t
=m�φ(x, t)− V (x)φ(x, t). (2.1.102)

For comparison, we recall the Schrödinger equation (2.1.14) for the Lagrangian
(2.1.7),

i�
∂φ(x, τ )

∂τ
= − �

2

2m
�φ(x, τ)+ V (x)φ(x, τ ). (2.1.103)

Let us assume � = m = 1 to make the comparison a little simpler. Then, in fact,
setting τ = −it transforms (2.1.103) into (2.1.102). Thus, the Schrödinger equation
is the heat equation for imaginary time. With this change of time (called analytic
continuation or Wick rotation in the physics literature), the corresponding functional
integrals are also transformed into each other. This is useful at the formal level, but
perhaps not as much so for the more detailed mathematical analysis.

Returning to (2.1.102), Wiener then showed that, under appropriate conditions
on V , the solution can be represented as a path integral

p(x′′, t ′′|x′, t ′)=
∫
Dx exp(−L(x))

=
∫
Dx exp

(
−
∫ t ′′

τ=t ′

(
m

2
|ẋ(τ )|2 − V (x(τ))

)
dτ

)
. (2.1.104)
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For the discussion to follow, it will be convenient to rewrite (2.1.104) slightly as

p(x′′, t ′′|x′, t ′)=
∫

[Dx]x′′,t ′′
x′,t ′ exp(−L(x)) (2.1.105)

to indicate the initial and terminal points of the paths over which we integrate. One
then has the property

p(x′′, t ′′|x′, t ′)=
∫

x

p(x′′, t ′′|x, t)p(x, t |x′, t ′)dx (2.1.106)

for every t ′ < t < t ′′, which simply expresses the fact that every path leading from
x′ at time t ′ to x′′ at time t ′′ has to pass through some x at the intermediate time t .
Thus, we may cut the path at time t and integrate over all possible cutting points x.
In terms of functional integrals, this becomes

p(x′′, t ′′|x′, t ′)=
∫

x

dx

∫
[Dx]x,t

x′,t ′ exp(−L(x))
∫

[Dx]x′′,t ′′
x,t exp(−L(x)).(2.1.107)

The difference between (2.1.102) and (2.1.104) is the i versus the −1 in the expo-
nent in the integral. In the Wiener case, the minus sign leads to a rapid dampening
of the influence of those paths with large values of the Lagrangian action, and to
a concentration of the functional measure near the minimum of the action. In the
Feynman case, in contrast, paths with large values of the action cause rapid fluctu-
ations in the integral, making the analysis substantially harder, see [2]. We do not
enter the details here. For more on this, see [49].

In analogy to (2.1.106), we have the cutting relation

〈x′′|e− i
�
H(t ′′−t ′)|x′〉

=
∫

[Dx]x′′,t ′′
x′,t ′ exp

(
i

�
L(x)

)

=
∫

x

dx

∫
[Dx]x,t

x′,t ′ exp

(
i

�
L(x)

)∫
[Dx]x′′,t ′′

x,t exp

(
i

�
L(x)

)
(2.1.108)

for t ′ < t < t ′′.
Written more abstractly, this is the analog of (2.1.106),

〈x′′, t ′′|x′, t ′〉 =
∫

x

dx〈x′′, t ′′|x, t〉〈x, t |x′, t ′〉. (2.1.109)

This fits together well with the operator formalism as in (2.1.70). In particular, we
can now insert a position operator (writing x(t) in place of x̂(t) as announced above)
and compute

〈x′′, t ′′|x(t)|x′, t ′〉 =
∫

[Dx]x′′,t ′′
x′,t ′ x(t) exp

(
i

�
L(x)

)

=
∫

x

dx〈x′′, t ′′|x, t〉x〈x, t |x′, t ′〉. (2.1.110)
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Here, the x(t) in the integral is a number,3 not an operator. That number in the inte-
gral then translates into the operator x(t) in the inner product on the l.h.s. In physics,
these inner products are viewed as the matrix elements of an infinite-dimensional
matrix.

This process of cutting the path in the integral can be iterated, and we can insert
two intermediate positions x(t1), x(t2) (or more, but the principle emerges for two
already), to get

∫
[Dx]x′′,t ′′

x′,t ′ x(t1)x(t2) exp

(
i

�
L(x)

)
= 〈x′′, t ′′|x(t2)x(t1)|x′, t ′〉. (2.1.111)

Here, in the integral, the temporal order of t1 and t2 is irrelevant because in the
integral, x(t1), x(t2) are real numbers.4 In the r.h.s. of (2.1.111), however, they are
operators, and since operators in general do not commute, the order does matter
here. Since the paths are traversed in increasing time, we need to put them into
the temporal order, that is, always apply the operator corresponding to the smaller
time first. This is called temporal ordering. Formally, one can define the temporally
ordered operator

T [x(t2)x(t1)] :=
{
x(t2)x(t1) if t1 < t2,

x(t1)x(t2) if t1 > t2
(2.1.112)

and write the r.h.s. of (2.1.111) as

〈x′′, t ′′|T [x(t2)x(t1)]|x′, t ′〉. (2.1.113)

We may also write

T [x(t2)x(t1)] = θ(t2 − t1)x(t2)x(t1)+ θ(t1 − t2)x(t1)x(t2) (2.1.114)

where

θ(s) :=
{

1 for s ≥ 0,

0 for s < 0
(2.1.115)

is the Heaviside function. Considered as a functional, its derivative is the Dirac
functional,

d

ds
θ(s)= δ(s). (2.1.116)

3More precisely, when the path x takes its values in Euclidean space R
d , x(t) is a vector with d

components. The operations in (2.1.110) and subsequent formulae are to be understood for each
component. In particular, when we later on, in (2.1.111) and subsequently, insert expressions like
x(t1) · · ·x(tm), this is understood as the vector (x1(t1) · · ·x1(tm), . . . , x

d (t1) · · ·xd(tm)) obtained
by componentwise multiplication.
4See the preceding footnote.



116 2 Physics

We now make some general observations about functional integrals of the form
∫

[Dx]x′′,t ′′
x′,t ′ exp

(
i

�
L(x)

)
. (2.1.117)

In place of the position operator x(t), we can also insert other operators f (x) in
(2.1.110). The formula becomes

〈x′′, t ′′|f (x)|x′, t ′〉 =
∫

[Dx]x′′,t ′′
x′,t ′ f (x) exp

(
i

�
L(x)

)
. (2.1.118)

Again, on the l.h.s., f (x) stands for an operator, on the r.h.s. for a number.
The analogy between ordinary (Gaussian) integrals and functional integrals says

that the finitely many ordinary degrees of freedom, the coordinate values of the inte-
gration variable, are replaced by the infinitely many function values x(t). Therefore,
integration by parts should yield that

0 =
∫

[Dx]x′′,t ′′
x′,t ′

δ

δx(t)
exp

(
i

�
L(x)

)
, (2.1.119)

that is, the integral of a total derivative vanishes. This yields

0 = i

�

∫
[Dx]x′′,t ′′

x′,t ′ exp

(
i

�
L(x)

)
δ

δx(t)
L(x). (2.1.120)

Recalling (2.1.118), this is written as

〈x′′, t ′′|δL(x)
δx(t)

|x′, t ′〉 = 0. (2.1.121)

Now, δL(x)
δx(t)

represents the Euler–Lagrange operator (see also (2.3.8) below), and

δL(x)

δx(t)
= 0 (2.1.122)

is the classical equation of motion. Comparing (2.1.122) and (2.1.121), we see that
the classical equation of motion is translated into an operator equation in the quan-
tum mechanical picture. In this interpretation, x′, t ′ and x′′, t ′′ represent arbitrary
initial and final conditions for our paths x(t).

Returning to our integration by parts, (2.1.119) generalizes to

i

�

∫
[Dx]x′′,t ′′

x′,t ′ exp

(
i

�
L(x)

)
δL(x)

δx(t)
f (x)

=
∫

[Dx]x′′,t ′′
x′,t ′

δ

δx(t)

(
exp

(
i

�
L(x)

))
f (x)

= −
∫

[Dx]x′′,t ′′
x′,t ′ exp

(
i

�
L(x)

)
δ

δx(t)
f (x). (2.1.123)
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When none of the fields (see below) contained in f (x) is evaluated at time t , the
r.h.s. vanishes. This, of course, confirms the interpretation of (2.1.122) as a quantum
mechanical operator equation.

Naturally, we are now curious what happens when some of the fields are present
at time t . So, we insert x(t0) for some t ′ < t0 < t ′′. This yields

i

�

∫
[Dx]x′′,t ′′

x′,t ′ x(t0) exp

(
i

�
L(x)

)
δ

δx(t)
L(x)

=
∫

[Dx]x′′,t ′′
x′,t ′

δ

δx(t)

(
exp

(
i

�
L(x)

))
x(t0)

= −
∫

[Dx]x′′,t ′′
x′,t ′ exp

(
i

�
L(x)

)
δ

δx(t)
x(t0)

= −
∫

[Dx]x′′,t ′′
x′,t ′ exp

(
i

�
L(x)

)
δ(t − t0). (2.1.124)

As an operator equation, this is interpreted as

i

�
x(t0)

δ

δx(t)
L(x)= δ(t − t0). (2.1.125)

As remarked above, δL(x)
δx(t)

represents the Euler–Lagrange operator (2.3.8). We con-

sider here the example d2

dt2
, and the classical Euler–Lagrange equation becomes the

operator equation

d2

dt2
x(t)= 0. (2.1.126)

From (2.1.114), (2.1.116), (2.1.126), (2.1.45), we obtain

d2

dt2
T [x(t2)x(t1)] = δ(t2 − t1)

[
d

dt
x(t1), x(t1)

]
= −i�δ(t2 − t1) (2.1.127)

using the Heisenberg commutation relation (2.1.12) for the last equation. This, of
course, coincides with (2.1.125). In Sect. 2.5.1 below, this equation will lead us to
the normal ordering scheme for operators.

A recent reference on path integrals is [112].

2.1.4 Quasiclassical Limits

In this section, we briefly discuss some analytical aspects of the relationship be-
tween classical and quantum mechanics.

In classical mechanics, stable equilibria are characterized by the principle of lo-
cally minimal potential energy, whereas dynamical processes are described by the
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principle of stationary motion. Both are variational principles. We consider a physi-
cal system with d degrees of freedom x1, . . . , xd . We want to determine the motion
of the system by expressing the xi as functions of the time t . The mechanical prop-
erties of the system are described by the kinetic and the potential energy. The kinetic
energy is typically of the form

T =
d∑

i,j=1

Aij (x
1, . . . , xd, t)ẋi ẋj . (2.1.128)

Thus, T is a function of the velocities ẋ1, . . . , ẋd , the coordinates x1, . . . , xd, and
time t ; often, T does not depend explicitly on t , and one may then investigate equi-
libria. Here, T is a quadratic form in the generalized velocities ẋ1, . . . , ẋd .

The potential energy is of the form

V = V (x1, . . . , xd, t), (2.1.129)

that is, it does not depend on the velocities.
In order not to have to worry about the justification of taking various derivatives,

we assume that V and T are of class C2.
Hamilton’s principle now postulates that motion between two points in time t0

and t1 occurs in such a way that the Lagrangian action

L(x) :=
∫ t1

t0

(T − V )dt (2.1.130)

is stationary in the class of all functions x(t)= (x1(t), . . . , xd(t)) with fixed initial
and final states x(t0) and x(t1) respectively. The Lagrangian action is the integral
over the Lagrangian

F(t, x, ẋ) := T − V, (2.1.131)

the difference between kinetic and potential energy.
Thus, one does not necessarily look for a minimum under all motions which carry

the system from an initial state to a final state, but only for a stationary value of the
integral. For such a stationary motion, the Euler–Lagrange equations hold:

d

dt

∂T

∂ẋi
− ∂

∂xi
(T − V )= 0 for i = 1, . . . , d. (2.1.132)

If V and T do not explicitly depend on the time t, then equilibrium states are
constant in time, that is, ẋi = 0 for i = 1, . . . , d, and hence T = 0, therefore by
(2.1.132)

∂V

∂xi
= 0 for i = 1, . . . , d. (2.1.133)

Thus, in a state of equilibrium, V must have a critical point, and in order for this
equilibrium to be stable, V must even have a minimum there. That minimum, how-
ever, need not be unique. For example, when the state space is simply the real line
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R, and

V (x)= (x2 − a2)2 (2.1.134)

for some a ∈ R, the classical equilibrium states are x = ±a.
Quantum mechanically, we have an L2-function φ : R → C (but, for simplicity,

we shall consider real-valued functions φ in the present section) with the normal-
ization

‖φ‖L2 = 1 (2.1.135)

and the asymptotic behavior

lim
x→±∞φ(x)= 0. (2.1.136)

The potential energy V (x) is now replaced by the energy

∫

R

(
�

2

2

∣∣∣∣
dφ(x)

dx

∣∣∣∣
2

+ V (x)|φ(x)|2
)
dx. (2.1.137)

The corresponding Euler–Lagrange equation is

(
−�

2

2

d2

dx2
+ V (x)

)
φ = 0. (2.1.138)

Since there is no kinetic term in (2.1.137), quantum mechanics tries to find the
eigenfunctions of the operator in (2.1.138), the Hamiltonian. That is, we look for
solutions of

(
−�

2

2

d2

dx2
+ V (x)

)
φi =Eiφi. (2.1.139)

The eigenvalues Ei are the energy levels. A solution φ0 for the smallest possible en-
ergy E0 corresponds to the vacuum. E0 is positive since the potential V is positive,
see (2.1.134). The solution φ0 (normalized by ‖φ0‖L2 = 1 according to (2.1.135)) is
symmetric, that is, φ0(x)= φ0(−x), with maxima at ±a, a local minimum at 0, and
asymptotic decay limx→±∞ φ(x)= 0 required by (2.1.136). The eigenfunctions for
different eigenvalues are L2-orthogonal. In particular, the eigenfunction φ1 for the
second smallest energy level E1 satisfies

∫
φ0φ1dx = 0. It is antisymmetric, that is

φ1(x) = −φ1(−x) and thus changes sign at x = 0. In the quasiclassical limit, that
is, for � → 0, we have

E0,E1 ∼ a� (2.1.140)

and

E1 −E0 ∼ c0 exp

(
−c1

�

)
(2.1.141)

for constants a, c0, c1. Thus, the difference between these energy levels goes to 0
exponentially. Therefore, in that quasiclassical limit, the energy levels of φ0 and φ1
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become indistinguishable. Thus, for � → 0, the limits of φ± := 1√
2
(φ0 ± φ1) also

become minima, with

lim
�→0

|φ±|2 = δ(x ∓ a). (2.1.142)

φ+ and φ− break the symmetry between a and −a. Classically, any linear combi-
nation of δ(x − a) and δ(x + a) is a possible minimum. The quantum mechanical
vacuum, however, is symmetric.

It is also instructive to consider a nonlinear problem. We take

∫ (
�

2

2

∣∣∣∣
dφ(x)

dx

∣∣∣∣
2

+W(φ(x))
)
dx. (2.1.143)

This time, φ need not be real-valued, but could assume values in some other space,
like a Riemannian manifold N . We first consider the real-valued case. The domain,
denoted by M , however, is allowed to be of higher dimension. We suppose again
that the potential W has two minima (W is then called a two-well potential). Now,
in the quasiclassical limit, we do not obtain a concentration at two points, the two
minima, in the domain, but rather the concentration at two values of φ. This time, in
contrast to the linear case, the symmetry can also be broken for �> 0. Since this is
not a linear problem, we no longer have the concept of eigenfunctions available. For
� → 0, the solution becomes piecewise constant, the values being the two minima
ofW , of course. When one imposes suitable constraints, by a result of Modica [82],
the set of discontinuity of the limit for � → 0 of the solutions for � > 0 is a hy-
persurface of constant mean curvature in the domain. Of course, this is meaningful
only for a higher-dimensional domain.

When the domain is one-dimensional, that is, the real line R, but the target is of
higher dimension, we may have quantum mechanical tunneling solutions, i.e.,

lim
x→±∞φ(x)= a± (2.1.144)

between the vacua, that is, minima of W , denoted by a+, a−. These tunneling solu-
tions are gradient flow lines ofW when the target is a Riemannian manifold.

There exist some generalizations of this problem that lead to analytical construc-
tions of great interest:

1. Let L be a real line bundle over M\S where S is a submanifold of codimension
2 in the domain M , with prescribed holonomy for L around S. A section of L
then has a zero set of codimension 1 in M with boundary S. Considering the
quasiclassical limit of those zero sets for minimizers of the above functional for
sections of L yields a minimal hypersurface in M with boundary S, according
to [44].

2. Let L now be a complex line bundle over M . The above functional then leads
to a vortex equation of the type studied by Taubes [99], Bethuel et al. [13], and
Ding et al. [28–30].
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2.2 Lagrangians

2.2.1 Lagrangian Densities for Scalars, Spinors and Vectors

A type of particle is represented by a vector bundle E over some Lorentz mani-
fold M . The particle transforms according to some representation of the Lorentz
group or its double cover, the spin group.5 Thus, it transforms as a tensor or as
a spinor. The states of collections of such particles are represented by sections ψ
of E, so-called fields.6

We are considering here the semiclassical situation, i.e., before field quantization,
and so ψ has to satisfy the Euler–Lagrange equations of some action functional that
is invariant under the representation of the Lorentz or spin group according to which
the particle transforms. In addition, there are internal symmetries that affect only
the values of the fields, but not of the coordinates, and leave the action invariant. In
fact, the symmetries and certain general considerations often suffice to allow us to
construct the appropriate Lagrangian for the action as we shall see.

Notation: ∂μ = ∂
∂xμ

, ∂μ = gμν∂ν .
For the moment, we can think of gμν as a (Lorentz) metric on R

1,3, and the
indices μ,ν then run from 0 to 3.

We consider the action functional (Lagrangian)7

S(φ)=
∫ {

1

2
∂μφ∂

μφ − 1

2
m2φ2

}√−g(x)d(x) (2.2.1)

for a free scalar field, with the Lagrangian density

F(φ,Dφ)= 1

2
∂μφ∂

μφ − 1

2
m2φ2, (2.2.2)

on R
1,3, or, more generally, on some Riemannian or Lorentzian manifold. (Note

that in (2.2.1), we use
√−g(x)d(x) for the volume form, since we are assuming

a Lorentzian metric. Subsequently, when we switch to the Riemannian case, the
minus sign has to be deleted.)

The corresponding Euler–Lagrange equation is the Klein–Gordon equation

�φ +m2φ = 0

where � is the Minkowski Laplacian (1.1.106).

5In fact, according to Wigner’s principle as explained in Sect. 1.3.4, we should consider a particle
as an irreducible unitary representation not only of the Lorentz or spin group, but of the Poincaré
group or the double covering Sl(2,C)� R

1,3. While this is fundamental for determining the types
of possible elementary particles from the theory of group representations, in this section, we shall
be mainly concerned with internal symmetries that arise from invariance w.r.t. to the action of some
compact group.
6A section represents a state containing possibly several particles of a given type, since in quantum
field theory, particle numbers need not be preserved.
7In the mathematical literature, an action functional is often called a Lagrange functional.
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Remark

1. As a classical action functional for a field, we consider the action for a particle
q(t)= (q1(t), . . . , qm(t)) with m degrees of freedom

∫ m∑

j=1

{
1

2
(q̇j (t)q̇j (t)−m2qj (t)qj (t))

}
dt. (2.2.3)

When we compare this with our quantum field theoretic setting, we see that
the index j corresponds to the spatial variable (x1, x2, x3) above. In this sense,
φ(t, x) is a particle with infinitely many degrees of freedom, one degree of free-
dom for each point ofM .

2. In the physics literature, the field φ in (2.2.1), (2.2.2) is usually taken as complex
valued instead of real valued, that is, one considers

S1(φ)=
∫ {

1

2
∂μφ∂

μφ̄ − 1

2
m2|φ|2

}√−g(x)d(x), (2.2.4)

in line with the basic formalism of quantum mechanics, see (2.1.13). Our reason
for starting with a real valued φ here is, besides its simplicity, that this is better
suited for subsequent generalizations to nonlinear models where the field will
take its values in a Riemannian manifold.

We now turn to Lagrangians for spinors.
For two left-handed spinors (see (1.3.49)) φ,χ,

φχ := εαβφαχβ

transforms as a scalar under the spinor representation, see (1.3.56).
Similarly

φασ
μ
αα̇χ̄

α̇

transforms as a vector, for μ = 0,1,2,3, see (1.3.57). We may then write a La-
grangian for a left-handed spinor φ as

F = Re(iφσμ∂μφ̄ + 2mφφ)

= i

2
(φσμ∂μφ̄ − ∂μφσμφ̄)+m(φφ + φφ) (2.2.5)

(here, φ̄ is the complex conjugate of φ—subsequently, we shall employ a somewhat
different convention when we consider full spinors).

The equation of motion for

S(φ)=
∫
F(φ) (2.2.6)
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is

i∂μφσ
μ −mφ̄ = 0, (2.2.7)

or equivalently

iσμ∂μφ̄ +mφ = 0. (2.2.8)

In quantum field theory (QFT), charged particles correspond to complex-valued
fields, and the Lagrangian has to remain invariant under multiplication of the fields
by eiλ(λ ∈ R) since the phase is not observable. Instead of imposing the normal-
ization ‖φ‖ = 1, we can then consider states as corresponding to lines in a Hilbert
space.

The preceding Lagrangian satisfies this invariance property only form= 0. Since
it does not have this property in general, it corresponds to a neutral fermion. In the
standard model to be discussed below, these neutral fermions are the neutrinos.

In order to obtain a Lagrangian for charged fermions, we need full spinors

ψ =
(
ψL
ψR

)
.

Then in the Weyl representation,

ψ̄γ μψ

transforms as a vector, see (1.3.61).
The Dirac–Lagrangian is then

F = iψ̄γ μ∂μψ −mψ̄ψ = i〈ψ̄, /Dψ〉 −mψ̄ψ (2.2.9)

(recalling the Dirac operator /D defined in (1.3.22)). The mass term mixes the left
and the right spinor, since ψ̄ψ = ψ̄LψR + ψ̄RψL. This time, we do have invariance
under multiplication of ψ by eiλ for constant real λ also in the general case m �= 0.

The corresponding Dirac equation is

iγ μ∂μψ −mψ = 0. (2.2.10)

Perhaps the factor i in (2.2.9) in front of the Dirac operator /D = γ μ∂μ needs some
explanation. The reason is that, upon integration, the corresponding term is purely
imaginary, and the factor i then makes it real. It is instructive to consider an example,
and since we shall mainly investigate the Riemannian in place of the Lorentzian
setting in the sequel, we shall also use a Riemannian example. As in our treatment
of the supersymmetric sigma model below (2.4.3), we consider the two-dimensional
case and use the following representation of the Clifford algebra Cl(2,0):

e1 →
(−1 0

0 1

)
, e2 →

(
0 −1

−1 0

)
, (2.2.11)

which is different from the one described in Sect. 1.3.2 (but of course equivalent to
it). A spinor ω is thus identified with an element (ω1 = α1 + iβ1,ω2 = α2 + iβ2) of
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C
2. In local coordinates x, y, then

γ μ∂μω =
(−1 0

0 1

)
∂

∂x

(
ω1
ω2

)
+
(

0 −1
−1 0

)
∂

∂y

(
ω1
ω2

)

=
⎛

⎝
− ∂α1
∂x

+ i ∂β1
∂x

+ ∂α2
∂y

+ i ∂β2
∂y

∂α2
∂x

+ i ∂β2
∂x

− ∂α1
∂y

− i ∂β1
∂y

⎞

⎠ (2.2.12)

and

ω̄γ μ∂μω= −α1
∂α1

∂x
− α1

∂α2

∂y
− β1

∂β1

∂x
− β1

∂β2

∂y
+ α2

∂α2

∂x
− α2

∂α1

∂y

+ β2
∂β2

∂x
− β2

∂β1

∂y
+ i

(
β1
∂α1

∂x
− α1

∂α2

∂y
− α1

∂β1

∂x
+ β1

∂α2

∂y
− β2

∂α2

∂x

+ β2
∂α1

∂y
+ α2

∂β2

∂x
− α2

∂β1

∂y

)
. (2.2.13)

Upon integration, the real part vanishes by integration by parts, and only the imag-
inary part remains. This comes about because the coefficients of ω commute. Were
they to anticommute, only the real part would remain. We are making this observa-
tion here because in our subsequent treatment of supersymmetry, we shall use spinor
fields with anticommuting coefficients.

We have now seen action functionals for scalars and spinors, where these names
describe the transformation behavior under Lorentz transformations, i.e., coordinate
changes. An electromagnetic field, however, is described by a potential that trans-
forms as a vector or covector. We consider

A=Aμ(x)dxμ.
A is called a vector particle, because Aμ transforms as a vector. Mathematically,
A is a connection, see (1.2.12), on a vector bundle with fiber C and the Abelian
structure group U(1)= SO(2). We also recall the transformation behavior (1.2.32).

The field strength is described by the tensor

Fμν = ∂μAν − ∂νAμ,
(2 times) the8 curvature of the connection A, see (1.2.23) (note that the brackets
[Aμ,Aν] vanish here, because the structure group is Abelian), and the correspond-
ing Lagrangian is the Maxwell density (the Abelian case of the Yang–Mills density)

−1

4
FμνF

μν = 1

2
(∂μAν∂

μAν − ∂μAν∂νAμ). (2.2.14)

8Note the different conventions between the present section and Sect. 1.2.2.
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An important property of this Lagrangian is the gauge invariance, namely its invari-
ance under replacing Aμ by

Aμ + ∂μξ
where ξ is a scalar function. This is the present, Abelian, version of (1.2.13),
(1.2.32). Of course, the field strength Fμν is already invariant under such a gauge
transformation (see (1.2.25), (1.2.33) for the general result).

The equations of motion for

S(A)= −1

4

∫
FμνF

μν (2.2.15)

are

∂μF
μν = 0. (2.2.16)

If we add a “mass term”

m2AμA
μ,

then the gauge invariance no longer holds.
As described, the mathematical interpretation ofA is that of a covariant derivative

for sections of a line bundle, see Sect. 1.2.2. Thus, for a scalar field φ taking values
in this bundle, we put

(dAφ)μ = ∂μφ +Aμφ,
and we may consider the interaction Lagrangian

1

2
(∂μφ +Aμφ)(∂μφ∗ + (Aμφ)∗)= 1

2
‖dAφ‖2. (2.2.17)

Here, we assume that the line bundle is Hermitian, and for simplicity, we write the
metric as ‖φ‖2 = φφ∗; of course, in general this only holds in suitable coordinates;
we also assume that A is unitary w.r.t. this metric—we shall return to this point in
a moment.

The replacement of

∂μφ with ∂μφ +Aμφ (2.2.18)

is for the following reason. The Lagrangian

1

2
∂μφ∂

μφ∗ − 1

2
m2φφ∗

is invariant under U (1), i.e., under replacements

φ 	→ eiϑφ with ϑ ∈ R.

It thus has a global internal symmetry. It is not invariant, however, under general
local symmetries, i.e.,

φ 	→ eiϑ(x)φ
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if ϑ(x) is a nontrivial function of x. However, if, according to (1.2.14), we also
replace9

Aμ 	→Aμ − i∂μϑ,
then the above interaction Lagrangian (2.2.17) remains invariant. Thus, we have
a gauge invariant Lagrangian. The procedure (2.2.18) of replacing an ordinary by
a covariant derivative is called minimal coupling.

In fact, we have a free parameter here: We consider the exterior derivative d as
the trivial connection (“vacuum”) on the trivial bundle M × R. We can then view
the affine space of connections A as the vector space �1(M) of 1-forms. We can
therefore multiply A by some factor q and choose the covariant derivative

DA := ∂ + qA (2.2.19)

and gauge transform A to

A− i

q
∂ϑ. (2.2.20)

q here is interpreted as the charge of the electromagnetic field. It is the Noether
charge associated to the U(1) gauge symmetry.

The full Lagrangian for a complex scalar field φ interacting with an electromag-
netic field A is

1

2
‖dAφ‖2 − 1

2
m2‖φ‖2 + 1

4q2
‖F‖2. (2.2.21)

The same discussion applies to spinor fields ψ , and we may form the interaction
Lagrangian

iψ̄γ μ(∂μ +Aμ)ψ −mψ̄ψ + 1

4q2
‖F‖2. (2.2.22)

Let us see the details once more: Replacing ψ(x) by eiϑ(x)ψ(x) changes the spinor
Lagrangian

iψ̄γ μ∂μψ −mψ̄ψ (2.2.23)

by −ψ̄γ μψ∂μϑ , and this is again compensated when we replace ∂μ by ∂μ + qAμ
and require that A transforms to A− i

q
∂ϑ as before. Thus,

iψ̄γ μ(∂μ +Aμ)ψ −mψ̄ψ (2.2.24)

remains gauge invariant.

9Note that the convention here is different from the one in Sect. 1.2.3; here, elements of the Lie
algebra u(1) of U(1), and similarly of other Lie algebras g, are written as iϑ , with a real ϑ . This
will lead to various factors i and −1 when compared to Sect. 1.2.3. This is the standard convention
employed in the physics literature.
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As was realized by Yang and Mills,10 this can be generalized to an arbitrary in-
ternal symmetry group G with Lie algebra g, and a field φ that takes its value in
a vector bundle (or, similarly, in a spinor bundle—the physically more important
case, see Sect. 2.2.3 below)11 with structure group G. The mathematical formalism
for this has been described in Sect. 1.2.3. In abstract physical terms, the gauge prin-
ciple says that the symmetries should determine the forces. The particles conveying
these forces are called gauge bosons.

To implement this, we simply consider A = Aμdxμ, a 1-form with values in
g, and form the covariant derivative (1.2.12) of the field φ, a section of the vector
bundle with structure group G on which A operates as a covariant derivative,

dAφ = dφ +Aφ.
The replacements

φ(x) 	→ g(x)φ(x), with g(x) ∈G for all x,

i.e., g is an element of the group of gauge transformations, and (1.2.32), that is,

A 	→ gAg−1 − (∂g)g−1

then leave

‖dAφ‖2

invariant (assuming of course that the metric ‖ · ‖ is G-invariant).
The gauge field strength is now (two times) the curvature (1.2.22), (1.2.23)

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν]
where [·, ·] is the Lie algebra bracket of g.

As before, we may form the Lagrangian involving the Yang–Mills action (1.2.34)
and coupling it with the action for the field φ

1

2
‖dAφ‖2 − 1

2
m2‖φ‖2 − 1

4q2
TrFμνF

μν. (2.2.25)

The same discussion applies to spinor fields ψ with values in a vector bundle on
which G acts, that is, sections of S ⊗ E for some vector bundle E over M with a
G-action, and we may form the interaction Lagrangian

iψ̄γ μ(∂μ +Aμ)ψ −mψ̄ψ − 1

4q2
TrFμνF

μν. (2.2.26)

10Such ideas were first conceived by Hermann Weyl.
11Of course, a spinor bundle is a vector bundle, but in physics, it is important to distinguish between
vector and spinor representations, that is, whether a representation of the spin group lifts to one of
the orthogonal group or not.
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If the representation ofG on our vector bundle is not irreducible, but decomposes
into subrepresentations indexed by j , we may use a more general Lagrangian for the
gauge field strength because we can take a combination

−
∑

j

γj TrF (j)μν F
(j)μν.

The γj are the so-called coupling constants. Mathematically, they parametrize the
ad-invariant bilinear forms on the Lie algebra of G.

Important remark: It is undesirable to have too many constants whose values
are not theoretically deduced, but can only be experimentally determined. As we
have just seen, such a situation comes about if the representation ofG under consid-
eration is not irreducible. One possible solution of this problem would be to suppose
that there is some larger group G̃ ⊃ G in the background with an irreducible rep-
resentation that induces the (reducible) representation of G, and so determines all
the constants except one. It may be possible that the symmetry group G̃ cannot be
experimentally observed because of a symmetry-breaking mechanism that reduces
G̃ to G. The Higgs mechanism, to be described below, is such a mechanism.

Let us recapitulate that A is a 1-form with values in g, and the symmetries there-
fore are two-fold: Under Lorentz or space–time symmetries, the 1-form part is trans-
formed, whereas under local internal symmetries (i.e., those coming from G), the
g part is affected. Similarly, φ transforms as a scalar under space–time symmetries
and by the action of G under local internal symmetries.

More generally, one may also introduce some nonlinearities into the φ and ψ
equations by adding some polynomial terms to the Lagrangian. These polynomial
terms, however, are constrained by the requirement of renormalizability. In dimen-
sion 4, the most general renormalizable Lagrangian is

− 1

4q2
TrFμνF

μν + 1

2
‖dAφ‖2 − 1

2
m2‖φ‖2 + iψ̄γ μ(∂μAμ)ψ

+ g1‖φ‖4 + g2φψ̄ψ + lower-order terms. (2.2.27)

Here, g1, g2, like q , are coupling constants. The term φψ̄ψ is called a Yukawa term.
A version of (2.2.27) is also the Lagrangian of the standard model to which we shall
turn after a brief discussion of the scaling behavior of Lagrangians. The gauge group
of the standard model is SU(3)× SU(2)×U(1).

2.2.2 Scaling

An important criterion for field theories in physics and variational problems in math-
ematics is their scaling behavior. That means that one scales the independent vari-
ables

x→ λ−1x =: y (2.2.28)
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where x is n-dimensional, x ∈ R
n, and λ > 0, and computes the resulting scaling

behavior of the integrals of the fields. The starting point is the scaling of the volume
form

dny = λ−ndx. (2.2.29)

Also,

∂

∂y
= λ ∂

∂x
. (2.2.30)

Putting φλ(y) := φ(λy)= φ(x), one obtains
∫

Rn

|dφλ(y)|pdny = λp−n
∫

Rn

|dφ(x)|pdnx (2.2.31)

and
∫

Rn

|φλ(y)|qdny = λq
∫

Rn

|φ(x)|qdnx (2.2.32)

for exponents p,q > 0. Therefore, the Lq -norm of φλ, (
∫

Rn
|φλ(y)|qdny)1/q has

a scaling behavior dominated by the Lp-norm of the derivative
dφλ, (

∫
Rn

|dφλ(y)|pdny)1/p , if

q ≤ np

n− p for p < n. (2.2.33)

This is exploited in the Sobolev embedding theorem, see e.g. [63]. For instance, in
the most important case p = 2, in dimension 2, any polynomial in φ is controlled by∫ |dφ|2, in dimension 3, a polynomial of order ≤ 6, and in dimension 4, only those
of order ≤ 4.

In the light of (2.2.29), (2.2.30), the scaling law (2.2.31) can also be interpreted
in the way that

∫
Rn

|dφ|2 remains invariant if the field φ is scaled as

φ→ λ
n−2

2 φ. (2.2.34)

In particular,
∫ |dφ|2 is scaling invariant in dimension 2; in fact, this integral is

even conformally invariant in dimension 2, as we shall explore below. In other di-
mensions, it becomes invariant only after a rescaling of the field φ according to
(2.2.34). In order to compensate for the different scaling laws for

∫
Rn

|dφ|2dnx and∫
Rn

|φ(x)|qdnx, one may also introduce coupling constants that are then scaled ap-
propriately. To see this, let us consider

∫

Rn

(|dφ|2 −m2|φ(x)|2 + g1|φ(x)|3 + g2|φ(x)|4)dnx; (2.2.35)

here, m is the mass of the field as before. In order that this integral be scaling invari-
ant, because of (2.2.29), each such polynomial term has to scale with a factor λn. If
now φ scales according to (2.2.34), this leads to

m→ λm, g1 → λ
6−n

2 g1, g2 → λ
4−n

2 g2. (2.2.36)
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Of course, this just re-expresses our discussion of (2.2.32), (2.2.33). For instance,
in dimension ≤ 4, the integral of the polynomial φ4 is controlled by that of |dφ|2,
and therefore, we can afford a nonnegative scaling exponent for the coupling con-
stant g2. In general, an interaction term is called perturbatively renormalizable when
the coupling constant scales with exponent 0, and superrenormalizable when it
scales with a positive exponent.

Similarly, when we consider a term
∫

Rn

γ |φ|q |dφ|2dnx, (2.2.37)

we see that for q > 0, the coupling constant γ scales with exponent (2−n)q
2 which

is negative for dimension > 2. Thus, such an interaction is renormalizable only for
n= 2, but not for n > 2. This applies to the nonlinear sigma model discussed below
(see (2.4.27), (2.4.28)),

∫

Rn

gij (φ(x))
∂φi(x)

∂xα

∂φj (x)

∂xα
dnx (2.2.38)

where gij denotes the metric tensor of the target N . When we expand (in normal
coordinates)

gij (φ)= δij + gij,klφkφl + higher-order terms, (2.2.39)

we see that this model is not renormalizable for n > 2.
Next, if we have a Dirac term for a spinor field as in (2.2.9) in the Lagrangian,

that is, if we have an action of the form
∫

Rn

i〈ψ̄, /Dψ〉dnx, (2.2.40)

we need the scaling behavior

ψ → λ
n−1

2 ψ (2.2.41)

to make it invariant. When we then have a mass term

mψ̄ψ, (2.2.42)

we obtain once more the scaling law m→ λm as in (2.2.36).
We finally consider gauge fields as in (2.2.27),

DA = ∂ + qA, (2.2.43)

with curvature F = qdA + q2A ∧ A, by (1.2.22). We can then expand the La-
grangian action (2.2.21) (in shorthand notation, as we are only interested in the
growth orders),

1

4q2

∫

Rn

‖F‖2dnx = 1

4

∫

Rn

((dA)2 + qA2dA+ q2A4)dnx. (2.2.44)
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As above, from the first term we get the scaling law (2.2.34)

A→ λ
n−2

2 A, (2.2.45)

which then, taking always (2.2.29) into account, yields

q→ λ
4−n

2 q. (2.2.46)

Thus, a gauge field Lagrangian action is renormalizable for dimension 4, but not
above. The reader will then check that the same applies to the full interaction La-
grangians (2.2.21) and (2.2.26). Thus, we see that the Lagrangian action defined by
(2.2.27) is indeed perturbatively renormalizable in dimension 4.

In contrast to this, let us consider the Einstein–Hilbert functional (1.1.163) of
general relativity,

1

16πG

∫

Rn

R(g)dnx (2.2.47)

for the scalar curvature R of the metric g. Here, we have introduced the factor
1

16πG that we had neglected in the discussion of (1.1.163) above, G being Newton’s
gravitational constant. Also, we write dnx for the volume form because we expand
around the flat metric,

gij = δij + γij
√
G. (2.2.48)

We then obtain, with a similar shorthand notation as above, for the Einstein–Hilbert
action (2.2.47)

1

16π

∫

Rn

((dh)2 + √
Gh(dh)2 + higher-order terms) dnx, (2.2.49)

whence the scaling behavior h→ λ
n−2

2 h as before, and then

G→ λ2−nG. (2.2.50)

Thus, the Lagrangian action of general relativity is renormalizable only in dimen-
sion 2, but not in dimension 4. This indicates that there should be difficulties in
unifying gravity in dimension 4 with the other forces that are governed by a renor-
malizable Lagrangian of the form (2.2.27).

Here, we have only discussed perturbative renormalization (using [106]), but not
nonperturbative renormalization, which is a more difficult issue. Some references
for renormalization theory are [52, 113].

2.2.3 Elementary Particle Physics and the Standard Model

We now interrupt the process of setting up mathematical structures to discuss how
this relates to elementary particles and in particular to their the contemporary theory
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as incorporated in the so-called standard model and its extensions. Physicists will,
of course, know all this and may skip this section.

There exist four known basic physical forces: the electromagnetic, weak and
strong forces and gravity. The standard model includes the first three of them, but
leaves out gravity. In fact, it is the fundamental challenge of high-energy theoretical
physics to construct a unified theory of all known forces, including gravity.

In any case, in a relativistic theory of elementary particles without gravitational
effects, the Lagrangian should be invariant under the action of the Poincaré group
or the double coverG := Sl(2,C)� R

1,3, see Sect. 1.3.4. This was most clearly for-
mulated by Wigner who identified an elementary particle with an irreducible unitary
representation of G satisfying certain physical restrictions, like m2 ≥ 0, where m is
the mass. This principle is still fundamental, with the modification that one needs to
consider groups that are larger thanG, in order to account for internal symmetries of
the particles beyond the spin. The principal for identifying that group combines the
mathematical theory of group representations with scattering experiments designed
to break the symmetry. To take an example from quantum mechanics, the Hamil-

tonian of a particle in a rotationally symmetric potential, H = p2

2m + V (|x|) (see
(2.1.9)), commutes with the angular momentum operator x × p = �

i
(x × ∇), and

therefore its eigenvalues, the energy levels, are degenerate. When an external mag-
netic field is applied, this symmetry gets broken and the energy levels, that is, the
eigenvalues of the Hamiltonian, become distinct (Stern–Gerlach experiment, Zee-
man effect). A further splitting of the energy levels of an electron in the presence of
an external field is caused by its spin.

When it became clear that the proton and the neutron were very similar, except
for their electrical charge, Heisenberg suggested that there was a single underlying
particle, the nucleon, with a so-called isotopic spin, for short isospin, symmetry that
was broken in the presence of electromagnetic interactions. This should correspond
to the L = 1

2 representation of SU(2), as described at the end of Sect. 1.3.4. The
proton and the neutron should correspond to the eigenvalues 1

2 and − 1
2 of h= −it3.

The subsequently discovered pions π+,π0,π− should likewise correspond to the
representation for L = 1 with the eigenvalues 1,0,−1 of h. This was supported
by pion–nucleon scattering experiments. In those scattering experiments, the total
charge Q as well as the total baryon number B was conserved (proton and neuron
have B = 1, the pions have B = 0). In order to also incorporate the decay properties
of other particles, Gell-Mann and Nishijima introduced another quantum number S,
called strangeness, to be also preserved. There is a fundamental relation between
the preceding numbers

Q= h+ 1

2
(B + S). (2.2.51)

Gell-Mann and Ne’eman then interpreted this as a consequence of the embedding
of the isospin and the “hypercharge” B + S into the larger Lie group SU(3) of
“flavor” symmetry, and this led Gell-Mann to suggest the existence of “quarks”,
particles corresponding to the basic representation of SU(3) on C

3. Finally, “color”,
another internal SU(3) degree of freedom, was proposed. The modern theory of the



2.2 Lagrangians 133

strong interaction was then called quantum chromodynamics, after the Greek word
for color.

We now turn to the unification of the fundamental forces. Electromagnetic and
weak interactions (responsible for certain decay processes, like the beta decay of
neutrons in nuclei) had been unified earlier, in 1967, in the so-called electroweak
theory developed by Glashow, Salam and Weinberg, and in the early 1970s, the
standard model combined this theory with quantum chromodynamics, the theory
of strong interactions between quarks developed by Gell-Mann, Zweig and others.
There are two types of particles in the theory: the fermions, which represent matter,
and the bosons, which transmit forces between the fermions. Fermions have half-
integer spin and satisfy the Pauli exclusion principle which states that two fermions
cannot be in identical quantum states. This aspect will subsequently be incorporated
into the formal framework by letting the fermions be odd Grassmann-valued, that is,
anticommuting. Bosons have integer spins and do not have to satisfy the Pauli prin-
ciple, and they will therefore be even Grassmann-valued, that is, commuting. The
Lagrangian then has to couple the fermions and the bosons. There are four cate-
gories of bosons in the model: the photon that mediates electromagnetic interaction,
the W± and Z boson for the weak force, eight types of gluons for the strong nu-
clear force, and finally the Higgs boson that induces spontaneous symmetry break-
ing of the gauge group for the electroweak interactions by a mechanism described
in Sect. 2.2.4 below and that thereby provides masses to particles. While all the
other bosons have been experimentally confirmed, with several of them predicted
by the theory before their experimental observation, the Higgs boson has not yet
been detected, but it may be detected soon with more powerful particle accelerators,
because it should be seen at the energy scale where the unification between the elec-
tromagnetic and weak forces takes place (this is about 1012 electron volts, or about
10−16 times the Planck scale). Except for the Higgs boson and theW and Z bosons
(which, in contrast to the photon, are massive, by the Higgs mechanism), the bosons
are gauge particles, meaning that their contribution to the Lagrangian is invariant
under gauge transformations from some internal symmetry group, as described in
Sect. 2.2.1. The Lagrangians for bosons are of Yang–Mills type, as described in
Sect. 1.2.3. The gauge group of electromagnetism is the Abelian group U(1), as al-
ready explained. For the electroweak interaction, the gauge group is SU(2)×U(1).
We should note, however, that the SU(2) here is not the symmetry group of the
weak interaction, which is not a gauge theory anyway. In fact, below the energy
for the unification of the weak and the electromagnetic interactions, SU(2) does
not represent any symmetries. The gauge group U(1) of electromagnetism is not
the U(1)-factor in SU(2)× U(1), but rather a combination of the U(1)-subgroup
of SU(2) and the U(1)-factor in SU(2) × U(1) (Weinberg angle). For the strong
interaction, the gauge group is SU(3). The gauge group of the standard model is
therefore the product SU(3)× SU(2)×U(1). A class of extensions of the standard
model, the so-called grand unified theories (GUTs), postulate that these groups are
subgroups of a single large symmetry group, for example SU(5). The grand unified
theories have the advantage that they reduce the number of free parameters in the
theory, see the remark at the end of Sect. 2.2.1. This symmetry, however, is only
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present at very high energies, but is reduced to SU(3)× SU(2)×U(1) at lower en-
ergies (including those achievable by current particle accelerators) by a process of
spontaneous symmetry breaking, see Sect. 2.2.4 below. Most of these grand unified
theories, including SU(5), had to be given up because (in contrast to the standard
model) they predicted proton decay at a rate not observed in nature.

Supersymmetry, to be discussed below, postulates an additional symmetry be-
tween bosonic and fermionic particles.

For the fermions, we have 12 different types (“flavors”, each representing a par-
ticle and its antiparticle) in the standard model. That flavor is changed by the weak
interaction, mediated by the heavy W and Z gauge bosons. The fermions come in
two classes, leptons (including the electron and the electron neutrino) and quarks.
Only the latter ones participate in strong interactions, by a property called “color”,
as already mentioned above. Since, in contrast to the electroweak forces, the strong
force grows with the distance between quarks, they become confined in hadrons,
colorless combinations. These can consist either of three quarks, like the protons
and neutrons, and therefore be fermionic (baryons), or of a quark–antiquark pair,
and then be bosonic (mesons), like the pions. In particular, these particles, protons,
neutrons, pions and so on, are not elementary, but composite. The fermions are also
classified into three generations. Each fermion in one generation has counterparts in
the other generations that only differ in their masses, for example the electron, the
muon and the tau lepton. Ordinary matter consists of fermions of the first genera-
tion, that is, the electron, the electron neutrino and the up and down quarks, as the
ones in the other generations are substantially more massive and quickly decay into
lower-generation ones.

While the standard model is well confirmed (with some revision to account for
the experimentally observed neutrino masses that had not been predicted by the orig-
inal model), renormalizable and generally accepted, it cannot yet be the ultimate an-
swer because it does not include gravity and does not fare well at the cosmological
level. Also, it is not entirely satisfactory because it contains too many free parame-
ters that are not theoretically derived, but can only be experimentally determined.
(As mentioned, the number of these free parameters is reduced in the grand unified
theories.)

The concepts behind the standard model, however, are theoretically very appeal-
ing. When extended by the more recent ideas of superstring theory, they may well
lead to a general theory of all known physical forces, at least according to the present
opinion of many, if not most, theoretical physicists.12

In the present book, we are not concerned with the detailed physical aspects of
the standard model, but only with the underlying mathematical concepts. Therefore,
we shall essentially only treat a toy model, the so-called sigma model, that itself does
not pretend to describe actual physics, but which on the one hand exhibits many of
the conceptual issues in a particularly transparent manner, and on the other hand

12As opinions in theoretical physics can change rapidly, this statement may no longer be up to date
when this book goes to print, and perhaps not even at the time of writing. There seems to be at
least a tendency towards growing scepticism with regard to the prospects of superstring theory.
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constitutes the starting point for string theory which, in contrast, aims at physically
valid predictions.

2.2.4 The Higgs Mechanism

For a d-component scalar field φ = (φ1, . . . , φd), we may consider the Lagrangian

F = 1

2
∂μφ

i∂μφi − 1

2
a
j
i φ
iφj (w.l.o.g. aji = aij ).

(Since the metric δij on d-dimensional Euclidean space is flat, we can freely move
indices up and down to conform to the usual summation conventions.)

By diagonalizing the quadratic form a
j
i φ
iφj by an orthogonal transformation—

which leaves ∂μφi∂μφi invariant—we can bring F into the form

F = 1

2
∂μφ

i∂μφi − 1

2

∑

i

μiφ
iφi

(the μi are the eigenvalues of the symmetric matrix (aij )).

If all μi ≥ 0, this Lagrangian describes d scalar particles of massesmi = √
μi . Such

an interpretation is no longer possible for negative μi .
More generally, for a multicomponent scalar field, we may consider the La-

grangian

F = 1

2
∂μφ

i∂μφi − V (φ)
where the potential V (φ) incorporates self-interactions. Typically, V contains
a quadratic term aijφiφj and a higher-order term.

The classical vacuum corresponds to the minimum of V . The problem of sym-
metry breaking arises, namely that while V itself is invariant, the vacuum may not
be invariant under the full symmetry groupG of F . In that case, the vacuum consists
of a whole G orbit, i.e., is degenerate.

Let us consider a simple example: φ is a real scalar field,

V (φ)= 1

2
μφ2 + λ

4
φ4.

In order to make V bounded from below, we assume λ > 0. If μ≥ 0, then φ = 0 is
the vacuum, and the term λ

4φ
4 may simply be treated as a higher-order perturbation

for the Lagrangian

F0 = 1

2
∂μφ∂

μφ − 1

2
m2φ2 (m= √

μ)
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for a scalar particle of massm. Ifμ< 0, the situation changes, and this interpretation
is no longer possible. The vacuum is now located at

φ0 = v = ±
√−μ
λ
.

In order to make a perturbation around the vacuum, one now has to consider the
shifted field

φ̃ = φ − v,
which breaks the symmetry between φ and −φ. In terms of φ̃, the Lagrangian be-
comes

F = 1

2
∂μφ̃∂

μφ̃ + 1

2
μφ̃2 − λvφ̃3 − λ

4
φ̃4 (+an irrelevant constant term).

Since μ is negative, we can interpret φ̃ as a scalar particle of mass m= √−μ.
We now apply a similar analysis for a massive complex scalar particle coupled

with a gauge field (i.e., a massless vector particle) and consider the Lagrangian (cf.
(2.2.1), (2.2.14), (2.2.17))

F = 1

2
(∂μφ +Aμφ)(∂μφ∗ −Aμφ∗)− λ(|φ|2 − τ 2)2 − 1

4e2
FμνF

μν (τ > 0).

(2.2.52)
(The minus sign in front of Aμ arises because Aμ is in u(1) ∼= iR, and we have to
take the complex conjugate (Aμφ)∗ = −Aμφ∗.)

For λ > 0, the vacuum now is at

|φ| = τ,

i.e.,

φ = τeiϑ .
Thus, the vacuum is a nontrivial U (1) orbit, i.e., degenerate. We therefore impose
an additional gauge condition

Imφ = 0, Reφ > 0

which uniquely locates the vacuum at

φ = τ.

Again, we want to expand around the vacuum and put

φ̃ = φ − τ.
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The Lagrangian becomes (up to a constant term)

F = 1

2
∂μφ̃∂

μφ̃ − λφ̃2(φ̃ + 2τ)2 + 1

2
AμA

μ(φ̃ + τ)2 − 1

4e2
FμνF

μν

= 1

2
∂μφ̃∂

μφ̃ − 4λτ 2φ̃2 + 1

2
τ 2AμA

μ − 1

4e2
FμνF

μν + higher-order terms.

Thus, up to these higher-order terms, F describes a scalar particle φ̃ of mass m=
2τ

√
2λ and a vector particle A of mass τ . Because of our above gauge condition,

the scalar particle now has only one real degree of freedom left; the other degree of
freedom has been gauged into the vector particle that has acquired a mass.

Alternatively, we write

φ = ei ητ (τ + ξ)= τ + ξ + iη+ O(ξ2 + η2)

and consider

ξ = e−i ητ φ − τ,

A′
μ =Aμ − 1

τ
∂μη.

Then F becomes

F = 1

2
∂μξ∂

μξ − 1

2
τ 2A′

μA
′μ − 4λτ 2ξ2 − 1

4e2
FμνF

μν

+ higher-order terms in ξ and A′,

but η has disappeared, gauged into the vector particle A′ that has acquired a mass.
Let us discuss the Higgs mechanism in more generality. Again, we start with

a simple scalar field φ and a Lagrangian

F(φ)= 1

2
∂μφ∂

μφ − V (φ).

We assume that φ takes values in a vector bundle with structure group G, and that
V is G-invariant.

Let v be a classical vacuum, i.e., a minimizer of the potential V . Then

dV

dφ
= 0 at φ = v.

We assume that the symmetry groupG is broken in the sense that v is only invariant
under a smaller group H ⊂G, but not under all of G.

We choose generators ϑ1, . . . , ϑN of the Lie algebra g of G in such a manner
that ϑ1, . . . , ϑM generate the Lie algebra h of H . Thus

ϑiv = 0 for i = 1, . . . ,M,

ϑjv �= 0 for j =M + 1, . . . ,N.
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Since V is G-invariant, the derivative of V in the directions tangent to the G-orbit
of φ vanishes, that is,

dV

dφ
(ϑjφ)= d

dt
V (exp(tϑj )φ)|t=0 = 0 for all j .

Differentiating this relation w.r.t. φ yields

d2V

dφ2
ϑjφ + dV

dφ
ϑj = 0 for all j .

At φ = v, dV
dφ

= 0, and hence

d2V (v)

dφ2
ϑjv = 0.

Since for j =M + 1, . . . ,N,ϑjv �= 0, ϑj v is an eigenvector of the Hessian d2V (v)

dφ2

with zero eigenvalue. Since this Hessian gives the quadratic term in the expansion
of our Lagrangian F(φ) at the vacuum φ = v, and since the eigenvalues of this
quadratic form are interpreted as squared masses, we interpret exp(ϑj )v for j =
M + 1, . . . ,N as a massless boson.

Thus, for each broken generator of the symmetry group, we have found a so-
called massless Goldstone boson. To get the Higgs mechanism, we introduce
a gauge field A, with values in g, that couples to our scalar field φ and consider
the Lagrangian

F(φ,A)= −1

4
F iμνF

μν
i + 1

2
(∂μ +Aμφ)(∂μ +Aμφ)− V (φ),

with a G-invariant potential V as before.
Again, we assume that the vacuum v is only H -invariant. We expand

φ = v+
M∑

i=1

ξiϑ
i +

N∑

j=M+1

ηjϑ
jv +O(ξ2 + η2)

=
{

exp

(
N∑

j=M+1

ηjϑ
j

)}(
v+

M∑

i=1

ξiϑ
i

)
.

With this expansion and with the notation Aμ =Aiμϑi , we obtain the term

TrϑivϑjvAiμA
jμ

in F(φ,A), which we interpret as the mass term for the vector fields. The gauge
change

Aj ′μ =Ajμ − ∂μηj ,
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together with the fact that ϑjv for j = M + 1, . . . ,N is a 0-eigenvector of the
Hessian of V at v, makes the ηj disappear in the expansion of F(φ,A) up to second-
order. Thus, we obtain N −M massive vector fields that have absorbed the N −M
Goldstone bosons.

The idea of a gauge theoretic interpretation of spontaneous symmetry breaking
was conceived independently by Englert and Brout and by Higgs in the early 1960s.

2.2.5 Supersymmetric Point Particles

We now take a step backwards and consider a one-dimensional domain. In geomet-
ric terms, the aim of this section is to derive a supersymmetric version of the action
functional (1.1.119) for geodesics, discussed in Sect. 1.1.4. In physical terms, we
want to introduce Lagrangians that exhibit a symmetry between bosonic and fermi-
onic fields. The supersymmetric point particle is the simplest instance of this.

We start with the Euclidean case. We consider (t, θ) ∈ R
1|1 as coordinates (see

Sect. 1.5.2), as well as scalar superfields

Xa(t, θ)= φa(t)+ψa(t)θ, a = 1, . . . , d, (2.2.53)

with φa even and ψa odd.13 Our Lagrangian is

L1 = 1

2
(φ̇aφ̇a +ψaψ̇a) (2.2.54)

and the action is

S1 = 1

2

∫
(φ̇aφ̇a +ψaψ̇a)dt. (2.2.55)

Here, t and θ are the independent variables, φ and ψ the dependent ones. φ is called
a bosonic field, or boson for short, ψ a fermionic one or fermion.

Thus, both the arguments and the values ofX are Grassmannian. Here, this makes
X even. We also note that it is important that ψ be anticommuting in (2.2.55), as
otherwise an integration by parts would imply that

∫
ψaψ̇a dt vanishes identically.

Remark

1. In the physics literature, one usually puts a factor i in front of the term ψaψ̇a
in the Lagrangian F1, and likewise in the other supersymmetric Lagrangians we
shall treat here. Since the expression is Grassmann valued, this becomes a matter
of convention, in contrast to the real-valued situation of (2.2.12). The convention
with the i is compatible with the following convention usually adopted in the

13As ψ and θ are both odd, they anticommute. Otherwise, at this point, they have nothing to do
with each other.
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physics literature for defining a complex conjugation ∗ on Grassmann variables.
This conjugation should satisfy

(τ1 + τ2)∗ = τ ∗
1 + τ ∗

2 , (τ1τ2)
∗ = τ ∗

2 τ
∗
1 . (2.2.56)

One defines the complex conjugate of an ordinary complex number as the ordi-
nary complex conjugate, and one assumes that the generators ϑ1, . . . , ϑN of the
Grassmann algebra are real, i.e.,

ϑ∗
i = ϑi. (2.2.57)

Thus

(ϑα1ϑα2 · · ·ϑαk )∗ = ϑαk · · ·ϑα2ϑα1 . (2.2.58)

The elements of the Grassmann algebra are called supernumbers. A supernum-
ber τ is then called real if τ ∗ = τ , imaginary if τ ∗ = −τ . Thus, ϑα1 · · ·ϑαk is
real if 1

2k(k − 1) is even, imaginary if 1
2k(k − 1) is odd. With this convention,

the term ψaψ̇a , being the product of two real odd quantities, is purely imagi-
nary, and the factor i then serves to make it real. In any case, a factor i in the
Lagrangian in front of the ψ term would then require also a compensating factor
in the supersymmetry transformations (2.2.68) below.

2. We may, in fact, put any factor κ in front of the term ψaψ̇a in the Lagrangian
F1 (and likewise, we may put factors in front of other terms we shall add to our
Lagrangians to make them supersymmetric). We then simply need to compensate
for this in our variations (2.2.68) below, for example by inserting a factor 1/κ
into the right-hand side of the variation for ψ . With such a factor κ , we can then
perform expansions of the Lagrangian and other quantities in terms of κ which
is a useful device often seen in physics texts.

The Euler–Lagrange equations for L1 are

φ̈a = 0, (2.2.59)

ψ̇a = 0, (2.2.60)

and L1 describes a free superpoint particle. a is a vector index, and the setting
can be generalized to particles moving on a Riemannian manifold M with metric
gab(y)dy

a ⊗ dyb . φ̇(t) then transforms as a tangent vector toM , and one postulates
that ψ(t) likewise transforms as a tangent vector in Tφ(t)M , i.e., under a change of
coordinates y = f (y′) inM , one has

ψa = ∂ya

∂y
′b ψ

′b (ψ is thus a vector with Grassmann coefficients). (2.2.61)

(Note that here we are transforming the coordinates in the image; anticipating the
discussion below, this is perfectly compatible with ψ being a spinor field, because
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this refers to the transformation behavior w.r.t. the independent variables.) Thus, ψ
is an odd vector field along the map φ. In particular, the scalar product

〈φ̇,ψ〉 = gab(φ)φ̇aψb (2.2.62)

is invariant under coordinate transformations onM . We may use the Lagrangian

L2 := 1

2
gab(φ)φ̇

aφ̇b + 1

2
gab(φ)ψ

a∇ d
dt
ψb, (2.2.63)

with

∇ d
dt
ψb = d

dt
ψb + φ̇a�bac(φ)ψc. (2.2.64)

The Euler–Lagrange equations for

S2 =
∫
L2(φ,ψ)dt (2.2.65)

are

∇ d
dt
φ̇a − 1

2
Rabcd φ̇

bψcψd = 0, (2.2.66)

∇ d
dt
ψa = 0. (2.2.67)

In contrast to (2.2.59), (2.2.60), these field equations couple φ and ψ . Equation
(2.2.66) is the supersymmetric generalization of the geodesic equation ∇ d

dt
ẋa = 0,

cf. (1.1.124), (1.1.125). When we consider ψ as an ordinary field, the equations
(2.2.66), (2.2.67) describe a spinning particle in a gravitational field. Unless ψ = 0,
the particle no longer moves along a geodesic, because of the presence of the second
term in the first equation.

We return to the action S1, and we perform the variations

δφa = −εψa,
δψa = εφ̇a

(2.2.68)

with an odd parameter ε. The variation of the Lagrangian L1 of S1 is

δL1 = φ̇aδφ̇a + 1

2
(δψa)ψ̇a + 1

2
ψaδψ̇a

= −εφ̇aψ̇a + 1

2
εφ̇aψ̇a + 1

2
ψaεφ̈a

= −εφ̇aψ̇a + 1

2
εφ̇aψ̇a + 1

2

d

dt
(ψaεφ̇a)− 1

2
ψ̇aεφ̇a

= −ε d
dt

(
1

2
ψaφ̇a

)
(using ψ̇aε = −εψ̇a, as ε and ψa are odd). (2.2.69)
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Since δL1 is a total derivative, it follows that S1 is invariant under the variation
(2.2.68). The point of the superspace formalism is now that this variation is induced
by a variation of the independent variables t, θ . Namely, we consider the so-called
supersymmetry generators

Q := τ := θ∂t + ∂θ , (2.2.70)

P := ∂t . (2.2.71)

Here, Q and P are the notations usually employed in physics texts. The operator
Q= τ should be compared with the operator D := ∂θ − θ∂t introduced in (1.5.34)
in Sect. 1.5.2. Then

εQXa(t, θ)= εQ(φa(t)+ψa(t)θ)= εφ̇aθ − εψa

(since θ2 = 0 and θ commutes with φ̇a , but anticommutes with ψa), (2.2.72)

which yields (2.2.68). We have

[Q,Q] ≡ 2Q2 = 2(θ∂t + ∂θ )(θ∂t + ∂θ )= 2∂t = 2P

(since, e.g., θ and ∂θ anticommute). (2.2.73)

Similarly

[D,D] = −2∂t = −2P, (2.2.74)

[Q,P ] = (θ∂t + ∂θ )∂t − ∂t (θ∂t + ∂θ )= 0

(since ∂θ anticommutes with θ and commutes with ∂t ), (2.2.75)

[D,P ] = 0, (2.2.76)

[P,P ] = 0. (2.2.77)

Equations (2.2.73), (2.2.75), (2.2.77) mean that Q and P generate a super Lie al-
gebra, see (1.5.5), i.e., a mod 2 graded vector space S over C, endowed with a su-
perbracket [·, ·] that is bilinear, mod 2 graded additive and superanticommutative,
i.e.,

[A,B] = [B,A] if A,B both are of odd degree,

[A,B] = −[B,A] otherwise, i.e., if A or B is even

and that satisfies the super-Jacobi identity (1.5.6),

(−1)ac[A, [B,C]] + (−1)ba[B, [C,A]] + (−1)cb[C, [A,B]] = 0,

where a, b, c are the degrees of A,B and C, resp. Returning to (2.2.69), we have

δL1 = −εİ
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with

I := 1

2
ψaφ̇a.

We also have

δI = 1

2
εφ̇aφ̇a + 1

2
εψaψ̇a = εL1.

These variations for L1 and I are quite similar to the ones for φa and ψa , compare
(2.2.68), except that the roles of bosons and fermions have been exchanged. In the
physics literature, the representation of the supersymmetry algebra on the φa,ψa

space is called a “bosonic multiplet”, whereas the one on the L1, I space is called
a “fermionic multiplet”.

We are now going to consider a functional on R
1|2 with coordinates (t, θ1, θ2),

and the supersymmetry generators

Qα = θα∂t + ∂θα , (2.2.78)

P = ∂t . (2.2.79)

They span a super Lie algebra with

[Qα,Qβ ] = 2δαβP,

[Qα,P ] = 0 = [P,P ]. (2.2.80)

We try a superfield

Xa(t, θα)= φa(t)+ψaα(t)θα. (2.2.81)

We have

εQ1X
a(t, θ1, θ2)= −εψa1 + εφ̇aθ1 − εψ̇a2 θ1θ2, (2.2.82)

and similarly for εQ2. This is different from the previous situation as we now also
get a θ1θ2 term that can neither be considered as a variation of φa nor as a variation
of ψa . This problem stems from the fact that we now have only one bosonic field φ,
but two fermionic fields ψ1,ψ2. Since supersymmetry mixes bosonic and fermionic
fields, we need to introduce an additional bosonic field and consider the superfield

Ya(t, θα)= φa(t)+ψaα(t)θα + Fa(t)θ1θ2 (2.2.83)

with an even Fa . We now get

εQ1Y
a(t, θα)= −εψa1 + εφ̇aθ1 + εF aθ2 − εψ̇a2 θ1θ2. (2.2.84)
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Thus, we get the variations

δφa = −εψa1 ,
δψa1 = εφ̇a,
δψa2 = εF a,
δF a = −εψ̇a2

(2.2.85)

for Q1 and analogous variations for Q2.
We consider the action

S3 =
∫

1

2
(φ̇aφ̇a +ψaαψ̇aα + Fa Fa)dt. (2.2.86)

The Euler–Lagrange equations for L3 are

φ̈a = 0,

ψ̇aα = 0,

F a = 0.

(2.2.87)

Thus, the equations for the Fa are trivial, and the Fa are auxiliary variables that do
not evolve and can be eliminated. They are only needed to close the supersymmetry
algebra. We also observe that on-shell, i.e., if the equations of motion (2.2.87) are
satisfied, we have

εQ1X
a(t, θα)= −εψa1 + εφ̇aθ1 (2.2.88)

so that the supersymmetry algebra closes here without the Fa field. On-shell, the
number of degrees of freedom of the ψaα fields is reduced so that we no longer need
the Fa field in order to restore the balance between bosonic and fermionic fields,
and on-shell, Fa vanishes anyway.

We may also write things in a more invariant manner. Namely, with

X(t, θ)= φ(t)+ψ(t)θ, (2.2.89)

we have

DX = −φ̇θ −ψ (2.2.90)

and

D(DX)= −(φ̇ + ψ̇θ), (2.2.91)

and so we have

S1 =
∫

1

2
DXD(DX)dtdθ. (2.2.92)
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Since the supersymmetry generator Q anticommutes with D, we now see directly,
without any need for further computation, that L1 remains invariant under super-
symmetry transformations. Similarly, to represent S3, we consider the operators

Dα = −θα∂t + ∂θα . (2.2.93)

From (2.2.83), we obtain

S3 = 1

4

∫
εαβDαYDβYdtdθ

2dθ1, (2.2.94)

for the field Y , where the antisymmetric ε-tensor satisfies

ε12 = −ε21 = 1. (2.2.95)

We observe that, in contrast to (2.2.92), (2.2.94) contains only two Ds, the reason
being that here we have two odd variables, θ1 and θ2, that are integrated. The Euler–
Lagrange equations (2.2.87) for L3 then become

εαβDαDβY = 0. (2.2.96)

We now wish to include self-interaction terms in the functional and consider a
(smooth) potential function of the superfields Ya ,

W(Ya)=W(φa +ψaαθα + Faθ1θ2). (2.2.97)

Thus, we have the expansion

W(Y)=w(φ)+ ∂w(φ)

∂φa
(ψaαθ

α + Faθ1θ2)+ 1

2

∂2w(φ)

∂φa∂φb
ψaαθ

αψbβθ
β. (2.2.98)

We introduce an interaction Lagrangian

Lint = −
∫
W(Y(t, θ1, θ2))dtdθ2dθ1 (2.2.99)

= −
∫ (

∂w(φ(t))

∂φa(t)
F a + ∂2w(φ(t))

∂φa(t)∂φb(t)
ψa1ψ

b
2

)
dt. (2.2.100)

The total Lagrangian is

L3 +Lint . (2.2.101)

The corresponding Euler–Lagrange equations include the following equation for F

Fa = ∂w(φ)

∂φa
. (2.2.102)

Again, this is an algebraic equation and thus eliminates Fa , and we may write

L3 +Lint =
∫
dt

(
1

2
φ̇aφ̇a + 1

2
ψaαψ̇aα − 1

2

∂w(φ)

∂φa

∂w(φ)

∂φa
− ∂2w(φ)

∂φb∂φa
ψa1ψ

b
2

)
.

(2.2.103)
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2.3 Variational Aspects

2.3.1 The Euler–Lagrange Equations

Here, we present a brief summary of the calculus of variations as needed for treat-
ing action functionals and their symmetries. For more details, we refer to [66]. We
consider a Lagrangian

L=
∫
F(x,u(x), du(x))dx (2.3.1)

and variations

u(x)→ u(x)+ sδu(x); (2.3.2)

here, s is a parameter, and δu(x) is the variation of u at x.14 This means the follow-
ing:

δL(u)(δu) := δL(u)

δu
:= d

ds

∫
F(x,u(x)+ sδu(x), d(u(x)+ sδu(x)))dx|s=0.

(2.3.3)
More generally, one may consider a C2-family of diffeomorphisms hs(u) of the
dependent variables, defined for s in some neighborhood of 0, with h0 being the
identity, and

d

ds
hs(u(x))|s=0 = δu(x), (2.3.4)

and

δL(u)(δu)= d

ds

∫
F(x,hs(u(x)), d(hs(u(x))))dx|s=0. (2.3.5)

Since we consider only infinitesimal variations, (2.3.3) and (2.3.5) are the same, and
we may use either formulation.

We now assume that

δL(u)(δu)

(
= δL(u)

δu

)
= 0 (2.3.6)

for a variation δu. We compute

δL(u)(δu)=
∫ (

Fu (x,u(x), du(x)) δu(x)+ Fpα (x,u(x), du(x)) ∂
∂xα

δu(x)

)
dx

14The integration is supposed to take place on some domain �, but as that domain will play no
essential role, we suppress it in our notation. In many situations, the variations δu are required to
satisfy certain conditions at the boundary of � (because u itself is constrained there), but again,
that will not be essential in the present context. Of course, it is important to realize that the integral
in the definition of the Lagrangian is a definite one. Likewise, we suppress other constraints that u
may have to satisfy, and that need to be preserved by its variations.
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=
∫ (

Fu(x,u(x), du(x))− d

dxα
Fpα (x,u(x), du(x))

)
δu(x)dx

(2.3.7)

where pα is a dummy variable for the place where ∂u
∂xα

is inserted, and subscripts
denote partial derivatives, e.g. Fu := ∂F

∂u
. (In fact, u might be vector valued, and in

that case Fu stands for all the partial derivatives of F w.r.t. the components of u.)
For the last line, we have integrated by parts, assuming that the variation δu is such
that no boundary term occurs. We note the full derivative d

dxα
that indicates that we

need to differentiate Fpα (x,u(x), du(x)) for all three occurrences of x.
Comparing (2.3.7) with (2.1.52), we obtain

δL(u)

δu(x)
= Fu(x,u(x), du(x))− d

dxα
Fpα (x,u(x), du(x)). (2.3.8)

Thus, δL(u)
δu(x)

represents the Euler–Lagrange operator.
We now assume that u is a stationary point, e.g., a minimizer of L, in the sense

that (2.3.6) holds for all variations δu satisfying an appropriate boundary condition.
We then obtain the Euler–Lagrange equations

δL(u)

δu(x)
= Fu(x,u(x), du(x))− d

dxα
Fpα (x,u(x), du(x))= 0. (2.3.9)

When we wish to derive things in a geometrically invariant way, we should change
the preceding formalism slightly. The reason is that the integration measure dx em-
ployed in (2.3.1) is not geometrically invariant. More natural is the volume form

√
detgij dx for a Riemannian metric gij . (2.3.10)

Thus, in place of (2.3.1), we should consider

L=
∫
G(x,u(x), du(x))

√
detgij dx. (2.3.11)

We abbreviate
√
g :=√

detgij . (2.3.12)

The Euler–Lagrange equations (2.3.9) then become

δL(u)

δu(x)
=Gu(x,u(x), du(x))− 1√

g

d

dxα
(
√
gGpα(x,u(x), du(x)))= 0. (2.3.13)

2.3.2 Symmetries and Invariances: Noether’s Theorem

We consider an action

L=
∫
F(x,u(x), du(x))dx (2.3.14)
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that is infinitesimally invariant under some variation

u(x)→ u(x)+ sη(x). (2.3.15)

As just explained, the invariance means that

δL := d

ds

∫
F(x,u(x)+ sη(x), d(u(x)+ sη(x)))dx|s=0 = 0. (2.3.16)

In contrast to the preceding, here we consider arbitrary fields u, but only particular
variations η—above, we had considered arbitrary variations δu for a particular u.

Again, we may alternatively consider a C2-family of diffeomorphisms hs(u) of
the dependent variables, defined for s in some neighborhood of 0, with h0 being the
identity, and d

ds
hs(u(x))|s=0 = η(x). We now assume

∫
F(x,hs(u(x)), dhs(u(x)))dx =

∫
F(x,u(x), du(x))dx

for all s near 0 and all admissible u. The interpretation that a variation arises from
a diffeomorphism of the dependent variables that leaves the action invariant is useful
when one wants to analyze invariances in the context of global analysis.

As in (2.3.7), we obtain

0 =
∫ (

Fu(x,u(x), du(x))η(x)+ Fpα (x,u(x), du(x)) ∂
∂xα

η(x)

)
dx. (2.3.17)

We now consider a more general variation

u(x)→ u(x)+ s(x)η(x), (2.3.18)

that is, where the variation parameter s may also depend on x. Since the variation
δL vanishes for constant s, it must now be proportional to the derivative of s, that
is,

δL=
∫
Fpα (x,u(x), du(x))η(x)

∂

∂xα
s(x)dx. (2.3.19)

If we now assume in addition that u is stationary, that is, δL vanishes for all varia-
tions, (2.3.19) vanishes as well, and we conclude

d

dxα
(Fpα (x,u(x), du(x))η(x))= 0. (2.3.20)

This is a special version of Noether’s theorem. We define the Noether current

jα(x) := Fpα(x,u(x), du(x))η(x). (2.3.21)

Noether’s theorem thus says that j is conserved in the sense that

div j = ∂

∂xα
jα(x)= 0. (2.3.22)
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As at the end of Sect. 2.3.1, when we consider a functional of the form (2.3.10), we
obtain the geometric version of Noether’s theorem,

div j = 1√
g

∂

∂xα
(
√
gjα(x))= 0, (2.3.23)

with jα(x) :=Gpα(x,u(x), du(x))η(x).
For the general version of Noether’s theorem, we also allow for variations of the

independent variable x. That means that we consider

x → x′ := x + sδx, (2.3.24)

u(x)→ u′(x′) :=ψ(u(x)) := u(x)+ sδψ(x). (2.3.25)

When we write

u′(x)= u(x)+ sη(x) (2.3.26)

we have

η= δψ − du

dxβ
δxβ. (2.3.27)

Since now the integration measure dx also varies under (2.3.24), the Noether current
becomes

jα := Fpα (x,u(x), du(x))
(
δψ − du

dxβ
δxβ

)
+ F(x,u(x), du(x))δxα, (2.3.28)

and again a conserved quantity,

div j = ∂

∂xα
jα(x)= 0. (2.3.29)

Here as well, in the Riemannian setting, we instead have

jα :=Gpα(x,u(x), du(x))
(
δψ − du

dxβ
δxβ

)
+G(x,u(x), du(x))δxα (2.3.30)

and (2.3.29) should be replaced by

div j = 1√
g

∂

∂xα
(
√
gjα(x))= 0, (2.3.31)

cf. (2.3.23).
Finally, in many situations, the Lagrangian is only invariant up to a divergence

term, that is,

δL+
∫

divA(u, δx, δu)= 0. (2.3.32)
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In this case, we obtain that (in abbreviated notation when compared to (2.3.28))

div(Fpδu+ (F − Fpdu)δx +A(u, δx, δu))= 0. (2.3.33)

The standard example is the conservation of energy for time-invariant Lagrangians.
We consider the action

S0 =
∫ (

1

2
φ̇aφ̇a − V (φ)

)
dt. (2.3.34)

Since the integrand does not depend explicitly on t , it is invariant under a variation
t → t + δt , and from (2.3.28), we conclude that the negative of the Hamiltonian
(= energy) is preserved, this being given by

1

2
φ̇aφ̇a + V (φ). (2.3.35)

The same happens for our supersymmetric Lagrangian (2.2.55),

S1 = 1

2

∫
(φ̇aφ̇a +ψaψ̇a)dt; (2.3.36)

again, the Noether current is

−1

2
φ̇aφ̇a, (2.3.37)

that is, minus the Hamiltonian. We observe that the Noether current here contains
only the bosonic field φ, not the fermionic one ψ . We may also consider supersym-
metry invariance in this framework. When we perform the variations (2.2.68), we
compute that the associated current is given by

−εφ̇ψ. (2.3.38)

The superspace formalism represented the supersymmetry variation as a variation
of the independent variables. Since S1 in (2.2.92), however, also contains terms of
the form D2X, the formalism needs to be slightly extended to carry over. The La-
grangian S3 as written in (2.2.94) does not present this problem, and so, in that case,
the conserved current can be computed from a variation of the independent variables
without the need for an extension of the formalism, except that of course we now
need to take the signs into account as always when performing supercomputations.

We now finally derive some implications of Noether’s theorem in the Minkowski
setting. According to (2.3.29), invariance implies a conserved current:

∂αj
α = 0. (2.3.39)

From this, we obtain a conserved charge:

Q=
∫
dd−1xj0, (2.3.40)
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where j0 is the time component of j and dd−1x denotes the integration over a space-
like slice,

d

dt
Q=

∫
dd−1x ∂0j

0

= −
∫
dd−1x ∂a j

a (a running over spatial indices) by (2.3.24),

= 0 (2.3.41)

by the divergence theorem when j vanishes sufficiently quickly at spatial infinity.

2.4 The Sigma Model

In this section, we discuss an action functional that is fundamental to conformal
field theory and string theory, the sigma model and its nonlinear and supersymmetric
versions. In the mathematical literature, the corresponding theory appears under the
name of harmonic maps, and we refer to [65] for a detailed treatment with proofs and
references; for the supersymmetric version, the harmonic map needs to be coupled
with a Dirac field as treated in [16]. A monograph about this topic from physics
is [73].

2.4.1 The Linear Sigma Model

We let M be a Riemannian manifold of dimension m, with metric tensor in local
coordinates (γαβ)α,β=1,...,m,.15

We recall the following notation:

(γ αβ)α,β=1,...,m = (γαβ)−1
α,β (inverse metric tensor),

γ = det(γαβ),

�αβη = 1

2
γ αδ(γβδ,η + γηδ,β − γβη,δ) (Christoffel symbols).

For a function φ :M → R of class C1, we consider

γ αβ(x)
∂φ(x)

∂xα

∂φ(x)

∂xβ
(2.4.1)

15The conventions here are different from the ones established in Sect. 1.1.1 where the metric of
M was denoted by gij . The reason is that for the nonlinear sigma model, another manifold will
come into play, the physical space(–time) whose metric will then be denoted by gij .M will be the
world sheet instead.
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in local coordinates (x1, . . . , xm) on M . The quantity (2.4.1) is simply the square
of the norm of the differential dφ = ∂φ

∂xα
dxα , which is a section of the cotangent

bundle T �M , that is,

γ αβ(x)
∂φ(x)

∂xα

∂φ(x)

∂xβ
= 〈dφ,dφ〉T �M = ‖dφ‖2 (2.4.2)

in hopefully self-explanatory notation. Therefore, it is clear that (2.4.1) is invariant
under coordinate changes.

The Dirichlet integral of φ is then

S(φ)= 1

2

∫

M

γ αβ(x)
∂φ

∂xα

∂φ

∂xβ
√
γ dx1 · · ·dxm = 1

2

∫

M

‖dφ‖2dvolγ (M). (2.4.3)

Minimizers are harmonic functions; they solve the Laplace–Beltrami equation
(see (1.1.103)) (the Euler–Lagrange equation for S(φ))

�Mφ = 1√
γ

∂

∂xα

(√
γ γ αβ

∂

∂xβ
φ

)
= 0. (2.4.4)

We now specialize this to the case whereM is two-dimensional, that is, a surface
equipped with some Riemannian metric. According to the conventions set up in
Sect. 1.1.2, we can then let the indices α,β stand for z, z̄, where z = x1 + ix2 is
a complex coordinate; when we want to avoid indices, we shall also write z= x+ iy,
as in Sect. 1.1.2. Thus

‖dφ‖2 = γ zz ∂φ
∂z

∂φ

∂z
+ 2γ zz̄

∂φ

∂z

∂φ

∂z̄
+ γ z̄z̄ ∂φ

∂z̄

∂φ

∂z̄
(2.4.5)

and, recalling (1.1.76),

S(φ)= 1

2

∫

M

γ αβ
∂φ

∂xα

∂φ

∂xβ

√
γ11γ22 − γ 2

12 dx ∧ dy

= 1

2

∫

M

(
γ zz
∂φ

∂z

∂φ

∂z
+ 2γ zz̄

∂φ

∂z

∂φ

∂z̄
+ γ z̄z̄ ∂φ

∂z̄

∂φ

∂z̄

)

×
√
γzzγz̄z̄ − γ 2

zz̄ dz∧ dz̄. (2.4.6)

A fundamental point in the sequel will be to consider S not only as a function of the
field φ, but also of the metric γ . We thus write

S(φ, γ ). (2.4.7)

Naturally, we then also want to study the effect of variations δγ of the metric on S;
it is in fact more convenient to study variations of the inverse metric γ−1. Observing

that
√
γ11γ22 − γ 2

12 = (√γ 11γ 22 − (γ 12)2)−1, we compute

δS(φ, γ )=
∫
Tαβδγ

αβ
√
γ11γ22 − γ 2

12 dx ∧ dy (2.4.8)
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with

Tαβ = ∂φ

∂xα

∂φ

∂xβ
− 1

2
γαβγ

εη ∂φ

∂xε

∂φ

∂xη
. (2.4.9)

We call Tαβ the energy–momentum tensor16 and observe that T is trace-free, that
is,

T αα = 0. (2.4.10)

Here, the dimension 2 is essential. The reason why T is trace free is the conformal
invariance of S in dimension 2. This simply means that when we change the metric
to eσ γ for some function σ :M → R, then S stays invariant:

S(φ, eσ γ )= S(φ, γ ). (2.4.11)

Infinitesimally, the variation of γ−1 is −δσ γ−1, and from (2.4.8), (2.4.11), we get

0 =
∫
Tαβ δσ γ

αβ
√
γ11γ22 − γ 2

12 dx ∧ dy

=
∫
T αα δσ

√
γ11γ22 − γ 2

12 dx ∧ dy (2.4.12)

for all variations δσ , which implies (2.4.10).
We now consider this from a slightly different point of view. A Riemannian

metric γ on a surface induces the structure of a Riemann surface �, as defined
in Sect. 1.1.2, via the uniformization theorem (for a detailed treatment, we refer
to [64]). As a consequence, we can find holomorphic coordinates z = x + iy for
which the metric is diagonal, that is,

γ12 = 0 and γ11 = γ22, (2.4.13)

or equivalently,

γzz = 0 = γz̄z̄. (2.4.14)

We can then express the metric tensor by a single (nonvanishing) scalar function λ,
that is, as

λ2dzdz̄; (2.4.15)

cf. (1.4.18). As explained in Sect. 1.4.2, a Riemann surface � can be considered
as a conformal equivalence class of metrics of the form (2.4.15). When we choose

16Since we consider a Euclidean instead of a Minkowskian situation, we cannot distinguish be-
tween temporal and spatial directions, and thus also not between energy and momentum as quan-
tities that are preserved because of temporal or spatial invariance, according to Noether’s the-
orem. This explains the name energy–momentum tensor here. In general relativity, the energy–
momentum tensor emerges because Lorentz invariance combines temporal and spatial invariance.
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coordinates so that this holds, our functional S also simplifies:

S(φ, γ )= 1

2

∫

M

(
∂φ

∂x

∂φ

∂x
+ ∂φ

∂y

∂φ

∂y

)
dx ∧ dy =

∫

M

∂φ

∂z

∂φ

∂z̄
idz∧ dz̄. (2.4.16)

Thus, the dependence on the metric disappears, except that the holomorphic coordi-
nates z= x + iy have been chosen so as to diagonalize the metric. In other words,
S is a function of the equivalence class of metrics encoded by �, and we can write
it as

S(φ,�). (2.4.17)

In these conformal coordinates, that is, where (2.4.13), (2.4.14) hold, the condition
(2.4.10) becomes

Tzz̄ = 0. (2.4.18)

Since we take the field φ to be real-valued here, we also have ∂φ
∂z̄

= ∂φ
∂z

, and so Tz̄z̄ =
Tzz. Therefore T is determined by its component Tzz. Taking its the transformation
behavior into account as well, the energy–momentum tensor becomes a quadratic
differential

Tzzdz
2 =

(
∂φ

∂z

)2

dz2 (2.4.19)

from (2.4.9).
When the metric takes the form (2.4.15), the Laplace–Beltrami equation satisfied

by critical points of S also simplifies:

4

λ2

∂2φ

∂z∂z̄
= 0, (2.4.20)

which is equivalent to the simpler equation

4
∂2φ

∂z∂z̄
= 0. (2.4.21)

In this presentation, the dependence on the metric is no longer visible. This sim-
ply comes from the fact that we write the equation in local coordinates, and local
coordinate neighborhoods are conformally equivalent to domains in the Euclidean
complex line C. When we return to the global aspects, as explained, we have a func-
tional S(φ,�) that depends on the Riemann surface �. In Sect. 1.4.2, we have
considered the moduli space of Riemann surfaces, and we can thus consider S as
a functional on the moduli space Mp of Riemann surfaces of some given genus p.
As explained in that section, that moduli space is not compact for p > 0, and one
should then consider an extension of S to a compactification of Mp . Such a com-
pactification was constructed by pinching homotopically nontrivial closed curves
(represented by closed geodesics w.r.t. a hyperbolic metric for p > 1), thus creating
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surfaces with singularities. Those singularities were then removed by compactifying
the resulting surfaces by two points, one for each side of the closed geodesic. This
now connects well with the behavior of the functional S, because its critical points,
the solutions of (2.4.20), (2.4.21), are harmonic functions. And bounded harmonic
functions can be smoothly extended across isolated singularities. That means that if
we consider a sequence of degenerating Riemann surfaces �n and controlled har-
monic functions un (with some suitable norm bounded independently of n) on them,
we can pass to the limit (of some subsequence) that then defines a harmonic func-
tion u on the Riemann surface � obtained by the described compactification of the
limit of the Riemann surfaces. That harmonic function is then smooth on all of �,
and in particular, it does not feel the presence or the position of the puncture, that
is, of the points added for the compactification. In particular, the functional S then
naturally extends not only to the Deligne–Mumford compactification, but also to

the Baily–Satake compactification Mp (see Sect. 1.4.3 of the moduli space Mp).
For more details, see [62].

There is one point here that will become important below in Sect. 2.5. While the
equation of motion, our Euler–Lagrange equation (2.4.20), is conformally invariant
in the sense that the conformal factor 1

λ2 plays no role, the corresponding differential

operator, the Laplace–Beltrami operator 4
λ2

∂2

∂z∂z̄
, is not conformally invariant itself.

From (2.4.20), we see directly that the energy–momentum tensor as given by
(2.4.19) is holomorphic at a solution of (2.4.20):

∂Tzz

∂z̄
= 0. (2.4.22)

In conclusion, the energy–momentum tensor yields a holomorphic quadratic differ-
ential Tzzdz2 = ( ∂φ

∂z
)2dz2 on our Riemann surface �.

There is a deeper reason why T is holomorphic. As we shall now explain, S
is invariant under diffeomorphisms, and by Noether’s theorem, this yields a con-
served current, that is, a divergence-free quantity. That latter equation then turns
out to be equivalent to (2.4.22). The reason is simply that (2.4.6), or equivalently
(2.4.16), is invariant under coordinate changes. In mathematical terms, as explained
in Sect. 1.1.1, this means that we compose the field φ with a diffeomorphism h of
our surface and simultaneously pull the metric γ in (2.4.6) or the area form dx ∧ dy
in (2.4.16) back by that diffeomorphism. In other words, we have

S(φ ◦ h,h�γ )= S(φ, γ ). (2.4.23)

In the formalism of physics, we move the points in the domain by an infinitesimal
diffeomorphism, that is, a vector field, and consider the variation

xα + εδxα or, in complex coordinates, z+ εδz. (2.4.24)

By (2.3.28), the conserved current is

jz = −
(
∂φ

∂z̄

)2

δz̄, j z̄ = −
(
∂φ

∂z

)2

δz, (2.4.25)
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and with jz = γzz̄j z̄ (cf. 1.1.2 and note that γzz = 0 by (2.4.14)), (2.3.31) becomes

0 = ∂

∂z̄
jz = ∂

∂z̄

(
∂φ

∂z

)2

δz. (2.4.26)

When we take holomorphic variations, ∂
∂z̄
δz = 0, that is, respect the Riemann sur-

face structure, this becomes (2.4.22), the holomorphicity of the energy–momentum
tensor at a solution of the Euler–Lagrange equations, that is, (2.4.20).

We now wish to connect this discovery with 7 in Sect. 1.4.2. There, we had also
found a holomorphic quadratic differential as a (co)tangent vector to the moduli
space of Riemann surfaces. When we consider S(φ, γ ) as a function of the met-
ric γ , its derivative with respect to γ should be a tangent vector to the space of
all metrics on our underlying surface. Here, we have been considering variations
with respect to the inverse metric γ−1, and thus, we obtain a cotangent instead of
a tangent vector to the space of metrics. In 7 of Sect. 1.4.2, we have distinguished
three types of variations of metrics, the ones through diffeomorphisms, the ones by
conformal factors, and the residual ones that correspond to tangent directions of the
Riemann moduli space. Now our functional S(φ, γ ) is invariant under the first two
types of variations: diffeomorphism invariance led to the holomorphicity (2.4.22),
and conformal invariance made the energy–momentum tensor trace-free, (2.4.18).
Therefore, it must correspond to a cotangent direction of the Riemann moduli space,
and thus the agreement with the condition (1.4.20) is no coincidence.

2.4.2 The Nonlinear Sigma Model

In the nonlinear sigma model, the field φ takes its values in some Riemannian man-
ifold N with metric gij , instead of in the real line R. In the physics literature, one
is usually interested in the case where N is the sphere Sn, that is, a homogeneous
space for the Lie group O(n+ 1) (one then speaks of the nonlinear O(n+ 1) sigma
model), or more generally, where N is the homogeneous space for some other com-
pact Lie group. The case where N itself is a compact Lie group G leads to the
Wess–Zumino–Witten model (see for instance [38, 73]). For the mathematical the-
ory, however, one can consider an arbitrary Riemann manifoldN , and this generality
should make the structure more transparent. In fact, this will also be necessary for
the applications to Morse theory presented below.

The action functional for the nonlinear sigma model is formally the same as
(2.4.3),

S(φ)= 1

2

∫

M

‖dφ‖2dvol(M), (2.4.27)

where the norm of the differential is now given by

‖dφ‖2 = γ αβ(x)gij (φ(x))∂φ
i(x)

∂xα

∂φj (x)

∂xβ
. (2.4.28)
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Expressed more abstractly, the differential of φ,

dφ = ∂φi

∂xα
dxα ⊗ ∂

∂φi
, (2.4.29)

is now a section of the bundle T �M⊗φ−1TN where the latter bundle is the pullback
of the tangent bundle of the targetN by the map φ. Since the bundle thus depends on
the field φ, the situation is intrinsically nonlinear. In particular, the Euler–Lagrange
equations are also nonlinear:

τ i(φ) := 1√
γ

∂

∂xα

(√
γ γ αβ

∂

∂xβ
φi
)

+ γ αβ(x)�ijk(φ(x))
∂

∂xα
φj

∂

∂xβ
φk = 0,

(2.4.30)
with the Christoffel symbols as in (1.1.60). (The expression τ(φ) is called the ten-
sion field of φ.) Whereas this nonlinearity makes the analysis more subtle and much
harder, see [65], most of the formal aspects remain unchanged when compared with
the linear version of Sect. 2.4. Solutions of (2.4.30) are called harmonic maps in the
mathematical literature.

We are again interested in the situation when the underlying domainM is a Rie-
mann surface. As in the linear case, the action (2.4.27) is conformally invariant,
and so we can consider it either as a function S(φ, γ ) of the domain metric γ or as
a function S(φ,�), with the Riemann surface� considered as the equivalence class
of conformal metrics that γ belongs to. Thus, conformal invariance is preserved in
the nonlinear case, and so is, obviously, diffeomorphism invariance. Therefore, we
again obtain a holomorphic energy–momentum tensor as before,

Tzzdz
2 =

〈
∂φ

∂z
,
∂φ

∂z

〉

N

dz2 = gij (φ)∂φ
i

∂z

∂φj

∂z
dz2 (2.4.31)

where we use the scalar product defined by the metric of N . When one does the
computation right, it is the same as in the linear case and therefore need not be
repeated here.

For example, from (2.4.8), we also see that S is critical for variations of the metric
γ when the energy–momentum tensor vanishes. According to (2.4.19), this means

〈
∂φ

∂z
,
∂φ

∂z

〉

N

= 0 (2.4.32)

(note that we are not taking a Hermitian product here, and so this quantity can well
be 0 without ∂φ

∂z
being 0 itself—when that happens, we say that ∂φ

∂z
is isotropic), or

in real coordinates x, y with z= x + iy, from (2.4.9)
〈
∂φ

∂x
,
∂φ

∂x

〉

N

=
〈
∂φ

∂y
,
∂φ

∂y

〉

N

,

〈
∂φ

∂x
,
∂φ

∂y

〉

N

= 0. (2.4.33)

When those relations hold, the map φ : � → N is conformal. Since by a special
case of the Riemann–Roch theorem, see Sect. 1.4.2, every holomorphic quadratic
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differential on the sphere S2 vanishes, we conclude that on S2, the energy–
momentum tensor associated with a harmonic map automatically vanishes, and
therefore, any harmonic map φ : S2 → N into any Riemann manifold N is con-
formal. For Riemann surfaces of genus > 0, this is not true.

2.4.3 The Supersymmetric Sigma Model

We now extend the sigma model to include supersymmetry, proceeding as in
Sect. 2.2.5. We work with the Clifford algebra Cl(2,0), which admits a real rep-
resentation as explained in Sect. 1.3.2. In fact, this representation is a dimensional
reduction of that of Cl(2,1), and so the two-dimensional formalism to be developed
here is a dimensional reduction of a three-dimensional one. As explained in [23],
a three-dimensional space (with Minkowski signature) is the basic setting for N = 1
supersymmetry, but for our purposes, conformal invariance is a crucial underlying
feature of our variational problems, and therefore, we continue to focus on the two-
dimensional case and consider (2|2) dimensions here (with Euclidean signature).
We choose local even coordinates x1, x2 and odd ones θ1, θ2.

In order to conform to the conventions employed in [23], we use the following
representation of Cl(2,0):

e1 → γ 1 =
(−1 0

0 1

)
, e2 → γ 2 =

(
0 −1

−1 0

)
(2.4.34)

which is different from the one described in Sect. 1.3.2 (but of course equivalent to
it). We recall that the γ μ satisfy

{γ μ, γ ν} = 2δμν. (2.4.35)

This is a real two-dimensional euclidean representation, and so we have real euclid-
ean Majorana spinors satisfying

ψ̄ =ψ† =ψT = (ψ1,ψ2). (2.4.36)

In particular, we could leave out the bars for complex conjugation (and we shall do
so sometimes). Since these spinors are supposed to anticommute, we also have

ψ̄χ = −χ̄ψ, ψ̄γ μχ = −χ̄γ μψ. (2.4.37)

For a spinor field ψ , we then have the Dirac form

ψ̄ /Dψ = (ψ1,ψ2)

⎛

⎝γ 1

⎛

⎝
∂ψ1
∂x1

∂ψ2
∂x1

⎞

⎠+ γ 2

⎛

⎝
∂ψ1
∂x2

∂ψ2
∂x2

⎞

⎠

⎞

⎠

= −ψ1
∂ψ1

∂x1
+ψ2

∂ψ2

∂x1
−ψ1

∂ψ2

∂x2
−ψ2

∂ψ1

∂x2
. (2.4.38)
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For later purposes, we observe that this can also be expressed in complex notation
as

ψ̄ /Dψ = −
(
(ψ1 + iψ2)

∂

∂z
(ψ1 + iψ2)+ (ψ1 − iψ2)

∂

∂z̄
(ψ1 − iψ2)

)
(2.4.39)

with z= x1 + ix2.
We define the vector fields

D1 := ∂θ1 − θ1∂x1 − θ2∂x2 ,

D2 := ∂θ2 − θ1∂x2 + θ2∂x1 ,
(2.4.40)

Q1 := ∂θ1 + θ1∂x1 + θ2∂x2 ,

Q2 := ∂θ2 + θ1∂x2 − θ2∂x1 .
(2.4.41)

They satisfy

[D1,D1] = −2∂x1, [D1,D2] = −2∂x2 , [D2,D2] = 2∂x1 ,

[Q1,Q1] = 2∂x1 , [Q1,Q2] = 2∂x2 , [Q2,Q2] = −2∂x1 .
(2.4.42)

We are now ready to introduce the supersymmetric sigma model. We consider a su-
perfield Y with expansion

Y = φ(x)+ψα(x)θα + F(x)θ1θ2 (2.4.43)

and the action

S4 =
∫

1

4
εαβ〈DαY,DβY 〉d2xdθ2dθ1 (2.4.44)

where dθ indicates that a Berezin integral has to be taken; namely, we recall from
Sect. 1.5.2 that for an expression Z = z+ zαθα + z12θ

1θ2,
∫
Zd2θ =

∫
Zdθ2dθ1 = z12, (2.4.45)

that is, the θ -integration picks out the θ1θ2 term, see (1.5.27). Moreover, the anti-
symmetric ε-tensor is defined by

ε12 = −ε21 = 1. (2.4.46)

S4 is the Wess–Zumino action (in flat Euclidean space). After expanding and carry-
ing out the Berezin integral, this becomes

S4 = 1

2

∫
d2x(∂μφa∂μφa + ψ̄aγ μ∂μψa + Fa Fa). (2.4.47)

In complex notation, this looks as follows: We set

ψ+ :=ψ1 − iψ2, ψ− :=ψ1 + iψ2 (2.4.48)
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and

θ+ := θ1 + iθ2, θ− := θ1 − iθ2 (2.4.49)

and define the operators

D+ := ∂θ+ + θ+∂z, D− := ∂θ− + θ−∂z̄. (2.4.50)

With this notation, (2.4.43) becomes

Y = φ + 1

2
(ψ+θ+ +ψ−θ−)+ i

2
Fθ+θ−. (2.4.51)

We then have

S4 =
∫

1

2
D−YD+Yd2xdθ−dθ+

=
∫

1

2

(
4∂zφ

a∂z̄φa −ψ+
∂

∂z̄
ψ+ −ψ−

∂

∂z
ψ− + FaFa

)
d2x. (2.4.52)

S4 is invariant under the supersymmetry transformations

δφa = εψa, (2.4.53)

δψa = γ με∂μφa − εF a, (2.4.54)

δF a = εγ μ∂μψa. (2.4.55)

Indeed, the variation is

δS4 = 1

2

∫
dx2(2ε∂μφa∂μψa + εγ ν∂νφaγ μ∂μψa + εF aγ μ∂μψa

+ψaγ μ∂μ(γ νε∂νφa + εFa)− 2εγ μ∂μψ
a Fa + ∂μ(ε)ψa∂μφa

)
, (2.4.56)

which vanishes after integration by parts and using (2.4.35) and (2.4.37), when we
assume that ε is constant. Locally, the latter can be assumed, and we do so for the
moment, but later on, in Sect. 2.4.7, we shall return to the global issue.

The Euler–Lagrange equations for S4 are

εαβDαDβY = 0, (2.4.57)

or in components,

�φ = 0, (2.4.58)

γ μ∂μψ = 0, (2.4.59)

F = 0. (2.4.60)

In complex notation, these equations become
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D−D+Y = 0, (2.4.61)

or in components

∂z∂z̄φ = 0, (2.4.62)

∂z̄ψ+ = 0, ∂zψ− = 0, (2.4.63)

F = 0. (2.4.64)

Again, F is a nonpropagating, auxiliary field that is only introduced to close the
supersymmetry algebra off-shell. On-shell, (2.4.53) and (2.4.54) become

δφa = εψa, (2.4.65)

δψa = γ με∂μφa. (2.4.66)

(Note that (2.4.59) implies that δF a = 0 on-shell, i.e., the term that obstructs the
closing of the algebra is proportional to one to the equations of motion.)

We now turn to the supersymmetric nonlinear sigma model. In fact, the formal-
ism remains the same; we just need to expand its interpretation.

Thus, we consider a map

Y :M →N (2.4.67)

from a (2|2)-dimensional supermanifold to some Riemannian manifold N . We ex-
pand Y as before:

Y = φ(x)+ψα(x)θα + F(x)θ1θ2. (2.4.68)

φ can be considered to be an ordinary map into N , whereas the odd part ψ repre-
sents an (odd) section of the pull-back tangent bundle φ�T N .17 〈. , .〉 now denotes
a Riemannian metric on the target space; we shall also write ‖v‖2 := 〈v, v〉 be-
low.

Finally, F is an auxiliary field as before. This time, the algebraic equation for F
among the Euler–Lagrange equations is

−4gij (φ)F
i + 2gij,kψ

k
ψi − gki,jψkψi = 0,

i.e.,

F i = �ikjψkψj , (2.4.69)

so that F can again be eliminated. In particular, when we use Riemann normal
coordinates at the point under consideration, F vanishes.

17Thus, w.r.t. coordinate changes on the target N , ψ transforms as a vector, whereas on the do-
main M , it transforms as a spinor. In particular, the setting here is different from the one above
in Sect. 1.5.3 for maps between super Riemann surfaces, where the odd field has to transform as
a spinor on both domain and target.
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In local coordinates, after carrying out the θ -integral, the Lagrangian density
becomes

1

2
‖dφ‖2 + 1

2
〈ψ, /Dψ〉 − 1

12
εαβεγ δ〈ψα,R(ψβ,ψγ )ψδ〉. (2.4.70)

(We get the R-term (the curvature of the target N ) after elimination of 1
2‖F‖2.) This

comes about as follows: According to the rule for the Berezin integral, we need to
identify the θ1θ2-term in (2.4.44). For that purpose, we recall that a function of
a superfield Y has to be expanded by Taylor’s formula as explained in Sect. 1.5.2,
see (1.5.20), (1.5.21). In particular, (2.4.44) contains the metric tensor 〈., .〉 of the
target N . In local coordinates, we have a tensor gij (Y ) whose expansion contains
second derivatives gij,kl(φ) multiplied with θ1ψ1θ

2ψ2, which gives the curvature
term in (2.4.70). Terms with first derivatives of gij do not carry an invariant meaning
and become 0 in suitable coordinates (Riemann normal coordinates) at the point in
N under consideration. In particular, the curvature tensor R has to be evaluated at
the point φ(x) ∈N . Similarly, the Dirac operator /D contains a covariant derivative
at the tangent space Tφ(x)N .

We now list the important results for the nonlinear supersymmetric sigma model
(for detailed computations see [17]): The Euler–Lagrange equations for the nonlin-
ear supersymmetric sigma model are

τm(φ)− 1

2
Rmlijψ

i
(∇φl ·ψj )+ 1

12
gmpRikjl;p(ψ

i
ψj )(ψ

k
ψl)= 0, (2.4.71)

/Dψm − 1

3
Rmjklψ

kψ
j
ψl = 0. (2.4.72)

The first equation generalizes (2.4.30).
The functional S is invariant under the supersymmetry transformation

{
δφi = εψi,
δψi = γ α∂αφiε− �ijk(εψj )ψk. (2.4.73)

As in (2.4.55), we recognize the F -term, see (2.4.69).
The supercurrent

Jα := 2gij ∂βφ
iγ βγ αψj , α = 1,2 (2.4.74)

is conserved (on-shell), i.e.,

DαJ
α ≡ 0. (2.4.75)

Again, we wish to consider an interaction Lagrangian with a superpotential W

Sint =
∫
W(Y(x,ϑ))d2xd2θ. (2.4.76)



2.4 The Sigma Model 163

A simple and standard choice is

W(Y)= −1

3
kY 3 − λY, (2.4.77)

with parameters k,λ. The coefficient of θ1θ2 in the expansion of W is

−λF − kFφ2 − kψψφ.
We first consider the linear sigma model, that is, we set the curvature tensor R = 0.
In the Lagrangian S4 + Sint , we then have the F terms

1

2
F 2 + λF + kFφ2,

leading to the algebraic Euler–Lagrange equation

F = −λ− kφ2.

Utilizing this equation, the Lagrangian becomes

S4 + Sint =
∫
d2x

(
1

2
∂μφ∂

μφ + 1

2
ψγμ∂μψ − 1

2
(λ+ kφ2)2 − kψψφ

)
.

A more general interaction term is of the form

Sint = 1

2

∫
h(Y )d2xd2θ =

∫ (
−1

2
gij (φ)

∂h

∂φi

∂h

∂φj
− 1

2

∂2h

∂φi∂φj
ψ
i
ψj

)
d2x

(2.4.78)
where the first term in the integrand arises from eliminating the auxiliary field F in
the combined Lagrangian, in the same manner as before.

2.4.4 Boundary Conditions

We start again with the bosonic field φ that takes its values in some d-dimensional
Riemannian manifold N . We now assume that φ is defined on some Riemann sur-
face with boundary. The surface will again be denoted by �, and we assume for
the moment that its boundary is a smooth curve γ , or a collection of such curves.
Boundary conditions for φ on γ = ∂� are given by specifying a smooth submani-
fold B of dimension p of N . In the physics literature [86, 87], this would be called
a brane or a D-brane, with D standing for Dirichlet boundary conditions.18 Lo-
cally, we can choose coordinates on N so that B is given by xp+1 = · · · = xd = 0.

18In fact, the physics convention is to consider d − 1 spatial and one temporal dimensions.
A p-brane would then result from fixing p of the d − 1 spatial dimensions.
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Fig. 2.1 The boundary conditions for bosonic and fermionic fields defined by a D-brane

The boundary conditions are illustrated in Fig. 2.1 and will now be described in
formulae.

The first part of the boundary conditions requires that the boundary curve γ be
mapped to B . Locally, this therefore means

φp+1 = · · · = φd = 0 on γ. (2.4.79)

This is, of course, a Dirichlet boundary condition for the components φp+1, . . . , φd .
More generally, the tangential derivative ∂

∂τ
of these components has to vanish

on γ ,

∂φp+1

∂τ
= · · · = ∂φd

∂τ
= 0 on γ. (2.4.80)

The remaining components then should satisfy a Neumann boundary condition, that
is, with ∂

∂ν
denoting the normal derivative on γ ,

∂φ0

∂ν
= · · · = ∂φp

∂ν
= 0 on γ. (2.4.81)

In order to state the boundary condition for the fermionic field ψ , we use the no-
tation of (2.4.48). We first assume that at the point under consideration, the metric
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of N is given in normal coordinates, that is, gij = δij . Then the general boundary
condition for ψ is in these coordinates:

ψ
j
− = ±ψj+. (2.4.82)

A choice of sign in (2.4.82) can be motivated by the following consideration. As our
domain, we consider a strip

{σ ∈ [0,2π ]} × {τ ∈ [0, T ]}, (2.4.83)

and we wish to fix boundary conditions for σ = 0,2π (since the τ -direction is inter-
preted as a temporal direction, there might be initial conditions prescribed at τ = 0
and final ones at τ = T , but this is not our concern here). We assume that we have
a mapping φ defined on this strip, and a vector ψ along φ. We look at the sim-
plest situation, where N is Euclidean space R

d , and the brane receiving σ = 0 is
the hyperplane xd+1 = . . . xd = 0. For σ = 2π , we prescribe another brane that is
parallel to the first one, say xd+1 = . . . xd−1 = 0, xd = R. When we then periodi-
cally identify these two branes, that is, dividing R

d by the translations by R in the
xd -direction, in order to get the fields ψj to match on the boundary, we need to
require

ψk(2π, τ)=ψk(0, τ ) for k = 1, . . . , p, (2.4.84)

and

ψ�(2π, τ)= −ψ�(0, τ ) for �= p+ 1, . . . , d. (2.4.85)

When we then put ψ+ = ψ and define ψ−(σ, τ ) = ψ+(2π − σ, τ) (in which case
the field ψ on the range σ ∈ [0,2π ] is obtained from the two fields ψ± on half the
range, σ ∈ [0,π]), we then obtain from (2.4.84)

ψ
j
− =ψj+ for j = 1, . . . , p, and ψk− = −ψk+ for k = p+1, . . . , d. (2.4.86)

Thus, the plus sign in (2.4.82) corresponds to Neumann boundary conditions for
the corresponding components of φ, and the minus sign to Dirichlet conditions. See
also the discussion in Sect. 2.6.3, around (2.6.47).

In general coordinates, the boundary conditions for the ψ -field can be written as

ψ
j
− =Dji ψi+, (2.4.87)

with the tensor Dji satisfying

D
j
i D

i
k = δjk (2.4.88)

and

gij =Dki D�jgk�. (2.4.89)

Thus

Dij = gikDkj (2.4.90)
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is symmetric. Again, there is a sign to be determined, according to Neumann or
Dirichlet type boundary conditions for φ.

The preceding boundary conditions arise as follows. When we consider varia-
tions δφ, δψ of the fields in S4 (neglecting the F -field as this vanishes on-shell
anyway), we get a corresponding boundary term in the induced variation δS4. Em-
ploying the version (2.4.52), this boundary term is given by

1

2

∫
gjk

(
δφj

∂φk

∂ν
+ i(δψj+ψk+ − δψj−ψk−)+ iδφj�k�m(ψ�−ψm− −ψ�+ψm+ )

)
dξ

(2.4.91)
where ν as before is the outer normal direction at γ and ξ is a coordinate on γ .
These boundary terms then vanish if

1. either

δφj = 0 (Dirichlet) (2.4.92)

or

∂φk

∂ν
= 0 (Neumann) (2.4.93)

2. and

ψ
j
− =Dji ψi+, (2.4.94)

that is, (2.4.87) holds, with the conditions (2.4.88) and (2.4.89).

In order to keep the theory supersymmetric, the brane B should be totally geodesic,
that is, every shortest geodesic in N connecting two points in B should already be
contained in B , see [1].

2.4.5 Supersymmetry Breaking

The Hilbert space of a quantum field theory can be decomposed as

H = H+ ⊕ H−

with H+(H−) being the space of “bosonic” (“fermionic”) states. The theory is su-
persymmetric if there are (Hermitian) supersymmetry operators

Qi : H → H, i = 1, . . . ,N

with

Qi(H
±)= H∓. (2.4.95)

Witten [104] introduced the operator (−1)F satisfying

(−1)F χ = ±χ for χ ∈ H±. (2.4.96)
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The supersymmetry operators Qi then anticommute with (−1)F

(−1)FQi +Qi(−1)F = 0 (i = 1, . . . ,N). (2.4.97)

TheQi must commute with the Hamiltonian H that generates the time translations,
i.e.,

QiH −HQi = 0 (i = 1, . . . ,N). (2.4.98)

The Qi are then determined if we require additionally

Q2
i =H, QiQj +QjQi = 0 for i �= j. (2.4.99)

As a square of Hermitian operators, H is positive semidefinite.
Let |b〉 ∈ H+ satisfy

H |b〉 =E|b〉,
i.e., |b〉 is an eigenvector H with eigenvalue E (≥ 0 as H is positive semidefinite).
We consider one of the Qi , which we simply write as Q for the moment.

We can write

Q|b〉 = √
E|f 〉

and get

Q|f 〉 = 1√
E
Q2|b〉 = 1√

E
H |b〉 = √

E|b〉.

Thus, if E �= 0, the bosonic and fermionic eigenstates with eigenvalue E are paired
in an irreducible multiplet of the supersymmetry algebra. This need not be so any
longer if E = 0. Since H =Q2, if

H |b0〉 = 0 for |b0〉 ∈ H+

we have

0 = 〈b0|H |b0〉 = ‖Q|b0〉‖2 (since Q is hermitian),

hence

Q|b0〉 = 0,

and similarly H |f0〉 = 0 for |f0〉 ∈ H− implies

Q|f0〉 = 0.

Thus, the zero eigenvectors of H are supersymmetric, that is, invariant under the
supersymmetry operator.

Consequently, for positive energy E, the number of bosonic eigenvectors equals
the number of fermionic ones, but this need not be so for zero energy.

Let

ν(0) := #bosonic − # fermionic zero eigenvectors.
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Regularizing the trace of (−1)F , we then have

Tr(−1)F = ν(0). (2.4.100)

If ν(0) �= 0, there must exist at least one—bosonic or fermionic—state with zero
energy. Since 0 is the smallest possible value of the energy, such a state furnishes
a vacuum that is supersymmetric. If there does not exist a supersymmetric vacuum,
i.e., if the smallest eigenvalue of H is positive, one says that supersymmetry is
spontaneously broken.

We first consider the supersymmetric point particle with two odd variables with
the total Lagrangian (see (2.2.86), (2.2.99), (2.2.101))

L3 +Lint =
∫
dt

(
1

2
φ̇φ̇ + 1

2
ψαψ̇α − 1

2

(
dw(φ)

dφ

)2

− d2w

dφ2
ψ1ψ2

)
. (2.4.101)

The Hamiltonian is

H = 1

2
p2 + 1

2

(
dw

dφ

)2

+ d2w

dφ2
ψ1ψ2. (2.4.102)

As before, see (2.4.77), we choose

w(φ)= −1

3
kφ3 − λφ. (2.4.103)

We obtain

H = 1

2
p2 + 1

2
(kφ2 + λ)2 + 2kφψ1ψ2. (2.4.104)

ψ1 and ψ2 are Grassmann valued and odd, and so

[ψα,ψβ ] =ψαψβ +ψβψα = 0 for α,β = 1,2. (2.4.105)

After quantization, we get, in place of (2.4.105),

[ψα,ψβ ] = �δαβ, (2.4.106)

that is, the Grassmann variables become Clifford algebra valued.
We may thus represent the ψα by Pauli matrices

ψα =
√

1

2
� σα (2.4.107)

and get

H = 1

2
p2 + 1

2
(kφ2 + λ)2 + �kσ3φ. (2.4.108)

At the so-called tree level (that is, keeping only the zeroth-order terms (those that
are not proportional to �

n, n > 0)—the higher order contain corrections of the tree
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level), the ground state energy is determined by the potential (kφ2 + λ)2. Hence,
supersymmetry is spontaneously broken if λ

k
> 0.

The supersymmetry generators here are

Q1 = 1√
2
(σ1p+ σ2(kφ

2 + λ)), Q2 = 1√
2
(σ2p− σ1(kφ

2 + λ)). (2.4.109)

For the sequel, it will be convenient to switch to the operators

Q± = 1√
2
(Q1 ± iQ2). (2.4.110)

Then

Q2± = 0, [Q+,Q−] = 2H. (2.4.111)

In a cohomological interpretation, we call a state |s〉 ∈ H with

Q+|s〉 = 0

closed, one that can be written as

|s〉 =Q+|t〉 for some |t〉 ∈ H

exact. Since Q2+ = 0, exact states are closed. Conversely, if |sE〉 is a closed eigen-
vector of H with eigenvalue E �= 0, i.e.,

H |sE〉 =E|sE〉,

then |tE〉 := 1
E
Q−|sE〉 satisfies

Q+|tE〉 = 1

E
Q+Q−|sE〉 = 1

E
[Q+,Q−]|sE〉 (Q−Q+|sE〉 = 0 as sE is closed)

= 1

E
H |sE〉 = |sE〉,

and hence |sE〉 is exact.
If E = 0 and if we had again |s0〉 =Q+|t0〉, then also

H |t0〉 = 0 as [Q+,H ] = 0.

However, by (2.4.99), this implies Q1|t0〉 =Q2|t0〉 = 0 as above, hence also

|s0〉 =Q+|t0〉 = 0.

Thus, the nonvanishing eigenstates for E = 0 are precisely the non-exact closed
states.
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2.4.6 The Supersymmetric Nonlinear Sigma Model
and Morse Theory

We return to the supersymmetric nonlinear sigma model. We let N be a com-
pact Riemannian manifold. We assume that the so-called world sheet, the two-
dimensional domain on which the fields are defined, is of the form

{(t, x) : t ∈ R, x ∈ S1},
i.e., a cylinder, whose circumference we assume to have length L. We also assume
that the fields φi and ψi are independent of x. We then get

S5 = 1

2
L

∫
dt

(
gij (φ)

∂φi

∂t

∂φj

∂t
+ gij (φ)ψiγ 0∂tψ

j + 1

6
Rijklψ

i
ψkψ

j
ψl
)
.

(2.4.112)
After quantization, the spinors ψi and their Hermitian conjugates become Clifford
algebra valued, i.e.,

[ψi,ψj ] = 0 = [ψi∗ ,ψj∗ ], [ψi,ψj∗ ] = gij (φ).
Also, after quantization, supersymmetry is generated by the charges

Q+ = iψi∗pi =ψi∗Dφi , Q− = −iψipi = −ψiDφi ,

with Dφi being a covariant derivative, the momentum conjugate to φi .
We now recall from Sect. 1.3.2 that we have a representation of the Clifford

algebra on the space of spinors given by

ψj
∗ ∼ ε(dxj ) (ε(dxj ) operates as the exterior product

with the differential form dxj ),

ψi ∼ i(dxi) (i(dxi) operates as interior contraction with dxi).

(This representation is obtained from the one in Sect. 1.3.2 by setting the imaginary
parts of the differential forms to 0.)

Thus, ψj
∗

corresponds to a differential form, ψi to a vector field on N (here
x1, x2, . . . , are local coordinates on N ; one should write φ1, φ2, . . . in place of
x1, x2, . . . , but expressions like dφi look a bit awkward).

Moreover, Q+ then corresponds to the exterior derivative d , Q− to its adjoint
d∗, and the Hamiltonian is

H =Q+Q− +Q−Q+ = dd∗ + d∗d, (2.4.113)

the Hodge Laplacian (1.1.109). With Q1 := d + d∗, Q2 := i(d − d∗), we also have

H =Q2
1 =Q2

2. (2.4.114)
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On the other hand, we had interpreted ψj
∗

as a fermionic creation operator, ψi as
a fermionic annihilation operator. The states that are annihilated by all ψi , i.e., the
states with no fermions, are then identified with the functions f (x) on N . Oper-
ating on such a state with a ψi

∗
, we obtain a state with one fermion, or in the de

Rham picture (see the discussion at the end of Sect. 1.1.3), a one-form on N . States
with two fermions must be antisymmetric in the fermionic indices, because of the
fermion statistics, and can be considered as two-forms.

Thus, we obtain the de Rham complex, with the Hodge Laplacian. The dimension
of the space of zero states of this Laplacian, i.e., of harmonic q-forms, is the Betti
number bq .

Equating the two pictures gives Witten’s result [104]

Tr(−1)F =
∑

q

(−1)qbq(N).

We now add our self-interaction term Lint with Morse function sh (s here is a para-
meter) to the Lagrangian S5. (A smooth (twice continuously differentiable) function
h is called a Morse function if at all its critical points the Hessian, that is, the matrix
of its second derivatives, is nondegenerate, that is, does not have 0 as an eigenvalue.)
This changes d, d∗ to

ds = e−hsdehs, d∗
s = ehsd∗e−hs. (2.4.115)

We have d2
s = 0 = d∗2

s , and we get

Q1,s = ds + d∗
s , Q2,s = i(ds − d∗

s ). (2.4.116)

Moreover,

Hs =Q2
1,s =Q2

2,s

= dsd∗
s + d∗

s ds

= dd∗ + d∗d + s2gij
∂h

∂xi

∂h

∂xj
+ s ∂2h

∂xi∂xj
[ε(dxi), i(dxj )]. (2.4.117)

s2gij ∂h
∂xi

∂h
∂xj

is the potential energy, and it becomes very large for large s, except in
the vicinity of the critical points of h. Therefore, the eigenfunctions of Hs concen-
trate near the critical points of h for large s, and asymptotic expansions in powers
of 1

s
for the eigenvalues depend only on local data near the critical points. This is

the starting point of Witten’s approach to Morse theory [105], which we shall now
discuss.

As mentioned, we assume that h is a Morse function. We let q1, q2, . . . , qm be
the critical points of h. By the Morse lemma (see e.g. [65], p. 311), each critical
point qν has a neighborhood Uν with the property that in suitable local coordinates
x = xν = (x1

ν , . . . , x
n
ν ) with xν(qν)= 0,

h(p)− h(qν)= 1

2

n∑

k=1

μν,kx
k
ν (p)

2 (2.4.118)
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with

D2h(qν)= diag(μν,1, . . . ,μν,n) (2.4.119)

(i.e., the Hessian of h at qν is diagonalized, and the diagonal elements μν,1, . . . ,μν,n
are nonzero as h is assumed to be a Morse function).

Also, on Uν we choose a flat Riemannian metric gν for which the ∂

∂x
j
ν

, j =
1, . . . , n, are orthonormal.

Of course, we may assume that the Uν, ν = 1, . . . ,m, are pairwise disjoint, and
moreover that their closures are contained in pairwise disjoint open sets Vν .

V0 :=N\
m⋃

ν=1

Uν, V1, . . . , Vm

is then an open covering of N , and we may find a subordinate partition of unity
{ην}mν=0, that is, functions ην :N → R satisfying

0 ≤ ην ≤ 1,
m∑

ν=0

ην = 1, suppην ⊂ Vν,

with ην = 1 on Uν .
We choose any metric g0 on V0 and put

g :=
m∑

ν=0

ηνgν.

g is then a Riemannian metric on N . Since neither the Betti numbers of N nor the
critical points of h or their Morse indices depend on the choice of a Riemannian
metric on N , we may work with the metric g in the sequel. In this metric, we have
on Uν(ν = 1, . . . ,m)

Hs =
n∑

j=1

(
−
(
∂

∂xj

)2

+ s2μ2
ν,j x

j2 + 1

s
μν,j [ε(dxj ), i(dxj )]

)
. (2.4.120)

In particular, Hs is an operator with separated variables on Uν . In fact, we have

Hs =
n∑

j=1

(
�
j,ν
s + 1

s
μν,jK

j

)
(2.4.121)

with

�
j,ν
s := −

(
∂

∂xj

)2

+ s2μ2
ν,j x

j2
, (2.4.122)

Kj := [ε(dxj ), i(dxj )]. (2.4.123)
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The operators �s = �j,νs are just Hamiltonians for harmonic oscillators, and they
have eigenvalues

s|μν,j |(1 + 2N) (N = 0,1,2, . . .) (2.4.124)

with eigenfunctions

φN(x)= PN
(√
s|μν,j |x

)
e−

s
2 |μν,j |x2

, (2.4.125)

where the PN are Hermite polynomials. In particular, for large s, the φN rapidly
decay away from x = 0, i.e., away from the critical point qν of h. Moreover, we
have

Kjdxα1 ∧ · · · ∧ dxαr = εαααj (dxα1 ∧ · · · ∧ dxαr ), (2.4.126)

with

εαααj =
{

1, if j ∈ααα = (α1 . . . αr ),

−1, otherwise
(2.4.127)

i.e., Kj has eigenvalues ±1. Hs thus is a self-adjoint operator with eigenvalues

s

n∑

j=1

((1 + 2Nν,j )|μν,j | + εν,jμν,j ), (2.4.128)

εν,j = ±1,Nν,j = 0,1,2, . . . , and orthonormal eigenvectors

φsNν,αν = s n4
n∏

j=1

PNν,j
(√
s|μν,j |xj

)

×
[

exp

(
− s

2

n∑

j=1

|μν,j |xj2

)
dxαν,1 ∧ · · · ∧ dxαν,r

]

(with αααν = (αν,1, . . . , αν,r )). (2.4.129)

In order for an eigenvalue to vanish, we necessarily have Nν,j = 0 for all j , and
moreover εν,j and μν,j have opposite signs. Thus, if pν has Morse index p, i.e.,
precisely p of the μν,j are negative, then p out of the εν,j must be positive,
which means that the corresponding eigenvector is a p-form, as can be seen from
(2.4.126) and (2.4.127). Thus, if aν is a critical point of Morse index p, it has a one-
dimensional contribution to the nullspace of Hs operating on p-forms, while for
different Morse index, there is no contribution.

Now this has been a local consideration, and a nulleigenvector on Uν need not
extend to a nulleigenvector on all of N . However, a perturbation argument (see,
e.g., [57] or the monograph [15] for details) shows that the other eigenvalues of Hs
on  p(N) diverge as s tends to ∞, while the global nulleigenvectors concentrate at
the critical points and therefore lead to local nulleigenvectors as considered above.
We conclude the basic theorem of Morse:
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Theorem 2.1

mp ≥ bp, (2.4.130)

where mp is the number of critical points of h of Morse index p and bp is the pth
Betti number of N .

(bp is the dimension of the kernel of the Hodge Laplacian dd∗ + d∗d on �p(N),
and one easily sees that the dimension of the kernel of the perturbed Laplacian
Hs = dsd∗

s + d∗
s ds is the same for all s.)

Of course, this is an asymptotic argument, for s → ∞, and we only get expan-
sions of the eigenvectors, in contrast to the original case s = 0 where we could iden-
tify them with harmonic forms. However, here already the classical, i.e., not quan-
tized theory, is not entirely trivial; namely while for s = 0, minima of the bosonic
part of the action S5 were simply constants, for s > 0 the situation becomes more
interesting. In a sense, the Morse function breaks the symmetry that all points of N
are equal.

We consider the bosonic part of our action S5 +Sint , again on a cylindrical world
sheet {(t, x) : t ∈ R, x ∈ S1}, and assuming that the fields are independent of x so
that we can carry out the x-integration. We then have the total energy or Hamil-
tonian, see (2.1.7), (2.1.9),

HB(φ)= 1

2
L

∫
dt

(
gij (φ)

dφi

dt

dφj

dt
+ s2gij (φ)

∂h

∂φi

∂h

∂φj

)
. (2.4.131)

Obviously, HB(φ)= 0 if φ(t)≡ qν , where qν is a critical point of h.
These are the classical solutions. We next consider tunneling paths or so-called

instanton solutions between such classical solutions.
Given two critical points qν, qμ, we have to find

φ : R →N; lim
t→−∞φ(t)= qν, lim

t→∞φ(t)= qμ (2.4.132)

minimizing

HB(φ)= 1

2
L

∫
dt

(
gij (φ)

dφi

dt

dφj

dt
+ s2gij (φ)

∂h

∂φi

∂h

∂φj

)

= 1

2
L

∫
dt

∥∥∥∥
dφi

dt
± sgij ∂h

∂φj

∥∥∥∥
2

∓ sL
∫
dt
d(h ◦ φ)
dt

≥ ±sL
(

lim
t→−∞h(φ(t))− lim

t→∞h(φ(t))
)

= ±sL(h(qν)− h(qμ)), (2.4.133)



2.4 The Sigma Model 175

(using the simple relation ‖ dφi
dt

± sgij ∂h
∂φj

‖2 = gik( dφjdt ± sgij ∂h
∂φi
)(
dφk

dt
± sgkl ∂h

∂φl
)).

Equality occurs precisely if

dφi

dt
= ∓sgij ∂h

∂φj
, (2.4.134)

i.e.,

dφ

dt
= ∓s(∇h) ◦ φ

(2.4.134) means that, up to sign, φ(t) is a curve of steepest descent for h.
Thus, the minimum action paths between any two critical points are paths of

steepest descent, and the action of such a path is

sL|h(qν)− h(qμ)|.

We now let q be a critical point of h of Morse index p, and we let r1, . . . , rm be the
critical points of Morse index p+ 1. We put

δ|q〉 =
m∑

μ=1

n(q, rμ)|rμ〉.

Here, we associate to each critical point q of index p a basis vector |q〉 of a vector
space Vp . We put

n(q, rμ)=
∑

�(rμ,q)

n�

where �(rμ, q) is the path of steepest descent from rμ to q , and where n� is ±1
according to the following rule.

By the above considerations, each critical point q of index p corresponds to a p-
form localized near that point, and this p-form yields an orientation of the subspace
of TqN spanned by the p negative eigendirections of the Hessian of h at q . At rμ, we
thus have a (p+1)-form, and in fact the direction of steepest descent corresponds to
the eigendirection for the smallest eigenvalue of ∇2h(rμ). If we thus transport this
(p + 1)-form parallely along � and contract it with the tangent direction of �, we
obtain a p-form at q . Comparing the resulting orientation at q with the one coming
from the p-form corresponding to q then determines whether n� is +1 or −1, i.e.,
n� = 1 if they agree, n� = −1 else.

The important point is that

δ2 = 0.

This can be verified directly or deduced from representing δ as the limit of ds for
s → ∞. (Note that in any case ds : Vp → Vp+1 also yields a coboundary operator,
i.e., d2

s = 0.) It is a standard result of algebraic topology that once one has such
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a coboundary operator, one obtains the strong Morse inequalities encoded in the
formula

∑

p

mpt
p −

∑

p

bpt
p = (1 + t)Q(t),

where Q(t) is a polynomial with nonnegative integer coefficients.
A more general version of the supersymmetry algebra arises if, in addition to the

Hamiltonian H , we also have a momentum operator P , and if the supersymmetry
operators Q1,Q2 satisfy

Q2
1 =H + P, Q2

2 =H − P, Q1Q2 +Q2Q1 = 0.

These relations imply

[Qi,H ] = 0 = [Qi,P ] for i = 1,2.

Also,

H = 1

2
(Q2

1 +Q2
2)

is again positive semidefinite.
A realization of this supersymmetry algebra arises as follows.
Let X be a Killing field on our compact Riemannian manifold N , i.e., an infini-

tesimal isometry of N . Let LX be the Lie derivative in the direction of X, and i(X)
the interior multiplication with X of a differential form. For s ∈ R, we consider

ds = d + si(X).
Let d∗

s be the adjoint of ds . Since X is a Killing field, one computes that

d∗2
s = −d2

s .

Also

d∗2
s = −sLX.

The Hamiltonian is

Hs = dsd∗
s + d∗

s ds .

The supersymmetry operators are

Q1,s = i 1
2 ds + i− 1

2 d∗
s , Q2,s = i− 1

2 ds + i 1
2 d∗
s .

Defining

P = 2isLX,

we then have the above supersymmetry algebra,

Q2
1 =H + P, Q2

2 =H − P, Q1Q2 +Q2Q1 = 0.



2.4 The Sigma Model 177

More generally, one may use a function h invariant under the action of X, i.e.,

i(X)dh= 0,

and put

ds1,s2 = e−hs2ds1ehs2 .
Thus, the parameter s1 corresponds to the Killing field X, whereas s2 corresponds
to the Morse function h. The supersymmetry generators are then

Q1,s1,s2 = i 1
2 ds1,s2 + i− 1

2 d∗
s1,s2
,

Q2,s1,s2 = i− 1
2 ds1,s2 + i 1

2 d∗
s1,s2

and

Hs1,s2 = ds1,s2d∗
s1,s2

+ d∗
s1,s2

ds1,s2,

P = 2is1LX.

We return to our supersymmetric nonlinear sigma model with a cylindrical world
sheet R×S, where the space S is a circle of circumference L. Instead of considering
maps

φ : R × S→N,

we may equivalently consider maps

ψ : R →�s(N),

where �s(N) is the loop space of maps from S to N . The loop space �s(N) will
now play the role of our target manifold. Of course, in contrast to what was assumed
for our target manifold N,�s(N) is not compact.

The group U(1) of rotations of S acts on �s(N) by isometries, simply by map-
ping a loop γ (t) to the loop γ (t + a) (the addition in S is the one in R mod L). As
before, we may define the operators

ds = d + si(X), Hs = dsd∗
s + d∗

s ds,

where X is the generator of the U(1) action.
Of course, due to the fact that�s(N) is infinite-dimensional, certain problems of

convergence arise when trying to carry over the preceding finite-dimensional analy-
sis.

The approach to Morse theory via the supersymmetric sigma model is due to
Witten [104, 105]. This in turn led to Floer’s approach to Morse theory that con-
structs the Morse complex from counting flow lines between critical points, see [37]
and the expositions in [65, 96].

The supersymmetric action functional (2.4.112) can also be utilized for a proof of
the Atiyah–Singer index theorem [7], as discovered by Alvarez-Gaumé [3], Friedan
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and Windey [41, 42] and Getzler [47, 48]. Systematic expositions can be found
in [10] and [43].

2.4.7 The Gravitino

The preceding considerations were local insofar as the supersymmetry variation pa-
rameter ε was assumed to be constant. It turns out that from a more global perspec-
tive, ε has to be considered to be a section of some bundle and cannot in general be
taken to be constant. This implies that also derivatives of ε will enter the supersym-
metry computations. We address this issue now and see that it will lead us to very
interesting geometric structures.

We start with the linear supersymmetric sigma model from Sect. 2.4.3, that is,
the extension of (2.4.3) with a supersymmetric partner for the scalar field φ, an
anticommuting spinor field ψ :

S(φ,ψ,�) := 1

2

∫

�

(∂αφ
a∂αφa + ψ̄aγ α∂αψa)d2z. (2.4.135)

Here, the γ α,α = 1,2 are standard Dirac matrices, defined by a representation
of Cl(2,0) as above. (Note: In the physics literature, one usually works with
a Minkowski world sheet, that is, one takes an indefinite metric on the underlying
surface, and consequently considers Cl(1,1) instead.)

The equations of motion, that is, the Euler–Lagrange equations for (2.4.135) are
simple linear equations ((2.4.58), (2.4.59)):

∂α∂αφ
a = 0, (2.4.136)

γ α∂αψ
a = 0 for a = 1, . . ., d, (2.4.137)

that is, φ is harmonic and ψ solves the Dirac equation.
Similarly, one can consider a metric g instead of only a conformal structure and

consider the functional

S(φ,ψ,g) := 1

2

∫

S

(gαβ∂αφ
a∂βφa + ψ̄aγ α∂αψa)

√
detgdz1dz2. (2.4.138)

One then has the supersymmetry transformations (2.4.65):

δφa = ε̄ψa, (2.4.139)

δψa = γ α∂αφaε (2.4.140)

with an anticommuting ε. (Of course, mathematically, one should consider this as
a transformation of the independent variables of an underlying superspace instead
of as a transformation of the fields.) The commutator of two such transformations
yields a spatial translation:

[δ1, δ2] = δ1(ε̄2ψ
a)− δ2(ε̄1ψ

a)= 2ε̄1γ
αε2∂αφ

a. (2.4.141)
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In fact, these are infinitesimal transformations that integrate to local ones, but we
also need to consider the global situation. Globally, instead of a translation, we have
a diffeomorphism, and so the supersymmetry transformations should generate the
superdiffeomorphism group of the underlying supersurface. Also, globally, ε is not
a scalar parameter, but transforms as a spin-1/2 field, that is, mathematically, a not
necessarily holomorphic, anticommuting section of K1/2, K being the canonical
bundle of � (for some choice of a square root of K , that is, of a spin structure).
(Even though, w.r.t. its z-dependence, ε transforms as a section of K1/2, it also
contains an independent odd parameter; therefore, εψ = −ψε, but in general, we
do not have εψ = 0.)

A supersymmetry transformation induces a variation of S; this is computed as
(cf. (2.4.56))

δS = −2
∫
∂αε̄J

α (2.4.142)

with the supercurrent

Jα = 1

2
γ βγαψ

a∂βφa. (2.4.143)

Likewise, for a spatial translation, we get the energy–momentum tensor:

Tαβ = ∂αφa∂βφa + 1

4
ψ̄aγα∂βψa + 1

4
ψ̄aγβ∂αψa − trace. (2.4.144)

Of course, this is the appropriate generalization of (2.4.9). As before, it is traceless,
and again, this can be seen as expressing a (super)conformal invariance. Also, as
before, both the supercurrent J and the energy–momentum tensor T are divergence-
free when the equations of motion hold. With the same implicit identifications as in
Sect. 2.4, T is a holomorphic quadratic differential on �, that is, a holomorphic
section of K2, while J is a holomorphic section of K3/2.

The preceding facts have several important consequences:

• In line with the general concept of supergeometry, the space of independent vari-
ables for the φ and ψ fields should be a superspace, that is, here it should be
a super Riemann surface (SRS). Then, in the same manner that the Dirichlet in-
tegral, the action functional D(φ,�), yielded a (co)tangent vector to the moduli
space Mp when varying �, now variations of � for S(φ,ψ,�) should yield a
(co)tangent vector to the moduli space of super Riemann surfaces. From this, we
infer that the tangent space to that space should be given by even holomorphic
sections of K2 and odd holomorphic sections of K3/2. In particular, the even
dimension should be 3p − 3 as before while the odd one is 2p − 2, again by
Riemann–Roch.

• As before, our action functional is only invariant on-shell, that is, when J is holo-
morphic. From (2.4.142), we see the obstruction to global invariance, namely the
nonvanishing of ∂αε̄. As a spin-1/2 field, ε is a section of a nontrivial bundle and
therefore cannot be taken to be globally constant. Thus, the obstruction to full su-
perdiffeomorphism invariance comes from the global topology of the underlying
surface.
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In order to understand these issues better, we now make the fundamental observation
that the functional S from (2.4.135) or (2.4.138) does not yet constitute a full su-
persymmetric generalization of the functional S(φ,g) studied in Sect. 2.4. Namely,
we have only given φ a supersymmetric partner, but not our other field, namely the
metric g. We shall do that now and see that this yields a fully satisfactory theory that
gives a profound understanding of the moduli space of super Riemann surfaces.

In place of the metric (gαβ), it is convenient to consider a zweibein eaα , from
which we can reconstruct the metric as gαβ = δabeaα ebβ . In other words, we intro-
duce an additional U(1) symmetry which, however, can be easily divided out since
that group is compact. The supersymmetric partner of the zweibein is then a grav-
itino (Rarita–Schwinger field) χAα where A = 1,2 is a spinor index that will be
suppressed in the sequel, whereas α is a vector index as before. Thus, χ transforms
as a spin-3/2 field. This might already suggest how to obtain the moduli space of
super Riemann surfaces in analogy to 4 of Sect. 1.4.2. Namely, one would take the
space of all metrics (equivalently, after dividing out the U(1) symmetry, zweibeins)
and gravitinos, and then divide out all the invariances, that is, the superdiffeomor-
phisms and superconformal scalings. However, although this idea is conceptually
insightful, the actual construction of the moduli space of super Riemann surfaces
proceeds differently, see [93].19 In fact, because the spaces involved, like the one of
superdiffeomorphisms, are necessarily infinite-dimensional, Sachse had to replace
the standard approach of ringed topological spaces by a categorical reformulation
of supergeometry, see [94].

The supersymmetry transformations of the fields φ,ψ, e,χ are then

δχα = ∂αε̄, (2.4.145)

δeaα = −2ε̄γ aχα, (2.4.146)

δφa = ε̄ψa, (2.4.147)

δψa = γ αε(∂αφa − ψ̄aχα). (2.4.148)

The supersymmetric functional is then

S(φ,ψ,g,χ)

:= 1

2

∫

S

(
gαβ∂αφ

a∂βφa + ψ̄aγ α∂αψa + 2χ̄αγ
βγ αψa∂βφa

+ 1

2
ψ̄aψ

aχ̄αγ
βγ αχβ

)√
detgdz1dz2. (2.4.149)

19Using the zweibeins directly would mean taking the phase space of a 2D supergravity theory
as the gauge theory for supersymmetry. One would then in addition need a super connection on
� whose coefficients are the gauge fields. Dividing out the invariances involved becomes very
complicated, and therefore, it is better to proceed as in [93].
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Here, the first two terms are those from (2.4.138), the third one is introduced to com-
pensate (2.4.142), and the last one is then needed to compensate the terms coming
from the variation of ∂βφ in the third one.

We have thus obtained a functional that is fully supersymmetric even off-shell.

Summary: We see the merging of a profound mathematical concept, namely that
of a moduli space of Riemann surfaces and a deep method from theoretical physics,
namely the symmetries of action functionals. This suggests a unique concept of
a super Riemann surface, for which we have already described the super moduli
space. It remains to be seen how the approaches of Sect. 1.4.2 extend to this setting.
Ideally, they should as beautifully coincide as in the situation of ordinary Riemann
surfaces.

Of course, the preceding formalism can be recast into the mathematical frame-
work of supergeometry.

We have considered only one of the two supersymmetries arising in string theory,
namely world-sheet supersymmetry, but not space–time supersymmetry. The latter
refers to the target space, which we have taken to be Euclidean space here. For ex-
ample, while ψ transforms as a spinor on the domain, it transforms as a vector in the
target space. For a discussion of space–time supersymmetry, see, e.g., [50]. Here,
instead, we replace the Euclidean target space by a Riemannian manifold N . Equa-
tion (2.4.138) then becomes the supersymmetric nonlinear sigma model of quantum
field theory as treated in the preceding section. The equations for φ and ψ then
become nonlinear and coupled, and in fact, ψ is a spinor-valued section of φ∗TN ,
the pull-back of the tangent bundle of N under the map φ. Naturally, one can also
include the fields g and χ into these considerations, by expanding not only with
respect to the map into N , but also with respect to the domain metric.

The supersymmetric action functional with gravitino term is discussed in [26,
50], with more details in [27]. The moduli space of super Riemann surfaces has been
constructed from the global analysis perspective advocated here by Sachse [93].

2.5 Functional Integrals

We can now bring the material of the preceding sections together and discuss general
(Gaussian) functional integrals. These are formal integrals of the form

∫
Dϕ e−S(ϕ) (2.5.1)

where S(ϕ) is some quadratic Lagrangian action as introduced in Sect. 2.2 and we
formally integrate w.r.t. to some collection of fields ϕ. We can, of course, also intro-
duce Planck’s constant and replace (2.5.1) by

∫
Dϕ e−

1
�
S(ϕ). (2.5.2)
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When we consider the heuristic limit � → 0, we see that the minimizers of the
action S dominate the functional integral more and more, because other fields ϕ
yield exponentially smaller contributions. For physicists, it is then natural to perform
an expansion of (2.5.2) in terms of 1

�
, the so-called stationary phase approximation.

Certainly, one can also consider the oscillatory integral
∫
Dϕ e

i
�
S(ϕ), (2.5.3)

which we may view as a generalization of the Feynman path integral discussed in
Sect. 2.1.3.

As before, see Sects. 2.1.2, 2.1.3, we consider Gaussian functional integrals as
formal analogs of Gaussian integrals with infinitely many variables. In addition, we
shall make use of the invariance considerations in Sect. 2.3.2 to divide out symme-
tries.

There is one general issue that can be contemplated at this point: It is a general
principle of quantum field theory that no arbitrary choices are permitted. When-
ever something is selected from some class of possibilities, one should integrate
out the possible values of the selection, weighted with some (negative or imagi-
nary) exponential of the underlying action. Thus, we consider (2.5.1) when we have
a collection of fields ϕ. After normalization, we consider 1

Z
Dϕ e−S(ϕ) (where the

constant Z has been chosen so that the total integral of the measure becomes 1)
as a probability measure on the space of fields (similar to a Gibbs measure in sta-
tistical mechanics). For any function f (ϕ) of the field ϕ, we can then compute its
expectation value as

1

Z

∫
Dϕ f (ϕ)e−

1
�
S(ϕ). (2.5.4)

In mathematics, instead of taking a functional integral, in the situation where some
underlying structure has to be selected, one attempts to equip the space of all pos-
sible choices with some geometric structure. That is then called a moduli space.
Above, we have discussed the moduli space of Riemann surfaces.

2.5.1 Normal Ordering and Operator Product Expansions

The following example will bring out the essential aspects. Let (M,g) be a compact
Riemannian manifold of dimension d . For a function ϕ onM , we put

S(ϕ)= 1

4πα′

∫

M

(‖Dϕ‖2 +m2ϕ2) dVolg(M)

= 1

4πα′ (ϕ, (−�g +m2)ϕ)
L2 , (2.5.5)

where α′ is a constant, the so-called Regge slope. Thus, this is essentially the same
functional as the one considered in Sect. 2.4, see (2.4.3), with the difference that here
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we have an additional mass term and a different normalization factor in front of the
integral. �=�g is the Laplace–Beltrami operator of (M,g), defined in (1.1.103),
(2.4.4).

We note some differences here compared to Sect. 2.1.3. There, we had taken
functional integrals for paths x (in some Euclidean or Minkowski space), that
is, mappings x : [t ′, t ′′] → R

d , say, with fixed boundary conditions x(t ′) = x′,
x(t ′′)= x′′. Here, we are integrating functions over a more general domain, namely
a Riemannian manifold, and we do not impose boundary conditions. In fact,M may
be some closed manifold without boundary. IfM does have a boundary, we can also
impose a boundary condition via an insertion into our functional integral.

According to the general scheme just discussed, the choice of the manifold
(M,g) represents an arbitrary choice, and therefore, one should integrate out all
such choices, that is, take another functional integral w.r.t. all possible metrics g on
M , and perhaps also a sum w.r.t. all diffeomorphism types of M . That is, in fact,
done in string theory, where the dimension of M is fixed to be 2 and one then for-
mally integrates w.r.t. all metrics and sums with respect to the different genera of
the underlying surface.

We also consider the propagator of the free field of mass m, or, in mathematical
terminology, the Green operator

G= 2πα′(−�+m2)
−1
. (2.5.6)

Thus,

S(ϕ)= 1

2
(ϕ,G−1ϕ)L2 . (2.5.7)

The fundamental object of interest is the partition function (in older texts, this is
denoted by the German term Zustandssumme)

Z :=
∫
Dϕ exp(−S(ϕ))

=
∫
Dϕ exp

(
−1

2
(ϕ,G−1ϕ)

)
(2.5.8)

with a formal integration over all functions ϕ ∈L2(M).
The analogy with the above discussion of Gaussian integrals (2.1.24), obtained

by replacing the coordinate index i in (2.1.24) by the point z in our manifold M ,
would suggest

Z = (detG)
1
2 , (2.5.9)

when we normalize

Dϕ =
∏

i

dϕi√
2π

(2.5.10)

to get rid of the factor (2π)n in (2.1.24). Here, the (ϕi) are an orthonormal basis of
the Hilbert space L2(M), for example, the eigenfunctions of �.
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The idea is then to define detG as the renormalized product of the eigenvalues
λn of G. The mathematical construction is based on the Weyl estimates. By these

estimates, the λn behave as O(n− 2
d ). Motivated by (2.1.26), one then puts

detG := exp(−ζ ′
G(0)), (2.5.11)

where the ζ -function ζG(s) is the meromorphic continuation of
∑
n λ

−s
n , defined

for Re(s) < − d
2 , to the entire complex plane; it is analytic at 0. This procedure is

called zeta function regularization. The determinant defined by (2.5.11) has certain
multiplicative properties like the ordinary determinant, see e.g. [111].

Comparing (2.5.8) with (2.1.24), the analogy is then that the coordinate values
x1, . . . , xd get replaced by the values of the function ϕ at the points y ∈M . That is,
we have infinitely many degrees of freedom, corresponding to the points y ∈M in-
stead of to the discrete indices i = 1, . . . , n. The values of these degrees of freedom
are then assembled into the function ϕ in place of the vector x = (x1, . . . , xn).

In analogy with (2.1.30), for points y1, . . . , ym ∈M , we may then define correla-
tion functions

〈ϕ(y1) · · ·ϕ(ym)〉 := 1

Z

∫
Dϕϕ(y1) · · ·ϕ(ym) exp(−S(ϕ)). (2.5.12)

Note that, in contrast to Sect. 2.1.3, here we are normalizing the integrals by dividing
by Z, so that these correlation functions can be interpreted as the expectation values
of the product of the evaluations of the fields at the points y1, . . . , ym. Again, these
vanish for oddm (because a Gaussian integral is quadratic in the fields, hence even),
and as in (2.1.31)

〈ϕ(y1)ϕ(y2)〉 =G(y1, y2). (2.5.13)

Here, the Green function G(y1, y2) is the kernel of the operator G, and it has a sin-
gularity at y1 = y2, of order log dist(y1, y2) for d = 2 and dist(y1, y2)

2−d for d > 2.
Likewise, the analog of Wick’s theorem (2.1.32) holds.
We now specialize to the case where the particle is massless, i.e.,m= 0 in (2.5.5),

andM is a Riemann surface �. Thus, in complex coordinates, the action is

S = 1

2πα′

∫
d2w∂ϕ∂̄ϕ. (2.5.14)

We note that the metric g here disappears from the picture. This comes from the fact
that S in (2.5.14) is conformally invariant, that is, remains unchanged when the un-
derlying metric is multiplied by some positive function, and therefore depends only
on the conformal structure, that is, on the Riemann surface on which it is defined,
but not on a particular choice of a conformal metric on that Riemann surface. The
issue of conformal invariance plays a fundamental role in conformal field theory
and string theory, see [26, 46, 62].

The classical equation of motion is (2.4.21),

∂∂̄ϕ(z, z̄)= 0. (2.5.15)
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One writes the argument here as (z, z̄) instead of simply z, because the notation
f (z) is reserved for a holomorphic function, as explained in Sect. 1.1.2. (2.5.15)
implies that ∂ϕ is a holomorphic function ∂ϕ(z), and ∂̄ϕ is an antiholomorphic
function ∂̄ϕ(z̄).

The complex coordinates

z= x1 + ix2,

z̄= x1 − ix2

admit a Minkowski continuation with x0 = −ix2. Then, a holomorphic function is
a function of x0 − x1, an antiholomorphic one is a function of x0 + x1. One calls an
(anti)holomorphic function left-(right-)moving.

As before, we wish to compute the expectation values

〈F(ϕ)〉 = 1

Z

∫
Dϕ exp(−S)F (ϕ). (2.5.16)

We shall now repeat some of the discussion of Sect. 2.1.3 and see how it applies
to the present situation. The above analogy between ordinary integrals and path
integrals said that the finitely many ordinary degrees of freedom, the coordinate
values of the integration variable, are replaced by the infinitely many function values
ϕ(z, z̄). Therefore, integration by parts should yield that

0 =
∫
Dϕ

δ

δϕ(z, z̄)
exp(−S). (2.5.17)

This gives

0 = −
∫
Dϕ exp(−S) δS

δϕ(z, z̄)
,

and so,

0 = −
〈

δS

δϕ(z, z̄)

〉
= 1

πα′ 〈∂∂̄ϕ(z, z̄)〉. (2.5.18)

Thus, the classical equation of motion (2.5.15) becomes an equation for the expec-
tation value of the corresponding operator. Equation (2.5.18) can also be written as

1

πα′ ∂z∂z̄〈ϕ(z, z̄)〉 = 0. (2.5.19)

Let us return to (2.5.16). The functional F(ϕ) typically represents certain linear
combinations of products of evaluations of ϕ at points z1, . . . , zm ∈�. When none
of those points coincides with the point z for which we take the functional derivative
δ

δϕ(z,z̄)
, the preceding computation also goes through for F(ϕ).

Things change when one of those insertion points is allowed to coincide with z.
In Sect. 2.1.3, that led us to the temporal ordering scheme for operators. Similarly,
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here, from the analog of (2.1.125), we shall be led to the so-called normal ordering
scheme.

For example

0 =
∫
Dϕ

δ

δϕ(z, z̄)
(exp(−S)ϕ(ζ, ζ̄ ))

=
∫
Dϕ exp(−S)

(
δ(z− ζ, z̄− ζ̄ )+ 1

πα′ (∂z∂z̄ϕ(z, z̄))ϕ(ζ, ζ̄ )
)
. (2.5.20)

Thus

0 =
〈
δ(z− ζ, z̄− ζ̄ )+ 1

πα′ ∂z∂z̄ϕ(z, z̄)ϕ(ζ, ζ̄ )
〉
. (2.5.21)

Again, this is not affected by other insertions not coincident with z.
We thus interpret (2.5.18) and (2.5.21) as operator equations, that is, as holding

for all components of the corresponding quantum mechanical operators, since these
are precisely obtained by such insertions.

We thus write the operator equation

1

πα′ ∂z∂z̄ϕ(z, z̄)ϕ(ζ, ζ̄ )= −δ(z− ζ, z̄− ζ̄ ), (2.5.22)

as in (2.1.125). When we solve (2.5.22), we therefore obtain a Green function type
singularity, log |z− ζ |2.

In order to eliminate this contribution, one considers the normal ordered opera-
tors

:ϕ(z, z̄): = ϕ(z, z̄),

:ϕ(z1, z̄1)ϕ(z2, z̄2) : = ϕ(z1, z̄1)ϕ(z2, z̄2)+ α′

2
log |z1 − z2|2.

(2.5.23)

This quantum correction will below lead to a central extension of the Lie algebra of
the diffeomorphism group of the circle (see (2.5.63), (2.5.66) in Sect. 2.5.3).

We then have

∂1∂̄1:ϕ(z1, z̄1)ϕ(z2, z̄2): = 0. (2.5.24)

Thus, :ϕ(z1, z̄1)ϕ(z2, z̄2): is a harmonic function and therefore locally the sum of
a holomorphic and an antiholomorphic function. From this, we obtain the Taylor
expansion

ϕ(z1, z̄1)ϕ(z2, z̄2)

= −α
′

2
log|z1 − z2|2

+
∞∑

ν=1

1

ν!
(
(z1 − z2)

ν :ϕ∂νϕ(z2, z̄2): + (z̄1 − z̄2)
ν :ϕ∂̄νϕ(z2, z̄2):

)
(2.5.25)
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(mixed terms with ∂∂̄ vanish by the equation of motion; note that in general, deriv-
atives need not commute with normal ordering).

Equation (2.5.25) is the prototype of an operator product expansion (OPE). As
discussed, the ϕ’s here are considered as quantum mechanical operators.

The transition from functions to operators needs some explanation. In (2.5.16),
we can add insertions I 1, . . . , Im, that is, functions of ϕ evaluated at some points
z1, . . . , zm ∈M . Thus, we have expressions of the form

1

z

∫
Dϕ exp(−S)F (ϕ)I 1(ϕ)(z1, z̄1) · · · Im(ϕ)(zm, z̄m).

More generally, we can also have insertions of the form

∫
I (z, z̄;ϕ)dμ(z)

for some measure dμ(z). For example, these insertions can be certain boundary con-
ditions represented by Dirac functionals. When we do not specify these insertions,
we simply write

〈F(ϕ) · · · 〉.
F (ϕ) then determines an operator F̂ (ϕ) operating on such insertions. 〈F(ϕ)〉 is the
matrix element 〈0|F̂ (ϕ)|0〉 of F̂ (ϕ) where |0〉 is the vacuum.

2.5.2 Noether’s Theorem and Ward Identities

Before proceeding, we need to translate Noether’s theorem into the operator setting.
The result is a Ward identity.

As in Sect. 2.3.2, we consider a general Lagrangian action

S =
∫
F(ϕ(x), dϕ(x)) dx (2.5.26)

and transformations

x 	→ x′,

ϕ(x) 	→ ϕ′(x′)=:ψ(ϕ(x)).

Infinitesimally,

x′ = x + sδx, (2.5.27)

ϕ′(x′)= ϕ(x)+ sδψ(x). (2.5.28)
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By (2.3.28), the Noether current is

jαi =
(

−Fpα ∂ϕ
∂xβ

+ δαβF
)
δxβ

δsi
+ Fpα δψ

δsi
, (2.5.29)

δS = −
∫
dxjαi ∂αsi

=
∫
dx∂αj

α
i si . (2.5.30)

According to Noether (2.3.29), invariance implies a conserved current:

∂αj
α
i = 0. (2.5.31)

We now turn to the quantum version, that is, invariance of correlation functions,
when action and functional integral measure both are invariant:

〈ϕ(x′
1) · · ·ϕ(x′

n)〉 = 〈ψ(ϕ(x1)) · · ·ψ(ϕ(xn))〉 (2.5.32)

by renaming variables (ϕ 	→ ϕ′) and transforming Dϕ′ to Dϕ.
Ward identities express symmetries in QFT as identities between correlation

functions. According to (2.3.27), the field variations are given by

Gϕ := δψ

δs
− δx

δs

∂ϕ

∂x
. (2.5.33)

For a collection �= ϕ(x1) · · ·ϕ(xn) of fields, we have by invariance

1

Z

∫
Dϕ� exp(−S(ϕ))

= 〈�〉

= 1

Z

∫
Dϕ′(�+ δ�) exp

(
−
(
S(ϕ)+

∫
dx∂αj

α
i si(x)

))
.

If the measure is invariant, i.e., Dϕ′ =Dϕ, then by differentiating w.r.t. s gives

〈δ�〉 =
∫
dx∂α〈jαi (x)�〉si(x) (2.5.34)

(note that � does not depend explicitly on x, and thus ∂(j (x))�= ∂(j (x)�)).
Since

δ�= −
n∑

k=1

(ϕ(x1) · · ·Gϕ(xk) · · ·ϕ(xn))s(xk)

=
∫
dxs(x)

n∑

k=1

(ϕ(x1) · · ·Gϕ(xk) · · ·ϕ(xn))δ(x − xk),
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we obtain the Ward identity for the current j :

∂

∂xα
〈jα(x)ϕ(x1) · · ·ϕ(xn)〉 =

n∑

k=1

〈ϕ(x1) · · ·Gϕ(xk) · · ·ϕ(xn)〉δ(x − xk). (2.5.35)

We now assume that the time t = x0
1 is different from all the times x0

2 , . . . , x
0
n

occurring in �. We integrate (2.5.35) between t − ε and t + ε for small ε > 0 to
obtain

〈Q(t + ε)ϕ(x1)�〉 − 〈Q(t − ε)ϕ(x1)�〉 = 〈Gϕ(x1)�〉 (2.5.36)

for the charge Q (defined as in (2.3.40)). When we time order the operators, we
need to exchange Q(t − ε) and ϕ(x1), because t − ε < t = x0

1 . Since (2.5.36) holds
for any such �, we obtain

[Q,ϕ] =Gϕ. (2.5.37)

Thus, the conserved change Q is the infinitesimal generator of the symmetry trans-
formations in the operator formalism.

If instead of a Minkowski space–time, we consider Euclidean space, the time
ordering is replaced by a radial ordering of the operators as will be discussed in
Sect. 2.5.3 below.

2.5.3 Two-dimensional Field Theory

We now compare the preceding with 2-dimensional field theory. We have a spatial
coordinate w1 that may be bounded or periodic,

w1 ∼w1 + 2π, (2.5.38)

and a Euclidean time coordinate τ =w2,

−∞<w2 <∞. (2.5.39)

We put

w =w1 + iw2 (equal time coordinates are horizontal lines) (2.5.40)

and

z= e−iw (equal time coodinates are concentric circles C about

origin z= 0 which corresponds to the infinite past w2 = −∞).
(2.5.41)

When going from the Minkowski coordinates w1,w2 to the complex coordinates
z, temporal invariance w2 → w2 + t then becomes radial invariance z→ λz with
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λ ∈ R. This is the starting point of conformal invariance and constitutes one moti-
vation for conformal field theory below.

In the z-coordinates, the charges Q (2.3.40) then become contour integrals of
currents j

Q{C} =
∮

C

dz

2πi
j. (2.5.42)

Here, we assume that the current j is meromorphic, without poles on the contour C,
of course.

We now consider

Q1{C1}Q2{C2} −Q2{C2}Q1{C3}. (2.5.43)

This corresponds to a time ordering τ1 > τ2 > τ3.

Therefore, when we time order the operators Q̂i corresponding to the Qi , we
obtain the expression

Q̂1Q̂2 − Q̂2Q̂1 = [Q̂1, Q̂2]. (2.5.44)

We now consider a point z2 ∈C2, and we can deform the contours as follows:

When we consider infinitesimal time differences, τ1 = τ2 +ε, τ3 = τ2 −ε, ε→ 0,
we contract the contour C1 − C3 to C2, that is, the small circle about z2, to the
point z2.

We obtain from (2.5.42)–(2.5.44), leaving out the ˆ for the operators as usual,

[Q1,Q2]{C2} =
∮

C2

dz2

2πi
Resz1→z2j1(z1)j2(z2). (2.5.45)
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This is a fundamental relation. On the l.h.s., we have the commutator algebra of the
charges, while on the r.h.s., the singular terms in the operator product expansions
(OPEs) of the currents appear.

Instead of the conserved charge Q2{C2}, we can also take an operator A(z, z̄) to
obtain

[Q,A(z2, z̄2)] = Resz1→z2j (z1)A(z2, z̄2). (2.5.46)

When Q is the conserved charge for a variation δ, as in Sect. 2.3.2,

ϕ(x) 	→ ϕ(x)+ iεs(x), (2.5.47)

we have, by (2.5.37),

[Q,A(z, z̄)] = − 1

iε
δA(z, z̄). (2.5.48)

(2.5.46) and (2.5.48) yield

Resz1→z2j (z1)A(z2, z̄2)= − 1

iε
δA(z2, z̄2). (2.5.49)

We now consider a conserved current j in a two-dimensional field theory. As
a conserved current, by (2.3.22) and (2.3.29), it is divergence free, that is

∂z̄jz + ∂zjz̄ = 0. (2.5.50)

Taking as a model the energy–momentum tensor T in Sect. 2.4, we now assume that
we have

jz = δzjzz + δz̄jzz̄, jz̄ = δz jz̄z + δz̄ jz̄z̄ (2.5.51)

for some holomorphic variation δz. Equation (2.5.50) then becomes

∂z̄jzz + ∂zjz̄z = 0,

∂zjz̄z̄ + ∂z̄jzz̄ = 0.
(2.5.52)

We also assume that the tensor (jzz, . . .) is symmetric:

jzz̄ = jz̄z, (2.5.53)

and (noting that tr j = gabjba = gzz̄jz̄z + gz̄zjzz̄) trace-free:

jzz̄ = 0, (2.5.54)

which it has to be for the theory to be conformally invariant.
These relations imply that it is holomorphic:

∂z̄jzz = 0,

∂zjz̄z̄ = 0.
(2.5.55)
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We put

j (z)= jzz(z),
j̄ (z)= jz̄z̄(z̄).

This implies that f (z)j (z) is conserved as well:

∂z̄(fj)= 0, (2.5.56)

for any holomorphic function f (z).
Thus, we obtain infinitely many conserved currents. In two-dimensional field

theory, this corresponds to the fact that the local conformal group is infinite-
dimensional, as conformal invariance led to the energy–momentum tensor T as our
conserved current j in Sect. 2.4.

For each holomorphic f , we therefore obtain a conserved charge

Qf =
∮

C

dz

2πi
f (z)T (z) (2.5.57)

which generates the conformal transformation

z 	→ z+ εf (z). (2.5.58)

According to (1.1.89), the induced transformation of a field ϕ(z, z̄) is

ϕ(z, z̄) 	→ ϕ(z, z̄)+ δf,f̄ ϕ(z, z̄) (2.5.59)

with

δf,f̄ ϕ(z, z̄)= (h∂zf + h̃∂z̄f̄ + f ∂z + f̄ ∂z̄)ϕ(z, z̄) (2.5.60)

where h and h̃ are the conformal weights of ϕ.
We consider an (h,0)-form ϕ(z, z̄)(dz)h. Equations (2.5.48), (2.5.49) and

(2.5.57) give

δf ϕ(z)= −[Qf ,ϕ(z)]
= −Resz1→z2f (z1)T (z1)ϕ(z)

=
∮

C

dz1

2πi
f (z1)T (z1)ϕ(z), (2.5.61)

where C is now a small circle about z.
Since h̃= 0 here, we obtain from (2.5.60) and (2.5.61) that

T (z1)ϕ(z)= hϕ(z)

(z1 − z)2 + ∂zϕ(z)

z1 − z + finite terms. (2.5.62)

In particular, for an (h,0)-form, the conformal weight h can be recovered from the
operator product with the energy–momentum tensor.
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If we take, instead of ϕ, the energy–momentum tensor T itself in this OPE,
we obtain an additional term that essentially comes from the fact that T involves
a square of derivatives of fields which induce additional commutator terms:

T (z1)T (z)= c

2(z1 − z)4 + 2T (z)

(z1 − z)2 + ∂zT (z)

z1 − z + finite terms. (2.5.63)

Here, c is some constant, the so-called central charge. Since T is holomorphic, we
can Laurent-expand it:

T (z)=
∞∑

m=−∞

Lm

zm+2
, (2.5.64)

that is,

Lm =
∮

C0

dz

2πi
zm+1T (z) (2.5.65)

for a circle C0 about the origin z= 0.
The Lm are the generators of the Virasoro algebra

[Ln,Lm] =
∮

C0

dz

2πi

∮

Cz

dz1

2πi
zm+1

1 zm+1
[

c

2(z1 − z)4 + 2T (z)

(z1 − z)2 + ∂T (z)

z1 − z
]

= c

12
n(n− 1)(n+ 1)δm+n + (n−m)Lm+n. (2.5.66)

To obtain this, one uses

zn+1
1 = ((z1 − z)+ z)n+1

= n3 − n
6

(z1 − z)3zn−2 + n2 + n
2

(z1 − z)2zn−1

+ (n+ 1)(z1 − z)zn + zn+1 + · · · .

Summary: The generators of the Virasoro algebra are the Laurent coefficients
of the energy–momentum tensor T . The expansion comes from the holomorphicity
of T , which in turn follows from the invariance properties of CFT. Since, in contrast
to the classical action, the quantum expectation values are not conformally invariant,
we obtain a central charge c �= 0 in the commutators of the Lm.

L0,L1 and L−1 generate an algebra isomorphic to sl(2,R), the Lie algebra of
Sl(2,R). That Lie algebra is represented here by infinitesimal transformations of
the form α + βz + γ z2 = δz, the infinitesimal version at a = d = 1, b = c = 0
of z 	→ a z+b

cz+d , the operation of Sl(2,R). In fact, for n,m = −1,1,0, (2.5.66) is
the same as (1.3.48), except for the different notation, of course. In general, Ln
generates δz = zn+1. Ln acts on a primary field (primary can be defined by this
relation) as

[Ln,ϕ(z)] = zn (z∂z + (n+ 1)h)ϕ(z). (2.5.67)
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There is one point here that needs clarification, the relationship between the clas-
sical energy–momentum tensor as defined in Sect. 2.4, see (2.4.8), and its operator
version. According to (2.4.8), the energy–momentum tensor is the Noether current
associated with a variation of the inverse metric γ αβ :

δS =
∫
dxTαβδγ

αβ. (2.5.68)

Quantum mechanically, we have

Zγ+δγ =
∫
(Dϕ)γ+δγ exp(−S(ϕ, γ + δγ ))

=
∫
(Dϕ)γ

(
1 +

∫
dxT δγ−1

)
exp(−S(ϕ, γ )),

assuming that the energy–momentum tensor incorporates both the variation of the
action and of the measure,

=Zγ +Zγ
∫
dxδγ−1〈T 〉γ .

Thus,

1

Zγ
δZγ =

∫
dxδγ−1〈T 〉γ , (2.5.69)

or, putting in a factor of 4π for purposes of normalization,

1

Zγ

δ

δγ−1(y)
Zγ = 1

4π
〈T (y)〉γ , (2.5.70)

and more generally,

1

Zγ

(4π)mδm

δγ−1(y1) · · · δγ−1(ym)
(Zγ 〈ϕ(x1) · · ·ϕ(xn)〉)

= 〈T (y1) · · ·T (ym)ϕ(x1) · · ·ϕ(xn)〉. (2.5.71)

The variation of the measure then induces the central charge c in the expansion
(2.5.63) of the operator version of the energy–momentum tensor.

2.6 Conformal Field Theory

2.6.1 Axioms and the Energy–Momentum Tensor

Conformal field theory was introduced by several people. An early paper that was
important for the subsequent development of the theory is [9]. A monograph devoted
to this topic is [38]. We shall also utilize the treatments in [77] and [46].
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In the preceding, we have derived certain formal consequences of the functional
integral (2.5.5). In particular, the partition function and the correlation functions
satisfy certain relations, and from those, we have obtained the energy–momentum
tensor. Its classical version could be identified with a holomorphic quadratic dif-
ferential in Sect. 2.4. One problem, however, was the definition of the functional
integral (2.5.5). There, we briefly discussed the mathematical definition in terms
of zeta functions, see (2.5.11), and the spectrum of the Laplace–Beltrami operator.
One way to circumvent that problem is to take the indicated algebraic relations and
holomorphicity properties as the starting point for an axiomatic theory. This is the
idea of conformal field theory.

Thus, abstract conformal field theory specifies for each Riemann surface � with
a metric g a partition function Zg and correlation functions 〈ϕ1(x1) · · ·ϕn(xn)〉 for
the primary fields with non-coincident x1, . . . , xn. These basic data do not need any
action or functional integral—although (2.5.5) remains a prime example. The theory
is defined in terms of symmetry properties of these correlation functions.

Essentially, these are:

(i) Diffeomorphism covariance: for a diffeomorphism k :�→�,

Zg =Zk∗g, (2.6.1)

〈ϕ1(k(x1)) · · ·ϕn(k(xn))〉g = 〈ϕ1(x1) · · ·ϕn(xn)〉k∗g. (2.6.2)

(ii) Local conformal covariance

Zeσ g = exp

(
c

96π

(
‖dσ‖2

L2
g
+ 4

∫

�

σ(x)R(x)

))
Zg, (2.6.3)

〈ϕ1(x1) · · ·ϕn(xn)〉eσ g =
n∏

i=1

exp(−hiσ (xi))〈ϕ1(x1) · · ·ϕn(xn)〉g. (2.6.4)

Here, R(x) is the scalar curvature of (�,g), and hi is the conformal weight (see
below) of the field ϕi , as introduced in Sect. 1.1.2; c is called the central charge of
the theory. (For the conformal field theory defined by (2.5.5), we have c= 1.)

In particular, and this is the fundamental point, the quantum mechanical partition
function is not conformally invariant, but instead transforms with a certain factor
that depends on the central charge.

We return to the formula (2.5.9) for the functional (2.5.14) on a Riemann surface
for m= 0. Since G= 2πα′(−�)−1, we should have, up to a factor,

detG= (det�)−1.

Since, however, � has the eigenvalue 0 (�ϕ0 = 0 for a constant function ϕ0), we
need to restrict it to the orthogonal complement of the kernel of�, that is, to the L2-
functions ϕ with

∫
M
ϕdvolg(M)= 0, when defining the determinant by ζ -function

regularization. The corresponding determinant is denoted by det′. In fact, one should
also normalize it by the volume (area) ofM .
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Now, however, while the action is conformally invariant, the Laplace operator
(1.1.103), (2.4.4)

�= 1√
g

∂2

∂z∂z̄

and therefore also its eigenvalues depend on the metric g and not only on its con-
formal class. When we consider a variation g(x) 	→ eσ(x)g(x) of the metric, we can
compute

δ

δσ (x)
log

(
det′(−�)
Vol(M)

)∣∣∣∣
σ=0

= − 1

12π
R(x), (2.6.5)

where R(x) is the scalar curvature of g, see e.g. [38], p. 145ff.
Denoting the partition function for the metric g by Zg , we then have

δ

δσ (x)
Zeσ g|σ=0 = c

24π
R(x)Zg. (2.6.6)

More generally, one defines the energy–momentum tensor as an operator by
(2.5.71), that is,

〈Tα1β1(z1, z̄1) · · ·Tαmβm(zm, z̄m)ϕ(w1, w̄1) · · ·ϕ(wn, w̄n)〉g
= 1

Zg

(4π)mδm

δgα1β1(z1, z̄1) · · · δgαmβm(zm, z̄m)
(
Zg〈ϕ(w1, w̄n) · · ·ϕ(wn, w̄n)〉g

)
.

(2.6.7)

Thus, as an operator, the energy–momentum tensor takes into account the variation
of the action S and of the integration measure Dϕ, as at the end of Sect. 2.5.3.

In particular

〈Tαβ(z, z̄)〉 = 4π

Zg

δ

δgαβ(z, z̄)
Zg. (2.6.8)

At a conformal metric g = ρ2|dz|2, that is, gzz̄ = 2ρ−2, gzz = 0 = gz̄z̄, we consider
the above variation g 	→ eσ g and obtain

4π

Zg

δ

δσ
Zeσ g|σ=0 = −gzz〈Tzz〉g − 2gzz̄〈Tzz̄〉g − gz̄z̄〈Tz̄z̄〉g = −4ρ−2〈Tzz̄〉g. (2.6.9)

From (2.6.8), (2.6.6), we then conclude

4ρ−2〈Tzz̄〉g = − c
6
R. (2.6.10)

Since the Euclidean metric (gzz̄ = 2, gzz = 0 = gz̄z̄) has vanishing scalar curvature,
we have there that

〈Tzz̄〉 = 0, (2.6.11)
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that is, the energy–momentum tensor is traceless when the metric is Euclidean. For
nonvanishing curvature R, however, T is no longer traceless. The trace given by
(2.6.10) involves both the curvature and the central charge c.

From Axiom (ii), we obtain

〈Tzz〉eσ g = 〈Tzz〉g + c

24

δ

δgzz

(
‖dσ‖2

L2
g
+ 4

∫
σR

)

= 〈Tzz〉g − c

12

(
∂2
z σ − 1

2
(∂zσ )

2
)
, (2.6.12)

using, for the last step, (2.4.6) and the formula

R = −1

2

(
∂2gzz

∂z2
+ ∂2gz̄z̄

∂z̄2

)
+ higher-order terms in gzz, gz̄z̄, (2.6.13)

which is valid when we vary the Euclidean metric, that is, when we have gzz̄ = 2
(see (1.1.148)). From (2.6.1) and (2.6.12), under a holomorphic transformation
z 	→w = f (z),

(f ′(z))2〈Tww〉dw dw̄ = 〈Tzz〉|f ′(z)|2dz dz̄

= 〈Tzz〉 − c

12

(
∂2

∂z2
logf ′(z)− 1

2

(
∂

∂z
logf ′(z)

)2)

= 〈Tzz〉 − c

12

(
f ′′′(z)
f ′(z)

− 3

2

(
f ′′(z)
f ′(z)

)2)

= 〈Tzz〉 − c

12
{f ; z}, (2.6.14)

where {f ; z} is the so-called Schwarzian derivative of f . So, we see here an im-
portant difference between the classical and the quantum energy–momentum ten-
sor. While the latter is trace-free (2.6.11) for the Euclidean metric (but not in gen-
eral) and holomorphic (2.6.17) (below) like the former, it no longer transforms as
a quadratic differential, but instead picks up an additional term in its transformation
rule (2.6.14). That term depends on the central charge c of the theory.

In order to take also variations w.r.t. gzz, we now reconsider (2.6.9), (2.6.10) as

−gzz〈Tzz〉g − 2gzz̄〈Tzz̄〉g − gz̄z̄〈Tz̄z̄〉g = c

6
R. (2.6.15)

Next, applying 4π
Zg

δ
δgz1z1

Zg to (2.6.15) and recalling that the background metric is

flat, that is, gzz̄ = 2, gzz = 0 = gz̄z̄, as well as (2.6.13), and using (2.1.54), we obtain

4πδ(z− z1)〈Tzz〉 + 4π〈Tz1z1Tzz̄〉 = πc

3
∂2
z δ(z− z1). (2.6.16)
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Next, diffeomorphism invariance implies that 〈Tzz〉 is holomorphic, as in the classi-
cal case,

∂z̄〈Tzz〉 = 0 = ∂z〈Tz̄z̄〉. (2.6.17)

Finally, one has the OPE

〈TzzTz1z1〉 = c

2(z− z1)
4

+ 2

(z− z1)
2
〈Tz1z1〉

+ 1

z− z1
∂z1〈Tz1z1〉 + analytic terms in z. (2.6.18)

We shall now explain this in more detail.

2.6.2 Operator Product Expansions and the Virasoro Algebra

We take up the discussion of Sect. 2.5.3. As before in (2.5.58), we consider z 	→
z+ εf (z), f holomorphic.

We apply the general Ward identity (2.5.35) for j = f T , T being the energy–
momentum tensor in CFT, writing T (z) for Tzz,

∂

∂z̄
〈f T (z)ϕ(z1) · · ·ϕ(zn)〉 =

n∑

k=1

〈ϕ(z1) · · · δϕ(zk) · · ·ϕ(zn)〉δ(z− zk) (2.6.19)

to primary fields with variation (see (2.5.60))

δϕ = h∂zf ϕ + f ∂zϕ. (2.6.20)

We also write

δ(z− zk)= − 1

π
∂z̄

(
1

z− zk
)

and integrate ∂zf δ(z− zk) by parts to obtain, using that (2.6.19) holds for all (holo-
morphic) f , and neglecting the factor π ,

∂

∂z̄
〈T (z)ϕ(z1) · · ·ϕ(zn)〉 −

n∑

k=1

(
1

z− zk ∂zk + h

(z− zk)2
)

〈ϕ(z1) · · ·ϕ(zn)〉 = 0.

(2.6.21)
Under a holomorphic field f , T has to transform as

δf T (z)= f (z)∂zT + 2(∂zf )T + c

12
∂3
z f, (2.6.22)

because f transforms like ∂
∂z

, and T transforms like (dz)2. As always, c is the
central charge.
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When we want to use ϕ(z1) = T (z1) in the preceding, we therefore have to re-
place (2.6.20) by (2.6.22) and obtain (2.5.63), that is,

〈T (z)T (z1)〉 = 1

z− z1
∂z1〈T (z1)〉 + 2

(z− z1)
2
〈T (z1)〉

+ c

2

1

(z− z1)
4

+ analytic terms. (2.6.23)

This is (2.6.18).
We also recall (2.5.57), saying that the transformation z 	→ z+f (z) is generated

by

Qf =
∮

C

dz

2πi
f (z)T (z).

Therefore, in particular,

[Qf ,T (w)] = f ∂wT + 2(∂wf )T + c

12
∂3
wf.

As above, the commutator means that

〈[Qf ,T (w)]ϕ(z1) · · ·ϕ(zn)〉

=
(∮

C1

dz

2πi
−
∮

C2

dz

2πi

)
f (z)〈T (z)T (w)ϕ(z1) · · ·ϕ(zn)〉,

where z lies inside C1, but outside of C2, while the zk all lie inside C2.
Integrating this with some function f2 around the loop C2 then leads to

[Qf1 ,Qf2 ] =Q[f1,f2] + c

24

∮

C

dz

2πi

(
(∂3
z f1)f2 − f1∂

3
z f2

)
.

This then gives us the Virasoro algebra (2.5.66).

2.6.3 Superfields

We recall the basic transformation rules for a family of super Riemann surfaces from
Sect. 1.5.3:

z̃= f (z)+ θk(z),
ϑ̃ = g(z)+ θh(z),

f, g, k,h holomorphic,
∂f

∂z
�= 0.

(2.6.24)

We define

D+ := ∂θ + θ∂z, D2+ = ∂z. (2.6.25)



200 2 Physics

(D+ had been called τ in Sect. 1.5.3, and later on, we shall sometimes write θ+ in
place of θ , and θ− in place of θ̄ .)

The transformation law under holomorphic coordinate changes is

D+ = (D+θ̃ )D̃+ + (D+z̃− θ̃D+θ̃ )D̃+
2
. (2.6.26)

Superconformal means homogeneous transformation law, i.e.,

D+z̃= θ̃D+θ̃ . (2.6.27)

This is equivalent to

z̃= f (z)+ θg(z)h(z),
θ̃ = g(z)+ θh(z)

(2.6.28)

with

h2(z)= ∂f

∂z
+ g(z)∂g

∂z
(g anticommuting). (2.6.29)

Since D2+ = ∂z, (2.6.27) yields

∂zz̃+ θ̃∂zθ̃ = (D+θ̃ )
2

(2.6.30)

as a compact version of the superconformal coordinate transformation rule.

In global terms, θ is a section of K
1
2 , a square root of the canonical bundle of the

underlying Riemann surface �. Such a square root of K corresponds to the choice
of a spin structure on�. (To see this transformation behavior, put for example g = 0

in (2.6.28). Then from (2.6.29), θ̃ =
√
∂f
∂z
θ .)

We now look at the transformation behavior of conformal (primary) superfields

X(z, θ)= ϕ(z)+ θψ(z)

of conformal weight h. Since θ as a section of K
1
2 has conformal weight 1

2 , this
means that ψ has weight h− 1

2 , while ϕ has weight h. According to (2.6.30), we
can also express the transformation law as

X(z, θ)=X(z̃, θ̃ )(D+θ̃ )
2h

(2.6.31)

(since θ̃ has weight 1
2 and D+ has weight − 1

2 , D+θ̃ has weight 0, which it should,
to make the transformation law consistent). Similarly, (2.5.60) becomes

δf ϕ(z)= (h∂zf + f ∂z)ϕ(z),

δf ψ(z)=
((
h− 1

2

)
∂zf + f ∂z

)
ψ(z).

(2.6.32)
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We also have the supersymmetry transformations for an anticommuting holomor-
phic g,

δgϕ(z)= 1

2
gψ, (2.6.33)

δgψ(z)= 1

2
g∂zϕ + h∂zgϕ, (2.6.34)

that is,

δgX(z, θ)=
(

1

2
gD+ + h∂zg

)
X. (2.6.35)

As before, we write this as a commutator with a charge

δgX = −[Qg,X] =
∮

c

dz1

2πi
g(z1)T (z1)X(z) (2.6.36)

for a small circle c about z.
Here, T is the (anticommuting) generator of the superconformal algebra. From

this, we can draw the same consequences as above. We observe that for two super-
symmetry transformations generated by g1, g2, if we put

f := 1

2
g1g2, (2.6.37)

we have

[δg1, δg2]+X(z, θ)= δf X(z, θ), (2.6.38)

where + denotes the anticommutator. Thus, a supersymmetry transformation is
a square root of a conformal transformation, as it should be according to (2.6.30).

As in Sect. 2.4.3, with ψ+ =ψ1 − iψ2, ψ− =ψ1 + iψ2 and θ+ = θ1 + iθ2, θ− =
θ1 − iθ2 (alternatively, if we wished to conform to the notation in (2.6.24), we could
write θ, θ̄ in place of θ+, θ−), we use the operators D+ = ∂θ+ + θ+∂z, D− = ∂θ− +
θ−∂z̄ and consider a superfield

X = φ + 1

2
(ψ+θ+ +ψ−θ−)+ i

2
Fθ+θ− (2.6.39)

and obtain the action

S =
∫

1

2
D−XD+Xd2xdθ−dθ+

=
∫

1

2

(
4∂zφ∂z̄φ −ψ+

∂

∂z̄
ψ+ −ψ−

∂

∂z
ψ− + F 2

)
d2z. (2.6.40)

In Sect. 2.4.3, we derived the equations of motion (2.4.62),

D−D+X = 0. (2.6.41)
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A solution can be decomposed as

X(z, θ+, z̄, θ−)=X(z, θ+)+X(z̄, θ−), (2.6.42)

and we may write

X(z, θ+)= ϕ(z)+ θ+ψ+(z). (2.6.43)

The action is invariant under superconformal transformations and the corresponding
energy–momentum tensor is

T = −1

2
D+X∂zX = TF + θ+TB, (2.6.44)

with

TF = −1

2
ψ∂zϕ, (2.6.45)

TB = −1

2
(∂zϕ)

2 − 1

2
∂zψ ·ψ. (2.6.46)

TB is a section of K2, TF one of K
3
2 .

We consider a complex Weyl spinorψ+ on a Riemann surface�, that is, a section

of a spin bundle K
1
2 , a square root of the canonical bundle K , given by a spin

structure on �. We let ψ− be the complex conjugate of ψ+. Thus, ψ− is a section

of K̄
1
2 (for the same spin structure).

We now consider the case where � is a cylinder, with coordinates w = τ + iσ ,
identifying σ +2π with σ and with τ in some interval which is not further specified
here. As there are two different spin structures on a cylinder, we have two choices
for identifying ψ at σ + 2π with ψ at σ :

ψ±(τ, σ + 2π)=ψ±(τ, σ ), periodic (Ramond), or

ψ±(τ, σ + 2π)= −ψ±(τ, σ ), antiperiodic (Neveu–Schwarz).
(2.6.47)

These boundary conditions also arise from the following consideration. We consider
the half cylinder where σ runs from 0 to π , and we assume boundary relations
between the holomorphic field ψ+ and the antiholomorphic field ψ−,

ψ+(0, τ )= νψ−(0, τ ) with ν = ±1,

ψ+(π, τ )=ψ−(π, τ )
(2.6.48)

where the factor +1 has been chosen w.l.o.g. in the second equation. We can then
combine ψ+ and psi− into a single field, defined for σ ∈ [0,2π ], by putting

ψ+(σ, τ )=ψ−(2π − σ, τ) for π ≤ σ ≤ 2π. (2.6.49)
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ψ+ then is holomorphic, because ψ− was antiholomorphic. Also,

ψ+(2π, τ)=ψ−(0, τ )=
{
ψ+(0, τ ) for ν = 1,

−ψ+(0, τ ) for ν = −1.
(2.6.50)

Thus, ψ+ is periodic (Ramond) in the first and antiperiodic (Neveu–Schwarz) in the
second case.

We now map the cylinder to an annulus via

z= ew.
Since ψ+ transforms like (dw)

1
2 , we have

ψannulus+ (z)(dz)
1
2 =ψcylinder

+ (w)(dw)
1
2 ,

with
(
dz

dw

) 1
2 = e w2 .

When we now rotate the cylinder by 2π , the factor e
w
2 changes by a factor −1.

Therefore, periodic and antiperiodic identifications are exchanged, and on the annu-
lus, we have

Ramond: ψ±(e2πiz)= −ψ±(z) (antiperiodic),

Neveu–Schwarz: ψ±(e2πiz)=ψ±(z) (periodic).

We shall now expand these expressions in terms of

z12 = z1 − z2 − θ1θ2,

θ12 = θ1 − θ2.

We obtain

T (z1, θ1)X(z2, θ2)= hθ12

z2
12

X(z2, θ2)+ 1

2z12
D+,2X(z2, θ2)

+ θ12

z12
∂z2X(z2, θ2)+ regular terms,

T (z1, θ1)T (z2, θ2)= c

6

1

z3
12

+ 3

2

θ12

z2
12

T (z2, θ2)+ 1

2z12
D+,2T (z2, θ2)

+ θ12

z12
∂z2T (z2, θ2)+ regular terms.

In components:

TB(z1)TB(z2)= c

6

1

(z1 − z2)
4

+ 2

(z1 − z2)
2
TB(z2)+ 1

z1 − z2
∂z2TB(z2)+ · · · ,
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TB(z1)TF (z2)= 3

2

1

(z1 − z2)
2
TF (z2)+ 1

z1 − z2
∂z2TF (z2)+ · · · ,

TF (z1)TF (z2)= c

6

1

(z1 − z2)
3

+ 1

2

1

z1 − z2
TB(z2)+ · · · .

We expand TB as before and TF as

TF (z)= 1

2

∑

k∈Z+a
z−k−1−aGk

(
Gk = 2

∮

c

dzi

2πi
TF (z)z

k+a
)
,

with a = 0 corresponding to the Ramond sector and a = 1
2 corresponding to the

Neveu–Schwarz sector.
With ĉ= 2

3c, we obtain the super Virasoro algebra

[Lm,Ln]− = (m− n)Lm+n + ĉ

8
(m3 −m)δm+n,

[Lm,Gk]− =
(

1

2
m− k

)
Gm+k,

[Gk,Gl]+ = 2Lk+l + ĉ

2

(
k2 − 1

4

)
δk+l .

2.7 String Theory

In conformal field theory, Sect. 2.6, we have kept the Riemann surface � fixed
and varied the metric on � only via diffeomorphisms—which left the partition and
correlation functions invariant—and by conformal changes—which, in contrast to
the classical case, had a nontrivial effect, the so-called conformal anomaly. In string
theory, one also varies the Riemann surface � itself. Equivalently, as explained in 7
in Sect. 1.4.2, we permit any variation of the metric γ , including those that change
the underlying conformal structure. Here, we can only give some glimpses of the
theory. Fuller treatments are given in [50, 77, 87, 88] and, closest to the presentation
here, in [62].

In bosonic string theory, one starts with the linear sigma model (Polyakov action)
(2.4.7)

S(ϕ, γ ) (2.7.1)

and considers the functional integral

Z =
∑

topological types

∫
e−S(ϕ,γ )dϕdγ. (2.7.2)
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This means that one wishes to average over all fields φ and all compact20 surfaces,
described by their topological type (their genus) and their metric, with exponential
weight coming from the Polyakov action. Since, as discussed, that action S(ϕ, γ )
is invariant under diffeomorphisms and conformal changes, that is, possesses an
infinite-dimensional invariance group, this functional integral, as it stands, can only
be infinite itself. Therefore, one divides out these invariances before performing the
functional integral. As described in Sect. 1.4.2, the remaining degrees of freedom
are the ones coming from the moduli of the underlying surface, and we are left with
an integral over the Riemann moduli space for surfaces of given genus and a sum
over all genera. The essential mathematical content of string theory is then to define
that integral in precise mathematical terms and try to evaluate it. The sum needs
some regularization, that is, one should put in some factor κp depending on the
genus p that goes to 0 in some appropriate manner as the genus increases. Alterna-
tively, one should construct a common moduli space that simultaneously includes
surfaces of all genera. Since lower-genus surfaces occur in the compactification of
the moduli spaces of higher-genus ones, this seems reasonable. As discussed above
in Sect. 1.4.2, however, the Mumford–Deligne compactification is not directly ap-
propriate for this, as there the lower-genus surfaces that occur in the boundary of
the moduli space carry marked points in addition. With each reduction of the genus,
the number of those marked points increases by two. When we then consider sur-
faces of some fixed genus p0 in a boundary stratum of the moduli space of surfaces
of genus p, we have 2(p − p0) marked points, and this number then tends to ∞
for p→ ∞. Therefore, we need to resort to the Satake–Baily compactification de-
scribed in Sect. 1.4.2 which does not need marked points, but is highly singular. We
also recall from there that this compactification can be mapped into the Satake com-
pactification of the moduli space of principally polarized Abelian varieties. Again,
the compactification of that moduli space for principally polarized Abelian varieties
of dimension p contains in its boundary the moduli spaces for the Abelian varieties
of smaller dimension. Letting p → ∞ then gives some kind of universal moduli
space for principally polarized Abelian varieties of finite dimension, and this space
is then stratified according to dimension. Similarly, the analogous universal moduli
space for compact Riemann surfaces would then be stratified according to genus. (To
the author’s knowledge, however, this construction has never been carried through
in detail.)

In any case, even the integral over the moduli space for a fixed genus leads to
some subtleties. The reason is that while the Polyakov action S(ϕ, γ ) itself is con-
formally invariant, the measure e−S(ϕ,γ )dφdγ in (2.7.2) is not. We have seen the
reason above from a somewhat different perspective in our discussion of quanti-
zation of the sigma model, where we encountered additional terms in the operator
expansions. These then led to the nontrivial central charge c of the Virasoro algebra.
It then turns out that there are two different sources of this conformal anomaly, one
coming from the fields φ and the other from the metric γ . The fields are mappings

20Since the partition function represents the amplitude of vacuum → vacuum transitions, only
closed surfaces are taken into account.
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into some euclidean space R
d , and we get a contribution to the conformal anomaly

for each dimension, that is, an overall contribution proportional to d . The conformal
anomaly coming from γ is independent of the target dimension d . It then turns out
that these two conformal anomalies cancel precisely in dimension d = 26. Mathe-
matically, this can be explained in terms of the geometry of the Riemann moduli
space, utilizing earlier work of Mumford [84], or with the help of the semi-infinite
cohomology of the Virasoro algebra. In conclusion, bosonic string theory lives in a
26-dimensional space.

The same scheme applies in superstring theory. Here, the action is given by
(2.4.149),

S(φ,ψ,γ,χ)= 1

2

∫

�

(γ αβ∂αφ
a∂βφa + ψ̄aγ α∂αψa + 2χ̄αγ

βγ αψa∂βφa

+ 1

2
ψ̄aψ

aχ̄αγ
βγ αχβ)

√
detγ dz1dz2, (2.7.3)

including also the fermionic field ψ and the gravitino χ . The same quantization
principle is applied, and the resulting dimension needed to cancel the conformal
anomalies turns out to be d = 10.

In order to include gravitational fields, one has to consider more general targets
than euclidean space. The appropriate target spaces are Kähler manifolds with van-
ishing Ricci curvature. The real dimension still has to be 10. In order to make contact
with dimension 4 of ordinary space–time, one writes such a target as a product

R
4 ×M (2.7.4)

where M now is assumed to be compact (and of such a small scale that it is not di-
rectly observable at the macroscopic level). (This vindicates the old idea of Kaluza
described in Sect. 1.2.4 above.) The process of making some of the dimensions com-
pact is called compactification in the physics literature.M then has to be a compact
Kähler manifold with vanishing Ricci curvature, in order to obtain supersymme-
try, of complex dimension 3, a Calabi–Yau space. In fact, by Yau’s theorem [109],
every compact Kähler manifold with vanishing first Chern class c1(M) carries such
a Ricci flat metric, and this makes the methods of algebraic geometry available for
the investigation and classification of such spaces.

In order to describe the physical content of string theory, the basic object is the
string, an open or closed curve. As it moves in space–time, it sweeps out a Riemann
surface. In contrast to the mathematical framework just described, this Riemann
surface will have boundaries, even in the case of a closed string when we follow
it between two different times t1 and t2. The boundaries will then correspond to
the initial position at time t1 and the final position at time t2, except when the string
only comes into existence after time t1 and ceases to exist at time t2. See [62] for the
systematic treatment of such boundaries in string theory. For an open string, that is,
for a curve with two endpoints moving in space–time, we obtain further boundaries
corresponding to the trajectories of these endpoints. More generally, the movement
of these endpoints may be confined to lower-dimensional objects in space–time that
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carry charges and that can then become objects in their own right, the D-branes21

first introduced by Polchinski [86]. Symmetries between branes then led to a new
relation between string theory and gauge theory, culminating in a conjecture of Mal-
dacena [78].

In any case, when a string moves in space–time, it sweeps out a surface, and the
basic Nambu–Goto action of string theory was the area of that surface. Since the area
functional is invariant under any reparametrization, it cannot be readily quantized,
and therefore, the symmetry was reduced by considering the map that embeds the
surface representing the moving string into space–time and the underlying metric of
that surface as independent variables of the theory. That led to the Polyakov action
(2.7.1), that is, the Dirichlet integral or sigma model action (2.4.7).

According to string theory, all elementary particles are given by vibrations of
strings. Gauge fields arise from vibrations of open strings. Their endpoints repre-
sent charged particles. For instance, when one is an electron and the other an op-
positely charged particle, a positron, the massless vibration of the string connecting
them represents a photon that carries the electrical force between them. Collisions
between such particles then naturally lead to closed strings. Gravitons, that is, par-
ticles responsible for the effects of gravity, arise from vibrations of closed strings.
In superstring theory, both bosons and fermions are oscillations of strings. There
are only two fundamental constants in string theory, in contrast to the proliferation
of such constants in the standard model. These are the string tension, that is, the
energy per unit-length of a string, the latter given in terms of the Planck length, and
the string coupling constant, the probability for a string to break up into two pieces.

However, superstring theory is far from being unique, and it cannot determine the
geometry of the background space–time purely on the basis of physical principles.
Thus, there is room for further work in superstring theory, as well as for research
on competing theories like loop quantum gravity (that started with Ashtekar’s refor-
mulation of Einstein’s theory of general relativity [5]) and the development of new
ones.

21The “D” here stands for Dirichlet, because such types of boundary conditions are called Dirichlet
boundary conditions in the mathematical literature. We also recall that the basic action functional
(2.4.7), (2.7.1) is called the Dirichlet integral in the mathematical literature. This terminology was
in fact introduced by Riemann when he systematically used variational principles in his theory of
Riemann surfaces, see [91]. Harmonic functions are minimizers of the Dirichlet integral, and in
this sense, string theory is a quantization of the profound ideas of Riemann.
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Weyl representation, 53, 62, 63, 123
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Weyl tensor, 29
Wick rotation, 113
Wick’s theorem, 102, 184
Wiener measure, 113
Witten operator, 166
world-sheet supersymmetry, 181
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