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Chapter 1

Introduction

This course attempts to describe the many interesting and important connections between
differential forms and algebraic topology. On the whole, we follow some of the main ideas
contained in the book “Differential Forms in Algebraic Topology” by Raoul Bott and Loring
Tu. Sometimes we shall skip some of their material, either in order to get at other topics
more quickly or to present a slightly more sophisticated viewpoint that relies on the as-
sumption that students have already seen background material earlier. This chapter surveys
some background material. It gives a brief overview of the general algebraic-topological and
smooth-manifold contexts within which we shall be studying differential forms, particularly
de Rham cohomology. The following short list of references can be consulted in case some
concepts need further clarification.

William Boothby, “An Introduction to Differentiable Manifolds and Riemannian Geometry.”
Allen Hatcher, ”Algebraic Topology.”
Saunders MacLane, “Homology.”

1.1 Graded algebras

Let R be a commutative ring (with identity). By a graded R-module we mean an indexed
collection of (left) R-modules A = {An|n ∈ Z}. We may write A(n) for An. A is said to
be non-negative if A(n) = 0 for all negative n, and is said to be concentrated in degree k if
A(n) = 0 for n 6= k. If A is an R-module, it is sometimes convenient to identify it with the
graded R-module concentrated in degree k which equals A in that degree. We denote this
graded module by A < k >.

If B = {Bn} is a graded R-module such that An ⊆ Bn for all n, we say that A is a
submodule of B, and we may write A ≤ B to indicate this. A graded quotient module B/A
is then defined by analogy with the ungraded case. If a family Aα of submodules of a fixed
module is given, it is clear how to define the intersection submodule

⋂
α

Aα.
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If A and B are graded modules, the tensor product A⊗B is defined by

(A⊗B)(n) =
⊕

i+j=n

A(i)⊗B(j),

where the tensor products on the right are taken over the ring R. The direct sum A
⊕

B
is defined by summing in each degree. Both of these definitions can be extended to n-fold
tensor products and sums, in fact to tensor products and sums of arbitrary families of graded
modules. At most, we’ll be applying this to a sequence of modules.

Similarly, we can define Hom(A,B) as follows:

Hom(A,B)(n) =
∞∏

p=−∞
HomR(Ap, Bp−n).

(Note that the standard convention is to define this as Hom(A,B)(−n).) If B is concen-
trated in degree 0, say B = B < 0 >, then this definition gives a natural identification
Hom(A,B)(n) = HomR(A(n), B).

A degree k map of graded modules f : A → B is a collection fn : A(n) → B(n + k)
of R-module homomorphisms. When k = 0, we call f simply a map (of graded modules).
As examples of such maps, say that A ≤ B. Then the canonical inclusion and projection
maps of R-modules A(n) → B(n) → B(n)/A(n) define “inclusion” and “projection” maps
A → B → B/A. For another example, a homomorphism of R-modules f : A → B
determines a map of graded modules A < 0 >→ B < 0 > in an obvious way. In accord with
the convention already mentioned, we may denote this graded map again by f : A → B.

Linear combinations of degree k maps and the composition of a degree k map and a degree
l map are defined as expected and enjoy the usual properties.

If a (degree 0) map f : A → B has an inverse, it is called an isomorphism. This defines an
equivalence relation ≈.

Given a degree k map f : A → B, graded versions of kernel and image are defined for f by
analogy with the ungraded case and are denoted ker(f) and im(f), respectively. As usual,
we have A/ker(f) ≈ im(f).

If d : A → A is a map of degree −1 such that d2 = 0, we call it a differential on A, and call
the pair (A,d) a chain complex. In this case, im(d) ≤ ker(d), so we can form the homology
of (A,d), that is, quotient module ker(d)/im(d), which we denote H∗(A,d). We usually
write H∗(A,d)(n) as Hn(A,d) and omit reference to d when no confusion will result. The
same considerations can be applied in case d has degree 1. However, since it is sometimes
convenient to distinguish the two cases, we shall call a pair (A,d) a cochain complex when
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d has degree 1. Also in this case, we’ll call the homology H(A,d) the cohomology of (A,d)
and denote it (resp., H(A,d)(n)) by H∗(A,d) (resp., Hn(A,d)).

Given chain complexes (A,d) and (B, e) a chain map f : (A,d) → (B, e) is a map
f : A → B such that fd = ef . Such an f sends im(d) (resp., ker(d)) to im(e) (resp.,
ker(e)), hence inducing a map of graded homology modules, which we denote either f∗ or
H∗(f). It is clear that the identity map is a chain map and that chain maps are closed under
composition. Completely analogous definitions apply to cochain complexes, yielding cochain
maps.

If (A,d) is a chain complex and C is an R-module, then (A⊗C,d⊗1) is again a chain com-
plex, whose homology we denote by H∗(A;C). In this case, we may describe this homology
group as the homology of A with coefficients in C. If f is a chain map (A,d) → (B, e), then
f ⊗ 1 is a chain map (A⊗C,d⊗ 1) → (B⊗C, e⊗ 1), inducing a homology homomorphism,
which we usually still denote f∗.

Next note that if d : A → A is a differential of degree −1, and C is an R-module, we can
define d∗ : Hom(A, C) → Hom(A, C) to be the ‘adjoint’ of d, and this is a differential of
degree 1. Therefore, the Hom functor can be used to transform a chain complex into a cochain
complex. The corresponding cohomology may be described as the cohomology of A with
coefficents in C. Similarly for chain maps. Starting with a chain map f : (A,d) → (B, e),
we can form a cochain map Hom(f ,1) : (Hom(B, C), e∗) → Hom(A, C),d∗)—note the
‘changed’ direction of the arrow. This last induces a cohomology homomorphism, which we
usually denote f∗.

A graded R-algebra is a graded R-module A equipped with a multiplication map

µ : A⊗A → A,

which, of course, is required to satisfy the usual associative law. A graded subalgebra of A
is defined in the obvious way. If A(0) contains a copy of the ring R such that µ|R⊗R gives
the usual multiplication in R and µ-multiplication by 1 ∈ R is the identity map of A, then
we call A a graded R-algebra with identity.

If A and B are graded R-algebras, a map of graded R-modules f : A → B is called a
homomorphism if f respects multiplication. It is an isomorphism if it has degree zero and
admits an inverse (which is then automatically a homomorphism). It is easy to check that
im(f) is a subalgebra of B.

By an ideal in a graded algebra A, we mean a submodule I ≤ A such that the composition
of µ with the inclusion A⊗ I + I⊗A → A⊗A factors through the inclusion I → A. It is
not hard to check that an arbitrarily indexed intersection of ideals is again an ideal. Thus, if
S is a graded subset of A, there is a unique smallest ideal in A containing S, said to be the
ideal generated by S. If I is an ideal in A, then the multiplication of A induces an algebra
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multiplication on the quotient module A/I, as in the ungraded case. It is easy to check that
if f : A → B is a homomorphism, then ker(f) is an ideal in A.

Let t : A⊗A → A⊗A be the R-module map defined by the equations t(n)(x ⊗ y) =
(−1)pqy ⊗ x, for all x ∈ A(p) and y ∈ A(q), p + q = n. We say that A is commutative if
µt = µ. For any algebra A, we may form the sets S(n) = {xy − (−1)pqyx|x ∈ A(p), y ∈
A(q), p + q = n} and let I be the ideal generated by S. The quotient algebra C(A) = A/I
is clearly commutative. The reader is invited to make precise the observation that C(A) is
the largest commutative image of A.

Suppose that the graded algebra A admits a degree-one differential d that satisfies the
following derivation property:

d(n)(xy) = d(p)(x)y + (−1)pxd(q)(y),

for all x, y, p, q such that x ∈ A(p), y ∈ A(q), p + q = n. Then we call (A,d) a graded,
differential algebra (DGA). In this case, one easily verifies that im(d) is an ideal in ker(d),
and so

H∗(A,d) = ker(d)/im(d)

inherits the structure of a graded algebra. If A is commutative, so is H∗(A,d)

1.2 Examples

1.2.1 The tensor algebra

Suppose that M is a positive graded R-module. For each n > 0, the n-fold tensor product of
copies of M is a positive graded R-module that we denote by M⊗n. Now define the graded
R-module

T(M) = R⊕M⊗1 ⊕M⊗2 ⊕ . . . .

There is an obvious map of graded R-modules µ : T(M)
⊗

T(M) → T(M) that makes
T(M) into a graded R-algebra with identity. This is called the tensor algebra of M. The
identity map M → M = M⊗1 yields a map if M into T(M), which we call the canonical
inclusion and by which we identify M with a submodule of T(M).

T(M) has the following universal property: For any map of graded R-modules f : M → N,
where N has the structure of a graded R-algebra, there is a unique homomorphism of algebras
T(f) : T(M) → N that extends f . In particular, if f : A → B is a map of graded R-modules,
there is a unique induced homomorphism T(f) : T(A) → T(B).

Some important special cases of the above construction occur when M = A < k > for
some R-module A and integer k ≥ 0. Thus, when k = 0, T(M) is concentrated in degree 0
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and may be identified with the R-module

R⊕ A⊕ (A⊗ A)⊕ . . . ,

which is the classical tensor algebra of A. For this course, we consider only the additional
case k = 1, although other cases are useful in different contexts.

1.2.2 The exterior algebra

Suppose that M = A < 1 >. Then we call the commutative algebra C(T(M)) the exterior
algebra of A, and we denote it by

∧∗(A). We shall write
∧∗(A)(n) as

∧n(A), in accord
with more conventional notation. Note that we may identify

∧1(A) with A. If x1, . . . , xn

are elements of A, so that x1 ⊗ . . . ⊗ xn is an element of T(M)(n), we denote the image
of x1 ⊗ . . . ⊗ xn in

∧n(A) by x1 ∧ . . . ∧ xn. It is not hard to check that if A is generated
by a family of elements {xj|j ∈ J}, then, for each n > 0,

∧n A is generated by the family
{xj1 ∧ . . . ∧ xjn|ji ∈ J}. In fact, if A is a free R-module with basis {xj|j ∈ J}, then

∧n A is
free with basis a subset of {xj1 ∧ . . . ∧ xjn|ji ∈ J}. For example, choose any linear order on
J and use the subset of all xj1 ∧ . . . ∧ xjn such that j1 < . . . < jn. It follows from this that
if A is free of rank r, then

∧n A is free of rank
(

r
n

)
.

By construction, the exterior algebra on A is a commutative algebra. It has the following
property, which follows immediately from the universal property for tensor algebras: namely,
let f : A → B be a map of R-modules. Then there exists a unique homomorphism of exterior
algebras

∧∗(f) :
∧∗(A) → ∧∗(B) extending f . Clearly, for any elements x1, . . . , xn ∈ A, the

homomorphism property of
∧∗(f) produces the familiar formula

∧ ∗(f)(x1 ∧ . . . ∧ xn) = f(x1) ∧ . . . f(xn)

.

Exercise 1. Suppose that V is a finite-dimensional real vector space, and let Lk(V,R) denote
the vector space of all alternating, k-linear forms on V . Then, L1(V,R) is the dual V ∗ of V .
Define canonical isomorphisms

∧
k(V ∗) → (

∧
k(V ))∗ → Lk(V,R).

1.2.3 Singular homology and cohomology

The singular chain complex of a space X is a graded chain complex (S∗(X), ∂), and singular
homology H∗(X) is just the graded Z-module H∗(S∗(X), ∂). If A is any abelian group, we can
replace S∗(X) by S∗(X)⊗A and obtain singular homology with coefficients in A, H∗(X; A).
This usually loses information but may simplify computations. Generally, no choice of A
allows the introduction of a natural graded algebra structure on H∗(X; A), although for
special X (e.g., topological groups) this can be done. However, ‘dualizing’ does allow the
introduction of an algebra structure. In particular, we apply the Hom(−−, A) functor to the
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singular chain complex S∗(X), as explained in Section 1.1, obtaining the singular cochain
functor (with ‘coefficients’ in A) S∗(X; A). Passing to cohomology yields H∗(X; A), singular
cohomology with coefficients in A. At this point, dualizing has not gained us anything. Of
course, different A will yield different kinds of cohomology, just as in the case of homology
above. But all the abelian-group information contained in these various cohomology groups
is already contained in the homology groups. Indeed, this can be made precise and formal by
the various Universal Coefficient Theorems (e.g., see Hatcher or MacLane). However, if A is
chosen to have the structure of a commutative ring, then we actually gain more information
with cohomology, as we explain below.

First, however, we pause to recall that a continuous map of spaces f : X → Y induces a
chain map f∗ : S∗(X) → S∗(Y ) and, hence, for any abelian group A, a homology homomor-
phism denoted f∗ : H∗(X; A) → H∗(Y ; A). Further, this chain map induces a corresponding
cochain map f∗ : S∗(Y ; A)) → S∗(X; A), as explained earlier, which, in turn, induces a
cohomology homomorphism f∗ : H∗(Y ; A) → H∗(X; A). One easily verfies that singular
homology (resp., cohomology)with coefficients in A is a covariant (resp., contravariant func-
tor) from the category of topological spaces and continuous maps to the category of graded
abelian groups.

We can now described how the ring structure in cohomology is obtained. We choose any
commutative ring R and regard it as an abelian group, so that, for any space X, H∗(X; R)
is defined and has the natural structure of a graded R-module. The so-called ‘diagonal’ map
∆ : X → X ×X induces a map of graded R-modules

H∗(X ×X; R)
∆∗→ H∗(X; R), (1.1)

which looks as though it’s close to an algebra product. What is missing is a natural(Eilenberg-
Zilber) map1

H∗(X; R)⊗H∗(X; R) → H∗(X ×X; R), (1.2)

so that (1.1) and (1.2) compose to yield

H∗(X; R)⊗H∗(X; R)
µ→ H∗(X; R). (1.3)

One verifies that µ endows cohomology with the structure of a graded, commutative R-
algebra. To define µ, the ring structure of R is needed since the values of cocycles get
multiplied. (We shall not go into these details in this course, but the interested reader
can consult Hatcher or MacLane.) It is noteworthy that the ring structure for de Rham
cohomology has a much easier and more direct description, as we’ll see later.

The added R-algebra structure on cohomology makes it a finer tool than homology for

1Actually, the Eilenberg-Zilber maps are defined on the chain-complex level and involve the product of
possibly distinct spaces X × Y . These induce maps on cohomology.
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detecting differences between spaces. For example, for any non-trivial commutative ring R,

H∗(S2 ∨ S3 ∨ S6; R) and H∗(S2 × S3; R)

are isomorphic as graded R-modules but are not isomorphic as graded R-algebras. (As
graded R-modules, both are free on single generators in dimensions 2, 3, and 6, say, x, y, and
z, respectively, but in the former xy = 0, whereas in the latter xy = ±z.)

1.2.4 Cohomology and obstructions to extensions

Another virtue of cohomology is that it arises naturally in connection with extension prob-
lems. As pointed out long ago by N. Steenrod, most problems in algebraic topology can be
formulated as extension problems. That is, in simplest terms, one is given a (reasonable)
pair of spaces (X,A) and a (continuous) map f : A → Y , which one seeks to extend to a map
X → Y . That this is generally not possible is the basic fact underlying the development
of most of algebraic topology, which can be regarded as the machinery that measures how
hard such extension problems are to solve. Note that if g : W → X is any map, and we
set B = g−1(A), then g induces another extension problem for the pair (W,B) and the map
f(g|B) : B → Y . Clearly a solution to the first problem yields a solution to the second. But
even if the first cannot be solved, we may still wish to measure the extent of this failure—the
“obstruction” to extension— and relate that to the analogous obstruction for the second
problem. Whatever “obstruction” means here, it is clear that it should be contravariantly
natural. Thus, if any of the usual algebraic-topological invariants comes into play here, it
should be something like cohomology.

Indeed, the notion of a primary obstruction to the extension problem above can be defined
precisely as an element of the cohomology of the pair (X, A) with coefficients in a certain
homotopy group of Y . A notion of secondary obstruction can also be defined. A description
of these ideas would take us too far afield here, but the interested reader is referred to a
readable exposition of obstruction theory in Factorization and Induced Homomorphisms,
Advances in Mathematics, January 1969, by Paul Olum.

1.2.5 Cohomology and Stokes’s Theorem

Let M be a smooth manifold, which is smoothly triangulated with all simplexes oriented.
Here, we assume known the notions of smooth differential form and integral of a k-form ω
over a simplical k-chain c, ∫

c

ω.

Then, Stokes’s Theorem says:

∫

c

dω =

∫

∂c

ω. (1.4)
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We’ll discuss this rigorously in the smooth context later. Here, we interpret it as follows.
The rule c 7→ ∫

c

ω gives an element of Hom(Ck(M),R), where Ck denotes simplicial k-chains.

We call this element ω. Then (1.4) becomes

d(ω)(c) = ω(∂c), (1.5)

i.e., d(ω) is just δ(ω), where δ is the adjoint of ∂ (as in the case of singular chains and
cochains).

So cohomology arises naturally when looking at smooth forms, i.e., the rule ω 7→ ω gives
a natural map from the smooth k-forms on M to the R-valued simplicial k-cochains on M ,
which intertwines d with δ. (A map to singular k-cochains can be defined similarly.) As we
shall see in the next chapter, the smooth forms on M , together with d, form a commutative,
DGA. Therefore, without further ado — that is, without an Eilenberg-Zilber Theorem or
a Künneth Theorem—its homology inherits a commutative algebra structure, as described
earlier. It is known as the de Rham cohomology of M . One result proved in this course is
that the cited map from de Rham cohomology to simplicial or singular cohomology (with
real coefficients) induces an isomorphism of cohomology algebras (de Rham’s Theorem).



Chapter 2

The de Rham Complex

This chapter gives a summary of requisite definitions and properties but does not give all
the proofs. The reader is encouraged to supply details.

2.1 Tangent vectors on Rn

Rnis the real vector space of real n-tuples u = (u1, . . . , un), and C∞(Rn) is the R-algebra of
smooth (= C∞) functions on Rn. Given u, v ∈ Rn and f ∈ C∞(Rn), the derivative of f at
u in direction v is defined by

Df(u)(v) = lim
t→0

f(u + tv)− f(u)

t
. (2.1)

It determines an R-linear map
∂u(v) : C∞(Rn) → R (2.2)

which satisfies a so-called derivation identity

∂u(v)(fg) = g(u)∂u(v)(f) + f(u)∂u(v)(g). (2.3)

If e1, . . . , en denote the standard basis vectors of Rn, then we may denote ∂u(ei)(f) by
∂if(u), or, if u is understood, simply by ∂if .

Any R-linear map Xu : C∞(Rn) → R that satisfies (2.3) is called a tangent vector at u,
and the set of all such is called the tangent space to Rn at u, denoted TuRn. Obviously, the
set of tangent vectors is closed under real scalar multiplication and addition, and so TuRn is
a real vector space.

A function X → ⋃
u

TuRn satisfying X(u) ∈ TuRn is called a vector field on Rn. For every

f ∈ C∞(Rn), X determines a function Xf : Rn → R by the rule u 7→ X(u)(f). We say that

9
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X is smooth if Xf is smooth for each such f . We denote the set of all smooth vector fields
on Rn by X (Rn). Clearly this has a natural structure as a C∞(Rn)-module.

Since (2.1) is well-defined for any smooth f defined in a neighborhood of u, the foregoing
definitions apply to any open set U ⊆ Rn and f ∈ C∞(U), yielding TuU and X (U). If
i : U → V is any inclusion of open sets, it induces a restriction map by right-composition,
i∗ : C∞(V ) → C∞(U), hence a ‘dual’ R-linear map i∗ : TuU → TuV , for each u ∈ U .

Lemma 2.1.1. Let B and C be concentric open balls in Rn such that B ⊆ C. Then, there
exists a smooth function b : Rn → [0, 1] such that B = b−1(1) and Rn \ C = b−1(0).

Corollary 2.1.2. Let U be an open subset of Rn and u ∈ U . If f, g ∈ C∞(U) coincide near
u, then Xuf = Xug, for any tangent vector Xu ∈ TuU .

Proof: It suffices to prove the result when g = 0. Choose balls B,C and a function b as in
the lemma, such that u ∈ B, C ⊆ U , and f = 0 on C. Then bf is identically zero, so that
0 = Xu(bf) = f(u)Xub + b(u)Xuf = Xuf , as desired.

The key property that makes the foregoing argument work is the derivation property. We
shall have occasion to apply this kind of argument again (cf. 2.3.2).

Corollary 2.1.3. Given any inclusion of open sets i : U → V and u ∈ U , i∗ : TuU → TuV
is an isomorphism.

Proof: Given any f ∈ C∞U , we can find, with the aid of Lemma 2.1.1, a function f̂ ∈ C∞(V )
which coincides with f near u. This leads immediately to the bijectivity of i∗ as follows:
(a) Suppose i∗(Xu) = 0 and f ∈ C∞(U). Since f̂ |U coincides with f near u, we have,
by Corollary 2.1.2, Xuf = Xu(f̂ |U) = i∗(Xu)f̂ = 0. Thus, Xu = 0. (b) Choose any
Yu ∈ TuV . For any f ∈ C∞U , define Xuf = Yuf̂ . This is well-defined by Corollary 2.1.2,
and one easily verifies that it defines an element of TuU . Now choose an arbitrary g ∈ C∞V .
Since g coincides with ˆg|U near u, we have i∗(Xu)g = Xu(g|U) = Yu( ˆg|U) = Yug, so that
i∗Xu = Yu.

Lemma 2.1.4. Choose any f ∈ C∞(Rn) and u ∈ Rn. Then, there exist functions g1, . . . , gn ∈
C∞(Rn) such that

a. f(x) = f(u) + (x1 − u1)g1(x) + . . . + (xn − un)gn(x), for all x ∈ Rn.

b. For each i = 1, . . . , n, gi(u) = ∂if(u).

Lemma 2.1.5. For each open U ⊆ Rn and u ∈ U , the rule v 7→ ∂u(v) defines an isomorphism
Rn → TuU which is compatible with the inclusion isomorphisms.
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Proof: Clearly the given rule defines an R-linear map compatible with the inclusion-induced
isomorphisms. Therefore, it suffices to verify that this map is bijective when U = Rn.
Given any Xu, apply it to the equation in Lemma 2.1.4 to obtain a unique representation
Xu = a1∂1 + . . . + an∂n, where ai = Xxi (xi the usual ith coordinate function on Rn).

This result shows that the tangent vectors ∂1(u), . . . , ∂n(u) form a basis of TuU . We often
omit the u, as in the above proof. We may refer to ∂i by the more standard

∂

∂xi

∣∣
u
,

or simply
∂

∂xi

.

Thus, for Xu ∈ TuU , there is a unique real, linear combination

Xu =
n∑

i=1

ai(u)
∂

∂xi

. (2.4)

Exercise 2. Let (v1, . . . , vn) be an ordered basis of Rn and, accordingly, write

X(u) =
n∑

i=1

bi(u)∂u(vi).

Show that X is smooth if and only if each bi(u) is a smooth function of u. Find an expression
for each bi in terms of the aj in (2.4).

2.2 Forms on Rn

Let U be an open subset of Rn, and let V be the vector space HomR(TuU,R) = T ∗
uU . We

recall the exterior algebra
∧∗(V ) defined in Chapter 1. If (dx1, . . . , dxn) is the ordered basis

of T ∗
uU dual to the standard basis (∂1, . . . , ∂n), then

{dxi1 ∧ . . . ∧ dxik |1 ≤ i1 < . . . < ik ≤ n}

is a basis of
∧k T ∗

uU (cf. Section 1.2.2). We set I = (i1, . . . , ik) and use this multi-index to
abbreviate dxi1 ∧ . . . ∧ dxik as dxI . It is sometimes convenient to let |I| = k. Accordingly,

any element α ∈ ∧k T ∗
uU can be written uniquely as

∑

|I|=k

aIdxI , (2.5)
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with aI ∈ R and I ranging over all multi-indices with 1 ≤ i1 < . . . < ik ≤ n.

A k-form on U is a function α : U → ⋃
u

∧k T ∗
uU such that α(u) ∈ ∧k T ∗

uU , for each u ∈ U .

We sometimes write αu instead of α(u). Thus, α(u) may be written uniquely as in 2.5. We
say that it is smooth if each aI is a smooth function of u.

Exercise 3. Let α be a k-form on U . Use the canonical isomorphisms in Exercise 1 to
recognize α(u) as an alternating k-linear function on TuU , so that α(u)(X1(u), . . . , Xk(u)) is
a well-defined function of u for all vector fields X1, . . . , Xk on U . Show that α is smooth if
and only if this function is smooth for all smooth X1, . . . , Xk.

Let Ωk(U) denote the C∞(U)-module of smooth k-forms on U , and let Ω∗(U) denote the
corresponding graded C∞(U)-module. Wedge-product, pointwise defined, makes this into
a graded, commutative algebra over C∞(U). Indeed, the representation (2.5) shows that
this is an exterior algebra over C∞(U). (Note: Later, when we extend these definitions to
manifolds, this last assertion is no longer true.) If i : U → V denotes the inclusion map
of open sets, then it induces the restriction map i∗ : Ω∗(V ) → Ω∗(U), a homomorphism of
commutative algebras “over” the homomorphism i∗ : C∞(V ) → C∞(U).

Exercise 4. Fix any u0 ∈ U . Find a canonical isomorphism of commutative algebras

C∞(U)⊗R
∧∗

(T ∗
u0

U) ≈ Ω∗(U).

2.3 Exterior derivative

Let U be any open subset of Rn. We define a degree-one R-linear map

d = dU : Ω∗(U) → Ω∗(U)

with the following properties:

a. For f ∈ Ω0(U) = C∞(U) and Xu ∈ TuU ,

df(u)(Xu) = Xu(f).

b. For any multi-index I,
d(aIdxI) = daI ∧ dxI .

c. For any smooth p-form α and any smooth form β,

d(α ∧ β) = d(α) ∧ β + (−1)pα ∧ d(β).
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d. d2 = 0.

Exercise 5. Let πi : U → R denote the ith coordinate projection. Verify that dπi equals the
smooth 1-form dxi defined in §2.2 above. Henceforth, we use xi instead of πi.

Indeed, to define d, use property (a) to define it for 0-forms, and then use property (b),
together with the unique representation (2.5) to define it for all smooth k-forms, k > 0. The
verification of properties (c) and (d) is left to the reader. The differential, graded R-algebra
(Ω∗(U), d) is called the de Rham complex of U .

Lemma 2.3.1. If an R-linear, degree-one map d′ : Ω∗(U) → Ω∗(U) satisfies properties
(a),(c), (d), then d′ = d.

Proof: By property (a), d′xi(∂j) = ∂jxi = δij, so d′xi = dxi. By property (d), d′(dxi) =
(d′)2(xi) = 0, and, by property (c), applied inductively, d′(dxI) = 0, for all I. Therefore, by
properties (a) and (c), d′(aIdxI) = d(aIdxI). So, d′ = d. ¤

The proof of the next lemma uses Lemma 2.1.1 similarly to the way it is used in the proof
of Corollary 2.1.2. We leave details to the reader.

Lemma 2.3.2. If the smooth form ω vanishes near u ∈ U , then so does dω.

The point u in this lemma is an interior point of the zero set of ω. The complement of
this set of interior points is called the support of ω. The lemma may be paraphrased to say:
“d decreases supports”.

Corollary 2.3.3. Let i : U → V be an inclusion of open sets in Rn, and choose any
ω ∈ Ωk(V ). Then,

i∗dV ω = dU(i∗ω).

Hint for Proof: This is proved similarly to Corollary 2.1.3. Given any λ ∈ Ωk(U) and
u ∈ U , show that there exists a λu ∈ Ωk(V ) which coincides with λ near u. Set d′λ(u) =
i∗dV λu(u), and show that d′ is well-defined and satisfies properties (a),(c),(d), above. So,
d′ = dU . Apply this when λ = i∗ω.

We began this section with a fixed open set U and defined a differential dU on Ω∗(U),
ostensibly depending on U . Corollary 2.3.3 shows that the various dU are compatible with
restriction, so we may omit the subscript U . For any U , we refer to d as the exterior derivative
on U .
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2.4 Induced maps

Let U be an open subset of Rm and V an open subset of Rn, and let h : U → V be a smooth
map. The derivative Dh may be defined just as in (2.1). Right-composition with h induces
an algebra homomorphism

h∗ : C∞(V ) → C∞(U),

just as in the special case when h is an open inclusion. Further right-composition with h∗

induces, for each u ∈ U , a linear transformation

h∗ : TuU → Th(u)V,

and further right-composition with this induces an adjoint map

h∗ : T ∗
h(u)V → T ∗

uU.

This last extends, via the universal property, to a map of exterior algebras

∧∗
T ∗

h(u)V →
∧∗

T ∗
uU,

again denoted h∗. Finally, these last maps piece together, over all u ∈ U , to yield a map of
commutative algebras,

h∗ : Ω∗(V ) → Ω∗(U).

Admittedly these conventions sorely overuse the symbol h∗, but the context will indicate the
correct interpretation. The symbol upper ∗ is used to indicate the contravariant feature of
these maps.

Exercise 6. Recall the canonical isomorphisms ∂u : Rm → TuU defined in Lemma 2.1.5.
Verify that, for each u ∈ U ,

∂h(u) ◦Dh(u) = h∗ ◦ ∂u.

This gives an identification of h∗ : T ∗
h(u)V → T ∗

uU with the adjoint Dh(u)∗ : (Rn)∗ → (Rm)∗.

The definitions make clear that these induced maps have the following properties:

• If h : U → V and k : V → W are smooth maps, then (kh)∗ = k∗h∗ and (kh)∗ = h∗k∗.

• (idU)∗ and (idU)∗ are identity maps.

Note that it follows from these functorial properties that a smooth map h with a smooth
inverse (i.e., a diffeomorphism) induces isomorphisms h∗ and h∗.

In particular, the rule U, h 7→ Ω∗(U), h∗ defines a contravariant functor from the category
of open subsets of the Euclidean spaces and their smooth maps to the category of graded,
commutative algebras and their (degree-0) homomorphisms.
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One additional piece of structure needs to be included here: namely, the fact that induced
maps commute with exterior derivatives.

Exercise 7. Prove this last assertion.

Thus, the target category above can be taken to be the category of graded, commuta-
tive, differential algebras and their homomorphisms. Note that it follows immediately that
diffeomorphic open sets have isomorphic de Rham complexes.

2.5 Smooth manifolds

A k-chart (U, h) in a topological space X consists of an open subset U of X and a home-
omorphism h : U → V , V open in Rk. A k − atlas for X is a collection 1 {(Uα, hα)} of
k-charts with

⋃
α

Uα = X. It is called smooth if all of the transition mappings

hαβ = hβh−1
α | : hα(Uα ∩ Uβ) → hβ(Uα ∩ Uβ)

are smooth. Let A be a smooth k-atlas. If A = A ∪ {(U, h)} for any chart (U, h) such that
A ∪ {(U, h)} is a smooth atlas, then we say that A is maximal and call it a differentiable
structure, or smoothness structure, or smoothing for (or of) X. Note that every smooth atlas
is contained in a unique smoothness structure. Note also that, in general, a space X may
have a large number of distinct smoothness structures. When a smoothness structure S for
X is given, then we call the charts in S smooth charts.

In these notes, a smooth k-manifold is a 2nd-countable, Hausdorff space M , together with
a smoothing S for M consisting of k-charts. Usually when given a smooth manifold M,S
we omit explicit mention of S, and we reserve the expression smooth subatlas on M for an
atlas for M contained in S. k is called the dimension of M .

If N, T is a smooth `-manifold, then a continuous map f : M → N is called smooth if, for
every (U, g) ∈ S and (V, h) ∈ T , the composition

g(U ∩ f−1(V ))
g−1→ U ∩ f−1(V )

f→ V
h→ h(V )

is smooth, whenever and wherever defined. Notice that the same family of smooth maps is
obtained if, in this definition, we replace S and T by arbitrary smooth subatlases. This fact
can be useful, for example, when verifying that a map is smooth. In particular, the standard

1The indices α, β, etc., are used for notational convenience and are in 1 − 1 correspondence with the
members of the collection.
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smoothing of Rn is the one determined by the singleton atlas {(Rn, idRn)}, and we usually
use the latter when dealing with questions involving smooth mappings into or out of Rn.

We can now proceed just as we did for open subsets of Euclidean space to define tangent
vectors and forms for smooth manifolds in general. Thus, the set of all smooth functions
M → R forms an R-algebra, which we denote by C∞(M), and a smooth map h : M → N
induces an algebra homomorphism h∗ : C∞(N) → C∞(M) just as before. All the associated
structures that derive from the smooth functions (tangent spaces, smooth forms, smooth
vector fields, and the corresponding induced maps) are all defined just as before and have
analogous properties and notation. Note that for the definitions of smoothness, we use the
characterization that does not refer to local representations: thus, a vector field X is smooth
if Xf is a smooth function for each smooth f , and analogously for forms (cf. Exercise 3).
There are two points, however, that require some special attention: namely, the dimension
of the tangent spaces TpM , for p ∈ M , and the definition of the exterior derivative dM = d.

First, we deal with the tangent spaces TpM . When U is an open subset of M , then any
smoothing of M induces a smoothing of U in the obvious way and, with respect to this
smoothing, the inclusion i : U → M is smooth. The following result is proved in the same
way as Corollary 2.1.3:

Lemma 2.5.1. The inclusion i : U → M induces an isomorphism i∗ : TpU → TpM , for
every p ∈ U .

Now suppose that (U, h) is a smooth chart. Then h : U → h(U) is a diffeomorphism. and
so it induces an isomorphism h∗ : TpU → Th(p)h(U), for every p ∈ U . Combining this with
Lemma 2.5.1 and Lemma 2.1.5, we may conclude that TpM is a k-dimensional vector space,
for all p ∈ M .

We shall define the exterior derivative by defining it locally and then patching together.
For this to work, we need some information about the restriction of forms. Let i : U → M
be the smooth inclusion used above. As indicated above, it induces a homomorphism i∗ :
Ω∗(M) → Ω∗(U) just as before, which we often call a restriction homomorphism. Given
any smooth form ω on M , it will often be convenient to denote its image under i∗ by ω|U .
Clearly, if V is an open subset of U , then ω|V = (ω|U)|V .

Exercise 8. Suppose that U is an open cover of M and that for each U ∈ U there is a form
ωU ∈ Ωk(U) such that for any V in U , ωU |U ∩ V = ωV |U ∩ V . Prove that there exists a
unique smooth k-form ω on M such that ω|U = ωU for every U ∈ U

This exercise shows that smooth forms are determined by their local properties and may
be constructed via suitable local definitions. We often have occasion to analyze a smooth
form ω by looking at its restrictions to charts ω|U .
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To define the exterior derivative for M , we make use of the isomorphism h∗ defined for every
smooth chart (U, h), more precisely the associated isomorphism h∗ : Ω∗(h(U)) → Ω∗(U).

Exercise 9. a. If d is the exterior derivative on h(U), define a degree-one, R-linear map
dU on Ω∗(U) by conjugating with h∗ : dU = h∗d(h∗)−1. Verify that dU satisfies
properties (a), (c), (d) of Section 2.3 and that it is characterized by these properties.

In particular, then, for U given, dU is independent of the choice of smooth chart (U, h).

b. Verify the analogue of Lemma 2.3.2 for dU .

c. Verify the analogue of Corollary 2.3.3 for any inclusion i : U → V , where (U, h) and
(V, g) are smooth charts for some h and g. That is, conclude that, in this situation,
dU i∗ = i∗dV .

Now suppose that ω ∈ Ωk(M), and let (V, g) be any other smooth chart such that U∩V 6= ∅.
Exercise 10. Verify that

dU(ω|U)|U ∩ V = dV (ω|V )|U ∩ V = dU∩V (ω|U ∩ V ).

We can now define dM as follows. Given ω ∈ Ωk(M) and p ∈ M , choose any smooth chart
(U, h) with p ∈ U . Define dMω(p) = dU(ω|U)(p).

Exercise 11. Verify:

a. dM is a well-defined, degree-one R-linear map Ω∗(M) → Ω∗(M).

b. dM satisfies properties (a), (c), (d) of Section 2.3 and is characterized by these prop-
erties.

Because of the canonical nature of dM , we usually omit the subscript.

Finally, we verify just as before that induced homomorphisms of de Rham algebras com-
mute with exterior derivatives.

Exercise 12. Let U be an open subset of M . An indexed collection ξi ∈ C∞(U), i =
1, . . . , k is called a set of local coordinates for M on U if the map h : U → Rk given by
p 7→ (ξ1(p), . . . , ξk(p)) defines a diffeomorphism onto an open subset of Rk, i.e., (U, h) is a
smooth chart on M . Suppose this is the case.

a. Show that dξi = h∗dxi, i = 1, . . . , k. Thus, Ω∗(U) is an exterior algebra over C∞(U)
with generators dξ1, . . . , dξk. Using multi-index notation as before, it follows that
Ωm(U) is a free C∞(U) module on the basis {dξI | |I| = m}. In general, this is not
true of Ωm(M).
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b. †2 Show that Ωm(M) is a projective C∞(M)-module.

An important, virtually verbatim extension of the foregoing discussion on smooth mani-
folds is obtained when the model Euclidean spaces Rk are replaced by the half-spaces Rk

+,
which we take to consist of all real k-tuples u = (u1, . . . , uk) for which u1 ≥ 0. All of the
foregoing definitions, constructions, and properties still hold. The extension has, however,
an important additional feature: namely, the notion of the boundary of a manifold.

Let M be a manifold modeled on the half-space Rk
+. A point p ∈ M is called a boundary

point if it is contained in a smooth chart (U, h) such that h(p) = 0. The set of boundary
points is called the boundary of M and will be denoted by bdM . All other points in M are
called interior points of M , and the set of these, intM is called the interior of M . We shall
sometimes call the manifold M a manifold with boundary ; to distinguish the earlier case, we
may call those manifolds without boundary or with empty boundary.

Exercise 13. a. Let M be a manifold with boundary and p ∈ M . Show that p ∈ bdM
if and only if, for every smooth chart (U, h) containing p, x1(h(p)) = 0. (Recall that
x1 is the first coordinate projection Rk → R.) Conclude that bdM is a closed subset
of M . We topologize it as a subset of M .

b. LetA be the smoothness structure of the manifold with boundary M . For each (U, h) ∈
A, define (Û , ĥ) as follows: Û = U ∩ bdM ; if h(p) = (ξ1(p), . . . , ξk(p)), for all p ∈ U ,
let ĥ(p) = (ξ2(p), . . . , ξk(p)). Show that {(Û , ĥ)| (U, h) ∈ A} is a smooth atlas for
bdM . This determines a smoothing for bdM which we call the smoothing induced by
M . Henceforth, we always suppose that bdM is endowed with this induced smoothing.

c. Let h : M → N be a diffeomorphism of two manifolds with boundary. Prove that
h(bdM) = bdN and that h|bdM induces a diffeomorphism bdM → bdN .

d. Suppose that M is as above and that bdM = ∅. Show that for every smooth chart
(U, h), h(U) ⊆ {u ∈ Rk| u1 > 0}. Conclude that in this case the smoothing of M
as a manifold with boundary determines a unique smoothing for M as a manifold
without boundary. Thus, in this sense, manifolds without boundary are special cases
of manifolds with boundary, and we always assume this in the following.

Exercise 14. a. Show that every connected manifold is path-connected.

b. † Suppose that M is a connected 1-manifold. Show that if bdM = ∅, then M is diffeo-
morphic to the unit circle S1 or to R. Show that if bdM 6= ∅, then M is diffeomorphic
to a closed interval or to a half-closed interval. (If you have problems with this exercise

2An exercise with the † symbol is considered particularly challenging and will, in general, require some
experience with material not in these notes.
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and wish to read a nice proof, look at the Appendix in“Topology from the Differen-
tiable Viewpoint” by John Milnor, The University Press of Virginia, 1965. This is a
book well worth owning.)

2.6 De Rham cohomology

Let M be a smooth manifold. The cohomology H∗(Ω∗(M), d) = ker(d)/im(d) is known as
the de Rham cohomology of M and is usually denoted H∗

DR(M), or simply H∗(M) when
there is no other kind of cohomology being considered and there is no danger of confusion.
The elements of ker(d), usually known as cocycles when dealing with cohomology, are called
closed forms in this context. Elements of im(d), usually called coboundaries are here called
exact forms.

A smooth map h : M → N induces a map of de Rham cochain algebras, as already
noted, and hence a (degree-zero) map of de Rham cohomology H∗

DR(N) → H∗
DR(M), which

we again denote by the somewhat shopworn symbol h∗. The rule M, h 7→ Ω∗(M), h∗ is a
contravariant functor, just as we noted earlier for the induced maps on de Rham complexes,
from which it follows that diffeomorphic manifolds have isomorphic de Rham cohomology.

It follows immediately from the definitions that, for a k-manifold M , H i(M) = 0, unless
0 ≤ i ≤ k.

There is a useful and important variation on the foregoing, in which we restrict attention
to forms with compact support. Recall that the support of a form ω on M consists of all
points p ∈ M for which ωq 6= 0, for some sequence of q converging to p. This is clearly always
a closed set. Since the differential decreases support, dω has compact support whenever ω
does. Thus, if Ω∗(M)c is the (graded) set of all forms of compact support, which is clearly
a C∞(M) submodule of Ω∗(M), then it is d-invariant, i.e., the restriction of d to Ω∗(M)c

(again called d) gives an R-cochain complex whose cohomology is denoted H∗
DR,c(M) or

simply H∗
c (M).

Exercise 15. Prove that Ω∗(M)c is closed under wedge product and that im(d)∩Ω∗(M)c is
an ideal in the algebra ker(d)∩Ω∗(M)c. Thus, H∗

DR,c(M) inherits the structure of a graded
R-algebra.

Note, however, that if h : M → N is an arbitrary smooth map and ω is a smooth form on
N with compact support, it does not follow that h∗ω has compact support. For example,
consider the trivial map h : R1 → R0 and the 0-form ω = 1 on R0, i.e., the constant function
1. Then support(ω) = R0, which is compact, whereas support(h∗ω) = R1, which is not. So,
forms with compact support do not yield the same kind of cohomology functor as de Rham
cohomology. Still, the two interact in important ways. We come back to this later.
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Exercise 16. a. Suppose that M is any manifold. Show that H0(M) is isomorphic to
the vector space of all locally-constant, real-valued functions on M , whereas H0

c (M)
is isomorphic to the vector subspace spanned by the characteristic functions of the
components of M .

b. Show that H i(R) = R, 0 when i = 0, 1, respectively, and H i
c(R) = 0,R, when i = 0, 1,

respectively.


