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S Y M M E T R Y  O F  A F F I N E  S Y S T E M S *  

A. N. Kanatnikov and A. P. Krishchenko 

I N T R O D U C T I O N  

We consider a nonlinear dynamical control system (DCS) 

i: = f ( t ,  x ,  u ) ,  (1) 

where x E 11 n is the state of  the system, u E R m is the control, f.'R t x I~ n x 1~ m ~ R n is a smooth (C ~176 function, .~ = 

dx/dt. A solution of  this system is any pair of C ~ functions (x(t), u(t)) defined on some interval T C R l that reduce (I) to an 

identity on T. System (1) can be interpreted as an "underdetermined" system of ordinary differential equations with m missing 

equations of  the form ti = g(t, x,  u). This interpretation [1] enables us to study system (I) in the framework of  geometrical 

theory [2-3] and group analysis [4-6] of  differential equations. The DCS (1) is treated as a submanifold in the manifold of l- 
jets J l ( r )  of  the smooth N-dimensional vector fibering 7r:E --, R l, N = n + m of co-dimension less than N. A Cartan 

distribution is defined on the manifold J r ( r ) ,  and the transformations of  Jl(a-) preserving this distribution are called Lie 

transformations [2]. Lie transformations preserving the DCS (1) (i.e., taking the specified submanifold in fl(Tr) into itself) are 

called symmetries of  the DCS. In the terminology of [2], these are classical external symmetries. Their particular cases are 

the symmetries previously studied in [7-11]. In the present article, we mainly focus on infinitesimal symmetries of affine 

dynamical control systems (ADCS). These symmetries play an important role in the problem of decomposition of  ADCS [1]. 

I N F I N I T E S I M A L  S Y M M E T R I E S  

On the manifold Jl(rr) we define the local coordinates (t, x, u, p,  q) = (t, x t . . . . .  xn, ul . . . . .  urn, Pt . . . . .  Pn, ql . . . . .  

qm), where p corresponds to .~(t) and q corresponds to ti(t). Then the DCS (1) is written as the system of equations p = f i t ,  

x, u) and thus represents a submanifold 

= { ( t , x , p , q )  E J l ( r r )  : / ( t , x , u , p , q )  = 0 }  

in J l ( r )  of co-dimension n, where f ( t ,  x,  u, p, q) = f ( t ,  x, u) - p.  Each section (x(t), u(t)), t E T C R t has its continuation 

- a curve/~-u in fl(r of  the form t ~ (t. x(t), u(t), ~(t), u(t)). The section (x(t), u(t)) is a solution of the DCS (1) if and only 

if Ixu C rb. 
The Cartan distribution on Jt(Tr) in these local coordinates is defined by a system of 1-forms 

w i = d x i - p i d t ,  i =  1 , 2 , . . . , n ,  

r j  = d u j - q j d t ,  j = l , 2 , . . . , r n .  

The curves l,u obtained by continuation of the sections (x(t), u(t)) are the integral curves of the Cartan distribution. We know 

that a locally maximal one-dimensional integral submanifold of  the Cartan distribution (with the exception of  the singular 

points of the projection 7r 1 :fl(a-) --, R 1) locally has the form of continued curves lxu. These submanifolds are called R- 

manifolds [2]. R-manifolds contained in ,I, will be called generalized solutions of the DCS (1). The Lie transformations of the 

space fl(a-) preserve the Cartan distribution, and thus take R-manifolds into R-manifolds. If a Lie transformation takes the 

manifold 4t, into itself (and thus takes each generalized solution into a generalized solution), then it is called a (classical 
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external) symmetry of  the DCS (1). Since N = n + m > 1, every Lie transformation is a continuation of  some transforma- 

tion of the manifold ~ ( r )  = E [2-5]. 

The preceding discussion is extended to one-parameter groups of  Lie transformations corresponding to their infinitesi- 

mal generators. These are vector fields, and they are called Lie fields. In our case, since the Lie transformations are lifted 

from the manifold E, the Lie vector fields are also a lifting of  vector fields defined on E. Specifically, if the vector field on 

E is defined in the coordinates (t, x, u) by the formula 

0 
X = + + 

i=1 j=l Out, (2) 

then its lifting X (l) on J l0r)  is the field [2-5] 

X (1) : X + ( i ( t , x ,u ,p ,q ) -~  + ~bj(t,z,u,p, , (3) 
i=1 j--..= 1 

where ~" = (g'l . . . . .  ~'n) T and ~b = (r . . . . .  ~km) T are obtained from the formulas 

( = D r  1 -  pD~, ~b = Dqo - qD~, (4) 

alld r] = ( r / 1 , . . . , r ] n )  T, qO = ( ~ l , . . . , ~ m )  "r, P-~- ( P l , . - . , P n )  T,  q : ( q l , . . - , q m )  T, 

0 @ 0 m 0 
D =  -ff~ + ~ pi-~zi + E C~ Ouj 

i=1 j = l  

is the total derivative operator with respect to the independent variable t. 

I f  the Lie field (3) is tangent to the submanifold ~, then the corresponding local one-parameter Lie transformation 

group takes I, into itself. In this case, the field (3) is called an infinitesimal (classical external) symmetry of  the DCS (1). A 

necessary and sufficient condition of  tangency of  the field (3) to ,I, is 

X ( 1 ) ( f i ) [ ,  :0, i =  1 , 2 , . . . , n ,  (5) 

where = f .  
In what follows DCS symmetries are infinitesimal classical external symmetries of  the form (3). Since the vector field 

(2) uniquely defines the lifting (3) and conversely, we do not distinguish between the names of  these fields, and (2) is also 

called a symmetry if (3) is a symmetry. 

DEFINING E Q U A T I O N S  FOR DCS SYMMETRIES 

Condition (5) combined with (2)-(4) is transformed in coordinate form to 

~ t  Of Of Or] -~zOr] f _ 07? 
ot Nq 

+ f(  O~ ~z O~ q) 
"Or + f q- -~u = 0  (6) 

This equality should hold for all (t, x, u, q). System (6) is linear in q, and it therefore decomposes into two systems 

Of Of Of 071 Or 1 O~ O~ 
~ -~  + -~z r? + -~u c~ Ot Ox f + f -~  + f -~z f = O, (7) 

Ou f = O. (8) 

Equations (7)-(8) are called the defining equations for the symmetries of  the DCS (1). They can be written in a more 

compact form by utilizing the concepts of vector field and commutator of  vector fields. 
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The local coordinates (t, x, u, p. q) on the manifold Ji(a-) are induced by the local coordinates (t, x, u) of the 

manifold ./~(Tr). The DCS (1) can be interpreted as a vector field F on 39(r) which in these local coordinates has the form 

F = -~c3 + ~ f i  axi~ , ( f l ,  ..., f n )  T = f .  (9) 

i = l  

We introduce the vector field 

and rewrite the symmetry X in the form 

Ot + rli Ox i '  
i = l  

(10) 

m 0 

X = H + _ _  E ~ J a u j .  
j = l  

For arbitrary vector fields V and W def'med on some manifold, we denote by [V, W] their Lie bracket (or commuta- 

tor). I f  the fields V and W are written in the local coordinates (zl . . . . .  Zs) in the form 

V = vi ~,nz i , W = wi  ~,nz i , 
i=1  i=1  

then their commutator in these coordinates has the form 

[v, w ]  = 
i=1  /=1  OZi 

avt '~  o 
- - w Z - ~ z i )  O z i  (11) 

Let 

where a/auj are coordinate vector fields on r Then system (7) can be written in the form [I] 
m 

[F, H l - F ( ~ ) F  = E q~jFj. (13) 
j = l  

Condition (13) implies that the field [F, HI - F(~)F is a linear combination of the fields F 1 . . . . .  F m with the coeffi- 

cients 'Pl . . . . .  ~m" This field is therefore contained in the distribution 3 u on J~ generated by the vector fields F 1 . . . . .  F m, 

i . e . ,  

[F, H] - F ( { ) F  E .~, .  (14) 

Using the vector fields introduced above, we rewrite condition (8) in the form 

(15) 

Conditions (13), (15) are merely an alternative form of the defining equations (7)-(8). Condition (14) is equivalent to 

(7) in the following sense: if the vector field H satisfies (14), then it defines at least one vector field X in 30(70 that is 

projected into the field H. Thus, the problem of  describing the symmetries of  the DCS (1) reduces to the determination of  

vector fields H of  the form (1) that satisfy relationships (14), (15). 

In general,  to determine the fields H from conditions (14), (15) we have to solve some generalization of  the problem 

of  integrating a system of  first-order partial differential equations with a common principal part [12]. In some cases, the DCS 

symmetries can be described explicitly [1]. 
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DEFINING EQUATIONS FOR AFFINE SYSTEMS 

An affine DCS (ADCS) is a DCS (1) linear in control. In this case, it can be written as 

= a(t,x) + ~ b j ( t , x )w ,  
j = l  

where a, b I . . . .  , bm:Rl • R n --, R n are smooth functions. To system (16) correspond unique vector fields 

(16) 

t t  

c,~O Oz,'O Bj = Z bij 0 A = --~ + ai Ox,' 
i=1 i=1 

j = l,...,m, 

where ( a l , .  �9 �9 a .  )T = a(t, z ) ,  (b l j , . . . ,  b,j)T = bj (t, x). The vector field F associated to the DCS (1) of  general form 

by formula (9) has the tbrm 
m 

F = A + ~ u j B j .  
(17) 

j = l  

The vector fields Fj are identical with Bj, j = 1, 2 . . . . .  m, and the distribution 9 u is generated by the fields B l . . . . .  B m (to 

emphasize this fact, we introduce an alternative notation 13 for this distribution). 

For the ADCS (16) condition (15) is written in the form 

(18) 

Consider condition (13). It implies that 

[F, H] - F(~)F = ~ r 
j = l  

Substituting representation (17) in (19), we obtain 

(19) 

m m 

[ A , H ] + ~ - ~ j u j B j , H ] - A ( ~ ) A -  u j B j ( ~ ) A - Z u j A ( ~ ) B j -  U j u k B j ( ~ ) B k = Z ~ j B j E 1 3 ,  
j-----1 1----1 j = l  j ,k=l j = l  

which gives 

__Y_. m 

[A, H]  - A({)A + ~ uj{[Bj ,  HI - B j ( { )A}  e 13. (20) 
j----1 

The vector fields A and Bj, j = 1, 2 . . . . .  m, are independent of  the controls. If ~ is also independent of  the controls, 

i.e., dug = O, then it follows from (15) that the vector field H is independent of the controls. In this case, condition (20) is 

linear in uj and thus decomposes into the following system: 

[A, H]  - A({ ' )A E 13, (21) 

[Bj,H] - B j ({ )A  E 13, j = 1 , . . . , m .  (22) 

In fact, the supplementary condition of control "independence of ~ is not essential, and the system of relationships 

(18), (20) is equivalent to the system (18), (21), (22). Relationship (20) obviously follows from (21), (22). We will show that 

if the field H satisfies conditions (18), (20), then it also satisfies conditions (21), (22). Note that [O/Ouj,/3] C B, j = 1 , . . . ,  rn,  
because the distribution /3 is generated by the control-independent fields Bj. Therefore from condition (19) we have 
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Using the identities 

E13. 

(23) 

[A, aB] = A(c~)B + a[A, B] 
[A,[B, CI] = [B,[A,C]] + [[A,B],C],  

we transform (23) to the form 

Since [3/Ouj, F] = Bj, j = 1 . . . . .  m, we use (15), (17) to obtain successively 

o r  

i.e., 

We finally obtain 

HI - Bj( )A 13, 

because F - A E 13. 
This proves relationship (22). Relationship (21) follows directly from (20) and (22). 

Condition (8) on the symmetries of  the DCS (1), and therefore condition (18) on the symmetries of the ADCS (16), 
imply for dim ~ = m > 1 that the vector field H is control-independent [I].  Using this fact, we can state our results in the 

form of the following assertions. 
T H E O R E M  1. The vector field H defines a symmetry of the form (2) for the ADCS (16) with m > 1 controls if 

and only if this field is control-independent and satisfies conditions (21), (22). 
T H E O R E M  2. The vector field H defines a symmetry of the form (2) for the ADCS 

= a(t, x) + b(t, x)u,  x E ~ n ,  u E R 1 (24) 

with scalar control (m = 1) if and only if this field satisfies the conditions 

[A, H]  - A(~)A  E 13, 

[ B , ' H ]  - B(~)A  E 13, 

[ 0 ~ ,  H I  - ~ u ( A  + uB)  = 0, 

(25) 

(26) 

(27) 

where 
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A = -~ + a,( t ,x)-~x i ( a , ( t , x ) , . . .  , a , ( t , x ) )  T = a( t , x ) ,  
i = 1  

n 

B = , ,  T = 

i = l  

(28) 

TIME-DEPENDENT SYMMETRIES 

If  the DCS (1) has a symmetry for which the time coordinate is control-dependent, i.e., duG(t o, x o, u o) ~ 0 at some 

point Mo(t 0, x o, Uo), then in the neighborhood of  this point the system actually has a single control: there exists a function 

h(t, x, v) such thatf(t, x, u) -~ h(t, x, v), where v = ~(t, x, u). This follows from the fact that 5~ u < 1 [1]. 

All the questions considered here are of  local character. We naturally assume that the dimensions of  the relevant 

distributions are locally constant, because the set of  points where this condition breaks down is nowhere dense. In what 

follows, we indeed adopt this assumption. 

The condition d i m ~  u < 1 (with the previous assumption) implies that either 5~ u = 0, or dimS~ u -= I. In the first 

case, this is a system without control, i.e., a system of ordinary differential equations. In the second case, the system actually 

has a single independent control. 

These conclusions remain valid for the aff'me system (16). If  the ADCS has a symmetry with a control-dependent 

time coordinate, then dim/3 < 1. If  we ignore the case without any control, then the ADCS can be written in the form (24) 

after a change of  control. This is the case that we consider here. 

T H E O R E M  3. The affine system (24) has a symmetry of  the form (2) that satisfies the condition duG(t o, x o, Uo) 
0 if and only if the vector fields A and B (28) corresponding to the system satisfy in some neighborhood of  the point Mo(t o, 
x 0, u o) the condition 

[A, B] E / 3 ,  (29) 

where 13 = span{B}. 

Proof.  Necessity. Commuting relationship (26) (which is true for any symmetry) with the vector field O/Ou, we 

obtain 

After identical transformations this can be written as 

E B .  

Using (27) and noting that [B, ~uuB] E /3, we obtain 

[ B , ~ u A  ] - ~ u  ( B ( ( ) )  A E / 3 ,  
(30) 

whence 

,B + 

But [O/Ou, B] = 0, and thus 
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~ ~ z 
Ou 

This relationship is true for any symmetry of the ADCS (24). Therefore, if there are symmetries with ~u ;~ 0, then 

condition (29) necessarily holds. 
Sufficiency. If  condition (29) holds, then we can choose functions ~ and h so that the vector field 

H = ~ A  + h B  (31) 

satisfies the conditions of  Theorem 2. Indeed, 

[A, HI - A(~)A .= [A, ~A + hB] - A(~)A = A(~)A + A(h )B  + h[A, B] - A(~)A = 

= A ( h ) B  + h[A, B] ff t3, 

[B, H] - B(~)A  = [B, ~A + hB] - B(~)A = B(~)A + ~[B, A] + B ( h ) B  - B(~)A  = 

= B ( h ) B  + ~[B, A] e t3, 

because conditions (25), (26) hold for any functions ~ and h. It remains to check condition (27). Substituting (31) in (27), we 

obtain 

-~u ,~  A + h B - -~u ( A + u B  ) = A + -ff~ u A - -~uUB = -~u - U ~ u  B = 0 .  

Thus, condition (27) is satisfied if the functions ~ and h satisfy the relationship h u' - U~u' = O. This relationship holds, for 

instance, for the functions ~ -- 2u, h ~ u 2. 

Remark .  It is shown in [1] that if the ADCS (24) has a symmetry (2) with a~(~)(M0) ~ 0, and also B(Mo) ~ O, then 

in some neighborhood of  the point Mo(t o, x o, u o) we can choose a coordinate system (t, y, u), y = (Yl . . . . .  Yn) such that in 

the new system the ADCS has the form 

~li = oq( t ,  y a , . . . , y n - 1 ) ,  i = 1 , . . . , n -  1, 

~),, = o,,(t, v) + Z(t, y)~,. 

Now this follows also from Theorem 2, because condition (29) implies A, B-invariance of  the distribution /3 [13]. 

ADCS W I T H  S C A L A R  C O N T R O L  AND RANK C O N T R O L L A B I L I T Y  C O N D I T I O N  

For the ADCS (24) consider the vector fields 

ad ~ B = B,  ad~ B = [A,B], adA +1 t3 = [A, ad~ B], r > 0. 

If at some point (t, x) the distribution generated by the vector fields 

ad  ~ B , . . . ,  a d ~ -  ~ B ,  (32) 

is n-dimensional (i.e., of  the same dimension as the state space), we say that the ADCS (24) satisfies the rank condition of 

controllability [13]. This condition holds in some neighborhood of the point (t, x). 

T H E O R E M  4. Assume that the ADCS (24) satisfies the rank condition of controllability at the point (t, x). The 

vector field H (I1) defines a symmetry X of  the form. (2) in the neighborhood of  the point (t, x) if and only if this field is 

representable in the form 

1L - -  1 

H : ~ A  + Z ~,ad~ B, (33) 
i = 0  
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and the functions 1} = /~(t, x). h i = hi(t, r). i = 0 . . . . .  n - 1 satisfy the equations 

A(hj) = - h i - 1  - -  h , - la j ,  j = 1 , 2 , . . .  , n  - 1, 

n--1 

B ( h j ) + E f l j k h k = O ,  j = 2 , 3 , . . . , n -  l ,  
k = l  

n - -1  

= B ( h l ) + E f l l k h k ,  
k = l  

(34) 

(35) 

(36) 

w h e r e  a i = r x)  and/3jk = ~jlc(t, x) are the coefficients of the expansions 
n - - I  

ad Z B = E a i  ad~ B,  
i = 0  

n - 1  

[B, a 4  Bl = adl B, 
j = 0  

(37) 

k = 1 , . . . , n -  1. (38) 

Proof. Since the rank controllability condition holds, every vector field H of the form (11) defining an ADCS 
symmetry can be expanded in the sum (33), where the coefficients ( and h i in general are control-dependent. Note that the t 
coordinate of every field adAiB is 0. Therefore, in the representation (33) the function/~ is the time coordinate of the field H. 
Apply Theorem 2 to the expansion (33). Using (33) for H, we obtain 

n- -1  

[A,H] - A(~)A = A(()A + ~ (A(hi)ad~A B + hiad~ +1 B) - A(()A = 
i = 0  

n - - 1  n - - 1  n - -1  

: E A(hi)  ad~ B + E hi_, ad~ B + hn_ 1 E O~i adA B --~- 
i = 0  j = l  i = 0  

n - - I  

= E ( A ( h i ) +  hi-1 + h , - l a i )  ad~ B + (A(ho) + h,,-x~o)B. 
i = l  

Thus, relationship (34) is necessary and sufficient for condition (25) to be true. 
Similarly, 

[B, H] - B(~)A = B(~)A + ~[B, A] 

= - ~  adA B q- 

= --~ adA B + 

n- -1  

+ E (B(h i )  ad~ B + hi[B, ad~ B]) - B(()A = 
i = 0  

n - -1  n - -1  n - -1  

E B ( h i ) a d ~  B + E hk E flik ad~ B = 
i = 0  k = l  i = 0  .1( ) 
E B ( h i ) + E h k f l i k  a d ~ B .  
i = 0  k = l  

Therefore condition (26) holds if and only if 

which is equivalent to (36), and 

n - - 1  

= B(hl)  + ~ hkfllk, 
k : l  

n - -1  

B(hi) + E hkfl, k = O, 
k = l  

i = 2 , . . . , n -  1, 
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which in turn is identical with (35). 

Finally, the rank controllability condition implies that rank(B, adAB) = 2. But then ~u = 0 by Theorem 3. Thus, 

condition (27) for the field H implies that [O/3u, H] = 0, and since the field H is in the form (33), we obtain 

n- -1  

Z h:u 8 : 0. 
i = 0  

Thus, hiu' = 0, i = 0, 1 . . . . .  n - 1. Q.E.D.  

The system of  equations (34)-(35) can be regarded as a system of  equations for hy, j = 2 . . . . .  n - -  l ,  with the same 

principal part [12], which parametrically depends on the function hi(t, x). Consistency of  this system is a condition on the 

function h | .  Given all these functions hy, we can find all the remaining coefficients of  expansion (33) from (34), (36). 

ADCS W I T H  S C A L A R  C O N T R O L  O F  S M A L L  D I M E N S I O N  

Two-Dimensional Systems 

If a system with a two-dimensional state space and scalar control (m = 1, n = 2) satisfies the rank controllability 

condition, then Theorem 4 takes a simpler form. In this case, conditions (34)-(35) are trivial and everything is determined by 

an arbitrary function hi(t ,  x), because h o = - A ( h l )  - hlt~ 1, ~ = B(h 1) + f l l lh l -  

Assume that a two-dimensional ADCS does not satisfy the rank controllability condition. If  the relevant distributions 

are of  locally constant dimensions, then either rank{B, ad a B} -= 0 or rank{B, ad A B} - 1. In the first case, the system is 

control-independent. In the second case we may assume, again locally, that B ~ 0. Then condition (29) is satisfied and the 

ADCS has symmetries that satisfy the condition ~u(M) ;~ 0. Therefore the choice of  a new system of  coordinates locally 

reduces the ADCS to the form 

yx = a l ( t ,  yl ), 

~]2 = ~2(t, yl ,Y2) -k- fl(t, y l ,Y2)u.  

Three-Dimens iona l  Systems 
If  an ADCS with a three-dimensional state space and scalar control (m = 1, n = 3) satisfies the rank controllability 

condition, then conditions (34)-(35) on the vector field H take the form 

whence 

where 

A ( h l )  + ho + h2Ctl = 0, 

A ( h 2 )  + h i  + h2~2  = 0, 

B ( h 2 )  + f121hl + f122h2 = 0, 

hi  = - A ( h 2 )  - h2a~, (39) 

B(h2)  - & ,  + + & 2 h 2  = O. (40) 

Relationship (40) is an equation for the function h2, which always has a solution. We thus conclude that every 

symmetry is defined by the function hx(t, x) that satisfies (40). Given h 2, we obtain h L from (39) and the functions ~ and h 0 

from the relationships 

ho = - A ( h l )  - h~al ,  (4t)  

= B ( h l )  + f l l l h l  + f112h2. 

Consider an example: 
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21 ~ X2,  

~:2 X3, 

X 3 I t .  

This ADCS satisfies the rank controllability condition. Here a i = O, 13ij = O. Relationship (40) thus reduces to the equality 

Oh2 
--0. 

Ox3 

This means that the function h 2 is independent of x 3, h 2 = h2(t, x 1, x2). The other functions h l, h2, ~ are calculated from 
Eqs. (39), (41). 

If a three-dimensional ADCS does not satisfy the rank controllability condition, then by local constancy of dimen- 
sions we may have three cases: 

r ank{B,  a d a  B,  ad~ B} = r, (42) 

with r = 0, 1, 2. The case r = 0 arises when the ADCS is control-independent. Let us consider the case r = 2. 
Assume that 

r ank{B,  adA B,  [B, adA B]} =-- 3. (43) 

Then the vector field H is representable in the form 

H = ~A + hoB + hi adA B + h2[B, adA B], 

and the vector field adA ~ B is decomposed in the fields B and ad A B: 

ad~ B = soB  + al adm B. (44) 

Also consider the decomposition 

[B, [B, adA B]] = / 3 o B  +/31 a d a  B +/32[B, adA B]. (45) 

From these representations we have 

Since 

[A, H] - A(~)A = A(~)A + A(ho)B + ho adA B -t-A(h, )adA Bq- 

+ hi ad 2 B + A(h2)[B, adA B] + h2[A, [B, adA B]] - A(~)A. 

[A,[B, adA BI] = --[adA B,  adA B] + [B, ad 2 B] = 

= B(C~o)B q- B(Ctl) adA B -t- O~l[B, adA B] q- B(o~2)[B, ad A B ] +  

+ a2(/3oB +/31 ariA B +/32[B, adA B]), 

using (44) we obtain 

[A,H] - A(~)A = (A(ho) + h,ao + h2B(ao) + az/3o)B+ 

+ (ho + A(h~) + h~aa + h2B(al)  + h2a2/31) adA B +  

+ (h10c2 + A(h2) + h2al + h2B(a2) + h2a2/32)[B, adA B]. 

Thus, condition (25) is satisfied if and only if 

ho + A(hl)  + h la l  + h2B(al)  + h2a2/31 = O, 

hlc~2 + A(h2) + h2c~1 + h2B(&2) + h2os2/.32 = O. (46) 
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Now, 

[ B , H ]  - B ( ( ) A  = B ( ( ) A  - (adA  B + B ( h o ) B +  

+ B ( h l ) a d A B  + h~[B, adA B] + B(h2)[B, adA B ] +  

+ h2[B,[B,  adA BI] - B(( )A .  

Using (45) we obtain 

[B, H] - B(~)A  = (B(ho) + h2/3o)B+ 

+ (--~ + B ( h l )  + h2fll)  adA B + (h i  + B(h2) + h2fl2)[B, adA B]. 

Thus, condition (26) is satisfied if and only if 

- ~ + B(h l )  + h2/31 = 0, (47) 

hi  + B(h2)  + h2/32 = 0. 

Since rank{B, ad a B} = 2 (this follows, e.g., from (43)), we conclude by Theorem 3 that ~ is control-independent, 

and thus the vector field H is control-independent. This is equivalent to the conditions (hi) u' = 0, i = 0, 1, 2 and ~u' = 0. 

Finally, from conditions (46)-(47) we have 

hi = - B ( h 2 )  - h2/32, 

= B(h l  ) + h2/~l, 

]'to = - A ( h l )  - hi(21 - h2(B((21) + c~2f~l), 

i.e., the functions ~, h 0, h I are expressed in terms of the function h 2. The function h 2 by the same conditions is the solution 

of a first-order linear homogeneous partial differential equation 

A(h2) - (~2B(h2) + h 2 ( a ,  + B ( a 2 ) )  = 0. 

Assume that the three-dimensional ADCS satisfies (42) with r = 2 in some neighborhood of the point M, and 

r a n k { B , a d A  B , [ B ,  adA B]} = 2. 

Also assume that the vector fields B and ad a B generate a two-dimensional involutive distribution. Then in the given neigh- 

borhood of the point M the vector fields A, B, ada B generate a three-dimensional involutive distribution. This distribution in 
some neighborhood of M 0 has an integral h(t, x) for which dh(M0) # 0. At the same time the function h(t, x) is the first 

integral of the ADCS, because its derivative by the ADCS is a derivative in the direction of the vector field A + uB con- 

mined in the above-mentioned three-dimensional distribution. Therefore, the level surfaces h(L x) = h 0 = const are invariant 
manifolds of the ADCS, and the restrictions of the ADCS to these manifolds are h0-parametric nonstationary two-dimensional 
ADCS that satisfy the rank controllability conditions. 
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