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1 Preliminaries

1.1 Introduction

This book is based upon a set lecture notes for a course that I was teaching at the
University of Utah in Fall of 2002. Our main goal is to describe various tools of
quasi-isometric rigidity and to give (essentially self-contained) proofs of several fun-
damental theorems in this area: Gromov’s theorem on groups of polynomial growth
and Schwartz’s quasi-isometric rigidity theorem for nonuniform lattices in the real-
hyperbolic spaces. We conclude with a survey of the quasi-isometric rigidity theory.

The main idea of the geometric group theory is to treat finitely-generated groups
as geometric objects: with each finitely-generated group G we will associate a metric
space, the Cayley graph of G. One of the main issues of the geometric group theory
is to recover as much as possible algebraic information about G from the geometry
of the Cayley graph. A primary obsticle for this is the fact that the Cayley graph
depends not only on G but on a particular choice of a generating set of G. Cayley
graphs associated with different generating sets are not isometric but quasi-isometric.
One of the fundamental questions which we will try to address in this book is:

• If G,G′ are quasi-isometric groups, to which extent G and G′ share the same
algebraic properies?

The best one can hope here is to recover the group G up to weak commensurability
from its geometry. The equivalence relation of weak commensurability is generated
by the two operations:

1. Passing to a finite index subgroup (this leads to the commensurability equivalence
relation).

2. Taking finite kernel extensions G of a group Γ:

1 → F → G→ Γ → 1

is a short exact sequence so that F is finite.

Weak commensurability implies quasi-isometry but, in general, the converse is false.
One of the easiest examples is the following: Pick two matrices A,B ∈ SL(2,Z) so
that An 6= Bm for all n,m ∈ Z \ {0}. Define two actions of Z on Z2 so that the
generator 1 ∈ Z acts by the automorphisms given by A and B respectively. Then
the semidirect products G := Z2 oA Z, G′ := Z2 oB Z are quasi-isometric but not
weakly commensurable. Observe that both groups G,G′ are polycyclic. The following
is unknown even for the group G above:
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Problem 1. Suppose that Γ is a group quasi-isometric to a polycyclic group G. Is
Γ commensurable to a polycyclic group?

An example when quasi-isometry implies weak commensurability is given by the
following theorem due to R. Schwartz:

Theorem 2. Suppose that G is a nonuniform lattice acting on the hyperbolic space
Hn, n ≥ 3. Then for each group Γ quasi-isometric to G, the group Γ is weakly com-
mensurable with G.

We will present a proof of this theorem in chapter 7. Another example of quasi-
isometric rigidity is the following corollary from Gromov’s theorem on groups of
polynomial growth:

Corollary 3. Suppose that G is a group quasi-isometric to a nilpotent group. Then
G itself is virtually nilpotent, i.e. contains a nilpotent subgroup of finite index.

Gromov’s theorem and its corollary will be proven in chapter 5.

Proving these theorems are the main objectives of this course. Along the way we
will introduce several tools of the geometric group theory: coarse topology, ultralimits
and quasiconformal mappings.

1.2 Cayley graphs of finitely generated groups

Let Γ be a finitely generated group with the generating set S = {s1, ..., sn}, we shall
assume that the identity does not belong to S. Define the Cayley graph C = C(Γ, S)
as follows: The vertices of C are the elements of Γ. Two vertices g, h ∈ Γ are
connected by an edge if an only if there is a generator si ∈ S such that h = gsi. Then
C is a locally finite graph. Define the word metric d on C by assuming that each
edge has the unit length, this defines the length of finite PL-paths in C, finally the
distance between points p, q ∈ C is the infimum (same as minimum) of the lengths of
PL-paths in C connecting p to q. For g ∈ G the word length `(g) is just the distance
d(1, g) in C. It is clear that the left action of the group Γ on the metric space (C, d)
is isometric.

Below are two simple examples of Cayley graphs.

Example 4. Let Γ be free Abelian group on two generators s1, s2. Then S = {si, i =
1, 2}. The Cayley graph C = C(Γ, S) is the square grid in the Euclidean plane: The
vertices are points with integer coordinates, two vertices are connected by an edge if
and only if exactly only two of their coordinates are distinct and they differ by ±1.
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Figure 1: Free abelian group.

Example 5. Let Γ be the free group on two generators s1, s2. Take S = {si, i = 1, 2}.
The Cayley graph C = C(Γ, S) is the 4-valent tree (there are four edges incident to
each vertex).

See Figures 1, 2.

1.3 Quasi-isometries

Let X be a metric space. We will use the notation NR(A) to denote R-neighborhood
of a subset A ⊂ X, i.e. NR(A) = {x ∈ X : d(x,A) < R}. Recall that Hausdorff
distance between subsets A,B ⊂ X is defined as

dHaus(A,B) := inf{R : A ⊂ NR(B), B ⊂ NR(A)}.

Two subsets ofX are called Hausdorff-close if they are within finite Hausdorff distance
from each other.

Definition 6. Let X, Y be complete metric spaces. A map f : X → Y is called
(L,A)-coarse Lipschitz if

dY (f(x), f(x′)) ≤ LdX(x, x′) + A (7)
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Figure 2: Free group.

for all x, x′ ∈ X. A map f : X → Y is called a (L,A)-quasi-isometric embedding
if

L−1dX(x, x′) − A ≤ dY (f(x), f(x′)) ≤ LdX(x, x′) + A (8)

for all x, x′ ∈ X. Note that a quasi-isometric embedding does not have to be an
embedding in the usual sense, however distant points have distinct images.

An (L,A)-quasi-isometric embedding is called an (L,A)-quasi-isometry if it ad-
mits a quasi-inverse map f̄ : Y → X which is a (L,A)-quasi-isometric embedding
so that:

dX(f̄ f(x), x) ≤ A, dY (f f̄(y), y) ≤ A (9)

for all x ∈ X, y ∈ Y .

We will abbreviate quasi-isometry, quasi-isometric and quasi-isometrically to QI.

In the most cases the quasi-isometry constants L,A do not matter, so we shall
use the words quasi-isometries and quasi-isometric embeddings without specifying
constants. If X, Y are spaces such that there exists a quasi-isometry f : X → Y
then X and Y are called quasi-isometric. In applications X and Y will be nonempty,
however, by working with relations instead of maps one can modify this definition so
that the empty set is quasi-isometric to any bounded metric space.

Exercise 10. If f : X → Y is a quasi-isometry and g is within finite distance from
f (i.e. sup d(f(x), g(x)) <∞) then g is also a quasi-isometry.
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Exercise 11. A subset S of a metric space X is said to be r-dense in X if the
Hausdorff distance between S and X is at most r. Show that if f : X → Y is a
quasi-isometric embedding such that f(X) is r-dense in X for some r <∞ then f is
a quasi-isometry. Hint: Construct a quasi-inverse f̄ to the map f by mapping point
y ∈ Y to x ∈ X such that

dY (f(x), y) ≤ dY (f(X), y) + 1.

For instance, the cylinder X = Sn × R is quasi-isometric to Y = R; the quasi-
isometry is the projection to the second factor.

Exercise 12. Show that quasi-isometry is an equivalence relation between (nonempty)
metric spaces.

A separated net in a metric space X is a subset Z ⊂ X which is r-dense for some
r <∞ and such that there exists ε > 0 for which d(z, z ′) ≥ ε, ∀z 6= z′ ∈ Z.

Alternatively, one can describe quasi-isometric spaces as follows.

Lemma 13. Metric spaces X and Y are quasi-isometric iff there are separated nets
Z ⊂ X,W ⊂ Y , constants L and C, and L-Lipschitz maps

f : Z → Y, f̄ : W → X,

so that d(f̄ ◦ f, id) ≤ C, d(f ◦ f̄ , id) ≤ C.

Proof. Observe that if a map f : X → Y is coarse Lipschitz then its restriction to
each separated net in X is Lipschitz. Conversely, if f : Z → Y is a Lipschitz map
from a separated net in X then f admits a coarse Lipschitz extension to X.

In some cases it suffices to check a weaker version of (9) to show that f is a quasi-
isometry.

Let X, Y be topological spaces. Recall that a (continuous) map f : X → Y is
called proper if the inverse image f−1(K) of each compact in Y is a compact in X. A
metric space X is called proper if each closed and bounded subset of X is compact.
Equivalently, the distance function f : X → R+, f(x) = d(x, o) is a proper function.
(Here o ∈ X is a base-point.)

Definition 14. A map f : X → Y between proper metric spaces is called uni-
formly proper if f is coarse Lipschitz and there exists a distortion function ψ(R) such
that diam(f−1(B(y, R))) ≤ ψ(R) for each y ∈ Y,R ∈ R+. In other words, there
exists a proper function η : R+ → R+ such that whenever d(x, x′) ≥ r, we have
d(f(x), f(x′)) ≥ η(r).
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To see an example of a map which is proper but not uniformly proper consider the
biinfinite curve Γ embedded in R2 (Figure 3):

Γ

Figure 3:

Lemma 15. Suppose that Y is a geodesic metric space, f : X → Y is a uniformly
proper map whose image is r-dense in Y for some r <∞. Then f is a quasi-isometry.

Proof. Let’s construct a quasi-inverse to the map f . Given a point y ∈ Y pick a point
f̄(y) := x ∈ X such that d(f(x), y) ≤ r. Let’s check that f̄ is coarse Lipschitz. Since
Y is a geodesic metric space it suffices to verify that there is a constant A such that
for all y, y′ ∈ Y with d(y, y′) ≤ 1, one has:

d(f̄(y), f̄(y′)) ≤ A.

Pick t > 1 which is in the image of the distortion funcion η. Then take A ∈ η−1(t).

It is also clear that f, f̄ are quasi-inverse to each other.

Lemma 16. Let X be a proper geodesic metric space. Let G be a group acting
isometrically properly discontinuously cocompactly on X. Pick a point x0 ∈ X. Then
the group G is finitely generated; for some choice of finite generating set S of the
group G the map f : G → X, given by f(g) = g(x0), is a quasi-isometry. Here G is
given the word metric induced from C(G, S).

Proof. Our proof follows [24, Proposition 10.9]. Let B = BR(x0) be the closed ball
of radius R in X with the center at x0 such that BR−1(x0) projects onto X/G. Since
the action of G is properly discontinuous, there are only finitely many elements si ∈
G−{1} such that B ∩ siB 6= ∅. Let S be the subset of G which consists of the above
elements si (it is clear that s−1

i belongs to S iff si does). Let

r := inf{d(B, g(B)), g ∈ G− (S ∪ {1})}.
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Clearly r > 0. We claim that S is a generating set of G and that for each g ∈ G

`(g) ≤ d(x0, g(x0))/r + 1 (17)

where ` is the word length on G (with respect to the generating set S). Let g ∈ G,
connect x0 to g(x0) by the shortest geodesic γ. Let m be the smallest integer so that
d(x0, g(x0)) ≤ mr + R. Choose points x1, ..., xm+1 = g(x0) ∈ γ, so that x1 ∈ B,
d(xj, xj+1) < r, 1 ≤ j ≤ m. Then each xj belongs to gj(B) for some gj ∈ G. Let
1 ≤ j ≤ m, then g−1

j (xj) ∈ B and d(g−1
j (gj+1(B)), B) ≤ d(g−1

j (xj), g
−1
j (xj+1)) < r.

Thus the balls B, g−1
j (gj+1(B)) intersect, which means that gj+1 = gjsi(j) for some

si(j) ∈ S ∪ {1}. Therefore
g = si(1)si(2)....si(m).

We conclude that S is indeed a generating set for the group G. Moreover,

`(g) ≤ m ≤ (d(x0, g(x0)) − R)/r + 1 ≤ d(x0, g(x0))/r + 1.

The word metric on the Cayley graph C = C(G, S) of the group G is left-invariant,
thus for each h ∈ G we have:

d(h, hg) = d(1, g) ≤ d(x0, g(x0))/r + 1 = d(h(x0), hg(x0))/r + 1.

Hence for any g1, g2 ∈ G

d(g1, g2) ≤ d(f(g1), f(g2))/r + 1.

On the other hand, the triangle inequality implies that

d(x0, g(x0)) ≤ t`(g)

where d(x0, s(x0)) ≤ t ≤ 2R for all s ∈ S. Thus

d(f(g1), f(g2))/t ≤ d(g1, g2).

We conclude that the map f : G→ X is a quasi-isometric embedding. Since f(G) is
R-dense in X, it follows that f is a quasi-isometry.

Corollary 18. Let S1, S2 be finite generating sets for a finitely generated group G
and d1, d2 be the word metrics on G corresponding to S1, S2. Then the identity map
(G, d1) → (G, d2) is a quasi-isometry.
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Proof. The group G acts isometrically cocompactly on the proper metric space

(C(G, S2), d2).

Therefore the map id : G→ C(G, S2) is a quasi-isometry.

Lemma 19. Let X be a locally compact path-connected topological space, let G be
a group acting properly discontinuously cocompactly on X. Let d1, d2 be two proper
geodesic metrics on X (consistent with the topology of X) both invariant under the
action of G. Then the group G is finitely generated and the identity map id : (X, d1) →
(X, d2) is a quasi-isometry.

Proof. The group G is finitely generated by Lemma 16, choose a word metric d on
G corresponding to any finite generating set (according to the previous corollary it
does not matter which one). Pick a point x0 ∈ X, then the maps

fi : (G, d) → (X, di), fi(g) = g(x0)

are quasi-isometries, let f̄i denote their quasi-inverses. Then the map id : (X, d1) →
(X, d2) is within finite distance from the quasi-isometry f2 ◦ f̄1.

A (k, c)-quasigeodesic segment in a metric space X is a (k, c)-quasi-isometric em-
bedding f : [a, b] → X; similarly, a complete (k, c)-quasigeodesic is a (k, c)-quasi-
isometric embedding f : R → X. By abusing notation we will refer to the image of a
(k, c)-quasigeodesic as a quasigeodesic.

Corollary 20. Let d1, d2 be as in Lemma 19. Then any (complete) geodesic γ with
respect to the metric d1 is also a quasigeodesic with respect to the metric d2.

1.4 Gromov-hyperbolic spaces

Roughly speaking, Gromov-hyperbolic spaces are the ones which exhibit “tree-like
behavior”, at least if we restrict to finite subsets.

Let Z be a geodesic metric space. A geodesic triangle ∆ ⊂ Z is called R-thin if
every side of ∆ is contained in the R-neighborhood of the union of two other sides.
An R-fat triangle is a geodesic triangle which is not R-thin. A geodesic metric space
Z is called δ-hyperbolic in the sense of Rips (Rips was the first to introduce this
definition) if each geodesic triangle in Z is δ-thin. A finitely generated group is said
to be Gromov-hyperbolic if its Cayley graph is Gromov-hyperbolic.
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Notation 21. For a subset S in a metric space X we will use the notation NR(S)
for the metric R-neighborhood of S in X.

Below is an alternative definition of δ-hyperbolicty due to Gromov.

Let X be a metric space (which is no longer required to be geodesic). Pick a
base-point p ∈ X. For each x ∈ X set |x|p := d(x, p) and define the Gromov product

(x, y)p :=
1

2
(|x|p + |y|p − d(x, y)).

Note that the triangle inequality implies that (x, y)p ≥ 0 for all x, y, p; the Gromov
product measures how far the triangle inequality if from being an equality.

Exercise 22. Suppose that X is a metric tree. Then (x, y)p is the distance d(p, γ)
from p to the segment γ = xy.

In general we observe that for each point z ∈ γ = xy

(p, x)z + (p, y)z = |z|p − (x, y)p. (23)

In particular, d(p, γ) ≥ (x, y)p.

Suppose now that X is δ-hyperbolic in the sense of Rips. Then the Gromov product
is “comparable” with d(p, γ):

Lemma 24.
(x, y)p ≤ d(p, γ) ≤ (x, y)p + 2δ.

Proof. The inequality (x, y)p ≤ d(p, γ) was proven above; so we have to establish
the other inequality. Note that since the triangle ∆(pxy) is δ-thin, for each point
z ∈ γ = xy we have

min{(x, p)z, (y, p)z} ≤ min{d(z, px), d(z, py)} ≤ δ.

By continuity, there exists a point z ∈ γ such that (x, p)z, (y, p)z ≤ δ. By applying
the equality (23) we get:

|z|p − (x, y)p = (p, x)z + (p, y)z ≤ 2δ.

Since |z|p ≤ d(p, γ), we conclude that d(p, γ) ≤ (x, y)p + 2δ.

Now define a number δp ∈ [0,∞] as follows:

δp := inf
δ∈[0,∞]

{δ|∀x, y, z ∈ X, (x, y)p ≥ min((x, z)p, (y, z)p) − δ}.
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Exercise 25. Suppose that X is a geodesic metric space. Show that X is zero-
hyperbolic (in the sense of Rips or Gromov) iff X is a metric tree.

Exercise 26. If δp ≤ δ for some p then δq ≤ 2δ for all q ∈ X

X is said to be δ-hyperbolic in the sense of Gromov, if ∞ > δ ≥ δp for all p ∈ X.
The advantage of this definition is that it does not require X to be geodesic and this
notion is manifestly QI-invariant:

If X,X ′ are quasi-isometric and X is δ-hyperbolic in the sense of Gromov then X ′ is
δ′–hyperbolic in the sense of Gromov. In contrast, QI invariance of Rips-hyperbolicity
is not a priori obvious. We will prove QI invariance of Rips-hyperbolicity in the
corollary 70 as a corollary of Morse lemma.

Lemma 27 (See [28], section 6.3C.). If X a geodesic metric space which is δ-
hyperbolic in Gromov’s sense then X is 4δ-hyperbolic in the sense of Rips and vice-
versa.

In what follows, we will refer to δ-hyperbolic spaces in the sense of Rips as being
δ-hyperbolic.

Here are some examples of Gromov-hyperbolic spaces.

1. Let X = Hn be the hyperbolic n-space. Then X is δ-hyperbolic for appropriate
δ. The reason for this is that the “largest” triangle in X is an ideal triangle, i.e. a
triangle all whose three vertices are on the boundary sphere of Hn. All such triangles
are congruent to each other since Isom(Hn) acts transitively on triples of distinct
points in Sn−1. Thus it suffices to verify thinness of a single ideal triangle in H2,
the triangle with the ideal vertices 0, 2,∞. I claim that for each point x on the arc
between 0 and m the distance to the side γ is < 1. Indeed, since dilations with center
at zero are hyperbolic isometries, the maximal distance from x to γ is realized at the
point m = 1+ i. Computing the hyperbolic length of the horizontal segment between
m and i ∈ γ we conclude that it equals 1. Hence d(x, γ) ≤ d(m, γ) < 1. See Figure 4.

Remark 28. By making more careful computation with the hyperbolic distances one
can conclude that sinh(d(m, γ)) = 1.

2. Suppose that X is a complete Riemannian manifold of sectional curvature ≤ κ <
0. Then X is Gromov-hyperbolic. This follows from Rauch-Toponogov comparison
theorem. Namely, let Y be the hyperbolic plane with the curvature normalized to
be = κ < 0. Then Y is δ-hyperbolic. Let ∆ = ∆(xyz) be a geodesic triangle
in X. Construct the comparison triangle ∆′ := ∆(x′y′z′) ⊂ Y whose sides have
the same length as for the triangle ∆. Then the triangle ∆′ is δ-thin. Pick a pair
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Figure 4: Ideal triangle ∆(0, 2,∞) in the hyperbolic plane: d(x, γ) ≤ d(m, γ) < 1.

of points p ∈ xy, q ∈ yz and the corresponding points p′ ∈ x′y′, q′ ∈ y′z′ so that
d(x, p) = d(x′, p′), d(y, q) = d(y′, q′). Then Rauch-Toponogov comparison theorem
implies that d(p, q) ≤ d(p′, q′). It immediately follows that the triangle ∆ is δ-thin.

1.5 Ideal boundaries

Suppose that X is a proper geodesic metric space. Introduce an equivalence relation
on the set of geodesic rays in X by declaring ρ ∼ ρ′ iff they are asymptotic i.e. are
within finite distance from each other. Given a geodesic ray ρ we will denote by
ρ(∞) its equivalence class. Define the ideal boundary of X as the collection ∂∞X of
equivalence classes of geodesic rays in X. Our next goal is to topologize ∂∞X. Note
that the space of geodesic rays (parameterized by arc-length) in X has a natural
compact-open topology (we regard geodesic rays as maps from [0,∞) into X). Thus
we topologize ∂∞X by giving it the quotient topology τ .

We now restrict our attention to the case when X is δ-hyperbolic.

Then for each geodesic ray ρ and a point p ∈ X there exists a geodesic ray ρ′

with the initial point p such that ρ(∞) = ρ′(∞): Consider the sequence of geodesic
segments pρ(n) as n → ∞. Then the thin triangles property implies that these
segments are contained in a δ-neighborhood of ρ ∪ pρ(0). Properness of X implies
that this sequence subconverges to a geodesic ray ρ′ as required.

Lemma 29. (Asymptotic rays are uniformly close). Let ρ1, ρ2 be asymptotic geodesic

12



rays in X such that ρ1(0) = ρ2(0) = p. Then for each t,

d(ρ1(t), ρ2(t)) ≤ 2δ.

Proof. Suppose that the raus ρ1, ρ2 are within distance ≤ C from each other. Take
T � t. Then (since the rays are asymptotic) there is τ ∈ R+ such that

d(ρ1(T ), ρ2(τ)) ≤ C.

By δ-thinness of the triangle ∆(pρ1(T )ρ2(τ)), the point ρ1(t) is within distance ≤ δ
from a point either on pρ2(τ) or on ρ1(T )ρ2(τ). Since the length of ρ1(T )ρ2(τ) is ≤ C
and T � t, it follows that there exists t′ such that

d(ρ1(t), ρ2(t
′)) ≤ δ.

By the triangle inequality, |t− t′| ≤ δ. It follows that d(ρ1(t), ρ2(t)) ≤ 2δ.

Pick a base-point p ∈ X. Given a number k > 2δ define a topology τk on ∂∞X
with the basis of neighborhoods of a point ρ(∞) given by

Uk,n(ρ) := {ρ′ : d(ρ′(t), ρ(t)) < k, t ∈ [0, n]}, n ∈ R+

where the rays ρ′ satisfy ρ′(0) = p = ρ(0).

Lemma 30. Topologies τ and τk coincide.

Proof. 1. Suppose that ρj is a sequence of rays emanating from p such that ρj /∈
Uk,n(ρ) for some n. If limj ρj = ρ′ then ρ′ /∈ Uk,n and by the previous lemma,
ρ′(∞) 6= ρ(∞).

2. Conversely, if for each n, ρj ∈ Uk,n(ρ) (provided that j is large enough), then the
sequence ρj subconverges to a ray ρ′ which belongs to each Uk,n(ρ). Hence ρ′(∞) =
ρ(∞).

Example 31. Suppose that X = Hn is the hyperbolic n-space realized in the unit
ball model. Then the ideal boundary of X is Sn−1.

Lemma 32. Let X be a proper geodesic Gromov-hyperbolic space. Then for each pair
of distinct points ξ, η ∈ ∂∞X there exists a geodesic γ in X which is asymptotic to
both ξ and η.
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Proof. Consider geodesic rays ρ, ρ′ emanating from the same point p ∈ X and asymp-
totic to ξ, η respectively. Since ξ 6= η, for each R <∞ the set

K(R) := {x ∈ X : d(x, ρ) ≤ R, d(x, ρ′) ≤ R}
is compact. Consider the sequences xn := ρ(n), x′n := ρ′(n) on ρ, ρ′ respectively.
Since the triangles ∆pxnx

′
n are δ-thin, each segment γn := xnx′n contains a point

within distance ≤ δ from both pxn, px′n, i.e. γn∩K(δ) 6= ∅. Therefore the sequence of
geodesic segments γn subconverges to a complete geodesic γ inX. Since γ ⊂ Nδ(ρ∪ρ′)
it follows that γ is asymptotic to ξ and η.

Definition 33. We say that a sequence xn ∈ X converges to a point ξ = ρ(∞) ∈ ∂∞X
in the cone topology if there is a constant C such that xn ∈ NC(ρ) and the geodesic
segments x1xn converge to a geodesic ray asymptotic to ξ.

For instance, suppose that X = Hm in the upper half-space model, ξ = 0 ∈ Rm−1,
L is the vertical geodesic from the origin. Then a sequence xn ∈ X converges ξ in
the cone topology iff all the points xn belong to the Euclidean cone with the axis L
and the Euclidean distance from xn to 0 tends to zero. See Figure 5. This explains
the name cone topology.

m

m-1

n

R

0

L

x

H

Figure 5: Convergence in the cone topology.

Theorem 34. 1. Suppose that G is a hyperbolic group. Then ∂∞G consists of 0, 2
or continuum of points.

2. The group G acts by homeomorphisms on ∂∞G as a uniform convergence
group, i.e. the action of G on Trip(∂∞G) is properly discontinuous and cocompact,
where Trip(∂∞G) consists of triples of distinct points in ∂∞G.

14



2 Coarse topology

The goal of this section is to provide tools of algebraic topology for studying quasi-
isometries and other concepts of the geometric group theory. The class of bounded
geometry metric cell complexes provides a class of spaces for which application of
algebraic topology is possible.

A metric space X has bounded geometry if there is a function φ(r) such that each
ball B(x, r) ⊂ X contains at most φ(r) points. For instance, ifG is a finitely generated
group with word metric then G has bounded geometry.

A metric cell complex is a cell complex X together with a metric.

A metric cell complex X0 is said to have bounded geometry if:

(a) Each ball B(x, r) ⊂ X intersects at most φ(r, k) cells of dimension ≤ k.

(b) Diameter of each k-cell is at most ck, k = 1, 2, 3, .....

Example 35. Let M be a compact simplicial complex. Metrize each simplex to
be isometric to the standard simplex with unit edges in the Euclidean space. Note
that for each m-simplex σm and its face σk, the inclusion σk → σm is an isometric
embedding. This allows us to define a path-metric on M so that each simplex is
isometrically embedded in M . Lift this metric to a cover X of M gives X structure
of a metric cell complex of bounded geometry.

Recall that quasi-isometries are not necessarily continuous. We therefore have to
approximate quasi-isometries by continuous maps.

Lemma 36. Suppose that X, Y are bounded geometry metric cell complexes, Y is
uniformly contractible, and f : X → Y is a coarse (L,A)-Lipschitz map. Then there
exists a (continuous) cellular map g : X → Y such that d(f, g) ≤ Const, where Const
depends only on (L,A) and the geometric bounds on X and Y .

Proof. The proof of this lemma is a prototype of most of the proofs presented in this
section. We construct g by induction on skeleta of X. First, of all, for each vertex
x ∈ X(0) we let g(x) denote a point in Y (0) which is nearest to f(x). It is clear
that d(f(x), g(x)) ≤ const0, where const0 is an upper bound on the diameter of the
top-dimensional cells in Y . Note that if x, x′ belong to the boundary of a 1-cell in
X then d(g(x), g(x′)) ≤ LConst1 +A+ 2const0, where Const1 is an upper bound on
the diameter of 1-cells in X.

Inductively, assume that g was constructed on X (k). Let σ denote a k + 1-cell
in X. Then, inductively, diam(g(∂σ)) ≤ Ck and d(f, g|X (k)) ≤ C ′

k. Then, using
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uniform contractibility of Y , we extend g to σ so that diam(g(σ)) ≤ C ′
k+1. Then

d(f, g|X (k+1)) ≤ C ′
k+1 + LConstk + A. Since X is finite-dimensional the induction

terminates after finitely many steps.

2.1 Ends of spaces

In this section we review the (historically the first) coarse topological notion. Let
X be a locally compact connected topological space (e.g. a proper geodesic metric
space). Given a compact subset K ⊂ X we consider its complement Kc. Then the
system of sets π0(K

c) is an inverse system:

K ⊂ L⇒ π0(L
c) → π0(K

c).

Then the set of ends ε(X) is defined as the inverse limit

lim
K⊂X

π0(K
c).

The elements of ε(X) are called ends of X. Analogously, one can define “higher ho-
motopy groups” π∞

i (X, x•) at infinity of X by considering inverse systems of higher
homotopy groups: This requires a choice of a system of base-points xk ∈ Kc repre-
senting a single element of ε(X). The inverse limit of this sequence of base-points,
x• ∈ ε(X), serves as a “base-point” for the homotopy group π∞

i (X, x•).

Here is a more down-to-earth description of the ends of X. Consider a nested
sequence of compacts Ki ⊂ X, i ∈ N (for instance, if X is a proper metric space take
KR := BR(p) for fixed p ∈ X). For each i pick a connected component Ui ⊂ Kc

i

so that Ui ⊃ Ui+1. Then the nested sequence (Ui) represents a single point in ε(X).
Even more concretely, pick a point xi ∈ Ui for each i and connect xi, xi+1 by a curve
γi ⊂ Ui. The concatenation of the curves γi defines a proper map γ : [0,∞) → X.
Call two proper curves γ, γ ′ : R+ → X equivalent if for each compact K ⊂ X there
are points x ∈ γ(R+), x′ ∈ γ′(R+) which belong to the same connected component of
Kc. The equivalence classes of such curves are in bijective correspondence with the
ends of X, the map (Ui) 7→ γ was described above.

See Figure 6 as an example. The space X in this picture has 5 visibly different
ends: ε1, ..., ε5. We have K1 ⊂ K2 ⊂ K3. The compact K1 separates the ends ε1, ε2.
The next compact K2 separates ε3 from ε4. Finally, the compact K3 separates ε4 from
ε5.

Topology on ε(X). Let η ∈ ε(X) be represented by a nested sequence (Ui). Each Ui
defines a neighborhood Ni(η) of η consisting of all η′ ∈ ε(X) which are represented
by nested sequences (U ′

j) such that U ′
j ⊂ Ui for all but finitely many j ∈ N.
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Figure 6: Ends of X.

Lemma 37. If f : X → Y is an (L,A)-quasi-isometry of proper geodesic metric
spaces then f induces a homeomorphism ε(X) → ε(Y ).

Proof. Note that for each bounded subset B ⊂ Y the inverse image f−1(B) is again
bounded. Although for a connected subset C ⊂ X the preimage f(C) is not nec-
essarily connected, the R := L + A-neighborhood NR(f(C)) is connected. Thus we
define a map f∗ : ε(X) → ε(Y ) as follows. Suppose that η ∈ ε(X) is represented by
a nested sequence (Ui). Without loss of generality we may assume that for each i,
NR(Ui) ⊂ Ui−1. Thus we get a nested sequence of connected subsets NR(f(Ui)) ⊂ Y
each of which is contained in a connected component Vi of the complement to the
bounded subset f(Ki−1) ⊂ Y . Thus we send η to f∗(η) represented by (Vi). It follows
from the construction that By considering the quasi-inverse f̄ to f it is clear that f∗
has inverse map (f̄)∗. It is also clear that both f∗ and (f̄)∗ are continuous.

If G is a finitely generated group then the space of ends ε(G) is defined to be the set
of ends of its Cayley graph. The previous lemma implies that ε(G) does not depend
on the choice of a finite generating set.

Theorem 38. Properties of ε(X):

1. ε(X) is compact, Hausdorff and totally disconnected.
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2. Suppose that G is a finitely-generated group. Then ε(G) consists of 0, 1, 2 points
or of continuum of points. In the latter case the set ε(G) is perfect: Each point is a
limit point.

3. ε(G) is empty iff G is finite. ε(G) consists of 2-points iff G is virtually (infinite)
cyclic.

4. |ε(G)| > 1 iff G splits nontrivially over a finite subgroup.

All the properties listed above are relatively trivial except for the last one: if
|ε(G)| > 1 then G splits nontrivially over a finite subgroup, which is a theorem of
Stallings [52]. For the proof of the rest see for instance [5, Theorem 8.32].

Corollary 39. 1. Suppose that G is quasi-isometric to Z then G contains Z as a
finite index subgroup.

2. Suppose that G splits nontrivially as A∗B and G′ is quasi-isometric to G. Then
G′ splits nontrivially as H ∗F E (amalgamated product) or as H∗F (HNN splitting)
where F is a finite group.

Theorem 40. Suppose that G is a hyperbolic group. Then there exists a continuous
equivariant surjection

σ : ∂∞G→ ε(G)

such that the preimages σ−1(ξ) are connected components of ∂∞G.

2.2 Rips complexes and coarse connectedness

Let X be a metric space of bounded geometry, R ∈ R+. Then the R-Rips complex
RipsR(X) is the simplicial complex whose vertices are points of X; vertices x1, ..., xn
span a simplex iff d(xi, xj) ≤ R for each i, j. Note that the system of Rips complexes
of X is a direct system Rips•(X) of simplicial complexes:

For each pair 0 ≤ r ≤ R < ∞ we have a natural embedding ιr,R : Ripsr(X) →
RipsR(X) and ιr,ρ = ιR,ρ ◦ ιr,R provided that r ≤ R ≤ ρ.

One can metrize RipsR(X) by declaring each simplex to be isometric to a regular
Euclidean simplex with unit edges. Note that the assumption that X has bounded
geometry implies that RipsR(X) is finite-dimensional for each R. Moreover, RipsR(X)
is a metric cell complex of bounded geometry.

The following simple observation explains why Rips complexes are useful for ana-
lyzing quasi-isometries:
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Lemma 41. Let f : X → Y be an L-Lipschitz map. Then f induces a (continuous)
simplicial map Ripsd(X) → RipsLd(Y ) for each d ≥ 0.

Proof. Consider an (m − 1)-simplex σ in Ripsd(X), the vertices of σ are points
x1, ..., xm within distance ≤ R from each other. Since f is L-Lipschitz, the points
f(x1), ..., f(xm) are within distance ≤ LR from each other, hence they span a simplex
σ′ of dimension ≤ m− 1 in RipsLd(Y ). The map f sends vertices of σ to vertices of
σ′, extend this map linearly to the simplex σ. It is clear that this extension defines a
(continuous) simplicial map of simplicial complexes Ripsd(X) → RipsLd(Y ).

Definition 42. A metric space X is coarsely k-connected if for each r there exists
R ≥ r so that the mapping Ripsr(X) → RipsR(X) induces a trivial map of πi for
0 ≤ i ≤ k.

For instance, X is coarsely 0-connected if there exists a number R such that each
pair of points x, y ∈ X can be connected by an R-chain of points xi ∈ X, i.e. a chain
of points where d(xi, xi+1) ≤ R for each i. Note that for k ≤ 1 coarse k-connectedness
of X is equivalent to the property that RipsR(X) is k-connected for sufficiently large
R.

Properties of the direct system of Rips complexes:

Lemma 43. Let r, C < ∞, then each simplicial spherical cycle σ of diameter ≤ C
in Ripsr bounds a disk of diameter ≤ C + d within Ripsr+C .

Proof. Pick a point x ∈ σ. Then Ripsr+C contains a simplicial cone β(σ) over σ with
the origin at x. Clearly ∼ (β) ≤ r + C.

Corollary 44. Let
f, g : Ripsd1(X) → Ripsd2(Y )

be L-Lipschitz within distance ≤ C from each other. Then there exists d3 ≥ d2 such
that the maps f, g : Ripsd1 → Ripsd3(Y ) are homotopic via a homotopy whose tracks
have lengths ≤ C ′ = C ′(C, d1, d2, L).

Proof. Construct the homotopy via induction on skeleta using the previous lemma.

We will refer to the maps f, g above as being coarsely homotopic. In the same
way one defines coarse homotopy equivalence between the direct systems of Rips
complexes.
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Corollary 45. Suppose that f, g : X → Y be L-Lipschitz maps within finite distance
from each other. Then they induce coarsely homotopic maps Ripsd(X) → RipsLd(Y )
for each d ≥ 0.

Corollary 46. if f : X → Y is a quasi-isometry, then f induces a coarse homotopy-
equivalence of the Rips complexes: Rips•(X) → Rips•(Y ).

Corollary 47. Coarse k-connectedness is a QI invariant.

Proof. Suppose that X ′ is coarsely k-connected and f : X → X ′ is an L-Lipschitz
quasi-isometry with L-Lipschitz quasi-inverse f̄ : X ′ → X. Let γ be a spherical
i-cycle in Ripsd(X), 0 ≤ i ≤ k. Then we have the induced spherical i-cycle f(γ) ⊂
RipsLd(X

′). Since X ′ is coarsely k-connected, there exists d′ ≥ Ld such that f(γ)
bounds a singular i + 1-disk β within Ripsd′(X ′). Consider now f̄(β) ⊂ RipsL2d(X).
The boundary of this singular disk is a singular i-sphere f̄(γ). Since f̄ ◦f is homotopic
to id within Ripsd′′(X), d′′ ≥ L2d, there exists a singular cylinder σ in Ripsd′′(X)
which cobounds γ and f̄(γ). Note that d′′ does not depend on γ. By combining σ
and f̄(β) we get a singular i+ 1-disk in Ripsd′′(X) whose boundary is γ. Hence X is
coarsely k-connected.

Our next goal is to find a large supply of examples of metric spaces which are
coarsely k-connected.

Definition 48. A bounded geometry metric cell complex X is said to be uniformly
k-connected if there is a function ψ(k, r) such that for each i ≤ k, each singular
i-sphere of diameter ≤ r in X (i+1) bounds a singular i+1-disk of diameter ≤ ψ(k, r).

For instance, if X is a finite-dimensional contractible complex which admits a co-
compact cellular group action, then X is uniformly k-connected for each k.

Here is an example of a simply-connected complex which is not uniformly simply-
connected. Take S1×R+ with the product metric and attach to this complex a 2-disk
along the circle S1 × {0}.
Theorem 49. Suppose that X is a metric cell complex of bounded geometry such that
X is uniformly n-connected. Then Z := X (0) is coarsely n-connected.

Proof. Let γ : Sk → RipsR(Z) be a spherical m-cycle in RipsR(Z), 0 ≤ k ≤ n.
Without loss of generality (using simplicial approximation) we can assume that γ is a
simplicial cycle, i.e. the sphere Sk is given a triangulation τ so that γ sends simplices
of Sk to simplices in RipsR(Z) so that the restriction of γ to each simplex is a linear
map. Let ∆1 be a k-simplex in Sk. Then γ(∆1) is spanned by points x1, ..., xk+1 ∈ Z
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which are within distance ≤ R from each other. Since X is uniformly k-connected,
there is a singular k-disk γ1(∆1) containing x1, ..., xk+1 and having diameter ≤ R′,
where R′ depends only on R. Namely, we construct γ1 by induction on skeleta: First
connect each pair of points xi, xj by a path in X (of length bounded in terms of R),
this defines the map γ1 on the 1-skeleton of ∆1. Then continue inductively. This
construction ensures that if ∆2 is a k-simplex in Sk which shares an m-face with ∆1

then γ2 and γ1 agree on ∆1 ∩ ∆2. As the result, we have “approximated” γ by a
singular spherical k-cycle γ ′ : Sk → X(k) (the restriction of γ ′ to each ∆i equals γi).
See figure 7 in the case k = 1.

X

γ  (        )k+1
D’

’γ  (     )k
S’γ  (∆)

γ(∆)

γ(     )k
S

Figure 7:

Since X is k-connected, the map γ ′ extends to a cellular map γ ′ : Dk+1 → X(k+1).
Let D denote the maximal diameter of a k+ 1-cell in X. For each simplex σ ⊂ Dk+1

the diameter of γ′(σ) is at mostD. We therefore can “push” the singular disk γ ′(Dk+1)
into RipsD(Z) by replacing each linear map γ ′ : σ → γ′(σ) ⊂ X with the linear map
γ′′ : σ → γ′′(σ) ⊂ RipsD(Z) where γ′′(σ) is the simplex spanned by the vertices of
γ′(σ). This yields a map γ′′ : Dk+1 → RipsD(Z). Observe that the map γ ′′ is a
cellular map with respect to a subdivision τ ′ of the initial triangulation τ of Sk.

Note however that γ and γ ′′|Sk are different maps. Let V denote the vertices of a
k-simplex ∆ ⊂ Sk; let V ′′ denote the set of vertices of τ ′ within the simplex ∆. Then
the diameter of γ′′(V ′′) is at most R′. Hence γ(V ) ⊂ γ′′(V ) is contained in a simplex
in RipsR+R′(Z). Therefore, by taking ρ = R + D + R′ we conclude that the maps
γ, γ′′ : Sk → Ripsρ(Z) are homotopic. See Figure 8. Thus the map γ is nil-homotopic
within Ripsρ(Z).

Corollary 50. Suppose that G is a finitely-presented group with the word metric.
Then G is coarsely simply-connected.
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Corollary 51. (See for instance [5, Proposition 8.24]) Finite presentability is a QI
invariant.

Proof. It remains to show that each coarsely 1-connected group G is finitely pre-
sentable. The Rips complex X := RipsR(G) is 1-connected for large R. The group
G acts on X properly discontinuously and cocompactly. Therefore G is finitely pre-
sentable.

Definition 52. A group G is said to be of type Fn (n ≤ ∞) if its admits a cellular
action on a cell complex X such that for each k ≤ n: (1) X (k+1)/G is compact. (2)
X(k+1) is k-connected. (3) The action G y X is free.

Example 53. (See [3].) Let F2 be free group on 2 generators a, b. Consider the group
G = Fn2 which is the direct product of F2 with itself n times. Define a homomorphism
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φ : G → Z which sends each generator ai, bi of G to the same generator of Z. Let
K := Ker(φ). Then K is of type Fn−1 but not of type Fn.

Thus, analogously to Corollary 51 we get:

Theorem 54. (See [29, 1.C2]) Type Fn is a QI invariant.

Proof. It remains to show that each coarsely n-connected group has type Fn. The
proof below follows [33]. We build the complex X on which G would act as required
by the definition of type Fn. We build this complex and the action by induction on
skeleta.

(0). X (1), is a Cayley graph of G; the action of G is cocompact, free, cellular.

(i⇒ i+1). Suppose that X (i) has been constructed. Using i-connectedness of
Rips•(G) we construct (by induction on skeleta) a G-equivariant cellular map f :
X(i) → RipsD(G) for a sufficiently large D. If G were torsion-free, the action
G y RipsD(G) is free; this allows one to we construct (by induction on skeleta)
a G-equivariant “retraction” ρ : RipsD(G)(i) → X(i), i.e. a map such that the com-
position ρ ◦ f is G-equivariantly homotopic to the identity.

However, if G contains nontrivial elements of finite order, we have to use a more
complicated construction.

Suppose that 2 ≤ i ≤ n and an i − 1-connected complex X (i) together with a free
discrete cocompact action G y X (i) was constructed. Let x0 ∈ X(0) be a base-point.

Lemma 55. There are finitely many spherical i-cycles σ1, ..., σk in X(i) such that
their G-orbits normally generate π1(X

(i)), in the sense that the normal closure of the
cycles {gσ̂j : j = 1, ..., k, g ∈ G} is πi(X

(i)), where each σ̂j is obtained from σj by
attaching a “tail” from x0.

Proof. Without loss of generality we can assume that X (i) is a (metric) simplicial
complex. Let f : X (i) → Y := RipsD(Z) be a G-equivariant continuous map as
above.

Here is the construction of σj’s:

Let τα : Si → Y (i), α ∈ N, denote the attaching maps of the i + 1-cells in Y ,
these maps are just simplicial homeomorphic embeddings from the boundary S i of
the standard i+1-simplex into Y (i). Starting with a G-equivariant projection Y (0) →
X(0) one inductively constructs a (non-equivariant!) map f̄ : Y (i) → X(i) so that
f ◦ f̄ : Y (i) → Y (i+1) is within distance ≤ Const from the identity. Hence (by
coarse connectedness of Z) this composition is homotopic to the identity inclusion
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within RipsD′(Z). The homotopy H is such that its tracks have “uniformly bounded
complexity”, i.e. the compositions

H ◦ (τα × id) : Si × I → RipsD′(Z)

are simplicial maps with a uniform upper bound on the number of simplices in a
triangulation of Si× I. Let B ⊂ X (i) denote a compact subset such that GB = X (i).
We let σj denote the composition gα ◦ f̄ ◦ τα where gα ∈ G are chosen so that the
image of σj intersects B.

We now equivariantly attach i+1-cells alongG-orbits of the cycles σj: for each j and
g ∈ G we attach an i+ 1-cell along g(σj). Note that if σj is stabilized by a subgroup
of order m = m(j) in G, then we attach m copies of the i+ 1-dimensional cell along
σj. We let X (i+1) denote the resulting complex and we extend the G-action to X (i+1)

in obvious fashion. It is clear that G y X (i+1) is free, discrete and cocompact.

2.3 Coarse separation

Suppose that X is a metric cell complex and Y ⊂ X is a subset. We let NR(Y )
denote the metric R-neighborhood of Y in X. Let C be a complementary component
of NR(Y ) in Y . Define the inradius, inrad(C), of C to be the supremum of radii of
metric balls in X contained in C. A component C is called shallow if inrad(C) is
<∞ and deep if inrad(C) = ∞.

Example 56. Suppose that Y is compact. Then deep complementary components
of X \NR(Y ) are those components which have infinite diameter.

A subcomplex Y is said to coarsely separate X if there is R such that NR(Y ) has
at least two distinct deep complementary components.

Example 57. The curve Γ in R2 does not coarsely separate R2. A straight line in
R2 coarsely separates R2.

Theorem 58. Suppose that Y,X be uniformly contractible metric cell complexes of
bounded geometry which are homeomorphic to Rn−1 and Rn respectively. Then for
each uniformly proper map f : Y → X, the image f(Y ) coarsely separates X. More-
over, the number of deep complementary components is 2.

Proof. Actually, our proof will use the assumption on the topology of Y only weakly:
to get coarse separation it suffices to assume that Hn−1

c (Y,R) 6= 0.
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Let W := f(Y ). Given R ∈ R+ we define a retraction ρ : NR(W ) → Y , so that
d(ρ◦f, idY ) ≤ const, where const depends only on the distortion function of f and on
the geometry of X and Y . Here NR(W ) is the smallest subcomplex in X containing
the R-neighborhood of W in X. We define ρ by induction on skeleta of NR(W ).
For each vertex x ∈ NR(W ) we pick a vertex ρ(x) := y ∈ Y such that the distance
d(x, f(y)) is the smallest possible. If there are several such points y, we pick one of
them arbitrarily. The fact that f is a uniform proper embedding ensures that

d(ρ ◦ f, idY 0) ≤ const0.

Note also that for any 1-cell σ in NR(W ), diam(ρ(∂σ)) ≤ Const0. Suppose that we

have constructed ρ on N (k)
R (W ). Inductively we assume that:

d(ρ ◦ f, idY k) ≤ constk, diam(ρ(∂σ)) ≤ Constk, (59)

for each k+1-cell σ. We extend ρ to the k+1-skeleton by using uniform contractibility
of Y : For each k + 1-cell σ there exists a singular disk η : Dk+1 → Y in Y k+1 of
diameter ≤ ψ(Constk) whose boundary is ρ(∂σ). Then we extend ρ to σ via η. It is
clear that the extension satisfies the inequalities (59) with k replaced with k + 1.

Since Y is uniformly contractible we get a homotopy ρ ◦ f ∼= idY , whose tracks are
uniformly bounded (construct it by induction on skeleta the same way as before).

Recall that we have a system of isomorphisms

P : Hn−1
c (Nr) ∼= H1(X,X \ Nr)

given by the Poincare duality in Rn. This isomorphism moves support sets of n− 1-
cocycles by a uniformly bounded amount (to support sets of 1-cycles). Let ω be
a generator of Hn−1

c (Y ). Given R > 0 consider “retraction” ρ as above and the
pull-back ωR := ρ∗(ω). If for some 0 < r < R the restriction ωr of ωR to Nr(W )
is zero then we get a contradiction, since f ∗ ◦ ρ∗ = id on the compactly supported
cohomology of Y . Thus ωr is nontrivial. Applying the Poincare duality operator P
to the cohomology class ωr we get a nontrivial relative homology class

P (ωr) ∈ H1(X,X \ Nr) ∼= H̃0(X \ Nr).

We note that for each R ≥ r the class P (ωr) ∈ H1(Nr, ∂Nr) is represented by “re-
striction” of the class P (ωR) ∈ H1(NR, ∂NR) to Nr, see Figure 9. In particular,
the images αr, αR of P (ωr), P (ωR) in H̃0(X \ Nr), H̃0(X \ NR) are homologous in
H̃0(X \ Nr). Moreover, αR restricts nontrivially to α1 ∈ H̃0(X \ N1).
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Therefore, we get sequences of points

xi, x
′
i ∈ ∂Ni, i ∈ N,

such that xi, x
′
i belong to the support sets of αi for each i, xi, xi+1 belong to the

same component of X \ Ni, x
′
i, x

′
i+1 belong to the same component of X \ Ni, but

the points xi, x
′
i belong to distinct components C,C ′ of X \ N1. It follows that C,C ′

are distinct deep complementary components of W . The same argument run in the
reverse implies that there are exactly two deep complementary components (although
we will not use this fact).

’ix

ix

i+1
N    (W)

iN  (W) W

’x i+1

x i+1

Figure 9: Coarse separation.

I refer to [20], [34] for further discussion and generalization of coarse separation and
coarse Poincare/Alexander duality.

2.4 Other notions of coarse equivalence

Theorem 60. (Gromov, [29], see also de la Harpe [12, page 98]) Groups G and Γ are
QI iff they admit commuting (i.e. extending to an action of G×Γ) proper cocompact
topological actions on a locally compact topological space Y .

Proof. 1. Suppose that there exists an (L,A)-quasi-isometry G → Γ. Consider the
collection F of all (L,A)-quasi-isometries f from G to Γ, given the compact-open
topology. By Arcela-Ascoli, the space F is locally compact. The groups G and Γ act
on F by left and right multiplication:

g∗(f)(x) = f(g−1(x)), g ∈ G,
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g∗(f)(x) = γf(x), γ ∈ Γ.

It is clear that these are commuting topological actions. Since both G,Γ act on
themselves properly, both actions G,Γ y F are proper. Let fj ∈ F , then, since the
action of Γ on itself is transitive, there exists a sequence γj ∈ Γ such that γjfj(1) = 1.
Hence, by Arcela-Ascoli theorem, the action Γ y F is cocompact. (So far, everything
works if instead of QI mappings we use QI embeddings). On the other hand, since
for each fj the image fj(G) is A-dense in Γ, for each j there exists xj ∈ G such that
d(fj(xj), 1) ≤ A. Hence the sequence (x−1

j )∗fj is also relatively compact in F . Hence
both actions G,Γ y F are cocompact.

2. Suppose that G,Γ y Y are commuting actions. Pick a compact K ⊂ Y which
maps onto both Y/G, Y/Γ. Choose a point k ∈ K and consider the mapping f : G→
Γ which sends g ∈ G to an element γ−1 ∈ Γ such that g(k) ∈ γ(K). I claim that f is
a quasi-isometry. Let’s first check that f is Lipschitz. Let S = {s1, ..., sm} be a finite
generating set of G. It suffices to check that f distorts each edge of the corresponding
Cayley graph by a uniformly bounded amount. Pick g ∈ G, γ−1 := f(g).

Since S is finite, K̂ := ∪s∈SK is compact, hence there exists a finite subset Σ ⊂ Γ
such that

K̂ ⊂ K̃ := ∪σ∈Σσ(K).

In addition define a finite set

Σ′ := {α ∈ Γ : α(K) ∩ K̃ 6= ∅}

Set L := max{dΓ(α, 1), α ∈ Σ′}.
Recall that the group operation onG is defined so that h◦g = gh. Thus d(si◦g, g) =

1 for each si ∈ S. We have:

si ◦ g(k) = si ◦ γ(y) = γ ◦ si(y) ∈ γ ◦ σ(K), for some y ∈ K, σ ∈ Σ.

Observe that γ′ := [f(gsi)]
−1 also satisfies si ◦ g(k) ∈ γ′(K). Hence γ−1 ◦ γ′(K) ∩

σ(K) 6= ∅, i.e γ′γ−1 ∈ Σ′. Therefore dΓ(γ′γ−1, 1) ≤ L and hence

dΓ(γ−1, γ′−1) ≤ L, dΓ(f(g), f(gsi)) ≤ L.

This proves that f is L-Lipschitz. Construct a map f̄ : Γ → G in the similar fashion:

f̄(γ) := g−1, γ(k) ∈ g(K);

the same arguments as above show that f̄ is L′-Lipschitz for some L′ <∞.
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Suppose that f(g) = γ−1, f̄(γ−1) = h. Then

γ(k) ∈ h−1(K) ⇐⇒ h(k) ∈ γ−1(K),

(since the actions of G and Γ commute). Thus d(f̄ ◦ f, id) ≤ Const, d(f ◦ f̄ , id) ≤
Const for some finite constant.

Definition 61. Groups G1, G2 are said to have a common geometric model if
there exists a proper geodesic metric space X such that Gi, G2 both act isometrically,
properly discontinuously, cocompactly on X.

In view of Lemma 16, if groups have a common geometric model then they are
quasi-isometric. The following theorem shows that the converse is false:

Theorem 62. (Mosher, Sageev, Whyte, [43]) Let G1 := Zp ∗Zp, G2 := Zq ∗Zq, where
p, q are distinct primes. Then the groups G1, G2 do not have a common geometric
model.

This theorem in particular implies that in Theorem 60 one cannot assume that
both group actions are isometric.

Spaces (or finitely generated groups) X1, X2 are bilipschitz equivalent if there exists
a bilipschitz bijection f : X1 → X2.

Theorem 63. (Whyte, [61]) Suppose that G1, G2 are non-amenable finitely generated
groups which are quasi-isometric. Then G1, G2 are bilipschitz equivalent.

On the other hand, there are examples (Burago, Kleiner, McMullen, [7, 40]) of sepa-
rated nets in R2 which are not bi-Lipschitz homeomorphic. I am unaware of examples
of amenable grooups which are quasi-isometric but are not bilipschitz equivalent.

3 Ultralimits of Metric Spaces

Let (Xi) be a sequence of metric spaces. One can describe the limiting behavior of the
sequence (Xi) by studying limits of sequences of finite subsets Yi ⊂ Xi. Ultrafilters
are an efficient technical device for simultaneously taking limits of all such sequences
of subspaces and putting them together to form one object, namely an ultralimit of
(Xi).
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3.1 Ultrafilters

Let I be an infinite set, S is a collection of subsets of I. A filter based on S is a
nonempty family ω of members of S with the properties:

• ∅ 6∈ ω.

• If A ∈ ω and A ⊂ B, then B ∈ ω.

• If A1, . . . , An ∈ ω, then A1 ∩ · · · ∩ An ∈ ω.

If S consists of all subsets of I we will say that ω is a filter on I. Subsets A ⊂ I which
belong to a filter ω are called ω-large. We say that a property (P) holds for ω-all i,
if (P) is satisfied for all i in some ω-large set. An ultrafilter is a maximal filter. The
maximality condition can be rephrased as: For every decomposition I = A1∪· · ·∪An
of I into finitely many disjoint subsets, the ultrafilter contains exactly one of these
subsets.

For example, for every i ∈ I, we have the principal ultrafilter δi defined as δi :=
{A ⊂ I | i ∈ A}. An ultrafilter is principal if and only if it contains a finite subset.
The interesting ultrafilters are of course the non-principal ones. They cannot be de-
scribed explicitly but exist by Zorn’s lemma: Every filter is contained in an ultrafilter.
Let Z be the Zariski filter which consists of complements to finite subsets in I. An
ultrafilter is a nonprincipal ultrafilter, if and only if it contains Z.

Here is an alternative interpretation of ultrafilters. An ultrafilter is a finitely addi-
tive measure defined on all subsets of I so that each subset has measure 0 or 1. An
ultrafilter is nonprincipal iff the measure contains no atoms: The measure of each
point is zero.

Given an ultrafilter ω on I and a collection of sets Xi, i ∈ I, define the ultraproduct
∏

i∈I

Xi/ω

to be the collection of equivalence classes of maps f : I → X such that f ∼ g iff
f(i) = g(i) for ω-all i.

Given a function f : I → Y (where Y is a topological space) define the ω-limit

ω-lim
i

f(i)

to be a point y ∈ Y such that for every neighborhood U of y the preimage f−1U
belongs to ω.
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Lemma 64. Suppose that Y is compact and Hausdorff. Then for each function
f : I → Y the ultralimit exists and is unique.

Proof. To prove existence of a limit, assume that there is no point y ∈ Y satisfying
the definition of the ultralimit. Then each point z ∈ Y possesses a neighborhood
Uz such that f−1Uz 6∈ ω. By compactness, we can cover Y with finitely many of
these neighborhoods. It follows that I 6∈ ω. This contradicts the definition of a filter.
Uniqueness of the point y follows, because Y is Hausdorff.

Note that if y is an accumulation point of {f(i)}i∈I then there is a non-principal
ultrafilter ω with ω-lim f = y, namely an ultrafilter containing the pullback of the
neighborhood basis of y.

3.2 Ultralimits of metric spaces

Let (Xi)i∈I be a family of metric spaces parameterized by an infinite set I. For an
ultrafilter ω on I we define the ultralimit

Xω = ω-lim
i

Xi

as follows. Let
∏

iXi be the product of the spaces Xi, i.e. it is the space of sequences
(xi)i∈I with xi ∈ Xi. The distance between two points (xi), (yi) ∈

∏
iXi is given by

dω
(
(xi), (yi)

)
:= ω-lim

(
i 7→ dXi

(xi, yi)
)

where we take the ultralimit of the function i 7→ dXi
(xi, yi) with values in the compact

set [0,∞]. The function dω is a pseudo-distance on
∏

iXi with values in [0,∞]. Set

(Xω, dω) := (
∏

i

Xi, dω)/ ∼

where we identify points with zero dω-distance.

Exercise 65. Let Xi = Y for all i, where Y is a compact metric space. Then Xω
∼= Y

for all ultrafilters ω.

If the spaces Xi do not have uniformly bounded diameter, then the ultralimit Xω

decomposes into (generically uncountably many) components consisting of points of
mutually finite distance. We can pick out one of these components if the spaces Xi

have base-points x0
i . The sequence (x0

i )i defines a base-point x0
ω in Xω and we set

X0
ω :=

{
xω ∈ Xω | dω(xω, x0

ω) <∞
}
.
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Define the based ultralimit as

ω-lim
i

(Xi, x
0
i ) := (X0

ω, x
0
ω).

Example 66. For every locally compact space Y with a base-point y0, we have:

ω-lim
i

(Y, y0) ∼= (Y, y0).

Lemma 67. Let (Xi)i∈N be a sequence of geodesic δi-hyperbolic spaces with δi tending
to 0. Then for every non-principal ultrafilter ω each component of the ultralimit Xω

is a metric tree.

Proof. We first verify that between any pair of points xω, yω ∈ Xω there is a unique
geodesic segment. Let γω denote the ultralimit of the geodesic segments γi := xiyi ⊂
Xi; it connects the points xω, yω. Suppose that β is another geodesic segment con-
necting xω to yω. Pick a point pω ∈ β. Then

ω-lim
i

(xi, yi)pi
= ω-lim

i

1

2
[d(xi, pi) + d(yi, pi) − d(xi, yi)] = 0.

Since, by Lemma 24,
d(pi, γi) ≤ (xi, yi)pi

+ 2δi,

d(pωγω) = 0.

Now, suppose that ∆(xωyωzω) is a geodesic triangle in Xω. By uniqueness of geodesics
in Xω, this triangle appears as ultralimit of the δi-thin triangles ∆(xiyizi). It follows
that ∆(xωyωzω) is zero-thin, i.e. each component of Xω is zero-hyperbolic.

Exercise 68. If T is a metric tree, −∞ < a < b < ∞ and f : [a, b] → T is a
continuous embedding then the image of f is a geodesic segment in T . (Hint: use
PL approximation of f to show that the image of f contains the geodesic segment
connecting f(a) to f(b).)

Lemma 69. (Morse Lemma) Let X be a δ–hyperbolic geodesic space, k, c be positive
constants, then there is a function θ = τ(k, c) such that for any (k, c)-quasi-isometric
embedding f : [a, b] → X the Hausdorff distance between the image of f and the
geodesic segment [f(a)f(b)] ⊂ X is at most θ.

Proof. Suppose that the assertion of lemma is false. Then there exists a sequence
of (k, c)-quasi-isometric embeddings fn : [−n, n] → Xn to CAT (−1)-spaces Xn such
that

lim
n→∞

dHaus(f([−n, n]), [f(−n), f(n)]) = ∞
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where dHaus is the Hausdorff distance in Xn.

Let dn := dHaus(f([−n, n]), [f(−n), f(n)]). Pick points tn ∈ [−n, n] such that
|d(tn, [f(−n), f(n)]) − dn| ≤ 1. Consider the sequence of pointed metric spaces
( 1
dn
Xn, fn(tn)), ( 1

dn
[−n, n], tn). It is clear that ω-limn/dn > 1/k > 0 (but this

ultralimit could be infinite). Let (Xω, xω) = ω-lim( 1
dn
Xn, fn(tn)) and (Y, y) :=

ω-lim( 1
dn

[−n, n], tn). The metric space Y is either a nondegenerate segment in R

or a closed geodesic ray in R or the whole real line. Note that the Hausdorff distance
between the image of fn in 1

dn
Xn and [fn(−n), fn(n)] ⊂ 1

dn
Xn is at most 1 + 1/dn.

Each map

fn :
1

dn
[−n, n] → 1

dn
Xn

is a (k, c/n)-quasi-isometric embedding. Therefore the ultralimit

fω = ω-lim fn : (Y, y) → (Xω, xω)

is a (k, 0)-quasi-isometric embedding, i.e. it is a k-bilipschitz map:

|t− t′|/k ≤ d(fω(t), fω(t
′)) ≤ k|t− t′|.

In particular this map is a continuous embedding. On the other hand, the sequence
of geodesic segments [fn(−n), fn(n)] ⊂ 1

dn
Xn also ω-converges to a nondegenerate

geodesic γ ⊂ Xω, this geodesic is either a finite geodesic segment or a geodesic ray
or a complete geodesic. In any case the Hausdorff distance between the image L of
fω and γ is exactly 1, it equals the distance between xω and γ which is realized as
d(xω, z) = 1, z ∈ γ. I will consider the case when γ is a complete geodesic, the other
two cases are similar and are left to the reader. Then Y = R and by Exercise 68
the image L of the map fω is a complete geodesic in Xω which is within Hausdorff
distance 1 from the complete geodesic γ. This contradicts the fact that Xω is a metric
tree.

Historical Remark. Morse [42] proved a special case of this lemma in the case
of H2 where the quasi-geodesics in question where geodesics in another Riemannian
metric on H2, which admits a cocompact group of isometries. Busemann, [9], proved a
version of this lemma in the case of Hn, where metrics in question were not necessarily
Riemannian. A version in terms of quasi-geodesics is due to Mostow [44], in the
context of negatively curved symmetric spaces, although his proof is general.

Corollary 70. Suppose that X,X ′ are quasi-isometric geodesic metric spaces and X
is Gromov-hyperbolic. Then X ′ is also Gromov-hyperbolic.

32



Proof. Let f : X ′ → X be a (L,A)-quasi-isometry. Pick a geodesic triangle ∆ABC ⊂
X ′. Its image is a quasi-geodesic triangle whose sides are (L,A)-quasi-geodesic.
Therefore each of the quasi-geodesic sides of f(∆ABC) is within distance ≤ c =
c(L,A) from a geodesic connecting the end-points of this side. See Figure 10. The
geodesic triangle ∆f(A)f(B)f(C) is δ-thin, it follows that the quasi-geodesic triangle
f(∆ABC) is (2c+ δ)-thin. Thus the triangle ∆ABC is L(2c+ δ) + A-thin.

X

X’

Quasi-geodesic triangle f(B)

f(C)f(A)

f

B

CA

Figure 10: Image of a geodesic triangle.

Here is another example of application of asymptotic cones to study quasi-isometries.

Lemma 71. Suppose that X = Rn or R+, f : X → X is an (L,A)-quasi-isometric
embedding. Then NC(f(X)) = X, where C = C(L,A).

Proof. I will give a proof in the case of Rn as the other case is analogous. Suppose that
the assertion is false, i.e. there is a sequence of (L,A)-quasi-isometries fj : Rn → Rn,
sequence of real numbers rj diverging to infinity and points yj ∈ Rn \ Image(f) such
that d(yj, Image(f)) = rj. Let xj ∈ Rn be a point such that d(f(xj), yj) ≤ rj + 1.
Using xj, yj as basi-points on the domain and target to fj rescale the metrics on the
domain and the target by 1/rj and take the corresponding ultralimits. In the limit
we get a bi-Lipschitz embedding

fω : Rn → Rn,

whose image misses the point yω ∈ Rn. However each bilipshitz embedding is neces-
sarily proper, therefore by the invariance of domain theorem the image of fω is both
closed and open. Contradiction.

Remark 72. Alternatively, one can prove the above lemma as follows: Approximate
f by a continuous mapping g. Then, since g is proper, it has to be onto.
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3.3 The asymptotic cone of a metric space

Let X be a metric space and ω be a non-principal ultrafilter on I = N. Suppose that
we are given a sequence λi so that ω-limλi = 0 and a sequence of base-points x0

i ∈ X.
Given this data the asymptotic cone Coneω(X) of X is defined as the based ultralimit
of rescaled copies of X:

Coneω(X) := X0
ω, where (X0

ω, x
0
ω) = ω-lim

i
(λi ·X, x0

i ).

The discussion in the previous section implies:

Proposition 73. 1. Coneω(X × Y ) = Coneω(X) × Coneω(Y ).

2. ConeωRn ∼= Rn.

3. The asymptotic cone of a geodesic space is a geodesic space.

4. The asymptotic cone of a CAT(0)-space is CAT(0).

5. The asymptotic cone of a space with a negative upper curvature bound is a metric
tree.

Remark 74. Suppose that X admits a cocompact discrete action by a group G of
isometries. The problem of dependence of the topological type of ConeωX on the
ultrafilter ω and the scaling sequence λi was open until recently counterexamples
were constructed in [53], [15]. However in the both examples the group G is not
finitely presentable. Moreover, if a finitely-repsentable group has an asymptotic cone
which is a tree, then the group is hyperbolic and hence each asymptotic cone is a
tree, see [33].

To get an idea of the size of the asymptotic cone, we will see below that in the most
interesting cases it is homogeneous.

We call an isometric action G y X cobounded if there exists D <∞ such that for
some point x ∈ X, ⋃

g∈G

g(BD(x)) = X,

i.e. G ·x is a D-net in X. Equivalently, given any pair of points x, y ∈ X, there exists
g ∈ G such that d(g(x), y) ≤ 2D. We call a metric space X quasi-homogeneous if the
action Isom(X) y X is cobounded.
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Suppose that X is a metric space and G ⊂ Isom(X) is a subgroup. Given a
nonprincipal ultrafilter ω define the group G∗ to be the ultraproduct

G∗ =
∏

i∈I

G/ω.

By obusing notation we will refer to points in G∗ as sequences. Given a sequence
λi so that ω-limλi = 0 and a sequence of base-points x0

i ∈ X, let Coneω(X) be the
corresponding asymptotic cone. It is clear that G∗ acts isometrically on the ultralimit

U := ω-lim
i

(λi ·X).

Let Gω ⊂ G∗ denote the stabilizer in G∗ of the component Coneω(X) ⊂ U . In other
words,

Gω = {(gi) ∈ G∗ : ω-lim
i

λid(gi(x
0
i ), x

0
i ) <∞}.

Thus Gω ⊂ Isom(Coneω(X)). Observe that if (x0
i ) is a bounded sequence in X then

the group G has a diagonal embedding in Gω.

Proposition 75. Suppose that G ⊂ Isom(X) and the action G y X is cobounded.
Then for every asymptotic cone Coneω(X) the action Gω y Coneω(X) is transitive.
In particular, Coneω(X) is a homogeneous metric space.

Proof. Let D <∞ be such that G · x is a D-net in X. Given two sequences (xi), (yi)
of points in X there exists a sequence (gi) of elements of G such that

d(gi(xi), yi) ≤ 2D.

Therefore, if gω := (gi) ∈ G∗, then gω((xi)) = (yi). Hence the action

G∗ y Xω = ω-lim
i

(λi ·X)

is transitive. It follows that the action Gω y Coneω(X) is transitive as well.

Example 76. Construct an example of a metric space X and an asymptotic cone
Coneω(X) so that for the isometry group G = Isom(X) the action Gω y Coneω(X)
is not effective (i.e. has nontrivial kernel). Construct an example when the kernel of
Gω → Isom(Coneω(X)) contains the entire group G embedded diagonally in Gω.

Lemma 77. Let X be a quasi-homogeneous δ–hyperbolic space with uncountable num-
ber of ideal boundary points. Then for every nonprincipal ultrafilter ω the asymptotic
cone Coneω(X) is a tree with uncountable branching.
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Proof. Let x0 ∈ X be a base-point and y, z ∈ ∂∞X. Denote by γ the geodesic in X
with the ideal endpoints z, y. Then Coneω([x

0, y)) and Coneω([x
0, z)) are geodesic rays

in Coneω(X) emanating from x0
ω. Their union is equal to the geodesic Coneω γ. This

produces uncountably many rays in Coneω(X) so that any two of them have precisely
the base-point in common. The homogeneity of Coneω(X) implies the assertion.

3.4 Extension of quasi-isometries of hyperbolic spaces to the

ideal boundary

Lemma 78. Suppose that X is a proper δ-hyperbolic geodesic space. Let Q ⊂ X be a
(L,A)-quasigeodesic ray or a complete (L,A)-quasigeodesic. Then there is Q∗ which
is either a geodesic ray (or a complete geodesic) in X so that the Hausdorff distance
between Q and Q∗ is ≤ C(L,A, δ).

Proof. I will consider only the case of quasigeodesic rays ρ : [0,∞) → Q ⊂ X as
the other case is similar. Consider the sequence of geodesic segments γi = ρ(0)ρ(i).
By Morse lemma, each γi is contained within Nc(Q), where c = c(L,A, δ). By local
compactness, the geodesic segments γi subconverge to a complete geodesic ray Q∗ =
γ(R+) which is contained in Nc(Q).

It remains to show that Q is contained in ND(Q∗), where D = D(L,A, δ). Consider
the nearest-point projection p : Q∗ → Q. This projection is clearly a quasi-isometric
embedding with the constants depending only on L,A, δ. Lemma 71 shows that the
image of p is ε-dense in Q with ε = ε(L,A, δ). Hence each point of Q is within distance
≤ D = ε + c from a point of Q∗.

Observe that this lemma implies that for any divergent sequence tj ∈ R+, the
sequence of points ρ(tj) on a quasi-geodesic ray in X, converges to a point η ∈ ∂∞X,
η = γ(∞). Indeed, if γ, γ ′ are geodesic rays Hausdorff-close to Q then γ, γ ′ are
Hausdorff-close to each other as well, therefore γ(∞) = γ ′(∞).

We will refer to the point η as ρ(∞). Note that if ρ′ is another quasi-geodesic ray
which is Hausdorff-close to ρ then ρ(∞) = ρ′(∞).

Theorem 79. Suppose that X and X ′ are Gromov-hyperbolic proper geodesic metric
spaces. Let f : X → X ′ be a quasi-isometry. Then f admits a homeomorphic exten-
sion f∞ : ∂∞X → ∂∞X

′. This extension is such that the map f ∪ f∞ is continuous
at each point η ∈ ∂∞X.

Proof. First, we construct the extension f∞. Let η ∈ ∂∞X, η = ρ(∞) where ρ is a
geodesic ray in X. The image of this ray ρ′ := f ◦ ρ : R+ → X ′ is a quasi-geodesic
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ray, hence we set f∞(η) := ρ′(∞). Observe that f∞(η) does not depend on the choice
of a geodesic ray asymptotic to η. Let f̄ be quasi-inverse of f . It is clear from the
construction that (f̄)∞ is inverse to f∞. It remains therefore to verify continuity.

Suppose that xn ∈ X is a sequence which converges to η in the cone topology,
d(xn, ρ) ≤ c. Then d(f(xn), ρ

′) ≤ Lc + A and d(f(xn), (ρ
′)∗) ≤ C(Lc + A), where

(ρ′)∗ is a geodesic ray in X ′ asymptotic to ρ′(η). Thus f(xn) converges to f∞(η) in
the cone topology.

Finally, let ηn ∈ ∂∞X be a sequence which converges to η. Let ρn be a sequence of
geodesic rays asymptotic to ηn with ρn(0) = ρ(0) = x0. Then, for each T ∈ R+ there
exists n0 such that for all n ≥ n0 and t ∈ [0, T ] we have

d(ρ(t), ρn(t)) ≤ 2δ,

where δ is the hyperbolicity constant of X. Hence

d(f(ρn(t)), ρ(t)) ≤ 2Lδ + A.

Set ρ′n := f ◦ ρn. Then

(ρ′n)
∗([0, L−1T − A]) ⊂ NC((ρ′)∗([0, LT + A])),

for all n ≥ n0. Thus the geodesic rays (ρ′n)
∗ converge to a ray within finite distance

from (ρ′)∗. It follows that the sequence f∞(ηn) converges to f∞(η).

Lemma 80. Let X and X ′ be proper geodesic δ-hyperbolic spaces. In addition we
assume that X is quasi-homogeneous and that ∂∞X consists of at least four points.
Suppose that f, g : X → X ′ are (L,A)-quasi-isometries such that f∞ = g∞. Then
d(f, g) ≤ D, where D depends only on L,A, δ and the geometry of X.

Proof. Let γ1, γ2 be complete geodesics in X which are asymptotic to the points ξ1, η1,
ξ2, η2 respectively, where all the points ξ1, η1, ξ2, η2 are distinct. There is a point y ∈ X
which is within distance ≤ r from both geodesics γ1, γ2. Let G be a group acting
isometrically on X so that the GB = X for an R-ball B in X. Pick a point x ∈ X:
Our goal is to estimate d(gf(x), g(x)). By applying an element of G to x we can
assume that d(x, y) ≤ R, in particular, d(x, γ1) ≤ R + r, d(x, γ2) ≤ R + r. Thus the
distance from f(x) to the quasi-geodesics f(γ1), f(γ2) is at most L(R + r) + A. We
now apply the quasi-inverse ḡ the to quasi-isometry g: ḡf(γi) is an (L2, LA + A)-
quasi-geodesic in X; since f∞ = g∞, these quasi-geodesics are asymptotic to the
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points ξi, ηi, i = 1, 2. Since the Hausdorff distance from ḡf(γi) to γi is at most C+2δ
(where C = C(L2, LA+ A, δ) is the constant from Lemma 78) we conclude that

d(ḡf(x), γi) ≤ C ′ := C + 2δ.

See Figure 11.
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Figure 11:

Since the geodesics γ1, γ2 are asymptotic to distinct points in ∂∞X, it follows that
the diameter of the set {z ∈ X : d(z, γi) ≤ max(C ′, r + R), i = 1, 2} is at most C ′′,
where C ′′ depends only on the geometry of X and the fixed pair of geodesics γ1, γ2.
Hence d(ḡf(x), x) ≤ C ′′. By applying g to this formula we get:

d(g(x), gḡf(x)) ≤ L(C ′′ + A) + A,

d(f(x), gḡf(x)) ≤ A.

Therefore
d(f(x), g(x)) ≤ 2A+ L(C ′′ + A).

Remark 81. The line X = R is 0-hyperbolic, its ideal boundary consists of 2 points.
Take a translation f : X → X, f(x) = x + a. Then f∞ is the identity map of
{−∞,∞} but there is no bound on the distance from f to the identity.

4 Tits alternative

Theorem 82 (Tits alternative, [54]). Let L be a Lie group with finitely many
components and Γ ⊂ L be a finitely generated subgroup. Then either Γ is virtually
solvable or Γ contains a free nonabelian subgroup.
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I will give a detailed proof of this theorem in the case L = SL(2,R) and will outline
the proof in the general case. Our proof in the SL(2,R) case does not require Γ to
be finitely generated.

The projectivization PSL(2,R) of SL(2,R) is the orientation-preserving subgroup
of the isometry of group of the hyperbolic plane H2. If we use the upper half-plane
model of H2 then PSL(2,R) acts on H2 via linear-fractional transformations:

P (

[
a b
c d

]
) : z 7→ az + b

cz + d
.

It is clear that Tits alternative for PSL(2,R) implies Tits alternative for SL(2,R),
since they differ by finite center.

Classification of isometries γ of H2:

Let A ∈ SL(2,R). Then the fixed points for the action of P (A) on C̄ correspond
to the eigenvectors of the matrix A. Thus we get:

Case 1. |tr(A)| > 2 ⇐⇒ P (A) has 2 distinct fixed points on R̄ = R ∪ ∞.
Then γ = P (A) is called hyperbolic. It acts as a translation along a geodesic in H2

connecting the fixed points of γ.

Case 2. |tr(A)| < 2 ⇐⇒ P (A) has 2 distinct fixed points on C̄ \ R̄, one in the
upper and one in the lower half-plane. Then γ is called elliptic, in the unit disk model,
if we send the fixed point to the origin, γ acts as a rotation around the origin.

Case 3. |tr(A)| = 2 and γ 6= Id. Then γ has a unique fixed point in C̄, this fixed
point belongs to R̄. Then γ is called parabolic. Conjugate γ in PSL(2,R) so that
the fixed point of γ is infinity. Then γ(z) = z + c, c ∈ R, i.e. γ acts as a Euclidean
translation.

This is a complete classification of orientation-preserving isometries of H2. If γ is
an orientation-reversing isometry of H2 then either:

(a) γ is a reflection in a geodesic L ⊂ H2, or

(b) γ is a glide-reflection, i.e. it is the composition of a reflection in a geodesic
L ⊂ H2 with a hyperbolic translation along L.

Dynamics: Suppose that γ is hyperbolic or parabolic. Then the sequence γn, n ∈ N,
converges uniformly on compacts in C̄ \ Fix(γ) to the constant map z 7→ ξ, where ξ
is one of the fixed points of γ. If γ is hyperbolic then ξ is the attractive fixed point
of γ.

Lemma 83 (Ping-Pong lemma). Suppose that g, h ∈ PSL(2,R) are hyperbolic or
parabolic with disjoint fixed point sets. Then there exists n ∈ N such that the group
〈gn, hn〉 is free of rank 2.
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Proof. Is will consider the case when g, h are hyperbolic since the other cases are
similar. Let A− be a neighborhood of the repulsive fixed point of g, bounded by a
geodesic in H2 and disjoint from the axis of h. Similarly, define B−, a neighborhood of
the repulsive fixed point of h, bounded by a geodesic in H2 and disjoint from the axis
of h and from A−. By taking sufficiently large n we can assume that the complements
to gn(A−) and hn(B−) in H2 are domains A+, B+, as in the Figure 12, so that all
four domains A−, A+, B−, B+ are pairwise disjoint. Let Φ denote the domain in H2

which is the complement to A− ∪ A+ ∪ B− ∪ B+. Set g := gn, h := hn. I claim that
the group G := 〈g, h〉 is free of rank 2. To prove this consider a reduced nonempty
word w in the generators g, h. I claim that w(Φ) ∩ Φ = ∅. This would imply that w
is a nontrivial element of G which in turn would imply that G is free of rank 2.

Moreover, suppose that the last letter in w is g (or g−1, or h, or h−1 resp.), i.e.
w = w′g. I claim that w(Φ) ⊂ A+ (resp. A−, B+, B−). Let’s prove this by induction
on the length of w. I consider the case when w = w′g, where w′ is a reduced word
whose last letter is not g−1. Hence by induction, w′(Φ) is in one of the regions
A+, B+, B−, but not in A−. Then it is clear from the action of the isometry g that
g(A+ ∪B+ ∪ B−) ⊂ A+. Thus w(Φ) ⊂ A+.

A-

g

h

-

A

B

B

+

+

Φ

Figure 12:
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This proves Tits alternative in the case when G ⊂ PSL(2,R) contains two hyper-
bolic/parabolic elements which do not share a fixed point.

Definition 84. A subgroup of PSL(2,R) is elementary if it either fixes a point in C̄

or preserves a 2-point subset of C̄.

Corollary 85. Suppose that Γ ⊂ PSL(2,R) is a nonelementary subgroup which
contains a hyperbolic or parabolic element. Then Γ contains F2.

Proof. Case 1. Suppose first that Γ contains a parabolic element γ whose fixed point
is ξ; since Γ does not fix ξ, there exists α ∈ Γ such that η = α(ξ) 6= ξ; then β := αγα−1

is a parabolic isometry with the fixed point η 6= ξ. Then Ping-Pong lemma implies
that 〈γn, βn〉 is isomorphic to F2 for large n.

Case 2. Now, suppose that γ ∈ Γ is a hyperbolic isometry with the fixed points
ξ, η. There exists α ∈ Γ such that α(ξ) 6= ξ and α(η) 6= η and α({ξ, η}) 6= {ξ, η}. If

α({ξ, η}) ∩ {ξ, η} = ∅,

then we are done by the Ping-Pong lemma, analogously to the parabolic case above.
Suppose that α(η) = ξ. Define β := αγα−1: it is a hyperbolic isometry which fixes ξ
and does not fix η. It is easy to see that the commutator [γ, β] is a parabolic isometry
which fixes ξ (just assume that ξ = ∞, η = 0 and then compute the commutator).
Therefore Γ contains a parabolic isometry and we are done by Case 1.

The most difficult case is when Γ contains only elliptic elements.

Lemma 86. If Γ contains only elliptic elements, then Γ fixes a point in H2.

Proof. Suppose that there are elliptic elements α, β in Γ with distinct fixed points
a, b ∈ H2. By assumption, their product γ = β ◦α is also an elliptic element; its fixed
point c is necessarily distinct from a and b. Consider the geodesic triangle in H2 with
the vertices a, b, c; let J = R1, R2, R3 denote reflections in the sides [ab], [bc] and [ca]
respectively. Then

α = R1R3, β = R2R1, γ = R2R3.

See Figure 13.

Then [β−1, α−1] = JγJγ = (Jγ)2. Note that Jγ is an orientation-reversing isome-
try. If Jγ is a reflection then [β−1, α−1] = Id, which would imply that a = b. Thus
Jγ is a glide-reflection; it follows that (Jγ)2 is a hyperbolic isometry (a translation
along the axis of of Jγ). Hence Γ contains a hyperbolic element. Contradiction.

Lemma 87. If Γ is an elementary subgroup of PSL(2,R), then Γ is virtually solvable.
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Figure 13:

Proof. If Γ preserves a 2-point set then its index 2 subgroup fixes a point. Therefore
it suffices to consider the case when Γ fixes a point ξ in C̄.

Case 1. ξ /∈ ∂∞H2 = R̄. Then Γ fixes a point in the hyperbolic plane H2 (either ξ
or its complex conjugate). By using the unit disk model we can assume that Γ fixes
the origin in the unit disk. Then Γ ⊂ SO(2); since the latter is abelian it follows that
Γ is abelian as well.

Case 2. ξ ∈ ∂∞H2 = R̄. We can assume that ξ = ∞; then Γ is contained in the
group S of affine transformations z 7→ az+b. The group S contains abelian subgroup
A which consists of translations z 7→ z + b. The group A = [S, S] is the commutator
subgroup of S. Therefore S is solvable. It follows that Γ is solvable as well.

Outline of the proof of Tits’ alternative in the general case. By taking a homo-
morphism L → ad(L) y Lie(L), where Lie(L) is the Lie algebra of L, it suffices to
prove Tits alternative for subgroups Γ ⊂ GL(n,R). Let G denote Zariski closure of
Γ in GL(n,R), i.e. the smallest algebraic subgroup (i.e. subgroup given by algebraic
equations) of GL(n,R) which contains Γ. If the identity component of G happens
to be solvable then we are done. Otherwise the identity component of G has non-
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trivial semisimple part; by dividing G by its solvable radical we can assume that G
is semisimple, i.e. its Lie algebra is a direct sum of simple Lie algebras. It suffices
of course to treat the case when G is simple (by considering projections of Γ to the
simple components of G). There are two cases which can occur:

(A) G is noncompact.

(B) G is compact.

(A) First, let’s consider the noncompact case. There is a Riemannian manifold
X, called symmetric space, associated with G on which G acts isometrically and
transitively: X = G/K, where K is a maximal compact subgroup of G. The most
important feature of X is that X has nonpositive sectional curvature and moreover,
the sectional curvature is negative in certain directions. Thus one can use X as a
replacement of the hyperbolic plane as we have done it in the case of SL(2,R). There
is a classification of isometries of X similar to the classification of isometries of H2:
There are hyperbolic, parabolic and elliptic isometries. The elliptic ones fix points in
X, hyperbolic isometries act as translations along certain geodesics in X. The fact
that G is the Zariski closure of Γ then implies that Γ contains hyperbolic isometries.
Then one can run a version of Ping-Pong lemma as we did in the case of H2 to show
that Γ contains F2.

(B) The noncompact case is much more complicated. Let γ1, ..., γm denote gen-
erators of Γ and consider the field F in R generated by the matrix entries of the
generators. If the field F happens to be a transcendental extension of Q one can
show that there are homomorphisms φj : Γ → G which converge (on each generator)
to the identity embedding so that φj(Γ) have the property: The fields Fj associated
with φj(Γ) as above are algebraic extensions of Q. The reason for that is that we
can assume that G is defined over Q (i.e. is given by equations with rational coef-
ficients), thus the variety Hom(Γ, G) is defined over Q as well; therefore algebraic
points are dense in this variety. Because Γ was Zariski dense in G, there exists j such
that φj(Γ) is Zariski dense as well and we are reduced to the case where the field F
is contained in Q̄. Let G(F ) denote the group of F -points in G (i.e. points whose
coordinates belong to F ). Consider the action of the Galois group Gal(Q̄/Q) on the
field F . Every such σ ∈ Gal(Q̄/Q) will induce (a discontinuous!) automorphism σ
of the complexification G(C) of the group G, and therefore it will send the groups
Γ ⊂ G(F ) to σ(Γ) ⊂ G(σ(F )) ⊂ G(C). The homomorphism σ : Γ → Γ′ := σ(Γ) is
1 − 1 and therefore, if for some σ the group G(σ(F )) happens to be a non-relatively
compact subgroup of G(C) we are back to the noncompact case (A).

However it could happen that for each σ the group G(σ(F )) is relatively compact
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and thus we seemingly have gained nothing. There is a remarkable construction which
saves the proof.

Adeles. (See [39, Chapter 6].) The ring of adeles was introduced by A. Weil in
1936. For the field F consider various norms | · | : F → R+. A norm is called
nonarchimedean if instead of the usual triangle inequality one has:

|a+ b| ≤ max(|a|, |b|).
For each norm ν we define Fν to be the completion of F with respect to this norm.
For each nonarchimedean norm ν the ring of integers Oν := {x : |x|ν ≤ 1} is an open
subset of Fν : If |x|ν = 1, |y|ν < 1/2, then for z = x+y we have: |z|ν ≤ max(1, |y|ν) =
1. Therefore, if z belongs to a ball of radius 1/2 centered at x, then z ∈ Oν.

Example 88. (A). Archimedean norms. Let σ ∈ Gal(Q̄/Q), then the embedding
σ : F → σ(F ) ⊂ C defines a norm ν on F by restriction of the norm (the usual
absolute value) from C to σ(F ). Then the completion Fν is either isomorphic to R

or to C. Such norms (and completions) are archimedean and each archimedean norm
of F appears in this way.

(B). Nonarchimedean norms. Let F = Q, pick a prime number p ∈ N. For
each number x = q/pn ∈ Q (where both numerator and denominator of q are not
divisible by p) let νp(x) := pn. One can check that ν is a nonarchimedean norm and
the completion of Q with respect to this norm is the field of p-adic numbers.

Let Nor(F ) denote the set of all norms on F which restrict to either standard or
one of the p-adic norms on Q ⊂ F . Note that for each x ∈ Q, x ∈ Op (i.e. p-adic
norm of x is ≤ 1) for all but finitely many p’s, since x has only finitely many primes
in its denominator. The same is true for elements of F : For all but finitely many
ν ∈ Nor(F ), ν(x) ≤ 1.

Product formula: For each x ∈ Q \ {0}
∏

ν∈Nor(Q)

ν(x) = 1.

Indeed, if x = p is prime then |p| = p for the archimedean norm, ν(p) = 1 if ν 6= νp is
a nonarchimedean norm and νp(p) = 1/p. Thus the product formula holds for prime
numbers x. Since norms are multiplicative functions from Q∗ to R+, the product
formula holds for arbitrary x 6= 0. A similar product formula is true for an arbitrary
algebraic number field F : ∏

ν∈Nor(F )

(ν(x))Nν = 1,
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where Nν = [Fν : Qν ], see [39, Chapter 6].

Definition 89. The ring of adeles is the restricted product

A(F ) :=
∏

ν∈Nor(F )

Fν ,

i.e. the subset of the direct product which consists of points whose projection to Fν
belongs to Oν for all but finitely many ν’s.

We topologize A(F ) via the product topology. For instance, if F = Q then A(Q)
is the restricted product

R ×
∏

p is prime

Qp.

Now a miracle happens:

Theorem 90. (See [39, Chapter 6, Theorem 1].) The image of the diagonal embed-
ding F ↪→ A(F ) is a discrete subset in A(F ).

Proof. It suffices to verify that 0 is an isolated point. Take the archimedean norms
ν1, ..., νm (there are only finitely many of them) and consider the open subset

U =
m∏

i=1

{x ∈ Fνi
: νi(x) < 1/2} ×

∏

µ∈Nor(F )\{ν1 ,...,νm}

Oµ

of A(F ). Then for each (xν) ∈ U ,

∏

ν∈Nor(F )

ν(xν) < 1/2 < 1.

Hence, by the product formula, the intersection of U with the image of F in A(F )
consists only of {0}.

Thus the embedding F ↪→ A(F ) induces a discrete embedding

Γ ⊂ G(F ) ↪→ G(A(F )).

For each norm ν ∈ Nor(F ) we have the projection pν : Γ → G(Fν). If the image pν(Γ)
is relatively compact for each ν then Γ is a discrete compact subset of G(A(F )), which
implies that Γ is finite, a contradiction! Thus there exists a norm ν ∈ Nor(F ) such
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that the image of Γ inG(Fν) is not relatively compact. If ν happens to be archimedean
we are done as before. The more interesting case occurs if ν is nonarchimedean.
Then one can define a metric space Xν on which the group G(Fν) acts isometrically,
faithfully and cocompactly (although the quotient is not a point but a Euclidean
simplex). The space Xν is called a Euclidean building, it is a nonarchimedean analogue
of the symmetric space. It has nonpositive curvature in the sense that the geodesic
triangles in Xν are “thinner” than geodesic triangles in the Euclidean plane. The
space Xν is covered by isometrically embedded copies of the Euclidean space Er,
called apartments, so that each pair of points in Xν belongs to an apartment. The
number r is called rank of the space Xν .

Example 91. If r = 1 then Xν is a simplicial metric tree where each edge has unit
length.

We note that the homomorphism Γ → G(Fν) → Aut(Xν) is an embedding. The
isometries of Xν admit a classification similar to the isometries of H2: Each isometry
is either hyperbolic (i.e. a translation along a geodesic contained in one of the apart-
ments) or elliptic, i.e. fixes a point in Xν. The group Γ is Zariski dense in G(Fν),
therefore it contains hyperbolic isometries. This allows one to run an analogue of
Ping-Pong type arguments in Xν and show that Γ contains F2.

5 Growth of groups and Gromov’s theorem

Let X be a metric space of bounded geometry and x ∈ X is a base-point. We define
the growth function

βX,x(R) := |B(x,R)|,
the cardinality of R-ball centered at x. We introduce the following asymptotic in-
equality between functions α : R+ → R+:

β ≺ α,

if there exist constants C1, C2 such that β(R) ≤ C1α(C2R) for sufficiently large R.
We say that two functions are equivalent, α ∼ β, if

α ≺ β and β ≺ α.

Lemma 92. (Equivalence class of growth is QI invariant.) Suppose that f : (X, x) →
(Y, y) is a quasi-isometry. Then βX,x ∼ βY,y.

46



Proof. Let f̄ be a coarse inverse to f , assume that f, f̄ are L-Lipschitz. Then both
f , f̄ have multiplicity ≤ m (since X and Y have bounded geometry). Then

f(B(x,R)) ⊂ B(y, LR).

It follows that |B(x,R)| ≤ m|B(y, LR)| and |B(y, R)| ≤ m|B(x, LR)|.
Corollary 93. βX,x ∼ βX,x′ for all x, x′ ∈ X.

Henceforth we will suppress the choice of the base-point in the notation for the
growth function.

Definition 94. X has polynomial growth if βX(R) ≺ Rd for some d. X has ex-
ponential growth if eR ≺ βX(R). X has subexponential growth if for each c > 0,
βX(R) ≤ ecR for all sufficiently large R.

Example 95. Show that for each (bounded geometry) space X, βX(R) ≺ eR.

For a group G with finite generating set S we sometimes will use the notation βS(R)
for βG(R), where S is used to metrize the group G. Since G acts transitively on itself,
this definition does not depend on the choice of a base-point.

Example 96. Suppose that G = Fr is a free nonabelian group. Show that G has
exponential growth.

Suppose that H is a subgroup of G. It is then clear that

βH ≺ βG.

Note that if φ : G→ Fr is an epimorphism, then its admits a left inverse ι : Fr → G.
Hence G contains Fr and if r ≥ 2 it follows that G has exponential growth.

The main objective of this chapter is to prove

Theorem 97. (Gromov, [27]) If G is a finitely generated group of polynomial growth
then G is virtually nilpotent.

We will also verify that all virtually nilpotent groups have polynomial growth.

Corollary 98. Suppose that G is a finitely generated group which is quasi-isometric
to a nilpotent group. Then G is virtually nilpotent.

Proof. Follows directly from Gromov’s theorem since polynomial growth is a QI in-
variant.

Remark 99. An alternative proof of the above corollary (which does not use Gromov’s
theorem) was recently given by Y. Shalom [51].
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5.1 Nilpotent and solvable groups

Given a group G and a subgroup S ⊂ G define [G, S] as the subgroup generated by
the commutators [g, s], g ∈ G, s ∈ S. Define the lower central series of G:

G = G0 ⊃ [G,G] = G1 ⊃ [G,G1] = G2 ⊃ [G,G2] = G3...

and the derived series of G:

G = G0 ⊃ [G,G] = G1 ⊃ [G1, G1] = G2 ⊃ [G2, G2] = G3...

The group G is called nilpotent, resp. solvable, if the lower central, resp. derived,
series of G terminates at the trivial group. The group G is called s-step nilpotent if
its lower central series is

G0 ⊃ G1 ⊃ ...Gs−1 ⊃ 1,

where Gs−1 6= 1.

Given a nilpotent group G we note that all the subgroups Gi are finitely generated,
their generators are the iterated commutators of the generators of G. We also have
finitely generated abelian groups Ai := Gi/Gi+1. After passing to a finite index
subgroup in G we can assume that each Ai is torsion-free. Let ψ be an automorphism
of G, then it preserves the lower central series and induces automorphisms of the free
abelian groups Ai. Each such automorphism ψi is given by a matrix with integer
coefficients. After taking sufficiently high power of ψ we can assume that none of
these matrices have a root of unity (different from 1) as an eigenvalue. If each ψi has
only 1 as an eigenvalue then after “refining” the lower central series we can assume
that each ψi is trivial. Then the extension G̃ of G by ψ is again a nilpotent group.

Theorem 100. Suppose that 1 → G → G̃ → Z → 1 is an extension of G by ψ and
at least one eigenvalue of one of the ψi’s is different from 1. Then G̃ has exponential
growth.

Proof. We begin with

Lemma 101. Let A be a finitely generated free abelian group and α ∈ Aut(A). Then:

If α has an eigenvalue ρ such that |ρ| ≥ 2 then there exists a ∈ A such that

ε0a + ε1α(a) + ... + εmα
m(a) + ... ∈ A

(where εi ∈ {0, 1} and εi = 0 for all but finitely many i’s) are distinct for different
choices of the sequences (εi).
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Proof. The transpose matrix αT also has ρ as its eigenvalue. Hence there exists a
nonzero linear function β : A → C such that β ◦ α = ρβ. Pick any a ∈ A \Ker(β).
Then

β(
∞∑

i=0

εiα
i(a)) = (

∞∑

i=0

εiρ
i(a))β(a).

Suppose that
∞∑

i=0

εiα
i(a) =

∞∑

i=0

δiα
i(a).

Then
∞∑

i=0

ηiα
i(a) = 0,

where |ηi| ≤ 1 for each i. Let N be the maximal value of i for which ηi 6= 0. Then

|ρ|N ≤
N−1∑

i=0

|ρ|i =
|ρ|N − 1

|ρ| − 1
≤ |ρ|N − 1.

Contradiction.

We now can prove theorem 100. Suppose there is i such that αi has an eigenvalue
ρ which is not a root of unity. After taking appropriate iteration of ψ and possibly
replacing ψ with ψ−1 we can assume that such that |ρ| ≥ 2. Let x ∈ Gi be an element
which projects to a ∈ Ai under the homomorphism Gi → Gi/Gi+1. Let z ∈ G̃ denote
the generator corresponding to the automorphism ψ. Define elements

xε0(zxε1z−1)...(zmxεmz−m) ∈ Gi, εi ∈ {0, 1}.
After canceling out z’s we get:

xε0zxε1zxε2z...zxεmz−m

The norm of each of these elements in G̃ is at most 3(m + 1). These elements
are distinct for different choices of (εi)’s, since their projections to Ai are distinct
according to the above lemma. Thus we get 2m distinct elements of G̃ whose word
norm is at most 3(m+ 1). This implies that G̃ has exponential growth.

Proposition 102. Suppose that G is a group of subexponential growth, which fits
into a short exact sequence

1 → K → G
ψ→ Z → 1.

Then K is finitely generated. Moreover, if βG(R) ≺ Rd then βK(R) ≺ Rd−1.
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Proof. Let γ ∈ G be an element which projects to the generator 1 of Z. Let {f1, ..., fk}
denote a set of generators ofG. Then for each i there exists si ∈ Z such that ψ(fiγ

si) =
0 ∈ Z. Define elements gi := fiγ

si, i = 1, ..., k. Clearly, the set {g1, ..., gk, γ} generates
G. Without loss of generality we may assume that each generator gi is nontrivial.
Define

S := {γm,i := γmgiγ
−m, m ∈ Z, i = 1, ..., k}.

Then the (infinite) set S generates K. Given i consider products of the form:

γε10,i...γ
εm
m,i, εi ∈ {0, 1}, m ≥ 0.

We have 2m+1 words like this, each of length ≤ 2m. Hence subexponential growth of
G implies that for a certain m = m(i), two of these words are equal:

γε10,i...γ
εm
m,i = γδ10,i...γ

δm
m,i,

εm 6= δm. It follows that

γm,i = w(γ0,i, ..., γm−1,i) ∈ 〈γ0,i, ..., γm−1,i〉,

where w is a certain word in the generators γ0,i, ..., γm−1,i. Consider

γm+1,i = γγm,iγ
−1 = γw(γ0,i, ..., γm−1,i)γ

−1 = w′(γ1,i, ..., γm,i).

Here w′ is the word in the generators γ1,i, ..., γm,i which is obtained from w by inserting
the products γ−1 · γ between each pair of letters in the word w and then using the
fact that

γj+1,i = γγj,iγ
−1, j = 0, ..., m− 1.

However w′ ∈ 〈γ0,i, ..., γm−1,i〉, since

γm,i ∈ 〈γ0,i, ..., γm−1,i〉.

Thus γm+1,i ∈ 〈γ0,i, ..., γm−1,i〉 as well. We continue by induction: It follows that
γn,i ∈ 〈γ0,i, ..., γm−1,i〉 for each n ≥ 0. The same argument works for the negative
values of m and therefore there exists M(i) so that each γj,i is contained in the
subgroup of K generated by

{γl,i, |l| ≤M(i)}.
Hence the subgroup K is generated by the finite set

{γl,i, |l| ≤M(i), i = 1, ..., k}.
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This proves the first assertion of the Proposition.

Now let us prove the second assertion which estimates the growth function of K.
Take a finite generating set Y of the subgroup K and set X := Y ∪ {γ}, where γ is
as above. Then X is a generating set of G. Given n ∈ N let N := βY (n), where βY
is the growth function of K with respect to the generating set Y . Thus there exists
a subset

H := {h1, ..., hN} ⊂ K

where ‖hi‖Y ≤ n and hi 6= hj for all i 6= j. Then we get a set T of (2n + 1) · N
pairwise distinct elements

hiγ
j, −n ≤ j ≤ n, i = 1, ..., N.

It is clear that ‖hiγj‖X ≤ 2n for each hjγ
j ∈ T . Therefore

nβY (n) ≤ (2n+ 1)βY (n) = (2n+ 1)N ≤ βX(2n) ≤ C(2n)d = 2dC · nd

It follows that
βY (n) ≤ 2dC · nd−1 ≺ nd−1.

5.2 Growth of nilpotent groups

Consider an s-step nilpotent group G with the lower central series

G0 ⊃ G1 ⊃ ...Gs−1 ⊃ 1,

and the abelian quotients Ai = Gi/Gi+1. Let di denote the rank of Ai (or, rather, the
rank of its free part). Define

d(G) :=

s−1∑

i=0

(i+ 1)di.

Theorem 103. (Bass, [2]) βG(R) ∼ Rd(G).

Example 104. Prove Bass’ theorem for abelian groups.

Our goal is to prove only that G has polynomial growth without getting a sharp
estimate.

For the proof we introduce the notion of distortion for subgroups which is another
useful concept of the geometric group theory. Let H be a finitely generated subgroup
of a finitely generated group G, let dH , dG denote the respective word metrics on H
and G, let BG(e, r) denote r-ball centered at the origin in the group G.
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Definition 105. Define the distortion function δ(R) = δ(H : G,R) as

δ(R) := max{dH(e, h) : h ∈ BG(e, R)}.

The subgroup H is called undistorted (in G) if δ(R) ∼ R.

Example 106. Show that H is undistorted iff the embedding ι : H → G is a quasi-
isometric embedding.

In general, distortion functions for subgroups can be as bad as one can imagine, for
instance, nonrecursive.

Example 107. Let G := 〈a, b : aba−1 = bp〉, p ≥ 2. Then the subgroup H = 〈b〉 is
exponentially distorted in G.

Proof. To establish the lower exponential bound note that:

gn := anba−n = bp
n

,

hence dG(1, gn) = 2n+ 1, dH(1, gn) = pn, hence

δ(R) ≥ p[(R−1)/2].

It will leave the upper exponential bound as a exercise (compare the proof of Theorem
109).

Recall that each subgroup of a finitely generated nilpotent group is finitely gener-
ated itself.

The following theorem was originally proven by M. Gromov in [29] (see also [59]);
later on, an explicit computation of the degrees of distortion was established by
D. Osin in [45]:

Theorem 108. Let G be a finitely generated nilpotent group, then every subgroup
H ⊂ G has polynomial distortion.

I will prove only a special case of this result which will suffice for our purposes:

Theorem 109. Let G be a finitely generated nilpotent group, then it commutator
subgroup G1 := [G,G] ⊂ G0 := G has at most polynomial distortion.
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Proof. As the equivalence class of a distortion function is a commensurability in-
variant, it suffices to consider the case when A = G/G1 is free abelian. Suppose
that G is n-step nilpotent. We choose a generating set T of G as follows. Set
T := T0 t T1 t ... t Tn, where T0 projects to the set of free generators of A, Ti ⊂ Gi.
Let xi, i = 1, ..., p, denote the elements of T0. We assume that each Ti+1 contains all
the commutators [y±1

k , x±1
j ], where yj ∈ Ti−1, i = 1, ..., n.

For each word w in the generating set T define its i-length `i(w) to be the total
number of the letters y±1

j ∈ Ti which appear in w. Clearly,

‖w‖ =

n∑

i=0

`i(w).

Given an appearance of the letter a = x±1
k in the word w let’s “move” this letter

through w so that the resulting word w′ equals to w as an element of G and that the
letter a appears as the first letter in the new word w′.

This involves at most ‖w‖ “crossings” of the letters in w. Each “crossing” results
in introducing a commutator of the corresponding generators:

yja→ ayj[y
−1
j , a−1].

Therefore,
`i+1(w

′) ≤ `i+1(w) + `i(w). (110)

We will apply this procedure inductively to each letter a = x±1
k in the word w, so

that the new word w∗ starts with a power of x1, then comes the power of x2, etc,
by moving first all appearances of x1 to the left, then of x2 to the left, etc. In other
words

w∗ = xα1

1 xα2

2 ...x
αp

p · u,
where u is a word in the generators S = T1 ∪ .. ∪ Tn of the group G1. We have to
estimate the length of the word u. We have a sequence of words

w0 = w,w1, ..., wm = w∗,

where each wi is the result of moving a letter in wi−1 to the left and m ≤ `0(w).
Clearly, `0(wj) = `0(w) for each j. By applying the inequality (110) inductively we
obtain

`i+1(wj) ≤ `i+1(w) + j`i(wj−1)
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and hence:

`i+1(wm) ≤ `i+1(w) +m`i(w) +m(m− 1)`i−1(w) + ...+
m!

(m− i− 1)!
`0(w)

≤ mi+1
i+1∑

j=0

`j(w) ≤ mi+1‖w‖.

Therefore, `i(w∗) ≤ ‖w‖i+1 for each i. By adding up the results we get:

‖u‖ =

n∑

i=1

`i(w∗) ≤
n∑

i=1

‖w‖i+1 ≤ n‖w‖n+1.

Suppose now that w represents an element g of H = G1. Then, since x1, ..., xp project
to a free generating set of A, it follows that `0(w∗) = 0 and therefore w∗ = u is a
word in the generators of the group H = G1. Thus for each g ∈ H we obtain:

dH(1, g) ≤ ndG(1, g)n+1.

Hence the distortion function δ of H in G satisfies δ(R) ≺ Rn+1.

Theorem 111. Each nilpotent group has at most polynomial growth.

Proof. The proof is by induction on the number of steps in the nilpotent group. The
assertion is clear is G is 1-step nilpotent (i.e. abelian). Suppose that each s− 1-step
nilpotent group has at most polynomial growth. Consider s-step nilpotent group G:

G = G0 ⊃ G1 ⊃ ...Gs−1 ⊃ 1.

By the induction hypothesis, G1 has growth ≺ Rd and, according to Theorem 109,
the distortion of G1 in G is at most RD. Let r denote the rank of the abelinization
of G.

Consider an element γ ∈ BG(e, R), then γ can be written down as a product w0w1

where w0 is a word on T0 of the form:

xk11 ...x
kn

n ,

and w1 is a word on T1. Then ‖w0‖ ≤ R, and ‖w1‖ ≤ ‖w0‖+ ‖γ‖ ≤ 2R. The number
of the words w0 of length ≤ R is ≺ Rr. Since G1 has distortion ≺ RD in G, the length
of the word w1 on the generators T1 is ≺ (2R)D. Since βG1

≺ Rd we conclude that

βG(R) ≺ Rr · (2R)dD ∼ RdD+r.
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Corollary 112. A solvable group G has polynomial growth iff G is virtually nilpotent.

Proof. It remains to show that if G is a solvable and has polynomial growth then G
is virtually nilpotent group. By considering the derived series of G we get the short
exact sequence

1 → K → G→ Z.

Suppose that G has polynomial growth ≺ Rd, then K is finitely generated, solvable
and has growth ≺ Rd−1. By induction, we can assume that K is virtually nilpotent.
Then Theorem 100 implies that G is also virtually nilpotent.

Corollary 113. Suppose that G is a finitely generated linear group. Then G either
has polynomial or exponential growth.

Proof. By Tits alternative either G contains a nonabelian free subgroup (and hence
G has exponential growth) or G is virtually solvable. For virtually solvable groups
the assertion follows from Corollary 112.

R. Grigorchuk [26] constructed finitely generated groups of intermediate growth, i.e.
their growth is superpolynomial but subexponential. Existence of finitely-presented
groups of this type is unknown.

5.3 Elements of the nonstandard analysis

Our discussion here follows [25], [58].

Let I be a countable set. Recall that an ultrafilter on I is a finitely additive measure
with values in the set {0, 1} defined on the power set 2I. We will assume that ω is
nonprincipal. Given a set S we have its ultrapower

S∗ := SI/ω,

which is a special case of the ultraproduct. Note that if G is a group (ring, field, etc.)
then G∗ has a natural group (ring, field, etc.) structure. If S is totally ordered then
S∗ is totally ordered as well: [f ] ≤ [g] (for f, g ∈ SI) iff f(i) ≤ g(i) for ω-all i ∈ I.

For subsets P ⊂ S we have the canonical embedding P ↪→ P̂ ⊂ S∗ given by sending
x ∈ P to the constant function f(i) = x.

Thus we define the ordered semigroup N∗ (the nonstandard natural numbers) and
the ordered field R∗ (the nonstandard real numbers). An element R ∈ R∗ is called
infinitely large if given any r ∈ R ⊂ R∗, one has R ≥ r. Note that given any R ∈ R∗

there exists n ∈ N∗ such that n > R.
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Definition 114. A subset W ⊂ S∗
1 × ...× S∗

n is called internal if “membership in W
can be determined by coordinate-wise computation”, i.e. if for each i ∈ I there is a
subset Wi ⊂ S1 × ...× Sn such that for f1 ∈ SI1 , ..., fn ∈ SIn

([f1], ...., [fn]) ∈ W ⇐⇒ (f1(i), ..., fn(i)) ∈ Wi for ω − all i ∈ I.

The sets Wi are called coordinates of W .

Using this definition we can also define internal functions S∗
1 → S∗

2 as functions
whose graphs are internal subsets of S∗

1×S∗
2 . Clearly the image of an internal function

is an internal subset of S∗
2 .

Lemma 115. Suppose that A ⊂ S is infinite subset. Then Â ⊂ S∗ is not internal.

Proof. Suppose that Ai, i ∈ I, are coordinates of Â. Let a1, a2, .... be an infinite
sequence of distinct elements of A. Define the following function f ∈ SI :

Case 1. f(n) = aj, where j = max{j ′ : aj′ ∈ An} if the maximum exists,

Case 2. f(n) = an+j, where j = min{j ′ : an+j′ ∈ An} if the maximum above does
not exist.

Note that for each n ∈ I, f(n) ∈ An, therefore [f ] ∈ Â. Since Â consists of (almost)
constant functions, there exists m ∈ N such that f(n) = am for ω-all n ∈ I.

It follows that the Case 2 of the definition of f cannot occur for ω-all n ∈ I. Thus
for almost all n ∈ I the function f is defined as in Case 1. It follows that for almost
all n ∈ I, am+1 /∈ An. Thus am+1 /∈ A, which is a contradiction.

Corollary 116. N is not an internal subset of N∗.

Suppose that (X, d) is a metric space. Then X∗ has a natural structure of R∗-metric
space where the “distance function” d takes values in R∗

+:

d([f ], [g]) := [i 7→ d(f(i), g(i))].

We will regard d∗ as a generalized metric, so we will talk about metric balls, etc. Note
that the “metric balls” in X∗ are internal subsets.

A bit of logic. Let Φ be a statement about elements and subsets of S. The non-
standard interpretation Φ∗ of Φ is a statement obtained from Φ by replacing:

1. Each entry of the form “x ∈ S” with “x ∈ S∗”.

2. Each entry of the form “A ⊂ S” with “A an internal subset of S∗”.
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Theorem 117. (Los) A statement Φ about S is true iff its nonstandard interpretation
Φ∗ about S∗ is true.

As a corollary we get:

Corollary 118. 1. (Completeness axiom) Each nonempty bounded from about inter-
nal subset A ⊂ R∗ has supremum. (Note that R ⊂ R∗ does not have supremum.)

2. (Nonstandard induction principle.) Suppose that S ⊂ N∗ is an internal subset
such that 1 ∈ S and for each n ∈ S, one has n + 1 ∈ S. Then S = N∗. (Note that
this fails for S = N ⊂ N∗.)

Example 119. 1. Give a direct proof of the completeness axiom for R∗.

2. Use the completeness axiom to derive the nonstandard induction principle.

Suppose we are given an ∈ R∗, where n ∈ N∗. Using the nonstandard induction
principle on can define the nonstandard products:

a1...an, n ∈ N∗,

as an internal function f : N∗ → R∗ given by f(1) = a1, f(n+ 1) = f(n)an+1.

5.4 Regular growth theorem

A metric space X is called doubling if there exists a number N such that each R-ball
in X is covered by N balls of radius R/2.

Exercise 120. Show that doubling implies polynomial growth for spaces of bounded
geometry.

Although there are spaces of polynomial growth which are not doubling, the Regular
Growth Theorem below shows that groups of polynomial growth exhibit doubling-like
behaviour.

Our discussion here follows [58].

Theorem 121 (Regular growth theorem). Suppose that G is a finitely generated
group such that βG(R) ≺ Rd. Then there exists an infinitely large ρ ∈ R∗ such that
for all i ∈ N \ {1} the following assertion P (ρ, i) holds:

If x1, ..., xt ∈ B(e, ρ/2) ⊂ G∗ and the balls B(xj, ρ/i) are pairwise disjoint (j =
1, ..., t) then t ≤ id+1.

Here e is the identity in G∗.
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Proof. Start with an arbitrary infinitely large R ∈ R∗ (for instance, represented by
the sequence n, n ∈ N = I). I claim that the number ρ can be found within the
interval [logR,R] (here logarithm is taken with the base 2). Suppose to the contrary,
that for each ρ ∈ [logR,R] there exists i ∈ N \ {1} such that P (ρ, i) fails. Observe
that the assertion P (ρ, i) also makes sense when i ∈ N∗. Then we define the function

ι : [logR,R] → N∗, ι(ρ) is the smallest i for which P (ρ, i) fails.

Since i is less than any nonstandard natural number, it follows that the image of ι is
contained in N (embedded in N∗ diagonally). Since the nonstandard distance function
is an internal function, the function ι is internal as well. Therefore, according to
Lemma 115, the image of ι has to be finite. Thus there exists K ∈ N such that

ι(ρ) ∈ [2, K], ∀ρ ∈ [logR,R].

We now define (using the nonstandard induction) the following elements of G∗:

1. x1(1), ..., xt1(1) ∈ B(e, R/2) such that t1 = id+1
1 , (for i1 = ι(R)) and the balls

B(xj(1), R/i1), contained in B(e, R) are pairwise disjoint.

2. Each nonstandard ball B(xj(1), R/i1) is isometric to B(e, R/i1). Therefore
failure of P (R/i1, i2) (where i2 = ι(R/i1)) implies that in each ball B(xj(1), R/(2i1))
we can find points

x1(2), ..., xt2(2), t2 = id+1
2 ,

so that the balls B(xj(2), R/(i1i2)) ⊂ B(xj(1), R/i1) are pairwise disjoint.

We continue via the nonstandard induction. Given u ∈ N∗ such that the points
x1(u), ..., xtu(u) are constructed, we construct the next generation of points

x1(u+ 1), ..., xtu+1
(u+ 1)

within each ball B(xj(u), R/(2i1...iu)) so that the balls

B(xj(u+ 1), R/(i1...iu+1))

are pairwise disjoint and tu+1 = id+1
u . Here and below the product i1...iu+1 is under-

stood via the nonstandard induction as in the end of the previous section.

Note that
B(xj(u+ 1), R/(i1...iu+1)) ⊂ B(xj(u), R/(i1...iu)).

In particular,

B(xj(u+ 1), R/(i1...iu+1)) ∩ B(xk(u+ 1), R/(i1...iu+1)) = ∅
when j 6= k.
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Remark 122. Thus in the formulation of the Assertion P (ρ, i) it is important to
consider points in the ball B(e, ρ/2) rather than in B(e, ρ).

This induction process continues as long as R/(i1...iu+1) ≥ logR. Recall that ij ≥ 2,
hence

R/(i1...iu) ≤ 2−uR.

Therefore, if u > logR− log logR then

R/(i1...iu) < logR.

Thus there exists u ∈ N∗ such that

R/(i1...iu) ≥ logR, but R/(i1...iu+1) < logR.

Let’s count the “number” (nonstandard of course!) of points xi(k) we have con-
structed between the step 1 of induction and the u-th step of induction:

We get id+1
1 id+1

2 ...id+1
u points; since

R/(K logR) ≤ R/(iu+1 logR) < i1...iu,

we get:
(R/(K logR))d+1 ≤ (i1i2...iu)

d+1.

What does this inequality actually mean? Recall that R and u are represented by
sequences of real and natural numbers Rn, un respectively. The above inequality thus
implies that for ω-all n ∈ N, one has:

(
Rn

K logRn

)d+1

≤ |B(e, Rn)|.

Since |B(e, R)| ≤ CRd, we get:

Rn ≤ Const(log(Rn))
d+1,

for ω-all n ∈ N. If Rn = 2λn, we obtain

2λn/(d+1) ≤ Constλn,

where ω-limλn = ∞. Contradiction.
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5.5 Topological group actions

The proof of Gromov’s polynomial growth theorem relies heavily upon the work of
Montgomery and Zippin on Hilbert’s 5-th problem (characterization of Lie group as
topological groups). Therefore in this section we collect several elementary facts in
point-set topology and review, highly nontrivial results of Montgomery and Zippin.

Recall that a topological group is a group G which is given topology so that the
groop operations (multiplication and inversion) are continuous. A continuous group
action of a topological group G on a topological space X is a continuous map

µ : G×X → X

such that µ(e, x) = x for each x ∈ X and for each g, h ∈ G

µ(gh, x) = µ(g) ◦ µ(h)(x).

In particular, for each g ∈ G the map x 7→ µ(g)(x) is a homeomorphism X → X.
Thus each action µ defines a homomorphism G→ Homeo(X). The action µ is called
effective if this homomorphism is injective.

Throughout this section we will consider only metrizable topological spaces X.
We will topologize the group of homeomorphisms Homeo(X) via the compact-open
topology, so that we obtain a continuous action Homeo(X) ×X → X.

Lemma 123. Fix some r > 0 and let Y be a geodesic metric space where each metric
r-ball is compact. Then Y is a proper metric space.

Proof. Pick a point o ∈ Y and a number ε in the open interval (0, r). We will prove
inductively that for each n ∈ N the ball

B(o, n(r − ε))

is compact. The assertion is clear for n = 1 since B(o, r − ε) is a closed subset of
the compact B(o, r). Suppose the assertion holds for some n ∈ N. Then the metric
sphere S(o, n(r − ε)) = {y ∈ Y : d(y, o) = n(r − ε)} is compact. Let {xj} be a finite
ε/2-net in S(o, n(r − ε)). Since Y is a geodesic metric space, for each point y ∈ Y
such that d(y, o) = R > n(r − ε), there exists a point y ′ ∈ Sn(r−ε)(o), which lies on a
geodesic connecting o and y, such that d(y′, y) = R− n(r− ε). Therefore, given each
point y ∈ B(o, (n+ 1)(r − ε)), there exists a point xj as above such that

d(y, xj) ≤ r − ε+
ε

2
≤ r.
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Therefore y ∈ B(xj, r). Therefore the finite union of compact metric balls B(xj, r)
cover B(o, (n+ 1)(r − ε)). Thus B(o, (n+ 1)(r − ε)) is compact.

Example 124. Construct an example of a non-geodesic metric space where the as-
sertion of the above lemma fails.

Definition 125 (Property A, section 6.2 of [41]). Suppose that H is a separable,
locally compact topological group. Then H is said to satisfy Property A if for each
neighborhood V of e in H there exists a compact subgroups K ⊂ H so that K ⊂ V
and H/K is a Lie group.

In other words, the group H can be approximated by the Lie groups H/K.

According to [41, Chapter IV], each separable locally compact group H contains
an open and closed subgroup Ĥ ⊂ H such that Ĥ satisfies Property A.

Theorem 126 (Montgomery-Zippin, [41], Corollary on page 243, section
6.3). Suppose that X is a topological space which is connected, locally connected,
finite-dimensional and locally compact. Suppose that H is a separable locally compact
group satisfying Property A, H × X → X is a topological action which is effective
and transitive. Then H is a Lie group.

Suppose now that X is a metric space which is complete, proper, connected, locally
connected. We give Homeo(X) the compact-open topology.

Let H ⊂ Homeo(X) be a closed subgroup for which there exists L ∈ R such that
each h ∈ H is L-Lipschitz. (For instance, H = Isom(X).) We assume that H y X is
transitive. Pick a point x ∈ X. It is clear that H ×X → X is a continuous effective
action. It follows from the Arcela-Ascoli theorem that H is locally compact.

Theorem 127. Under the above assumptions, the group H is a Lie group with finitely
many connected components.

Proof.

Lemma 128. The group H is separable.

Proof. Given r ∈ R+ consider the subset Hr = {h ∈ H : d(x, h(x)) ≤ r}. By
Arcela-Ascoli theorem, each Hr is a compact set. Therefore

H =
⋃

r∈N

Hr
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is a countable union of compact subsets. Thus it suffices to prove separability of each
Hr. Given R ∈ R+ define the map

φR : H → CL(B(x,R), X)

given by the restriction h 7→ h|B(x,R). Here CL(B(x,R), X) is the space of L-
Lipschitz maps from B(x,R) to X. Observe that CL(B(x,R), X) is metrizable via

d(f, g) = max
y∈B(x,R)

d(f(y), g(y)).

Thus the image of Hr in each CL(B(x,R), X) is a compact metrizable space. There-
fore φR(Hr) is separable. Indeed, for each i ∈ N take Ei ⊂ φR(Hr) to be an 1

i
-net.

The union ⋃

i∈N

Ei

is a dense countable subset of φR(Hr). On the other hand, the group H (as a topo-
logical space) is homeomorphic to the inverse limit

lim
R∈N

φR(H),

i.e. the subset of the product
∏

i φi(H) (given the product topology) which consists
of sequences (gi) such that

φj(gi) = gj, j ≤ i.

Let E ⊂ φi(Hr) be a dense countable subset. For each element ei ∈ Ei consider a
sequence (gj) = ẽi in the above inverse limit such that gi = ei. Let ẽi ∈ H be the
element corresponding to this sequence (gj). It is clear now that

⋃

i∈N

{ẽi ∈ H, ei ∈ Ei}

is a dense countable subset of Hr.

Corollary 129. Separability implies that for each open subgroup U ⊂ H, the quotient
H/U is a countable set.

Lemma 130. The orbit Y := Ĥx ⊂ X is open.

Proof. If Y is not open then it has empty interior (since Ĥ acts transitively on Y ).
Since Ĥ ⊂ H is closed, the Arcela-Ascoli theorem implies that Y is closed as well.
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Since Ĥ is open, by the above corollary, the coset S := H/Ĥ is countable. Choose
representatives gi of S. Then ⋃

i

giY = X.

Therefore the space X is a countable union of closed subsets with empty interior.
However, by Baire’s theorem, each first category subset in the locally compact metric
space X has empty interior. Contradiction.

We now can conclude the proof of Theorem 127. Let Z ⊂ Y be the connected
component of Y containing x. Its stabilizer F ⊂ Ĥ again has the Property A. It
is clear that F is an open subgroup of Ĥ. Then the assumptions of Theorem 126
are satisfied by the action F y Z. Therefore F is a Lie group. However F ⊂ H
is an open subgroup; therefore the group H is a Lie group as well. Let K be the
stabilizer of x in H. The subgroup K is a compact Lie group and therefore has only
finitely many connected components. Since the action H y X is transitive, X is
homeomorphic to H/K. Connectedness of X now implies that H has only finitely
many connected components.

We now verify that the isometry groups of asymptotic cones corresponding to groups
of polynomial growth satisfy the assumptions of Theorem 127.

Proposition 131. Let G be a group of growth ≺ Rd. Suppose that ρ = (ρn) is a
sequence satisfying the assertion of the Regular Growth Theorem. Then the asymptotic
cone Xω constructed from the Cayley graph of G by rescaling via ρ−1

n , is (a) a proper
homogeneous metric space, (b) has the covering dimension ≤ d+ 1.

Proof. (a) Recall that Xω is complete, geodesic and Gω acts isometrically and tran-
sitively on Xω, see Proposition 75.

Therefore, according to Lemma 123 it suffices to show that the metric ballB(eω, 1/2)
is totally bounded. Let ε > 0. Then there exists i ∈ N, i ≥ 2, such that 1/(2i) < ε.
For the ball B(e, ρ) ⊂ G∗ consider a maximal collection of points xi ∈ B(e, ρ/2) so
that the balls B(xj, ρ/i) are pairwise disjoint. Then, according to the regular growth
theorem, the number t of such points xj does not exceed id+1. Then the points
x1, ..., xt form a 2ρ/i-net in B(e, ρ/2). By passing to Xω we conclude that the corre-
sponding points x1ω, ..., xtω ∈ B(eω, 1/2) form an ε-net. Since t is finite we conclude
that B(eω, 1/2) is totally bounded and therefore compact.

(b) Recall that the (covering) dimension of a metric space Y is the least number n
such that for all sufficiently small ε > 0 the space Y admits a covering by ε-balls so
that the multiplicity of this covering is ≤ n+ 1.
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To prove the dimension bound we first review the concept of Hausdorff dimension
for metric spaces. Let K be a metric space and α > 0. The α-Hausdorff measure
µα(K) is defined as

lim
r→0

inf

N∑

i=1

rαi ,

where the infimum is taken over all finite coverings of K by balls B(xi, ri), ri ≤ r
(i = 1, ..., N). Then the Hausdorff dimension of K is defined as:

dimHaus(K) := inf{α : µα(K) = 0}.
Example 132. Verify that the Hausdorff dimension of the Euclidean space Rn is n.

We will need

Theorem 133. (Hurewicz-Wallman, [31]) dim(K) ≤ dimHaus(K), where dim stands
for the covering dimension.

Thus it suffices to show finiteness of the Hausdorff dimension of Xω. We first verify
that the Hausdorff dimension of B(eω, 1/2) is at most d+ 1. Pick α > d+ 1; for each
i consider the covering of B(eω, 1/2) by the balls

B(xjω, 2/i), j = 1, ..., t ≤ id+1.

Therefore we get:
t∑

j=1

(2/i)α ≤ 2αid+1/iα = 2αid+1−α.

Since α > d+ 1, limi→∞ 2αid+1−α = 0. Hence µα(B(eω, 1/2)) = 0.

Thus, by homogeneity of Xω, dimHaus(B(x, 1/2)) ≤ d + 1 for each x ∈ Xω. Since
the Hausdorff measure is additive, we conclude that for each compact subset K ⊂ Xω,
dimHaus(K) ≤ d+ 1.

We now consider the entire space Xω. Let An denote the closed annulus

B(eω, n+ 1) \B(eω, n).

Then An is compact and hence µα(An) = 0 for each α > d + 1. Additivity of µα
implies that

µα(Xω) ≤
∞∑

n=1

µα(An) = 0.

Therefore dim(Xω) ≤ dimHaus(Xω) ≤ d+ 1.
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5.6 Proof of Gromov’s theorem

The proof is by induction on the degree of polynomial growth. If βG(R) ≺ R0 = 1
then G is finite and there is nothing to prove. Suppose that each group of growth at
most Rd−1 is virtually nilpotent. Let G be a a (finitely generated group) of growth
≺ Rd. Find a sequence λn satisfying the conclusion of the regular growth theorem
and construct the asymptotic cone Xω of the Cayley graph of G via rescaling by the
sequence λn. Then Xω is connected, locally connected, finite-dimensional and proper.
Recall that according to Proposition 75, we have a homomorphism

α : Gω → L := Isom(Xω)

such that α(Gω) acts on Xω transitively. We also get a homomorphism

` : G→ L, ` = ι ◦ α,

where ι : G ↪→ Gω is the diagonal embedding. Since the isometric action L y Xω is
effective and transitive, according to Theorem 127, the group L is a Lie group with
finitely many components.

Remark 134. Observe that the point-stabilizer Ly for y ∈ Xω is a compact subgroup
in L. Therefore Xω = L/Lx can be given a left-invariant Riemannian metric ds2.
Hence, since Xω is connected, by using the exponential map with respect to ds2 we
see that if g ∈ L fixes an open ball in Xω pointwise, then g = id.

We have the following cases:

(a) The image of ` is not virtually solvable. Then by Tits’ alternative, `(G) contains
a free nonabelian subgroup; it follows that G contains a free nonabelian subgroup as
well which contradicts the assumption that G) has polynomial growth.

(b) The image of ` is virtually solvable and infinite. Then, after passing to a
finite index subgroup in G, we get a homomorphism φ from G onto Z. According to
Proposition 102, K = Ker(φ) is a finitely generated group of growth ≺ Rd−1. Thus,
by the induction hypothesis, K is a virtually nilpotent group. Since G has polynomial
growth, Theorem 100 implies that the group G is virtually nilpotent as well.

(c) `(G) is finite.

To see that the latter case can occur consider an abelian group G. Then the
homomorphism ` is actually trivial. How to describe the kernel of `? For each g ∈ G
define the displacement function δ(g, r) := max{d(gx, x) : x ∈ B(e, r)}. Then

K := {g ∈ G : g|B(eω, 1) = id} = {g ∈ G : ω-lim δ(g, λn)/λn = 0}.
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Here eω is the point in Xω corresponding to the constant sequence (e) in G. On the
other hand, by the above remark,

Ker(`) = K.

Let G′ ⊂ G be a finitely-generated subgroup with a fixed set of generators g1, ..., gm.
Define

D(G′, r) := max
j=1,...,m

δ(gj, r).

(This is an abuse of notation, the above function of course depends not only on G′

but also on the choice of the generating set.)

Given a point in the Cayley graph, p ∈ ΓG, we define another function

D(G′, p, r) := max{d(gjx, x), x ∈ B(p, r), j = 1, ..., m, }.

Clearly D(G′, e, r) = D(G′, r) and for p ∈ G ⊂ ΓG,

D(G′, p, r) = D(p−1G′p, r),

where we take the generators p−1gjp, j = 1, ..., m for the group p−1G′p. The function
D(G′, p, r) is 2-Lipschitz as a function of p.

Lemma 135. Suppose that D(G′, r) is bounded as a function of r. Then G′ is virtu-
ally abelian.

Proof. Suppose that d(gjx, x) ≤ C for all x ∈ G. Then

d(x−1gjx, 1) ≤ C,

and therefore the conjugacy class of gj in G has cardinality ≤ βG(C) = N . Hence
the centralizer ZG(gj) of gj in G has finite index in G: Indeed, if x0, ..., xN ∈ G then
there are 0 ≤ i 6= k ≤ N such that

x−1
i gjxi = x−1

k gjxk ⇒ [xkx
−1
i , gj] = 1 ⇒ xkx

−1
i ∈ ZG(gj).

Thus the intersection

A :=
m⋂

j=1

ZG(gj)

has finite index in G; it follows that A ∩G′ is an abelian subgroup of finite index in
G′.
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We now assume that `(G) is finite and consider the subgroup of finite index G′ :=
Ker(`) ⊂ G. Let g1, ..., gm be generators of G′. By the previous lemma it suffices to
consider the case when the function D(G′, r) is unbounded; then, since G′ = Ker(`),
the function D(G′, r) has “sublinear growth”, i.e.

ω-lim δ(gj, λn)/λn = 0, j = 1, ..., m.

If the subgroup G′ is virtually abelian, we are done. Therefore we assume that
that this is not the case. In particular, the function D(G′, p, r) is unbounded as the
function of p ∈ G.

Lemma 136. Let ε such that 0 < ε ≤ 1. Then there exists xn ∈ G such that

ω-lim
D(x−1

n G′xn, λn)

λn
= ε.

Proof. For ω-all n ∈ N we have D(G′, λn) ≤ ελn/2. Fix n. Since D(G′, p, λn) is
unbounded, there exists qn ∈ G such that

D(G′, qn, λn) > 2λn.

Hence, because ΓG is connected and the function D(G′, p, λn) is continuous, there
exists yn ∈ ΓG such that

D(G′, yn, λn) = ελn.

The point yn is not necessarily in the vertex set of the Cayley graph ΓG. Pick a
point xn ∈ G within the distance 1

2
from yn. Then, since the function D(G′, ·, λn) is

2-Lipschitz,
|D(G′, xn, λn) − ελn| ≤ 1.

It follows that |D(x−1
n G′xn, λn) − ελn| ≤ 1 and therefore

ω-lim
D(x−1

n G′xn, λn)

λn
= ε.

Now, given 0 < ε ≤ 1 and g ∈ G′ we define a sequence

[g] := [x−1
n gxn] ∈ G∗.

Note that since D(x−1
n Gxn, λn) = O(ε), the elements `ε(gj) belong to Gω. Therefore

we obtain a homomorphism `ε : G′ → Gω, `ε : g 7→ [g].
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We topologize the group L via the compact-open topology with respect to its action
on Xω, thus ε-neighborhood of the identity in L contains all isometries h ∈ L such
that

δ(h, 1) ≤ ε,

where δ is the displacement function of h on the unit ball B(eω, 1). By our choice
of xn, there exists a generator h = gj of G′ such that δ(`ε(h), 1) = ε. If there is an
N ∈ N such that the order |`ε(h)| of `ε(h) is at most N for all ε, then L contains
arbitrarily small finite cyclic subgroups 〈`ε(h)〉, which is impossible since L is a Lie
group. Therefore

lim
ε→0

|`ε(h)| = ∞

If for some ε > 0, `ε(G
′) is infinite we are done as above. Hence we assume that `ε(G

′)
is finite for all ε > 0. We then use

Theorem 137. (Jordan) Let L be a Lie group with finitely many connected compo-
nents. Then there exists a number q = q(L) such that each finite subgroup F in L
contains an abelian subgroup of index ≤ q.

We prove this theorem in section 5.7.

For each ε consider the preimage G′
ε in G′ of the abelian subgroup in `ε(G

′) which
is given by Jordan’s theorem. The index of G′

ε in G′ is at most q. Let G′′ be the
intersection of all the subgroups G′

ε, ε > 0. Then G′′ has finite index in G and G′′

admits homomorphisms onto finite abelian groups of arbitrarily large order. Since
all such homomorphisms have to factor through the abelinization (G′′)ab, the group
(G′′)ab has to be infinite. Since (G′′)ab is finitely generated it follows that it has
nontrivial free part, hence G′′ again admits an epimorphism to Z. Thus we are done
by the induction.

5.7 Proof of Jordan’s theorem

In this section I outline a proof of Jordan’s theorem, for the details see [48, The-
orem 8.29]. Recall that each connected Lie group H acts on itself smoothly via
the conjugation. This action fixes e ∈ H, therefore we can look at the derivatives
de(g) : TeH → TeH. We obtain a linear action of G on the vector space TeH (the
Lie algebra of H) called adjoint representation. The kernel of this representation is
contained in the center Z(H) of H. Therefore, each connected Lie group embeds,
modulo its center to the group of real matrices. Therefore I will be assuming that
L = GLn(R).
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Given a subset Ω ⊂ L define inductively subsets Ω(i) as Ω(i+1) = [Ω,Ω(i)], Ω(0) := Ω.

Lemma 138. There is a neighborhood Ω of 1 ∈ L such that

lim
i→∞

Ω(i) = {1}.

Proof. Let A,B ∈ L be near the identity; then A = exp(α), B = exp(β) for some α, β
in the Lie algebra of L. Therefore

[A,B] = [1 + α +
1

2
α2 + ..., 1 + β +

1

2
β2 + ...] =

(1 + α +
1

2
α2 + ...)(1 + β +

1

2
β2 + ...)(1 − α +

1

2
α2 − ...)(1 − β +

1

2
β2 − ...)

By opening the brackets we see that the linear term in the commutator [A,B] is zero
and each term in the resulting infinite series involves both nonzero powers of α and
of β. Therefore

‖1 − [A,B]‖ ≤ C‖1 − A‖ · ‖1 − B‖.
Therefore, by induction, if Bi+1 := [A,Bi], B1 = B, then

‖1 − [A,Bi]‖ ≤ C i‖1 − A‖i · ‖1 − B‖.

By taking Ω be such that ‖1 − A‖ < C for all A ∈ Ω, we conclude that

lim
i→∞

‖1 − Bi‖ = 0.

Lemma 139 (Zassenhaus lemma). Let Γ ⊂ L be a discrete subgroup. Then the
set Γ ∩ Ω generates a nilpotent subgroup.

Proof. There exists a neighborhood V of 1 in L such that V ∩ Γ = {1}; it follows
from the above lemma that all the iterated commutators of the elements of Γ ∩ Ω
converge to 1. It thus follows that the iterated m-fold commutators of the elements
in Γ ∩ Ω are trivial for all sufficiently large m. Therefore the set Γ ∩ Ω generates a
nilpotent subgroup in Γ.

The finite subgroup F ⊂ L is clearly discrete, therefore the subgroup 〈F ∩ Ω〉 is
nilpotent. Then log(F ∩ Ω) generates a nilpotent subalgebra in the Lie algebra of
L. Since F is finite, it is also compact, hence, up to conjugation, it is contained in
the maximal compact subgroup K = O(n) ⊂ GL(n,R) = L. The only nilpotent Lie
subalgebras of K are abelian subalgebras, therefore the subgroup F ′ generated by
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F ∩ Ω is abelian. It remains to estimate the index. Let U ⊂ Ω be a neighborhood
of 1 in K such that U · U−1 ⊂ Ω (i.e. products of pairs of elements xy−1, x, y ∈ U ,
belong to Ω). Let q denote V ol(K)/V ol(U), where V ol is induced by the biinvariant
Riemannian metric on K.

Lemma 140. |F : F ′| ≤ q.

Proof. Let x1, ..., xq+1 ∈ F . Then

q+1∑

i=1

V ol(xiU) = (q + 1)V ol(U) > V ol(K).

Hence there are i 6= j such that xiU ∩ xjU 6= ∅. Thus x−1
j xi ∈ UU−1 ⊂ Ω. Hence

x−1
j xi ∈ F ′.

This also proves Jordan’s theorem.

6 Quasiconformal mappings

Definition 141. Suppose that D,D′ are domains in Rn, n ≥ 2, and let f : D → D′

be a homeomorphism. The mapping f is called quasiconformal if the function

Hf(x) = lim sup
r→0

sup{d(f(z), f(x)) : d(x, z) = r}
inf{d(f(z), f(x)) : d(x, z) = r}

is bounded from above in X. A quasiconformal mapping is called K-quasiconformal
if the function Hf is bounded from above by K a.e. in X.

The notion of quasiconformality does not work well in the case when the domain
and range are 1-dimensional. It is replaced by

Definition 142. Let C ⊂ S1 be a closed subset. A homeomorphism f : C → f(C) ⊂
S1 is called quasimoebius if there exists a constant K so that for any quadruple of
mutually distinct points x, y, z, w ∈ S1 their cross-ratio satisfies the inequality

K−1 ≤ λ(|f(x) : f(y) : f(z) : f(w)|)
λ(|x : y : z : w|) ≤ K (143)

where λ(t) = | log(t)| + 1.
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Note that if f is K-quasimoebius then for any pair of Moebius transformations α, β
the composition α ◦ f ◦ β is again K-quasimoebius.

Recall that a mapping f : Sn → Sn is Moebius if it is a composition of inversions.
Equivalently, f is Moebius iff it is the extension of an isometry Hn+1 → Hn+1. Yet
another equivalent definition: Moebius mappings are the homeomorphisms of Sn

which preserve the cross-ratio.

Here is another (analytical) description of quasiconformal mappings. A homeomor-
phism f : D → D′ is called quasiconformal if it has distributional partial derivatives
in Lnloc(D) and the ratio

Rf(x) := ‖f ′(x)‖/|Jf(x)|1/n

is uniformly bounded from above a.e. in D. Here ‖f ′(x)‖ is the operator norm of
the derivative f ′(x) of f at x. The essential supremum of Rf(x) in D is denoted
by KO(f) and is called the outer dilatation of f . Let us compare Hf(x) and Rf (x).
Clearly it is enough to consider positive-definite diagonal matrices f ′(x). Let Λ be
the maximal eigenvalue of f ′(x) and λ be the minimal eigenvalue. Then ‖f ′(x)‖ = Λ,
Hf(x) = Λ/λ and

Rf (x) ≤ Hf(x) ≤ Rf(x)
n.

Two definitions of quasiconformality (using Hf and Rf) coincide (see for instance
[49], [60], [57]) and we have:

KO(f) ≤ K(f) ≤ KO(f)n.

In particular, quasiconformal mappings are differentiable a.e. and their derivative is
a.e. invertible.

Note that quasiconformality of mappings and the coefficients of quasiconformal-
ity K(f), KO(f) do not change if instead of the Euclidean metric we consider a
conformally-Euclidean metric in D. This allows us to define quasiconformal map-
pings on domains in Sn, via the stereographic projection.

Examples:

1. If f : D → D′ is a conformal homeomorphism the f is quasiconformal. Indeed,
conformality of f means that f ′(x) is a similarity matrix for each x, hence Rf (x) = 1
for each x. In particular, Moebius transformations are quasiconformal.

2. Suppose that the homeomorphism f extends to a diffeomorphism D → D
′
and

the closure D is compact. Then f is quasiconformal.

3. Compositions and inverses of quasiconformal mappings are quasiconformal.
Moreover, KO(f ◦ g) ≤ KO(f)KO(g), KO(f) = KO(f−1).
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Theorem 144. (Liouville’s theorem for quasiconformal mappings, see [49], [44].)
Suppose that f : Sn → Sn, n ≥ 2, is a quasiconformal mapping which is conformal
a.e., i.e. for a.e. x ∈ Sn, Rf (x) = 1. Then f is Moebius.

Conformality of f at x means that the derivative f ′(x) exists and is a similarity
matrix (i.e. is the product of a scalar and an orthogonal matrix).

Historical remark. Quasiconformal mappings for n = 2 were introduced in 1920-
s by Groetch as a generalization of conformal mappings. Quasiconformal mappings
in higher dimensions were introduced by Lavrentiev in 1930-s for the purposes of
application to hydrodynamics. The discovery of relation between quasi-isometries
of hyperbolic spaces and quasiconformal mappings was made by Efremovich and
Tihomirova [16] and Mostow [44] in 1960-s.

Theorem 145. Suppose that f : Hn → Hn is a (k, c)-quasi-isometry. Then the
homeomorphic extension h = f∞ of f to ∂∞Hn constructed in Theorem 79 is a qua-
siconformal homeomorphism (if n ≥ 3) and quasimoebius (if n = 2).

Proof. I will verify quasiconformality of h for n ≥ 3 and will leave the case n = 2 to
the reader. According to the definition, it is enough to verify quasiconformality at
each particular point x with uniform estimates on the function Hh(x). Thus, after
composing h with Moebius transformations, we can take x = 0 = h(x), h(∞) = ∞,
where we consider the upper half-space model of Hn.

Take a Euclidean sphere Sr(0) in Rn−1 with the center at the origin. This sphere
is the ideal boundary of a hyperplane Pr ⊂ Hn which is orthogonal to the vertical
geodesic L ⊂ Hn, connecting 0 and ∞. Let xr = L ∩ Pr. Let πL : Hn → L be the
nearest point projection. The hyperplane Pr can be characterized by the following
equivalent properties:

Pr = {w ∈ Hn : πL(w) = xr}
Pr = {w ∈ Hn : d(w, xr) = d(w,L)}.

Since quasi-isometric images of geodesics in Hn are uniformly close to geodesics, we
conclude that

diam[πL(f(Pr))] ≤ Const

where Const depends only on the quasi-isometry constants of f . The projection πL
extends naturally to ∂∞Hn. We conclude:

diam[πL(h(Sr(0)))] ≤ Const.
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Thus h(Sr(0)) is contained in a spherical shell

{z ∈ Rn−1 : ρ1 ≤ |z| ≤ ρ2}

where log[ρ1/ρ2] ≤ Const. This implies that the function Hh(0) is bounded from
above by K := exp(Const). We conclude that the mapping h is K-quasiconformal.

7 Quasi-isometries of nonuniform lattices in Hn.

Recall that a lattice in a Lie group G (with finitely many components) is a discrete
subgroup Γ such that the quotient Γ \ G has finite volume. Here the left-invariant
volume form on G is defined by taking a Riemannian metric on G which is left-
invariant under G and right-invariant under K, the maximal compact subgroup of G.
Thus, if X := G/K, then this quotient manifold has a Riemannian metric which is
(left) invariant under G. Hence, Γ is a lattice iff Γ acts on X properly discontinuously
so that vol(Γ \ X) is finite. Note that the action of Γ on X is a priori not free. A
lattice γ is called uniform if Γ \X is compact and Γ is called nonuniform otherwise.

Note that each lattice is finitely-generated (this is not at all obvious), in the case
of the hyperbolic spaces finite generation follows from the thick-thin decomposition
above. Thus, if Γ is a lattice, then it contains a torsion-free subgroup of finite index
(Selberg lemma). In particular, if Γ is a nonuniform lattice in H2 then Γ is virtually
free of rank ≥ 2.

Example 146. Consider the subgroups Γ1 := SL(2,Z) ⊂ SL(2,R), Γ2 := SL(2,Z[i])
⊂ SL(2,C). Then Γ1,Γ2 are nonuniform lattices. Here Z[i] is the ring of Gaussian
integers, i.e. elements of Z ⊕ iZ. The discreteness of Γ1,Γ2 is clear, but finiteness of
volume requires a proof.

Let’s show that Γi, i = 1, 2, are not uniform. I will give the proof in the case of Γ1,
the case of Γ2 is similar.

Note that the symmetric space SL(2,R)/SO(2) is the hyperbolic plane. I will use
the upper half-plane model of H2. The group Γ1 contains the upper triangular matrix

A :=

[
1 1
0 1

]
.

This matrix acts on H2 by the parabolic translation γ : z 7→ z + 1 (of infinite order).
Consider the points z := (0, y) ∈ H2 with y → ∞. Then the length of the geodesic

73



segment zγ(z) tends to zero as y diverges to infinity. Hence the quotient S := Γ1 \H2

has injectivity radius unbounded from below (from zero), hence S is not compact.

More generally, lattices in a Lie group can be constructed as follows: let h : G →
GL(N,R) be a homomorphism with finite kernel. Let Γ := h−1(GL(N,Z)). Then Γ
is an arithmetic lattice in G.

Recall that a horoball in Hn (in the unit ball model) is a domain bounded by a
round Euclidean ball B ⊂ Hn, whose boundary is tangent to the boundary of Hn

in a single point (called the center or footpoint of the horoball). The boundary of a
horoball in Hn is called a horosphere. In the upper half-space model, the horospheres
with the footpoint ∞ are horizontal hyperplanes

{(x1, ..., xn−1, t) : (x1, ..., xn−1) ∈ Rn−1},

where t is a positive constant.

Theorem 147. (Thick-thin decomposition) Suppose that Γ is a nonuniform lattice in
Isom(Hn). Then there exists an (infinite) collection C of pairwise disjoint horoballs
C := {Bj, j ∈ J}, which is invariant under Γ, so that (Hn \ ∪jBj)/Γ is compact.

The quotient (Hn \∪jBj)/Γ is called the thick part of M = Hn/Γ and its (noncom-
pact) complement in M is called thin part of M .

Ω

B1

B

B

BB

3

45

2

thick

thin

T   R +x

T

H n / Γ

H n

Figure 14: Truncated hyperbolic space and thick-thin decomposition.

The complement Ω := Hn \ ∪jBj is called a truncated hyperbolic space. Note that
the stabilizer Γj of each horosphere ∂Bj acts on this horosphere cocompactly with the
quotient Tj := ∂Bj/Γj. The quotient Bj/Γj is naturally homeomorphic to Tj × R+,
this product decomposition is inherited from the foliation of Bj by the horospheres
with the common footpoint ξj and the geodesic rays asymptotic to ξj. In the case Γ
is torsion-free, orientation preserving and n = 3, the quotients Tj are 2-tori.
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Definition 148. Let Γ ⊂ G be a subgroup. The commensurator of Γ in G, denoted
Comm(Γ) consists of all g ∈ G such that the groups gΓg−1 and Γ are commensurable,
i.e. their intersection has finite index in the both groups.

Here is an example of the commensurator: let Γ := SL(2,Z[i]) ⊂ SL(2,C). Then
the commensurator of Γ is the group SL(2,Q(i)). In particular, the group Comm(Γ)
is nondiscrete in this case. There is a theorem of Margulis, which states that a lattice
in G is arithmetic if and only if its commensurator is discrete. We note that each
element g ∈ Comm(Γ) determines a quasi-isometry f : Γ → Γ. Indeed, the Hausdorff
distance between Γ and gΓg−1 is finite. Hence the quasi-isometry f is given by
composing g : Γ → gΓg−1 with the nearest-point projection to Γ.

The main goal of the remainder of the course is to prove the following

Theorem 149. (R. Schwartz [50].) Let Γ ⊂ Isom(Hn) is a nonuniform lattice,
n ≥ 3. Then:

(a) For each quasi-isometry f : Γ → Γ there exists γ ∈ Comm(Γ) which is within
finite distance from f . The distance between these maps depends only on Γ and on
the quasi-isometry constants of f .

(b) Suppose that Γ,Γ′ are non-uniform lattices which are quasi-isometric to each
other. Then there exists an isometry g ∈ Isom(Hn) such that the groups Γ′ and gΓg−1

are commensurable.

(c) Suppose that Γ′ is a finitely-generated group which is quasi-isometric to a
nonuniform lattice Γ above. Then the groups Γ,Γ′ are weakly commensurable, i.e.
there exists a finite normal subgroup F ⊂ Γ′ such that the groups Γ,Γ′/F contain
isomorphic subgroups of finite index.

The above theorem fails in the case of the hyperbolic plane (except for the last
part).

7.1 Coarse topology of truncated hyperbolic spaces

On each truncated hyperbolic space Ω we put the path-metric which is induced by
the restriction of the Riemannian metric of Hn to Ω. This metric is invariant under
Γ and since the quotient Ω/Γ is compact, Ω is quasi-isometric to the group Γ. Note
that the restriction of this metric to each peripheral horosphere Σ is a flat metric.

The following lemma is the key for distinguishing the case of the hyperbolic plane
from the higher-dimensional hyperbolic spaces (of dimension ≥ 3):
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Lemma 150. Let Ω is a truncated hyperbolic space of dimension ≥ 3. Then each
peripheral horosphere Σ ⊂ Ω does not coarsely separate Ω.

Proof. Let R < ∞ and let B be the horoball bounded by Σ. Then the union of
NR(Σ) ∪ B is a horoball B ′ in Hn (where the metric neighborhood is taken in Hn).
The horoball B′ does not separate Hn. Therefore, for each pair of points x, y ∈ Ω\B ′,
there exists a PL path p connecting them within Hn \ B′. If the path p is entirely
contained in Ω, we are done. Otherwise, it can be subdivided into finitely many
subpaths, each of which is either contained in Ω or connects a pair of points on the
boundary of a complementary horoball Bj ⊂ Hn \ Σ. The intersection of N

(Ω)
R (B′)

with Σj = ∂Bj is a metric ball in the Euclidean space Σj (here N
(Ω)
R is the metric

neighborhood taken within Ω). Note that a metric ball does not separate Rn−1,
provided that n− 1 ≥ 2. Thus we can replace pj = p ∩Bj with a new path p′j which

connects the end-points of pj within the complement Σj \N (Ω)
R (B′). By making these

replacements for each j we get a path connecting x to y within Ω \N (Ω)
R (Σ).

Let now Ω,Ω′ be truncated hyperbolic spaces (of the same dimension), f : Ω → Ω′

be a quasi-isometry. Let Σ be a peripheral horosphere of Ω, consider its image f(Σ)
in Ω′.

Proposition 151. There exists a peripheral horosphere Σ′ ⊂ ∂Ω′ which is within
finite Hausdorff distance from f(Σ).

Proof. Note that Ω, being isometric to Rn−1, has bounded geometry and is uniformly
contractible. Therefore, according to Theorem 58, f(Σ) coarsely separates Hn; how-
ever it cannot coarsely separate Ω′, since f is a quasi-isometry and Σ does not coarsely
separate Ω. Let R <∞ be such that NR(f(Σ)) separates Hn into (two) deep compo-
nents X1, X2. Suppose that for each complementary horoball B ′

j of Ω′ (bounded by
the horosphere Σ′

j),
N−R(B′

j) := B′
j \NR(Σ′

j) ⊂ X1.

Then the entire Ω′ is contained in NR(f(Σ)). It follows that f(Σ) does not coarsely
separate Hn, a contradiction. Thus there are complementary horoballs B ′

1, B
′
2 for Ω′

such that N−R(B′
1) ⊂ X1, N−R(B′

2) ⊂ X2. If either Σ1 or Σ2 is not contained in
Nr(f(Σ)) for some r then f(Σ) coarsely separates Ω′. Thus we found a horosphere
Σ′ := Σ′

1 such that
Σ′ ⊂ Nr(f(Σ)).

Our goal is to show that f(Σ) ⊂ Nρ(Σ
′) for some ρ <∞. The nearest-point projection

Σ′ → f(Σ) defines a quasi-isometric embedding h : Σ′ → Σ. However Lemma 71
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proves that a quasi-isometric embedding between two Euclidean spaces of the same
dimension is a quasi-isometry. Thus there exists ρ <∞ such that f(Σ) ⊂ Nρ(Σ

′).

Lemma 152. dHaus(f(Σ),Σ′)) ≤ r, where r is independent of Σ.

Proof. The proof is by inspection of the arguments in the proof of the previous propo-
sition. First of all, the constant R depends only on the quasi-isometry constants of the
mapping f and the uniform geometry/uniform contractibility bounds for Rn−1 and
Hn. The inradii of the shallow complementary components of NR(f(Σ)) again depend
only on the above data. Therefore there exists a uniform constant r such that Σ1 of Σ2

is contained in Nr(f(Σ)). Finally, the upper bound on ρ such thatNρ(Image(h)) = Σ′

(coming from Lemma 71) again depends only on the quasi-isometry constants of the
projection h : Σ′ → Σ.

7.2 Hyperbolic extension

The main result of this section is

Theorem 153. f admits a quasi-isometric extension f̃ : Hn → Hn.

Proof. We will construct the extension f̃ into each complementary horoball B ⊂
Hn \ Ω. Without loss of generality we can use the upper half-space model of Hn so
that the horoballs B and B ′ are both given by

{(x1, ..., xn−1, 1) : (x1, ..., xn−1) ∈ Rn−1}.

We will also assume that f(Σ) ⊂ Σ′. For each vertical geodesic ray ρ(t), t ∈ R+, in Bj

we define the geodesic ray ρ′(t) to be the vertical geodesic ray in B ′ with the initial
point f(ρ(0)). This gives the extension of f into B:

f̃(ρ(t)) = ρ′(t).

Let’s verify that this extension is coarsely Lipschitz. Let x and y ∈ B be points
within the (hyperbolic) distance ≤ 1. By the triangle inequality it suffices to consider
the case when x, y belong to the same horosphere Ht (of the Euclidean height t)
with the footpoint at ∞ (if x and y belong to the same vertical ray we clearly get
d(f̃(x), f̃(y)) = d(x, y)). Note that the distance from x to y along the horosphere H
does not exceed ε, which is independent of t. Let x̄, ȳ denote the points in Σ such that
x, y belong to the vertical rays in Bj with the initial points x̄, ȳ respectively. Then

dΣ(x̄, ȳ) = tdHt
(x, y) ≤ εt.
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Hence, since f is (L,A)-coarse Lipshitz,

dΣ(f(x̄), f(ȳ)) ≤ Lεt + A.

It follows that
dΣ(f̃(x), f̃(y)) ≤ Lε + A/t ≤ Lε + A.

This proves that the extension f̃ is coarse Lipschitz in the horoball B. Since the
coarse Lipschitz is a local property, the mapping f̃ is coarse Lipschitz on Hn. The
same argument applies to the hyperbolic extension f̃ ′ of the coarse inverse f ′ to the
mapping f . It is clear that the mapping f̃ ◦ f̃ ′ and f̃ ′ ◦ f̃ have bounded displacement.
Thus f̃ is a quasi-isometry.

Since f̃ is a quasi-isometry of Hn, it admits a quasiconformal extension h : ∂∞Hn →
∂∞Hn. Let Λ,Λ′ denote the sets of the footpoints of the peripheral horospheres of
Ω,Ω′ respectively. It is clear that h(Λ) = Λ′.

7.3 Zooming in

Our main goal is to show that the mapping h constructed in the previous section is
Moebius. By the Liouville’s theorem for quasiconformal mappings, h is Moebius iff
for a.e. point ξ ∈ Sn−1, the derivative of h at ξ is a similarity. We will be working
with the upper half-space of the hyperbolic space Hn.

Proposition 154. Suppose that h is not Moebius. Then there exists a quasi-isometry
F : Ω → Ω′ whose extension to the sphere at infinity is a linear map which is not a
similarity.

Proof. Since h is differentiable a.e. and is not Moebius, there exists a point ξ ∈
Sn−1 \ Λ such that Dh(ξ) exists, is invertible but is not a similarity. By pre- and
post-composing f with isometries of Hn we can assume that ξ = 0 = h(ξ). Let
L ⊂ Hn denote the vertical geodesic through ξ. Since ξ is not a footpoint of a
complementary horoball to Ω, there exists a sequence of points xj ∈ L ∩ Ω which
converges to ξ. For each t ∈ R+ define αt : z 7→ tz, a hyperbolic translation along L.
Let tj be such that αtj (x1) = xj. Set

f̃j := α−1
tj

◦ f̃ ◦ αtj ,

the quasiconformal extensions of these mappings to ∂∞Hn are given by

hj(z) =
h(tjz)

tj
.
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By the definition of differentiability,

lim
j→∞

hj = A = Dh(0),

where the convergence is uniform on compacts in Rn−1. Let’s verify that the sequence
of quasi-isometries f̃j subconverges to a quasi-isometry of Hn. Indeed, since the quasi-
isometry constants of all f̃j are the same, it suffices to show that {f̃j(x1)} is a bounded
sequence in Hn. Let L1, L2 denote a pair of distinct geodesics in Hn through x1, so
that the point ∞ does not belong to L1 ∪ L2. Then the quasi-geodesics f̃j(Li) are
within distance ≤ C from geodesics L∗

1j , L
∗
2j in Hn. Note that the geodesics L∗

1j , L
∗
2j

subconverge to geodesics in Hn with distinct end-ponts (since the mapping A is 1-
1). The point f̃j(x1) is within distance ≤ C from L∗

1j , L
∗
2j . If the sequence f̃j(x1) is

unbounded, we get that L∗
1j , L

∗
2j subconverge to geodesics with a common end-point

at infinity. Contradiction.

We thus pass to a subsequence such that f̃j converges to a quasi-isometry f∞ :
Hn → Hn. Note however that f∞ in general does not send Ω to Ω′. Recall that
Ω/Γ,Ω′/Γ′ are compact. Therefore there exist sequences γj ∈ Γ, γ′j ∈ Γ′ such that

γj(xj), γ
′
j(f̃(xj)) belong to a compact subset of Hn. Hence the sequences βj :=

α−1
tj ◦γ−1

j , β ′
j := α−1

tj ◦γ′−1
j is precompact in Isom(Hn) and therefore they subconverge

to isometries β∞, β
′
∞ ∈ Isom(Hn). Set

Ωj := α−1
tj

Ω = α−1
tj

◦ γ−1
j Ω = βjΩ,

Ω′
j := α−1

tj
Ω′ = β ′

jΩ
′,

then f̃j : Ωj → Ω′
j. On the other hand, the sets Ωj,Ω

′
j subconverge to the sets

β∞Ω, β ′
∞Ω′ and f̃∞ is a quasi-isometry between β∞Ω and β ′

∞Ω′. Since β∞Ω and
β ′
∞Ω′ are isometric copies of Ω and Ω′ the assertion follows.

The situation when we have a linear mapping (which is not a similarity) mapping
Λ to Λ′ seems at the first glance impossible. Here however is an example:

Example 155. Let Γ := SL(2,Z[i]),Γ′ := SL(2,Z[
√
−2]). Then Λ = Q(i),Λ′ =

Q(
√
−2).

Define a real linear mapping A : C → C by sending 1 to 1 and i to
√
−2. Then A

is not a similarity, however A(Λ) = Λ′).

Thus to get a contradiction we have to exploit the fact that the linear map in
question is quasiconformal extension of an isometry between truncated hyperbolic
spaces. This is done using a trick which replaces A with an inverted linear map, such
maps are defined in the next section.
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7.4 Inverted linear mappings

Let A : Rn−1 → Rn−1 be an (invertible) linear mapping and I be the inversion in the
unit sphere about the origin, i.e.

I(x) =
x

|x|2 .

Definition 156. An inverted linear map is the conjugate of A by the inversion in
the unit sphere centered at the origin, i.e. the composition

h := I ◦ A ◦ I,

which means that

h(x) =
|x|2
|Ax|2A(x).

Lemma 157. The function φ(x) = |x|2

|Ax|2
is asymptotically constant, i.e. the gradient

of φ converges to zero as |x| → ∞.

Proof. The function φ is a rational function of degree zero, hence its gradient is a
rational vector-function of degree −1.

Note however that φ is not a constant mapping unless A is a similarity. Hence h is
linear iff A is a similarity.

Corollary 158. Let R be a fixed positive real number, xj ∈ Rn−1, |xj| → ∞. Then
the function h(x−xj)−h(xj) converges (uniformly on the R-ball B(0, R)) to a linear
function, as j → ∞.

We would like to strengthen the assertion that φ is not constant (unless A is a
similarity). Let G be a discrete group of Euclidean isometries acting cocompactly on
Rn−1. Fix a G-orbit Gx, for some x ∈ Rn−1.

Lemma 159. There exists a number R and a sequence of points xj ∈ Gx diverging
to infinity such that the restrictions φ to B(xj, R) ∩Gx are not constant for all j.

Proof. Let P be a compact fundamental domain for G, containing x. Let ρ denote
diam(P ). Pick any R ≥ 4ρ. Then B(x,R) contains all images of P under G which
are adjacent to P . Suppose that the sequence xj as above does not exist. This means
that there exists r <∞ such that the restriction of φ to B(xj, R) is constant for each
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xj ∈ Gx \B(0, r). It follows that the function φ is actually constant on Gx \B(0, r).
Note that the set

{y/|y|, y ∈ Gx \B(0, r)}
is dense in the unit sphere. Since φ(y/|y|) = φ(y) it follows that φ is a constant
function.

We now return to the discussion of quasi-isometries.

Let A be an invertible linear mapping (which is not a similarity) constructed in the
previous section, by composing A with Euclidean translations we can assume that
0 = A(0) belongs to both Λ and Λ′:

Indeed, let p ∈ Λ\∞, q := A(p), define P,Q to be the translations by p, q. Consider
A2 := Q−1 ◦ A ◦ P , Λ1 := Λ − p, Λ′

1 := Λ′ − q, Ω1 := Ω − p, Ω′
1 := Ω′ − q. Then

A2(Λ1) = Λ′
1, A2(0) = 0, 0 ∈ Λ1 ∩ Λ′

1.

We retain the notation A,Λ,Λ′,Ω,Ω′ for the linear map and the new sets of foot-
points of horoballs and truncated hyperbolic spaces.

Then ∞ = I(0) belongs to both I(Λ) and I(Λ′). To simplify the notation we replace
Λ,Ω,Λ′,Ω′ with I(Λ), I(Ω), I(Λ′), I(Ω′) respectively. Then the truncated hyperbolic
spaces Ω,Ω′ have complementary horoballs B∞, B

′
∞.

Given x ∈ Rn−1 define h∗(x) := h(Γ∞x). Let Γ∞, Γ′
∞ be the stabilizers of ∞ in

Γ,Γ′ respectively. Without loss of generality we can assume that ∞ ∈ Λ,Λ′, hence
Γ∞, Γ′

∞ act cocompactly (by Euclidean isometries) on Rn−1.

Lemma 160 (Scattering lemma). Suppose that A is not a similarity. Then for
each x ∈ Rn−1, h∗(x) is not contained in finitely many Γ′

∞-orbits.

Proof. Let xj = γjx ∈ Γ∞x and R < ∞ be as in Lemma 159, where G = Γ∞. We
have a sequence of maps γ ′j ∈ Γ′

∞ such that γ′jh(xj) is relatively compact in Rn−1.
Then the mapping h|B(xj, R) ∩ Γ∞x is not linear for each j (Lemma 159). However
the sequence of maps

γ′j ◦ h ◦ γj := hj

converges to an affine mapping h∞ on B(x,R) (since h is asymptotically linear). We
conclude that the union ⋃

j=1

hj(Γ∞x ∩B(x,R))

is an infinite set.
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Theorem 161. Suppose that h is an inverted linear map which is not a similarity.
Then h admits no quasi-isometric extension Ω → Ω′.

Proof. Let x be a footpoint of a complementary horoball B to Ω, B 6= B∞. Then,
by the scattering lemma, h∗(x) is not contained in a finite union of Γ′

∞-orbits. Let
γj ∈ Γ∞ be a sequence such that the Γ′

∞-orbits of the points x′j := hγj(x) are all
distinct. Let B′

j denote the complementary horoball to Ω′ whose footpoint is x′j. It
follows that the Euclidean diameters of the complementary horoballs B ′

j converge to
zero. Let Bj be the complementary horoball to Ω whose footpoint is γjx. Then

dist(Bj, B∞) = dist(B1, B∞) = − log(diam(B1)) = D,

dist(B′
j, B

′
∞) = − log(diam(B′

j)) → ∞.

If f : Ω → Ω′ is an (L,A) quasi-isometry whose quasiconformal extension is h then

dist(B′
j, B

′
∞) ≤ L(D + Const) + A.

Contradiction.

Therefore we have proven

Theorem 162. Suppose that f : Ω → Ω′ is a quasi-isometry of truncated hyperbolic
spaces. Then f admits an (unique) extension to Sn−1 which is Moebius.

7.5 Proof of Theorem 149

(a) For each quasi-isometry f : Γ → Γ there exists γ ∈ Comm(Γ) which is within
finite distance from f .

Proof. The quasi-isometry f extends to a quasi-isometry of the hyperbolic space
f̃ : Hn → Hn. The latter quasi-isometry extends to a quasiconformal mapping
h : ∂∞Hn → ∂∞Hn. This quasiconformal mapping has to be Moebius according to
Theorem 162. Therefore f̃ is within finite distance from an γ isometry of Hn (which is
an isometric extension of h to Hn). It remains to verify that γ belongs to Comm(Γ).
We note that γ sends the peripheral horospheres of Ω within (uniformly) bounded
distance of peripheral horospheres of Ω. The same is of course true for all mappings
of the group Γ′ := γΓγ−1. Thus, if γ′ ∈ Γ′ fixes a point in Λ (a footpoint of a
peripheral horosphere Σ), then it has to preserve Σ: Otherwise by iterating γ ′ we
would get a contradiction. The same applies if γ ′(ξ1) = ξ2, where ξ1, ξ2 ∈ Λ are in
the same Γ-orbit: γ′(Σ1) = Σ2, where ξi is the footpoint of the peripheral horosphere
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Σi. Therefore we modify Ω as follows: Pick peripheral horospheres Σ1, ...,Σm with
disjoint Γ-orbits and for each γ ′ ∈ Γ′ such that γ′(Σi) is not contained in Ω, we replace
the peripheral horosphere parallel to γ ′(Σi) with the horosphere γ ′(Σi). As the result
we get a new truncated hyperbolic space Ω′ which is invariant under both Γ and Γ′.
Observe now that the group Γ′′ generated by Γ,Γ′ acts on Ω properly discontinuously
and cocompactly: Otherwise the nontrivial connected component of the closure of Γ′′

would preserve Ω′ and hence the countable Λ, which is impossible.

Therefore the projections

Ω/Γ → Ω/Γ′′,Ω/Γ′ → Ω/Γ′′

are finite-to-one maps. It follows that |Γ′′ : Γ| and |Γ′′ : Γ′| are both finite. Therefore
the groups Γ,Γ′ are commensurable and γ ∈ Comm(Γ).

To prove a uniform bound on the distance d(f, g|Σ) we notice that f and g have
the same extension to the sphere at infinity. Therefore, by 80, the distance d(f, g) is
uniformly bounded in terms of the quasi-isometry constants of f .

(b) Suppose that Γ,Γ′ are non-uniform lattices which are quasi-isometric to each
other. Then there exists an isometry g ∈ Isom(Hn) such that the groups Γ′ and
gΓg−1 are commensurable.

Proof. The proof is analogous to (a): The quasi-isometry f is within finite distance
from an isometry g. Then the elements of the group gΓg−1 have the property that
they map the truncated hyperbolic space Ω′ of Γ′ within (uniformly) bounded distance
from Ω. Therefore we can modify Ω′ to get a truncated hyperbolic space Ω′′ which is
invariant under both Γ′ and gΓg−1. The rest of the argument is the same as for (a).

(c) Suppose that Γ′ is a finitely-generated group which is quasi-isometric to a
nonuniform lattice Γ above. Then the groups Γ,Γ′ are weakly commensurable, i.e.
there exists a finite normal subgroup K ⊂ Γ′ such that the groups Γ,Γ′/K contain
isomorphic subgroups of finite index.

Proof. Let f : Γ → Γ′ be a quasi-isometry and let f ′ : Γ′ → Γ be its quasi-inverse.
We define the set of uniform quasi-isometries

Γ′
f := f ′ ◦ Γ′ ◦ f

of the truncated hyperbolic space Ω of the groups Γ. Each quasi-isometry g ∈ Γ′
f

is within a (uniformly) bounded distance from a quasi-isometry of Ω induced by an
element g∗ of Comm(Γ). We get a map

ψ : γ′ 7→ f ′ ◦ γ′ ◦ f 7→ (f ′ ◦ γ′ ◦ f)∗ ∈ Comm(Γ).
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I claim that this map is a homomorphism with finite kernel. Let’s first check that
this map is a homomorphism:

d(f ′ ◦ γ′1γ′2 ◦ f, f ′ ◦ γ′1 ◦ f ◦ f ′ ◦ γ′2 ◦ f) <∞,

hence the above quasi-isometries have the same Moebius extension to the sphere at
infinity. Suppose that γ′ ∈ Ker(ψ). Then the quasi-isometry f ′ ◦γ′ ◦f has a bounded
displacement on Ω. Since the family of quasi-isometries

{f ′ ◦ γ′ ◦ f, γ′ ∈ K}

has uniformly bounded quasi-isometry constants, it follows that they have uniformly
bounded displacement. Hence the elements γ ′ ∈ K have uniformly bounded displace-
ment as well. Therefore the normal subgroup K is finite. The rest of the argument
is the same as for (a) and (b): The groups Γ,Γ′′ := ψ(Γ′) ⊂ Comm(Γ) act on a
truncated hyperbolic space Ω′ which is within finite distance from Ω. Therefore the
groups Γ′′,Γ are commensurable.

8 A quasi-survey of QI rigidity

Given a group G one defines the abstract commensurator Comm(G) as follows. The
elements of Comm(G) are equivalence classes of isomorphisms between finite index
subgroups of G. Two such isomorphisms ψ : G1 → G2, φ : G′

1 → G′
2 are equiva-

lent if their restrictions to further finite index subgroups G′′
1 → G′′

2 are equal. The
composition and the inverse are defined in the obvious way, making Comm(G) a
group.

Let X be a metric space or a group G. Call X strongly QI rigid if each (L,A)-
quasi-isometry f : X → X is within finite distance from an isometry φ : X → X or
an element φ of Comm(G) and moreover d(f, φ) ≤ C(L,A).

Call a group G QI rigid if any group G′ which is quasi-isometric to G is actually
weakly commensurable to G.

Call a class of groups G QI rigid if each group G which is quasi-isometric to a
member of G is actually weakly commensurable to a member of G.

Theorem 163. (Pansu, [46]) Let X be a quaternionic hyperbolic space Hn
H (n ≥ 2)

or the hyperbolic Cayley plane H2
Ca. Then X is strongly QI rigid.
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Theorem 164. (Tukia, [55] for the real-hyperbolic spaces Hn, n ≥ 3 and Chow [11]
for complex-hyperbolic spaces Hn

C, n ≥ 2). Let X be a symmetric space of negative
curvature which is not the hyperbolic plane H2. Then the class of uniform lattices in
X is QI rigid.

Theorem 165. (Combination of the work by Gabai [21], Casson and Jungreis [10]
and Tukia [56]) The fundamental groups of closed hyperbolic surfaces are QI rigid.

Theorem 166. (Stallings, [52]) Each nonabelian free group is QI rigid. Thus each
nonuniform lattice in H2 is QI rigid.

Theorem 167. (Kleiner, Leeb, [37]) Let X be a symmetric space of nonpositive
curvature such that each deRham factor of X is a symmetric space of rank ≥ 2.
Then X is strongly QI rigid.

Theorem 168. (Kleiner, Leeb, [37]) Let X be a Euclidean building such that each
deRham factor of X is a Euclidean building of rank ≥ 2. Then X is strongly QI rigid.

Theorem 169. (Kleiner, Leeb, [37]) Let X be a symmetric space of nonpositive
curvature without Euclidean deRham factors. Then the class of uniform lattices in X
is QI rigid.

Theorem 170. (Eskin, [17]) Let X be an irreducible symmetric space of nonpositive
curvature of rank ≥ 2. Then each nonuniform lattice in X is strongly QI rigid and
QI rigid.

Theorem 171. (Kleiner, Leeb, [38]) Suppose that Γ is a finitely-generated groups
which is quasi-isometric to a Lie grooup G with the nilpotent radical N and semisimple
quotient G/N = H. Then Γ fits into a short exact sequence

1 → K → Γ → Q→ 1,

where K is quasi-isometric to N and Q is weakly commensurable to a uniform lattice
in H.

Problem 172. Prove an analogue of the above theorem for all Lie groups G (without
assuming that the sol-radical of G is nilpotent).

Theorem 173. (Bourdon, Pajot [4]) Let X be a thick hyperbolic building of rank 2
with right-angled fundamental polygon and whose links are complete bipartite graphs.
Then X is strongly QI rigid.

Problem 174. Construct an example of a hyperbolic group with Menger curve
boundary, which is QI rigid.
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Problem 175. Let G be a random k-generated group, k ≥ 2. Is G QI rigid?

Randomness can be defined for instance as follows. Consider the set B(n) of pre-
sentations

〈x1, ..., xk|R1, ..., Rl〉
where the total length of the words R1, ..., Rl is ≤ n. Then a class C of k-generated
groups is said to consist of random groups if

lim
n→∞

|B(n) ∩ C|
|B(n)| = 1.

Here is another notion of randomness: fix the number l of relators, assume that all
relators have the same length n; this defines a class of presentations S(k, l, n). Then
require

lim
n→∞

|S(k, l, n) ∩ C|
|S(k, l, n)| = 1.

Theorem 176. (Kapovich, Kleiner, [32]) There is a 3-dimensional hyperbolic group
which is strongly QI rigid.

Theorem 177. Each finitely generated abelian group is QI rigid.

Theorem 178. (Farb, Mosher, [18]) Each solvable Baumslag-Solitar group

BS(1, q) = 〈x, y : xyx−1 = yq〉

is QI rigid.

Theorem 179. (Whyte, [62]) All non-solvable Baumslag-Solitar groups

BS(p, q) = 〈x, y : xypx−1 = yq〉,

|p| 6= 1, |q| 6= 1 are QI to each other.

Theorem 180. (Farb, Mosher, [19]) The class of non-polycyclic abelian-by-cyclic
groups, i.e. groups Γ which fit into an exact sequence

1 → A→ Γ → Z → 1

with A is an abelian group, is QI rigid.

Theorem 181. (Dyubina, [14]) The class of finitely generated solvable groups is not
QI rigid.
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Problem 182. Is the class of finitely generated polycyclic groups QI rigid?

Example 183. Let S be a closed hyperbolic surface, M is the unit tangent bundle
over S. Then we have an exact sequence

1 → Z → G = π1(M) → Q := π1(S) → 1.

This sequence does not split even after passage to a finite index subgroup in G, hence
G is not weakly commensurable with Q×Z. However G is quasi-isometric to Q×Z.
More generally, if Q is a hyperbolic group, then all groups G which fit into an exat
sequence

1 → Z → G→ Q→ 1,

are quasi-isometric.

Example 184. There are uniform lattices in Hn, n ≥ 3, which are not weakly com-
mensurable.

Indeed, take an arithmetic and a nonarithmetic lattice in Hn.

Example 185. The product of free groups G = Fn× Fm, (n,m ≥ 2) is not QI rigid.

Proof. The group G acts discretely, cocompactly, isometrically on the product of
simplicial trees X := T×T ′. However there are examples [63], [8], of groups G′ acting
discretely, cocompactly, isometrically on X so that G′ contains no proper finite index
subgroups. Then G is quasi-isometric to G′ but these groups are clearly not weakly
commensurable.

Problem 186. Suppose that G is (a) a Mapping Class group, (b) Out(Fn), (c) an
Artin group, (d) a Coxeter group, (e) the fundamemtal group of one of the negatively
curved manifolds constructed in [30], (f) π1(N), where N is a finite covering of the
product of a hyperbolic surface by itself S × S, ramified over the diagonal ∆(S × S).
Is G QI rigid?

One has to exclude, of course, Artin and Coxeter groups which are commensurable
with the direct products of free groups.

Theorem 187. (Kapovich, Leeb, [36]) The class of fundamental groups G of 3-
dimensional Haken 3-manifolds, which are not Sol-manifolds1, is QI rigid.

1I.e. excluding G which are polycyclic but not nilpotent.
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Theorem 188. (Papasoglu, [47]) The class of finitely-presented groups which split
over Z is QI rigid. Moreover, quasi-isometries of 1-ended groups G preserve the JSJ
decomposition of G

Theorem 189. (Kapovich, Kleiner, Leeb, [35]) Quasi-isometries preserve deRham
decomposition of the universal covers of closed nonpositively curved Riemannian man-
ifolds.

Problem 190. Are there finitely generated (amenable) groups which are quasi-
isometric but not bi-Lipschitz equivalent?

Problem 191. Suppose that G is a finitely-presented group. Does the topology of
the asymptotic cone of G depend on the scaling sequence/ultrafilter?

Theorem 192. (Gersten, [22] The cohomological dimension (over an arbitrary ring
R) is a QI invariant within the class of finitely-presented groups of type FP (over
R).

I refer to [6] for the definitions of cohomological dimension and the type FP .

Theorem 193. (Shalom, [51]) The cohomological dimension (over Q) of amenable
groups is a QI invariant.

Problem 194. Is the cohomological dimension of a group (over Q) a QI invariant?

Recall that a group G has property (T) if each isometric affine action of G on
a Hilbert space has a global fixed point, see [13] for more thorough discussion. In
particular, such groups cannot map onto Z.

Theorem 195. The property (T) is not a QI invariant.

Proof. This theorem should be probably attributed to S. Gersten and M. Ramachan-
dran; the example below is a variation on the Raghunathan’s example discussed in
[23].

Let Γ be a hyperbolic group which satisfies property (T) and such that H2(Γ,Z) 6=
0. To construct such a group, start for instance with an infinite hyperbolic group F
satisfying Property (T) which has an aspherical presentation complex (see for instance
[1] for the existence of such groups). Then H1(F,Z) = 0 (since F satisfies (T)), if
H2(F,Z) = 0, add enough random relations to F , keeping the resulting groups F ′

hyperbolic, infinite, 2-dimensional. Then H1(F ′,Z) = 0 since F ′ also satisfies (T).
For large number of relators we get a group Γ = F ′ such that χ(Γ) > 0 (the number
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of relator is larger than the number of generators), hence H2(Γ,Z) 6= 0. Now, pick a
nontrivial element ω ∈ H2(Γ,Z) and consider a central extension

1 → Z → G→ Γ → 1

with the extension class ω. The cohomology class ω is bounded since Γ is hyperbolic;
hence the groups G and G′ := Z× Γ are quasi-isometric, see [23]. The group G′ does
not satisfy (T), since it surjects to Z. On the other hand, the group G satisfies (T),
see [13, 2.c, Theorem 12].

However the following question is still open:

Problem 196. A group G is said to be a-T-menable if it admits a proper isometric
affine action on a Hilbert space. Is a-T-menability a QI invariant?
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