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Introduction

Cocycles and cohomological equations play a central role in ergodic theory as
well as in its applications to other areas of dynamics. Among the questions which
are reduced to cohomological considerations are existence of invariant measures and
invariant geometric structures, time change for flows and, more generally, actions of
continuous groups, orbit equivalence and its restricted versions, existence of eigen-
functions, classification of various kinds of product actions and many others. The
subject is very diverse and includes many measure–theoretic, algebraic, analytic
and geometric aspects. Very broadly, cohomological considerations produce two
types of conclusions:

(i) if the set (it is very often not a group) of cohomology classes under consideration
allows a reasonable structure then the corresponding objects allow a nice classifi-
cation. In the extreme case when the set of cohomology classes is very small (e.g.
if there is only one class) one speaks about rigidity;

(ii) if there is no good structure in the set of cohomology classes then individual
classes are usually very “chaotic” and this often leads to construction of objects
within a given class with various, often exotic properties. Conclusions of this type
thus lead to genericity statements, as well as of counterexamples to certain naturally
sounding hypotheses.

In the classical ergodic theory, which deals with measure preserving or nonsin-
gular actions of Z and R, conclusions of the first type never appear; the same is true
in the more general context of ergodic theory for actions of amenable groups. In the
topological context the situation changes only slightly. On the other hand, there is
a variety of interesting situations in finer categories such as Hölder, Cr, 1 ≤ r ≤ ∞,
or real analytic, where a description of cohomology classes is possible, and produces
crucial insights into various classification problems.

It is interesting to notice a difference between the classical cases of a Z or an R

action ,where such a classification only very rarely amounts to rigidity, and other
cases, such as actions of higher rank abelian groups (i.e. Z

k or R
k for k ≤ 2), where
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rigidity is quite widespread and is often crucial for understanding of structural
questions.

Furthermore, for actions of groups which are both “large” and “rigid”, rigidity
appears and becomes, in many respects, prevalent already at the ergodic theory
level, e.g. in the measurable category. In fact, one of the central issues in dynamics
of actions of such groups is a translation of the available measurable rigidity results
into topological and especially differentiable context. The prime examples of such
groups are noncompact semisimple Lie groups of real rank greater than one and
lattices (discrete subgroups of cofinite volume) in such groups. Kazhdan property
(T) is often a key ingredient in producing various rigidity properties, although by
itself it leads only to a limited array of results. Still some rigidity results are being
extended to specific property (T) groups beyond semisimple Lie groups of higher
rank and their lattices.

In the present work we almost completely concentrate on the classical cases.
A more general setting appears only in basic definitions and in some comments
meant to underline the contrast with those. The first two chapters deal with the
measurable setting and hence all the results we prove or discuss are of type (ii).
In the third chapter we introduce a general framework for the cohomological phe-
nomena of type (i) (stability and effectiveness) with rigidity as a special case. We
illustrate how these phenomena appear in several topological, symbolic and smooth
settings. In the last two chapters we return to the type (ii) phenomena but in more
specialized settings. Our aim there is to demonstrate how a “controlled chaos”
can be produced in a variety of simple smooth or other special situations. The
crucial concept here is very fast periodic approximation in the number–theoretic
(Liouvillean numbers), differentiable and measurable contexts.

The purpose of this work is to introduce the main concepts and principal tech-
niques and illustrate those by a variety of interesting example including both general
statements and the treatment of particular classes of systems. We do not aspire to
present a comprehensive survey of the subject. Accordingly, we keep references to
a minimum.

The present work is an updated, revised and expanded version of the second of
the four parts of our work “Constructions in Ergodic Theory” originally intended
to appear as a book form, which was mostly written on 1982-83, appended during
the eighties and which has been circulated in the manuscript form.

“Constructions in Ergodic Theory” is dedicated to a systematic although by
no means exhaustive development of several principal classes of combinatorial con-
structions of measure-preserving transformations which allow to obtain some non-
trivial properties and which are well adapted to the realization of abstract measure–
preserving transformations as smooth or real-analytic systems on compact mani-
folds preserving an absolutely continuous or smooth measure, and as other special
classes of dynamical systems. An updated version of the first part which contains
a definitive account of the general concept of periodic approximation as well as
its applications to establishing genericity of various ergodic properties in a variety
of categories is about to appear as [K1]. The third and fourth parts were left
unfinished and their fate at the time of writing remains uncertain.

The developments of the last decade, especially those dealing with actions of
groups other than Z and R, changed the appearance, and, to a certain extent,
even the basic perception of the area which is the subject of the present work.
Still the program outlined and illustrated in Part II of “Constructions in Ergodic
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Theory” has proved to be fundamentally sound. In fact, this program influenced
some of the later developments such as the systematic use of, and the search for,
invariant distributions for various classes of dynamical systems. We would like
to repeat though that, revisions and additions notwithstanding, the present text
to a large extent reflects the perspective of the early eighties and hence primarily
describes and refers to work published by that time. We apologize for probably not
sufficiently emphasizing certain more recent results.

We would like to thank Alistair Windsor who carefully read the text and made
some valuabe suggestions.

Michel Herman made fundamental contributions to differentiable dynamics,
smooth ergodic theory, and, specifically the area covered in the present work. Aside
from numerous published papers his thinking made a huge influence on the way we
view these subjects. His untimely death is a tremendous loss for the world dynamics
community.

1. Definitions and principal constructions

We are going to discuss a group of constructions which appear frequently both
in the general theory of measure-preserving transformations and in various concrete
situations. The central concept for this circle of ideas is the notion of an (untwisted)
cocycle over a measure-preserving transformation (and more generally over a group
action), and the corresponding notions of coboundary and cohomology. In order
to explain this concept in the most natural way, we will leave, for the moment, the
confines of classical ergodic theory, which deals with measure-preserving transfor-
mations and flows, and consider the actions of more general groups. We will be
able to touch only a few aspects of this subject. For a systematic review of basic
notions in the area see [HaK]. A useful introductory discussion can be found [KH],
section 2.9.

Cocycles play a particularly important role in the ergodic theory and dynamics
of actions of groups other than Z and R. Various aspects of this subject are treated
in e.g. [Sch1], [Z1], [HK1], [KSp1].

Another aspect of the subject which we will not be able to discuss has been
developed in the remarkable papers of Herman [H4, H5]. It involves the use of
cocycles in smooth ergodic theory, in particular to obtain below estimates of the
Lyapunov characteristic exponents in nonuniformly hyperbolic situations.

1.1 Cocycles, coboundaries and Mackey range. Let us consider a
Lebesgue space (X,µ) and let Γ and G be two locally compact second countable
groups. Let us suppose that S = {Sγ}γ∈Γ is a measurable right action of Γ on
(X,µ) by measure-preserving transformations. The action S is ergodic if any S–
invariant set has measure zero or full measure or, equivalently, if any S–invariant
measurable function is almost everywhere constant.

Definition 1.1. A G cocycle over the action S is a measurable function α :
X × Γ → G such that

(1.1) α(x, γ1γ2) = α(x, γ1)α(Sγ1x, γ2)

It follows from (1.1) that α(x, idγ) = idG and α(x, γ−1) = (α(Sγ−yx, γ))−1.
From a purely formal point of view, this is a special case of a concept familiar in
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algebra, topology and other branches of mathematics. The same is true for the
next two definitions.

Definition 1.2. Two G cocycles α and β over a Γ action S are called coho-
mologous if there exists a measurable map ψ : X → G such that

(1.2) β(x, γ) = ψ−1(x)α(x, γ)ψ(Sγx).

Let us note that for any cocycle α and for any ψ the function β defined by (1.2)
is also a cocycle.

Definition 1.3. A cocycle α is called a coboundary if there exists a measurable
map ψ : X → G such that

(1.3) α(x, γ) = ψ−1(x)ψ(Sγx).

Curiously, in various cohomology theories there seems to be no established
name for a cochain which provides the equivalence between two cocycles, i.e. in
our situation for the function ψ in (1.2). Following a prevalent, but by no means
universal, usage in ergodic theory we will call those functions transfer functions.

Notice that if the action S is ergodic then a transfer function ψ is uniquely
defined up to left multiplication by a constant function.

Definition 1.4. We will call a cocycle α an almost coboundary if it is cohomol-
ogous to a cocycle with constant coefficients, i.e. if there exists a homomorphism
φ : Γ → G such that for some measurable ψ : X → G

(1.4) α(x, y) = ψ−1(x)φ(γ)ψ(Sγx)

For a given cocycle, it is natural to ask whether it is a coboundary or at least
an almost coboundary. The answer to this question depends on the solvability of
equations (1.3) and (1.4) for ψ. We will refer to such equations as cohomological
equations.

Since the function defined by (1.3) is always a cocycle, it is easy to construct
a lot of cocycles which are coboundaries. As algebraic intuition would suggest,
and as is confirmed by the discussion below, coboundaries should be regarded as
trivial cocycles. As long as homomorphisms of Γ into G are known one finds many
almost coboundaries too. The existence of cocycles other than almost coboundaries
in many cases represents a formidable problem. This may not sound surprising to
those who are familiar with cohomology theories in algebra and topology. However,
the structure (or rather the absence of any reasonable structure) of the set of all
cohomology classes of cocycles in many cases is strikingly different from what might
be expected from familiar analogies.

If G is an abelian group then the product of two cocycles (coboundaries) is again
a cocycle (corr. coboundary); thus the cocycles form a group and the coboundaries
a subgroup. Hence one can define the corresponding (first) cohomology group.

If Γ = Z, all cocycles can be described rather easily. Namely, the cocycles are
in a one-to-one correspondence with measurable functions h : X → G. The formula

(1.5) α(x, n) =

{
h(x)h(Sx) . . . h(Sn−1x) n ≥ 0

h−1(S−1x) . . . h−1(Snx) n < 0
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determines a cocycle and every cocycle α can be represented in this way by making
h(x) = α(x, 1). A similar description is possible for the continuous time case
(Γ = R), subject to certain inessential restrictions (cf. Section 1.3).

The question of whether a cocycle over a Z action is a coboundary will be one
of our central topics. The classification, up to cohomology, of cocycles over a Z

action in a purely measurable setting does not make any sense as results of the
next chapter will demonstrate. However, as will be seen in Chapter 3, in some finer
categories it does become feasible for particular cases.

As we have noted, the construction of cocycles other than almost coboundaries
for larger groups may be difficult. This is related to various rigidity phenomena
which assert that within various classes any cocycle is an almost coboundary. For
actions of some sufficiently large groups, such as semisimple Lie groups or lattices
in such groups the situation is strikingly different from the classical cases and
rigidity phenomena appear already in the measurable category, the best known
example being Zimmer cocycle superrigidity theorem [Z1] [FK]. For actions of
amenable groups the orbit equivalence theory [CFW] implies that the situation
in measurable category is essentially as chaotic as for the classical cases. However
for abelian groups of higher rank, e.g. Γ = R

h on R
h h ≥ 2 nontrivial rigidity

phenomena appear in Hölder and smooth categories [KSp1] [KSch] [Sch1].
The following construction, which is sometimes called the Mackey range [Z1],

[FK], [HaK] allows us to associate with a G cocycle over a right Γ action, a left
action of G. It generalizes the notion of induced action well known in the theory
of group representations as well as constructions of the special flow (flow under a
function), and the induced and special (integral) automorphisms, familiar in ergodic
theory.

Any right Γ action S = {Sγ}γ∈Γ andG cocycle α over S determine aG extension
Sα = {Sαγ }γ∈Γ of S which acts on X ×G by the following formula

(1.6) Sαγ (x, g) = (Sγx, gα(x, γ))

The cocycle equation (1.1) is equivalent to the group property for the extension

Sαγ1S
α
γ2 = Sαγ2γ1

since

Sαγ1S
α
γ2 = (Sγ1Sγ2x, gα(x, γ2)α(Sγ2x, γ1)) = (Sγ2γ1x, gα(x, γ2γ1)) = Sαγ2γ1(x, g).

There is a natural notion of isomorphism between two G extensions Sα and
Sβ of a Γ action S, namely an isomorphism which preserves every fiber {x} × G,
shifting it by an element of G

(1.7) ψ(x, g) = (x, gψ(x)).

Clearly
ψ ◦ Sβγ (x, g) = (Sγx, gβ(x, y)ψ(Sγx))

and
Sαγ ◦ ψ(x, g) = (Sγx, gψ(x)α(x, γ)).

Thus two cocycles α and β are cohomologous if and only if Sα and Sβ are isomorphic
extensions and in particular α is a coboundary if and only if Sα is isomorphic to
the trivial extension Sid:

(1.8) Sidγ (x, g) = (Sγx, g)
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and α is an almost coboundary if and only if Sα is isomorphic to a product extension
Sφ

(1.9) Sφγ (x, g) = (Sγx, gφ(γ))

where φ : Γ → G is a group homomorphism.
The group G acts on X × G in a natural way by the left shifts Lg0(x, g) =

(x, g0g), and this action obviously commutes with any extension Sα of the form
(1.6). In particular it preserves the decomposition of X × G into orbits of the
action Sα and thus, at least formally, we can consider the factor action of G on the
space of these orbits. We will denote this factor action by Lα. In general, the space
of its orbits may not have a good measurable structure. Even if it does, the natural
invariant measure may be infinite. For example, for the trivial extension (1.8) the
factor is naturally isomorphic to the group G itself, and if G is not compact there is
no finite translation invariant measure. In general one takes the measurable hull of
the partition into the orbits of Sα, i.e. the measurable partition corresponding to
the σ–algebra of measurable sets consisting of whole orbits of Sα. The factor action
Lα restricted to this measurable hull is called the Mackey range of the cocycle α.

In the case of the constant coefficient cocycle φ (cf. (1.9)) the action Lφ is
known as the action induced by the homomorphism φ. This action has a natural
finite invariant measure if the subgroup φ(Γ) ⊆ G is closed, unimodular, and has
cofinite volume in G. In particular, this is true if φ(Γ) is discrete and the factor
G/φ(Γ) is compact. We proceed to discuss a natural generalization of this last
condition to arbitrary cocycles.

1.2 Lipschitz cocycles, Pseudo-isometries and the Ambrose–Kaku-

tani theorem. Let us consider two metrics d and d′ on the same topological space
X . we will call these metric uniformly equivalent if there are positive constants
A,B and C such that for x, x′ ∈ X ,

(1.10) Ad(x, x′)− C < d′(x, x′) < Bd(x, x′) + C

A map f between metric spaces (X, dX) and (Y, dY ) is called a pseudo isometry
if for some positive constants A,B and C, and for every x, x′ ∈ X , x 6= x′,

AdX(x, x′)− C < dY (f(x), f(x′)) < BdX(x, x′) + C.

It is clear that if we replace the metrics dX and dY with uniformly equivalent
metrics d′X and d′Y then the pseudo isometry f remains a pseudo isometry with
respect to these new metrics.

Let us now return to group actions and cocycles. We will assume for the
remainder of this section that Γ is a finitely generated discrete group and that G
is a locally compact Lie group. Under these assumptions, both G and Γ possess
natural classes of uniformly equivalent left-invariant metrics. Namely for Γ we take
the word-length metric determined by any finite system of generators and for G,
any left invariant Riemannian metric.

Definition 1.5. A G cocycle α over a Γ action S is called a Lipschitz cocycle
if for almost any x ∈ X , the map αx : αx(γ) = α(γ, x) is a pseudo isometry from Γ
to G with constants A,B,C independent of x.

The special cases Γ = Z
n and G = R

n or Z
n are discussed in [K2]. In these

cases the Lipschitz condition can be replaced by weaker “integrability” conditions.
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Some important properties of Lipschitz cocycles in amore general setting can
be derived from the results in the unpublished paper [BKM] which concern the
behavior of nets in metric spaces under pseudo isometries. A net is a discrete subset
of a metric space with the property that every point is a bounded distance away
from it.

Theorem 1.6. [BKM], Let Γ be a discrete cocompact (and hence finitely gen-
erated) subgroup of a connected Lie group G. Then for every Lipschitz G cocycle α
over a Γ action S on a Lebesgue space (X,µ), the extension Sα has a fundamental
domain D = ∪

x∈X
{x} × Dx where Dx is a bounded set in G whose boundary has

Haar measure zero.

By taking the restriction of µ× λG to D , where λG is Haar measure in G, we
obtain a natural finite invariant measure for the G action Lα in the factor of X×G
into orbits of Sα. Obviously this conclusion holds for any cocycle β cohomologous to
a Lipschitz cocycle α since the factor actions Lα and Lβ for cohomologous cocycles
α and β are in a natural correspondence.

Let us illustrate this situation by the classical case Γ = Z, G = R. According
to (1.5) any R cocycle α over a Z action S = {Sn}n∈Z is determined by a function
h : X → R. If we assume that

(1.11) 0 < A < h(x) < B

then the cocycle determined by h is Lipschitz. In this case the extension of S to
X × R is generated by the automorphism

Sh(x, t) = (Sx, t+ h(x)).

The set

D = {(x, t) : 0 ≤ t ≤ h(S−1x)}
is a fundamental domain for Sh and the factor action Lh = {Lht }t∈R acts on D
as the vertical flow, where pairs of points of the form (x, 0) and (S−1x, h(S−1x))
are identified. In this way, the factor action can be naturally identified with the
special flow over S−1 built under the function h(S−1x) and the invariant measure
is induced from X ×R. As we will show in the next chapter, for every L1 function
g such that

∫
X
gdµ > 0, one can find a function h satisfying (1.11) such that

(1.12) g(x) = h(x) + ψ(Sx)− ψ(x)

for a measurable function ψ. In other words, the real-valued cocycle generated
by any integrable function with non-zero average is cohomologous to a Lipschitz
cocycle. For a generalization of this fact to other groups see [HK1].

The concept of a Lipschitz cocycle suggests a natural notion of equivalence for
Γ actions.

Definition 1.7. Let Γ be a finitely generated discrete group. Two ergodic
right Γ actions S = {Sγ}γ∈Γ and T = {Tγ}γ∈Γ are called Kakutani equivalent if
there exists a Lipschitz Γ cocycle α over S such that the corresponding action Lα

is isomorphic to the left action T−1 = {Tγ−1}γ∈Γ.
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Theorem 1.8. (i) Kakutani equivalence is an equivalence relation.
(ii) Let Γ be a cocompact discrete subgroup of a Lie group G. Then two ergodic
right Γ actions S and T are Kakutani equivalent if and only if there exist Lipschitz
G cocycles α and β over S and T correspondingly such that the corresponding left
G actions Lα and Lβ are isomorphic.

This theorem, which is a relatively easy corollary of the results in [BKM],
provides a generalization of the classical result of Kakutani [Ka] (cf. also [ORW],
[K3]) concerning the case Γ = Z, G = R.

Another interesting question is the extent to which the Ambrose–Kakutani
theorem can be generalized. This theorem asserts in particular that every ergodic
flow is isomorphic to a special flow over an ergodic automorphism. It is easy to
see that in addition (1.11) can be satisfied, so that the Ambrose–Kakutani theorem
essentially says that every ergodic flow (R action) is isomorphic to a flow obtained
from a Lipschitz cocycle over an ergodic automorphism via the construction of
Mackey range. The generalization of this theorem to the case Γ = Z

n and G = R
n

is obtained in [K2]. For further discussion of that case see [JR].
On the other hand, for many sufficiently large groups the Ambrose–Kakutani

theorem is not true and orbit equivalence classes tend to contain lots of information
about the acting group (cf. [Z1], [Z2], [Fu]).

1.3 Cohomological equations for measure-preserving transforma-

tions and flows. From now on, we will consider only cocycles over Z and R

actions, i.e. measure-preserving transformations and flows. Any G cocycle over a
Z action is determined by a measurable function h : X → G via (1.5). For this
reason, we will sometimes call the function h itself a cocycle. 1.3.1 Cocycles over
flows. Let us give a similar characterization for a special class of cocycles over a
flow. We will consider the case where G is a Lie group and we will assume the
existence for a.e. x of the derivative

(1.13) a(x)
def
=

dα(x, t)

dt

∣∣∣∣
t=0

.

Here a is a measurable map from X to the Lie algebra g = TidG of G, and the
cocycle α can be recovered from a by solving the differential equation

dα(x, t)

dt
= Lα(x,t)a(Stx)

where Lg is the differential of the left shift by g, which carries the Lie algebra g to
TgG.

This condition, differentiability along the orbits of an action, is not very restric-
tive. For example any real–valued cocycle α (and hence any vector–valued cocycle
too) is cohomologous to a cocycle satisfying (1.13), namely the cocycle

αs(x, t) =

∫ s

0

α(Sτx, t)dτ.

for any positive s.
We are now going to review some of the main cases where cocycles and coho-

mology appear in ergodic theory. See [HaK] for an additional discussion.
1.3.2 Ergodicity and eigenvalues. Let us first observe that T is not ergodic if

and only if the ψ(Tx)
ψ(x) = 1 has a non-constant solution. Furthermore, the eigenvalue
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problem for the ergodic transformation T is equivalent to the question of whether
the constant S1 cocycle λ, λ(x, n) = λn, is a coboundary. A similar characterization
holds for flows.

1.3.3 Compact group extensions. Next consider the compact group extension
Sh of a measure-preserving transformation S

Sh(x, g) = (Sx, gh(x)),

where g ∈ G, a compact group, and h : X → G is measurable. The extension Sh

can be viewed as a measure-preserving transformation on (X ×G,µ× λG), where
λG is the normalized Haar measure on G. If the G cocycles defined by h1 and h2

are cohomologous then the corresponding extensions are isomorphic as measure-
preserving transformations.

If G is abelian then

L2(X ×G,µ× λG) = ⊕
χ∈G∗

Hχ.

Here G∗ is the group of characters of G and Hχ = {f(x)χ(g) : f ∈ L2(X,µ)}.
This decomposition is orthogonal and is invariant under the unitary operator USh

corresponding to Sh. This means that any eigenfunction for Sh lies in one of the
subspaces Hχ. This leads to the equation

(1.14) χ(h(x))f(Sx) = f(x)

for an invariant function f(x)χ(g) ∈ Hχ and

(1.15) χ(h(x))f(Sx) = λf(x)

for an eigenfunction f(x)χ(g). In other words, the questions reduces to determining
whether the S1 cocycle χ ◦ h over S is correspondingly a coboundary or an almost
coboundary.

1.3.4 Induced and special transformations. The induced map TA is defined on
a subset A of positive measure by

TAx = Tmin{n>0:Tnx∈A}.

The special transformation Tn(·) (or integral transformation) is defined by a
measure-preserving transformation T and a positive integrable integer valued “roof”
function n on X . Tn(·) is a transformation of the set Xn(·) = {(x, j) : x ∈ X, 1 ≤
j ≤ n(x)} defined by

(1.16) Tn(·)(x, j) =

{
(x, j + 1) if j < n(x)

(Tx, 1) if j = n(x)

It preserves the measure induced on Xn(·) by the measure µ× λ on X × Z, where
λ is the uniform measure on Z.

The induced and special transformations correspond to particular cases of the of
the Mackey range construction, discussed in 1.1, for the case Γ = G = Z. To obtain
them in this way, we take for the induced map a Z cocycle over a transformation
T determined by a function with values 0 and 1, (i.e. the characteristic function of
a set), and for the special transformation, a Z cocycle with positive values. Let us
note that a natural generalization of both constructions is provided by non-negative
integer valued cocycles. Cocycles of this type play a central role in the theory of
Kakutani equivalence (cf. [K3], [ORW]).
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The isomorphism of induced maps TA and TB of the form x→ T h(x)x leads to
the following cohomological equation for a Z valued function h:

(1.17) χA(x) = χB(x) + h(Tx)− h(x).

Similarly, for special automorphisms with roof functions n(x) and m(x) this kind
of isomorphism is equivalent to the existence of an integer valued solution ψ for the
cohomological equation

(1.18) n(x) = m(x) + ψ(Tx)− ψ(x).

The existence of an eigenfunction with eigenvalue λ for an induced or a special
transformation also has a simple cohomological formulation. If the special trans-
formation Tn(·) has an eigenvalue λ then

(1.19) λn(x) = f(x)(f(Tx))−1

where f is the restriction of an eigenfunction with eigenvalue λ to the base. In
other words, the cocycle λn(x) is a coboundary. Likewise for an induced map TA,
the existence of an eigenfunction with eigenvalue λ implies

(1.20) λχA(x) = f(x)(f(Tx))−1

where f is the following extension to X of an eigenfunction g on A : f(x) =
λg(T−i(x)x), where i(x) is the smallest positive number such that T−i(x)x ∈ A.

1.3.4 Special flows. Two special flows built over T , {T h1(·)
t }t∈R and {T h2(·)

t }t∈R

are isomorphic if h1 and h2, considered as R cocycles, are cohomologous, i.e. if

(1.21) h1(x) = h2(x) + ψ(Tx)− ψ(x)

for a real valued measurable function ψ. In particular, if h is an almost coboundary,
meaning the following cohomological equation has a measurable solution ψ

(1.22) h(x) = h0 + ψ(Tx)− ψ(x),

then the special flow {T h(·)
t }t∈R is isomorphic to the suspension flow with a constant

function. It is easy to see that h0 =
∫
X hdµ. (see Proposition 2.1). The existence

of an eigenfunction for the special flow implies that for some real r,

(1.23) exp irh(x) = f(x)f−1(Tx)

for some measurable f : X → S1, so that the S1 cocycle exp irh(x) is a coboundary.
Let us note that by exponentiating (1.22) we obtain (1.23) for any r = 2πk

h0
, k ∈ Z;

however, (1.23) may be true without (1.22).
Isomorphism conditions (1.17), (1.18), and (1.21) are only necessary but not

sufficient. They correspond to special types of isomorphisms which, in a sense,
preserve orbits and preserve order on these orbits (cf. [K3], §3). It follows from the
theory of Kakutani equivalence that there are many other cases of isomorphism.
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2. Structure of equivalence classes

Most of the material of this chapter is an amalgamation of results by Kočergin
[Kc] and Ornstein and Smorodinsky [OS]. In [HK1] a completely different method
is developed which yields most of these results. In the first section we arrive at the
conclusion that in the measurable category each equivalence class of cocycles over
an ergodic measure-preserving transformation is “uniformly distributed” within the
subspace of all cocycles with a given average. Moreover, by modifying a cocycle on
an arbitrarily small set, even subject to extra (sufficiently flexible) conditions, one
can bring it within an arbitrary cohomology class. In the second section we push
the same line of argument even further and show that every cocycle is cohomologous
to a “regular” one, e.g. continuous or even continuously differentiable except for
one point. Later in sections 3.3 and 3.4 we will show that the results of that kind
can not be extended much further. Even a mild uniform condition stronger than
continuity (e.g. a Hölder condition) in many cases changes the picture completely.

2.1 Majorization and density in L1. We begin with two preliminary re-
sults.

Proposition 2.1. Let h1, h2 : X → R
n be two measurable L1 cocycles over an

ergodic measure-preserving transformation T . If h1 is cohomologous to h2 then
∫

X

h1dµ =

∫

X

h2dµ.

Proof. Let us assume that there is a measurable transfer function ψ : X → R
n

(2.1) h1(x) − h2(x) = ψ(Tx)− ψ(x)

The statement of the proposition is obvious if ψ is integrable. In the general
situation we apply the ergodic theorem for vector-valued functions to the function
h1 − h2. Since by (2.1)

1

n

n−1∑

k=0

h1(T
kx)− h2(T

kx) =
1

n
(ψ(Tnx) − ψ(x))

so that by the ergodic theorem the left-hand side is close to
∫
X(h1−h2)dµ on a set

of large measure. On the other hand, the right-hand side must be close to 0 except
for a set of small measure. This implies that

∫
X
h1dµ =

∫
X
h2dµ. �

The next lemma is useful in handling cocycles with values in compact abelian
groups.

Let G = T
k⊕ ⊕̀

i=1

Z/ki. There is a natural epimorphism exp : H = R
k⊕Z

` → G

so that if the H cocycles h1 and h2 over a measure-preserving transformation T are
cohomologous via the transfer function ψ then G cocycles exp ◦h1 and exp ◦h2 are
cohomologous via expψ.

Lemma 2.2. Given a G cocycle over T , g : X → G and h0 ∈ R
k+` there exists

an L1 H cocycle h such that exph = g and
∫
X
h(x)dµ = h0.

Remark. Although the cocycle h has discrete components we assume that the
lattice Z

` is embedded into R
` so that integration makes sense.
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Proof. Since exp is a surjection on a compact subset of H we can find a
bounded measurable branch for exp−1. By pulling back g along that branch we
obtain a bounded and consequently integrable h such that exph = g. In order to
correct the value of the integral we can add to h any integrable cocycle h′ whose
values lie in the kernel of exp. This kernel is a lattice in the continuous part of
H and is a sublattice of finite rank in the discrete part. Obviously, one can find a
lattice valued function with a given value of the integral so that the correction is
possible. �

Now we proceed to the central result of this section. It is very close to Theorem
2 from [Kc]. However, the proof of that theorem indicated in [Kc] looks incomplete.
We use instead a slight modification of the proof of a similar statement – Lemma
1 from [OS].

Theorem 2.3. Let f, g be two R or Z cocycles over an ergodic measure-
preserving transformation T such that ‖f‖L1 < ‖g‖L1. There exists a cocycle h
cohomologous to f and such that |h(x)| ≤ |g(x)| almost everywhere. If f is non-
negative, h also can be chosen non-negative. Furthermore, if the function g is fixed
then for every ε > 0 one can find δ > 0 such that if ‖f‖L1 < δ‖g‖L1 then the
transfer function ψ connecting f and h vanishes on a set of measure greater than
1− ε.

Proof. We will treat the cases of R and Z cocycles simultaneously.
Let x ∈ X . Consider the set of all pairs of integers (k, `) satisfying the following

properties
(i) k ≤ 0 ≤ `
(ii) For every m = k, k + 1, . . . , `− 1

m∑

i=k

|f(T ix)| ≥
m∑

i=k

|g(T ix)|

(iii)
∑̀
i=k

|f(T ix)| <
m∑
i=k

|g(T ix)|
It follows from the Birkhoff ergodic theorem and from the inequality ‖f‖L1 <

‖g‖L1 that for almost every x ∈ X at least one such pair exists and the values of k for
all such pairs are bounded from below. Let (k(x), `(x)) be the pair satisfying (i)–(iii)
with the minimal value of k. Such a pair is obviously unique. For k = 0,−1,−2, . . . ,
` = 0, 1, 2, . . . let

Ak,` = {x ∈ X, k(x) = k, `(x) = `}
The sets Ak,` form a partition ofX up to a set of measure 0 and TmA0,` = A−m,`−m
for m = 1, . . . , `. We are going to construct a function h, such that |h| ≤ |g| and

(2.2)

`(x)∑

i=k(x)

h(T ix) =

`(x)∑

i=k(x)

f(T ix)

The last condition implies that h is cohomologous to f via the transfer function

(2.3) ψ(x) =
0∑

i=k(x)

h(T ix)− f(T ix).
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In particular, ψ = 0 on the set
∞⋃
k=0

Ak,0. Let us show how to construct h satisfying

(2.2). The solutions are slightly different for the real-valued and integer-valued
cocycles. In the real case the easiest way is to put

h(x) = |g(x)|

`(x)∑
i=k(x)

f(T ix)

`(x)∑
i=k(x)

|g(T ix)|
.

Condition (iii) implies that |h| < |g|. Condition (2.2) follows from this definition
automatically.

In the case of integer valued cocycles let us consider the following measurable
sets

B`,f0,...,f`,g0,...,g`
= {x ∈ A0,`, f(T ix) = fi, |g(T ix)| = gi, i = 0, . . . , `}

Since by (iii)
∑̀
i=0

|fi| <
∑̀
i=0

gi one can find integers h0, . . . , h` of the same sign such

that |hi| ≤ gi i = 0, . . . , ` and
∑̀
i=0

hi =
∑̀
i=0

fi. We put for x ∈ B`, f0, . . . , f`, g0, . . . , g`,
i = 0, . . . , `, h(T ix) = hi. Condition (2.2) is obviously satisfied.

It remains to estimate the measure of the support of the transfer function ψ

defined by (2.3). Since ψ = 0 on the set
∞⋃
k=0

Ak,0 it is enough to estimate the

measure of that set. We have from (ii)

(2.4)

‖f‖L1 ≥
∫

X\∪Ak,0

|f(x)|dµ =
∑̀

`=0

|f(T ix)|dµ ≥

≥
∑̀

`=0

∫

A0,`

`−1∑

i=0

|g(T ix)|dµ =

∫

X\∪Ak,0

|g(x)|dµ

Since |g| is an integrable function there is a function ω(ε) decreasing to zero at
ε → 0 such that if µ(B) < ε

∫
B gdµ < ω(ε). Thus (2.4) implies that ‖f‖L1 >

ω(µ(supp ψ)). �

Next two corollaries are also valid for both R and Z cocycles over an ergodic
measure-preserving transformation T .

Corollary 2.4. Every L1 cocycle f is cohomologous to a bounded cocycle.

Corollary 2.5. Suppose f and g are L1 cocycles such that
∫
X fdµ = 0 and

‖g‖L1 > 0. Then there exists an L1 cocycle h cohomologous to f such |h(x)| ≤ |g(x)|
almost everywhere.

There is one more corollary for R-cocycles.

Corollary 2.6. Given any two L1 cocycles f and g with
∫
X fdµ =

∫
X gdµ

and ε > 0, there exists an L1 cocycle h cohomologous to f such that |h(x)−g(x)| < ε.
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Furthermore, h can be required to coincide with g on a given set of measure less
than 1.

A counterpart of that statement for Z-cocycles is the following.

Corollary 2.7. Given any two integrable Z cocycles f and g with
∫
X fdµ =∫

X
gdµ, there exists an integrable Z cocycle h cohomologous to f and such that

|h− g| ≤ 1.

Furthermore, h can be required to coincide with g on a given set A of measure
less than 1. If g is not constant outside of A the range of h may be required to be
contained in the range of g.

Proof of Corollaries 2.4–2.7. Corollary 2.4 follows directly from Theo-
rem 2.3 if we take g = (1 + ε)

∫
X fdµ for a positive ε.

To obtain Corollary 2.5 it is enough to show that f is cohomologous to a
function with arbitrary small L1-norm, because then Theorem 2.3 directly applies.
To do that we represent f = f+ − f− where f+ = max(f, 0). Since

∫
X fdµ = 0,

‖f+‖L1 = ‖f−‖L1 . Let us fix an ε > 0 and apply Theorem 2.3 to the pair f−,
(1 + ε)f+. Thus, the function f− is cohomologous to a nonnegative function h
such that h(x) ≤ (1 + ε)f+(x) and consequently f = f+ − f− is cohomologous to
f+ − h > −εf+. The last inequality implies that ‖f+ − h‖L1 =

∫
|f+ − h|dµ =

2
∫

max(0, h − f+)dµ < 2ε‖f+‖L1 . Since ε can be chosen arbitrarily small this
finishes the proof of Corollary 2.5.

Corollary 2.6 follows from the previous one applied to the pair of functions
f − g and s where s is nonnegative, less than ε everywhere and is equal to zero on
the given set. Thus, f = g+ (f − g) is cohomologous to g+ h where |h(x)| ≤ s(x).

A very similar argument applies to Corollary 2.7. Here we take as s a charac-
teristic function of a set B ⊂ X\A such that the values of g on B are not equal to
sup
X\A

g. �

Applying Theorem 2.3 and its four corollaries to each coordinate of a cocycle
with values in H = R

k⊕Z
` we obtain similar results for cocycles with values in H .

In particular, the following theorem follows immediately.

Theorem 2.8. Given a set U ⊆ X, µ(U) < 1, a measurable function f : U →
H = R

k ⊕Z
`, a vector h0 ∈ R

k+` and an L1 H cocycle g over an ergodic measure-
preserving transformation T , the set of all cocycles cohomologous to g is dense in
the set

A(f, h0) = {h ∈ L1(X,H), h = f on U,

∫

X

hdµ = h0}.

In particular, for U = ∅ we obtain that every cohomology class is dense in the
subspace of all cocycles with a fixed average.

This theorem together with Lemma 2.2 implies a similar but even more uni-
versal density result for cocycles with values in a compact abelian group of the
form

G = T
k ×

`
⊕
i=1

Z/ki.



COCYCLES, COHOMOGY AND COMBINATORIAL CONSTRUCTIONS 15

Corollary 2.9. Given a set U ⊆ X, µ(U) < 1, a measurable function f :
U → G and a measurable G cocycle g over T , the set of all cocycle cohomologous
to g is dense in the L1 topology in the set

A(f) = {h : h = f on U}.
In particular for U = ∅ we obtain that every cohomology class of G cocycles is dense
in the space of all measurable cocycles.

2.2 Continuous and almost differentiable representations. In this
section we consider only real-valued cocycles.

Theorem 2.10. Let L ⊂ L1 (X,µ) be a linear subspace of L1 dense in the L1

topology and closed in the L∞ topology (uniform convergence almost everywhere).
Then for every f ∈ L1(X,µ) the set Lf = {h ∈ L, h is cohomologous to f} is
dense in the L∞ topology in the set {h ∈ L,

∫
hdµ =

∫
fdµ}.

Proof. Let us fix a function h ∈ L such that
∫
fdµ =

∫
hdµ and ε > 0. By

Corollary 2.6 one can find a cocycle f1 cohomologous to f and such that |f1−h| < ε
2 .

Then we began to apply Theorem 2.3 inductively. First we approximate f1 by a
function h1 ∈ L such that

‖h1 − f1‖L1 <
δ1ε

4
where δ1 is chosen sufficiently small to ensure that, by Theorem 2.3, h1 − f1 is
cohomologous to a function r1 such that |f1| < ε

4 via a transfer function ψ1 whose

support has measure less than 1
2 . The function h1 + r1

def
= f2 is thus cohomologous

to f1 and consequently to f . Then we approximate f2 by h2 ∈ L such that ‖f2 −
h2‖L1 < δ2

ε
8 with an appropriately chosen δ2 so that f2 − h2 is cohomologous to

a function r2, |r2| < ε
8 via a transfer function supported by a set of measure less

than 1
4 , denote h2 + r2 = f3, etc. In the limit we obtain

f ′ = lim fn = limhn

and in both cases the convergence is uniform. Since hn ∈ L and L is L∞ closed,
f ′ ∈ L. On the other hand, since the transfer function connecting fn and fn+1 has
support of measure less 2−n, by the Borel–Cantelli Lemma the sequence of transfer
functions between f and fn converges in probability to a transfer function between
f and f ′. �

Corollary 2.11. [OS] Let X be a compact metric space, µ be a Borel proba-
bility nonatomic measure on X,T : X → X be a measure-preserving transformation
(not necessarily continuous). Then every real-valued cocycle f ∈ L1(X,µ) is coho-
mologous to a continuous cocycle. Moreover the set of continuous cocycles coho-
mologous to f is dense in uniform topology in the space of all continuous functions
with the same integral as f .

This statement follows immediately from Theorem 2.10 if we put L = C(X),
the space of all continuous functions.

Corollary 2.11 can be strengthened by specifying the values of a continuous
function cohomologous to f on any closed set F so that µ(X\F ) > 0. The proof
repeats that of Theorem 2.10 with an extra observation that f1 may be already made
to coincide with the given function on F and all the successive approximations may
be chosen in order not to change that.
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Pushing the method described above a bit further one obtains the following
result which looks quite striking at first glance.

Theorem 2.12. Let M be a compact differentiable manifold, µ be a Borel prob-
ability measure on M, T : M →M be a measure-preserving transformation. Then
every real-valued cocycle f ∈ L1(M,µ) is cohomologous to a continuous cocycle f̄
which is continuously differentiable except at a single point.

Sketch of proof. First one finds a continuous cocycle f1 cohomologous to
f which is continuously differentiable outside a ball B1 of radius, say, 1/2 and
can be extended to a continuously differentiable function. This is possible by a
stronger version of Corollary 2.11 mentioned above. Then one approximates f1 in
uniform topology by a continuously differentiable cocycle g1 which coincides with
f outside B1. If the L1 norm of f1 − g1 is small enough one can find a cocycle
f2 cohomologous to f1 (and hence to f) which coincides with f1 outside a smaller
ball B2 ⊂ B1 of radius 1/4 and extends to a continuously differentiable function
and such that the support of the transfer function ψ1 has measure less than 1/2.
Continuing by induction one constructs on the nth step the cocycle fn continuously
differentiable outside of ball Bn ⊂ Bn−1 of radius 2n+1 which coincides with fn−1

outside of the ball Bn−1 and extends to a continuously differentiable function and
such that a transfer function ψn connecting fn with fn−1 is supported on a set
of measure less than 2n. In the limit the function f̄ = limn→∞ fn is continuous

everywhere and continuously differentiable outside of the single point
∞⋂
n=1

Bn. By

the Borel–Cantelli lemma the series
∞∑
n=1

ψn converges and hence gives a transfer

function between f1 and f̄ . Since f1 is cohomologous to f this finished the proof.
�

Remark. As many instances discussed in the next chapter will show, the single
point of nondifferentiablity cannot be removed.

The transfer functions involved in the equivalence between continuous cocycles
will very often be discontinuous, even for a homeomorphism.

For a homeomorphism f we will denote the set of f invariant Borel probability
measures by M(f).

Proposition 2.13. Let f be a homeomorphism of a compact metric space X.
The following three subspaces of C(X) coincide:

(i) E1 = {φ :
∫
φdν = 0 for all ν ∈M(f)}

(ii) E2 = C̄, where C = {φ : φ = h ◦ f − h for a continuous function h}
(iii) E3 = B̄, where B = {φ : φ = h ◦ f − h for a bounded Borel function h}.

Proof. Obviously E3 ⊇ E2; since the space E1 is closed we can apply Proposi-
tion 2.1 and conclude that E1 ⊇ E3. Thus it is enough to show that E2 ⊇ E1. This
is a fairly straightforward argument using duality and the Hahn-Banach Theorem.
We will present it here, because the same argument will appear several times in
subsequent discussions. Consider the continuous linear operator A : C(X) → C(X)
such that (Aφ)(x) = φ(f(x))− φ(x). E2 is the closure of the image of A. The dual
operator A∗ acts on the dual space C∗(X). Since every element of C∗(X) is the
difference of two measures, M(f) spans KerA∗. Thus χ ∈ Ker A∗ if and only if for
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every φ ∈ C(X),
(A∗χ)φ = χ(Aφ) = 0.

and φ ∈ E1 if and only if for every χ ∈ KerA∗, χ(φ) = 0. In other words χ(φ) = 0
as soon as χ annihilates ImA. By the Hahn-Banach Theorem, if φ /∈ E2 one can
construct χ such that χ(φ) = 1 and χ(ImA) = 0. �

Remark. If the transformation f is minimal, i.e. all of its orbits are dense,
then C = B. (Gottshalk, Hedlund, see e.g. [KH], Theorem 2.9.4.)

In view of Theorem 2.10 and Proposition 2.13, we can see that unless f is
uniquely ergodic there are many continuous cocycles which are coboundaries via
discontinuous and even unbounded transfer functions. Theorem 4.2 below shows
that this is the case in the uniquely ergodic situation as well. At the end of section
3.3 we will give an example of a topologically transitive but not minimal transfor-
mation and a naturally defined continuous function which is a coboundary with a
bounded but discontinuous transfer function.

3. Rigidity and stability

We proceed to explore various situations where equivalence classes of cocycles
have a reasonable structure. As the discussion in the previous chapter shows, one
can hope to find such situations only if the topology in the corresponding space of
cocycles is considerably stronger than the topology of uniform convergence. The
most natural situations to look upon are analytic, smooth, Lipschitz or Hölder
cocycles over a transformation or a flow preserving the corresponding structure.
Two basic concepts for the subsequent discussion are those of rigidity and stability.
We will define these notions for cocycles over actions of fairly general groups but our
discussion will be almost completely restricted to the case of a single transformation
(Z-action), with several glimpses of the case of flows.

3.1 Definitions. Let H be a topological space of G-cocycles over a measur-
able measure-preserving action S of a locally compact second countable group Γ.
We will assume that the topology in H is stronger than the topology of conver-
gence in probability uniform on compact subsets of Γ. In other words, if a sequence
of cocycles αn ∈ H converges in H to a cocycle α, then for any compact subset
K ⊆ Γ and any neighborhood U of the identity in G, and for any sufficiently large
n α−1

n (x, γ)α(x, γ) ∈ U for all γ ∈ K and for aset of x close to full measure.

Definition 3.1. The space H is rigid with respect to the action S if every
cocycle α ∈ H is an almost coboundary. If in addition, for every α ∈ H, the transfer
function ψ which establishes the equivalence between α and a constant cocycle, can
be chosen from a given class Ψ of maps from X to G, we will call H Ψ-rigid with
respect to S .

It is natural to allow a certain freedom of terminology and to speak of continu-
ous, Hölder, smooth, (Cr or C∞), or analytic rigidity when the transfer functions
possess the corresponding properties.

For R
n-cocycles over a measure-preserving transformation rigidity means that

all of the functions from H with the fixed average are cohomologous to each other.
For actions of certain groups, e.g. semisimple Lie groups of rank greater than

one, or lattices in such groups, rigidity occurs for large classes of measurable cocycles



18 ANATOLE KATOK AND E. A. ROBINSON

[Z1], but for actions of Z, and more generally, of amenable groups, it can appear
only if H has a sufficiently fine topology. There is however a big difference between
the classical case (Z and R actions) and the situation for actions of higher rank
abelian groups.

In the latter case cocycle rigidity in Hölder, smooth and analytic categories
is quite widespread, appears for many natural examples of actions, both smooth
[KSp1] and symbolic [Sch2], and is related with hyperbolic behavior in the smooth
situation and with expansiveness in the symbolic one. Cocycle rigidity is a key link
in the whole panoply of rigidity results for such actions including local and global
differentiable rigidity [KSp2].

For the classical cases Hölder cocycle rigidity very likely never happens and
smooth cocycle rigidity appears for Diophantine translation of the torus and prob-
ably only there. We will discuss this issue in the next section.

A property which is much more common and definitely more useful in the
classical cases is stability:

Definition 3.2. Under the same assumptions as in Definition 3.1, we will call
the space H stable with respect to S if every class of cohomologous cocycles in H is
closed.

In this definition we assume that arbitrary measurable G-valued functions are
allowed as transfer functions between cocycles from the space H. However, equiv-
alence classes within H may shrink considerably if we put certain restrictions on
the transfer functions. In particular, it is conceivable that unrestricted equivalence
classes are not closed while the restricted ones are and vice versa. This possibility
suggests certain ramifications of the concept of stability. As before, let Ψ be a
certain class of maps from X to G.

Definition 3.3. The space H is called Ψ-stable with respect to the action S

if every class of cocycles from H, cohomologous via transfer functions from Ψ, is
closed.

Let us note that in general, Ψ-stability may not imply stability.

Definition 3.4. The space H is called Ψ-effective with respect to H if for any
two cohomologous cocycles α, β ∈ H the transfer function ψ belongs to Ψ.

Obviously, if H is Ψ-effective then Ψ-stability implies stability.
Terms such as smooth, analytic or Hölder stability and effectiveness have the

obvious meaning. We observe that if equivalent cocycles are assumed to be defined
everywhere and the transfer function is only assumed to be measurable, then the
corresponding cohomological equation needs only be satisfied almost everywhere.

If both spaces H and Ψ consist of continuous maps, then there are certain
obvious invariants which are preserved under cohomology via a transfer function
from Ψ. For example, if G is a subgroup of R

n and ν is any measure on X invariant
with respect to the action S, then for any γ ∈ Γ the average

∫

X

α(x, γ)dν

is a cohomology invariant (Proposition 2.13). This remains true even if ψ is a
bounded Borel function. These remarks together with Corollary 2.11 show that for
continuous cocycles over transformations which are not uniquely ergodic equivalence
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classes with continuous or bounded Borel transfer functions must be much smaller
than the unrestricted equivalence classes.

For Γ = Z and arbitrary G, the conjugacy class in G of the product of the
values of the cocycle along any periodic orbit is invariant. In sections 3.3 and 3.4
we will discuss situations when these invariants determine the equivalence classes,
thus producing stability.

While no general theory exists for stability and effectiveness of smooth or other
natural classes of cocycles, there is a good understanding of these phenomena for
smooth dynamical systems with hyperbolic behavior and their counterparts in topo-
logical and symbolic dynamics. To a lesser extent stability and effectiveness are
understood for partially hyperbolic systems and for parabolic systems with suffi-
ciently regular features. For a general discussion of hyperbolic, partially hyperbolic,
parabolic and elliptic behavior in dynamics, see [HaK]. A general outline of stabil-
ity and effectiveness properties is also discussed there. Presently we will glance at
some characteristic phenomena which appear for each type of behavior.

3.2 Translations of the torus and smooth rigidity.

3.2.1 Diophantine and Liouvillean numbers. The example which we are going
to describe plays a basic role in the theory of perturbations of completely integrable
Hamiltonian systems. The rigidity result was known to Kolmogorov in the early
fifties [Ko].

Let λ = (λ1, . . . , λm) ∈ T
m so that each λi is a complex number of modulus 1.

We will call the vector λ Diophantine if for some positive k and c and for arbitrary

integers n1, . . . , nm such that
m∑
j=1

|nj | > 0,

(3.1)

∣∣∣∣∣∣

m∑

j=1

λ
nj

j − 1

∣∣∣∣∣∣
> c




m∑

j=1

|nj |



−k

.

If λj = exp 2πiαj , j = 1, . . . ,m, then (3.1) is equivalent to the following condition
for the vector α = (α1, . . . , αm) of phases: for arbitrary integers n1, . . . , nm such

that
m∑
j=1

|nj | > 0 and for every integer n,

∣∣∣∣∣∣

m∑

j=1

αjnj − n

∣∣∣∣∣∣
> c




m∑

j=1

|nj |



−k

.

The vector of phases which is of course defined up to an integer vector is also
called Diophantine. Often the vectors α (and corresponding λ’s) which are not
Diophantine are called Liouvillean.

Let Rλ : T
m → T

m be the rotation* of the torus by λ,

Rλ(z1, . . . , zm) = (λ1z1, . . . , λmzm).

This is the prototype example of elliptic behavior in dynamics ( see [HaK], Chapter
7).

*This terminology suits multiplicative notations on the torus we used so far. When additive
notations are used as later in this section the same map Rλ is called a translation and is denoted
by Tα.
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3.2.2 Cohomological equation over a rotation.

Theorem 3.5. If λ is Diophantine then for every C∞ function (real or com-
plex) h on T

n there exists a C∞ function ψ (real or complex) such that

(3.2) h(z)−
∫

Tm

hdµ = ψ(Rλz)− ψ(z)

where µ is Lebesgue measure on T
m.

Furthermore, Diophantine vectors are the only ones for which this property
holds.

Proof. We will use Fourier expansion. For n1, . . . , nm ∈ Z, let us denote

χn1,...,nm
=

m∏
i=1

zni

i . Then

h =
∑

n1,...,nm

hn1,...,nm
χn1,...,nm

and h is a C∞ function if and only if the Fourier coefficients hn1,...,nm
decrease

faster than any power of |n1|+ · · ·+ |nm|.
Let us look for the Fourier expansion for the solution ψ of (3.2).

ψ =
∑

n1,...,nm

Σ|ni|>0

ψn1 , . . . , nm χn1,...,nm
.

Its Fourier coefficients ψn1,...,nm
are found from (3.2):

(3.3) ψn1,...,nm
=

hn1,...,nm

m∏
i=1

λni

i − 1
.

If h is C∞ and λ is Diophantine, then it follows from (3.1) that the coefficients
ψn1,...,nm

decrease faster than any power of |n1| + · · · + |nm|, so that ψ defined
through (3.3) is a C∞ function.

Conversely, if λ is Liouvillean, then there exists a sequence of vectors nk =
(nk1 , . . . , n

k
m) such that for any natural number s as k →∞,

∣∣∣∣∣∣

m∑

j=1

λ
nk

j

j − 1

∣∣∣∣∣∣
= o




m∑

j=1

|nkj |



−s

.

Define h by choosing its only nonzero Fourier coefficients as

hnk
1 ,...,n

k
m

=

∣∣∣∣∣∣

m∑

j=1

λ
nk

j

j − 1

∣∣∣∣∣∣

1/2

for k = 1, . . . .

These Fourier coefficients decrease faster than any power of
m∑
j=1

|nkj |, hence the

function h is C∞. On the other hand, for a solution ψ of the cohomological equation
(3.2) the Fourier coefficients ψnk

1 ,...,n
k
m

given by (3.3) go to infinity as k →∞ which

contradicts existence of even an L1 solution to (3.2). �
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Remarks. 1. In the Liouvillean case the Fourier series for h constructed above
is lacunary. In the case of one variable Herman [He1] showed that if the cohomolog-
ical equation (3.2) with an L2 function h given by a lacunary series has a measurable
solution, then the solution is actually L2. Thus, in our case with m = 1 for a Liou-
villean α there is no measurable solution at all. This can also be shown using the
methods developed in Section 5.1 below.

2. Herman also obtained sharp results for the equation (3.2) for Diophantine α
with functions h of finite regularity. Namely if h is Cr, (3.1) is satisfied and r − k
is not an integer, then there is a Cr−k solution, and if r − k is an integer, there
is a solution which is Cr−k−ε for any ε > 0 ([He2], Proposition A.8.1). However,
typically (for a dense Gδ of h′s in the corresponding spaces) there is no Cr−k+ε

solution for any positive ε and no Cr−k solution if r − k is an integer ([He2],
Proposition XIII.4.5).

3. Theorem 5.6 below contains a generalization of our argument for the Liou-
villean case.

3.2.3 Smooth rigidity and effectiveness. Using the terminology introduced in
section 3.1 we can reformulate Theorem 3.5 by saying that for a Diophantine λ,
the rotation Rλ is both C∞ rigid and C∞ effective. We do not know any other
examples of measure-preserving diffeomorphisms which possess these properties.

Conjecture 3.6. Any C∞ diffeomorphism of a compact connected manifold
which is C∞ rigid and C∞ effective is C∞ conjugate to a Diophantine translation
of a torus.

There are similar questions concerning rigidity in Cr category for finite r.

Proposition 3.7. A C∞ rigid and C∞ effective diffeomorphism f is uniquely
ergodic and its only invariant measure is a volume with C∞ density.

Proof. Unique ergodicity immediately follows from Proposition 2.13 and the
density of C∞ functions in the space of continuous functions. For, given two mea-
sures µ and ν one can always find a C∞ function such that its integrals with respect
to these measures are different. But if a function is cohomologous to a constant
even via a continuous transfer function this constant must be equal to the intergal
of the function with respect to any invariant measure, a contradiction.

Now consider a measure µ given by a positive C∞ density. We have f∗µ = Jµ
where the Radon–Nikodym derivative J (called the Jacobian) is C∞ and positive.
The C∞ function log J is by assumption cohomologous to a constant:

log J(x) = H(fx)−H(x) + c.

But then the measure ν = expHµ satisfies f∗ν = exp cν. Since the total measure
is preserved this implies that c = 0, hence ν is invariant. �

Corollary 3.8. A C∞ rigid and C∞ effective diffeomorphism f is minimal.

A part of the conjecture is that a C∞ rigid and C∞ effective diffeomorphism
have to act on a torus. A possible approach would be to try to prove that as a mea-
sure preserving transformation such a map has to have pure point spectrum. It is
not difficult to show that every ergodic diffeomorphism with pure point spectrum
and C∞ eigenfunctions is conjugate to a translation on a torus. An alternative
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possibility would be a smoothly rigid diffeomorphism with a continuous part in the
spectrum or one with pure point spectrum but with non-smooth eigenfunctions.
Even without rigidity the last possibility constitutes an interesting question. Such
“non-standard” models do exist for Rλ with some λ which are very well approxi-
mated by rational vectors [AK], but their existence even for a single Diophantine
λ is an open question.

Now consider diffeomorphisms of the torus T
m. We use additive notation now.

Every such diffeomorphism is homotopic to an automorphism FA, whose lift to R
m

is the linear map given by A, an m×m matrix with determinant ±1.
There are two extreme cases in which our conjecture can be proven. If the

matrix A has no roots of unity among the eigenvalues then any diffeomorphism
homotopic to FA has infinitely many periodic points ([KH], Theorem 8.7.1) and
hence no cocycle rigidity is possible.

Proposition 3.9. [LSa] A C∞ rigid and C∞ effective diffeomorphism f of
T
m homotopic to identity is C∞ conjugate to a Diophantine translation.

Proof. Since f is homotopic to identity its lift F to the universal cover R
m

has the form Id+H where H is a periodic function, hence it projects to function h
on the torus. Using rigidity and effectiveness we obtain h = ψ ◦ f −ψ+ c, where ψ
is a C∞ function and c is a constant. Lift ψ to the function Ψ on R

m. Obviously
H = Ψ ◦ F −Ψ + c. Consider the map S = Id−Ψ : R

m → R
m. We have

S ◦ F = Id +H −Ψ ◦ F = Id + Ψ ◦ F −Ψ + c−Ψ ◦ F = Id−Ψ + c = (Id + c) ◦ S
Let s be the projection of the map S to the torus. Projecting the last equality

on the torus we obtain

(3.4) s ◦ f = Tc ◦ s
where Tc = Id + c is the translation by c.

It remains to show that s is a diffeomorphism. Taking the derivative of (3.4) we
see that the set of singular points of s is f–invariant and hence dense by Corollary
3.8. By the Sard Theorem the set of regular points is open and dense hence the set
of singular points is empty. Thus s is a covering map but since it is homotopic to
identity it is a diffeomorphism. By Theorem 3.5 c must be a Diophantine vector.
�

Using a similar method one can treat the case where the matrix A is unipotent,
i.e. all of its eigenvalues are equal to one. In this case one can show that C∞

cocycle rigidity and effectiveness implies that the diffeomorphism is C∞ conjugate
to an affine map. Using the method of Section 3.6 below one can show that such a
map with a unipotent A 6= Id has infinitely many invariant distributions and hence
cannot be rigid.

The remaining difficult case is when A is reducible with eigenvalues of absolute
value greater than one coexisting with roots of unity.

3.3 Stability of Hölder cocycles for transformations with specifica-

tion. In this section we will consider a rather robust situation of cocycle stability
in the context of topological dynamics. Dynamical conditions which appear in this
and the next section are abstract versions of hyperbolicity. Thus in these sections
we essentially describe certain aspects of cocycle stability and effectiveness for dy-
namical systems with hyperbolic behavior.
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Let f be a homeomorphism of a compact metric space X .

Definition 3.10. We will say that f satisfies the strong specification property
if for any ε > 0 there exists N(ε) such that for any collection of orbit segments

{f i(xj)}j=1,...,L,i=0,...,mj−1

and for any n1, . . . , nL > N(ε), there exists a periodic orbit

{f iy}i=0,...,P−1

of period

P =

L∑

j=1

mj + nj

such that for j = 1, . . . , L,

dist(f ixj , f
`(i,j)y) < ε

where

`(i, j) = i+

j−1∑

k=1

mk + nk.

The two main examples with this property are:

(i) A topological Markov chain (subshift of finite type) ΣA, where A is a zero-one
matrix such that for some n,An has all positive entries; the latter condition is called
transitivity (see [KH], Section 1.2.).

(ii) The restriction of a diffeomorphism of a compact manifold to a locally maximal
(basic) hyperbolic set Λ satisfying one of the following equivalent conditions ([KH],
Section 18.3):

(a) F
∣∣
Λ

is topologically mixing, i.e. for every two nonempty open sets U and

V , there exists N(U, V ) such that fnU ∩ V 6= ∅ for all n > N(U, V ).
(b) Every power of f has a dense orbit on Λ.
(c) At least one stable or unstable manifold for f is dense in Λ.
Now assume that the homeomorphism f satisfies the strong specification prop-

erty.

Definition 3.11. We will say that a vector-function h : X → R
m satisfies a

dynamical Hölder condition if there exist ε > 0 and K > 0 such that for any n, if
x, y ∈ X ,

(3.5) dfn(x, y) ≤ ε then

n−1∑

i=0

‖h(f ix)− h(f iy)‖ ≤ K

The reason for calling this property a Hölder condition is that in both examples
(i) and (ii) above, this property is satisfied by Hölder functions with respect to a
natural metric. In the symbolic case (i) the metric in the space

ΩA = {ω = (. . . ω−1ω0ω1, . . . ) : ωn ∈ {0, . . . , N − 1}, Aωn−1ωn
= 1, n ∈ Z}
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can be chosen as dist(ω, ω′) =
∞∑

n=−∞

|ωn−ω
′
n|

λ|n|
for any λ > 1. In the smooth case (ii)

any metric on Λ induced by a smooth Riemannian metric on the ambient manifold
can be chosen.

All vector-valued functions on X satisfying (3.5) with a fixed ε form a Banach
space Hf

ε with respect to the norm

‖h‖fε = max
x∈X

‖h(x)‖+ sup
n

sup
x,y:df

n(x,y)≤ε

n−1∑

i=0

‖h(f ix)− h(f iy)‖.

The spaces Hf
ε will serve as H in our study of stability of cocycles.

Proposition 3.12. If f satisfies the strong specification property and h : X →
R
m satisfies the dynamical Hölder condition then the following two properties are

equivalent

(i)
n−1∑
i=0

h(f ix) = 0 for every periodic point x ∈ X such that fnx = x.

(ii) There exists a bounded Borel function ψ : X → R
m such that

h(x) = ψ(fx)− ψ(x).

This proposition immediately implies the following stability result.

Corollary 3.13. Let f be a homeomorphism of a compact metric space X
satisfying the strong specification property and Ψ be the set of all bounded Borel
maps from X to R

m. Then the spaces Hf
ε are Ψ-stable.

Proof of Corollary 3.13. By Proposition 3.12 two R
m cocycles h1, h2 ∈

Hf
ε are equivalent with the transfer function from Ψ if and only if the sums of their

values along each periodic orbit are equal. Those conditions define a closed affine
subspace of Hf

ε .

Proof of Proposition 3.12. Condition (ii) implies (i) because if fnx = x

then
n−1∑
i=0

h(f ix) = ψ(fnx) − ψ(x) = 0. The converse follows easily from Lemma

3.14 and 3.15 which are formulated and proved below.

Lemma 3.14. Under the assumptions of Proposition 3.12, if (i) is satisfied
then there exists a constant L > 0 such that for every x ∈ X and every positive
integer n ∥∥∥∥∥

n−1∑

i=0

h(f ix)

∥∥∥∥∥ < L.

Proof. We apply the specification property to the orbit segment {f ix} i =
0, . . . , n− 1, with ε > 0 small enough to use the dynamical Hölder condition for h.
This gives us a periodic point y of period, say, n+N(ε) such that dfn(x, y) < ε. We
have

n−1∑

i=0

h(f ix) =

n+N(ε)−1∑

i=0

h(f iy)+

+

n−1∑

i=0

(h(f ix) − h(f iy))−
n+N(ε)−1∑

n

h(f iy).



COCYCLES, COHOMOGY AND COMBINATORIAL CONSTRUCTIONS 25

The first sum is equal to zero by (i); the second is uniformly bounded by the
dynamical Hölder property; the third contains a bounded number of terms each of
them bounded by the sup ‖h‖. This proves the lemma. �

Lemma 3.15. (D. Rudolph). If {an}n∈Z is a sequence of real numbers such
that for any integers n,m, n < m,

∣∣∣∣∣

m−1∑

i=n

ai

∣∣∣∣∣ < L

then
an = bn+1 − bn

where
bn = − sup

N∈Z

SNn

and

SNn =





N−1∑

i=0

an+i, N > 0

0, N = 0

−
−N∑

i=1

an−i, N < 0

so that bn is uniformly bounded.

Proof. One can easily see that

SN−1
n+1 = SNn − an

so that
bn+1 − bn = − sup

N∈Z

SN−1
n+1 + sup

N∈Z

SNn = an.�

In order to finish the proof of Proposition 3.12, we first use Lemma 3.14 and
then apply Lemma 3.15 to every coordinate of h along every orbit of f . This gives
us the solution ψ = (ψ1, . . . , ψm) of the cohomological equation where

(3.6) ψi(x) = − sup
N∈Z






N−1∑

n=0

hi(f
nx), N > 0

0, N = 0

−
N∑

n=−1

hi(f
nx), N < 0.

These functions are obviously Borel, and by Lemma 3.14 they are bounded. �

The proof above demonstrates in the simplest possible form a general and fruit-
ful method of establishing triviality of real- or vector-valued cocycles over group
actions. If we denote the cocycle h(x, n) defined by a given function h then for-
mula (3.6) gives the value of the ith coordinate of the transfer function simply as
− supn hi(x, n). Of course, such a definition is only possible if the values of the
cocycle at every point are bounded. They do not have to be uniformly bounded
though; the resulting transfer function would then be unbounded.
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Moreover, there are situations when the set of values of the cocycle at a partic-
ular point is unbounded but the cocycle at the that point as a function of n (i.e. a
function on Z, or, for a more general action, function of the acting group), has some
equivariant characteristics. Here are examples of such characteristics which are ac-
tually useful in ergodic theory and topological dynamics. We restrict ourselves to
R valued cocycles over Z actions.

(i) Suppose the set of values of the cocycle at x has a Cesaro average or, more
generally, can be averaged using some algorithmic procedure. If A(x) is the value
of such an average, then −A(x) can be used as the solution of the coboundary
equation. This construction can also be used for actions of amenable groups. Aside
from an obvious generalization to vector valued cocycles it extends to situations
where a natural notion of center of gravity can be introduced in the range of the
cocycle.

(ii) Suppose there is a set of of values on n of positive lower density, say d(x), for
which the values of the cocycle are bounded from above and below. In this case
one can define the distribution function Fx(t) of the values of cocycle at x, namely,
the lower density of a set for which the values of the cocycle are ≤ t. This function
is monotone non-decreasing and has asymptotic values 0 ≤ Fx(−∞) < Fx(∞) ≤ 1.
Now let

t(x)
def
= sup{t : Fx(t) <

Fx(−∞) + Fx(∞)

2
}.

By assumption t(x) is a finite number and t(f(x)) = t(x) + h(x) thus producing a
solution of the coboundary equation.

In the next section we will show that in certain cases, including topological
Markov chains (subshifts of finite type) and hyperbolic sets for diffeomorphisms,
one can prove that the transfer function ψ is continuous and even Hölder. In
general, however, this is not true. We will now describe a counterexample due to
B. Marcus.

Example. The space X will be a shift-invariant closed subset of the set of
doubly infinite (+1,−1) sequences, containing all sequences ω = {ωn}, n ∈ Z, such
that for all m,n ∈ Z, m < n,

(3.7)

∣∣∣∣∣

n−1∑

i=n

ωi

∣∣∣∣∣ ≤ K

for a fixed positive integer K ≥ 2. Naturally, the transformation will be the shift
on two symbols σ2. We will consider the zero coordinate ω0 as a function on X , so
that ω0(σ

n
2 ω) = ωn.

Proposition 3.16. The shift σ2 restricted to the space X satisfies the strong
specification property, the function ω0 satisfies dynamical Hölder condition, and ω0

is not a coboundary with a continuous transfer function.

Proof. If ω ∈ X is periodic, i.e. if ωn+k = ωn for some k and for all n

then
k−1∑
i=0

ωi = 0, since otherwise (3.7) cannot be true. The function ω0 satisfies the

dynamical Hölder condition because, as we mentioned before, this is true for the
full shift space. The specification property can be established directly, but it is
easier to deduce it from a general argument.
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The map we are considering is a sofic system, i.e. a symbolic system which is
continuous factor of a subshift of finite type. To see this, we take the shift on K+1
symbols {0, 1, . . . ,K}, and define the transition matrix A = (aij) where

aij = 1 if |i− j| = 1.

and is zero otherwise. Denote by σA the restriction of the shift to ΩA. Every
element α ∈ ΩA determines a sequence ω(α) of +1 and −1, namely

(3.8) ωi(α) = αi+1 − αi.

Obviously any ω(α) satisfies (3.7) and conversely, for any sequence ω satisfying
(3.7) we can find α ∈ ΩA such that ω = ω(α). Finally, it follows from the definition
that any factor of a system with specification satisfies the specification property.
Thus our system has specification.

We will now show that the function ψ defined by (3.6) for h(ω) = ω0 is not
continuous. For, if ω0 is cohomologous to zero with a continuous transfer function
ψ, then the cohomological equation can be lifted to a cohomological equation on

ΩA, so that the lift ψ̃ of ψ is constant on preimages of points and is still continuous.
But from (3.8), we see that ω0(α) = α1 − α0 = α0(σAα)− α0(α). Since we assume

that ω0(α) = ψ̃(σAα) − ψ̃(α), then by the uniqueness, up to a constant c of a

continuous (but not a bounded Borel!) transfer function, we have ψ̃(α) = α0 + c.
This implies that α0 is the same for any α projected to a given ω.

If sup
m<n

∣∣ n∑
i=m

ωi
∣∣ < K then there exist more than one such α with different 0

coordinates. This shows that ψ̃ cannot be continuous. �

3.4 Livshitz* theory.

3.4.1 Closing lemma and continuous solutions. Let us now show how a con-
dition slightly different from the specification property, enables us to insure the
continuity of the transfer function, and also to generalize the results of the previous
section to cocycles with values in more general groups. Proposition 3.18 below is
an abstract and somewhat diluted version of an extract from Livshitz’s work [L1].

Definition 3.17. A homeomorphism f of a compact metric space X satisfies
the closing lemma if there exists an ε0 > 0 such that for any ε, 0 < ε ≤ ε0, there
is a δ > 0 such that for any orbit segment {f i(x)}i=0,...,m with dist(fmx, x) < δ,
there exists a periodic orbit {f i(y)}i=0,...,m−1, f

m(y) = y, such that dfm(x, y) < ε.

The closing lemma is satisfied for subshifts of finite type and for locally maximal
hyperbolic sets.

We will consider a G-cocycle h, where G is an arbitrary locally compact abelian
group, and we will need a slightly stronger assumption on h than the equivalent of
the dynamical Hölder condition. Namely, we will assume that for any neighborhood
U of the identity in G there exists ε > 0 such that if dfn(x, y) ≤ ε then

(3.9) h(x) . . . h(fn−1x)h(fn−1y)−1 . . . h(y)−1 ∈ U.

*We use a natural English spelling of the name as in [KH] instead of the phonetic spelling
Livšic which appears in English translations of [L1] and [L2]
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Proposition 3.18. Suppose that f is topologically transitive* and satisfies the
closing lemma. A G-cocycle h satisfying (3.9) can be represented as ψ(fx)ψ−1(x),
where ψ is continuous, if and only if the product of the values of h along every
periodic orbit is equal to the identity.

Proof. Again as in Proposition 3.12, the statement is obvious in one direction,
i.e. the cohomology condition implies the statement about periodic orbits.

Let x ∈ X be a point with a dense orbit. We define ψ along this orbit by

ψ(fnx) =





id, n = 0

h(fn−1x) . . . h(x), n > 0

h(fnx)−1 · h(fn+1x)−1 · . . . · h(f−1x)−1, n < 0.

we will show that the ψ defined in this way is uniformly continuous on the orbit.
Then it can be extended to be a continuous function on X . Since (ψ ◦ f) · ψ−1

coincides with h along the orbit, the continuity of h implies the desired result.
In order to show uniform continuity, we assume that the points fnx and fmx,

n < m are sufficiently close. Then by the closing lemma, we can approximate the
segment {fn+kx}k=0,...,m−n by a periodic orbit {fky}k=0,...,m−n−1.

We have

ψ(fmx)ψ(fnx)−1

= h(fnx)h(fn+1x) . . . (h(fm−1x)

= (h(fnx) . . . h(fm−1x))(h(y) . . . h(fm+n−1y))−1(h(y)) . . . h(fm+n−1y))

= (h(fnx) . . . h(fm−1x)) · (h(fm+n−1y)−1 . . . h(y)−1) · (h(y)) . . . h(fm+n−1y))

The third product is the identity and if dfm−n(f
nx, y) is small enough, then by (3.9)

the product of the first and second products belong to a given small neighborhood

of the identity. But by the closing lemma, we can guarantee that dfm−n(f
nx, y) is

small by making dist(fnx, fmx) small. �

3.4.2 Hölder regularity. The core results of the Livshitz theory establishing
both stability and effectiveness of cocycles in the primary hyperbolic situations can
be summarized as follows.

Theorem 3.19. [L1] [L2] [LS] [KH, Section 19.2] Suppose that the group G
has equivalent left and right invariant metrics and let f be any topological Markov
chain or a restriction of a C2 diffeomorphism to a locally maximal hyperbolic set.
In both cases we assume that all points are nonwandering (see [KH, Section 18.3].
Let furthermore h be an α-Hölder cocycle over f , 0 < α ≤ 1. Then the following
conditions are equilalent

(i) If fnx = x then h(x, n) = IdG, i.e. the product of the values of h along
every periodic orbit is equal to the identity.

(ii) h(x) = ψ(fx)ψ−1(x), where ψ is an α-Hölder function
(iii) h(x) = ψ(fx)ψ−1(x), where ψ is a measurable function with respect to the

Gibbs measure (or the equilibrium state, see [KH, Chapter 20]) µφ for a
Hölder function φ.

*Topological transitivity follows from the specification property.
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Remark. Notice that by Corollary 2.11 the continuity of h is not sufficient
to make any conclusion about existence of transfer functions. However for cocy-
cles satisfying the Dini condition which is weaker than Hölder the assumptions of
Proposition 3.18 can be verified.

Obviously (ii) implies both (i) and (iii). To deduce (ii) from (i) one uses the
same argument as in the proof of Proposition 3.18 but employs a stronger version
of the closing lemma which gives the necessary estimates ([KH, Section 6.4c]).
The deduction (ii) from (iii) uses the key a proiri regularity argument which is also
the basis of all higher regularity results. In order to avoid cumbersome notations
we will only discuss cocycles with values in abelian groups.

Consider the stable and unstable manifolds W s(x) and W u(x) of a point x (see
[KH, Sections 6.2, 6.4]). In the symbolic case these are simply the sets of points
with the same nonnegative (corr. nonpositive) coordinates as x.

If φ is a solution of cohomological equation then for any y ∈W s(x) one has for
any n > 0,

ψ(y) = ψ(x) · ψ−1(fny) · ψ(fnx) ·
n−1∏

i=0

h(f ix) · h−1(f iy).

Since the distance between fnx and fny exponentially decreases the product con-
verges exponentially as n→∞. If ψ is uniformly continuous then ψ−1(fny)·ψ(fnx)
converges to IdG so that

(3.10) ψ(y) = ψ(x) · lim
n→∞

n−1∏

i=0

h(f ix) · h−1(f iy).

If ψ is only measurable a justification for taking is limit is needed.
One can write a similar expression for the values of the transfer function along

the unstable manifold W u(x) using the negative iterates of f , namely for y ∈
W u(x),

(3.11) ψ(y) = ψ(x) · lim
n→∞

n∏

i=1

h(f−ix) · h−1(f−iy).

Legitimacy of these procedures in the case of a measurable transfer function ψ
requires an argument which is based on the product structure for the measures µφ.

Notice also that these expressions allow to obtain Holder regularity of ψ as long
as existence of a solution is known.

Theorem 3.19 has a natural extension for flows
3.4.3 Differentiable stability. In order to discuss further regularity let us as-

sume that f is an Anosov diffeomorphism of a compact manifold. If the cocycle h
is differentiable one can differentiate expressions (3.10) and (3.11) with respect to y.
Since individual stable and unstable manifolds have the same degree of differentia-
bility as the map, one can show using the chain rule that for a C∞ diffeomorphism
the solution ψ has as many derivatives along the stable and unstable directions as
the map f , and that those derivatives are continuous This is sufficient to deduce
that if h is C1 then ψ is also C1.

Higher regularity follows from the remarkable general result by Journé [Jo]:
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Journé’s Theorem. Assume F and E are two transverse Hólder foliations
with C∞ leaves such all derivatives of all orders along the leaves are uniformly
continuous. Let h be a function which has all derivatives of order up to r along the
leaves of both foliations and theses derivatives are α Hölder. Then h is Cr and rth
derivatives are β Hölder for some β > 0.

This, in particular, implies Cr stability for Cr+1 cocycles and hence C∞ stabil-
ity for C∞ cocycles. The latter together with other regularity results was originally
proved in [dLMM] using elliptic regularity theory. Another proof based on the
Fourier transform is in [HK2]. Analytic stability was proved in [dL] based on
some ideas from [HK2].

Thus in the hyperbolic case for cocycles with values in abelian groups the
understanding of stability issues is virtually complete.

Without going into details we would like alert the reader to the fact that the
picture becomes more complicated and less clear-cut for cocycles with values in
nonabelian groups. The main issue here is that the exponential convergence of
some orbits within the system, on which stability results are based, has to overcome
possible exponential divergence within the group. Thus if the group G itself has
a subexponential growth (e.g. if it is a nilpotent Lie group) or if the cocycle is
sufficiently small (i.e. its values are close enough to the identity) this divergence
can be overcome and stability results hold. The basic source here is the seminal
paper by Livshitz [L2], where in addition to the correct results along the above lines
a wrong claim for the general case is made. The paper by V. Niţică and A. Török
[NT] reflects the present state of the subject including both optimal regularity
results and examples showing that in general even the transfer functions between
analytic cocycles may have only limited regularity.

3.5 Invariant distributions and stability of partially hyperbolic sys-

tems.

3.5.1 Invariant distributions and periodic orbits. In all cases of stability which
we have discussed, from toral rotations to Anosov systems, the cohomology classes
of cocycles were determined by the values of integrals with respect to the invariant
measures. Invariant measures can be viewed as linear functionals on the space
of continuous functions, but as we have seen, stability can only occur in smaller
spaces. It is natural to wonder whether there are other invariant functionals defined
on these spaces which cannot be extended to the space of all continuous functions,
in particular whether there are any invariant distributions of positive order, i.e.
invariant linear functionals defined on the spaces of smooth functions.

In fact, invariant distributions represent the most general possible source of
stability of spaces of smooth vector-valued cocycles. For, let f be a Cr or C∞

diffeomorphism of a compact manifold X and H be the space of Cr on C∞ functions
on X . Stability in H means that the operator Uf − Id : H → H has closed image,
say H0. But then by the duality H0 corresponds to the kernel of the dual operator
in the space of all continuous linear functionals on H, i.e. H0 is the common zero
level for all f -invariant distributions (cf. Proposition 2.13)). For the flow case we
consider instead of Uf − Id the differential operator generated by the flow.

Since in all cases mentioned in Sections 3.3 and 3.4 the space H0 was determined
by invariant measures the stability implies that in those cases invariant measures are
dense in the weak topology in the corresponding spaces of invariant distributions.
On the other hand, specification property implies that invariant measures carried
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by individual periodic orbits are dense in weak topology in the space of invariant
measures. These remarks together with the results discussed in subsection 3.4.3
prove the following fact.

Corollary 3.20. For any transitive Anosov diffeomorphism invariant mea-
sures carried by individual periodic orbits are dense in the weak topology in the space
of all invariant distributions of all orders.

Remark. In [V3] W. Veech proved a similar statement for an arbitrary (not
necessarily hyperbolic) automorphism FA of the torus T

m which is ergodic with
respect to Lebesgue measure. Equivalently, the matrix A has no roots of unity
among its eigenvalues. Such an automorphism is necessarily partially hyperbolic
which in this case means that there are eigenvalues both inside and outside of
the unit circle. Each orbit O of the dual automorphism A∗ of the lattice Z

m

produces an invariant distribution δO of correlation type similarly to the special
case discussed in subsection 3.6.1 below. The system δO generates the space of
invariant distributions. Although periodic orbits for an ergodic toral automorphism
are dense, specification property does not hold. This is the reason why in order to
show that those distributions can be weakly approximated by linear combinations
of invariant measures on periodic orbits, Veech has to use arithmetic techniques
which are much more subtle and specialized than the arguments in the hyperbolic
case.

In the next two subsections we will describe two different types of general con-
structions of invariant distributions which are not measures. These constructions
produce interesting examples even in the hyperbolic case.

3.5.2 Periodic cycle distributions for partially hyperbolic systems. We discuss
some of the constructions and results from [KK].

A diffeomorphism g of a manifold M with a Riemannian norm || · || is called
partially hyperbolic if there exist real numbers λ1 > µ1 > 0, i = 1, 2, K,K ′ > 0 and
a continuous splitting of the tangent bundle

TM = E+ ⊕E0 ⊕E−

such that for all x ∈ M, for all v ∈ E+(x) (v ∈ E+(x) respectively) and n > 0
(n < 0 respectively) we have for the differential g∗ : TM → TM

||g∗(v)|| ≤ Ke−λ1n||v||,

and, respectively

||g∗(v)|| ≤ Ke−λ2|n|||v||,
and for all n ∈ Z and v ∈ E0(x) we have

||g∗(v)|| ≥ K ′e−µ1n||v||, n > 0 and ||g∗(v)|| ≥ K ′e−µ2|n|||v||, n < 0.

This property does not depend on the choice of Riemannian metric if the manifold
M is compact.

We will call E+ and E− the stable and unstable distributions respectively. They
are uniquely integrable to foliations with smooth leaves which we will denote W s

and W u.
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For any x, y such that y ∈ W s(x) the distance dM (f i(x), f i(y)) decreases ex-
ponentially, thus φ(f i(x)) − φ(f i(y)) also decreases exponentially. Therefore, for
any Hölder function φ the series

P+(x, y)(φ) =

∞∑

i=0

(φ(f i(x)) − φ(f i(y)))

converges absolutely. (cf. (3.10)). Similarly for any x, y such that y ∈ W u(x) the
series

P−(x, y)(φ) = −
−∞∑

i=−1

(φ(f i(x)) − φ(f i(y))

also converges absolutely (cf. (3.11)).
We will call a set S(x, y) of points x1 = x, x2, . . . , xk = y ∈ M a broken path

from x to y, if xi+1 ∈ W a(xi), i = 1, . . . , k − 1, where a = s or u. A closed broken
path, i.e a set C of points x1, x2, . . . , x2n, x2n+1 = x1 ∈M if x2k ∈W s(x2k−1) and
x2k+1 ∈W u(x2k), for k = 1, . . . , n. will be called a periodic cycle.

For an Anosov system there are many periodic cycles of length four; however
in the general partially hyperbolic case periodic cycles must be longer.

Definition 3.21. For a periodic cycle C, we will denote by F (C) the following
continuous functional on the space L of Hölder functions:

F (C)(φ) = P+(x1, x2)(φ) + P−(x2, x3)(φ) + · · ·

+P+(x2n−1, x2n)(φ) + P−(x2n, x1)(φ).

We will call this functional a periodic cycle functional.

The periodic cycle functionals are invariant distributions. Thus any such func-
tional must vanish on the space of coboundaries.

If ψ is a solution of the cohomological equation

φ(x) = ψ(fx)− ψ(x),

then the values of ψ along every broken path are uniquely determined by its value
at the beginning and are obtained by adding the value of P+ or P− depending
on whether consecutive points on the path belong to the same stable or unstable
manifold. In particular, the periodic cycle functionals represent obstructions to this
process which must vanish to ensure uniqueness of the result.

One can reverse the argument and try to construct the solution for a given φ
for which the periodic cycle functionals vanish. The best chances of success appear
if any two points can be connected by a broken path. This is not always true;
counterexamples are time t maps for suspensions of Anosov diffeomorphisms, and,
more interestingly, ergodic but not hyperbolic automorphisms of a torus. However
those cases are rather special. There are many partially hyperbolic systems for
which not only connection is possible but the length of a minimal broken path
connecting two points can be estimated from above by a positive power α of the
distance. Such systems are called locally (α) Hölder transitive and in this case for
any function for which the periodic cycle functionals vanish the construction of a
solution along broken paths succeeds and produces a Hölder function albeit with a
smaller Hölder exponent. To summarize
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Theorem 3.22. [KK] If f is a partially hyperbolic diffeomorphism which is
locally α-Hölder transitive, then, for any β ∈ (0, 1], the space of β-Hölder cocycles is
αβ-Hölder stable and C0-effective. The space of Hölder coboundaries is the common
kernel of periodic cycle functionals.

Coming back to the hyperbolic case one can use the periodic cycle functionals
coming from the quadrangles, i.e. the cycles of period four. Moreover, due to the
local product structure this construction works not only for Anosov diffeomorphisms
but for the locally maximal hyperbolic sets as well. It this case the pair of foliations
is locally Lipschitz transitive (i.e. locally 1-Hölder transitive) so that no loss in
the Hölder exponent appears in agreement with Theorem 3.19(ii). It would be
interesting to find a reasonably explicit procedure to recover the sums of a function
along periodic orbits through the periodic cycle functionals.

3.5.3 Correlation functions. Let f : (X,µ) → (X,µ) be a measure preserving
transformation, φ and ψ be L2 functions. The inner products

∫

X

φ · ψ ◦ f−ndµ =

∫

X

φ ◦ fn · ψdµ

are called the correlation coefficients of φ and ψ. The map f is mixing if the
correlation coefficients of any two functions with zero average go to zero as n→∞.
It may happen that for a given φ and dense set of functions ψ with zero average
the series

(3.12)
∞∑

n=−∞

∫

X

φ ◦ fn · ψdµ

converge. Obviously exponential decay of correlation is sufficient for convergence.
If this happens for all zero average C∞ functions, (3.12) defines an invariant dis-
tribution.

Theorem 3.23. Let f be a transitive topological Markov chain or a restriction
of a C2 diffeomorphism to a topologically mixing locally maximal hyperbolic set and
let µθ be the Gibbs measure for a Hölder function θ. For any two Hölder functions
the correlation coefficients ∫

X

φ · ψ ◦ f−ndµ

decay exponentially.

Correlation decay provides yet another way to characterize cohomological be-
havior of Hölder functions for hyperbolic dynamical systems.

Theorem 3.24. Let f be a transitive topological Markov chain or a restriction
of a C2 diffeomorphism to a topologically mixing locally maximal hyperbolic set and
let µθ be the Gibbs measure for a Hölder function θ. For an α-Hölder function φ
the following conditions are equivalent

(i) φ(x) = h(fx)− h(x), where h is an α-Hölder function,
(ii) For any Hölder function ψ,

∞∑

n=−∞

∫

X

φ ◦ fn · ψdµθ = 0
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Sketch of proof. Assume (i). Then

∞∑

n=−∞

∫

X

φ ◦ fn · ψdµθ =
∞∑

n=−∞

∫

X

φ · ψ ◦ f−ndµθ

=

∞∑

n=−∞

∫

X

(h ◦ f − h) · ψ ◦ f−ndµθ

= lim
n→∞

n−1∑

k=−n

∫

X

(h ◦ f − h) · ψ ◦ f−kdµθ

= lim
n→∞

∫

X

(h ◦ fn − h ◦ f−n) · ψdµθ = 0.

Now assume (ii). By Theorem 3.19 it is sufficient to proof that the sum of
values of φ along any periodic orbit is equal to zero. Assume the opposite. Then
there exists a periodic orbit with nonzero, say, positive sum. One can assume then
that φ is actually positive att all point os the orbit. Using certain care one can
find a function ψ with zero average and with very large positive values at the orbit
for which sufficiently many correlation coefficients will be positive and fairly large
which prevents vanishing of (3.12)

3.6 Stability determined by invariant distributions in parabolic sys-

tems. 3.6.1 A simple example: an affine map of the torus. Now we are going to
discuss in detail an example of a different sort, namely a uniquely ergodic trans-
formation where invariant distributions provide a complete system of invariants for
the cohomology, but the single invariant measure does not give enough information
for this purpose. Invariant distributions which we will encounter will be of the
correlation type (3.12).

Consider the affine A map of T
2 given by

A(z, w) = (λz, zw).

We will consider only real or complex valued cocycles.
If we assume that λ is Diophantine (3.1), i.e for some positive k and c, and for

every positive integer q,

(3.13) |λq − 1| > c/qk.

then by Theorem 3.5 functions depending only on z are C∞ rigid and in the case of
finite regularity there is a fixed loss of regularity (see remarks in subsection 3.2.2).
Since the decomposition into functions depending only on z and their orthogonal
complement is invariant it is sufficient to consider functions in that complement.

Let us define a family of first order A-invariant distributions δm,n, for 0 ≤ m <
|n|, n 6= 0, by their Fourier expansions:

δm,n =

∞∑

k=−∞

λkm+ k(k−1)n
2 zm+knwn.
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Equivalently, for f ∈ C1(T2), let z = e2πiφ and w = e2πiθ and let as before
χm,n = zmwn. Then

δm,n(f) = lim
K→∞

∫

T2

f(z, w)

K∑

k=−K

λ−km−
k(k−1)n

2 zm+knwn dφd θ

= lim
K→∞

∫

T2

f(z, w)

K∑

k=−K

χm,n ◦Akdφdθ

= lim
K→∞

K∑

k=−K

f(Ak(z, w))zmwn dφd θ.

Obviously every distribution δm,n is a derivative of an L2-function.
Let Hr, r ≥ 0, be the space of functions ψ on T

2 such that ψ is r times
differentiable and all of its rth derivatives have absolutely convergent Fourier series.

Theorem 3.25. Let f, g ∈ Cr+ε, r ≥ 3 and ε > 0. Assume that both functions
are orthogonal to the functions depending only on z. Then there exists ψ ∈ Hr−3

such that

(3.14) f = g + ψ ◦A− ψ

if and only if

δm,n(f) = δm,n(g)

for all n ∈ Z, 0 ≤ m < |n|. In particular, if f and g are C∞, then ψ is C∞. In
addition, if f and g are real analytic then so is ψ. Furthermore, for f, g ∈ C1 if
equation (3.14) has an L1 solution then δm,n(f) = δm,n(g) for all 0 ≤ m < |n|, so
that the solution actually belongs to Hr−3.

Our estimate of the loss of regularity for the solution of the cohomological
equation is not sharp but it is sufficient to establish C∞ stability.

Proof. It is enough to consider only the case g = 0. We look for the Fourier
coefficients ψm,n for the transfer function ψ. By our assumption fm,0 = 0 for all
m ∈ Z hence we need only consider the case n 6= 0. Since UAχm,n = λmχm+n,n for
n 6= 0 equation (3.14) implies the following infinite system of algebraic equations.

(3.15) fm,n = λm−nψm−n,n − ψm,n

so that

ψm,n = −fm,n + λm−nψm−n,n.

Proceeding by induction,

(3.16)

ψm,n = −fm,n − λm−nfm−n,n + λ2m−3nψm−2n,n

= −
N−1∑

k=0

λek(m,n)fm−kn,n + λeN (m,n)ψm−Nn,n

for all N ≥ 0, where

ek(m,n) = ek−1(m,n) +m− kn

and

e0(m,n) = 0
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so that

ek(m,n) = km− 1

2
k(k + 1)n.

Similarly, using (3.15) again, and repeating the steps above

(3.17)

ψm,n = λ−m(fm+n,n + ψm+n,n)

=
N∑

k=1

λ−e
′
k(m,n)fm+kn,n + λ−e

′
N (m,n)ψm+Nn,n

for all N ≥ 1, where

e′k(m,n) = km+
1

2
k(k − 1)n.

Assuming that ψm+Nn,n → 0 as N → ±∞, which is true even if ψ ∈ L1, we
obtain from (3.16) and (3.17) two expressions for ψm,n:

(3.18) ψm,n = −
∞∑

k=0

λkm−
1
2k(k+1)nfm−kn,n

and

(3.19) ψm,n =

∞∑

k=1

λ−km−
1
2k(k−1)nfm+kn,n

If the solution exists, these two expressions must coincide, so that

(3.20)
∞∑

k=−∞

λ−km−
1
2k(k−1)nfm+kn,n = 0.

For 0 ≤ m < |n|, the left hand side of (3.20) is exactly what we call δm,n(f). It
is easy to see that if equation (3.20) is satisfied for some (m,n), it is also satisfied
for (m+ kn, n) for every k. This gives the last statement in the Theorem.

Assuming (3.20), we can estimate ψm,n. For mn < 0 we will use (3.18) and for
mn ≥ 0 we will use (3.19). We have respectively

|ψm,n| ≤
∞∑

k=0

|fm−kn,n|

|ψm,n| ≤
∞∑

k=1

|fm+kn,n|.

If f ∈ Cr+ε, then

|fm,n| ≤
c

(|m|+ |n|)r+δ
for some δ > 0, and so

|ψm,n| ≤
c′

(|m|+ |n|)r−1+δ/2
.

This implies that ψm,n ∈ Hr−3.
If f is real analytic, then

|fm,n| < c exp(−α(|m|+ |n|))
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for α, c > 0. It follows that

|ψm,n| ≤
∞∑

k=0

c exp(−α(|m|+ k|n|+ |n|) ≤ c′ exp−α(|m|+ |n|) .

�

Thus, we have shown that various spaces of smooth cocycles over A are stable
and “almost” effective with a certain loss of regularity which is natural to expect.
The C∞ cocycles are both C∞ stable and C∞ effective. We do not know whether
the existence of a measurable solution to (3.14), for sufficiently smooth f and
g implies that the solution is L1, which is then smooth by the theorem. The
difficulty here is that non-integrable measurable functions are not distributions so
that Fourier analysis can not be applied in this case. Probably, in order to solve
this problem one needs to develop a more geometric approach to the solution of
(3.14). This comment applies also to the cocycles with values in groups which are
not linear spaces.

It is interesting to notice that if functions f and g have absolutely convergent
Fourier series and equal averages then equation (3.14) has solutions ψ which are
distributions of order 1. Either of the two formulas (3.18) and (3.19) gives Fourier
coefficients for such a solution.

The method of Theorem 3.25 applies to arbitrary ergodic automorphisms and
affine maps on a torus of any dimension. The only restriction is the Diophantine
condition for the rotational part of the affine map. In all those cases there is a
natural one-to-one correspondence between invariant distributions which determine
stability and infinite orbit of the lattice automorphism dual to the automorphism
part of the considered map.

3.6.2 Horocycle flows.
Another and even more interesting example of C∞ stability and C∞ effec-

tiveness determined by invariant distributions is given by the horocycle flow on
a compact surface of constant negative curvature. This flow can be equivalently
described as the action of the one-parameter subgroup

Ht =

(
1 t
0 1

)

by right multiplications on the left factor space B = PSL(2,R)/Γ, where Γ is a
discrete cocompact subgroup of PSL(2,R).

The horocycle flow is a part of the right action of PSL(2,R) on B. This
action generates a unitary representation of PSL(2,R) in L2(B,χ) where χ is Haar
measure. This representation decomposes into a direct sum of countably many
irreducible ones. Obviously every representation space is invariant with respect to
the operators corresponding to the horocycle flow. The space of each irreducible
representation carries certain invariant distributions for the horocycle flow. Namely,

(i) for a representation from the principal series there are two invariant distri-
butions of order less than one similar to δm,n for the affine map on T

2;
(ii) for a representation from the discrete series there is one invariant distribu-

tion of order less than one;
(iii) for a representation form the complementary series there are infinitely many

representations of growing order.
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In every representation space there is an intrinsic notion of a C∞ function which
agrees with the geometric notion coming from B. More precisely, let f ∈ C∞(B);
and for any irreducible representation θ of PSL(2,R), let Pθ be the orthogonal
projection of L2(B) to the representation space. Then Pθf is a C∞ vector in the
sense of the representation and the norms ‖Pθf‖ decrease faster than any power
of a parameter naturally ascribed to the irreducible representations. Furthermore,
this condition is necessary and sufficient for f to be a C∞ function. These remarks
show that the problem can be treated in a way very similar to the way affine maps
of T

2 were treated; using certain (not always elementary) facts about irreducible
unitary representations of PSL(2,R) instead of the elementary Fourier analysis of
the previous proof. See [FlFo] for detailed rigorous arguments in this case.

3.6.3 Flows on surfaces. Without trying to explain the substance of the situ-
ation we have to mention for the sake of completeness another remarkable instance
of stability determined by invariant distributions.

Consider a compact orientable surface S of genus g > 1 with a smooth positive
area form Ω. Since the Euler characteristic χ = 2− 2g of S is negative any vector
field on S has to have zeroes. The case which is the most interesting from the
dynamical point of view is those of area preserving topologically transitive flows
with finitely many fixed points. These fixed points have to be of saddle type,
either simple, or multiple saddles. A topologically transitive area preserving flow
with finitely many saddle points exhibit parabolic behavior since its derivative has
triangular form outside of the fixed points. However this behavior is less uniform
than that of affine maps or horocycle flows. Aside from point masses at each
saddle there are no more than g ergodic probability measures [KH, Theorem

14.7.6].The transverse behavior of area preserving flows on surfaces is defined by a
finite set of parameters [KH, Theorem 14.7.4] and is closely related to the interval
exchange transformations discussed in Section 4.4. For the set of parameters of
full measure there is only one nontrivial probability ergodic invariant measure.
There are invariant distributions defined by the jets at the fixed points; they are
invariants of the normal form of the vector field near these points. Forni [Fo]
discovered additional invariant distributions which are supported outside of fixed
points and give a complete description of these distributions. The picture is quite
different from the cases we discussed before. There is only a finite dimensional
space of invariant distributions for any given order r but the dimension grows to
infinity with r. For certain conditions which can be interpreted as counterparts of
Diophantine conditions Forni showed C∞ stability of C∞ cocycles.

4. Wild cochains with tame coboundaries

In this and the next chapter we will discuss the situations where correspondingly
effectiveness and stability break down.

Thus, we will presently consider “regular” (e.g. continuous, smooth or piecewise
constant) cocycles which are coboundaries in measure-theoretic sense but such that
the transfer functions behave very wildly from the topological point of view. This
phenomenon is often connected with abnormally good periodic approximation. It
was known to Kolmogorov [Ko] who used it to construct an example of a time
change for a linear flow of the two–torus with pure point spectrum but discontinuous
eigenfunctions. Furstenberg [F] used it for his construction of minimal but not
uniquely ergodic diffeomorphisms of T

2. Anosov [A] studied the case of circular
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rotation thoroughly and systematically and in particular found examples of analytic
coboundaries with wild transfer functions.

Cocycles of this sort are used to construct various examples of dynamical sys-
tems whose topological and ergodic properties differ wildly. They can also be used
for more positive tasks, e.g. for producing realizations of measure-preserving trans-
formations by volume preserving homeomorphisms of various manifolds.

We will illustrate this phenomenon with four examples. The first one deals with
continuous cocycles over a topologically transitive homeomorphism of a compact
metric space preserving a Borel measure positive on open sets. As we noticed in
Section 2.2 if the homeomorphism is not uniquely ergodic then the existence of
cohomologous continuous cocycles equivalent via discontinuous transfer functions
follows from Corollary 2.11 and Proposition 2.13. The construction of Theorem 4.2
shows a specific mechanism for the occurrence of wild transfer functions between
continuous cocycles. This mechanism is universal and in particular is independent
of the existence of more than one ergodic invariant measure.

The results of Chapter 3 show that in general such mechanism cannot be ex-
tended to smooth cocycles. However, an extension of that sort is possible if the
diffeomorphism allows a very good periodic approximation in C∞ sense (Theorem
4.5). We will also indicate how a similar construction works for real analytic co-
cycles over a rotation of the circle with exceptionally well approximable rotation
number (Theorem 4.7).

Our last example deals with even smaller, actually a finite-dimensional space
of cocycles, namely some piecewise constant cocycles over interval exchange trans-
formations (Theorem 4.9).

The method of proof in all four cases is rather uniform. The desired cocycle
together with the transfer function will be constructed by a converging iterative (or
inductive) procedure. On every step of the construction we will have a cocycle which
is a coboundary within the given category. In other words, the transfer function will
be correspondingly continuous, smooth, real-analytic or piecewise constant. The
sequence of cocycles will converge within the category while the sequence of transfer
functions will converge only in probability or in L1 and will diverge in a certain
prescribed fashion in the uniform topology. The control over the convergence will by
provided by making the modifications on any step insignificant enough in measure-
theoretic sense in comparison with the previous steps. On the other hand, the
divergence of the sequence of transfer functions is controlled by making subsequent
additions sufficiently uniformly distributed.

4.1 Continuous cocycles over measure-preserving homeomorphisms.

Let X,Y be two topological spaces and ν be a Borel measure on X positive on open
sets.

Definition 4.1. We will say that a Borel map ψ : X → Y is metrically dense
with respect to ν if for any pair of non-empty open sets V ⊂ X and W ⊂ Y ,

ν(V ∩ ψ−1(W )) > 0.

Equivalently, this property means that the lift of the measure ν to graph ψ ⊂
X × Y is a measure positive on open sets.
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Theorem 4.2. Let X be a compact metric space and U be an open subset of
X. Suppose f : X → X is a topologically transitive homeomorphism preserving
a Borel probability measure µ which is positive on open sets. Let G be a path
connected separable locally compact abelian group. Then there exists a continuous
map φ : X → G such that

(i) Outside of U , φ = e, the identity in G.
(ii) φ(x) = ψ(f(x))ψ−1(x) = lim

n→∞
ψn(f(x))ψ−1

n (x) where the functions ψn are

continuous and ψ is measurable.
(iii) ψ is metrically dense with respect to µ.

This theorem can be used to prove that every abstract measure-preserving
transformation with finite entropy can be realized as a volume-preserving homeo-
morphism of any compact Riemannian manifold of dimension greater than one.

Proof. Step 1. The desired function φ will be constructed as a uniform lim
n→∞

φn

where inductively

(4.1) φn+1(x) = φn(x)ηn(x)

such that outside of U , ηn = e and

(4.2) ηn(x) = θn(f(x))θ−1
n (x).

In other words
φn(x) = ψn(f(x))ψ−1

n (x)

where

(4.3) ψn(x) =

n∏

j=1

θj(x).

We will ensure that the sequence ψn converges in probability so that (ii) will be
satisfied. On the other hand, we will make the sequence ψn wildly divergent in the
uniform topology so that on the n’th step, the function ψn will satisfy the property
(iiin), stated below, which can be considered as an approximate version of (iii). In
order to formulate this property let us fix a translation invariant metric dG on G
and denote by D(r, g) the ball of radius r around g ∈ G. Let gn, n = 1, 2, . . . be
a dense sequence of elements of G. We will assume that there exists a sequence of
positive numbers δn, δn < δn−1/2, such that for every k − 1, . . . , n and for every
disc D of radius 2−k in X ,
(iiin) µ(D ∩ ψ−1

n D(2−k, gk)) > δk
(

1
2 + 1

2n−k+1

)
.

In order to ensure that subsequent steps do not destroy this condition we will
assume

(an) µ{x ∈ X ; θn(x) 6= e} < δn−1/10.
It is clear that the sequence ψn defined by (4.3), and satisfying (iiin) and (an)

converges in probability and that the limit function ψ satisfies (iii).

Step 2. We will show how to construct θn and δn inductively. The base of the
induction is trivial. Now let us assume that θn−1 and δn−1 have been constructed.
This allowed us to construct ψn−1, and by the uniform continuity of this function,
we can find a positive number δ′n such that if dX (x1, x2) < δ′n where dX is the
distance in X then

(4.4) dG(ψn−1(x1), ψn−1(x2)) < 2−n−10.
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Let

H = {g ∈ G : gg−1
n ∈ (ψn−1(X))−1}.

This set is compact, so that we can cover it by a finite set of balls of radius 2−n−5

and pick an element g in each of the balls. S will denote the set of all such g. For
each g ∈ S we are going to construct a function θgn. The supports of θgn will be
disjoint for different g and θgn will be supported by a very small neighborhood of a
segment of a single orbit in such a way as to make θgn reach the value g inside every
ball of radius δ′n in X . Furthermore the function

(4.5) ηgn(x) = θgn(f(x))(θgn(x))−1

will be equal to the identity outside the set U and will be uniformly within 1/2n of
the identity everywhere. Then we will put

θn =
∏

g∈S

θgn

so that the function ψn = ψn−1θn will reach a value within 2−n−4 of gn inside every
δ′n ball in X . This follows from the choice of δ′n. On the other hand, µ(supp(θN ))
will be chosen so small that the values near gk, k = 1, . . . , n − 1 achieved on the
previous stages of the construction will persist.

Step 3. We will now show how to construct the functions θgn and insure (an) and
(iiin). Let us connect every g ∈ S by a path γg to the identity e ∈ G. This path
may be divided into intervals such that each interval lies within a ball of radius
2−n. Let Kn be the maximal number of such intervals for any g ∈ S.

For every g ∈ S let us take a sufficiently long segment of a dense orbit, say
Γg = {xg , f(xg) . . . f

N (xg)} such that all Γg are disjoint for different g and in
addition each segment consists of three consecutive parts so that the first and the
last parts contain at least Kn points from U , and the middle part intersects every
ball in X of radius δ′n/10. Take the segment Γg and mark the first Kn iterates
where f jxg ∈ U . Call these times t1(g), . . . , tKn

(g). Do the same for the last
Kn visits calling them sKn

(g) . . . s1(g), where s1(g) is the last visit to U . The
function θgn will be different from the identity only in very small neighborhoods of
the points f ti(g)(xg) and fsi(g)(xg), i = 1, . . . ,Kn. The range of this function will
be a neighborhood of the path γg . Pick points e = h1, . . . , hKn

= g so that each
interval [hj , hj+1] ⊆ γg lies within a ball of radius 2−n, and construct the function
θgn by induction in j = 1, . . . ,Kn. Suppose that it has been constructed through
time tj . We multiply it by a continuous function ηgn whose support U(g, j) ⊂ U is a

small neighborhood of f tj+1(g)n

(xg), whose range is h−1
j ([hj , hj+1]), and such that

ηgn(f
tj+1(g)(xg)) = h−1

j hj+1

so that

θgn(f
tj+1(g)(xg)) = hj+1.

We continue this procedure until tKn
(g) has been reached so that θgn(f tKn (g)(xg)) =

g, stop for the middle section of Γg, and then “undo” the function θgn along the last

section of Γg by putting θgn in a neighborhood of f sj(g)(xg) equal to

θgn(x) = (θgn(f
tj(g)−sj (g)(x)))−1.
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Thus, if the neighborhoods U(g, j), j = 1 . . .Kn are chosen sufficiently small then
for any integer t, tKn

(g) ≤ t ≤ sKn
(g)

θgn(f
t(xg)) = g.

By the choice of the interval Γg the function θgn reaches value g inside any disc of
radius δ′n/10 in X . By the choice of U(g, j) one can also guarantee, that the total
measure of the support of each θgn (and consequently of θn) can be made arbitrary
small and the supports of θgn, g ∈ S, disjoint. In particular, the condition (an) will
be satisfied. That ensures that the condition (iiin) is satisfied for k = 1, . . . , n− 1.
Let us show that if δn is chosen sufficiently small then (iiin) is also satisfied for
k = n.

Let x ∈ X and g ∈ S be such that

(4.6) dG(gψn−1(x), gn) < 2−n−5

By the choice of the orbit segments Γg the ball of radius
δ′n
10 about x contains a

point from the middle segment of Γg , say y, so that θn(y) = θgn(y) = g. So that by
(4.4) and (4.6)

dG(ψn(y), gn) < 2−n−4.

Since δn < 2−n this implies that for the ball D(x) about x of radius 2−n

µ(x)
def
= µ(D(x) ∩ ψ−1

n (DG(2−n, gn)) > 0

and by the compactness of X the measure µ(x) is bounded away from 0 for all x.
Any positive lower bound for µ(x) may serve as δn. Obviously this choice of δn
insures (iiin) for k = n. �

Let us consider the following continuous G extension fφ of f acting in the space
X ×G:

fφ(x, g) = (f(x), gφ(x))

and let ν = (id× ψ)∗µ.

Corollary 4.3.

(i) The measure ν is positive on open sets in X ×G.
(ii) The extension fφ preserves ν.
(iii) (fφ, ν) is metrically isomorphic to (f, µ).

Proof. By Theorem 4.2, (ii), the map R = id × ψ : X → X × G satisfies
R ◦ fφ ◦R−1 = f . This proves (ii) and (iii). By Theorem 4.2, (iii), the measure ν
is positive on open sets, since for V ⊆ X , W ⊆ G, ν(V ×W ) = µ(V ∩ψ−1(W )). �

4.2 Fast approximation and C∞ cocycles. A construction similar to that
of Theorem 4.2 works in C∞ category if the transformation in consideration pos-
sesses a C∞ equivalent of periodic homogeneous approximation with a speed which
is faster than any negative power of the characteristic parameter. While we do
not need the above notions in our presentation a proper discussion can be found in
[K1]. To simplify notations we will consider only real-valued cocycles. Let M be a
compact connected m-dimensional C∞ manifold, Cr(M) be the Banach space of r
times continuously differentiable real-valued functions on M provided with a norm
‖ · ‖r. We will use the same notation for the associated operator norm.
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Definition 4.4. A C∞ diffeomorphism f : M → M admits fast C∞ periodic
approximation if there exists a sequence qn →∞ such that for every pair of positive
integers k, r there exists a constant c(k, r) such that

(4.7) ‖Ufqn − Id‖r <
c(k, r)

qkn

Equivalently, for every h ∈ C∞(M), h 6= 0,

(4.8) ‖h ◦ f−qn − h‖r <
‖h‖r · c(k, r)

qkn
.

Example. For the rotation of the circle Rλ : z → λz fast C∞ periodic approx-
imation is equivalent to λ being Liouvillean (cf. Section 3.2).

Theorem 4.5. Suppose that a C∞ diffeomorphism f : M → M preserves a
measure µ given by a density bounded between two positive constants, is topologically
transitive and admits fast C∞ periodic approximation. Let U be any open non-
empty subset of M . Then there exists a C∞ cocycle h equal to 0 outside U and
such that

h = ψ ◦ f − ψ = lim
n→∞

ψn ◦ f − ψn

where the functions ψn are C∞ and the function ψ is measurable, discontinuous at
every point and for every λ ∈ R\{0} the function exp iλψ : M → S1 is metrically
dense with respect to µ (cf. Definition 4.1). In addition, h can be chosen in such a
way that ψ either belongs to L1 or not.

Proof. Let x0 ∈ U be a point whose semi-orbit {fnx0} n = 0, 1, 2, . . . is
dense in M . Let t1, . . . , tm be C∞ local coordinates in a neighborhood V ⊂ U of
the point x0 such that ti(x0) = 0, i = 1, . . . ,m. Obviously, every C∞ function of
the local coordinates equal to zero near ∂V can be extended to a C∞ function on
M by making it equal to zero outside V . Let θ : R → R be a standard C∞ bump
function such that θ(0) = 1, θ(t) = 0 for |t| ≥ 1 and θ is non-increasing for positive
values of t and non-decreasing for the negative ones. Then for any sufficiently large
positive q the function hq defined by

(4.9) hq(x) =





θ

(
q6
(
m∑
i=1

t2i (x)

))
if x ∈ V

0 otherwise

is a C∞ function on M .
For two versions of the statement (ψ is integrable or not) the function h is

defined by

(4.10) h =

∞∑

k=1

q2nk

(
hq2nk

◦ f−qnk − hq2nk

)

and

(4.11) h =

∞∑

k=1

q3mnk

(
hq2nk

◦ f−qnk − hq2nk

)
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correspondingly, where qn is a sequence which appears in (4.8) and the sequence
nk →∞ will be chosen later. To verify all the assertions of the theorem except for
the metric density of the function exp iλψ it is enough to observe that qnk

> k.
First let us show that the series in the right hand part of (4.10) and (4.11)

converge in the C∞ topology.
By applying the chain rule in (4.9) we obtain

(4.12) ‖hq‖r < c1(r)q
6r

where c1(r) depends on θ but not on q. Let us put in (4.8) k = 6r + 3m+ 10. We
obtain from (4.8) and (4.12)

‖h‖r ≤ c1(r) · c(k, r)
∞∑

n=1

q−10
n .

Let us show that the cocycle h is a measurable coboundary. Define

ψq
def
= −

q∑

`=1

hq2 · f−`.

It follows immediately from the definition that

hq2 ◦ f−q − hq2 = ψq · f − ψq.

Since µ(supp hq) < c2 · q−3m we have

(4.13) µ(supp ψq) ≤ qµ(supp hq) < c2q
1−3m ≤ c2q

−2

so that
∑
q
µ(suppψq) <∞.

Consequently for every sequence of constants aq the series
∑
q
aqψq converges in

probability. This implies that h = ψ ◦ f − ψ where for h defined by (4.10)

(4.14) ψ =

∞∑

k=1

q2n−kψqnk

and for h defined by (4.11)

(4.15) ψ =
∑

q3mn−kψqnk
.

We have from (4.9) crq
−3m < ‖hq‖L1 < c3q

−3m and consequently

‖ψq‖L1 ≤ q‖hq‖L1 < c3q
1−3m

so that it follows that ψ defined by (4.14) is an L1 function. On the other hand,
since hq is non-negative and

‖ψq‖L1 > crq
1−3m

the function defined by (4.15) is not integrable. The discontinuity of ψ at every
point follows from the fact that for every positive m ψqnk

(fmx0) → −∞ so that
since all ψqnk

are non-positive functions

lim
x→fmx0

ψ(x) = −∞

Since the semi-orbit of x0 is dense this proves discontinuity.
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It remains to show how an appropriate choice of the sequence qnk
provides

the metric density of the function exp iλψ. This can be achieved by an inductive
argument very similar to the one used in the corresponding part of the proof of
Theorem 4.2. Since ψq is a non-positive continuous function, µ(supp ψq) → 0 as
q → ∞ and ψq(f

`x0) < −1 for ` = 1, . . . , q, it follows that for every ε > 0 there
exists Q(ε) such that for every q > Q(ε) the functions exp iλ2ψq and exp iλq3mψq
map every disc of radius ε onto the circle. Moreover, this remains true for every
function χ of the form exp iλ(q2ψ2 +φ) or exp iλ(q3mψq +φ) where φ is continuous
and the oscillation of φ on any disc of radius ε does not exceed 1/λ. If φ is fixed
this implies that for any fixed δ > 0, any ε-disc D in X and any δ-interval ∆ ⊂ S1,

µ(χ−1(∆) ∩ D) > α(ε, δ, q) > 0.

We can think now of φ as
k−1∑
`=1

q3mn`
ψq`

. Fixing εn such that the oscillation of φ in

every ε-disc is less than 1/λ, we can find k such that qn−k > Q(εn) and apply the
construction described above. In order to keep the approximate density achieved
on the previous steps intact, we assume in addition that qnk

grow so fast that

∞∑

`=k+1

ψ(supp µqn`
) <

α(εk , w
−k, qnK

)

2
.

This implies that for any interval ∆ of length 2−k and any εk-disc D ⊂ X

µ(ψ−1(∆) ∩D) >
1

2
α(εk, 2

−k, qnk
). �

Corollary 4.6. If a diffeomorphism f satisfies all the assumptions of The-
orem 4.5 and is ergodic with respect to the measure µ then there exists a C∞ S1

extension of f which is topologically transitive on M × S1 but not ergodic with
respect to the product measure.

Proof. We define the extension via the cocycle exp ih where h is given by The-
orem 4.5. Since this cocycle is a coboundary the extension is measure-theoretically
isomorphic to the trivial extension and thus is not ergodic. On the other hand, the
measure (id×ψ)∗µ is invariant and ergodic with respect to the extension and since
ψ is metrically dense this measure is positive on open subsets of M × S1. This
implies topological transitivity. �

4.3 Minimal nonergodic diffeomorphisms of T
2. In certain cases, the

construction of a wild coboundary can be made more global and uniform. Here is
an example of how such a construction works for rotations of the circle allowing
good periodic approximation. Since the result is not new (cf. [F], [A]), we give
only a very brief sketch of the argument. See [KH], Sections 2.9 and 12.6 for a
more detailed argument.

Theorem 4.7. There exists a λ and an analytic function φ such that

(4.16) φ(x) = ψ(λz)− ψ(z)

where ψ is measurable, metrically dense with respect to Lebesgue measure (cf. Def-
inition 4.1), and ψ can be made either integrable or not integrable.
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Corollary 4.8. For every r > 0, the S1 extension

Rexp irφ
λ (z, w) = (λz, w exp irφ(z))

is minimal but not strictly ergodic.

One can deduce the corollary directly from the statement of the theorem, how-
ever, it is easier to apply the general result of Gottshalk and Hedlund, (cf. [Pa],
where Furstenberg’s construction can also be found, or [KH], Section 2.9), which
asserts that if the extension Rexp irφ is not minimal then for some positive integer
n, the cocycle exp(irnφ) is a coboundary with a continuous transfer function.

Let us outline one of the constructions which leads to a proof of Theorem 4.7.
This construction is very close in spirit to the general constructions in sections 4.1
and 4.2. We will use Dirichlet kernels

Dq,n(z) =

n−1∑

j=−n+1

j 6=0

zjq + z−jq

to produce an analytic counterpart of the bump functions used in those arguments.
The transfer function is build as

(4.17)

∞∑

n=1

WnDqn,mn
(z)

where by making qn,mn →∞ fast enough, we guarantee convergence in probability,
since most of the mass of the Dirichlet kernel Dq,n is concentrated around the qth
roots of unity, and by controlling Wn, we can make the function (4.17) either
integrable or not. The number λ = exp 2πiα is built inductively as the limit of very
good approximations

α
def
= lim

n→∞
pn/qn.

The inductive step works as follows. Having constructed pn, qn, mn and Wn,
we consider the function

ψn(z) =

n∑

j=1

WjDqj ,mj
(z)

as given, and assume that we have a good estimate in some complex neighborhood
of S1 for

ψn(λnz) = ψn(z),

where λn = exp2πipn/qn. That estimate will persist if we replace λn by any number
sufficiently close to it, in particular by exp 2πi(pn/qn + 1/Lqn) for any sufficiently
large L. We can choose L = Ln and mn+1 in such a way that the Dirichlet kernel

DLnqn,mn+1

is on the one hand, sufficiently close to zero in probability, and on the other hand
sufficiently close to being metrically dense. The first property guarantees conver-
gence in probability, and also guarantees the persistence of the degree of metric
density achieved in the previous step. The last property guarantees a better degree
of metric density for

ψn+1 = ψn +Wn+1DLnqn,mn+1 ,
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so that we put qn+1 = Lnqn. Since the Dirichlet kernel has period 2π/qn+1,

ψn+1(λn+1z)− ψn+1(z) = ψn(λn+1z)− ψn(z)

and as we have seen the expression on the right hand side can be controlled in a
complex neighborhood of S1.

The arguments in section 5.4 below follow a very similar pattern with cosines
instead of Dirichlet kernels. However, those arguments are generic, whereas the
property we are discussing now can be carried out only by a construction where
the next step depends thoroughly on the previous ones. Similar phenomena appear
in the conjugation–approximation construction [AK], [HaK] which is the most
powerful general method of constructing diffeomorphisms with prescribed, often
exotic properties based on fast periodic approximation.

Remark. Herman [He1] pointed out that for rotations of the circle, cohomol-
ogy with nonintegrable transfer functions can not be effected by a lacunary Fourier
series. This conforms well with the highly non-lacunary nature of the Dirichlet
kernels and also underlines the difference between the above construction and that
of section 5.4.

4.4 Minimal nonergodic interval exchange transformations. An in-
terval exchange transformation (i.e.t.) is a map T of an interval ∆ onto itself which
preserves Lebesgue measure λ and has only a finite number of discontinuities. It
owes its name to an equivalent description as a rearrangement in some fixed new or-
der of subintervals ∆1, . . . ,∆m, which form a partition of ∆, with a possible change
of orientation on some of the subintervals. If the orientation does not change we will
call T on oriented interval exchange transformation. There is a certain ambiguity
in the definition of i.e.t. at the points of discontinuity but we fix this ambiguity
for an oriented i.e.t. by assuming that the interval ∆ is right half-open and that T
is continuous from the right. Interval exchange transformations appear as natural
section maps for area preserving flows on the surfaces of higher genus.

If an i.e.t. T has a dense orbit then every other orbit, except possibly the orbits
of the points of discontinuity, is also dense [Ke], see also [KH], Section 14.5. We
will call such an i.e.t. quasi-minimal. If T is an oriented i.e.t. and all its semi-
orbits are dense we will call it a minimal i.e.t. If we fix m and the order in which
the subintervals ∆1 . . .∆m are permuted then an oriented i.e.t. is determined by a
probability vector

λ(∆1), . . . , λ(∆m)

i.e. by a point of an (m − 1)-dimensional simplex σm−1. Under some natural
combinatorial assumptions all elements of the simplexes except for those belonging
to a countably many linear submanifolds determine minimal i.e.t.

The total number of ergodic probability invariant measures for a quasi-minimal
i.e.t. is always finite ([Ve1], [KH], section 14.5). If there is only one such measure
we will call T strictly ergodic. Since Lebesgue measure is always invariant this
unique measure must be Lebesgue. The central result in the theory of interval
exchange transformations is that under the same natural combinatorial assumptions
which yield minimality, almost every point of the simplex σm−1 with respect to
Lebesgue measure determines a strictly ergodic i.e.t. This was proved independently
and simultaneously by W. Veech [V2] and H. Masur [M].
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We are going to show that the minimal but not strictly ergodic i.e.t., although
nongeneric, are fairly common.*

We will deal with two-point extension of a minimal oriented i.e.t. Let us call
a function n : ∆ → Z/2 = {0, 1} a k-step function if it has exactly k points of
discontinuity. We associate to any n : ∆ → Z/2 a Z/2 extension T n(·) of T .

(4.18) T n(·)(x, j) = (Tx, j + n(x)).

If T is an exchange transformation of m intervals and n is a k-step function then
Tn(·) can be easily interpreted as an i.e.t. exchanging not more than 2m + 2k
intervals.

Theorem 4.9. Let T be a minimal oriented interval exchange transformation.
There exists a 3-step function n : ∆ → Z/2 such that

(i) n(x) = h(Tx)− h(x)
where h : ∆ → Z/2 is a measurable function and

(ii) For each subinterval I ⊂ ∆,

λ(h−1({0}) ∩ I) > 0 and

λ(h−1({1}) ∩ I) > 0.

Before proving this theorem we will show how it allows us to construct minimal
but not strictly ergodic i.e.t.’s.

Corollary 4.10. The two-point extension T n(·) (cf. (4.18)) is minimal but
not uniquely ergodic.

The proof of the corollary is essentially the same as that of Corollary 4.3. By
Theorem 4.9 (i) n(x) is a coboundary so that T n(·) is metrically isomorphic to
T × Id via R(x, j) = (x, j + h(x)). Therefore T n(·) preserves two sets of positive
product measure: graph (h) and graph (1 − h). By Theorem 4.9 (ii) and by the
minimality of T every orbit of T n(·) visits every open subset of ∆× Z/2.

Proof of Theorem 4.9. Since T−1 is also an i.e.t. with the same number
of points of discontinuity we can replace (i) by

(i′) n(x) = h(T−1x)− h(x),
then apply the result to T−1 and obtain the statement of the theorem.

In all the subsequent arguments we omit the minus sign because we are working
in Z/2.

Let us call an interval I ⊆ ∆ k-clear if T i is continuous on the interior of I

for |i| =≤ k. Let a be the left endpoint of ∆ and an
def
= Tna. By the minimality

of T the sequence {an}, n = 0, 1, . . . is dense in ∆. If an < am we will denote by
χm,n : ∆ → Z/2 the characteristic function of the interval [an, am).

As in the proof of Theorem 4.2 the function n(x) is constructed inductively
with very similar methods of control over convergence and divergence. However,
the whole construction is much more explicit. Let k0 = 0 and k1 > 0 be chosen
in such a way that the interval [a, ak1 ] is disjoint from its image [a1, ak1+1]. The
inductive construction is determined by an increasing sequence of natural numbers

*The rest of this section appeared with minor modifications in [KH] as subsection 14.5e
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km, m = 0, 1, . . . . In order to formulate the conditions on km we need another
sequence `m defined by

(4.19)
`0 = 1, `1 = k1 + 1

`m+1 = km+1 − km + `m−1

so that

`m = 1 +

m−1∑

i=0

km−i(−1)i.

We will assume that
(I1) a < ak1 < ak2 < · · · < akm

< a1 < a`2 < · · · < q`
2[m

2 ]

< a`1 < a`3 < · · · < a`
2[m+1

2 ]−1

(I2) The interval [akm
, akm+1 ] is 2km− clear

(I3) akm+1 − akm
<

akm−akm−1

3km
.

Let us now show how conditions (I1), (I2) and (I3) can be satisfied inductively.
Let us assume that they are already satisfied up to m. Then by (I1) we can find e,

akm
< e < cm

def
=

{
a`m , m even

a`m−1 , m odd

such that [akm
, e) is a km-clear interval. By the minimality of T , we can find

km+1 > km such that akm+1 belongs to the left half of the interval [akm
, e). This

implies (I2) for m+ 1. From the definition of `m, cm+1 cannot be more to the left
of cm than akm+1 is to the right of akm

. This implies (I1). Finally, (I3) can be
achieved by simply choosing akm+1 each time very close to akm

.
Now we are prepared to construct inductively the cocycle n(x) and the transfer

function h(x). We begin with a 3-step function

n1(x) = χ0,k1(x) + χ1,k1+1(x)

= χ0,k1(x)− χ0,k1(T
−1x)

and proceed by induction

(4.20)

nm+1(x) = nm(x) + χkm,km+1(x) + χ`m−1,`m+1(x)

= nm(x) + χkm,km+1(x) − χkm,km+1(T
`m+1−km+1x)

= nm(x) + gm+1(x) − gm+1(T
−1x)

where

gm+1(x) =

km−`m−1−1∑

i=0

χkm+j,km+1+j(x).

We will represent nm(x) on one hand as a 3-step function and on the other hand
as a coboundary.

To show that it is a 3-step function we have from (4.20) and (I1),

nm(x) =

m∑

i=1

χki−1,ki
(x) = χ`0,`1(x) +

m−1∑

i=1

χ`i−1,`i+1(x)

= χ0,km
(x) + χ`2[m

2 ],`2[m+1
2 ]−1(x).
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Thus nm(x) converges pointwise to

n(x) = χ[a,b)(x) + χ[c,d)(x)

where

b = lim
m→∞

akm
, c = lim

m→∞
a`2m

, d = lim
m→∞

a`2m+1 .

To represent nm as a coboundary, we use (4.20) to obtain

nm(x) = hm(x)− hm(T−1x)

where

(4.21)

hm(x) = χ0,k1(x) +

m∑

i=2

gi(x)

= χ0,k1(x) +

m∑

i=2

ki−1−`i−2−1∑

j=0

χki−1+j,ki+j(x).

Since hm+1(x) = hm(x) + gm+1(x) we have from (4.20) and (I3),

λ({x ∈ ∆ : gm+1(x) = 1}

≤ (km − `m−1)(akm+1 − akm
) <

akm
− akm1

3

so that the sequence hm converges in L1 to a function h which obviously satisfies
(i’). Thus, it remains to prove (ii). Again the argument resembles very much those
from section 4.1, being only simpler and more explicit.

Let us call an interval [akm−1+j , akm+j)j = 0, 1, . . . , km−1−`m−2−1 of rank m.
It follows from (I3) that all intervals of a given rank are pairwise disjoint. Moreover
for ` < m any interval of rank m is either disjoint with an interval of rank ` or is
contained inside such an interval. To prove that let us assume that the opposite is
true so that for some

j ∈ {0, 1, . . . , km−1 − `m−2 − 1}

and

s ∈ {0, 1, . . . , k`−1 − ``−2 − 1}
akm−1+j < ak`−1+s < akm+j .

Since k`−1 + s < 2k`−1 < 2km−1 we can apply T−(k`−1+s) and obtain from (I.2)
that the point a0 lies between

akm−1 + (j − k`−1 − s)

and

akm+(j−k`−1−s).

But this is impossible because a is the left end of ∆.
It follows from the last statement and from (4.21) that the function hm is

constant on every interval of rank m.



COCYCLES, COHOMOGY AND COMBINATORIAL CONSTRUCTIONS 51

Let us fix an interval I ⊂ ∆. By the minimality of T every orbit segment of
length N for sufficiently large N intersects I , in particular I contains an interval I ′

of rank m for a sufficiently large m . hm is constant on I ′ and from (I3) for n > m

(4.22)

λ({x ∈ I ′ ; hn(x) = hm(x)}) ≥

λ(I ′)−
n−m∑

k=1

λ(g−1
n+k(1)) ≥

λ(I ′)

(
1− 1

3
− 1

9
− · · · − 1

3m−n

)

so that

λ{x ∈ I ′ : h(x) = hm(x)} ≥ λ(I ′)

3
.

Let us now take the smallest m′ > m such that I ′ contains an interval I ′′ of rank
m′. Then the value of hm′ on I ′′ is different from that of hm on I ′ so that applying
the same argument to I ′′ we obtain

λ{x ∈ I ′′ : h(x) = hm′(x)} > λ(I ′′)

3
.

Inequalities (4.22) and (4.23) imply (ii). �

Remark. A slight modification of the argument allows us to replace minimality
by quasi-minimality in the assumption with the outcome being a 4-step function
instead of a 3-step function.

5. Non-trivial cocycles

In this chapter we discuss methods of proving that a certain cocycle is not a
coboundary or an almost coboundary, and various applications of those methods. In
contrast with situations considered in Chapter 3 where the non-triviality of cocyles
was derived from non-vanishing of certain invariant distributions we will concentrate
now on the non-stable case, i.e. we will look for non-trivial cocycles which are
the limits of coboundaries in various topologies. The subtlety of this problem
is that there are very few means to disprove the existence of a transfer function
which is assumed to be only measurable with no assumptions about continuity or
integrability.

5.1 Two general criteria. The following propositions summarize the two
main approaches to the problem. In both cases G is an arbitrary second countable
topological group.

Proposition 5.1. Let φ be a G-valued cocycle over a measure-preserving trans-
formation T : (X,µ) → (x, µ).

(i) If for a sequence of integers qn, T
qn → Id in the weak topology* and φ is a

coboundary then the product φ(x)φ(Tx) . . . φ(T qn−1x) → IdG in probability.
(ii) If for any qn →∞, any α > 0, and for every measurable set A

µ(T qnA ∩ A) > αµ(A),

*A transformations T for which such a sequence exists is called rigid [HaK], [K1].
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then for every coboundary φ and every neighborhood U of e ∈ G,

lim
n→∞

µ{x : φ(x)φ(Tx) . . . φ(T qn−1x) ∈ U} > α.

Proof. (i) If φ(x) = ψ(x)−1ψ(Tx) then

φ(x)φ(Tx) . . . φ(T qn−1x) = ψ−1(x)ψ(T qnx)

and since ψ(T qnx) converges in probability to ψ(x) so that the product converges
to identity.

ii) Let us take a countable partition η of G such that for every element c ∈ η
and g1, g2 ∈ c, g1g

−1
2 and g−1

1 g2, belong to U . Let A = ψ−1(c), for all c ∈ η and
apply a diagonal argument. �

Proposition 5.2. Let G be provided with a metric compatible with the uniform
structure. If a G-valued cocycle over T is a coboundary then for every ε > 0 there
exists R such that for all n

µ{x ∈ X ; dist(φ(x)φ(Tx) . . . φ(T n−1x), e) ≤ R} > 1− ε

Proof. Again if φ is a coboundary

φ(x)φ(Tx) . . . φ(T n−1x) = (ψ(x))−1ψ(Tnx).

Since ψ and ψ−1 have the property in question, T n preserves the measure so that
ψ · Tn also has that property. Finally, since the product is continuous for every R
there is R1 = R1(R) such that if dist(xi, e) < R i = 1, 2 then dist(x1x2, e) < R1. �

Since we will be interested in finding cocycles which are not almost coboundaries
we will formulate explicitly the contrapositives of Proposition 5.1(i) and 5.2 for that
case.

Corollary 5.3. Under the same conditions as Proposition 5.1, if there exits
a neighborhood U of the identity e ∈ G, a sequence qn → ∞, sequences of closed
subsets Vn and Wn of G, and ε > 0 such that

(i) T qn → Id in the weak topology
(ii) VnW

−1
n ∩ U = φ

(iii) µ{x : φ(x)φ(Tx) . . . φ(T qn−1x) ∈ Vn} > ε
(iv) µ{x : φ(x)φ(Tx) . . . φ(T qn−1x) ∈ Wn} > ε.

Then φ is not cohomologous to any constant.

Corollary 5.4. Under the same conditions as Proposition 5.2, let Uk be an

increasing sequence of neighborhoods of the identity in G such that
∞∪
k=1

Uk = G. If

there exists a sequence nk → ∞, sequences of closed subsets Vk and Wk of G, and
ε > 0 such that

(i) VkW
−1
k ∩ Uk = φ

(ii) µ({x : φ(x)φ(Tx) . . . φ(T nk−1x) ∈ Vk}) > ε
(iii) µ({x : φ(x)φ(Tx) . . . φ(T nk−1x) ∈ Wk}) > ε
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Then φ is not cohomologous to any constant.

The method based on Corollary 5.3 applies to cocycles with values in arbitrary
groups including compact ones, but it requires the transformation to be rigid. The
second method is free of that restriction but it works only for cocylces with values
in some non-compact (e.g. compactly generated) groups.

In sections 5.2–5.5 we will explore various situations where a cocycle φ = limφn
fails to be an almost coboundary, although φn’s are coboundaries and L1 conver-
gence of φn to φ is very fast. Our strategy will be as follows. Although φn is a
coboundary, for large values of n the corresponding transfer function ψn will be
huge so that φn will satisfy the condition (ii)–(iv) of Corollaries 5.3 or 5.4 for a
finite but growing with n number of iterates.

Due to fast convergence all the alterations on the subsequent steps will be
small enough to keep the properties for the limit cocycle for the given iterates and,
naturally, they will produce similar properties for higher iterates.

In addition to Corollary 5.4 the following observation is useful in this situation.
Let T : (X,µ) → (X,µ) be an ergodic measure-preserving transformation and let
U and V be two disjoint closed subsets of G. Let φ() = (ψ(x))−1ψ(Tx) and let
u = µ(ψ−1(U)), v = µ(ψ−1(V )).

Lemma 5.5. Suppose that

(5.1) ε0 = u(1− u)− 1 + u+ v > 0.

Then there exists an arbitrarily large k such that for every δ > 0

µ({x : φ(x)φ(Tx) . . . φ(T k−1x) ∈ V −1U}) ≥ ε0 − δ

and

µ({x : φ(x)φ(Tx) . . . φ(T k−1x) ∈ U−1V }) ≥ ε0 − δ.

Remark. Condition (5.1) is satisfied if u + v is sufficiently close to one and
neither u or v is very small.

Proof. We write as usual

φ(x)φ(Tx) . . . φ(T k−1x) = ψ(x)−1ψ(T kx)

and take sets A = ψ−1(U) and B = ψ−1(V ). From the ergodic theorem,

lim
N→∞

1

N

N−1∑

k=0

µ(A ∩ T−kA) = µ(A)2 = u2.

In particular we can find an arbitrarily large k such that µ(A ∩ T−kA) ≤ u2 + δ
so that µ((X\A) ∩ T−kA) ≥ 1 − u(1 − u) − δ and by (5.1), µ(B ∩ T−kA) ≥
µ((X\A)∩ T kA)−µ(X\(A∪B)) ≥ u(1−u)− δ− 1+u+ v = ε0− δ. If x ∈ B and
T kx ∈ A then

φ(x)φ(Tx) . . . φ(T k−1x) ∈ V −1U
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Similarly, we show that µ(A ∩ T−kB) ≥
µ(A ∩ T−k(X\A))− µ(X\(A ∪ B))

= µ(T kA ∩ (X\A))− 1 + u+ v

= µ(T kA)− µ(T kA ∩ A)− 1 + u+ v

= µ(A)− µ(A ∩ T−kA)− 1 + u+ v

≥ u(1− u)− 1 + u+ v − δ = ε0 − δ.

�

This lemma can be used to verify the conditions of Corollary 5.4 if, e.g. G is an
abelian group provided with a translation invariant metric and U, V are such that

dist(U−1V, V −1U)

is sufficiently large. (Cf. the proof of Theorem 5.6 below).

5.2 The case of fast C∞ approximation. We now return to the situation
discussed in section 4.2.

Theorem 5.6. Suppose that f is a C∞ diffeomorphism of a compact connected
m-dimensional manifold M which preserves a measure µ given by a density bounded
between two positive constants, and is ergodic with respect to µ. If f admits a
fast C∞ periodic approximation then there exists a real valued C∞ cocycle h =
lim
n→∞

(ψn ◦ f − ψn), where ψn is C∞, which is not cohomologous to any constant.

Proof. We begin with a “cubic triangulation” of M ; in other words we form
a mod 0 partition of M into diffeomorphic images of the standard m-dimensional
cube Im = {(t1, . . . tm) : 0 ≤ ti ≤ 1, i = 1 . . .m}. Then for a given number n we
can subdivide the standard cube by nm equal cubes by dividing the value of each
coordinate into n equal intervals. The images of this subdivision form a partition of
M which we will denote by ξn. We associate with every element c ∈ ξn a function
αc which is somewhat similar to the function defined by (4.9).

The element c is an image under a fixed (independent on n) diffeomorphism
of a cube in R

m with a center at a point (t01 . . . t
0
m) and with sides parallel to

the coordinate axes. We define αc as the image under that diffeomorphism of the

function n
m∏
i=1

θn(ti − t0i ) extended by zero outside of the image of Im. Here θn(t) is

a C∞ bump function equal to 1 for |t| < 1
2n , to 0 for |t| > 1

2n + 1
2n10 and such that

its r-th derivative does not exceed C(r)n100 for r = 1, 2, . . . .
Due to the fast periodic approximation for c ∈ ξqn

the function αc ◦ f qn − αc
allows the Cr estimate

(5.3) ‖αc ◦ f qn − αc‖r < c1(k, r)q
−k
n

(cf. (4.8)). Details of this estimate are the same as in the proof of Theorem 4.5.
We have

αc ◦ f qn − αc = ψc ◦ f − ψc

where

ψc =

qn−1∑

k=0

αc ◦ fk.
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We are going to show that one can choose a collection of elements of ξqn
,

c1, . . . , c` so that the function ψ =
∑̀
i=1

ψci
has the following property

(5.4)
µ(ψ−1([qn,∞))) >

2

5

µ(ψ−1({0})) > 2

5
.

Then we can apply Lemma 5.5 and obtain a number k = kn such that for the
function

(5.5) φ =
∑̀

i=1

αci
◦ f − αci

= ψ ◦ f − ψ,

(5.6)

µ({x :

kn−1∑

j=0

φ(T jx) ≤ −qn}) >
1

50

and

µ({x :

kn−1∑

j=0

φ(T jx) ≥ qn}) >
1

50
.

To verify (5.4) we order the elements of ξqn
and consider successively the functions

ψc1 , ψc1 + ψc2 , ψc1 + ψc2 + ψc3 , . . . .

We denote ψ(k) =
k∑
i=1

ψci
.

Let us look at the distribution of the values of two successive functions ψ(k)

and ψ(k+1). Both functions are non-negative and ψ(k+1) −ψ(k) = ψck
. the support

of ψck
is the union of qn successive iterates of ck with its neighborhood. We will

disregard all the neighborhoods and their images since the total measure of their
union does not exceed a constant multiple of q−9

n .
By neglecting this small set we can reduce the question to considering distri-

butions of iterates for characteristic functions of the elements ck ∈ ξqn
multiplied

by the constant qn. These iterates cover increasingly large fractions of the total
measure. The distribution of a sum is the sum of the distributions. Adding the
sum of the iterates of qnχck

, we change the value by at least qn on a set of measure
between µ(ck) and qnµ(ck).

The last number is small since by our assumptions µ(cn) < q−mn ·d for a constant
d. Eventually the value on a set of measure close to 1 becomes greater than qn.
Since we start from zero, that means that for some k the measure of support is
within dq−m+1

n of 1/2. By making n large enough we obtain (5.4).
Let us point out that

‖φ‖r ≤ d1q
m−1
n max

c∈ξqn

‖αc ◦ f − αc‖r

for another constant d1 and thus ‖φ‖r decreases faster than any power of qn as
n→∞ by (4.8).

Now we proceed to build the cocycle h inductively as a sum of φ(k) where
each φ(k) is defined by (5.5) for a certain recurrence time qnk

. By choosing the
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numbers qnk
sufficiently quickly increasing we guarantee the convergence of the

series h =
∞∑
k=1

φ(k). On the other hand we want to insure that for every k

(5.7)

µ({x :

qnk
−1∑

j=0

h(T jx) ≤ −qkn

2
}) > 1

50

and

µ({x :

qnk
−1∑

j=0

h(T jx) ≥ qkn

2
}) > 1

50
.

By Corollary 5.4 these inequalities imply that h is not cohomologous to a constant.
We have

h =

k−1∑

i=0

φ(i) + φ(k) +

∞∑

i=k+1

φ(i).

Since φ(i) = ψ(i) ◦ f − ψ(i) (cf. (5.5)) for every `

(5.8)

∣∣∣∣∣∣

`−1∑

j=0

k−1∑

i=0

φ(i)(T jx)

∣∣∣∣∣∣
< 2

k−1∑

i=1

max |ψ(i)|

and the expression in the right hand part of the last inequality is known by the
time we make the choice of qnk

so that we can choose

qnk
> 20

k−1∑

i=1

max |ψ(i)|.

On the other hand by choosing the subsequent return times far away we can insure
that for i > k

|ψ(i)| < 2−1 · k−1
n−K

so that

(5.9)

∣∣∣∣∣∣

knk
−1∑

j=0

∞∑

i=k+1

φ(i)(T jx)

∣∣∣∣∣∣
< 1.

Since ∣∣∣∣∣∣

knk
−1∑

j=0

h(tjx)

∣∣∣∣∣∣
>

∣∣∣∣∣∣

knk
−1∑

j=0

φ(k)(T j(x))

∣∣∣∣∣∣
−

∣∣∣∣∣∣

knk
−1∑

j=0

k−1∑

i=0

φ(i)(T jx)

∣∣∣∣∣∣
−

∣∣∣∣∣∣

knk
−1∑

j=0

∞∑

i=k+1

φ(i)(T j(x))

∣∣∣∣∣∣
,

inequalities (5.6), (5.8) and (12.9) imply (5.7). �
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5.3 Weakly mixing flows on T
2. Kolmogorov’s Theorem 3.5 implies that

for any Diophantine (in other words, not exceptionally well rationally approx-
imable) number α every C∞ special flow build over the rotation Rλ, λ = exp 2πiα
has discrete spectrum (cf. (1.22)). Now we are going to show that for very well ap-
proximable rotation numbers there exist not only C∞ but even real-analytic special
flows which have continuous spectrum. To that end we will find a criterion which
guarantees that for a real-valued function h on the circle the function exp irh for
every real r is not a coboundary. We will use the approach suggested by Corollary
5.3. Let us consider the special flow over Rλ build under a function h0 +h(z) where
h0 is a constant and h(z) is a function with zero average

h(z) =
∑

n6=0

hnz
n.

We consider a sequence of iterates, say qn, n = 1, 2, . . . of the rotation Rλ
corresponding to a very good rational approximation pn/qn, 0 ≤ pn < qn of α. To
make the notation lighter we omit the index n in the subsequent computation.

We have

(5.10)

q−1∑

k=0

h(λkz) =

∞∑

m=−∞

hm

(
1− λqm

1− λm

)
zm =

∑

q 6=lm

hm

(
1− λqm

1− λm

)
zm+

∞∑

`6=0

h`q

(
1− λq

2`

1− λq

)
z`q.

We approximate λ by λ0 = exp2πi pq and write the expression for
q−1∑
k=0

h(λh0z) corre-

sponding (5.10). The sum over m not divisible by q vanishes and the second sum
becomes

∞∑

`=−∞

qh`qz
`q.

We denote by aq the L2 norm of this power series, by bq the expression q
∞∑

k=−∞

|h`q |

and by eq = |α − p
q |. Obviously aq ≤ b1. We will assume a certain regularity

condition on the decrease of Fourier coefficients h`q, namely

(5.11)
|hq|

∞∑
`=1

|h`q|
> c > 0

where the constant c is independent of q. Since |hq | < aq (5.11) implies that

(5.12) b1 ≤
√

2c−1aq

Obviously for every integer m

|λm − λm0 | ≤ |m| · |λ− λ0| ≤ |m| · eq
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so that if h′ is absolutely summable

(5.13)

∣∣∣∣∣

q−1∑

k=0

h(λkz)− h(λk0z)

∣∣∣∣∣

≤
∣∣∣∣∣

∞∑

m=−∞

∣∣∣∣∣hm

∣∣∣∣∣

q−1∑

k=0

∣∣∣∣∣λ
km − λkm0 | |

≤ eq
q(q − 1)

2

∑

m

m|hm| < c′eq q
2

where c′ is a constant which depends on h but not on q.
Now we make an assumption on the relationship between the speed of approx-

imation for α and the decrease of Fourier coefficients for h. Namely we assume

(5.14) lim
n→∞

eqn
q2n

bqn

= 0.

By (5.14) and (5.12) we see that for the function

h(q)(z) =

q−1∑

k=0

h(λkz)

which has zero average both the maximum and the L2-norm are of order bq. Thus
it has to have both positive and negative values of that order on sets of measure
bounded away from zero by a constant independent of q. Up to an error of order
eqq

2 the function h(q) coincides with the function

h̃(q) = q

∞∑

`=−∞

h`qz
`q.

Let us now take L = ε0

[
1
aq

]
where ε0 is a sufficiently small constant and

consider
Lq−1∑

k=0

h(λkz) =

L−1∑

j=0

q−1∑

k=0

h(λk(λjqz)) =

L−1∑

j=0

h(q)(λjqz).

Replacing in the last expression h(q) by h̃(q) we allow an error of order eq · q2 ·L =
o(1).

On the other hand, we have

(5.15)
L−1∑

j=0

h̃(q)(λjqz) = q
∞∑

`=−∞

h`q

L−1∑

j=0

λj`q
2

z`q.

We want again to compare uniform and L2 norms for a function, this time for
the one given by (5.15).

The uniform norm does not exceed Lbq. The L2 norm is greater than

q|hq |
L−1∑

j=0

λjq
2

.
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We have by (5.12) and (5.14) for 0 ≤ j ≤ L− 1

|λjq2 − 1| ≤ jq2|λ− λ0| ≤ Lq2eq = o(1).

Thus if q is sufficiently large, ∣∣∣∣∣∣

L−1∑

j=0

λjq
2

∣∣∣∣∣∣
>
L

2

so that by (5.11) and the definition of L the L2 norm of our function is greater
than a certain constant which depends on h and ε0 and can be arbitrary small by
the choice of ε0. What is important is that the ratio of the above estimate of the
uniform norm and the below estimate for the L2 norm is a constant independent
of q ε0. Since the average of the function (5.15) is zero it reaches both positive
and negative values of order ε0 on sets of the measure separated from zero. Taking
into account the remark about the error we conclude that the same is true for the
function

Lq−1∑

k=0

h(λk)

But by our choice of L and by (5.14) λLq → 1 as q →∞ so that the function

Lq−1∑

k=0

h0 + h(λkz)

is not close in probability to any constant. However the variation of that function is
estimated from above by a multiple of ε0. When we pass to the function exp ir(h0+
h(z)) we see that the spread of values for

Lq−1∏

k=0

exp ir(h0 + h(λkz))

persists if ε0 is chosen small enough. Applying Corollary 5.3 we see that the special
flow over Rλ build under h0 +h is weakly mixing. Let us summarize the discussion.

Theorem 5.7. Let h(z) =
∑
n6=0

hnz
n be a C2 real valued function on S1 with

zero average. Let Rλ be a rotation on S1 λ = exp 2πiα. Suppose for a certain
sequence of rational numbers pn/qn,

(5.16)
qn|α− pn/qn|

∞∑
k=1

|hkqn
|

→ 0

and

(5.17)
|hqn

|
∞∑
k=1

|hkqn
|
> c > 0.

Then for any h0 and r the cocycle exp ir(h0 + h(z)) is not a coboundary and con-
sequently the special flow over Rλ build under the function h0 + h(z) is weakly
mixing.
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Remark. Since conditions (5.16) and (5.17) remain true if we multiply h by
a constant, those conditions also guarantee that S1 extension of Rλ determined by
the function exp ih has no eigenfunctions except for those lifted from the base (cf.
(1.15)).

It is interesting to notice that for real analytic functions with a regular decrease
of Fourier coefficients the sufficient condition for weak mixing given by (5.16) is very
close in terms of the speed of approximation for λ to the negation of the sufficient
condition for the discrete spectrum namely

(5.18)
∑

n

|hn|2
|λn − 1|2 <∞

(cf. Theorem 3.5).
Let us consider for example the function

h(z) =
∑

n6=0

2−|n|zn =
2 cosφ− 2

5− 2 cosφ

where z = exp 2πiφ. This function obviously satisfies (5.17) and (5.16) becomes
for it

2qnqn

∣∣∣∣α−
pn
qn

∣∣∣∣→ 0

which is sufficient for weak mixing for the special flow. On the other hand (5.18)
converges if for some c > 0 and for all n > 0

2−n

|λn − 1| <
c

n
or, equivalently, 2q

∣∣∣∣α−
p

q

∣∣∣∣ > c

for all p and q.
Let us conclude with several comments.
Weak mixing is typical in the category sense for the special flows over circle

rotations and hence for time changes in linear flows on the torus [Fa1].
Mixed spectrum can appear even for an analytic roof function (A. Katok; un-

published) while it is not known whether for an analytic of smooth roof function an
exotic pure point spectrum can appear, i.e. whether it is possible that the special
flow has a pure point spectrum, but the roof function is not additively cohomologous
to a constant.

It is possible that for the roof functions with a sufficiently regular decay of
Fourier coefficients there is a dichotomy between the solvability of the additive
cohomological equation and weak mixing.

Finally mixing is possible for a smooth time change in a linear flow on a torus
of dimension greater than two [Fa2].

5.4 Ergodicity of analytic cylindrical cascades. A problem closely con-
nected with that discussed in section 5.3 concerns the R extension of the rotation
Rλ

(5.19) Rhλ(z, t) = (λz, t+ h(z)).

This transformation, which is sometimes called a cylindrical cascade, preserves
infinite Lebesgue measure. We are going to discuss the possibility of T being
ergodic. It is obviously necessary that h have zero average. On the other hand, if
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the cocycle h is a coboundary, then Rhλ is isomorphic to the direct product Rλ×Id,
and thus not ergodic. Furthermore, if

exp irh(z) = ψ(z)−1ψ(λz)

then the function
ψ(z)−1 exp irt

is Rhλ invariant. Thus the ergodicity on Rhλ implies that the special flow over Rλ
build under the function h(z) + 2παk + 2π` is weakly mixing for any integers k
and `, where λ = exp 2πiα. It looks as though the ergodicity of Rhλ is a stronger
property than the weak mixing of the special flows; however, no counterexamples
are known.

Krygin [Kr] proved the existence of an analytic cocycle over an irrational ro-
tation such that the extension (5.19) is ergodic. This result was generalized by
Herman [He3] to cocycles with values in more general groups. Herman’s proof is
essentially categorical. Another interesting feature of that proof is that it interprets
the approximation of the cocycle by coboundaries with diverging transfer functions
as the approximation of a diffeomorphism by elements of the actions of a compact
group via diverging conjugations as in [AK].

We will now formulate and sketch a proof of a categorical version of Krygin’s
theorem. Let us fix a complex annular neighborhood U of the circle S1 and consider
the space of all functions analytic in U and continuous on the boundary, with the
topology of uniform convergence. Let A be the product of this space with circle,
with the product topology.

Theorem 5.8. The set of pairs (h, λ) ∈ A such that the extension (5.19) is
ergodic is a residual set in A.

We follow the same course as in the categorical theorems in [K1]. First, the
ergodicity of Rhλ on the cylinder follows from the ergodicity of the induced map
(Rhλ)BM

on every band BM = [−M,M ] × S1. The categorical argument rests on
the following observation which is an almost immediate corollary of the ergodic
theorem.

Proposition 5.9. Let T : (X,µ) → (X,µ) be a measure-preserving transfor-
mation of a Lebesgue probability space and let {φ1, φ2 . . . } be a countable dense
subset of L1(X,µ). Suppose for any positive integers K and N and any ε > 0,
there exists a set AK,N,ε ⊂ X of measure greater than 1 − ε such that for every
x ∈ AK,N,ε there exists n(x) > N such that for k = 1, . . . ,K

(5.20)

∣∣∣∣∣∣
1

n(x)

n(x)−1∑

j=0

φk(T
jx) −

∫
φkdµ

∣∣∣∣∣∣
< ε.

Then T is ergodic.

To set up the categorical argument, we fix a band BM , a natural number N ,
an ε > 0, a continuous function φ on BM , and a neighborhood A in A. We will
construct below a pair (h, λ) = (h(A), λ(A)) ∈ A such that if for T = (Rhλ)BM

and

for the given function (5.20) holds, then (5.20) remains true for T (Rh
′

λ′)BM
for any

other (h′, λ′) from a sufficiently small neighborhood of (h, λ). Let us denote this
neighborhood by

P (h, λ, φ,N, ε).
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Let A1, A2, A3, . . . be a base of neighborhoods in A and let φ1, φ2, . . . be a
dense set in C(BM ).

The set

B =
∞∩
J=1

∞∩
N=1

∞∩
k=1

∞∪
`=1

P (h(A`), λ(A`), φk, N, 2
−J).

is a dense Gδ set in A.
According to Proposition 5.9, for every (h, λ) ∈ B (Rhλ)BM

is ergodic. Taking
the intersection over all integers M , we obtain the result.

It remains to prove the approximation step.
We can think of A as a neighborhood of a pair (h, λ) where h is a coboundary

and λ is rational. This is because for every irrational λ, the trigonometric polynomi-
als are all coboundaries with real analytic transfer functions, and thus coboundaries
are dense for the given λ. Keeping the transfer function fixed, we approximate λ by
a rational number. Thus we can think of A as a neighborhood of (h, exp 2πi p0/q0)
where h(z) = ψ(z exp 2πi p0/q0)− ψ(z).

Let us note that if g is a coboundary, g(z) = φ(λz)−φ(z), then the correspond-
ing cylindrical cascade Rgλ satisfies

Rgλ = Φ ◦ (Rλ × Id) ◦ Φ−1

where

Φ(z, t) = (z, t+ φ(z)).

The map Rgλ is embedded into the periodic flow

Ss = Φ ◦ (Rx × Id) ◦ Φ−1,

s ∈ R, whose orbits are graphs of the functions φ + const. In particular, for any
sufficiently large q and p such that (p, q) = 1, the orbits of Sp/q fill those graphs
with high uniform density. Both of these remarks remain true when we pass from
the flow Ss to the flow induced by Ss on any band BM .

For any ε > 0, any M and any given function ψ, one can find Q and W such
that for any q ≥ Q and w ≥W the function

ψw,q(z) = ψ(z) + w(zq + z−q)

has the property that all but a set of measure of less than ε of the points in BM
belong to graphs of the functions ψw,q + const. whose intersections with BM are ε
uniformly distributed. The last property means that for any intervals ∆ ⊆ S1 and
Σ ⊆ [−M,M ],

∣∣∣∣λ({z ∈ ∆ : ψw,q(z) + c ∈ Σ})− λ(∆)λ(Σ)

2M

∣∣∣∣ < ε.

We first perturb p0/q0, replacing it with p1/q1 for q1 sufficiently large and then
replace h by

h1(z) = ψ(z exp 2πi p1/q1)− ψ(z)

= ψ(z exp 2πi p1/q1) + w((z exp 2πi p1/q1)
q1

+ (z exp 2πi p1/q1)
−q1 )

− ψ(z)− w(zq1 + z−q1)

= ψ̃(z exp 2πi p1/q1)− ψ̃(z)
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where

ψ̃(z) = ψ(z) + w(zq1 + z−q1)

and we choose q1 and w according to the previous remark. Then we choose a very
large (actually arbitrarily large) L, and replace h1 by

h̃(z) = ψ̃

(
z exp 2πi

(
p1

q1
+

1

Lq1

))
− ψ̃(z).

Now the pair (h(A), λ(A)), needed for the category argument, can be taken as (h̃, λ̃)

where λ̃ = exp 2πi
(
p1
q1

+ 1
Lq1

)
. Due to the remark about graphs, the map induced

by Rh̃λ on BM satisfies the assumptions of Proposition 5.9 with good precision. �

Let us note that in a constructive version of this argument, the cocycle may be
built as a lacunary Fourier series.

5.5 Weak mixing of special flows over interval exchange transfor-

mations. Let T : ∆ → ∆ be an interval exchange transformation (cf. 4.4). We
will consider a special flow built over T under a function h which we assume to be
piecewise continuously differentiable; so that at every point of nondifferentiability,
h′(x) has limits from the left and right. let us identify the ends of the interval ∆
and fix an orientation on the circle obtained this way. We denote

J (h) =
∑

f(x+ 0)− f(x− 0)

where the summation is taken over the finite set of all points of discontinuity.
Let us remark that the first examples of measure-preserving transformations

and flows with continuous spectrum were constructed by J. Von Neumann in his
celebrated paper [N] which established the foundation of modern ergodic theory. He
proved that the special flow built over an irrational rotation under a piecewise C1

function h such that J (h) 6= 0 is weakly mixing. In his proof, von Neumann used the
rigidity of the base transformation (i.e. the rotation). Although not every interval
exchange transformation is rigid*, they always possess a recurrence property which
is strong enough to carry through an argument similar to von Neumann’s. Namely,
we will use the following property [K4].

Proposition 5.10. There exists a positive α and a sequence of positive inte-
gers
nk →∞ such that for every measurable set A ⊆ S1

µ(A ∩ TnkA) > αµ(A)

We can now formulate the generalization of von Neumann’s result.

Theorem 5.11. If T : ∆ → ∆ is an interval exchange transformation ergodic
with respect to Lebesgue measure and h is a piecewise C1 function such that J (h) 6=
0, then the special flow over T build under h is weakly mixing but not mixing.

*cf. Del Junco [J], who proved that some exchanges of 3 intervals have minimal self-joinings
and consequently their centralizers consist only of powers. On the other hand, a rigid transfor-
mation always has an uncountable centralizer.
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Proof. Since h is a function of bounded variation, the absence of mixing
follows from [K4].

To prove weak mixing, we show as usual that for every r 6= 0 the function
exp irh(x) is not cohomologous to any constant. We will use Proposition 5.1, ii),
whose assumption in this case, is satisfied due to Proposition 5.10. Let θn(x) =

exp ir
n−1∑
k=0

h(T kx). We will show that any weak limit point of the sequence of

measures

(θn)∗λ

is a nonatomic measure, where λ denotes Lebesgue measure on ∆.
Let ζ be the partition of ∆ into subintervals formed by all points of discontinuity

of T and all points where the derivative h′(x) is discontinuous and let ζn = ζ ∨
T−1ζ ∨ . . . T−n+1ζ. Let ω(ε) be a common modulus of continuity for h′ on all its
intervals of continuity. If c ∈ ζn then all functions h ◦ T i; i = 0, . . . , n − 1 are
differentiable on c and since T i

∣∣
c

has derivative ±1 we have for x, y ∈ c

|h′(T ix)− h′(T iy)
∣∣ ≤ ω(|x− y|)

and consequently

(5.21)

∣∣∣∣∣

n−1∑

i=0

h′(T ix) =

n−1∑

i=0

h′(T iy)

∣∣∣∣∣ < nω(|x− y|).

We have

(5.22)

∫

∆

h′(x)dx = −J (h).

Let us denote for an integer n and ε > 0

(5.23) An,ε =

{
x ∈ ∆ :

∣∣∣∣∣
1

n

n−1∑

i=0

h(T ix) + J (h)

∣∣∣∣∣ < ε

}
.

By the ergodicity of T we have for any ε > 0

λ(An,ε) → 1 or n→∞.

Let us now fix β > 0 and consider all elements of the partition ζn of length > β
n .

Let R = card ζ. Since the total number of elements in ζ does not exceed Rn (every
iterate of T adds as many new elements as the number of points of discontinuity
of T ), the total measure of these elements is greater than 1 − Rβ. Let us divide

now every element into intervals of length between β
n and wβ

n and call those of the
intervals, which intersect the set ∆n,ε, (n, ε, β)-admissible ones. The total measure
of (n, ε, β)-admissible intervals is clearly greater than λ(∆n,ε) − βR. For every
(n, ε, β)-admissible interval σ we have by (5.21) and (5.22)

(5.24)

(
−J (h)− ε− ω

(
2β

n

))
n < min

σ

n−1∑

i=0

h′(T ix) ≤ max
σ

n−1∑

i=0

f ′(T ix) <

(
−J (h) + ε+ ω

(
2β

n

))
n
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If ε is chosen small enough and n is big enough then in particular (5.24) implies
that

(5.25) max
σ

n−1∑

i=0

h′(T ix) < 2|J (h)|n

so that by choosing β < 1
4r|J (h)| (recall that the length of σ is less than 2β

n ) we can

guarantee that the function θn is injective on every (n, ε, β)-admissible interval.
On the other hand, the length of the image θn(σ) is bigger than r

2βJ (h)| if we
guarantee by our choice of n, ε that

(5.26) min
σ

n−1∑

i=0

h′(T ix) >
1

2
|J (h)|n

It follows from (5.25) and (5.26) that the density of the measure (θn)∗(λ|σ) =
µn,σ can oscillate on the interval θn(σ) ratio of at most 4, so that for every interval
δ ∈ ∆ of length `

µn,σ(δ) <
4`

θn(σ)
<

4`

rβ|J (h)| .

This means in particular that

(5.27)

λ({x ∈ ∆ : θn(x) ∈ δ}) ≤
λ({x ∈ ∆ : θn(x) ∈ δ , x belongs to an (n, ε, β)-admissible

(interval)}) + µ({x ∈ ∆ , x does not belong to an

(n, ε, β)-admissible interval}) < 4`

rβ|J (h)| + Rβ + 1− λ(An,ε).

Fixing first a sufficiently small ε and a sufficiently big n, and then sufficiently
small β we can always find ` such that the right hand part of (5.27) is less than
any given positive number. This shows that any weak limit power of the sequence
of measures (θn)∗λ cannot contain an atom. �
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