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Leonhard Euler first developed the notion of a double integral in 1769 [7]. As.part of his 
discussion of the meaning of a double integral and his calculations of such an integral, he posed 
the obvious question: what happens to a double integral if we change variables? In other words, 
what happens to jj, f(x,  y )  dx dy if we let x =x(t, v) and y =y(t ,  v) and attempt to integrate 
with respect to t and v? The answer is provided by the change-of-variable theorem, which states 
that 

where the regions A and B are related by the given functional relationship between (x,  y )  and 
( t ,v). This result, and its generalization to n variables, are extremely important in allowing one to 
transform complicated integrals expressed in one set of coordinates to much simpler ones 
expressed in a different set of coordinates. Every modern text in advanced calculus contains a 
discussion and proof of the theorem. (For example, see [S], [I], [18].) 

Euler interpreted this result formally; namely, he considered dxdy as an "area element" 
of the lane. So his aim was to show that his area element transformed into a new "area element" 

1 z: 1ax a~ dtdv under the given change of variables. Obviously, if we merely change 
at a v  

coordinates by a translation, rotation, and/or reflection, the area element is transformed into a 
congruent one. So Euler noted that if t and v are new orthogonal coordinates related to x and y by 
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a translation through constants a and b ,  a clockwise rotation through the angle 0 whose cosine is 
m, and a reflection through the x-axis, i.e., 

x = a + r n t + v / i T Z  

then dxdy should be equal to dtdu. Unfortunately, when he performed the obvious formal 
calculation 

and multiplied the two equations, he arrived at 

d x d y = m J S d t 2 +  (1 - 2 m 2 ) d t d u - m b m d u 2 ,  

which, he noted, was obviously wrong and even meaningless (see FIGURE1). Even more so, then, 
would a similar calculation be wrong if t and u were related to x and y by more complicated 
transformations. It was thus necessary for Euler to develop a workable method; i.e., one that in 
the above situation gives dx dy =dt do and, in general, gives dx dy =Zdt  du, where Z is a function 
of t and u. 

To see how he arrived at h s  method, we must first consider his definition and calculation of 
double integrals. After noting that l l Z d x  dy means an "indefinite" double integral, i.e., a function 
of x and y which when differentiated first with respect to x and with respect t o y  gives Zdxdy, 
Euler proceeded to calculate "definite" integrals over specified planar regions A in the way 
familiar to calculus students. Thus, he wrote the integral as l d x l Z d y  and holding x constant, he 
integrated with respect to y between the functions y =f , (x)  and y =f2(x) which bounded the 
region A; finally he integrated with respect to x between its minimum and maximum values in A. 
He interpreted this integral in the obvious way as a volume. In particular, he integrated 

v (x+dx,y+dv)= 

(x+dtcos0-dvs in0 ,y+dts in0+dvcos0)  

(x-dvsin0, y+dt;cos0) (x +dtcos@, y +dtsin0) 

x 
dvsin0 dt cos 0 
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( x .v + Q d v )  ( x+ d x , y + Pdw I I( x ,t; + d v )  I ~ x + ~ . Y . ~ + ~ v ~Fq:dx,)9+ p d x )x 

//\ilc2- x 2-y 2  dx dy over various regions to calculate volumes of portions of a sphere. Finally, he 
noted that //, dx dy is precisely the area of A and explicitly calculated the area of the circle given 
by ( x-a ) 2+ ( y- b)'= c2 to be rc2 .  

Since the method of double integration involves leaving one variable fixed while dealing with 
the other, Euler proposed a similar method for the change-of-variable problem: change variables 
one at a time. First he introduced the new variable u and assumed that y could be represented as a 
function of x and v .  So dy =Pdx + Q  do where P and Q are the appropriate partial derivatives. 
Now by assuming x fixed, he obtained dy = Q  do and / / d x  dy = / / Q  dx do = / d v / Q  dx (FIGURE 
2). Next, he let x be a function of t and o and put dx =R  dt + Sdo.  So by holding o constant, he 
calculated / d v  / Q  dx = / do  / Q R  dt = / / Q R  dt do. This gave Euler the first solution to his prob- 
lem: dx dy = QR dtdv.  

Obviously, this was not completely satisfactory, since Q may well depend on x ,  and, in 
addition, the method was not symmetric. So Euler continued, now representing y as a function of t 
and o , hence dy= T d t +  Vdv .  Then, formally, d y = P d x +  Q d v = P ( R d t + S d v ) + Q d v = P R d t  
+ ( P S + Q )  dv. So PR = T and PS + Q = V , which gives QR = V R- S T .  Euler's final answer 
was that dx dy = ( V R- S T )  dt do. He noted again that simply multiplying the expressions for dx 
and dy together and rejecting the terms in dt2 and dv2 gives ( R V +  S T )  d tdv ,  which differs by a 
sign from the correct answer. After a further note that one must always take the absolute value of 
the expression V R- S T  (since area is positive) he proceeded to confirm the correctness of his 
result through several increasingly complex examples. 

This "proof" was typical of Euler's use of formal methods in many parts of his vast 
mathematical work. As a developer of algorithms to solve problems of various sorts, Euler has 
never been surpassed. (We can see that Euler's method, in modern notation, amounts to first 
factoring the transformation x =x ( t ,  u ) ,  y  =y ( t , 0 )  into two transformations, the first being 
x = v ) ,  v  =o and the second x =x ,  y  =y ( x ,  v ) .  This can be done by "solving" x =x ( t , o) for~ ( t ,  

t in the form t = h ( x ,  v )  and then writing y  = y ( h ( x ,  o ) ,  v ) .  Then P  = y  -, ah 
Q =y -

ah +y,,
I a x  I a u  

R =x , ,  S  = x,, T =  y ,  and V =  y,. where subscripts denote partial derivatives. Since x ( h ( x ,  v ) ,  o )  
ah ah ah 

= X  and h ( x ( t , v ) , u )= t ,  we calculate that - x ,  = 1 and - x2+  -=0, so PR = T and 

PS + Q = V.)  
a x  a x  a v  

In 1773 J. L. Lagrange also had need of a change-of-variable formula-this time for triple 
integrals [12]. He was interested in determining the attraction which an elliptical spheroid 
exercised on any point placed on its surface or in the interior. Since the general expression for 
attraction at any point was well known, the difficulty lay in integrating over the entire body. Even 
though the problem had already been solved geometrically, Lagrange, as part of his general 
philosophy of treating mathematics analytically, attempted a different solution. 

To solve his problem, Lagrange had to calculate a triple integral. Since, following Euler's 
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Joseph-LouisLagrange 1736-1813 

method, this had to be done by first holding two variables constant, integrating with respect to the 
third from one surface of the body to another, then evaluating the ensuing double integrals, he 
was quickly led to very complicated integrands. He realized that new coordinates were needed to 
replace the rectangular ones in order to make the integration tractable. Thus he proceeded to 
develop a general formula for changing variables in a triple integral. Lagrange's method was 
similar to Euler's in that he let vary only one variable at a time, but the details differed. 

Given, then, x ,  y ,  and z as functions of new variables p ,  q ,  r ,  Lagrange wrote 

d x = A d p +  Bdq+ Cdr  

dy= Ddp+ Edq+ Fdr (2) 

dz= Gdp+ Hdq+ Idr  

where A ,  B, .  . . ,I are, of course, the appropriate partial derivatives. His aim was to calculate the 
volume of the infinitesimal parallelepiped dx dy dz (the "volume element") in terms of dp dq dr. To 
do this, he calculated each "difference" (i.e., edge of the parallelepiped) separately, regarding the 
other two variables as constant. First x and y are held constant; thus dx =0 and dy =0 ;  the first 
two equations in (2) become 

Adp+Bdq+Cdr=O 


Ddp+Edq+Fdr=O.  


Lagrange solved these two equations for dp and dq in terms of dr and substituted in the expression 
for dz in (2) to get 

G ( B F - C E ) +H(CD -A F )  + I ( A E - B D )
dz = dr .

A E - B D  

Next, x and z are assumed constant and only y varies; so dx =0 and dz =0. It follows 
immediately that dr =0 and A dp + B dq = 0 ; therefore, dp = -( B / A )  dq and 

dy = 
A E -

A 
BD 4. 

Finally,y and z are taken as constant, so dy =0 and dz = 0. Thus dr =0 and dq =0 , which implies 
that dx =Adp. By multiplying together the expressions obtained for dx ,  dy, and dz,  Lagrange 
calculated his result: 

dxdydz= ( A E I + B F G + C D H - A F H -  BDI- CEG)dpdqdr .  (3) 

This is, of course, our standard formula. The result for three-dimensional integrals is analogous to 
(I), and in modem notation, is written as 
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= rcos B 
= rsin8 

=cosOdr- rsinBdB 
= sinBdr+ rcos BdB 

=O-dy=rsecBdB 

=O-dx=cosOdr 

= rdrdO 

where a ( x '  Y") is the functional determinant of x,y ,z  with respect to p ,  q, r. (FIGURE3 
a (p ,q , ' )  

illustrates Lagrange's idea for the case of two variables and polar coordinates.) 
We note that Lagrange, hke Euler, dealt with the differential forms formally; there is absolutely 

no infinitesimal approximation that we would require in ,a similar proof today. But this formalism 
is typical of some of Lagrange's other work, in particular, h s  attempt to develop the calculus 
without limits by the use of algebra and infinite series [ l l ] ,  [13]. Also hke Euler, Lagrange noted 
that the most obvious thing to do to try to obtain the change-of-variable formula would be to 
multiply together the original expressions (2) for dx, dy, and dz. However, he wrote, this product 
would contain squares and cubes of dp, dq, and dr and so would not be valid in an expression of a 
triple integral. Hence he had to use the step-by-step formal approach already outlined. 

Lagrange applied his result to the case of spherical coordinates and was then able to perform 
the integrations he needed. Similarly, A. Legendre [ I S ]  and Pierre S. Laplace [14]soon after used 
essentially the same method to get similar results. These men were also interested in the 
change-of-variable formula in order to determine the attraction exercised by solids of various 
shapes, for which they needed to compute complicated integrals. 

In 1813 Carl F. Gauss gave a geometric argument for a special case of the change-of-variable 
theorem for two variables, although in a somewhat different context [a].Gauss' method of proof 
contrasts sharply with that of Euler. Gauss was developing the idea of a surface integral in 
connection with studying attractions. As part of this he gave a method for finding the element of 
surface in three-space so that he could integrate over such a surface. He started by parametrizing 

Carl Friedrich Gauss 1777-1855 
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'A ( x + A d p + A ' d q , y + p d p + p ' d q , z + v d p + v ' d q )  

(x+hdp,~,+pdp.z+vdp)  

( X  +A'dq, y + j~'dq,r + v'dq) 

the surface using three functions x ,  y,  z of the two variables p ,  q. He then noted that given an 
infinitesimal rectangle in the p-q plane whose vertices were ( p ,  q), ( p  + dp, q), ( p ,  q +dq), 
( p  +dp, q +dq), there was a corresponding "parallelogram" element in the surface whose vertices 
were (x,  y ,  z), ( x  +h dp, y +pdp, z + v dp), ( x  + h'dq, y +p'dq, z + v'dq), and (x  +X dp + 
h l d q , y + p d p + p ' d q , z + v d p + v ' d q ) , w h e r e  

d x = h d p + h ' d q  

dy=pdp+p 'dq (4) 

dz=vdp+vldq .  

(One can easily calculate the above result from the definitions and properties of the relevant 
partial derivatives.) It follows that the projection of the infinitesimal parallelogram onto the x-y 
plane is the parallelogram whose vertices are (x ,  y ) ,  (x  + h dp, y +p dp), ( x  h'dq, y +p'dq),J-

(x  +h dp + A' dq, y +p dp +p' dq) and whose area is clearly *(Xp' -pX') dp dq. (See FIGURE4.) 
Gauss was therefore able to compute the element of surface area as dp dq((pv'- ~ p ' ) ~ ( v h '-
hvl)*(hp' -ph')2)'/2 and thus to integrate t h s  over the p-q region corresponding to his surface. 
(In t h s  paper, Gauss used his special cases of the divergence theorem and his parametric method 
for calculating a surface element to evaluate certain "surface integrals" for the case of an ellipsoid 
given by x =Acos(p), y =Bsin(p)cos(q), z = Csin(p)sin(q) for 0 G p  G a,0 G q G  2 r . )  

If we let z =0 so that the "surface" is part of the x-y plane, then Gauss' argument shows that 
the new "area element" is I hp' - ph' dp dq, hence that //dx dy = / / I  hp' - ph' dp dq, a special 
case of the change-of-variable theorem from which the general case may easily be derived. Gauss' 
argument differs considerably from those of Euler and Lagrange. He essentially made use of 
analytic and geometric methods instead of using the formal approach of his predecessors. But as 
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was typical of Gauss, he did not provide all the steps necessary to complete h s  analytic argument, 
especially since he was dealing with infinitesimals. The missing parts can, however, be readily 
supplied. 

The next mathematician to break new ground in this field was Mikhail Ostrogradskii, in 1836. 
A Russian mathematician who studied in France in the 1820's, he later returned to St. Petersburg 
where he produced many works in applied mathematics. Unfortunately, some of his most 
important discoveries appear to have been totally ignored, at least in Western Europe. Not only 
did he give the first generalization of the change-of-variable theorem to n variables, but he also 
first proved and later generalized the divergence theorem [lo], wrote integrals of n-forms over 
n-dimensional "hypersurfaces," and, as we shall see below, gave the first proof of the change-of- 
variable theorem for double integrals using infinitesimal concepts. All of these results were 
eventually repeated by other mathematicians with no credit to Ostrogradskii. 

In his 1836 paper [16], Ostrogradskii generalized to n dimensions the change-of-variable 
theorem and Lagrange's proof of . . are all functions of it. Given that X, Y, 2,. x, y ,  z .  .. , 
Ostrogradskii first calculated dX, dY, dZ, . . . in terms of dx, dy ,dz, . . . . Then by holding all 
variables except X constant, he had dY =dZ = . . . =0, so he could solve for dX in terms of dx by 
using determinants; continuing with each variable in turn he calculated expressions for dY, dZ,. .. 
in terms of dy, dz,. . . and by multiplying showed that dXdYdZ.. . = A dx dy dz.. . where A is the 
functional determinant of X, Y, Z,... with respect to x, y,  z,. .. . Ostrogradskii did not state this 
result as a formula for transforming multiple integrals, but he did apply it to convert a 
hypersurface integral with n + 1 terms of the form dx dv.. . , to an ordinary n-dimensional integral 
in n new variables. 

Both Carl Jacobi [9]and Eugene Catalan [4]published papers in 1841 giving clearly the general 
change-of-variable theorem for n-dimensional integrals. Catalan's proof was also similar to 
Lagrange's in its use of formal manipulations on one variable at a time. Jacobi's paper was the 
culmination of a series of articles concerning this theorem; it contained additional results such as 
the multiplication rule for the composition of several changes of variable. Jacobi's work was 
referred to shortly thereafter by Cauchy and soon his name became tied to the theorem. In fact, 
the functional determinant A is now known as the Jacobian rather than the "Ostrogradskian." 

Two years after his 1836 paper, Ostrogradskii published in [17] a proof of the change-of-variable 
formula in two variables which used the same basic idea as had Gauss. He first criticized the 
proofs of Euler and Lagrange, and, by implication, his own earlier proof. He claimed that, 
assuming that x and y were functions of u and v,  if one first used dx =0 to solve for dy in terms of 
du (that is, to evaluate one side of the differential rectangle) one could not then assume that du 
would be 0 when one tried to evaluate dx by setting dy =0 (to find the other side of the rectangle). 
In fact, he wrote, you would have to use a new set of differentials, Su and Sv, in evaluating the 
other side, and, once you did that, you came up with an incorrect result. 

Mikhail Ostrogradskii 1801-1861 
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So Ostrogradskii returned to the meaning of j j V d x  dy as a sum of differential elements. Using 
a method similar to that of Gauss, although staying strictly in two dimensions, he proceeded to 
recalculate the area of these elements. He carefully chose each element to be bounded by two 
curves where u was constant and two curves where v was constant. If o denotes the area of such 
an element, he noted that by the definition of the definite integral, j J V d x  dy = j j V o .  It is easy to 

calculate o (see FIGURE5) since the four vertices have coordinates ( x ,  y ) ,  

try, the area of thls 

becomes 

~ / v d x d y =& J / V ( Z ,  - dudv .,,
a x  a y  a x  a y  i 

Ostrogradskii further noted that this method could be easily extended to three dimensions but not 
more, since there is not a corresponding geometrical result in four dimensions. We must note, of 
course, that Ostrogradskii had not explicitly justified using the standard formula for the area of a 
parallelogram when, in fact, the area is actually that of a "curvilinear" parallelogram. However, it 
was common practice in that time (as we noted also about Gauss' proof), to ignore explicit 
arguments about infinitesimal approximation. 

Only four years later, a proof similar to that of Ostrogradskii appeared in Augustus DeMorgan7s 
text Differential and Integral Calculus [6],one of the first "analytic" textbooks to appear in 
English. It is doubtful that DeMorgan had read Ostrogradskii's work, for his approach is 
somewhat different; he was considering how to calculate a double integral over a plane region 
bounded by four curves, where the standard method of integrating, first with respect to one 
variable between two functions of the other and then with respect to the second between constant 
limits, will not work. But his method of attack, via the definition of the double integral as a limit, 
the division of the given region into subregions bounded by curves where u was constant and 
where v was constant, and the calculation of areas of curvilinear quadrilaterals, is very close to 
that of Ostrogradskii. DeMorgan went even further, however, to provide detailed reasoning as to 
why the errors of approximation-third order infinitesimals-may be safely ignored. 

u = U I  u = u 2  
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It is also interesting that DeMorgan prefaced his results by stating that Legendre's proof 
(which was identical to that of Lagrange) was "so obscure in its logic as to be nearly unintelligible, 
if not dubious." 

Ostrogradskii and DeMorgan, then, had moved away from the formal symbolic approach of 
Euler and Lagrange. But we should emphasize that the former had not justified equating the 

"elements of area" dx dy and dud0 themselves, as the latter had attempted to d o  They 

had only showed the equality bf the intkgrals over the appropriate regions. A new justification for 
the formal symbolic approach only came with Elie Cartan and h s  theory of differential forms. 

Beginning in the mid 1890's, Cartan wrote a series of papers in which he formalized the subject 
of differential forms, namely the expressions which appear under the integral sign in line and 
surface integrals. As part of t h s  formalization, he used the Grassmann rules of exterior algebra 
for calculations with such forms. In a paper of 1896 [2], as an example of such a calculation, he 
was able to do what Euler could not; namely, if x =x(t ,  v)  and y =y(t ,  v), he could multiply 

ax  ax a' a'
d x =  -dt+ -do and dy= -dt+ -dv using the rules d td t=dvdv=O and dtdv= -dvdt 

at a v  at a v  
to show that 

1dtdv. 

In 1899 [3], Cartan went into much more detail on the rules for operating with these 
differential forms. And again, one of his first examples was the change-of-variable formula. 

As a final point, we note that proofs using the methods of Euler, Lagrange, and Ostrogradskii 
all appeared in textbooks through the first third of the twentieth century. There were, naturally, 
attempts to make all three methods more rigorous. A readily available example of this (for the 
proofs of Euler and Ostrogradskii) occurs in Courant's Differential and Integral Calculus 151. Most 
current textbooks, on the other hand, use an entirely different proof based on Green's theorem. 
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