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ABSTRACT

The coupled KdV–mKdV system arises as the classical part of one of superextensions of the KdV
equation. For this system, we prove its complete integrability, i.e., existence of a recursion operator
and of infinite series of symmetries. After giving a short introduction into the theory of symmetries,
coverings, and the notion of Cartan-covering, the recursion operator will be constructed as a symmetry
in the Cartan covering of the KdV–mKdV system.

INTRODUCTION

There are several supersymmetric extensions of the classical Korteweg–de Vries
equation (KdV) [6,9,10]. One of them is of the form (the so-called N = 2, A = 1
extension [2])

ut = −u3 + 6uu1 − 3ϕϕ2 − 3ψψ2 − 3ww3 − 3w1w2 + 3u1w
2 + 6uww1

+ 6ψϕ1w − 6ϕψ1w − 6ϕψw1,

ϕt = −ϕ3 + 3ϕu1 + 3ϕ1u − 3ψ2w − 3ψ1w1 + 3ϕ1w
2 + 6ϕww1,

ψt = −ψ3 + 3ψu1 + 3ψ1u + 3ϕ2w + 3ϕ1w1 + 3ψ1w
2 + 6ψww1,

wt = −w3 + 3w2w1 + 3uw1 + 3u1w,

where u and w are classical (even) independent variables while ϕ and ψ are odd
ones (here and below the numerical subscript at an unknown variable denotes its
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derivative over x of the corresponding order). Being completely integrable itself,
this system gives rise to an interesting system of even equations

ut = −u3 + 6uu1 − 3ww3 − 3w1w2 + 3u1w
2 + 6uww1,

(1)
wt = −w3 + 3w2w1 + 3uw1 + 3u1w,

which can be considered as a sort of coupling between the KdV (with respect to u)
and the modified KdV (with respect to w) equations. In fact, setting w = 0, we
obtain

ut = −u3 + 6uu1,

while for u = 0 we have

wt = −w3 + 3w2w1.

The above indicates why we call (1) the KdV–mKdV system.
In what follows, we prove complete integrability, cf. [1], of system (1) by estab-

lishing existence of infinite series of symmetries and/or conservation laws. Toward
this end we construct a recursion operator using the techniques of deformation
theory introduced in [5] and extensively described and exemplified in [6].

In practical situations the construction of a deformation of the equation structure
boils down to the construction of symmetries in an augmented setting of the
equation or system at hand.

In Section 1 of this lecture we shall set out the nonlocal setting for differential
equations and describe the notion of nonlocal symmetries in this setting.

Section 2 deals with a particular type of nonlocality, the Cartan covering of an
equation.

Section 3 combines the two previous types of coverings, and it is this covering
where the recursion operator for symmetries is obtained as a symmetry in this
covering.

In these first three sections the classical KdV equations acts as the main example.
Finally in Section 4 we shall present symmetries, conservation laws, nonlocalities
and the recursion operator for symmetries for the coupled KdV–mKdV system (1).

1. NONLOCAL SETTING FOR DIFFERENTIAL EQUATIONS

As standard example, to illustrate the notions, we take KdV-equation

ut = uux + uxxx.(2)

We consider Y ⊂ J∞(x, t;u) the infinite prolongation of (2), cf. [7,8], where
coordinates in the infinite jet bundle J∞(x, t;u) are given by (x, t, u,ux,ut , . . .)

and Y is formally described as the submanifold of J∞(x, t;u) defined by
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ut = uux + uxxx,

uxt = uuxx + u2
x + uxxxx,(3)

...

As internal coordinates in Y one chooses (x, t, u,ux,uxx, . . .) while ut , uxt , . . . are
obtained from (3).

The Cartan distribution on Y is given by the total partial derivative vector fields

D̃x = ∂x +
∑

n�0

un+1∂un,

(4)
D̃t = ∂t +

∑

n�0

unt∂un,

where u1 = ux,u2 = uxx, . . . ;u1t = uxt ;u2t = uxxt , . . . .
Classically the notion of a generalized or higher symmetry of a differential

equation F = 0 is defined as a vertical vector field V

V = �f = f ∂u + D̃x(f )∂u1 + D̃2
x(f )∂u2 + · · · ,(5)

where f ∈ C∞(Y ) such that,

�F (f ) = 0,(6)

where in (6) �F is the universal linearisation operator [11,7] which reads in the
case of KdV-equation (3)

D̃t (f ) − D̃x(f ) − u1 · f − (D̃x)
3(f ) = 0.(7)

Let now W ⊂ R
m with coordinates (w1, . . . ,wm).

The Cartan distribution on Y ⊗ W is given by

Dx = D̃x +
m∑

j=1

Xj ∂

∂wj

,

(8)

Dt = D̃t +
m∑

j=1

T j∂wj
,

where Xj ,T j ∈ C∞(Y ⊗ W) such that

[Dx,Dt ] = 0(9)

which yields the so-called covering condition

Dx(T ) − Dt(X) + [X,T ] = 0
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whereas in (9) [*,*] is the Lie bracket for vector fields X = ∑m
j=1 Xj∂wj

, T =
∑m

j=1 T j∂wj
defined on W .

A nonlocal symmetry is a vertical vector field on Y ⊗ W , i.e., of the form (5),
which satisfies (f ∈ C∞(Y ⊗ W))

�̄F (f ) = 0(10)

which for KdV results in

Dt(f ) − uDx(f ) − u1f − (Dx)
3(f ) = 0.(11)

Formally this is just what is called the shadow of the symmetry, i.e., not bothering
about the ∂wj , j = 1, . . . ,m, components.

The construction of the associated ∂wj , j = 1, . . . ,m, components is called the
reconstruction problem [4]. For reasons of simplicity, we omit this reconstruction
problem, i.e., reconstructing the vector field from its shadow.

The classical Lenard recursion operator R for KdV equation,

R= D2
x + 2

3
u + 1

3
u1D

−1
x(12)

which is just such, that

f0 = u1,

Rf0 = f1 = uu1 + u3,(13)

Rf1 = f2 = u5 + 5

3
u3u + 10

3
u2u1 + 5

6
u1u

2,

i.e., creating the (x, t)-independent hierarchy of higher symmetries, has an action
on vertical symmetry �f̄−1

(Gallilei-boost)

f̄−1 = (1 + tu1)/3,

Rf̄−1 = f̄0 = 2u + xu1 + 3t (u3 + uu1),(14)

f̄1 = Rf̄0 = 3t (f2) + x(f0) + 4u2 + 4

3
u2 + 1

3
u1D

−1
x (u).

If we introduce the variable p(= w1) through

px = u,

pt = u2 + 1

2
u2,(15)

i.e., Dt (u) = Dx

(

u2 + 1

2
u2

)

then �f̄1
is the shadow of a nonlocal symmetry in the one-dimensional covering of

KdV-equation by

p = w1, X1 = u, T1 = u2 + 1

2
u2.
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So, by its action the Lenard recursion operator creates nonlocal symmetries in a
natural way.

More applications of nonlocal symmetries can be found in, e.g., [6].

2. A SPECIAL TYPE OF COVERING: THE CARTAN-COVERING

We discuss a special type of the nonlocal setting indicated in the previous section,
the so-called Cartan-covering. As mentioned before we shall illustrate this by the
KdV-equation.

Let Y ⊂ J∞(x, t;u) be the infinite prolongation of KdV-equation (3). Contact
one forms on T J∞(x, t;u) are given by

α0 = du − u1 dx − ut dt,

α1 = du1 − u2 dx − u1t dt,(16)

α2 = du2 − u3dx − u2t dt.

From the total partial derivative operators of the previous section we have

D̃x(α1) = α1, D̃x(α1) = α2, . . . ,

D̃t (α0) = α0ux + α1u + α3 = αt ,(17)

D̃t (αi) = (D̃x)
i(αt ).

We now define the Cartan-covering of Y by Y ⊗ R
∞, where local coordinates are

given (x, t, u,u1, . . . , α0, α1, . . .) by

DC
x = D̃x +

∑

i

(αi+1)
∂

∂αi

,

(18)
DC

t = D̃t +
∑

i

(D̃x)
iαt

∂

∂αi

.

It is a straightforward check, and obvious that
[
DC

x ,DC
t

] = 0,(19)

i.e., they form a Cartan distribution on Y ⊗ R
∞.

Note 1. Since at first αi (i = 0, . . .) are contact forms, they constitute a Grassmann
algebra (graded commutative algebra) �(α), where

αi ∧ αj = −αj ∧ αi,

i.e.,

xy = (−1)|x||y|yx,

where x, y are contact (∗)-forms of degree |x| and |y| respectively. So in effect we
are dealing with a graded covering.
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Note 2. Once we have introduced the Cartan-covering by (18) we can forget about
the specifics of αi (i = 0, . . .) and just treat them as (odd) ordinary variables,
associated with their differentiation rules.

One can discuss nonlocal symmetries in this type of covering just as in the
previous section, the only difference being:

f ∈ V ∞(Y ) ⊗
∧

(α).

In the next section we shall combine constructions of the previous section and this
section, in order to construct the recursion operator for symmetries.

3. THE RECURSION OPERATOR AS SYMMETRY IN THE

CARTAN-COVERING

We shall discuss the recursion operator for symmetries of KdV-equation as a
geometrical object, i.e., a symmetry in the Cartan-covering.

Our starting point is the four-dimensional covering of the KdV-equation in Y ⊗R
4

where

Dx = Dx + u∂w1 + 1

2
u2∂w2 + (

u3 − 3u2
1

)
∂w3 + w1∂w4 ,

Dt = Dt +
(

1

2
u2 + u2

)

∂w1 +
(

1

3
u3 − 1

2
u2

1 + uu2

)

∂w2(20)

+
(

3

4
u4 − 6u1u3 + 3u2u2 − 6uu2

1 + 3u2
2

)

∂w3 + (u1 + w2)∂w4 ,

Dx,Dt satisfy the covering condition (9), and note that due to the fact that
the coefficients of ∂wi

(i = 1,2,3) in (20) are independent of wj (j = 1,2,3).
These coefficients constitute conservation laws for the KdV-equation. We have the
following “formal” variables.

w1 =
∫

udx,

w2 =
∫

1

2
u2 dx,

(21)

w3 =
∫

(
u3 − 3u2

1

)
dx,

w4 =
∫

w1 dx,

where in (21) w4 is of a higher nonlocality.
We now build the Cartan-covering of the previous section on the covering given

by (20) by introduction of the contact forms α0, α1, α2, . . . (16) and
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α−1 = dw1 − udx −
(

1

2
u2 + u2

)

dt,

(22)

α−2 = dw2 − 1

2
u2 dx −

(
1

3
u3 − 1

2
u2

1 + uu2

)

dt

and similarly for α−3, α−4. It is straightforward to prove the following relations

Dx(α−1) = α0, Dt (α−1) = uα0 + α0,

Dx(α−2) = uα0, Dt (α−2) = u2α0 − u1α1 + uα2 + u2α0,(23)

Dx(α−3) = 3u2α0 − 6u1α1, . . . .

We are now constructing symmetries in this Cartan-covering of KdV-equation
which are linear w.r.t. αi (i = −4, . . . ,0,1, . . .).

The symmetry condition for f ∈ C∞(Y ⊗ R
4) ⊗ �1(α) is just given by (7)

�̄C
F (f ) = 0,(24)

which for the KdV equation results in

D
C

t (f ) − uD
C

x (f ) − uxf − (
D

C

x

)3
f = 0.

As solutions of these equations we obtained

f 0 = α0,

f 1 =
(

2

3
u

)

α0 + α2 +
(

1

3
u1

)

α−1,

f 2 =
(

4

9
u2 + 4

3
u2

)

α0 + (2u1)α1 +
(

4

3
u

)

α2 + α4

+ 1

3
(uu1 + u3)α−1 + 1

9
(u1)α−2.

As we mentioned above we are working in effect with form-valued vector fields
�f 0 ,�f 1 ,�f 2 . For these objects one can define Frölicher–Nijenhuis and (by con-
traction) Richardson–Nijenhuis brackets [5,6]. Without going into details, for which
the reader is referred to [5], we can construct the contraction of a (generalized)
symmetry and a form valued symmetry p.e.

R =
(

2

3
uα0 + α2 + 1

3
u1α−1

)
∂

∂u
+ · · · .(25)

The contraction being defined by

(V1�R) = (V �Ru)∂u + D
C

x (V �Ru)∂u1 + · · · .(26)

Start now with

V1 = u1
∂

∂u
+ u2

∂

∂u1
+ · · ·(27)
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whose prolongation in the setting Y ⊗ R
4 is

V 1 = u1
∂

∂u
+ u2

∂

∂u1
+ · · · + u

∂

∂w1
+ 1

2
u2 ∂

∂w2
(28)

+ (
u3 − 3u2

1

) ∂

∂w3
+ w1

∂

∂w4

then

(V �R) =
[(

2

3
u

)

u1 + 1 · u3 + 1

3
u1 · u

]
∂

∂u
+ · · ·(29)

= (u3 + uu1)
∂

∂u
+ · · · = V3

and similarly

(V 3�R) =
(

u5 + 5

3
u3u + 10

3
u2u1 + 5

6
u2u1

)
∂

∂u
+ · · · = V5.(30)

The result given above means that the well known Lenard recursion operator for
symmetries of KdV-equation is represented as a symmetry, �f1 , in the Cartan-
covering of this equation and in effect is a geometrical object.

4. THE COUPLED KDV–MKDV SYSTEM

In this section we shall discuss the complete integrability of the KdV–mKdV system
E , given in (1), i.e.,

ut = −u3 + 6uu1 − 3ww3 − 3w1w2 + 3u1w
2 + 6uww1,

(31)
wt = −w3 + 3w2w1 + 3uw1 + 3u1w.

In order to demonstrate the complete integrability of this system, we shall construct
the recursion operator for symmetries of this coupled system, leading to infinite
hierarchies of symmetries and, most probably, of conservation laws.

Due to the very special form of the final results, it seems that integrability of this
system, which looks at first glance quite ordinary, has not been discussed before. In
order to discuss complete integrability, we shall start to discuss conservation laws
in Subsection 4.1 leading to the necessary nonlocal variables.

In Subsection 4.2 we shall discuss local and nonlocal symmetries of the system,
while in Subsection 4.3 we construct the recursion operator or deformation [5], by
the construction of a symmetry in the Cartan covering of Eq. (31).

4.1. Conservation laws and nonlocal variables

Here we shall construct conservation laws for (31) in order to arrive at an Abelian
covering of the coupled KdV–mKdV system as was shown KdV equation (2).

So we construct X = X(x, t, u, . . . ,w . . .), T = T (x, t, u, . . . ,w . . .) such that
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Dx(T ) = Dt(X),(32)

where Dx,Dt are defined as the total partial derivative operators on the infinite
jetbundle associated to Eq. (31) and in a similar way we construct nonlocal
conservation laws by the requirement

Dx(T ) = Dt(X),(33)

where D∗ is defined as the prolongation of D∗ towards the covering of the
equation by nonlocal variables arising from local conservation laws; moreover
X, T are dependent on local variables x, t , u, . . . ,w, . . . as well as the already
determined nonlocal variables, denoted here by p∗ or p∗,∗, which are associated
to the conservation laws (X,T ) by the formal definition

Dx(p∗) = (p∗)x = X,

Dt(p∗) = (p∗)t = T .

Proceeding in this way, we obtained the following set of nonlocal variables

p0,1, p0,2, p1, p1,1, p1,2, p2,1, p3, p3,1, p3,2, p4,1, p5,(34)

where their defining equations are given by

(p1)x = u,

(p1)t = 3u2 + 3uw2 − u2 − 3ww2,

(p0,1)x = w,

(p0,1)t = 3uw + w3 − w2,

(p0,2)x = p1,

(p0,2)t = −6p3 − u1,

(p1,1)x = cos(2p0,1)p1w + sin(2p0,1)w
2,

(p1,1)t = cos(2p0,1)
(
3p1uw + p1w

3 − p1w2 + uw1 − u1w − w2w1
)

+ sin(2p0,1)
(
4uw2 + w4 − 2ww2 + w2

1

)
,

(p1,2)x = cos(2p0,1)w
2 − sin(2p0,1)p1w,

(p1,2)t = cos(2p0,1)
(
4uw2 + w4 − 2ww2 + w2

1

)

+ sin(2p0,1)
(−3p1uw − p1w

3 + p1w2 − uw1 + u1w + w2w1
)
,

(p2,1)x = (
4 cos(2p0,1)p1,1w

2 − 4 sin(2p0,1)p1p1,1w + w
(
p2

1 − 2u + w2))/2,

(p2,1)t = (
4 cos(2p0,1)p1,1

(
4uw2 + w4 − 2ww2 + w2

1

)

+ 4 sin(2p0,1)p1,1
(−3p1uw − p1w

3 + p1w2 − uw1 + u1w + w2w1
)

+ 3p2
1uw + p2

1w
3 − p2

1w2 + 2p1uw1 − 2p1u1w − 2p1w
2w1 − 8u2w

− uw3 + 2uw2 − 2u1w1 + 2u2w + w5 + 3w2w2
)
/2,

(p3)x = ( − u2 − uw2 + ww2
)
/2,
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(p3)t = (−4u3 − 9u2w2 + 2uu2 − 3uw4 + 11uww2 − uw2
1 − u2

1 + u1ww1

+ 4u2w
2 + 6w3w2 + 3w2w2

1 − ww4 + w1w3 − w2
2

)
/2,

(p3,1)x = (
cos(2p0,1)w

(
p3

1 − 6p1u + 39p1w
2 − 24p1,1p1,2w + 12p3 + 6u1

)

+ 2 sin(2p0,1)w
(
12p1p1,1p1,2 + 18p1w1 + 2w3 + 3w2

)

+ 6p1,2w
(−p2

1 + 2u − w2))/12,

(p3,2)x = (
2 cos(2p0,1)w

(
12p1p1,1p1,2 − 18p1w1 − 2w3 − 3w2

)

+ sin(2p0,1)w
(
p3

1 − 6p1u + 39p1w
2 + 24p1,1p1,2w + 12p3 + 6u1

)

+ 6p1,1w
(−p2

1 + 2u − w2))/12,

(p4,1)x = (
8 cos(2p0,1)w

(
p3

1p1,2 + 12p1p
2
1,1p1,2 − 6p1p1,2u + 3p1p1,2w

2

− 12p1,1p
2
1,2w + 18p1,1uw − 4p1,1w

3 − 6p1,1w2 + 12p1,2p3 + 6p1,2u1
)

+ 8 sin(2p0,1)w
(
p3

1p1,1 + 12p1p1,1p
2
1,2 − 6p1p1,1u + 3p1p1,1w

2

+ 12p2
1,1p1,2w + 12p1,1p3 + 6p1,1u1 − 18p1,2uw + 4p1,2w

3 + 6p1,2w2
)

+ w
(−p4

1 − 24p2
1p

2
1,1 − 24p2

1p
2
1,2 + 12p2

1u − 6p2
1w

2 − 48p1p3

− 24p1u1 + 48p2
1,1u − 24p2

1,1w
2 + 48p2

1,2u − 24p2
1,2w

2

− 60u2 + 44uw2 + 24u2 − 13w4 + 6ww2
))

/48,

(p5)x = (
12u3 + 24u2w2 − 6uu2 + 6uw4 − 30uww2 − 3u2w

2 − 8w3w2

+ 6ww4
)
/6.

In the previous equations, we skipped explicit formulas for (p3,1)t , (p3,2)t ,
(p4,1)t , and (p5)t , because they are too massive, though quite important for the
setting to be well defined and in order to avoid ambiguities. The reader is referred
to [3] for these explicit formulas.

It is quite a striking result that functions cos(2p0,1), sin(2p0,1) appear in the
presentation of the conservation laws and their associated nonlocal variables.

We should note that p1, p0,1, p3, p5 arise from local conservation laws and we
shall call p1, p0,1, p3, p5 nonlocalities of first order.

In a similar way we see that p0,2, p1,1, p1,2 arise from nonlocal conservation
laws, where their x- and t-derivatives are dependent on the first-order nonlocalities.
For this reason p0,2, p1,1, p1,2 are called nonlocalities of second order. Proceeding
in this way p2,1, p3,1, p3,2, p4,1 constitute nonlocalities of third order.

4.2. Local and nonlocal symmetries

In this section we shall present results for the construction of local and nonlocal
symmetries of system (31). In order to construct these symmetries, we consider the
system of partial differential equations obtained by the infinite prolongation of (31)
together with the covering by the nonlocal variables

p0,1, p0,2, p1, p1,1, p1,2, p2,1, p3, p3,1, p3,2, p4,1, p5.
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So, in the augmented setting governed by (31), their total derivatives and the
equations given in Subsection 4.1 we construct symmetries Y = (Y u,Yw) which
have to satisfy the symmetry condition

�̄EY = 0.

From this condition we obtained the following symmetries

Y0,1, Y1,1, Y1,2, Y1,3, Y2,1, Y3,1, Y3,2, Y3,3,

where generating functions Yu∗,∗, Yw∗,∗ are given as

Yu
0,1 = 3t

(
6uu1 + 6uww1 + 3u1w

2 − u3 − 3ww3 − 3w1w2
) + xu1 + 2u,

Yw
0,1 = 3t

(
3uw1 + 3u1w + 3w2w1 − w3

) + xw1 + w,

Yu
1,1 = u1,

Yw
1,1 = w1,

Y u
1,2 = cos(2p0,1)(2uw − w2) + sin(2p0,1)(u1 + 2ww1),

Yw
1,2 = − cos(2p0,1)u − sin(2p0,1)w1,

Y u
1,3 = cos(2p0,1)(u1 + 2ww1) + sin(2p0,1)(−2uw + w2),

Yw
1,3 = − cos(2p0,1)w1 + sin(2p0,1)u,

Y u
2,1 = (

2 cos(2p0,1)(p1,1u1 + 2p1,1ww1 − 2p1,2uw + p1,2w2)

+ 2 sin(2p0,1)(−2p1,1uw + p1,1w2 − p1,2u1 − 2p1,2ww1)

+ 2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3
)
/2,

Yw
2,1 = (

2 cos(2p0,1)(−p1,1w1 + p1,2u) + 2 sin(2p0,1)(p1,1u + p1,2w1)

− p1u + u1 + ww1
)
/2,

Y u
3,1 = (

6uu1 + 6uww1 + 3u1w
2 − u3 − 3ww3 − 3w1w2

)
/3,

Yw
3,1 = (

3uw1 + 3u1w + 3w2w1 − w3
)
/3,

Y u
3,2 = (

cos(2p0,1)
(−2p2

1uw + p2
1w2 − 4p1uw1 − 6p1u1w − 4p1w

2w1 + 2p1w3

+ 8p1,1p1,2u1 + 16p1,1p1,2ww1 − 8p2
1,2uw + 4p2

1,2w2 − 4p2,1u1

− 8p2,1ww1 + 10u2w + 6uw3 − 8uw2 − 14u1w1 − 8u2w − 11w2w2

− 14ww2
1 + 2w4

) + 2 sin(2p0,1)
(−8p1,1p1,2uw + 4p1,1p1,2w2 − 2p2

1,2u1

− 4p2
1,2ww1 + 4p2,1uw − 2p2,1w2 + 6uu1 + 10uww1 + 3u1w

2 − u3

+ 2w3w1 − 3ww3 − 5w1w2
) + 4p1,2

(
2p1uw − p1w2 + 2uw1 + 3u1w

+ 2w2w1 − w3
))

/8,

Yw
3,2 = (

cos(2p0,1)
(
p2

1u − 2p1u1 − 2p1ww1 − 8p1,1p1,2w1 + 4p2
1,2u + 4p2,1w1

− 4u2 − 3uw2 + 2u2 + 4ww2 + 2w2
1

)

+ 2 sin(2p0,1)
(
4p1,1p1,2u + 2p2

1,2w1 − 2p2,1u − 3uw1 − 3u1w − 3w2w1

+ w3
) + 4p1,2(−p1u + u1 + ww1)

)
/8,
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Yu
3,3 = (

2 cos(2p0,1)
(
2p2

1,1u1 + 4p2
1,1ww1 − 4p2,1uw + 2p2,1w2 − 6uu1

− 10uww1 − 3u1w
2 + u3 − 2w3w1 + 3ww3 + 5w1w2

)

+ sin(2p0,1)
(−2p2

1uw + p2
1w2 − 4p1uw1 − 6p1u1w − 4p1w

2w1 + 2p1w3

− 8p2
1,1uw + 4p2

1,1w2 − 4p2,1u1 − 8p2,1ww1 + 10u2w + 6uw3

− 8uw2 − 14u1w1 − 8u2w − 11w2w2 − 14ww2
1 + 2w4

)

+ 4p1,1
(
2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3

))
/8,

Yw
3,3 = (

2 cos(2p0,1)
(−2p2

1,1w1 + 2p2,1u + 3uw1 + 3u1w + 3w2w1 − w3
)

+ sin(2p0,1)
(
p2

1u − 2p1u1 − 2p1ww1 + 4p2
1,1u + 4p2,1w1 − 4u2

− 3uw2 + 2u2 + 4ww2 + 2w2
1

) + 4p1,1(−p1u + u1 + ww1)
)
/8.

4.3. Recursion operator

Here we present the recursion operator R for symmetries for this case obtained
as a higher symmetry in the Cartan covering of system of Eqs. (1) augmented by
equations governing the nonlocal variables (34).

As demonstrated there, this symmetry is a form-valued vector field (or a
vectorfield-valued one-form) and has to satisfy

�̄C
ER = 0.(35)

In order to arrive at a nontrivial result as was explained for classical KdV equation
(3), (25), we have to introduce nonlocal variables

p0,1, p0,2, p1, p1,1, p1,2, p2,1, p3, p3,1, p3,2, p4,1, p5

and their associated Cartan contact forms

ωp0,1, ωp0,2, ωp1 , ωp1,1, ωp1,2 , ωp2,1, ωp3 , ωp3,1 , ωp3,2, ωp4,1, ωp5 .

The final result, which is dependent on the nonlocal Cartan forms

ωp0,1, ωp1 , ωp1,1, ωp1,2,

is given by

R= Ru ∂

∂u
+ Rw ∂

∂w
+ · · · ,(36)

where the components Ru, Rw are given by

(37)

Ru = ωu2(−1) + ωu

(
4u + w2) + ωw2(−2w) + ωw1(−w1) + ωw(3uw − 2w2)

+ ωp1,2

(− cos(2p0,1)(u1 + 2ww1) + sin(2p0,1)(2uw − w2)
)

+ ωp1,1

(
cos(2p0,1)(−2uw + w2) − sin(2p0,1)(u1 + 2ww1)

)
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+ ωp1(2u1 + ww1) + ωp0,1

(
2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3

)
,

Rw = ωw2(−1) + ωw

(
2u + w2) + ωu(2w)

+ ωp1,2

(
cos(2p0,1)w1 − sin(2p0,1)u

)

+ ωp1,1

(
cos(2p0,1)u + sin(2p0,1)w1

)

+ ωp1(w1) + ωp0,1(−p1u + u1 + ww1).

We shall now present this result in a more conventional form which appeals
to expressions using operators of the form Dx and D−1

x . In order to do this, we
first split (37) into the so-called local part and nonlocal parts, consisting of terms
associated to ωu2 , ωu, ωw2 , ωw1 , ωw and those associated to ωp1,2 , ωp1,1 , ωp1 , ωp0,1

respectively. The first part will account for Dx presentation, while the second one
accounts for the D−1

x part.
Due to the action of contraction �ϕ R, the local part is given by the following

matrix operator:

[

−D2
x + 4u + w2 −2wD2

x − w1Dx + 3uw − 2w2

2w −D2
x + 2u + w2

]

.

The nonlocal part will be split into parts associated to ωp1 , ωp0,1 and ωp1,2 , ωp1,1 ,
respectively. The first one is given as

[

(2u1 + ww1)D
−1
x (2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3)D

−1
x

w1D
−1
x (−p1u + u1 + ww1)D

−1
x

]

.

To deal with the last part, let us introduce the notation:

A1 = cos(2p0,1)(−2uw + w2) − sin(2p0,1)(u1 + 2ww1),

A2 = cos(2p0,1)u + sin(2p0,1)w1,

B1 = − cos(2p0,1)(u1 + 2ww1) + sin(2p0,1)(2uw − w2),

B2 = cos(2p0,1)w1 − sin(2p0,1)u,

being the coefficients at ωp1,1 and ωp1,2 in (37).
According to the presentations of (p1,1)x and (p1,2)x , i.e.,

(p1,1)x = cos(2p0,1)p1w + sin(2p0,1)w
2,

(p1,2)x = cos(2p0,1)w
2 − sin(2p0,1)p1w,

we introduce their partial derivatives with respect to p0,1, p1, and w as

α1 = −2p1w sin(2p0,1) + 2w2 cos(2p0,1),

α2 = w cos(2p0,1),

α3 = p1 cos(2p0,1) + 2w sin(2p0,1),

β1 = −2w2 sin(2p0,1) − 2p1w cos(2p0,1),
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β2 = −w sin(2p0,1),

β3 = 2w cos(2p0,1) − p1 sin(2p0,1).

From this we arrive in a straightforward way at the last nonlocal part of the recursion
operator, i.e.,

[

A1D
−1
x α2D

−1
x A1D

−1
x (α1D

−1
x + α3)

A2D
−1
x α2D

−1
x A2D

−1
x (α1D

−1
x + α3)

]

+
[

B1D
−1
x β2D

−1
x B1D

−1
x (β1D

−1
x + β3)

B2D
−1
x β2D

−1
x B2D

−1
x (β1D

−1
x + β3)

]

.

So, in the final form we obtain the recursion operator as

R=
[

−D2
x + 4u + w2 −2wD2

x − w1Dx + 3uw − 2w2

2w −D2
x + 2u + w2

]

+
[

(2u1 + ww1)D
−1
x (2p1uw − p1w2 + 2uw1 + 3u1w + 2w2w1 − w3)D

−1
x

w1D
−1
x (−p1u + u1 + ww1)D

−1
x

]

+
[

A1D
−1
x α2D

−1
x A1D

−1
x (α1D

−1
x + α3)

A2D
−1
x α2D

−1
x A2D

−1
x (α1D

−1
x + α3)

]

+
[

B1D
−1
x β2D

−1
x B1D

−1
x (β1D

−1
x + β3)

B2D
−1
x β2D

−1
x B2D

−1
x (β1D

−1
x + β3)

]

.

5. CONCLUSION

We gave an outline of the theory of symmetries of differential equations, leading
to the construction of recursion operators for symmetries of such equations. The
extension of this theory to the nonlocal setting of differential equations is essential
for getting nontrivial results. The theory has been applied to the construction of the
recursion operator for symmetries for a coupled KdV–mKdV system, leading to a
highly nonlocal result for this system. Moreover the appearance of nonpolynomial
nonlocal terms in all results, e.g., conservation laws, symmetries and recursion
operator is striking and reveals some unknown and intriguing underlying structure
of the equations.Work on the construction of Bäcklund transformations for this
system is in progress.
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