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In a recent paper, Anderson, Kamran, and Olver [“Interior, exterior, and generalized 
symmetries,” preprint ( 1990) ] obtained the first- and second-order generalized symmetry 
algebra for the system u, = (u, ) ‘, leading to the noncompact real form of the exceptional Lie 
algebra G, . Here, the structure of the general higher-order symmetry algebra is obtained. 
Moreover, the Lie algebra G, is obtained as ordinary symmetry algebra of the associated first- 
order system. The general symmetry algebra for U, =f( u,u,u,,...,) is established also. 

I. INTRODUCTION AND GENERAL 
In a recent paper Anderson, Kamran and Olver’ dis- 

cussed symmetries and first- and second-order generalized 
symmetries of a peculiar kind of equation, merely an “under- 
determined system” of equations 

u, = u:,, 
where U, u are functions of x. 

(1.1) 

Due to the fact that the system ( 1.1) is underdeter- 
mined, one can raise the question of existence of generalized 
symmetries. As a result the authors obtained as a Lie algebra 
of second-order symmetries the noncompact real form of the 
exceptional Lie algebra G2. 

Symmetries can be described in a differential geometric 
way as vector fields Vsatisfying the conditions 

YlJCD’I, (l-2) 
where I is a closed ideal of differential forms associated to the 
differential equation, Yv the Lie derivative by the vector 
field, and finally D ‘I the prolongation of the ideal I upto 
some finite order.2*3 

In Sec. II we discuss the results obtained by software 
developed to construct symmetries.’ In Sec. III we give a 
derivation of the general Lie algebra structure of ( 1.1). In 
Sec. IV we discuss some special cases. Finally, in Sec. V, we 
give a beautiful and short derivation of the Lie algebra of 
generalized symmetries for a completely general “system” 

u, =f(w,ux,ux, ,“‘I. (1.3) 

II. SYMMETRIES, 2nd- AND 4th-ORDER GENERALIZED 
SYMMETRIES 

We shall present here the results obtained using the 
computer algebra package2 to construct (generalized) sym- 
metries of differential equations, applied to 

u, = (u,,)2. (2.1) 
In Sec. II A we obtain point symmetries of (2.1), while in 
Sec. II B we derive 2nd-order generalized symmetries. In 
Sec. II C we prove that the generalized symmetries obtained 
in B are equivalent to ordinary point symmetries of an asso- 
ciated first-order system of differential equations. Finally, in 
Sec. II D we compute 63 4th-order generalized symmetries. 

A. Ordinary infinitesimal symmetries 
In order to compute ordinary symmetries for (2.1) we 

describe the differential equation in terms of an exterior dif- 
ferential system I of differential forms on 
R5={(x,~,u,u1,u2)}, u, =u,, u, = u, ,... . The ideal I is 
generated by the differential one-forms 

a, =du-u: dx, 

a2 = du - u, dx, (2.2a) 

a, = du, - u2 dx, 

and the exterior derivatives 

da,, da,, da,. (2.2b) 

An infinitesimal symmetry (point symmetry) of the ideal I 
(2.2) or the differential equation (2.1) is a vector field I’ 
defined on IRS, i.e., 

v= vxa, + vv, + V”d” + V”‘d”, + V”V”* (2.3) 

where V”, I’“, V” are functions of x, U, u, such that 

.9&I. (2.4) 
In (2.4) Yv denotes the Lie derivative with respect to I’. 
Condition (2.4) leads to an overdetermined system of par- 
tial differential equations for I’“,..., V”* which can be solved 
in a straightforward way, leading to a six-dimensional Lie 
algebra generated by the vector fields 

v, =a,, v, = xa, + pa, + $1 a,, - &J”*, 

v2 =a,, v, = ua, + :ua, + $+J”, - 4U2dV2, (2.5) 

v, = a,, v, = Xd” + a,, , 

whereas the Lie algebra structure is given by 

-j 
[vl,v,l 1 234 5 6 

il 1 * 0 0 v, 0 v3 
*oo v, 0 

* 
tv3 ;v,o * (2Sa) 

2 
3 

4 * 0 - iv6 

5 * - 1V6 
6 * 
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B. Second-order generalized symmetries 
Due to the choice we made in (2.1), (2.2) to consider 

(2.1) as a first-order differential equation expressing u in 
terms of u and not taking the description 

UXX =*& (2.6) 
a fact that is reflected in the choice of the set of algebraic 
variables, we are now searching for second-order (in u) gen- 
eralized symmetries. 

Due to the occurrence of equivalence classes of general- 
ized symmetries we restrict our attention to vertical vector 
fields4*5 

V = F “d, + F”f3, + prolongation, (2.7) 
where (2.7) F”, F”arefunctionsofx, u, u, u,, u,, i.e., 

F” = FU(x,zi,u,ul ,u, ), (2.8) 
F” = F”(x,u,u,u, ,u2 ). 

Vertical vectors fields are vector fields with vanishing a, 
component. The generalized symmetry condition is2 

L?v(I)CD21, (2.9) 
where D 2I is the second prolongation of Iand D ‘1 is gener- 
ated by 

a,,a2,aj as in (2.2), 

a4 = du, - uj dx, (2.10) 
a5 = du, - uq dx, 

together with da, ,..., da,. 
The resulting overdetermined system of partial differen- 

tial equations arising from condition (2.9) is given by 

F,U + F:uf + F:u, + F:,u, + F& - 2u,F”‘= 0, 

F; + F”,u; + F;u, + F;,u, + F;>u, -F”’ = 0, (2.11) 

F: + F”,‘u; + F;‘v, + F;:v, + F;;v, + F;:u, -F”’ = 0. 

The resulting overdetermined is solved in a complete ele- 
mentary way leading to a set of 14 vector fields that are given 
by 
VF(1):=3*D(U)*(3*U2+4*V*V2”-44*V12*V22) 

+ D(V)*(9*U*V- 4*V13), 
VF(2): = 4*D( U)*V22*(2*V1 - V2*X) 

+ D( V)*( - 3*U*X+ 4*V12), 

VF(3): =4*D(U)*(3*U*Vl + 3*V*V2’ 

-4*Vl*V2**X+ V23*X2) 

+ D( V)*(3*U*Xz + 12*V*Vl - &*Vl’*X), 
VF(4): = 4*D( U)*(9*U*V- 9*U*Vl*X 

-9*V*V22*X+4*V13+6*Vl*V22*X2 

- V23*X3) + 3*D( V)*( - U*X3 

+ 12*v’- 12*V*Vl*X+ 4*V12*XZ), 

VF(5):=4*D(U)*V23+3*D(V)*U, 

VF(6): = D( U), 

VF(7): = D( V)*X, 
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VF(8): = 4*D( U)*Vl + D( V)*X*, 

VF(9): = 12*D(U)*( V- VI*X) - D( v)*X3, 

VF( 10): = D(V), 
VF(ll):=2*D(U)*U+D(V)*V, 

VF( 12): = D( U)*(3*U+ V22*X) + D( v)*Vl*X, 

VF( 13): =D( U)*(4*V12 - V22*X”) 

+ D( V)*X*(3*V- Vl*X), 

VF(14):=D(U)*V2*+D(V)*Vl, (2.12) 
whereD(U) =d,, Vl =u,,.. 

The result is in complete agreement with the result ob- 
tained by Anderson et rrl. ’ 

C. Infinitesimal symmetries of the associated first- 
order system 

Motivated by results obtained by several authors’ on 
the equation 

Yxx = 0, (2.13a) 
and the related system of equations 

(Yl), =Yz> 

(Y2 1, = 0, (2,13b) 

we describe (2.1), i.e., 

u, = (v,)2 (2.14) 

as an underdetermined system of three differential equations 
in four dependent variables (u,v,w,y), i.e., 

u, =y2, u, =w, w, =y. (2.15) 
The exterior differential system j associated to (2.15) de- 
fmed on Itg’ = ((x,u,v,w,y,y, )) is generated by 

& =du-y’dx, 

/3* =du- wdx, 
& =dw-ydx, (2.16a) 

P4 = 4v --Y, dx, 

and their exterior derivatives 

d/A, dP,, d/3,, and dB4. (2.16b) 

A vector field V defined on I@, i.e., 

V= F”b’, + FYI, + F”d, + F”d, + F’J,, + F”‘iZ$, 
(2.17) 

is a symmetry of 2 if 

A?,(?) CT. (2.18) 

Condition (2.18) leads to the following overdetermined sys- 
tem of partial differential equations for the functions 
V” ,..., Vy functions which depend on x, u, u, w, y: 

F,” -I- y2F:: + ~8’; + yF:: f y, F; -y2F; 
- y”F”, - wy2F; - y3F “, - y’y, F; - 2yFy = 0, 

FS: +y2F”, + wF:: +yFt: 
+y,F; - wF; - w$F; - w2F; - wyF”, 
- wy,F; - FW= 0, (2.19) 
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~:".+y~Fr+ wF;+yF: +v,F;-YC -Y3F:: 

- ywF; - y2FX, -yy,F;-F”=O, 
and the defining relation for FY’+ 

System (2.19) reduces to 

F; - y2F; = 0, 

F;-wF;=o, 

Fjl’-yf’; =o, 

together with 

(2.20a) 

(2.2Ob) 

(2.2Oc) 

Ff: + y2F; + wF; + yF:t -Y’(FZ +y2F;: 
+ wF; + yF”,) - ~YF’ = 0, (2.21a) 

F;+y2F;+wF::+yF::-- 

x(f’: +Y2~X, + wF: +yf’“,) --F”=O, (2.21b) 

F;+y2Ff+wF:+yF:-Y 
x(F; +y2F;: + wF:: +yF”,) -FY=O. (2.21c) 

1 

We now differentiate (2.2 lb) with respect toy and use con- 
dition (2.20) that results in 

2yF”, + F”, - w(2yF; + F”,) = 0. (2.22a) 

Differentiation of (2.22a) with respect toy yields 

2F:: +~YF”,+F~~- w(2F; + 2yFty + FCy) = 0, 
(2.22b) 

i.e., 2F; + F,” - 2wF: = 0, a result obtained by using 
(2.20b). 

If we now differentiate (2.22b) with respect toy and use 
(2.20b) we arrive at 

FGy = 0. (2.23a) 

From this condition it is now a straightforward calculation 
to solve the overdetermined system (2.20)) (2.21) leading to 
a 1Cdimensional Lie algebra of ordinary infinitesimal sym- 
metries of (2.16)) (2.15). 

The result is 

VF(l): = &D(X)*( _ 3*V*y+ 2*W2) + 3*D(U)*(3*U* - 2*V*Y3) +D(v)*(9*U*V- 18*v*w*y+ 8*w3) 

+ 9*D( w)*( U*W- V*Y’) + 3*D(Y)*Y*(3*U- 2*W*y), 
VF(2):= 12*D(u)*(v- w*X) -~(vl*x~--*D(w)*X~--*D(~*~ 

VF(3): = D(U), 

V~(6):=D(X)*XZ+4*D(U)*W2+3*D(V)*V*X+D(N3*(3*V+ w*x) +D(Y)*(4*w-x*y)7 

VF(~):=~*D(U)*U+D(V)*V+D(W)*W+D(~*~ 
VF(8):=2.+D(X)*( -44*W+3*X*y) +2*D(U)*X*Y3+D(v)*(-3*U*x-4*w2+6*w*x*y) 

+ 3*D( w)*( - U+X*Y2) + 2*D(Y)*Y2, 

(2.23b) 

VF(9): = &D(X)*Y+ 2*D( U)*Y3 + 3*D( v)*( - U+ 2*w*n + 3*D( m*y2, 
VF(10):=6*D(X)*X*(6*V-44*W*X+X2*Y) +2*D(U)*(1**U*V--8*u*w*x+8*w3+x3*y3) 

+3*D(u.+( _ ,y*x3+ 12*V2-44*W2*X2+2*W*X3*y) +3*D(w)*( -3*u*x2+ 12*v*w 

_ 4*W2*X+X3*Y2) + &D( y)*( - 3*U*X+ 4*W2 - 2*W*X*Y+x2*y2), 

VF(l1): = 2*D(X)*( m&V+ &W*X- 3*X2*y) +2*D(U)*(6*U*W-X2*Y3) +D(n*x*(3*u*x+ 8*w2 

- &W*X*y) +D(w)*(6*U*X+4*W2-33X2*Y2) +2*D(n*(3*u+2*w*y-2*x*y2)9 

VF(12):= -~(x)*x+D(U)*u-D(v)*V+D(Y)*Y, 

VF( 13): = D(X), 
VF(l4):=D(V). 

By taking the a,, ~3, components of the equivalent vertical So the Lie algebra G2 is nothing else but the ordinary 
vector field and, carrying through the transformation symmetry algebra of the related system. At the moment we 

have no general theorem relating classes of higher-order 
x = x, u = u, v = v, w=v,, y=v2, symmetries to ordinary symmetries of associated systems of 

we arrive at the symmetry algebra G, as derived by Ander- first-order equations. We hope to deal with this problem in 
son et al.’ the future. 
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D. Fourth-order generalized symmetries 

In this subsection we present the computer results of the 
computation of 4th-order generalized symmetries of equa- 
tion (2.1) . In order to do so we prolong the ideal I of differ- 
ential forms (2.2), (2.10), i.e., D41 is generated by 

a, = du - vi dx, 

az =dv-v, dx, 

a3 = dv, - v2 dx, 

a4 = dv, - vj dx, 
a5 = dv, - v, dx, 
a6 = dv, - us dx, 

a7 = dv, - v, dx, 

(2.24a) 

and their exterior derivatives 

da , ,. ..,da, . (2.24b) 

The generalized symmetry condition is given as 

J 

Z’,,(Z) CD”I, (2.25) 

which results in a system of three partial differential equa- 
tions for the coefficients F ‘, F”, F”‘, F” of the vertical vector 
field v. The conditions are of a form analogous to (2.11)) and 
as an immediate result we arrive at 

aF”=O av, ’ (2.26) 

so F” is a function of x, u, v, v, , v2, v:, . 
In order to obtain at least some solutions of the system 

satisfying (2.25) we put in the additional condition 

d2F” - = 0, _ 
l%; 

(2.27) 

i.e., FU is linear with respect to vJ. 
From the condition (2.27) the construction of the solu- 

tions was straightforward and did lead to a set of 63 4th- 
order generalized symmetries. 

The general solution to condition (2.25) is given in the 
next section. Here we present some of the 63 generaiized 
symmetries (x independent) : 

VF(I):=D(U)*(81*U4+648*U2*V2*V2*V4-324*U2*V=*V32 

-f- 648*U2*V*Vl*V2*V3 + 216*U2*V*V2” - 540*U2*V12*V22 -f- 648*U*V2*V23*V3 

- 576*U*V*V13*V2*V4 + 288*U*V*V13*V3* - 864*iJ*V*V12*V22*V3 - 648*U*V*Vl*V24 

- 288*U*V14*V2*V3 + 864*U*V13*V23 - 180*V2*V26- 288*V*Vl’*V2’*1/3 + 576*V*Vl’*V25 

+ 128*V16*V2*V4- 64*V16*V32 + 384*Vls*V2’*V3 -432*V14*V24) + 2*D( V)*(81*U3*V 

+ 162*U2*V2*V3 - 162*U**V*Vl*V2 - 36*U2*V13 - 54+U*V2*V23 - 144*U*V*Vl”*V3 

f l08*U*V*V12*V22+72*U*V14*V2+24*V*Vl3*V23+32*Vl6*V3-48*Vl5*V22), 

VF(2): = 12*D(U)*(18*U2*V*V2*V4- 9*U2*V*V32 + 9*U2*Vl*V2*V3 + 3*U2*V23 + 18*U*V*V23*V3 

- 8*U*V13*V2*V4+ 4*U*V13*V32 - f2*U*VIz*V22*V3 - 9*U*Vl*V24 - 5*V+V26 

-4*V13*V23*V3 + 8*V12*V25) + D( V)*(27*U3+ 108*U’*V*V3 - 54*U2*Vl*V2 - 36*U*V*V23 

-48*U*V13*V+ 36*U*V12*V2’f &*V13*V23), 

VF(3): = D( U)*( 18*U2*V2*V4- 9*Uz*V32 + 18*U*V23*V3 - 5*V2’) + 3*D( v)*U*(3*U*V3 - V23), 

VF(4): = D(U)*(9*U2*V22 + 72*U*V*Vl*V2*V4 - 36*U*V*Vl*V32+ 36*U*V*V2’*V3 

-+- 36*U*V12*V2*V3 - 36*U*Vl*V23 +- 36*V*Vl*V23*V3 - 24*V*V2’- 32*V14*V2*V4 

+ 16*V14*V32 - 64*V13*V22*V3 -j- 36*V12*V24) + D( V)*(9*U2*V1 + 36*U*V*Vl*V3 

- 9*U*V*V22 - 18*U*V12*V2 - 6*V*Vl*V23 - 16*V14*V3 + 16*V13*VZ2), 

VF(5): = 2*D( U)*(9*U3 + 36*U*V2*V2*V4- 18*U*V’*V3’+ 36*U*V*Vl*V2*V3 + 12*U*V*V2” 

- 30*U*V12*V2’ + 18*V2*V23*V3 - 16*V*V13*V2*V4 + 8*V*V13*V3’ - 24*V*V12*V2**V3 

- 18*V*V1*V24 - 8*V14*V2*V3 + 24*V13*V2’) + D(V)*(27*Uz*V+ 36*U*V**V3 

- 36*U*V*Vl*V2 - 8*U*V13 - 6*V2*V23 - 16*V*V13*V3 + 12*V*V12*V22 + 8*V14*V2), 

VF(6): = 2*D( U)*(6*U*V*V2*V4- 3*U*V*V32 + 3*U*Vl*V2*V3 + 2*U*V23 + 3*V*V23*V3 

- 3*V1*V24) + D( V)*(3*U2 + 6*U*V*V3 - 3*U*Vl*V2 - V*V2’), 

VF(7): =4*D(U)*(6*U*Vl*V2*V4- 3*U*V1*V32 + 3*U*V22*V3 + 3*Vl*V23*V3 - 2*V2’) 

+ D( v)*( 12*U*Vl*V3 - 3*U*V22 - 2*V1*V23), 
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W(8): =4*D(V)*(6*V*V23 + 8*V13*V2*V4 -4*V13*Y32 + 12*v12*IQ2*v3 - 9,vl*vz4) 

+ D(V)*(9*V2+ 16*V13*V3 - 12*V12*V22), 

VF(9): = D( U)*(2*V2*V4- V32) + D( v)*V3, 

VF(l0): = 4*D( U)*(2*Vl*V2*V4 - vl*v3* + v2**~3) + D( v)*(4*vl*v3 - IQ~), 

VF(ll): = 2*D( U)*(6*V*V2*V4 - 3*V*V3* + 3*V1*V2*V3 - 2*V23) + 3*D( v)*(2*V*V3 - Vl*V2), 

VF(12): = 2*D( U)*( V*V22 + 4*V*Vl*V2*V4 - 2*V*Vl*V3’+ 2*V*V22*V3 + 2*V12*V2*V3 - 2*Vl*V23) 

+ D(v)*(2*U*Vl + 4*V*Vl*V3 - v*v22 - 2*v12*v2), 

VF(13): = 3*D( U)*(6*V2*V2*V4- 3*V2*V3* + 6*V*Vl*V2*V3 -4*V*V23 + V1**V2*) 

+ D( V)*(9*V2*V3 - 9*V*Vl*V2 + 4*V13), 

VF(14): = 6*D( U)*(2*U*V2*V4 - U*V32 + V23*V3) + D( V)*(6*U*V3 - V23), 

VF(15): = D( U)*(8*V12*V2*V4 - 4*V12*V3* + 8*V1*V22*V3 - 3*V24) + 2@( v)*v1*(2*vl*v3 - 1’2~). 
(2.28) 

III. DERIVATION OF THE GENERALIZED SYMMETRY 
ALGEBRA 

We start the discussion at the ordinary differential equa- 
tion 

ux = (u.d2, (3.1) 
where “x” is d /dx; I(, v are functions of x. 

So the equation at hand (3.1) is merely an underdeter- 
mined system of ordinary differential equations where U, v 
are dependent variables. The main aim of this section is the 
construction of the complete generalized symmetry algebra 
of (3.1). The final result is formulated in Theorem 3.1. 

Generalized symmetries are formal vector fields defined 
on the infinite jet bundle J(x; U, u) (cf. Refs. 4, 5) which 
leave invariant the differential equation together with its dif- 
ferential consequences (u, = u, , v, = u, , v,, = u2,...) 

t.e., 
2 

UI =V2, 

u2 = 2v2v3, (3.2) 
UJ = 2v: + 2v*v‘+, 
i. 

Local coordinates on J(x; u, v) are given by 

(x,u,v,u v u v 11 v ) 1, I, 2, 2, 3, 3,“’ 2 

whereas local coordinates on the submanifold y defined by 
(3.2) are 

(x,u,u,u, ,v2,u3,--)* (3.3) 
The formal total derivative vector field z on J(x; u, v) is 
given by 

B = d, + u,d, + u,du + uzdu, + ud,, + .a-, 
whereas the restriction of 5 to the submanifold 9 defined by 
(3.2) is given by 

D=d,+v:d,,+v,d,+v2d,,+*... 

For later use we introduce the restriction D (n) of D to the 
(n + 1) th-order jet bundle 

D’“‘=dX+v;d,+v,d,+~**+vn+,d,/ (3.4) 
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Suppose the vertical vector field V with characteristic func- 
tionsF”(x u v v ),F”(x,u,v, ,..., , 9 I ,.“9 n v,), (F”=O),isagen- 
eralized symmetry of (3. l), (3.2). 

We then have the following symmetry conditions 

D(“‘F’[v,,] -~v~F”~[v,+~] =O, 

Dcn)F”[v,] -F”‘[v,+,] =0, 
D (nt I,Fvl 

[V n+,] -F”*[Vn+2] =a 

In (3.5) we introduced the notation 

F [v,‘] = F(x,u,v,v ,,..., v,). 

(3Sa) 

(3Sb) 

(3.k) 

Equations (3.5b), (3.5~) are in effect the defining relations 
for the prolongation coefficients F”‘, F”’ of V: 

V=F”[v,]d, +F”[v,]d, +F”‘[u,+,]d,, 

+ F”‘[vn+2]d+ + **a. (3.6) 

We now want to construct the general solution of (3.5). In 
order to do so we first solve (3.5~) for F”‘[ v, + 2 ] i.e., 

F”‘[v,+~] = D(n+‘)F”‘[v,+l], (3.7) 
and the system (3.5) reduces to 

Dcn)Fu[v,] -2v2D(“+‘~F”‘[v,+,] =0, (3.8a) 

Dcn)F”[v,] -F”‘[vntI] =O. (3.8b) 

Remark: At this stage it is possible to solve (3.8b) but 
we decided not to do so! Now (3.8a) is a polynomial in v, + 2 
of degree 1 and (3.8) reduces to 

V : - 2v, dF”‘[vn+, ] 
n+2 dv 

=OaF”‘[v,+,] =F”‘[vn], 
tl+1 

(3.9a) 

l:D(“)F’[v,] - 2v2Dcn)FU’[vn] =0, (3.9b) 

Dcn)FL’[v,] - F”‘[v,] =O. (3.9c) 

In (3.9a) and further on, “v, + 2 :” refers to the coefficient of 
v, + 2 in a particular equation. 

From (3.9) we arrive by (3.9b), (3.9~) being polynomi- 
als in v, + i at 
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vn+,:F [v,] -24 $ [V”] =o, (3.10a) 

l:D(“-,1;7u[v,J -2v,D”-,,F”[v,] =0, (3.10b) 

dF” 
u,+t:au, [&I =Q (3.1Oc) 

l:D’“-“F”[v,] -F”‘[vJ =O. (3.10d) 

To solve system (3.10) first note that (3.10~) 

““[vj,] = F”[u,-, 1, (3.11) 

and by differentiation of (3.10d) twice with respect to v, 
d 2F1’1 

aut, PA =Q (3.12a) 

and by consequence F “’ is linear with respect to v, 

FUf[vn] =H,[u,-,] +v,H2[u,-,I. (3.12b) 

Now substitution of (3.1 I ), (3.12b) into (3.10a)-( 3.lOd) 
yields 

dF” 
dv, [u,] -2v2H2[&%4] =o, (3.13a) 

D(n-‘)FU[v,] - 2v2DCn- tHH’[v,-,] 

-2v*v,D(~--w[v,-,] =o, (3.13b) 

I)“‘-,‘F”[v,-,I -H’[v,-,] -v,,H2[v,,_ ,] =O. 
(3.13c) 

Wesolve (3.13a) forF”[v,],i.e., 

F’[v,] =2~2~nH~[u,,4] -tH3[v,-,I, (3.14) 

and from (3.13b), ( 3.13~) we arrive at 

.m-5t~z[u,- 11 
-I- 2v2v,D +-)H2[v,-,] +D(‘+‘W3[vn-,I, 

-2v,D’“-“H’[v,-,I -2vzv,D(“-‘)H2[v,,~t] =0, 
(3.15a) 

D(n--‘F”[v,-,] -H’[v,-,] -v,H~[v,_~ J =O. 
(3.15b) 

Due to the cancellation of the second and fifth term in 
(3.15a) we obtain a resulting system of four equations 

v,:2v3H2[v,-, ] + dv dH3 [on-II 
n-l 

-2v, 5 [‘A?-‘1 =o, (3.16a) 

l:D(n-2)H3[v,-,] -2v,D +*)H’[v,-,] =0,(3.16b) 

up+& [h-1] -H2[v,-,] =o, (3.16~) 

l:Df”-2)F”[v,-,] -H’[v,+,] =O. (3.16d) 

From (3.16) we solve (3.16~) forH2[v,-, 1, 

H2[U,-*] +- [VII-*] (3.17) 
I 

and then integrate (3yl6a) 

-2~2-p5[v,-,] =o, (3.18) 

which leads to 

H3[U,4] =2u,H’[v,-,] -2u,F”[fJ,-,] 

+H4[v,-2]. (3‘19) 

By obtaining (3.19) we have to put in the requirement 
(n - 1 > 31, i.e., 

n z 4, (3.20) 

and we shall return to this case in Sec. IV. 
Substitution of the results (3.17), (3.19) into (3.16) 

yields 

2U$f*[V,-,] f&D (n-2’H’[~,- t ] - Zv,F”[v,-,] 

- 2v3Dn--FL’[un-, ] + D’“-2’H4[v,-2] 

-22~~D(~-~W’[u~-,] =O, (3.21a) 

Dfn-2Z,FL’[v,- t ] -H’[v,-, ] =o. (3.21b) 

By the cancellation of the second and sixth term in (3.21a) 
we finally arrive at 

D(n-2)Fyv ,,-, ] -H’[v,-,] =o, (3.22a) 

D’“-2w4[v,~-2] - 2v4FU[v,,-, ] = 0, (3.22b) 

where (3.22a), (3.22b) can be considered as defining rela- 
tion for H ’ [ v, _ , 1, F “[ v, _ , ] in terms of an arbitratyfkc- 
tioiz N”[v+,]. 

The final result can now be obtained by (3.17), (3.19): 

HZ[v,- t ] = dv ~rv.-~l, 

H3[v,t-t] =2%f3’p,-,] 

-2ao,F”[v,-,] +N4[v,-21, 
together with (3.22a), (3.22b), (3.14), 

--vd’“[v,-t ] +ff4[u,-2], (3.23a) 

F”[vn] =F”[v,-,I, (3.23b) 

whereasin(3.23a),(3.23b)FD[v,-,],H’[v,-, Jarede- 
fined by (3.22a), (3.22b) in terms of the arbitrary function 
H4[ht-2]. 

The general result of this section is now formulated in 
the following. 

Theorem 3.1: Let H be an arbitrary function of 
x,u,u,v, ,..., v,- *, i.e., 

H=H(X,U,v,u’,.~.,vn-*) =H[un-2] 
and define 

F”[V,-,] = (l/2U4)D’“-2’H[U,_2], 

F’[u,] = ~v~D(~--W’[V~- ,] 

-2@7”[%-,] +H[v,-*], (3.24) 

then the vector field 
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V=F”[u,-p, +F”[u,-,]d” 
is a generalized symmetry of (3.1). Conversely, given a gen- 
eralized symmetry Vof (3.1) then there exist a function H 
such that the components F”, F” of Vare defined by (3.24) 
(cf. Sec. IV). 0 

IV. SPECIAL CASES 

Due to the restriction (3.16) the result (3.19), (3.18) 
hold for 

n = S,..., 

meaning H ’ [ u, _ 2 ] is a free function of X,U,U ,..., u, _ Z and 
F” is obtained by (3.18b), i.e., 

F”[u,- ,] = (1/2~,)D’“-~‘H~[u~_~]. (4.1) 
From (4.1)) (3.18b) it is clear that F”[ u, _ , ] is linear with 
respect to u, _ , and 

FL’[u,-,] =yE +F’“p-21. (4.2) 
n 2 

Moreover, the requirement F”[ u, _ , ] is independent of 
u,, _ , reduces to H 4 [ u, _ 2 ] is independent of u, _ 2, i.e., 

dF’ [u” _, ] =OJH~[U,-~] = H4[~,-3]. 
au, - , 

(4.3) 

The result (4.3) holds for n > 5. 
The results for generalized (n<5) are obtained by im- 

posing additional conditions on the coefficient F” of the ver- 
tical vector field. 

A. The case n= 5 

Here, 

(4.4) 

The requirement F”[ uq ] is independent of u4 now leads to a 
genuine first-order partial differential equation 

cm4 I u2 aH4 +u dH4 
ax 2 au 1,+u2~+u3!50 

(4.5) 

and the general solution is given in terms of the invariants of 
the corresponding vector field 

v= a, + u:a, + U,d” + U,J”! + UJ”), (4.6) 
where the set of invariants is given by 

ZI = u3, 

z2 =u2 -u3x, 

z3 = 2u, - 2u,x + u3x2, 

z, = 6u - 6u, + 3u2x2 - u3x3, 

z5 = 3u - 3u:x + 3u,u,x2 - u:x3. 

So H 4 is given by 

(4.7) 

H4=H4(z z ) I ,.**, 5 , 

whereas the formulas for F ‘, FU reduce to 

aH4 F”=H4-U2F-U __ a2H4 
3 au, + u2”4 -9 

2 au: 

(4.8) 

F” = @,,H 4. 

6. The case n=4 

The requirement F” is independent of u3 reduces to 

at,H”= 0 (4.9a) 

and (4.5) 

aH4 2 aH4+u 
x+uz- 

dH4 
au ,~+u2~+u331. 

(4.9b) 

Substitution of (4.9a) into (4.9b) immediately leads to the 
condition 

a,a,.,H4 = 0, 
i.e., 

F” = F”(x,u,u,u, ), 

and the result completely reduces to the second-order sym- 
metries obtained by Anderson et al.,’ leading to the 14-di- 
mensional Lie algebra G, . 

V. HIGHER ORDER SYMMETRIES OF A 
GENERALIZATION OF THE UNDETERMINED 
EQUATION 

We derive the general formulas for higher-order sym- 
metries of the differential equation 

111 =f(%u,u, ,uZ,**.,uk ), (5.1) 
where in (5.1) 

Ul = u,, Ul = 0x7 u2 = u,,,... . 

We shall restrict the derivation to the case 

k= 3, (5.2) 
the most general case can be handled easily by an induction 
argument and the associated results are given at the end of 
this section. 

We denote partial derivatives off by 

f, 3, f, 2, f, =$ ,.... 
1 

(5.3) 

The generalized symmetry condition4 for ( 5.1) results in 

DF”-f,F”-f,F”--f,F”‘--f,F”-f,F”“=O, (5.4) 

where 

D=a, +fa, +u,a, +U2a,, +-, (5.5) 

and F”,F”,F”‘,... are the components of the generalized sym- 
metry V 

v= F”a, + F”a”, (5.6a) 
while 

F “g+‘=DF”’ (i=O,...). (5.6b) 
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Condition (5.4) is easily rewritten as 

DF” -foFU -foF” -fi F”’ --f,F” -f3DFu2 = 0. (5.7) 

First note that due to (5.6b) (5.7), if 

F”= F’[u,+r], (5.8a) 

i.e., F” = FU(x,u,u ,..., u, + 2 > then 

F”=F’[u,], F’[un+,], F”‘=F”*[u,+,]. 
(5.8b) 

Now put 

F”[un+ 2 ] =fP’“2[~n+2] fFr;[4t+2], (5.9) 

where F’; is a function, yet to be determined, and substitute 
(5.9) into (5.7), then the highest-order terms imply 

Ff;[ut,+z] =F’;[u,+I]~ 

i.e., Fr does not depend on U, + 2, and (5.7) reduces to 

DF; - f,F’; - foF” -f, F”’ 

+ -i(D -f,,f, -f,)DF”’ = 0. (5.10) 

Similar to (5.9) put 

Ff={- (D-f,).& +f2)FUf+F2U[un+,] 
and substitute into (5. IO), then 

K[un+, I =Fi[~nl 
and 

(5.11) 

DF; -f,Fz” -foF” + c - CD -f, ,“f, 

+ CD-f,)f2 -fi)DF”=O. (5.12) 

Repeating the process once more, we put 

F;=-t(D-f,)‘f -(D-f,% +fi)F”+F,“[u,]> 
(5.13) 

arriving at 

F;[u,] =C[un-I I (5.14a) 

and 

(D-f, )F; + {CD -f,>“f - (D -f, 1% 
+ (D-f, If, -e&IF’= 0, (5.14b) 

from which we can solve for F” in terms of an arbitrary 
function F; (5.14a) 

F”={- CD-f,,“f + (D-f,% 
- (D -f, V, +fc} - ‘(D -f, IF,“, 

and from (5.9), (5.11), (5.13) together with (5.6b), 
(5.14b) a formula for F” 

F”=f3FV*[~,+Z ] -kc- CD-f,)cf,) +,h}F”‘[un+,] 

+CCD-fu,“v;, - (D-f,)(f,) -tf,}F’[u,]. 
(5.14c) 

Ofcourse it has to be noted that n must be chosen (sufficient- 
ly large) such that there is no contribution of the terms 

J3 

(D-f,% -15, 
CD-f,)‘f, - (D-f,).& +f,, 
(D-f, 1% - (D-L )“Yi + (D-f, )fi -fo, 

inthehighest-ordertermsof(5.7), (5.10),(5.12),(5.14). 
We -finish this section by formulating the following 

theorem. 
Theorem 5.1: Consider the differential equation 

u, =f(%u,U, t**.,& ) 
and let H be an arbitrary function ofx,u,u,...,u, 

H=H[u,]. (5.15a) 

Define 

ii0 ( - l,‘(O-f~)%]-‘.(D-f,,H[v,] 

(5.15b) 

and 

F”= $ [i (- I)~-‘(D--I,)j-‘V;I]F.‘~‘[u,+,_,] 
I=1 j=t 

+HpL], (5.15c) 

where F ‘I ’ is obtained from F” by prolongation (5.6b). 
Then the vector field 

is a generalized symmetry of ( 5.1). 
Conversely any generalized symmetry of (5.1) arises 

from a specific choice of H [u, 1. cl 
As mentioned before the general result can be derived by 

an induction argument. 

VI. CONCLUSlON 

Motivated by the result of computer “experiments” in 
the construction of generalized symmetries we derived the 
complete symmetry algebra for the ordinary underdeter- 
mined system 

u, =f(w,u, ,..4k 1. 
Moreover we showed that the generalized symmetry algebra 
of 2-ptd order derived by Anderson et al. is equivalent to the 
ordinary symmetry algebra of the associated system. 
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