
Introduction to symplectic topology

Lecture notes

1. Linear symplectic geometry.

1.1. Let V be a vector space and ω a non-degenerate skew-symmetric bilinear form
on V . Such ω is called a linear symplectic structure. We write ω(u, v) for u, v ∈ V . The
only difference with (pseudo)Euclidean structure is that the latter is symmetric.

Fix a dot product in V . Then one can write:

ω(u, v) = Ju · v

where J is non-degenerate operator on V . Since ω is skew-symmetric, J ∗ = −J . Taking
determinants,

det J∗ = det J = (−1)n det J

where n = dimV. Thus n is even.

Examples. 1. The plane with an area form (i.e., cross-product) is a symplectic
space. All 2-dimensional symplectic spaces are symplectomorphic to this one. In formulas,
ω = dp ∧ dq (using the language of linear differential forms).

2. One can take direct sum of the previous example to obtain symplectic R2n with the
symplectic structure dp∧dq = dp1∧dq1 + ...+dpn∧dqn. One has: ω(qi, qj) = ω(pi, pj) = 0
and ω(pi, qj) = δij . This is a symplectic basis; the respective coordinates are called Darboux

coordinates.
3. More conceptually, let W be a vector space. Then V = W ⊕W ∗ is a symplectic

space. The structure is as follows:

ω((u1, l1), (u2, l2)) = l1(u2)− l2(u1).

Check that this is non-degenerate.

Exercise. Let J be a skew-symmetric matrix: J∗ = −J . Then det J is a polynomial
in the entries of J ,, and this polynomial is the square of another polynomial in the entries
of J :

det J = (Pf J)2.

The latter is called Pfaffian. Show that

Pf (A∗JA) = detA Pf J.

As in Euclidean geometry, one defines (skew)orthogonal complement of a space. Unlike
Euclidean geometry, one may have: U ⊂ U⊥. For example, this is the case when dim
U = 1. If U ⊂ U⊥ then U is called isotropic. One has: dim U⊥ = 2n− dim U where 2n is
the dimension of the ambient space. Thus if U is isotropic then dim U ≤ n. An isotropic
subspace of dimension n is called Lagrangian.
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Exercises. 1. Let A : W → W ∗ be a linear map. Then A∗ = A if and only if the
graph GrA ⊂W ⊕W ∗ is a Lagrangian subspace (with respect to the structure of Example
3 above).

2. Given two symplectic spaces (V1, ω1) and (V2, ω2) of the same dimensions and a
linear map A : V1 → V2, the map A is a symplectomorphism if and only if GrA ⊂ V1 ⊕ V2

is a Lagrangian subspace with respect to the symplectic structure ω1 	 ω2.

1.2. Similarly to Euclidean spaces, the dimension is the only linear symplectic invari-
ant.

Linear Darboux Theorem. Two symplectic spaces of the same dimension are linearly
symplectomorphic.

Proof. Given a symplectic space V 2n, pick a Lagrangian subspace W ⊂ V . To
construct W , choose v1 ∈ V , consider v⊥1 , choose v2 ∈ v⊥1 , consider v⊥1 ∩ v⊥2 , choose
v3 ∈ v⊥1 ∩ v⊥2 , etc., until one has v1, ..., vn such that ω(vi, vj) = 0. These vectors span a
Lagrangian space.

Claim: V is linearly symplectomorphic to the symplectic space W ⊕W ∗ of Example
3 in 1.1. To see this, pick another Lagrangian subspace U , transverse to W . Then U is
identified with W ∗: the pairing between U and W is given by ω. Since V = U ⊕W , we
have the desired symplectomorphism.

Thus, one may choose one’s favorite model of a symplectic space. For example, one
may identify R2n with Cn, and then J from 1.1 is the operator of multiplication by

√
−1.

Recall that a complex space can be given a Hermitian structure < z,w >= zw̄. Then
Re < z,w > is the dot product and Im < z,w > is the symplectic structure.

1.3. Consider the set of all Lagrangian subspaces in 2n-dimensional symplectic space;
it is called the Lagrangian Grassmanian and denoted by Λn.

“Recall” the construction of the Grassman manifold Gk,n of k-dimensional subspaces
in k+n-dimensional space. The orthogonal group O(n+k) acts transitively onGk,n (why?),
and the isotropy subgroup of a given k-subspace is generated by orthogonal transformations
of this subspace and of its orthogonal complement. Thus

Gk,n = O(n+ k)/O(k)× O(n).

To see that Gk,n is a smooth manifold, consider a k-subspace V and let U be its orthogonal
complement. Then every k-subspace near V is the graph of a linear map A : V → U . Thus
a neighborhood of V in Gk,n is identified with the space of k × n matrices. In particular,
dim Gk,n = kn.

Let us do a similar thing with Λn. Consider the symplectic space as a complex one.
Let W be a Lagrangian subspace. Choose an orthonormal basis in W . Then this is also
a unitary basis. It follows that the group U(n) acts transitively on Λn, and the subgroup
preserving W is O(n). Thus Λn = U(n)/O(n). To describe a neighborhood of W , choose
a transverse Lagrangian subspace U . As in the proof of Theorem 1.2, U = W ∗. Then, by
an Exercise in 1.1, all Lagrangian subspaces near W are the graphs of self-adjoint maps
A : W → W ∗. Thus a neighborhood of W in Λn identifies with the space of symmetric
n× n matrices, and dim Λn = n(n+ 1)/2.
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Example. Λ1 is the space of lines through the origin in the plane, i.e., RP1, topo-
logically, a circle.

Exercise∗. What is the topology of Λ2?

Describe a related classical construction realizing Λ2 as a quadratic hypersurface of
signature (+++−−) in RP4. Let the symplectic space be R4 with ω = p1 ∧ q1 + p2 ∧ q2.
Given a 2-plane U , choose u1, u2 ∈ U and consider the bivector φ = u1 ∧ u2. Thus we
assign φ ∈ Λ2U , and φ is defined up to a factor. We have constructed a map G2,2 →
P (Λ2U) = RP5. The bivectors in Λ2U corresponding to 2-planes, satisfy φ ∧ φ = 0 (and
this is sufficient too). Thus G2,2 is realized a quadratic hypersurface in RP5 of signature
(+ + +−−−).

If U is a Lagrangian plane then φ∧ ω = 0 (why?) and this is also sufficient. This is a
linear condition that determines a hyperplane RP4 ⊂ RP5. This hyperplane is transverse
to the image of G2,2 (why?), and the intersection is the Lagrangian Grassmanian.

1.4. Given a symplectic space (V 2n, ω), the group of linear symplectomorphisms is
called the linear symplectic group and denoted by Sp(V ) or Sp(2n,R). A symplectic space
has a volume element ω∧n, therefore Sp(2n) is a subgroup of SL(2n).

Let A ∈ Sp(2n). Then ω(Au,Av) = ω(u, v) for all u, v. Thus A∗JA = J . This is
interesting to compare with the orthogonal group: A∗A = E. The relations between the
classical groups are as follows.

Lemma. One has:

Sp(2n) ∩O(2n) = Sp(2n) ∩GL(n,C) = O(2n) ∩GL(n,C) = U(n).

Proof. One has:

A ∈ GL(n,C) iff AJ = JA; A ∈ Sp(2n) iff A∗JA = J ;

and
A ∈ O(2n) iff A∗A = E.

Any two of these conditions imply the third. A linear map that preserves the Euclidean
and the symplectic structures also preserves the Hermitian one, that is, belongs to U(n).

Exercises. 1. Let A ∈ Sp(2n) and λ be an eigenvalue of A. Prove that so are λ̄ and
1/λ.

2. Prove that if A is symplectic then A∗ is antisymplectic, that is, ω(A∗u,A∗v) =
−ω(u, v) or, equivalently, AJA∗ = −J .

In fact, U(n) is the maximal compact subgroup of Sp(2n), and the latter is homo-
topically equivalent to the former. As a consequence, π1(Sp(2n)) = Z. Indeed, one has
a fibration det: U(n) → S1 with fiber SU(n). The latter group is simply connected as
follows inductively from the exact homotopy sequence of the fibration SU(n) → S2n−1

with fiber SU(n− 1).

1.5. Let us describe the Lie algebra sp(2n) of the Lie group Sp(2n). Let A ∈ Sp(2n)
be close to the identity: A = E + tH + O(t2). Then the condition ω(Au,Av) = ω(u, v)
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for all u, v implies: ω(Hu, v) + ω(u,Hv) = 0; in other words, JH + H∗J = 0. Thus
H is skew-symmetric with respect to ω. Such H is called a Hamiltonian operator. The
commutator of Hamiltonian operators is again a Hamiltonian operator.

To a Hamiltonian operator there corresponds a quadratic form h(u) = ω(u,Hu)/2
called the Hamiltonian (function) of H. One can recover H from h since ω(u,Hv) =
h(u+v)−h(u)−h(v). This gives a one-one correspondence between sp(2n) and quadratic
forms on V 2n. Thus dim sp(2n) = n(2n+ 1).

In terms of quadratic forms, the commutator writes as follows:

{h1, h2}(u) = ω(u, (H2H1 −H1H2)u)/2 = ω(H1u,H2u).

The operation on the LHS is called the Poisson bracket.
To write formulas, it is convenient to identify linear operators with linear vector fields:

the operator H is understood as the linear differential equation u′ = Hu. Let (p, q) be
Darboux coordinates.

Lemma. The next formulas hold:

H = hp∂q − hq∂p; {h1, h2} = (h1)p(h2)q − (h1)q(h2)p.

Proof. To prove the first formula we need to show that

2h = ω((p, q), (−hq, hp)).

The RHS is php + qhq = 2h, due to the Euler formula. Then the Poisson bracket is given
by

{h1, h2} = ω(((h2)p,−(h2)q), ((h1)p,−(h1)q)) = (h1)p(h2)q − (h1)q(h2)p,

as claimed.

More conceptually, given a quadratic form h, one considers its differential dh which
is a linear differential 1-form. The symplectic structure determines a linear isomorphism
V → V ∗ which makes dh into a linear vector field H, that is, iHω = −dh.

1.6. One of the first, and most celebrated, results of symplectic topology was Gromov’s
nonsqueezing theorem (1985). Let us discuss its linear version (which is infinitely simpler).

Given a ball B2n(r) of radius r and a symplectic cylinder C(R) = B2(R) × R2n−2

(where the 2-disc is spanned by the Darboux coordinates p1, q1), assume that there is an
affine symplectic map F that takes B2n(r) inside C(R).

Proposition. Then r ≤ R.

Note that this is false for volume-preserving affine maps.

Proof. The map writes F : v → Av + b where A ∈ Sp(2n) and b ∈ R2n. Assume
r = 1. Consider A∗ and its two columns ξ1 and ξ2 corresponding to p1, q1 Darboux
coordinates. Since A∗ is antisymplectic (Exercise in 1.4), |ω(ξ1, ξ2)| = 1, and therefore
|ξ1||ξ2| ≥ 1. Assume that |ξ1| ≥ 1, and let v = ξ1/|ξ1|. Note that ξ1 and ξ2 are rows of A
(corresponding to coordinates p1, q1). Since F (v) ∈ C(R), one has:

(ξ1 · v + b1)
2 + (ξ2 · v + b2)

2 ≤ R2,
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and then |(|ξ1|+ b1)| ≤ R. For b1 ≥ 0 this implies R ≥ 1, and for b1 < 0 one should replace
v by −v.

One defines an affine symplectic invariant called linear symplectic width of a subset
A ⊂ R2n:

w(A) = max {πr2|F (B2n(r)) ⊂ A for some affine symplectic F}.

Symplectic width is monotonic: if A ⊂ B then w(B) ≥ w(A), homogeneous of degree 2
with respect to dilations and nontrivial: w(B2n(r)) = w(C(r)) = πr2.

To get a better feel of linear symplectic space, classify the ellipsoids. In Euclidean
space, every ellipsoid can be written as

n∑
i=1

x2
i

a2
i

.

A corresponding symplectic result is as follows.

Theorem. There exist Darboux coordinates in which an ellipsoid writes:

n∑
i=1

p2
i + q2i
r2i

,

and the radii 0 ≤ r1 ≤ ... ≤ rn are uniquely defined.

Proof. Recall how to prove the Euclidean fact. We have two Euclidean structures:
u · v and Au · v. Here A is self-adjoint, and we assume, it is in general position. Consider
a relative extremum problem of Au · u relative u · u. The extremum condition (Lagrange
multipliers!) is that Audu = λudu, that is, Au = λu. The function Au · u is an even
function on the unit sphere, that is, a function on RPn−1, and it has n critical points.
Thus A has n real eigenvalues a1, ..., an, and the respective eigenspaces are orthogonal.
We obtain the desired expression.

A symplectic analog is as follows. We have a dot product and a symplectic structure
ω(u, v) = Ju · v. Consider a relative extremum problem of ω(u, v) relative u · u and v · v.
The extremum condition is:

Ju dv − Jv du = λu du+ µv dv, that is, Ju = µv, Jv = −λu.

Thus u, v are eigenvectors of J2 (with eigenvalue −λµ), a self-adjoint operator. In general
position, these eigenspaces are 2-dimensional and pairwise orthogonal.

Thus the space is the orthogonal sum of 2-dimensional subspaces. Claim: they are
also symplectically orthogonal. Indeed,

ω(u1, u2) = Ju1 · u2 = µ1v1 · u2 = 0

and, likewise, with ω(u1, v2) and ω(v1, v2). It remains to choose an orthogonal basis pi, qi
in each 2-space so that pi · pi = qi · qi and ω(pi, qi) = 1.
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The last thing to check is that the radii ri are uniquely defined. Let D(r) be the
diagonal matrix with the entries 1/r2i . Assume that, for a symplectic matrix A, one
has: A∗D(r)A = D(r′). Since A is symplectic, A∗JA = J , or A∗ = JA−1J−1. Thus
A−1J−1D(r)A = J−1D(r′), that is, the eigenvalues of the matrices J−1D(r) and J−1D(r′)
coincide. It follows that r = r′.

2. Symplectic manifolds.

2.1. Let M be a smooth manifold. A symplectic structure on M is a non-degenerate
closed 2-form ω. Since it is non-degenerate, dim M = 2n. In other words, dω = 0 and
ω ∧ ... ∧ ω (n times) is a volume form. In particular, M is oriented. Also, H2(M,R) 6= 0.
Hence S2n, n ≥ 2 is not symplectic.

A symplectomorphism is a diffeomorphism f : M → M such that f ∗(ω) = ω. Sym-
plectomorphisms form an infinite-dimensional group.

2.2. Examples.
(a) Linear symplectic space R2n with ω = dp ∧ dq.
(b) Any oriented surface with an area form. For example, S2, with the (standard)

area form ωx(u, v) = det(x, u, v).

(c) (Archimedes) Consider the unit sphere and the circumscribed cylinder with its
standard area form. Consider the radial projection π from the sphere to the cylinder.

Exercise. Prove that π is a symplectomorphism.

(d) The product of symplectic manifolds is a symplectic manifold.

(e) Cotangent bundle (important for mechanics!). On T ∗M one has a canonical 1-
form λ called the Liouville (or action) form. Let π : T ∗M →M be the projection and ξ be
a tangent vector to T ∗M at point (x, p). Define: λ(ξ) = p(π∗(ξ)). In coordinates, λ = pdq
where q are local coordinates on M and p are the corresponding covectors (momenta). The
canonical symplectic structure on T ∗M is ω = dλ, locally, dp ∧ dq.

Exercise. Let α be a 1-form on M . Then α determines a section γ of the cotangent
bundle. Prove that γ∗(λ) = α.

(f) CPn. First, consider Cn+1 = R2n+2 with its linear symplectic structure Ω. Con-
sider the unit sphere S2n+1. The restriction of Ω on S2n+1 has a 1-dimensional kernel.
Claim: at point x, this kernel is generated by the vector Jx. Indeed, if u ⊥ x then
Ω(Jx, u) = J(Jx) · u = 0. The vector field Jx generated a foliation on circles, and the
space of leaves is CPn. The symplectic structure Ω induces a new symplectic structure ω
on CPn. The construction is called symplectic reduction.

Complex projective varieties are subvarieties of CPn; they have induced symplectic
structures, and this is a common source of examples.

(g) Another example of symplectic reduction: the space of oriented lines in Rn+1.
Start with T ∗Rn+1 with its canonical symplectic structure Ω = dp ∧ dq. Consider the
hypersurface |p| = 1. Claim: the kernel of the restriction of Ω on this hypersurface at
point (p, q) is generated by the vector p∂q. Indeed, (dp ∧ dq)(u, p∂q) = (pdp)(u) = 0. We
get a foliation whose leaves are oriented lines (geodesics). We obtain a symplectic structure
on the space of oriented lines ω = dp ∧ dq where p is a unit (co)vector and q · p = 0.
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Exercise. Prove that the above space is symplectomorphic to T ∗Sn.

(h) Orbits of the coadjoint representation of a Lie group. Let G be a Lie group and
g its Lie algebra. The action of G on itself by conjugation has e as a fixed point. Since
g = TeG, one obtains a representation Ad of G in g called adjoint. Likewise, one has
the coadjoint representation Ad∗ in g∗. One also has the respective representations of g
denoted by ad and ad∗. In formulas,

adxy = [x, y], (ad∗xξ)(y) = ξ([x, y]), x, y ∈ g, ξ ∈ g∗.

Theorem (Lie, Kirillov, Kostant, Souriau). An orbit of the coadjoint representation
of G has a symplectic structure.

Proof. Let ξ ∈ g∗. Then the tangent space to the orbit of the coadjoint representation
at ξ identifies with g/gξ where

gξ = {x ∈ g| ad∗xξ = 0}.

On the space g/gξ one has a skew-symmetric bilinear form ω(x, y) = ξ([x, y]) (why is it
well defined?). This 2-form is closed as follows from the Jacobi identity for the Lie algebra
g.

Exercise. Prove the last statement.

Example. Let G = SO(3), then g = so(3), skew-symmetric 3× 3 matrices. Identify
them with R3. Given A ∈ so(3), consider Tr(A2). This gives a Euclidean structure on
so(3) that agrees with that in R3. We identify g and g∗. Clearly, Tr(A2) is invariant
under the (co)adjoint action. The orbits are level surfaces of Tr(A2), that is, concentric
spheres and the origin.

Exercise. Similarly study another 3-dimensional Lie group, SL(2).

2.3. Being non-degenerate, a symplectic form defines an isomorphism between vector
fields and 1-forms: X 7→ i(X)ω. A field is called symplectic if i(X)ω is closed, in other
words, if LXω = 0; the latter follows from the Cartan formula: LX = di(X) + i(X)d.
Symplectic fields form the Lie algebra of the group of symplectomorphisms. Let M be a
closed symplectic manifold.

Lemma. Given a 1-parameter family of vector fields Xt, consider the respective family of
diffeomorphisms φt:

dφt(x)/dt = Xt(φt(x)), φ0 = Id.

Then φt are symplectomorphisms for all t iff Xt are symplectic for all t. Given symplectic
fields X and Y , the field [X,Y ] is symplectic with i([X,Y ])ω = dω(X,Y ).

Proof. One has: dφ∗t (ω)/dt = φ∗t (LXt
ω), and this implies the first claim. As to the

second, we use the (somewhat non-traditional) definition:

[X,Y ] = LY X = dψ∗tX/dt|t=0,

and then

i([X,Y ])ω = di(ψ∗tX)ω/dt|t=0 = LY i(X)ω = di(Y )i(X)ω = dω(X,Y ),
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as claimed.

Note that with the definition of the Lie bracket above one has L[X,Y ] = −[LX , LY ]
(cf. McDuff-Salamon, p. 82).

For linear symplectomorphisms, we had a relation with quadratic functions. Like-
wise, given a (Hamiltonian) function H on M , define its Hamiltonian vector field XH by
i(XH)ω = dH. In Darboux coordinates, XH = Hp∂q −Hq∂p. On closed M , this gives a
1-parameter group of symplectomorphisms called the Hamiltonian flow of H.

Lemma. The vector XH is tangent to a level hypersurface H = const.

Proof. One has: dH(XH) = ω(XH , XH) = 0.

This lemma is related to the symplectic reduction construction. If S is given by
H = const then XH generates the characteristic foliation on S, tangent to the field of
kernels of the restriction of ω to S. Indeed, ω(XH , v) = dH(v) = 0 once v is tangent to S.

Define the Poisson bracket {F,G} = ω(XF , XG) = dF (XG). In Darboux coordinates,
the formulas are as in 1.5. This bracket satisfies the Jacobi identity; we will deduce it from
Darboux theorem.

Lemma. The correspondence H 7→ XH is a Lie algebra homomorphism.

Proof. We want to show that [XF , XG] = X{F,G}. One has

[XF , XG] = −dφ∗t (XG)/dt|t=0 = −dXG(φt

F
)/dt|t=0.

Then
i([XF , XG])ω = −d(dG(φt

F ))/dt|t=0 = −d(dG(XF )) = d({F,G}),

as claimed.

To summarize, here are the main formulas, in Darboux coordinates:

ω = dq ∧ dp; XH = Hp∂q −Hq∂p; {H,F} = HpFq −HqFp.

Note that the Hamiltonian vector field XH is also often called the symplectic gradient

of the function H.

2.4. Unlike Riemannian manifolds, symplectic manifolds do not have local invariants.

Darboux Theorem. Symplectic manifolds of the same dimension are locally symplecto-
morphic.

Proof. Consider two symplectic manifolds with fixed points (M1, O1, ω1) and
(M2, O2, ω2). We want to construct a local symplectomorphism (M1, O1, ω1) →
(M2, O2, ω2). First consider a local diffeomorphism (M1, O1) → (M2, O2); now we have
two (germs of) symplectic structures ω0, ω1 on the same manifold (M,O), and since there
is only one symplectic vector space of a given dimension (the linear Darboux theorem), we
assume that ω0 and ω1 coincide at point O.

Claim: There is a local diffeomorphism f : M →M , fixing O and such that f ∗(ω0) =
ω1.
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Consider the family ωt = (1−t)ω0+tω1. This is a symplectic structure for all t ∈ [0, 1]
in a small neighborhood of the origin. We need to find a family of diffeomorphisms φt,
fixing O, such that φ∗tωt = ω0. This is equivalent to finding a time-dependent symplectic
vector field Xt, related to φt in the usual way, dφt(x)/dt = Xt(φt(x)), and vanishing at O,
such that

LXt
ωt + ω1 − ω0 = 0.

Choose a 1-form α such that dα = ω1 − ω0; this α is defined up to summation with df .
Then we have the equation

i(Xt)ωt + α = 0.

This is solvable for all α since ωt is non-degenerate. It remains to show that Xt may be
taken trivial at O. For this, we need to replace α by a 1-form that vanishes at O.

Every 1-form can be locally written as

α =
∑

xiαi +
∑

cidxi

where αi are 1-forms and ci are constants. Then we replace α by α− d(
∑
cixi), and this

1-form vanishes at O.

In fact, a similar homotopy method, due to Moser, applies to a more general situation
in which the points O1, O2 are replaced by germs of submanifolds N1, N2 such that the
pairs (N1, ω1|N1

) and (N2, ω2|N2
) are symplectomorphic.

2.5. A Lagrangian submanifold of a symplectic manifold (M 2n, ω) is a manifold Ln

such that ω|L = 0. An informal principle is that every symplectically meaningful object is
a Lagrangian manifold.

Examples.
(a) Every curve is Lagrangian in a symplectic surface.

(b) Consider T ∗M with its canonical symplectic structure, and let α be a 1-form on
M . This form determines a section γ of T ∗M whose image is Lagrangian iff α is closed.
Indeed,

ω|γ(M) = γ∗(ω) = dγ∗(λ) = dα.

(c) Let N ⊂ M be a submanifold. Its conormal bundle P ⊂ T ∗M |N consists of the
covectors, equal to zero on N . Then P is Lagrangian. Indeed, choose local coordinates
q1, ..., qn in M so that q1 = ... = qk = 0 is N . Let p, q be the respective coordinates in
T ∗M . Then P is given by q1 = ... = qk = 0, pk+1 = ... = pn = 0. If N is a point, one
obtains a “delta-function”.

(d) Let f : (M1, ω1) → (M2, ω2) be a symplectomorphism. Then the graph G(f) is a
Lagrangian submanifold in (M1 ×M2, ω1 	 ω2). Indeed, consider u1, v1 ∈ TM1, and let
u2 = Df(u1), v2 = Df(v1). Then (u1, u2) and (v1, v2) are two tangent vectors to G(f),
and

(ω1 	 ω2)((u1, u2), (v1, v2)) = ω1(u1, v1)− ω2(u2, v2) = (ω1 − f∗(ω2))(u1, v1) = 0.

(e) Let Nn−1 ⊂ Rn be a hypersurface. Consider the set L of oriented normal lines
to N ; this is a Lagrangian submanifold of the space of oriented lines in Rn. To prove
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this, recall that the space of oriented lines in Rn is symplectomorphic to T ∗Sn−1 with its
symplectic structure dp ∧ dq; q ∈ Sn−1, p ∈ T ∗q Sn−1. Let n(x) be the unit normal vector
to N at point x ∈ N . Then L is given parametrically by the equations

q = n(x), p = x− (x · n(x)) n(x), x ∈ N.

Hence
pdq = xdn− (x · n) ndn = xdn = d(x · n)− ndx = d(x · n),

where ndn = 0 since n2 = 1 and ndx = 0 on N since n is a normal. Therefore dp ∧ dq = 0
on L.

The function (x · n(x)) is called the support function of the hypersurface N ; it plays
an important role in convex geometry.

Let f : Sn−1 → R be a support function. How can one construct the corresponding
hypersurface N? Claim: N is the locus of points

y = f(x)x+ gradf(x).

Indeed, we need to show that x is a normal to N at point y, i.e., xdy = 0. Note that
xgradf(x) = 0 hence x dgradf(x) + gradf(x) dx = 0. Note also that x2 = 1 hence
xdx = 0. Now one has:

xdy = fxdx+ x2df + x dgradf(x) = df − gradf(x) dx = 0

as needed.

Exercise. Let Ln−1 be a submanifold of the space of oriented lines in Rn. When
does L consist of lines, orthogonal to a hypersurface? If this is the case, how many such
hypersurfaces are there?

Exercise. Let f : S1 → R be the support function of a closed convex plane curve.
Express the following characteristics of the curve in terms of f : curvature, area, perimeter
length.

Exercise∗. Let L be a Lagrangian submanifold in a symplectic manifold M . Prove
that a sufficiently small neighborhood of L in M is symplectomorphic to a neighborhood
of the zero section in T ∗L. This statement is a version of Darboux theorem, and it can be
proved along similar lines.

2.6. A Lagrangian foliation is an n-dimensional foliation of a symplectic manifoldM 2n

whose leaves are Lagrangian. Similarly one defines a Lagrangian fibration. An example is
given by the cotangent bundle whose fibers are Lagrangian.

An affine structure on an n-dimensional manifold is given by an atlas whose transi-
tion maps are affine transformations. An affine manifold is complete if every line can be
extended indefinitely. Examples include Rn and n-torus.

Theorem. The leaves of a Lagrangian foliation have a canonical affine structure.

Proof. Let M2n be a symplectic manifold, Fn a Lagrangian foliation and p : M →
Nn = M/F the (locally defined) projection. Consider a function F on N and extend it
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to M as F ◦ p. Let u be a tangent vector to a leaf. Then dF (u) = 0. Therefore XF

is skew-orthogonal to the tangent space of the leaf, that is, is tangent to the leaf. Then
{F,G} = ω(XF , XG) = 0, so the functions, constant on the leaves, Poisson commute.

Fix a point x ∈ N . If F is a function on N such that dF (x) = 0 then XF = 0 on
the leaf Fx. Choose a basis in T ∗xN , choose n functions Fi whose differentials at x form
this basis and consider the vector fields XFi

. These are commuting vector fields, and we
obtain a locally effective action of Rn on Fx.

This action is well defined if the quotient space N is defined, for example, if F is a
Lagrangian fibration. In general, N is defined only locally, and going from one chart to
another changes the respective commuting vector fields by affine transformations. Thus
an affine structure on the leaf is well defined.

Corollary. If a leaf of a Lagrangian foliation is a closed manifold then it is a torus.

Proof. If a leaf is complete then it is a quotient of Rn by a discrete subgroup. If the
leaf is compact, the subgroup is a lattice Zn.

Here is what it boils down to in dimension 2. A Lagrangian foliation is given by a
function f(x, y): the leaves are the level curves. The function f is defined up to composition
with functions of 1 variable: f 7→ f̄ = φ ◦ f . The vector field Xf is tangent to the leaves
and, on a leaf, one can introduce a parameter t such that Xf = ∂t. Changing f to f̄ ,
the field Xf multiplies by a constant φ′ (depending on the leaf), and the parameter t also
changes to t̄ = ct. This parameter, defined up to a constant, give an affine structure.

2.7. A consequence is the so-called Arnold-Liouville theorem in integrable systems.

Theorem. Let M2n be a symplectic manifold with n functions F1, ..., Fn that Poisson
commute: {Fi, Fj} = 0. Consider a non-singular level manifold Mc = {Fi = ci, i = 1, ..., n}
and a Hamiltonian function H = H(F1, ..., Fn). Then Mc is a smooth manifold, invariant
under the vector field XH . There is an affine structure on Mc in which the field XH is
constant. If Mc is closed and connected then it is a torus.

Proof. The mapping (F1, ..., Fn) : M → R is a fibration near the value c, and its
leaves are Lagrangian. The fields XFi

are constant in the respective affine coordinates, and
XH is a linear combination of these n fields with the coefficients, constant on Mc (why?)

There is a version of this theorem in which XH is replaced by a symplectomorphism φ :
M →M such that Fi◦φ = Fi for all i. Then φ preserves Mc and the affine structure therein.
Moreover, φ preserves each vector field XFi

, and therefore φ is a parallel translation x 7→
x+ c.

Corollary. Let φ and ψ be two symplectomorphisms that preserve the same Lagrangian
foliation leafwise. Then φ and ψ commute.

Proof. Both maps are parallel translations in the same affine coordinate system, and
parallel translations commute.

2.8. Billiards. An example of a symplectic map is provided by billiards. Consider
a strictly convex domain M ⊂ Rn with a smooth boundary Nn−1. Let U be the space of
oriented lines that intersect M ; it has a symplectic structure discussed in 2.2. Consider
the billiard map T : U → U given by the familiar law of geometrical optics: the incoming
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and outgoing rays lie in one 2-plane with the normal at the impact point and make equal
angles with this normal.

Theorem. The billiard transformation is a symplectic map.

Proof. Consider T ∗M with its canonical symplectic structure ω = dp ∧ dq where
q, p are the usual coordinates. We identify tangent and cotangent vectors by Euclidean
structure. Consider two hypersurfaces in T ∗M :

Y = {(q, p)|p2 = 1}, Z = {(q, p)|q ∈ N}.

The characteristics of Y are oriented lines in Rn (section 2.2, example g), and the sym-
plectic reduction yields U with its symplectic structure. What are characteristics of Z?
Consider the projection π : Z → T ∗N given by the restriction of a covector on TN .

Claim: the characteristics of Z are the fibers of the projection π. Indeed, let n(q) be
the unit normal vector to N at point q ∈ N . Then the fibers of π are integral curves of
the vector field n(q)∂p. One has: i(n(q)∂p)ω = n(q)dq = 0 since n is a normal vector. It
follows that the symplectic reduction of Z is the space V = T ∗N .

Let W = Y ∩ Z, the set of unit vectors with foot point on N . Consider W with
the symplectic structure ω|W . The projections of W on U and V along the leaves of the
characteristic foliations of Y and Z are double coverings. These projections are symplectic
mappings (why?) One obtains two symplectic involutions σ and τ on W that interchange
the preimages of a point under each projection. The billiard map T can be considered as
a transformation of W equal to σ ◦ τ . Therefore T is a symplectomorphism.

The proof shows that the billiard map can be also considered as a symplectic trans-
formation of T ∗N realized as the set of inward unit vectors with foot points on N .

Exercise. Let n = 2. Denote by t an arc length parameter along the billiard curve
and by α the angle between this curve and and the inward unit vector. The phase space of
the billiard map is an annulus with coordinates (t, α). Prove that the invariant symplectic
form is sinα dα ∧ dt.

An alternative proof proceeds as follows. Let q1q2 be an oriented line, q1, q2 ∈ N . Let
p1 be the unit vector from q1 to q2. The billiard map acts as follows: (q1, p1) 7→ (q2, p2)
where the covectors (q2, p1) and (q2, p2) have equal projections on Tq2

N . Consider the
generating function L(q1, q2) = |q1q2|. Then

∂L/∂q1 = −p1, ∂L/∂q2 = p1.

Consider the Liouville form λ = pdq and restrict everything on T ∗N . Then one has:
T ∗λ− λ = dL. Therefore ω = dλ is T -invariant.

Corollary. Billiard trajectories are extrema of the perimeter length function on polygons
inscribed into N .

Example. It is classically known that the billiard inside an ellipse is integrable: the
invariant curves consist of the lines tangent to a confocal conic. Consider two confocal
ellipses and the respective billiard transformations T1, T2. It follows from Corollary 2.7
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that T1 ◦ T2 = T2 ◦ T1, an interesting theorem of elementary geometry (especially its
particular case, “The most elementary theorem of Euclidean geometry”)!

Exercise∗. Let N be a smooth hypersurface in Rn, and let X be the set of oriented
lines in Rn with its canonical symplectic structure. Consider the hypersurface Y ⊂ X that
consists of the lines tangent to N . Prove that the characteristics of Y consist of the lines,
tangent to a geodesic curve on N .

3. Symplectic fixed points theorems and Morse theory.

3.1. The next result was published by Poincaré as a conjecture shortly before his
death and proved by Birkhoff in 1917. Consider the annulus A = S1× I with the standard
area form and its area preserving diffeomorphism T , preserving each boundary circle and
rotating them in the opposite directions. This means the a lifted diffeomorphism T̄ of the
strip S = R× [0, 1] satisfies:

T̄ (x, 0) = (X, 0) with X > x and T̄ (x, 1) = (X, 1) with X < x.

Theorem (Poincaré-Birkhoff). The mapping T has at least two distinct fixed points.

Both conditions, that T is area preserving and that the boundary circles are rotated
in the opposite sense, are necessary (why?).

Proof. We prove the existence of one fixed point, the hardest part of the argument.
Assume there are no fixed points. Consider the vector field v(x) = T̄ (x)− x, x ∈ S. Let
point x move from lower boundary to the upper one along a simple curve γ, and let r be
the rotation of the vector v(x). This rotation is of the form π + 2πk, k ∈ Z. Note that r
does not depend on the arc γ (why?). Note also that T−1 has the same rotation r since
the vector T−1(y)− y is opposite to T (x)− x for y = T (x).

To compute r, let ε > 0 be smaller than |T (x), x| for all x ∈ A; such ε exists because
A is compact. Let Fε be the vertical shift of the plane through ε and let T̄ε = Fε ◦ T̄ .
Consider the strip Sε = R × [0, ε]. Its images under T̄ε are disjoint. Since T̄ε preserves
the area, the image of Sε will intersect the upper boundary. Let k be the least number of
needed iterations, and let Pk be the upper most point of the upper boundary of this k-th
iteration. Let P0, P1, ..., Pk the respective orbit, P0 on the lower boundary of S. Join P0

and P1 by a segment and consider its consecutive images: this is a simple arc γ. For ε
small enough, the rotation r almost equals the winding number of the arc γ. In the limit
ε→ 0, one has: r = π.

Alternatively, we have a vector field v(x) = x1 − x with x1 = T (x) along γ. One can
homotop this field as follows: for 1/2 time freeze x at P0 and let x1 traverse γ to Pk, and
for the other 1/2 time freeze x1 at Pk and let x traverse γ.

Now consider the map T−1. Unlike T , it moves the lower boundary of S right and
the upper one left. By the same argument, its rotation equals −π. On the other hand, by
a remark above, this rotation equals that of T , a contradiction.

A consequence is the existence of periodic billiard trajectories inside smooth strictly
convex closed plane curves. The billiard transformation T is an area preserving map of
the annulus A = S1 × [0, π] (we assume that the length of the curve is 1). The map T
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fixes the lower boundary and translates the upper through 1. Let R be the rotation of A
in the negative direction through 1. Then n-periodic orbits of T with rotation number r
are fixed points of the map RrTn. This map translated the boundaries in the opposite
directions and the Poincaré-Birkhoff theorem yields at least 2 periodic trajectories of every
rotation number. Even for 2-periodic trajectories, the number 2 is not quite trivial: one
is the diameter, the longest chord inside the table, but the other is of minimax type.

Another symplectic fixed point result which is proved by an ad hoc method is as
follows.

Theorem (Nikishin, Simon, 1974). An area preserving diffeomorphism of the 2-sphere
has at least 2 distinct fixed points.

Proof (Sketch). By algebraic topology, the number of fixed points, counted with
multiplicities, is 2. One needs to show that there could not be a single fixed point. This
is because the index of an isolated fixed point of an area preserving diffeomorphism in
dimension 2 cannot be greater than 1. This is illustrated by a similar statement for an
isolated zero of a Hamiltonian vector field.

3.2. A far reaching generalization is due to V. Arnold (mid-1960-s). One has a closed
symplectic manifold M and its Hamiltonian symplectomorphism f : M →M . This means
that f is the time-1 map of a time-dependent family of Hamiltonian vector fields (as in
2.3):

dφt(x)/dt = XHt
(φt(x)), φ0 = Id

where Ht is a time-dependent Hamiltonian. The family of symplectomorphisms φt is called
a symplectic isotopy.

Arnold’s Conjecture. A Hamiltonian symplectomorphism f has at least as many fixed
points as the least number of critical points of a smooth function on M .

There are two cases, both meaningful: f is in general position (the graph of f intersects
the diagonal transversally) and f is arbitrary. The corresponding cases for smooth func-
tions are: Morse functions (the Hessian is non-degenerate at critical points) and arbitrary
functions.

For a standard symplectic torus T 2n, an equivalent assumption on f is that it preserves
the center of mass. This means that a lifted mapping f̄ of R2n satisfies:

∫
I2n

(f̄(x)− x)dx ∈ Z2n.

The relation of this condition to Hamiltonian symplectomorphism will be discussed later.

One case in which Arnold’s Conjecture trivially holds is when f is a time-1 map of
time-independent Hamiltonian vector field XH : a critical point of H is a fixed point of f .
Another case, known to Poincaré, is when f is C1-close to the identity.

Proposition. If a Hamiltonian symplectomorphism f of a closed symplectic manifold M
is C1-close to the identity then it has at least as many fixed points as the least number
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of critical points of a smooth function on M (this means two results: for all Hamilto-
nian symplectomorphisms/all smooth functions and for generic Hamiltonian symplecto-
morphisms/Morse functions).

Proof. There is a function F on M whose critical points are fixed points of f . To
construct F , let ∆ ⊂M ×M be the diagonal. Consider the graph G ⊂M ×M of f . Then
G is C1-close to ∆. A neighborhood of ∆ is symplectomorphic to a neighborhood of the
zero section in T ∗∆. The graph of a symplectomorphism is Lagrangian, thus G is a the
graph of a closed 1-form α on ∆ whose zeroes correspond to the intersections of G and ∆,
the fixed points of f . It remains to show that α is exact: α = dF .

What we need to show is that
∫

γ
α = 0 for every loop γ on ∆. Let λ be the Liouville

1-form on T ∗∆. Then we need to prove that
∫
Γ

Λ = 0 where Γ is the image of γ under
the section α. Make a simplifying assumption that M is an exact symplectic manifold:
ω = dλ. Then, under the identifications as in Example 2.5 (d), Λ = λ1	λ2. Our condition
reads now:

∫
f(δ)

λ−
∫

δ
λ = 0 for every closed curve δ, or f ∗(λ)− λ is an exact 1-form.

Write Xt for XHt
. One has:

dφ∗t (λ)/dt = φ∗(LXt
λ) = φ∗(di(Xt)λ+ i(Xt)dλ) = φ∗d(λ(Xt) +Ht),

and therefore f∗(λ)− λ is exact.

The first of modern symplectic fixed point results is due to Conley and Zehnder (1983).

Theorem. A generic Hamiltonian symplectomorphism of the standard symplectic torus
T 2n has at least 22n fixed points and, in the degenerate case, at least 2n+ 1 fixed points.

Proof. We will reduce the theorem to a statement of Morse theory. The approach is
due to A. Givental. Lift φ to a Hamiltonian symplectomorphism ψ of R2n. One decomposes
ψ into ψk ◦ ... ◦ ψ1 where each ψi is sufficiently C1 small. By the above Proposition and
its proof, each ψi has a C2-small generating function, say, fi.

Assume that k is odd. Consider Z = R2nk = R2n
1 × ... × R2n

k with the symplectic
structure Ω = ω ⊕ ...⊕ ω (k times). Consider two maps of Z:

T (z1, ..., zk) = (z2, ..., zk, z1) and Ψ(z1, ..., zk) = (ψ1(z1), ..., ψk(zk)).

We want to solve the equation T (z) = Ψ(z). Consider the graphs G(T ), G(Ψ) ⊂ (Z ×
Z,Ω	Ω) = T ∗Z. The space G(Ψ) is an exact Lagrangian submanifold, that is, the graph
of the differential of a function F : Z → R where F (z1, ..., zk) = f1(z1)+ ...+ fk(zk). Note
that each function fi is lifted from T 2n, and therefore F is also lifted from T 2nk.

Claim: G(T ) is also the graph of the differential. Introduce the following notation.
Let (xi, yi), i = 1, ..., k, be Darboux coordinates in R2n

i in the first copy of Z, and let
(x′i, y

′
i) be those in R2n

i in the second copy of Z. Set:

qi = (xi + x′i)/2, Qi = (yi + y′i)/2, pi = (y′i − yi)/2, Pi = (xi − x′i)/2.

Then dx∧dy−dx′ ∧dy′ = 2(dP ∧dQ+dp∧dq), that is, (Z×Z,Ω	Ω) = T ∗Z where Z is
the (q,Q)-space. The equations xi+1 = x′i, yi+1 = y′i translate to the following equations
defining G(T ) ⊂ T ∗Z:

pi + pi+1 = Qi+1 −Qi, Pi + Pi+1 = qi − qi+1
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or

pj = −
k−1∑
r=1

(−1)rQj+r, Pj =

k−1∑
r=1

(−1)rqj+r

where the indices are cyclic mod k. Here we use that k is odd. It follows that G(T ) is the
graph of the differential of the quadratic function

H(q,Q) =
∑
i<j

(−1)i+j(Qiqj − qiQj).

Note that F is invariant under the diagonal action of Z2n on each summand R2n. The
quadratic function H(q,Q) is also invariant under parallel translations (q,Q) 7→ (q +
c,Q+ c); here we again use that k is odd. Both functions can be considered as functions
on T 2n ×R2n(k−1).

Thus we are interested in critical points of the function G = H−F : T 2n×R2n(k−1) →
R. Viewed from far away, G is a small perturbation of a function, equal zero on T 2n and
equal to a quadratic form of signature (n(k − 1), n(k − 1)) on R2n(k−1). We want to
conclude that such G has not fewer critical points than a smooth function on T 2n. This is
what Morse theory provides.

3.3. Morse theory relates the topology of a manifold with critical points of a smooth
function on it. Let Mn be a closed manifold and f a smooth function on M . Let x ∈ M
be a critical point: df(x) = 0. Then one considers the Hessian matrix H(f) = ∂2f/∂xi∂xj

in some local coordinates. In fact, H is a quadratic form on TxM (whose definition does
not need local coordinates or metric).

Exercise. Define H(f) as a quadratic form. Is it also well defined at a non-critical
point?

A critical point x is non-degenerate if H(f) is non-degenerate at x. The Morse index

µ(x) is the number of negative squares in H(f), and the respective negative subspace is
called unstable. According to the Morse Lemma, near a non-degenerate critical point of
Morse index q, there exist coordinates in which the function writes as c+ x2

1 + ...+ x2
p −

x2
p+1 − ...− x2

n where p = n− q.

Exercise. Let A be a self adjoint linear map of Rn with a simple spectrum. Consider
the function f(x) = Ax · x on the unit sphere Sn−1. Find the critical points and their
Morse indices.

A function f : M → R is called Morse function if all its critical points are non-
degenerate. Associate the following Poincaré polynomial with a Morse function:

Pt(f) =
∑

x∈Crf

tµ(x).

A similar Poincaré polynomial is responsible for the topology of the manifold:

Pt(M) =
∑

k

dimHk(M) tk
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where the coefficients are taken in a field. The Morse inequalities can be written as follows:

Pt(f) = Pt(M) + (1 + t)Qt

where Qt has non-negative coefficients. In particular, the number of critical points of index
k is bounded below by the k-th Betti number. It also follows that the alternating sum of
critical points equals the Euler characteristic.

Examples. 1. The height function f on Sn has min and max with the indices 0 and
n. Thus Pt(f) = 1 + tn = Pt(S

n). The height function f on Mg, the surface of genus g,
has a min, a max and 2g saddle critical points. Thus Pt(f) = 1 + 2gt+ t2 = Pt(Mg), and
f is a perfect function.

2. In Cn+1, consider the unit sphere
∑
|zk|2 = 1 and a function f(z) =

∑
λk|zk|2.

Then f is a function on CPn whose critical points correspond to coordinate axes. Consider
a critical point, say, z1 = ... = zn = 0. One can use x1, y1, ..., xn, yn as local coordinates,
and

f = C +
n∑

k=1

(λk − λ0)(x
2
k + y2

k).

Thus the Morse index is twice the number of k for which λk < λ0. It follows that

Pt(f) = 1 + t2 + t4 + ...+ t2n.

Therefore Qt = 0 in the Morse inequality, and

Pt(CPn) = 1 + t2 + t4 + ...+ t2n.

There is a number of approaches to proving Morse inequalities. First, I outline the
dynamical system method, mostly due to Smale. Give M a generic Riemannian metric
and consider grad f . Given a critical point x, consider the union of trajectories that start
at x and that end at x. These are cells Wx and W ∗

x , and they intersect transversally at x.
One has: dim Wx = µ(x) and dim W ∗

x = n− µ(x). Thus one obtains two stratifications of
M by cells whose dimensions are Morse indices of f .

By a small perturbation of the field grad f one can put all Wx and W ∗
y in general

position so that they intersect transversally. It follows that if a trajectory goes from x to y
then µ(x) > µ(y). Indeed, the trajectory lies in Wx ∩W ∗

y , hence dim Wx ∩W ∗
y ≥ 1. Then

dim Wx ≥ dimWy + 1. This condition fails in the usual picture of a torus.
To summarize, one has a filtration Kp of M by the unions of cells of dimension ≤ p,

and Kp−Kp−1 = ∪Wx, dimWx = p. The standard topological arguments imply the Morse
inequalities.

Let us explain the “standard topological argument”. First, the homology of a cell space
can be computed as the homology of a complex whose p-dimensional space is generated
by p-dimensional cells of the space. Secondly, consider a chain complex

...→ Ci+1 → Ci → Ci−1 → ...
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and let Bi ⊂ Zi ⊂ Ci be the spaces of boundaries and cycles. Consider the generating
function (Poincaré polynomials) Bt, Zt, Ct and Ht. One has: Bi = Ci+1/Zi+1, that is,
tBt = Ct − Zt. On the other hand, Hi = Zi/Bi, that is, Ht = Zt − Bt. Combine to get:

Ct = tBt + Zt = Ht + (1 + t)Bt.

This has the form of Morse inequalities.
An argument, similar to the one applied to Morse functions, applies to degenerate

functions as well. Then one has a decomposition of M into pieces Wx which are not
necessarily cells but are still contractible in M . We can enlarge them and obtain a open
covering by sets, contractible in M . The least number of such sets is called Lyusternik-

Schnirelmann category and denoted by Cat(M). Thus the number of critical points of f
is bounded below by Cat(M), the Lyusternik-Schnirelmann inequality.

The category is hard to compute. However one has the following lower bound.

Proposition. Assume M has k cohomology classes u1, ..., uk, dim ui > 0, and u1...uk 6= 0.
Then Cat(M) ≥ k + 1.

Proof. Assume M can be covered by k contractible sets Wi. Then one can choose
representatives Ui ∈ H∗(M,Wi) (think of differential forms with support outside of Wi).
Then U1...Uk ∈ H∗(M,∪Wi) = 0.

The maximal number k above is called the cup-length of M .

Example. The cup length of RPn is n, therefore any smooth function has at least
n+ 1 critical points on RPn.

Usually Lyusternik-Schnirelmann theory gives finer estimates than Morse theory but
requires knowledge of the cohomology ring as opposed to Betti numbers only.

Another approach to Morse inequalities is by way of level surface method. One con-
siders the set Mc = {x|f(x) ≤ c} and studies how its topology changes as c increases.
As long as c remains non-critical, the homotopy equivalence class of Mc remains constant.
Assume that there is only one critical point with Morse index µ on a critical level c. Choose
sufficiently small ε and let a = c− ε, b = c+ ε

Lemma. The homotopy type of Mb is obtained from that of Ma by attaching a µ-cell:

Mb ∼Ma ∪ eµ.

Let us outline the proof. Consider a neighborhood of a critical point in which f =
−x2+y2 where x is µ-dimensional and y is (n−µ)-dimensional. Consider the µ-dimensional
disc e = {x2 < ε, y = 0}. Then ∂e lies on the level surface f−1(−ε) = ∂Ma and Mb is
obtained from Ma by attaching e and taking its neighborhood.

Consider now the two Poincaré polynomials, Pt(f) and Pt(M) restricted to Mc. How
do they change from Ma to Mb? The former becomes greater by tµ. With the latter, two
scenarios are possible. The sphere ∂e is a cycle in Ma. If this cycle is a boundary, ∂e = ∂β
then e∪β gives a new homology class in Mb, and Pt(M) increases by tµ. If ∂e determines a
homology class in Ma then the cell e kills it, and Pt(M) decreases by tµ−1. In the first case,
Pt(f)− Pt(M) remains the same, and in the second increases by tµ + tµ−1 = (1 + t)tµ−1.
Morse inequalities follow.
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Exercises. 1. Let f be a harmonic function on Rn. Prove that the Morse index of
its critical point cannot equal 0 or n.

2. Let F (z1, ..., zn) be an analytic function in Cn and f = Re(F ) : R2n → R. Prove
that the Morse index of every critical point of f equals n.

3.4. We discuss some applications of Morse theory. First, consider a submanifold
Mk ⊂ Rn. Let p ∈ Rn be a fixed point and f : M → R is the distance to p. The critical
points of f are those q ∈ M for which pq ⊥ M . Thus the number of perpendiculars from
p to M is bounded below by the sum of Betti numbers of M .

Let q be a critical point of f . We compute the Morse index. Assume that codim
M = 1. Choose Cartesian coordinates near q so that M is given by

z =
1

2
(
∑

aix
2
i −

∑
bjy

2
j + ...), ai > 0, bj > 0

(assuming that M is in general position and q is a generic point). Let p = (0, r) with
r > 0. Then, ignoring terms of order 3 and higher,

f(x, y) = (x2 + y2 + (z − r)2)1/2 = r +
1

2r
(x2 + y2 − 2zr),

that is, the quadratic part is x2 +y2−r(
∑
aix

2
i −

∑
bjy

2
j ). It follows that the Morse index

is equal to the number of ai satisfying ai > 1/r.
Recall that the coefficients ai are the principle curvatures of M at q, and that the

points q+(1/ai)n are called focal points; here n is the unit normal vector at q. We proved
that the Morse index of f equals the number of focal points on the segment pq.

Next, consider the case when codim Mk > 1. In this case there are many unit normals
to M at q ∈ M , and each gives a quadratic form. Let x(u) be a parameterization of M .
For a unit vector vector n consider the quadratic form (n · ∂2x/∂ui∂uj). Its eigenvalues
κ1, ..., κk are called the principal curvatures of M in the direction n. The points q + κ−1

i n
are called focal points in the direction n.

Exercise. Prove that the Morse index of a non-degenerate critical point q ∈ M of
the function f is again equal to the number of focal points on the segment pq.

As an application, we prove the next result.

Theorem. Let M ⊂ Cn be a smooth affine algebraic submanifold of real dimension 2k.
Then Hi(M,Z) = 0 for i > k.

Proof. Let q ∈ M . We need to consider the quadratic part of M at q. Let z1, ..., zk

be complex coordinates on M near q. The inclusion M ⊂ Cn gives a complex-analytic
functions w1(z), ..., wn(z). Let n be a unit normal vector to M at q. Then the Hermitian
product w · n̄ decomposes in a complex series: Const + Q(z1, ..., zk)+ ... (why aren’t there
a linear term?)

To have real coordinates, let z = x + iy. Then Re w · n̄ decomposes in the series
Const + Q′(x1, ..., xk, y1, ..., yk) + ..., and Q′ is the second quadratic form of M in the
direction n. We claim that the eigenvalues of Q′ split into pair of opposite numbers.
Indeed, Q(iz1, ..., izk) = −Q(z1, ..., zk). In other words, the operator J transforms Q′ to
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−Q′, or J∗Q′J = −Q′. Since J is an orthogonal transformation, J∗ = J−1 = −J , and one
has: JQ′J = Q′ or JQ′ = −Q′J . Thus if Q′(v) = µv then Q′(Jv) = −µJv.

Returning to M , we see that the focal points on the line q+ tn are located symmetri-
cally with respect to q. Now pick a generic point p. The sets Mc = f−1[0, c] are compact.
If q ∈ M is a critical point then its Morse index equals the number of focal points on pq.
There are at most 2k focal points, and at most k lie on one side of q. Thus the index
does not exceed k, and M has the homotopy type of a complex with cells of dimension not
greater than k.

3.5. Morse theory was created in search of geodesics on Riemannian manifolds. Let
M be a closed Riemannian manifold. Does is always carry a nontrivial closed geodesic?
How many?

If we had a similar problem with fixed (distinct) ends then the minimum length string
between the ends would be a solution. In the periodic problem this minimum may be a
point. Let ΛM be the free loop space of maps S1 → M (in the compact open topology).
A classical result (Hadamard, Cartan,...) as follows.

Theorem. Every component of ΛM other than the component of the trivial map contains
a closed geodesic.

Outline of proof. First, there is ε > 0 such that every two points at distance less
than ε can be connected by a unique geodesic segment. Therefore every loop in ΛM can be
subdivided into small pieces and homotoped to a geodesic n-gon with n sufficiently large.
In particular, each component of ΛM contains a geodesic polygon.

Consider the space (finite dimensional!) PnM ⊂M × ...×M consisting of (x1, ..., xn)
with

E(x) :=
∑

d(xi, xi+1)
2 < ε.

Then every point in PnM determines a closed geodesic n-gon. Do you see why, for n large
enough, this is not necessarily a short curve?

Now consider the energy function E. It is smooth near PnM ⊂ M (n) and has a
minimum. The minimum of E is attained inside PnM because it is defined as E < ε. This
minimum is a smooth closed geodesics, i.e., has no corners.

Next consider the opposite case of a compact simply connected M . The next result
was first proved by Lyusternik and Fet in the 1950-s.

Theorem. M carries at least one closed geodesic.

Outline of proof. The projection ΛM → M is a (Serre) fibration with fiber the
space of based loops ΩM . This fibration admits a section, the constant loops. By algebraic
topology,

πi(ΛM) = πi(M)⊕ πi(ΩM).

Another famous fibration, PM →M with fiber ΩM and contractible space gives: πi(M) =
πi−1(ΩM). Thus

πi(ΛM) = πi(M)⊕ πi+1(M).

Note that πi(M) cannot all be trivial. Choose a non-trivial element x ∈ πi(M) with
minimal i. This gives 0 6= y ∈ πi−1(ΛM).
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As before, replace ΛM by the space of polygons, PnM , with n large enough. Then the
homotopy groups will also coincide up to i. We want to find a critical point of E other than
a constant path. If there are none then the gradient of E gives a homotopy equivalence of
PnM to M . But there are no non-trivial elements in πi−1(M), a contradiction.

3.6. I will mention a number of further developments in Morse theory.

(i) Morse theory on manifolds with boundary. If ∂M = N and f is a smooth function
on M , then one should also count the critical points of f |N . At such a point, grad f may
have inward or outward direction, and we consider only the former points. Let Pt(f) be
the Poincaré polynomial of f in Int M and let P̄t(f) be the Poincaré polynomial of f |N ,
taking only the inward gradient points into account. Then

Pt(f) + P̄t(f) = Pt(M) + (1 + t)Qt

with non-negative Qt.

Example. Let Mn be a disc and

f =

p∑
i=1

aix
2
i −

n∑
j=p+1

bjx
2
j .

Then Pt(f) = tq where q = n− p and P̄t(f) = 2(1 + t+ ...+ tq−1). Then

Pt(f) + P̄t(f)− Pt(M) = 1 + 2t(1 + t+ ...+ tq−1) + tq = (1 + t)(1 + t+ ...+ tq−1).

Exercises∗. Prove these Morse inequalities. What happens if, instead of considering
the inward gradient, one considers the outer one?

(ii) Morse-Bott inequalities. It often happens that instead of a critical point a function
has a critical manifold. This is always the case when M is acted upon by a Lie group G
and f is G-invariant. If N ⊂M is a critical submanifold then one looks at the Hessian in
the normal direction (the normal bundle ν(N) = TM/TN). Thus one defines Morse-Bott
index µ(N). Assuming that the negative bundle of the Hessian over N is orientable, one
has the Poincaré polynomial Pt(f) =

∑
N tµ(N)Pt(N) and the usual inequalities.

Example. The function z on the standard T 2 in 3-space has two critical circles, and
Pt(z) = (1+ t)+ t(1+ t). Thus this is a perfect function. The function z2 on the standard
S2 has two critical points and a critical circle , and Pt(z) = 2t2 + (1 + t).

(iii) Morse-Smale-Witten complex. Assume that the function f and the metric are
generic so that the stable and unstable manifolds Wx and W ∗

y of critical points x and y
intersect transversally. Then M(x, y) = Wx ∩W ∗

y is the space of gradient lines from x to
y. We saw that dim M(x, y) = µ(x) − µ(y). One has also R-action on M(x, y) by time
translation in of the gradient flow.

One constructs a chain complex
∑

df(x)=0 Z2(x) with the boundary operator

∂(x) =
∑

y∈Crf,µ(y)=µ(x)−1

(# of gradient lines from x to y) (y).
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One can prove that ∂2 = 0, and the homology equal those of M . In fact, one can introduce
orientations and do this over Z.

A sketch of proof that ∂2 = 0: We are given two critical points, x and z such that
µ(x) − µ(z) = 2, and we want to show that there is an even number of gradient lines
x → y → z. The space M(x, z)/R is 1-dimensional. It is a manifold with boundary,
and therefore it consists of circles and intervals. Each interval contributes a pair of lines
x→ y → z, and their number is even.

Exercise. Compute the Morse-Smale-Witten complex for the function on T 2 given
by f(x, y) = cosx+ cos y.

In fact, one can reconstruct also the multiplication in the cohomology and other
cohomological operations from Morse data (one may need more than one functions for
that).

(iv) Equivariant Morse theory.

We already discussed the situation when M is acted upon by a compact Lie group
G and the function f is G-equivariant. For example, the energy functional on loops is
invariant under the S1 action on the loops by shifting the parameter. If the action is free
then M/G is a manifold, f is a function on it, and Morse inequalities apply to M/G. What
does one do when the action is not free?

The recipe is known as the homotopy quotient or Borel construction. Note that if
G acts on E freely then the diagonal action on E × M is also free. Note also that a
contractible space is as good as a point. Define MG = (EG ×M)/G where EG is the
universal G-space. For example, if M is a point then MG = BG, the classifying space of
G. One has a fibration MG → BG with fiber M . Some common examples:

BZ = S1, BZ2 = RP∞, BS1 = CP∞, BU(n) = CGn(∞).

In general, there is the Milnor construction for EG = G ∗G ∗G ∗ ....
The function f descends to MG. It’s Poincaré polynomial is as follows. Let O be a

critical orbit on M . Then O = G/H, and

PG
t (f) =

∑
O∈Crf

tµ(O)Pt(BH).

Assume that the stabilizers H are connected. Then one has the usual Morse inequalities

PG
t (f) = PG

t (M) + (1 + t)Qt

where PG
t (M) =

∑
ti dimHi(MG).

Example. Let M = S2, G = S1 and f(x, y, z) = z. Then both poles are critical with
H = S1. Thus PG

t (f) = (1 + t2)/(1− t2). On the other hand, one finds from the fibration
MG → CP∞ that PG

t (M) = (1 + t2)/(1− t2), so f is perfect.

Exercise. Find PG
t (f) for the function f(x, y, z) = z2 on S2.

(v) Witten’s approach. Consider the de Rham complex Ω0 → Ω1 → ... and perturb it
by f as follows:

dtω = dω + tdf ∧ ω.
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This is conjugated to the usual de Rham differential:

dt = exp(−tf) ◦ d ◦ exp(tf),

so the homology remain the same for all finite t.
Very roughly speaking, one continues as follows. If one has a complex depending on

a parameter, then the homology in general position is smallest, and for special values it
may jump. This is because the kernel of a linear map can only jump while the image can
only decrease for special values of t. Thus H(dt) is not greater than H(d∞). The latter
is the differential ω 7→ df ∧ ω, and its homologies are concentrated on critical points of f .
One arrives at Morse inequalities.

That the homology of d∞ are related to the critical points of f is indicated by the
following. If f had no critical points (say, replace df by a closed 1-form α) then one can
find a vector field v such that df(v) = 1. Then

ω = iv(df ∧ ω) + df ∧ ivω = (ivd∞ + d∞iv)ω,

and d∞ is acyclic.
The actual argument involves Hodge theory. Let ∆ = d∗d + dd∗ be the Laplacian

acting on differential forms.

Lemma. H(M) = Ker∆.

Proof. One has:

< (d∗d+ dd∗)ω, ω >=< d∗ω, d∗ω > + < dω, dω > .

It follows that ∆ω = 0 if and only if ω ∈ Kerd ∩Kerd∗. Next,

H = Z/B = Z ∩ B⊥ = Kerd ∩Kerd∗

since Kerd∗ = B⊥, and we are done.

Now we have ∆t and Ωi decomposes into the eigenspaces Ωi
λ. Fix c > 0 and consider

only 0 ≤ λ ≤ c; this is a finite-dimensional subcomplex Ω∗c(t) ⊂ Ω∗(t) since the Laplace
operator commutes with the differential. The cohomology of Ω∗

c(t) are still the de Rham
cohomology of M . To obtain Morse inequalities one lets t → ∞ and proves that dim
Ωi

c(∞) equals the number of critical points of index i.

Example-Exercise. Consider f(x) = −x2/2 near zero. Then

dt(φ) = φ′dx− txφdx, d∗t (φdx) = −φ′ − txφ.

It follows that

∆0
t (φ) = −φ′′ + t2x2φ+ tφ, ∆1

t (φdx) = −φ′′dx+ t2x2φdx− tφdx.
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The second order differential operator −d2 + tx2 is known as quantum harmonic oscillator,
and its spectrum is |t|, 3|t|, 5|t|, ... (prove this!) It follows that, for t > 0,

Spec(∆0
t ) = 2t, 4t, 6t, ..., Spec(∆1

t ) = 0, 2t, 4t, ...

A consequence is that if f(x)dx is an eigenvector of ∆1
t for t >> 1 with a small eigen-

value then it concentrates near the maxima. For ∆0
t , the situation is reversed, and the

eigenfunctions f(x) are concentrated near minima.

(vi) Morse-Novikov theory. It is clear that Witten’s perturbation still works if one
replaces df by a closed 1-form α. This already suggests a generalization of Morse theory
from functions to closed 1-forms known as the Morse-Novikov theory. We consider the
simplest case.

Let [α] ∈ H1(M,Z). This 1-form determines a smooth map g : M → S1 given by
integrating α over paths in M . There is a covering p : N → M with the group Z and a
lifting f : N → R such that p∗(α) = df . One is interested in zeroes of α or critical points
of f . A form is called Morse if so is the function f .

The usual constructions of Morse theory apply: each critical point of Morse index µ
gives rise to a µ-dimensional cell going down but, unlike the case of compact manifold, it
may go down to infinity, and the boundary of this cell may contain infinitely many cell of
dimension µ− 1. The action of Z adds constants to f and sends critical points to critical
points of the same index.

To deal with this complication consider the ring K of Laurent series
∑

const<i ait
i

where t is thought of as the generator of the group of deck transformations Z. The cell
complex of the function f is considered as a complex of K-modules with finitely many
generators (because α has finitely many zeroes on M):

0 → Cn → Cn−1 → ...→ C1 → C0 → 0.

Unlike the case of a Morse function, one can easily have C0 = 0, and even all Ci = 0 if
M fibers over S1. One proves that the homology of the this Morse-Novikov complex is
a homotopy invariant of (M,α), and the respective Morse-Novikov inequalities relate mi,
the number of zeroes of α of Morse index i with the rank of the respective homology group
(all considered as K-modules). These numbers Bi(M, [α]) play the role of Betti numbers
in this theory, and the (weak) Morse-Novikov inequalities read: mi ≥ Bi(M, [α]).

All this is closely related to Witten’s theory. What follows applies to all 1-forms,
not necessarily the ones with integer periods. Consider the deformation of the de Rham
differential:

dtω = dω + tα ∧ ω.
One proves that the homology is finite-dimensional for all t and that, as t→∞, the ranks
stabilize to Bi(M, [α]).

In fact, the homology of the differential dt can be equivalently described as follows.
Consider the representation of the fundamental group π1(M) → C∗ given by the formula

ρt(γ) = exp(i t

∫
γ

α).

24



One obtains a local system of coefficients ρt on M , and the homology of dt equals
H∗(M,ρt).

Digression. Recall the construction of the homology with local coefficients. We have
a group G = C∗, and to a homotopy class of a path γ there corresponds a homomorphism
ρ(γ). Let cq be the center of the standard q-simplex and sq,i be the straight segment
connecting cq with the center of the i-th face. A q-dimensional singular chain is

∑
cjfj

where fj is a singular q-simplex and cj ∈ G. The boundary is defined as follows:

d(cf) =

q∑
i=0

(−1)iρ(f(sq,i))(c) Γi(f),

where Γi is the i-th face operator.

The problem of estimating the numbers Bi(M, [α]) is quite interesting on its own
right. We have the differential dt; denote by Hg.p. the homology in general position with
respect to t. Consider a more abstract set-up: let dt = d + tδ be a differential in a finite
dimensional space V .

Lemma. The differential ∂ acts on H(V, d) and

rkHg.p.(V, dt) ≤ rkH(H(V, d), ∂).

Proof. One has:
d2

t = d2 + t(d∂ + ∂d) + t2∂2.

It follows that d and ∂ are (skew) commuting differentials, and therefore ∂ acts on H(V, d).
Consider t as a formal parameter and work with infinite series in t. If ωt = ω0 + tω1 +

t2ω2 + ... ∈ Kerdt then dω0 = 0, ∂ω0 = dω1, etc. Likewise, ωt ∈ Imdt if ω0 = dη0, ω1 =
∂η0 + d∂η1, etc. Now, given [ωt] ∈ Hg.p.(V, dt), assign to it the class [ω0] ∈ H(H(V, d), ∂).
One checks that this is a well defined and injective homomorphism.

In out case, the upper bound of the Lemma is the (graded) dimension of the kernel of
the operator of multiplication by [α] ∈ H1(M). More refined estimates are available along
these lines involving Massey products.

Example-Exercise. In symplectic topology, one often needs to consider the following
1-form on the loop space ΛM of a symplectic manifold (M,ω). If ω = dλ then one has a
function ΛM → R given by

γ 7→
∫

γ

λ.

If ω is not exact one may take a surface N 2 ⊂M with ∂N = γ and consider the function
γ 7→

∫
N
ω. This depends on the choice of N and is a multivalued function or a 1-form.

Equivalently, one defines a 1-form on ΛM : to a vector field v along γ one assigns the
number ∫

γ

ivω.

Prove that this 1-form is closed.
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3.7. Return to the Conley-Zehnder theorem (sect. 3.2). We constructed a function G
on T 2n×R2n(k−1) whose critical points correspond to the fixed points of the Hamiltonian
symplectomorphism of the torus. Let x ∈ T 2n and y ∈ R2n(k−1), and let Q(y) be a
quadratic form of signature (n(k−1), n(k−1)). The function G had the following property:
if |y| >> 1 then dG(x, y) = dQ(y)+O(1). One can perturb G without creating new critical
points so that, for |y| >> 1, one has: G(x, y) = Q(y).

One wants to prove that, in general position, G has no fewer critical points than 22n.
Indeed, let Mc be the sublevel set {G ≤ c}. Then, for c >> 1, we have:

H∗(Mc,M−c) = H∗(T 2n × (Dn(k−1), Sn(k−1)−1)),

and the Poincaré polynomial of the latter space is tn(k−1) (1 + t)2n. By Morse theory, one
has no fewer than 22n critical points between levels −c and c.

The main difference of this consideration from the closed geodesic problems is that
the function is not bounded either below or above (unlike the energy or length that are
bounded below).

To see the variational aspect, consider the space Λ0T
2n of contractible loops on the

torus. We will define a functional on this space whose critical points correspond to the
fixed points of the Hamiltonian torus symplectomorphism. Given a contractible loop γ,
lift it to R2n as a loop γ̃. Define the action functional

F (γ) =

∫
γ̃

pdq − qdp−H(p, q, t)dt

where H is the time-dependent Hamiltonian defining the Hamiltonian symplectomorphism,
lifted to R2n.

Lemma. The extrema of F correspond to fixed points of the Hamiltonian symplectomor-
phism.

Proof. Consider an infinitesimal perturbation of γ̃ given by a periodic vector field
a∂p+ b∂q. Then the increment of F is

dF (a∂p+ b∂q) =

∫ 1

0

(pḃ− qȧ−Hpa−Hbb)dt =

∫ 1

0

(−ṗb+ q̇a−Hpa−Hbb)dt.

This vanishes for all a, b if and only if q̇ = Hp, ṗ = −Hq, that is, the loop is a trajectory
of the time-dependent Hamiltonian vector field with the Hamiltonian H.

The functional F can be considered as a perturbation of the quadratic function
∫
pdq−

qdp which is bounded neither below nor above.

Exercise. Let (M,ω) be a symplectic manifold and H a time-dependent Hamiltonian
1-periodic in t. Define a (multi-valued) functional on Λ0M , similar to F , and interpret its
extremals as fixed points of the respective Hamiltonian symplectomorphism (cf. Example
in 3.6).
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Now we connect this variational approach with (pseudo)holomorphic curves. Recall
that if u(x, y) and v(x, y) are the real and the imaginary parts of a holomorphic function
then the Cauchy-Riemann equations hold: ux = vy, uy = −vx. This can be also written as

(u, v)x + J(u, v)y = 0

where J(u, v) = (−v, u) is the operator of multiplication by
√
−1.

It turns out that the gradient lines of the functional F can be interpreted as solutions
of a perturbed Cauchy-Riemann equation. The above formula read:

dF (a∂p+ b∂q) =

∫ 1

0

(a∂p+ b∂q) · ((q̇ −Hp)∂p− (ṗ+Hq)∂q),

and therefore the field (q̇ − Hp)∂p − (ṗ + Hq)∂q along γ is the gradient of F . Thus the
equations for a gradient line is

ps = qt −Hp, qs = −pt −Hq

or
∂w

∂s
+ J

∂w

∂t
+∇H = 0

where s is the parameter in the gradient flow and w = (p, q). This is the Cauchy-Riemann
equation, perturbed by ∇H.

A. Floer used this approach to prove Arnold’s conjecture for monotone symplectic
manifolds that satisfy the following technical assumption: ω and c1 (the first Chern class
of the tangent bundle) are proportional over π2(M). Using J -holomorphic curves, Floer
constructed a complex generated by fixed points of the Hamiltonian symplectomorphism
whose homology are called Floer homology. For monotone symplectic manifolds they
coincide with H(M). Recently Arnold’s conjecture has been finally proved for all closed
symplectic manifolds.

4. Contact structures.

Contact geometry is an odd dimensional twin of symplectic one. The relation between
contact and symplectic geometries is similar to the relation between projective and affine
ones.

4.1. Consider a smooth field of hyperplanes (a distribution) ξ of a manifold M .
Locally the field is given by a 1-form λ such that ξ = Kerλ. The distribution is called
integrable if there is a codimension 1 foliation tangent to ξ at every point.

Lemma. ξ is integrable if and only if λ ∧ dλ = 0.

Proof. The distribution is integrable if and only if the commutator of every two
sections of ξ is again its section. In other words, if λ(u) = λ(v) = 0 then λ([u, v]) = 0. It
is also clear that λ ∧ dλ = 0 if and only if dλ vanishes on ξ.

One has:
dλ(u, v) = λ([u, v])− Luλ(v) + Lvλ(u).
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If ξ is integrable then dλ(u, v) = 0, and it follows that λ([u, v]) = 0. Conversely, if dλ
vanishes on ξ then λ([u, v]) = 0, and ξ is integrable.

Exercise. Let ξ be a codimension k distribution locally given by 1-forms λ1, ..., λk.
Then ξ is integrable (i.e., is a codimension k foliation) if and only if, for all i, the 2-form
dλi lies in the ideal (λ1, ..., λk) (Frobenius Theorem).

A 2n-dimensional distribution ξ on M 2n+1 is called a contact structure if it is maxi-
mally non-integrable: λ ∧ dλn 6= 0 for a 1-form λ that locally defines ξ. Clearly, this does
not depend on the choice of this 1-form. The form may not exist globally; its existence is
equivalent to coorientation of the distribution. A contactomorphism is a diffeomorphism
that takes a contact structure to a contact structure.

Exercise. A contact 3-manifold is orientable.

An equivalent definition: dλ is non-degenerate on ξ. Hence ξ must be even dimensional
and M odd dimensional. If Lk is a submanifold, tangent to ξ, then λ and dλ vanish on
L, that is, TxL is an isotropic subspace of ξ(x), dλ. Hence k ≤ n. A submanifold is called
Legendrian if it is n-dimensional and everywhere tangent to the contact distribution.

4.2. Examples.
(a) The form dz − ydx gives a contact structure on R3. Likewise dz −

∑
yidxi is a

contact form on R2n+1. Such coordinates are called Darboux.

(b) Let V 2n+2 be a symplectic vector space. Then P (V ) has a contact structure
defines as follows. If l ⊂ V is a line then E2n+1 is its skew-orthogonal complement. In
projectivization one obtains a codimension 1 distribution ξ = P (E). Let (p, q) be Darboux
coordinates. Consider an affine chart q0 = 1. In this chart, ξ is given by the 1-form

∑
pdq − qdp = −dp0 +

n∑
i=1

pidqi − qidpi.

It follows that ξ is a contact structure.

Exercise. Consider the unit sphere in Cn+1, and let ξ(z) be the complex tangent
space (n-dimensional complex) at z ∈ S2n+1. Prove that this is a contact structure con-
tactomorphic to the lift of the above described one in the projective space via the 2-fold
covering S2n+1 → RP2n+1. Show also that ξ consists of the orthogonal complements to
the fibers of the Hopf bundle S2n+1 → CPn.

(c) A contact element on a smooth manifold Mn is a hyperplane in a tangent space.
The space of all contact elements is the projectivization of the cotangent bundle PT ∗M .
Likewise, the space of cooriented contact elements is ST ∗M . The contact structure ξ
on the space of contact elements is defined by the following skating condition: a velocity
vector of a contact element belongs to ξ if the velocity vector of the base point belongs to
the contact element. Let (q, p) be Darboux coordinates on T ∗M . Consider a chart p0 = 1.
In this chart, ξ is given by the 1-form dq0 +

∑
pidqi.

Let N ⊂ M be a submanifold. Then L(N), the set of contact elements, tangent
to N , is a Legendrian submanifold in the space of contact elements. In particular, the
fibration PT ∗M → M is Legendrian, that is, has Legendrian fibers. For example, the
space of contact element of the plane is the solid torus S1 × R2 with the contact form
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dy/dx = tanα. A curve in the plane lifts to the solid torus as a Legendrian curve, and a
Legendrian curve projects to the plane as a (wave) front. A front may have singularities
but it has a tangent line at every point.

Exercise. Prove that the space of cooriented contact elements of S2 is SO(3) = RP3.

(d) Projective duality is best understood via contact structures. Let P be a projective
space. Then PT ∗P = PT ∗P ∗. Indeed, both spaces consist of pairs (point of P , hyperplane
in P ). Thus one has two contact structures on this space.

Lemma. The two contact structures coincide.

Proof. Lift everything to the vector space V such that P = P (V ). A line is given by
a vector v and hyperplane is characterized by its conormal ν. The space consists of pairs
(v, ν) with vν = 0. The first contact form is given by νdv = 0 and the second by vdν = 0.
Since vdν + νdv = 0, the two structures coincide.

Projective duality consists of lifting a submanifold in P to PT ∗P as a Legendrian
manifold and then projecting to P ∗ as a front. The dual of the dual of convex hypersurface
is the original hypersurface.

Exercises. Prove that, for plane curves, cusps are dual to inflection points. What is
dual to double tangents? Draw a curve, dual to y = (x2 − 1)2.

Duality takes graphs of convex functions to graphs of convex functions. The respective
transformation of functions is called the Legendre transform.

Exercise. Find the Legendre transform of f(x) = xα.

(e) Contact structures are helpful in understanding the geodesic flow and, more gen-
erally, wave propagation. The geodesic flow in the space of cooriented contact elements
is the motion of the contact element with unit speed along the geodesic, perpendicular
to it. The time-t flow takes a hypersurface to the t-equidistant hypersurface (compare
to the Huygens principle). It follows that, in the space of contact elements, the geodesic
flow takes Legendrian manifolds to Legendrian ones. It follows that the geodesic flow is a
1-parameter group of contactomorphisms (why?)

Exercise. Describe the equidistant curves of an ellipse.

(f) Recall the notion of 1-jet of a function on a manifold. The space J 1M has a contact
structure. Indeed, J1M = R × T ∗M , and in Darboux coordinates, the 1-form dz − pdq
is contact. If f is a function on M then its 1-jet extension (or 1-graph) is a Legendrian
manifold.

Exercise. Prove that ST ∗Rn is contactomorphic to J1Sn−1. Hint: consider a contact
element at point x given by a unit normal v. assign to it the 1-jet of the function < x, . >
at point v ∈ Sn−1.

4.3. Let (M2n−1, ξ) be a contact manifold. Consider the manifold N 2n that consists
of non-zero covectors on M , equal to zero on ξ. Then N is a fibration over M with fiber
R∗. For example, if M is the space of contact elements of manifold Q then N = T ∗Q−Q.
One has a canonical 1-form λ on N . Let p : N →M be the projection. The value of λ on
tangent vector v at point α is α(dp(v)). In other words, λ is the restriction of the Liouville
form on N ⊂ T ∗M .

29



Lemma. The 2-form dλ is a symplectic structure on N .

Proof. Locally one can choose a contact form α. Then, also locally, N = M ×R∗,
and λ = tα. Hence dλ = tdα+ dt ∧ α and dλn = tn−1dt ∧ α ∧ dαn−1 6= 0.

The manifold N is called the symplectization of the contact manifold M . Symplec-
tization translates contact questions to R∗-homogeneous symplectic ones. For example,
contactomorphisms of M are symplectomorphisms of N , commuting with the R∗-action.
Legendrian submanifolds in M are conical Lagrangian submanifolds in N .

We saw in 2.6 that the leaves of a Lagrangian foliation have an affine structure.
Consider a Legendrian foliation. Symplectization transforms it into a Lagrangian foliation
with a R∗-action, and this gives a projective structure on the leaves. Here is an equivalent
construction. Locally, a foliation is a fibration p : M 2n−1 → Bn with Legendrian fibers.
Let x ∈M . Then dp(ξ(x)) is a contact element on B. We obtain a mapping M → PT ∗B
that sends the leaves to the fibers of PT ∗B → B, that is, to projective spaces. This gives
a projective structure on the leaves.

A contact vector field v on M is an infinitesimal contactomorphism. If α is a contact
1-form then Lvα = fα for a function f . A contact vector field on M lifts to a symplectic
vector field on N , commuting with the R∗-action. In particular, the Hamiltonian function
can be taken homogeneous of degree 1: H(tx) = tH(x).

Fix a contact 1-form on M . This gives a section of the fibration N →M . Define the
contact Hamiltonian of a contact vector field as the restriction on M of the homogeneous
Hamiltonian of the symplectization of this field.

Lemma. In Darboux coordinates, when α = dz + ydx, the contact vector field vf with
the contact Hamiltonian f is given by the formula

fy∂x+ (yfz − fx)∂y + (f − yfy)∂z.

Proof. One has coordinates x, y, z, t in N with λ = tdz + tydx. Change coordinates:

p = ty, q = x, p0 = t, q0 = z.

Then λ = pdq. Let H(p, q, p0, q0) be the Hamiltonian; it is homogeneous of degree 1 in
p, p0. By Euler’s formula, (p0∂p0 + p∂p)H = H and therefore p0∂p0(H) = H − p∂p(H).
One has: f(x, y, z) = H(y, x, 1, z). Now consider the Hamiltonian vector field:

q̇ = Hp, ṗ = tẏ + yṫ = −Hq, q̇0 = Hp0
, ṗ0 = −Hq0

.

It follows that
ẋ = fy, tẏ + yṫ = −fx, ż = f − yfy, ṫ = −fz,

and the result follows.

Corollary. One has: α(vf ) = f .

Exercise. 1. The correspondence f → vf makes it possible to define a structure of
Lie algebra on the space of smooth functions on M (called the Lagrange bracket). Write
down explicit formulas in Darboux coordinates. Does Leibnitz rule hold for this bracket?
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Another operation is contactization of a symplectic manifold. Let (N,ω) be an exact
symplectic manifold. Choose a 1-form α such that dα = ω. Consider the manifold M =
N×R with the contact 1-form α−dt (why is it contact?) If α′ is a different potential for ω
and α′−α = df then the two contactizations are contactomorphic via (x, t) → (x, t+df(x)).

Example. If N = T ∗Q then M = J1Q.

The contactization of a Lagrangian submanifold Λ ⊂ N is a Legendrian submanifold
L ⊂M that projects diffeomorphically on Λ. This contactization exists if and only if α|Λ
is exact. Such a Lagrangian submanifold is called exact.

Example. Let N be the plane with the standard area form. Every closed curve is a
Lagrangian submanifold, and it is exact only if the curve bounds zero area. Note that such
exact Lagrangian curve necessarily has self-intersections. A far-reaching generalization is
the Gromov theorem: there are no exact Lagrangian embeddings of T n into the standard
symplectic 2n-space.

One more relation between symplectic and contact manifolds is provided by the next
construction. Let α be a contact 1-form on M . The Reeb field of α is the vector field such
that ivdα = 0 and α(v) = 1. It follows that Lvα = 0. If the space of trajectories of the
Reeb field is a manifold then this manifold has a symplectic structure coming from dα.

Exercise. In the notation of the above lemma, prove that vf is the Reeb field for
the contact form fα (this somewhat explains the formulas for the vector field vf from this
lemma).

Exercises∗. One has a version of Darboux theorem for contact manifolds (and contact
1-forms): locally they are all diffeomorphic. Moreover, if L is a Legendrian submanifold in
a contact manifoldM then a neighborhood of L inM is contactomorphic to a neighborhood
of the zero section in the 1-jet space J1L.

Another result of this kind is the Gray stability theorem: homotopic contact structures
on closed manifolds are diffeomorphic. This is not true anymore for open manifolds. The
proof uses the Moser homotopy method (cf. the proof of Darboux theorem).

4.4. This section is a very sketchy exposition of the theory of Legendrian knots.
I do not include numerous figures here. Bennequin’s discovery of non-standard contact
structures in R3 in 1983 made use of knots.

First, a few words about Eliashberg’s tight and overtwisted contact structures in
dimension 3. If (M, ξ) is a contact 3-fold and S is a surface in M then the intersection
with ξ defines a line field on S (in general, with singularities). of course, this foliation is
called characteristic. An overtwisted disc in M is an embedded disc whose boundary is a
characteristic curve. A contact manifold is called overtwisted if it contains an overtwisted
disc; it is called tight otherwise.

Among other things, Eliashberg discovered the following results:

Theorem 1. The isotopy classification of overtwisted contact structures on a closed 3-
manifold is equivalent to the homotopy classification of 2-dimensional distributions.

For example, the homotopy classes of 2-distributions on S3 are in one-to-one corre-
spondence with integers.
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Theorem 2. There is a unique tight contact structure on S3, namely, the standard one.

Bennequin’s theorem can be formulated as stating that the standard contact structure
in 3-space is tight (the total number of contact structures in R3 is countable – Eliashberg).

Consider Legendrian and transverse knots (and links) in the standard contact 3-space
with the form dz−ydx. Legendrian curves are framed. The Maslov index µ is the rotation
number of the curve inside the contact plane; the Thurston-Bennequin index tb is the
self-linking of the curve. Transverse curves are also framed by the (homotopically unique)
nonvanishing section of the contact distribution; the Bennequin index β is the respective
self-linking number. Let γ be an oriented Legendrian curve. Slightly pushing the curve left
or right inside the contact planes one obtains the curves γ±. These curves are transverse,
one ascending and another descending. One has:

β(γ±) = tb(γ)± µ(γ).

Exercise. Prove the last statements.

One can draw these curves in the (x, z) plane; for Legendrian ones, the missing y
coordinate is the slope. A consequence of this representation is that every curve can be
C0-approximated by a Legendrian and by a transverse one. It also follows that every
topological knot (or link) has a Legendrian, and a transverse, realization.

The elementary invariants, µ and tb, can be expressed in terms of the projection: µ is
an algebraic sum of the cusps, and tb is the algebraic sum of the double points minus half
the number of cusps.

Exercise. Prove the formulas.

Another projection is on the (x, y) plane. Then the missing coordinate is the area.
This causes various problems: the lift is not unique; it is hard to tell whether a knot
diagram agrees with the area restrictions. The numbers µ and tb can be easily expressed
in term of this projections: µ is just the Whitney rotation number and tb is the writhe.

An analog of the Reidemeister theorem is as follows.

Lemma. Two Legendrian knots are Legendrian isotopic if and only if their front projec-
tions are connected by a sequence of the three Legendre Reidemeister moves.

What Bennequin proved was the next result.

Theorem. Let γ be a transverse knot. Then β(γ) ≤ −χ(S) where S is a Seifert surface
for γ.

As a consequence, β(Legendrian unknot) < 0, and this fails for overtwisted contact
structures in 3-space.

This result has shortcomings: insensitive to mirroring, hard to estimate in terms of a
diagram, and very difficult to prove. Better results are given in terms of knot polynomials,
the HOMFLY F̄ (x, y) and the Kauffman K̄(x, y).

Theorem. Let γ be a transverse link. Then

β(γ) ≤ min degx F̄γ(x, y).
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Let γ be a Legendrian link. Then

tb(γ) ≤ mindegx F̄γ(x, y) and tb(γ) ≤ mindegx K̄γ(x, y).

For example, this gives 1 and −6 for right and left trefoils (why?) For some classes of
knots, the result is sharp (for half of all mirror torus knots, for positive and for alternating
links). Similar results hold for Legendrian and transverse knots in the space of cooriented
contact elements in the plane.

One wants to know whether there are other invariants of Legendrian knots beyond
topological ones and the Maslov and Bennequin invariants. The next result is due to
Eliashberg and Eliashberg-Frazer.

Theorem. For transverse and for Legendrian topological unknots there are no other in-
variants.

A difficulty of the problem lies, in particular, in the zig-zag phenomenon: the stable
Legendrian isotopy is the same as the topological one. This implies, in particular, that
no Legendrian invariants of finite order (Vassiliev invariants) are capable of distinguishing
Legendrian knots which are topologically isotopic and have equal Maslov and Bennequin
invariants.

However Legendrian knot invariants, the contact homology, have been discovered by
Eliashberg and by Chekanov. The proper framework in the symplectic field theory (ArXiv
SG/0010059). The motivation comes from Morse theory for the following functional on
the space of curves with end points on a Legendrian knot:

F (γ) =

∫
γ

dz − ydx.

Exercise. The extrema are the trajectories of the Reeb field (i.e., the vertical seg-
ments) with end points on the Legendrian knot, that is, the double points of the (x, y)
projection.

We describe a purely combinatorial construction based on Chekanov’s preprint.
One uses the (x, y) projection and considers the ring of non-commutative polynomials

over Z2 whose generators correspond to double points. This ring is given a differential
satisfying the Leibnitz rule. The differential on a generator is given by counting certain
immersed disc in the knot diagram. More specifically, at every double point, there are
two regions marked + and two marked −. Let a be a generator, i.e., a double point. An
immersed disc, contributing to da, has a unique positive vertex at a, its other vertices are
negative.

The generators are graded, and the differential reduces the grading by 1. Assuming
that the branches at a double point a intersect at the right angle, the grading is defines as
follows. One leaves point a along an undercrossing branch and follows the diagram until
one returns at a. Let α be the total winding of this path. Then deg a = (α− π/2)/π.

Exercise. Show that this grading is a well-defined integer if the Maslov number
equals zero. Otherwise, it is an element of Z2µ.
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The main result is that the homology ring is a Legendrian knot invariant. There are
examples of Legendrian knots that are topologically isotopic and have the same elementary
invariants but are distinguished by the contact homology. It is not known whether this
construction extends to transverse knots.

It is interesting to see how zig-zagging effects the contact homology. A zig or zag in
the (x, z) projection is a kink in the (x, y) one.

Lemma. If a Legendrian knot diagram has a small kink then the contact homology is
trivial.

Proof. Let a be a double point corresponding to a small kink. Then da = 1 + A,
and we claim that A = 0. If this is proved then the contact homology is trivial. Indeed, if
dc = 0 then c = d(ac).

If a kink is small then one can deform the diagram can be deformed so that removing
this kink yields a Legendrian knot. If A 6= 0 then this new diagram contains an immersed
disc D with all negative vertices. Orient the disc clockwise and let C be the curve in space
that projects to its boundary. Then

∫
C

dz − ydx > 0

(why?) On the other hand, by Stokes’ theorem

∫
C

dz − ydx =

∫
D

dx ∧ dy < 0,

a contradiction.

Exercise. I draw a knot diagram in the (x, y) plane and claim that it is a diagram
of a Legendrian knot. Describe an algorithm verifying or refuting this claim.

Among other results on Legendrian knots, let us mention a version of the Rolle theorem
for Legendrian knots in J1S1 due to Eliashberg, and by a different method, to Chekanov.

Theorem. Let γ be a Legendrian knot in J1S1, Legendrian isotopic to the zero section
z = y = 0. Then there are at least two points on γ at which y = 0.

This is not at all true for an arbitrary Legendrian knot in J 1S1.
A more general result, implying the above theorem, is due to Eliashberg. Let A be

a double point of a front at which both branches have the same direction. A positive
resolution at A consists of a surgery removing the double point.

Theorem. Let γ be the front of a Legendrian knot in J1S1, Legendrian isotopic to the
zero section z = y = 0. Then, after a number of positive resolutions, γ becomes a union
of the graph of a function and a number of ”flying saucers”.

4.5. Since a semester is clearly not enough for a more-or-less comprehensive introduc-
tion to symplectic topology, this last section is a panorama of – by now – classic results in
the field.
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The first is the Gromov nonsqueezing theorem. As in 1.6, let B2n(r) be the ball of
radius r in linear symplectic space and C(R) = B2(R)×R2n−2 be the symplectic cylinder.
Assume that there is a symplectic embedding B2n(r) → B2(R)×R2n−2. Then, similarly
to the linear case, r ≤ R.

Another result is the symplectic “camel” theorem. Consider the linear symplectic
space R2n with the “wall” q1 = 0 and a “hole” of radius 1 in it. Consider the ball B2n(r)
with r > 1 on one side of the wall. Can it be moved to the other side by a symplectic
isotopy? The theorem asserts that this is impossible.

A related notion is that of symplectic capacity. This is a function C on symplectic
manifolds of dimension 2n with values in [0,∞] satisfying the conditions:

(i) if (U, ω) symplectically embeds in (U ′, ω′) then c(U) ≤ c(U ′);

(ii) c(U, λω) = λ2c(U, ω);

(iii) 0 < c(B2n(1)) = c(B2(1)×R2n−2) <∞.

Do capacities exist? This is essentially equivalent to the nonsqueezing theorem. In-
deed, one can define the Gromov width w by

w(U, ω) = sup{πr2 : B2n(r) symplectically embeds in U}.

Then conditions (i) and (ii) hold, and w(C(R)) = πR2 by the nonsqueezing theorem.
There are other capacities, mostly based on the study of periodic trajectories of certain
Hamiltonian vector fields associated with U . The original approach by Gromov was based
on pseudo-holomorphic curves. The two approaches are related as we noted in 3.7.

One has the following result by Ekeland and Hofer.

Theorem. An orientation preserving diffeomorphism f of the linear symplectic space R2n

is symplectic if and only if it preserves the capacity of all open subsets.

Proof. We need to show that df(x) is a linear symplectic map for every x. Without
loss of generality, x = f(x) = O. Then df(O) is the limit t → 0 of the diffeomorphisms
ft(x) = f(tx)/t. Since f preserves capacity which behaves well under rescaling, ft also
preserves capacity. We want to conclude that the linear map df(O) also preserves capacity
of convex sets, in particular, ellipsoids. This follows from the following fact: the capacity
of convex sets is continuous in the Hausdorff metric.

Recall that the Hausdorff distance between subsets in R2n is defined as follows:

d(U, V ) = max
x∈U

min
y∈V

|x− y|+ max
y∈V

min
x∈U

|x− y|.

If U is a convex set containing the origin and d(u, V ) is small then (1−ε)U ⊂ V ⊂ (1+ε)U .
This and property (i) imply continuity.

Now we have a linear map L of the linear symplectic space that preserves the capacity
of ellipsoids. We claim that L is symplectic. Assume not; then there is a couple of vectors
such that ω(u, v) 6= ω(L∗u, L∗v). Without loss of generality,

0 < λ2 = |ω(L∗u, L∗v)| < ω(u, v) = 1.
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Construct two symplectic bases u, v, ... and L∗u/λ, L∗v/λ, ... and consider the linear sym-
plectic maps A and B that take the standard basis e1, e2, ... to the former and the latter.
Let C = B−1L∗A. Then C(e1) = λe1, C(e2) = λe2. It follows that the map C∗ sends the
unit ball into C(λ).

On the other hand, C∗ is the product of maps that preserve capacities of ellipsoids,
so C∗ preserves the capacity of the unit ball. This is a contradiction.

Corollary. The group of symplectomorphisms is C0-closed in the group of diffeomor-
phisms.

Proof. Given a sequence of symplectomorphisms fn, uniformly converging to a dif-
feomorphism f , we want to show that f is symplectic. But f preserves the capacities of
ellipsoids because capacity is continuous in Hausdorff topology on convex sets.
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