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Abstract

In this paper, we analyze geometric active contour models from a curve evolution
point of view and propose some modifications based on gradient flows relative to certain
new feature-based Riemannian metrics. This leads to a novel edge-detection paradigm
in which the feature of interest may be considered to lie at the bottom of a potential
well. Thus an edge-seeking curve is attracted very naturally and efficiently to the
desired feature. Comparison with the Allen-Cahn model clarifies some of the choices
made in these models, and suggests inhomogeneous models which may in return be
useful in phase transitions. We also consider some 3-D active surface models based on
these ideas. The justification of this model rests on the careful study of the viscosity
solutions of evolution equations derived from a level-set approach.

Key words: Active vision, antiphase boundary, visual tracking, edge detection, segmen-
tation, gradient flows, Riemannian metrics, viscosity solutions, geometric heat equa-
tions, curve and surface evolution.

This paper has been accepted for publication in Archive of Rational Mechanics
and Analysis.



1 Introduction

This paper is devoted to the analysis and numerical implementation of the motion of a plane
curve in a conformally Euclidean space, and more generally, of surfaces moving by mean
curvature, with applications to the detection of contours in an image. The resulting motion
presents a much wider range of possible behaviors than the more familiar Euclidean mean
curvature flow.

Our motivation comes from the problem of edge-detection in a gray-scale image; however,
the equations considered here have a broad range of applications, including phase transitions
in particular. In fact, since many edge-detection models implement models arising in other
fields (most notably continuum mechanics and statistical mechanics), it seems that it is
desirable to develop mathematical tools of universal applicability, which might be useful
both within and outside continuum mechanics. Thus, in the present paper, the relation
to the Allen-Cahn model illuminates some ad hoc choices in image processing, while the
introduction of stopping terms in edge-detection suggests inhomogeneous generalizations of

the Allen-Cahn model.

1.1 Curvature-related flows in phase transitions

It is well-known that motion by mean curvature arises as one of the possible asymptotic
limits in phase field equations. These limiting models include the Allen-Cahn antiphase
boundary model [1], the Stefan problem with inclusion of surface tension and kinetic un-
dercooling terms, the Hele-Shaw model, and dendritic solidification; a related problem is
thermal grooving (Mullins [51]). The case of more than two phases is addressed by Bronsard
& Reitich [14]. A unified derivation of many of the above models can be found in Caginalp
[15].

Two typical derivations leading to phase boundaries driven by curvature effects are as
follows:

(1) One may start with a parabolic equation of the form

uy = eAu+ (1/e)W'(u),

where u is an order parameter, and W is a double-well potential, the minima of which
correspond to two phases. The potential is sometimes allowed to depend on £. As ¢ tends to
zero, it is expected that u tends to either one of these minima, in two regions separated by a
sharp interface which moves by its mean curvature. Formal results of this type can be found
in Allen & Cahn [1] and Rubinstein, Sternberg & Keller [60], and rigorous justifications in de
Mottoni & Schatzman [50], Bronsard & Kohn [13], and Evans, Soner & Souganidis [26]. In
this method, the sharp interface is derived as an approximation as the thickness of the region
of phase change vanishes. The speed of the interface is the sum of a curvature term and a
constant, which we will refer to as the “inflation,” see §1.2. The inflation term vanishes if
the two minima of W are equal. When present, and negative, it tends to make the interface
grow, and can counteract the effect of the curvature term.

(2) One may also directly consider a free-boundary problem, where a function u satisfies
the heat equation on both sides of an interface; two boundary conditions are required on the



interface: one relates the speed of the interface to the jump of Vu in the normal direction,
and the other gives u as a combination of the curvature and the speed of the interface. Thus,
the interface is not defined by u =const. The effects of the curvature and velocity terms are
interpreted, in the context of the Stefan problem, as expressing that the interface includes
material in a metastable phase, due to either surface tension effects (curvature) or kinetic
undercooling effects (speed).

In both cases, the appearance of the curvature term is clearly due to the Euclidean
invariance of the background, and of each of the individual phases. A number of anisotropic
models can be found in Gurtin [35, 36] and Angenent & Gurtin [9], together with more
references.

1.2 Curvature flow in geometry and image processing

Motion of a curve by its curvature has been extensively studied for its own sake. It is known
(Gage [27], Grayson [32, 33], Gage & Hamilton [28]) that a plane curve moving with normal
speed equal to its curvature will shrink to a point, its shape becoming smoother and circular.
More complicated phenomena are expected in higher dimensions, but no classification is
available. This problem can be tackled by the use of the level set method (Osher-Sethian [63,
56]) which consists in viewing the curve as the level set u = 0 of a function u constrained to
solve the degenerate diffusion equation®

Vu

[Vl

u; = ||Vu|div

Its singular behavior is reflected in the fact that unlike parabolic equations, it is possible
to change the solution in the vicinity of one level curve without affecting the rest of the
solution. In fact, if the level sets {C(p,t)} R are well-behaved, this equation is equivalent
to the curve evolution

Ct:/i./\/,

where N is the inward normal. However, the PDE formulation allows for singularities to
form in this evolution, and provide a way to continue the curve evolution in a unique fashion
beyond singularities. Despite its apparent singular form, this equation can be solved in the
framework of viscosity solutions (Evans & Spruck [25], Chen, Giga & Goto [18]).

By analogy with fluid mechanics, one may think of the level set formulation as an Eulerian
formulation, as opposed to the “Lagrangian” view-point where the motion of points on
individual curves is followed.

Curve evolutions can be thought of as describing the motion of a string on the plane;
historical remarks and a detailed derivation of the equation for nonlinear vibrating strings
can be found in Antman [10]. While these models can be extended to include viscoelastic
and other forces, recent work in image processing leads to yet more general curve evolutions.
Here, the issue is to find an algorithm which dynamically seeks contours in an image. Kass,
Witkin & Terzopoulos (see [39]) have proposed such a procedure whereby a moving contour

!Throughout this paper, we use double bars to denote the Euclidean norm.



(a “snake”) evolves under the action of intertial, damping, stretching and bending forces,
together with an external force which attracts the snake to image-dependent features. The
snake model is clearly a generalization of the classical motion of vibrating strings, the mod-
ifications being due to the presence of objective features which constrain its evolution. The
snake model is sometimes described as that of a rope (with elasticity and rigidity properties)
which slides on a landscape to find an equilibrium position.

Translation-invariant curve evolutions, such as the pure curvature evolution, are therefore
too restrictive for some applications. We have already seen that the Allen-Cahn equation
naturally leads to motions of the type

Ci=(k+v)N,

with v constant. However, such a curve evolution would lead, if v < 0, to a curve growing
forever outwards—which is clearly not reasonable: there should be a mechanism to stop the
evolution. An ad hoc procedure was proposed recently in the context of image processing
by Malladi, Sethian & Vemuri [47], and Caselles, Coll, Catté & Dibos [16], for tackling this
issue. The problem is to automatically compute outlines in a given gray-level picture, given
by its intensity function I(z,y). One can think of it as periodic in z and y. Outlines are by
definition regions of high intensity gradient. It is therefore natural to let
oL
+V1]l

and to expect that a curve evolution given by
Ct = ¢(/€ + V)N7

starting outside the desired curve if v > 0, would tend towards the desired contour. The
function ¢ will be referred to as the stopping term. Unlike the snake model, this evolution
has a level-set (“Eulerian”) formulation, and therefore allows contours to form singularities,
merge and split (compare with Gupta et al. [34]). It is usually convenient to replace I by a
smoothed version, using Gaussian smoothing or curvature-based smoothing [61, 62].

1.3 Conformal metrics and curve evolution

We are therefore led to the following conclusions:

(a) Curve evolutions are best studied in a level set (“Eulerian”) formulation, which alone
allows for the formation of singularities such as breaking and merging;

(b) The pure curvature flow, as well as other homogeneous (translation-invariant) models
do not reflect any large-scale inhomogeneities in the background.

We suggest in this paper that curvature evolution in a conformal background is a simple
and efficient generalization of Euclidean curve-shortening. Indeed, this amounts to replacing
the Laplacian in the Allen-Cahn model by the Laplacian in a conformally Euclidean plane.
It would be conceivable to consider more general Riemannian metrics, if the effects of large-
scale anisotropies were desired, with little change to the procedures of this paper.

The resulting model is extremely simple:

Ci = d(k +v)N — V.



The additional gradient term, which was derived from first principles, turns out to provide
numerical advantages as well, since it tends to push the moving “snake” towards the desired
contour, irrespective of possible overshoots. We do not assume that the conformal factor
(¢?) is bounded away from zero. Such a model was also independently proposed in [?, ?].

The two ad hoc features of existing models, namely the introduction of the inflation and
stopping terms, are clarified by our approach, which also leads us to modify the equation by
the addition of a gradient term.

The main difference between our model and pure curvature flow is that the inhomo-
geneities force the curves to seek special features of the background, instead of shrinking to
a point.

Generalized flow by curvature in Riemannian manifolds was also considered by Ilmanen
[38], who however does not allow the metric to degenerate. This paper also shows that
twice continuoulsy differentiable solutions do not exist in natural situations, thus further
illustrating the necessity of viscosity solutions.

Note that proposals advocating the replacement of Euclidean curvature by the affine
curvature have been put forward independently by Sapiro & Tannenbaum, and Alvarez, Li-
ons & Morel [3], both in connection with image processing, on an axiomatic basis. Indeed,
the affine group is a natural invariance group for plane images, and such an evolution has
some advantages in preprocessing (see Sapiro & Tannenbaum [61, 62]). Also, Olver, Sapiro
& Tannenbaum [54] have recently recovered this equation from a classification of differen-
tial invariants for the affine group. We will however for simplicity consider exclusively the
Riemannian curvature only, which we found to give good numerical results.

1.4 Outline of the paper

We now briefly outline the contents of this paper. Section 2 contains some background
material on energy-based active contour theory (“snakes”). Section 3 recalls some facts on
Euclidean curve shortening. In Sections 4 and 5, we present our modification of the Euclidean
arc-length and the resulting active contour models, in two and three dimensions respectively,
with brief remarks on what is known for other higher-dimensional surface evolutions. In
Section 6, we prove the existence and uniqueness of a continuous solution, Lipschitz in space,
for the PDE generated by the level-set approach. Stability with respect to initial conditions
is also proved. In addition, by proper choice of initial conditions, one can guarantee that if
¢ = 0 inside a given contour, a particular level set of u will tend to the set ¢ = 0. Section 7
analyzes the geodesics of the conformal metric introduced in Sections 4 and 5, and suggests
yet another algorithm for edge-detection. Section 8 briefly reports on numerical calculations
which illustrate the usefulness of our approach. Finally, in Section 9 we summarize our
conclusions.

2 Background on Snakes

In the past few years, a number of approaches have been proposed for the problem of snakes
or active contours. The underlying principle in these works is based upon the utilization of
deformable contours which conform to various object shapes and motions. Snakes have been



used for edge and curve detection, segmentation, shape modelling, and visual tracking. The
recent book by Blake and Yuille [11] contains an excellent collection of papers on the theory
and practice of deformable contours together with a large list of references to which which
we refer the interested reader.

In this section, we very briefly sketch the energy based optimization approach to de-
formable contours as discussed in [39, 71, 11, ?]. Our treatment will of course be very
incomplete, and once again we refer the interested reader to [11], especially [72].

In most of the classical frameworks, one considers energy minization methods where
controlled continuity splines are allowed to move under the influence of external image de-
pendent forces, internal forces, and certain contraints set by the user. See [39, 71, 11, ?].
As is well-known there may be a number of problems associated with this approach such as
initializations, existence of multiple minima, and the selection of the elasticity parameters.

In the present paper, we consider a method which was strongly influenced by the elegant
approaches of Caselles et al. [16] and Malladi et al. [47]. In these works, a level set curve
evolution method is presented to solve the problem. Our idea is to note that both these
approaches are based on Euclidean curve shortening evolution which in turn defines the
gradient direction in which the Euclidean perimeter is shrinking as fast as possible. (See
Section 3.) Pushing this concept to the next logical step, we can derive new active contour
models by multiplying the Euclidean arc-length by a function tailored to the features of
interest to which we want to flow, and then writing down the resulting gradient evolution
equations. Mathematically, this amounts to defining a new Riemannian metric in the plane
tailored to the given image, and then computing the corresponding gradient flow. This leads
to some new snake models which efficiently attract the given active contour to the features
of interest (which basically lie at the bottom of a potential well). The method also allows us
to naturally write down 3-D active surface models as well. One can completely justify this
method using the method of viscosity solutions. A preliminary version of these results has
been reported in [40].

Let C(p) = (z(p),y(p))* be a closed contour in R* where 0 < p < 1. (Note that the
superscript 1" denotes transpose.) We now define an energy functional on the set of such
contours (“snakes”), £(C'). Following standard practice, we take £(C') to be of the form

E(C) = &Em(C) +P(C),

where &;,,; is the internal deformation energy and P is an external potential energy which
depends on the image. (Other external constraint forces may be added.) A common choice
for the internal energy is the quadratic functional

1
Ent(C) 1= [ 0PI + wa(p)ICoolld.

where w; and w, control the “tension” and “rigidity” of the snake, respectively. (Note that
the subscripts denote derivatives with respect to p in the latter expression, and || - || denotes
the standard Euclidean norm.)

Let I : R? — R be the given grey-scale image. Then the external potential energy
depends on the image [(x,y). It can be defined by

P(C)= [ PO,

6



where P(z,y) is a scalar potential function defined on the image plane. The local minima
of P attract the snake. For example, we may choose P to be

P(z,y) = c||VG, x I(z,y)],

for a suitably chosen constant ¢, in which case the snake will be attracted to intensity edges.
Here GG, denotes a Gaussian smoothing filter of standard deviation o.

One also typically considers dynamic time-varying models in which C(p) becomes a func-
tion of time as well; see [72]. In this case, one defines a kinetic energy and the corresponding
Lagrangian (the difference between the kinetic energy and the energy £ defined above). Ap-
plying the principle of least action, one derives the corresponding Lagrange equation which
one tries to solve numerically employing various approximations.

In the approach to be given below in Section 4, we will also use an energy method.
However, in contrast to more ad hoc approaches, we believe that our energy is intrinsic to
the given geometry of the problem, as is the correspondent gradient flow.

3 Curve Shortening Flows

The motivation for the equations underlying active geometric contours comes from Fuclidean
curve shortening. Therefore, in this section we will review the relevant curve evolution theory
in the plane R%.

Accordingly, for & the curvature, and N the inward unit normal, one considers families
of plane curves evolving according to the geometric heat equation

ocC ~

This equation has a number of properties which make it very useful in image processing, and
in particular, the basis of a nonlinear scale-space for shape representation [2, 4, 41, 42, 48].

Indeed, (1) is the Euclidean curve shortening flow, in the sense that the Euclidean perime-
ter shrinks as quickly as possible when the curve evolves according to (1) [27, 28, 32]. Since,
we will need a similar argument for the snake model we discuss in the next section, let us
work out the details.

Let C = C(p,t) be a smooth family of closed curves where ¢ parametrizes the family and
p the given curve, say 0 < p < 1. (Note we assume that C'(0,¢) = C(1,t) and similarly for
the first derivatives with respect to p.) Consider the length functional

L oC
L) = [ 1% ldp

Then differentiating (taking the “first variation”), and using integration by parts, we see
that

L) = /7<%’g;gt>d
~ o
Y4
oC
MY LSRR A o G
o ‘ot T ap |12 | " ap




(Note that we multiplied and divided by H%H in the latter integral.) But observing now
that

oC
—||dp =: d
19 Ny =
is (Euclidean) arc-length, and using the standard definition of curvature, the last integral is
L) 9C -
— — ds.
/0 (SN )ds
That is, we see
L(t) .
L(t) = —/ (9C o Nyds.
0 ot

Thus the direction in which L() is decreasing most rapidly is when

aC -
W—KJN.

Thus (1) is precisely a gradient flow.

A much deeper fact is that simple closed curves converge to “round” points when evolving
according to (1) without developing singularities; see [28, 32]. This fact is one of the keys
for the geometric active contour models considered below.

4 2D Active Contour Models

In two elegant papers, Caselles et al. [16] and Malladi et al. [47] propose a snake model based
on the level set formulation of the Euclidean curve shortening equation. More precisely, their
model is

aa_‘f = ¢(z,y) |V (div ll\gil\] + y) . (2)

Here the function ¢(z,y) depends on the given image and is used as a “stopping term.” For
example, the term ¢(z,y) may chosen to be small near an edge, and so acts to stop the

evolution when the contour gets close to an edge. In [16, 47|, the term

1 .
¢ = 1+ [|[VG, x I||” 3)

is chosen, where [ is the (grey-scale) image and G, is a Gaussian (smoothing) filter. (In [16],
n =1, and in [47], n = 2.) The function ¥(x,y,t) evolves in (2) according to the associated

level set flow for planar curve evolution in the normal direction with speed a function of
curvature which was introduced in the fundamental work of Osher-Sethian [55, 56, 63, 64, 65].

It is important to note that as we have seen above, the Euclidean curve shortening part
of this evolution, namely

ov A
— = ||VV¥||div | ———— 4
= Vvl | oo )
is derived as a gradient flow for shrinking the perimeter as quickly as possible. As is explained
in [16], the constant inflation term v is added in (2) in order to keep the evolution moving

in the proper direction.



Remarks 1.

1. In [47], the inflationary constant v is considered both with a positive sign (inward
evolution of the contour in the direction of decreasing W) and with a negative sign
(outward or expanding evolution). (Usually, ¥ is taken to be smaller inside a level
set contour, e.g., it is negative in the interior and positive in the exterior of the zero
level set.) In the latter case, this can be referred to as expanding “balloons” [?]. For
simplicity, unless stated otherwise explicitly, we will take v > 0 (inward evolutions) in
what follows below.

2. Instead of using a Gaussian to smooth the image one may of course use a nonlinear
smoothing filter based on the curvature; see [5].

3. There are of course many possibilities for a stopping term besides intensity: texture,
optical flow, stereo disparity, etc.

We would like to modify the model (2) in a manner suggested by the computation in
Section 3. Namely, we will change the ordinary Fuclidean arc-length function along a curve
C = (z(p),y(p)) with parameter p given by

ds = ||Cpl| dp = (/a2 4+ y2 dp
dsg = ¢pds = ¢p(x,y) /22 + y2 dp,

where ¢(x,y) is a positive differentiable function. We now essentially repeat the computation
made in Section 3, i.e., we want to compute the corresponding gradient flow for shortening

to

length relative to the new metric ds,.
Accordingly set

1 oC
Lo(t) = [ W, N6 dp

Let
oC  oC

T:=—/||=—
k=t
denote the unit tangent. Then taking the first variation of the modified length function Ly,
and using integration by parts just as above, we get that

Lo (1) , L
—L(t) = /0¢ <aa—f,¢wv+(v¢-7)7_w>ds

which means that the direction in which the Ly perimeter is shrinking as fast as possible is

given by
aa_f — N + (Vo T)T - Vo, (5)



This is precisely the gradient flow corresponding to the miminization of the length functional
Ly. Since the tangential component of equation (5) may be dropped (see [24]), this may be
simplified to

oC -
The level set version of this is
ov \YA'
— = || di SAVAVS
o = oI ula [ o]+ 96 7

One expects that this evolution should attract the contour very quickly to the feature which
lies at the bottom of the potential well described by the gradient flow (7). As in [16, 47], we
we may also add a constant inflation term (which may be interpreted as a Lagrange multiplier
for a constrained version of the given optimization problem), and so derive a modified model
of (2) given by

ov Vo
— = V| | div v Vo -V, 8
oo [y +) + o0 )

ot

Notice that for ¢ as in (3), V¢ will look like a doublet near an edge. Of course, one may
choose other candidates for ¢ in order to pick out other features.

We have implemented this snake model based on the algorithms of Osher-Sethian [55,
56, 63, 64, 65] and Malladi et al. [47]. We are also experimenting with some new code based
on [53]. Some preliminary numerical results based on our code will be presented in Section

& below.

Remarks 2.

Note that the metric ds, has the property that it becomes small where ¢ is small and vice
versa. Thus at such points lengths decrease and so one needs less “energy” in order to move.
Consequently, it seems that such a metric is natural for attracting the deformable contour
to an edge when ¢ has the form (3).

5 3-D Active Contour Models

In this section, we will discuss some possible geometric 3-D contour models based on surface
evolution ideas, by modifying the Euclidean area in this case by a function which depends
on the salient features which we wish to capture. In order to do this, we will need to set
up some notation. (For all the relevant concepts on the differential geometry of surfaces, we
refer the reader to [22].) We remark that all of these considerations can be straightforwardly
extended to the evolution of hypersurfaces in n-dimensional space.

Let S :[0,1] x [0,1] — R® denote a compact embedded surface with (local) coordinates

(u,v). Let H denote the mean curvature and N the inward unit normal. We set

95 05
Su = %, v o= %
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Then the infinitesimal area on S is given by

dS = \/I1Sul2I1Sull? = (Sus Su)? du do.

Let ¢ : Q@ — R be a positive differentiable function defined on some open subset of R*. The
function ¢(x,y, z) will play the role of the “stopping” function ¢ given above in our snake
model (7, 8).

It is a beautiful classical fact that the gradient flow associated to the area functional for
surfaces (i.e., the direction in which area is shrinking most rapidly) is given by

aS
ot

(See [12, 30, 49, 54, 73] and the references therein.) What we propose to do is to replace the
Euclidean area by a modified area depending on ¢ namely,

= HN. (9)

dSs := ¢ dS.
For a family of surfaces (with parameter t), consider the ¢-area functional

) ://Sd5¢.

Once again, an integration by parts argument gives that

% = —// ,qu./\/ V¢ + tangential components) d.S,

which after dropping the tangential part becomes

8—5 = ¢HN — V. (10)

The level set version of (10) is given in terms of ¥(z,y,z,t) by

v
U, = ¢ ]\V\I}Hdivl v

Vo - VY. 11
HWH]* g (1)

As before one may add a constant inflation term to the mean curvature to derive the model

VU
U, = ¢V (div [

v Vo -V, 12
HWH]* )* ’ (12)

In the context of image processing, the term ¢ depends on the given 3-D image and is
exactly analogous to the stopping term in (7, 8). It is important to note that there is a very
big difference between the 2-D and 3-D models discussed here. Indeed, the geometric heat
equation will shrink a simple closed curve to a round point without developing singularities,
even if the initial curve is nonconver. The geometric model (2) is based on this flow. For
surfaces, it is well-known that singularities may develop in the mean curvature flow (9)
non-convex smooth surfaces [31]. (The classical example is the dumbbell.) We should note

11



however that the mean curvature flow does indeed shrink smooth compact convex surfaces
to round “spherical” points; see [37].

We should add that because of these problems, several researchers have proposed re-
placing mean curvature flow by flows which depend on the Gaussian curvature . Indeed,

define

k4 := max{k,0}.
Then Caselles and Sbert [17] have shown that the affine invariant flow

o5 = sign(H)/iiM./\? (13)
ot

will (smoothly) shrink rotationally symmetric compact surfaces to ellipsoidal shaped points.
(This has been proven in [7] in the convex case. See also [3, 6].) Thus one could replace the
mean curvature part by sign(H)%;}I_/4 in (12). Another possibility would be to use /ii/Q as has
been proposed in [52]. See also [70]. (Note that Chow [19] has shown that convex surfaces
flowing under &'/? shrink to spherical points.) All these possible evolutions for 3-D contours
are now being explored. See also Section 7 below for a possible alternative related approach

to 3D segmentation.

6 Viscosity Analysis of the Models

In this section, we will outline the analysis of the nonlinear diffusion equation
U, = ¢(2)a’ (V)0 ¥ + H(z, V), == (21,...,2,), (14)

of which the models of Caselles et al. [16] and Malladi et al. [47], and the equations we study
here are special cases. Note that we use the summation convention systematically in (14) and
in what follows. This section is rather mathematically technical, and has been included to
rigorously justify the partial differential equations we have been using. We use the standard
notation from the theory of partial differential equations as may be found in [67].

Because of the form of ¢/, and the fact that ¢ may vanish, this problem requires some
care; in particular, the solutions are not expected to be sufficiently regular for the equation to
make sense, and we need to use a type of generalized solutions known as wviscosity solutions,
defined below. The technicalities are very similar to those in [4], [16].

In what follows, the letter C' is used to denote various positive constants, the exact value
of which is not significant. We assume that H is the sum of V¥ - V¢ and an “inflation
term” v¢||[VW||. We also assume that ¢ and /¢ are Lipschitz continuous. While ¢ and H

are continuous in their arguments, a* is not:

i i pip;j
a’(p) = 6" — HpH]W p=(p1s.-yPn),

where 6 denotes the Kronecker delta. We use periodic boundary conditions in the spatial
domain, and consider a Lipschitz continuous initial value Wo(z). Our solutions will have
bounded first derivatives, but will not have second-order derivatives in general.

Viscosity interpretation of equation (14):

12



Since the solution is not twice differentiable, we must use a notion of weak solution. Since
the equation is not in the form of a divergence, the familiar integration by parts argument
used for shock waves does not help.

Therefore, we are led to use the notion of “viscosity solution,” which has proved useful
in this context.

We first define sub- and super-solutions of equation (14). Let 7" > 0. A function f is
said to be a sub-solution if f is defined and continuous for all z, and 0 < ¢t < T' for some
T > 0, and is such that whenever g is a twice continuously differentiable function and (f — g)
attains a local maximum at a point (z¢,%o) with ¢, > 0, one has

ge(o,to) — d(wo)a” (Dg(wo,t0))diig(xo, to) — H(wo, Vg(wo, t0)) < 0,
if Vg(xo,to) # 0. If Vg(z0,%0) = 0, we require instead

g1(o, to) — ¢(20) lim sup a* (p)dyjg(xo, to) — H (o, Vg(wo,t0)) < 0;

p—0

this latter form being made necessary by the fact the @ is not continuous for p = 0. A
super-solution is similarly defined, by requiring that (f — ¢g) have a local minimum, replacing
limsup by liminf, and reversing the direction of all inequalities. A wiscosity solution is, by
definition, a continuous function which is both a sub- and a super-solution.

We can now state the following result:

Theorem 1 There is a unique viscosity solution in L°°(0,T; W1=(R")).

Proof. The construction of the solution proceeds by solving an approximate uniformly
parabolic problem, and by passing to the limit. The uniqueness is more delicate and requires
a lemma from Crandall-Ishii [20]; the outcome will be an estimate for the difference of two
solutions with different initial data.

STEP 1: (Gradient bounds).

We consider here the case when the nonlinearities are all smooth. These considerations will

apply to a regularized version of our equation. In the following, subscripts denote derivatives.
Let ¥ be a solution. Differentiation of the equation gives

oH  OH
VWi + a ]\I’ijk] - a—plq’zk ~ ok 0.

OV — ¢pa Wy — ¢ la—plj

We multiply this equation by 2¥, and sum over & to find:

’ dai; OH ’ ’
Mt — ¢ [a”@jM + %\I/”@lM] + a—Ml = —2¢a”\1/ikquk + 28k¢ [alJ\I}ij\I}k + H\I/k 5
p Pi

where M = |V¥||?.

We now choose our approximation: we replace ¢* and ¢ by

ij ij i5 PipP;
J— 2§ S ). = _
“=c *( HpH2+€2)’ Pe=ote
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We also replace | VU] by /||[V¥|]? + €2 in the inflation term.
Since we assumed that /¢ is Lipschitz, we have

On the other hand, reducing the symmetric semi-definite matrix (a*) to its principal axes,
it is easy to see that

(a¥W)? < Ca Wiy V)

for some constant C. Combining these two estimates, and using H < C||V¥/||, we find, using
the maximum principle for uniformly parabolic equations, that

V@ 2o (1) < (V]| (0) + 7).

A global Lipschitz estimate in space for solutions of the approximate equation follows.

STEP 2: (Convergence of approximations).

The gradient bound in space implies in fact a Holder estimate with exponent 1/2 in time.
We may therefore apply Ascoli’s theorem to conclude that a solution exists. To prove its
uniqueness will require more sophisticated tools from the theory of viscosity solutions.

STEP 3: (Comparison principle and uniqueness).
Let two solutions ¥y and Wy be given (both in the viscosity sense). We define

a(z,y,t) = Ui(t, z) — Ua(y, 1) — (4e) 7 lz —y|I* = M,

where A is an arbitrary positive constant. We claim that on 0 < ¢ < 7', this function is
maximum for ¢ = 0. Indeed, otherwise, the maximum would be attained at some point
(20, Yo,t0) with to > 0. By a lemma of Crandall and Ishii [20], for any positive u, there are
real numbers a and b, and symmetric matrices X and Y such that

a—b= 2\
and

X 0 2

<0 _Y)§A+;LA,
where

B —-B

A= 5)

with

Bij = e |lxo — yoll*8i; + (2/€)(x0 — yo)i(o — y0);-
In addition, one has

a — ¢(zo)a” (7|xo — yol| (w0 — y0)) Xi; — H(e ™ ||zo — yol|* (20 — y0)) < 0
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and
b — $(yo)a” (e~ |zo — yol|*(z0 — ¥0))Yi; — H(yo,e ™ ||wo — yol*(z0 — o)) = 0.

If xo = yo, these relations have to be interpreted in terms of a suitable limit, but this case
leads to @ < 0 < b, which contradicts the assumption A > 0. So zg # yo.
Next, choose p = ¢||zg — yo||~* (which is now possible), and conclude that

DB
0 =Y/ —«<\-D D )’
where

Di; = |lzo — yol|*6i; + 5(x0 — yo)i(zo — yo);-

Multiplying this inequality by G, where

and taking the trace, we obtain after some manipulation, using the fact that a* is bounded,
the definition of a viscosity solution, and the fact that /@ is Lipschitz, an inequality

A < Collzo — yoll*/e.

Using the Lipschitz condition on the functions Wy and W5, and the property a(to, zo, yo) >
a(to, Yo, yo), we derive a bound

A< CeVPLAB,
Taking
e'? =6K
and
A= 20,6 K L*°,

with K = supjg 775 pn [¥1 — Waf, we find that the bound on A leads to an absurdity. We
therefore can conclude that ¢y = 0.

We fix A and ¢ as before. Using ¢y = 0, we find that

sup Wy — Wy| < sup [W; — W,|(0) + SSKIYS 4 2006 K LY°T.
[0,7]x R™ R 4

Letting 6 — 0, we finally obtain

sup |Uy — Wy| < sup [Py — U,|(0),
[0,T]x R" R»

which proves uniqueness and stability with respect to initial conditions. O
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We can conclude from Theorem 1 that slight differences between images will not become
artificially enhanced by our active contour methods.

Convergence of level sets:

The next task is to show that the level curves of the function ¥ do approach the desired
contour I' = {¢ = 0}. To prove this, we construct a subsolution which is initially no greater
than the solution, and which becomes eventually positive at any point outside the contour.
We give the argument in two space dimensions for convex contours, it being understood that
smooth non-convex contours can be handled as in [16]. It will be clear that the addition of
the gradient term enables one to relax the size conditions on the inflation parameter.

We consider, to simplify, the case of a contour I' which will be taken to be included in
the unit square [0,1]* to fix ideas. We assume that T' is smooth and separates the square
into two regions, the inside I(I') and the outside E(I'). Furthermore, ¢ vanishes identically
on the contour, and the distance function d(z) = d(z,I') is smooth on E(I') (one can get
around this requirement if the region between I' and the boundary of the square can be
mapped to an annulus, in the spirit of [16]). To make calculations more explicit, we simply
take ¢ = ¢(d(z)) to be an increasing function of the distance to I' in E(T').

We also assume that the initial value of W is itself a nonnegative subsolution (independent
of time) vanishing on the contour I

Remark 3.

To find such an initial value, it suffices to take Wy to be a smooth function of the distance
to I', vanishing for d = 0, and equal to 1 for large d, and then to take v large enough. This
is rather similar to the initialization one would take for the numerical computation itself.

Theorem 2 Let n > 0. There is, if v is large enough, a subsolution w(x,t) on E(I') which
satisfies w(x,0) < Wo(x) and such that for every x with d(xz) > n, w(z,t) > 0 for t large
enough.

By applying the comparison principle on F(I'), we conclude that the level set ¥ = 0
must tend towards I', as desired.

Proof. We proceed in four steps.

STEP 1: (Definition of w).
We let

w(e,t) = AF(OR(A()) + (1)
where A is a positive number, f, ¢ and k are smooth in their arguments, and satisfy
1. f(0) =¢(0) =k(0) =0, ¢'(t) <0, k¥ > 0.

2. There is a number ¢; such that f is increasing, f’ is decerasing, and ¢’ < a < 0 for
t <t.

3. Fort >y, f'<0and ¢ <0.
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4. limy—o f(2) = 1, limy—oo g(2) = 2at;.

Note that by choosing k suitably, one can give any required smoothness to the function
obtained by extending w by zero in I(I'). « and A are chosen below.

STEP 2: (w is a subsolution).
Substituting into the equation, we find that we need

Af(0)k(d) + g'(t) = AfK[6(d)(Ad +v) + ¢/(d)] < 0.
Let us require that
¢(d)(Ad + v) + ¢'(d) > 0.

This can certainly be achieved by taking v large. Note that without the gradient term, we
would have been led to Ad+ v > 0. Then, for ¢t > ¢;, we find that all terms are nonpositive,
whereas for ¢ < ¢4, the first and third terms are nonincreasing in ¢, while ¢’ < a. It therefore
suffices to have

A/ (0)k(d) + o < 0,

STEP 3: (w < u).

We want to show that w < u on the boundary of E(I') for all time, as well as initially on all
of E(I'). Fort =0, w=0. On I', w = ¢, which is non-positive. As for the outer boundary,
it suffices to show that w < Wy, since Uy is a subsolution (so that ¥y < ¥). Now, on the
outer boundary of E(T'), we know that Wy is positive, so we merely need to ensure w is small.
This can be ensured by making A small.

STEP 4: (w is eventually positive).
For fixed x, we see that
tlim w(t) = Me(d(z)) + 2at;.

Therefore, if @ > —Ak(n)/2, we are guaranteed that w is eventually positive.
This completes the proof of Theorem 2. O

We can now conclude that the solution ¥ will become eventually positive outside I' so
that its zero level set must approach the desired contour. We have therefore shown that
the model of the present paper is justified from a theoretical standpoint. Further practical
consequences of the discussion in this section are:

(1) If ¢ is not rigorously zero on the desired contour, the evolution has no reason to stop.
In fact, one would rather expect it to shrink the snake to a point. This explains why in
dealing with poor images, one may see the snake passing through the features of interest.
This is a further advantage of an additional stopping term. Some care must therefore be
given to the choice of ¢, so that the evolution slows down significantly near the desired
contour.

(2) The appropriate amount of inflation can be estimated (from above) from the con-
struction of our subsolution. Without the gradient term, it is safe to take an inflation term
of the order of the curvature of the desired contour.
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7 Geodesic Paths

Given that we are now looking at a Riemannian metric, it becomes natural to investigate
its geodesics. It turns out that the geodesics appear to have a very concrete interpretation
in this problem. For background on the problem of finding closed geodesics on manifolds in
connection with curve-shortening, see [23, 28, 32, 33].

The geodesics of the conformally Euclidian metric considered in this paper are solutions
to an ordinary differential equation which can be used both for the segmentation and edge
detection problem. For simplicity, we work in the plane once again with the stopping function
¢ as discussed in Section 4. As before we modify the Euclidean metric by taking ds, = ¢ds.
Indeed, setting u = ¢*, we find that the equation of geodesics takes the form [23]

<Cp7 vu>0p - %HCPHQVU

U

Cop + = 0. (15)
Note that the tangential term (C,, Vu)C, can be removed by change of parametrization.
Define the “potential function”

where F is a certain constant which we describe below. Given this we claim that solutions
of the oscillator-type equation

Cog +VV(C) =0 (16)

can be reparametrized to give geodesics of the line element dsy where This may be seen from
the following calculation. Start with the equation (15). Since we have the first integral

1
NG+ V(O) = .

equation (16) can be written as

1ClI?
qu —I_ 2 :

which is precisely (15) up to tangential term.

In terms of the image, what we want is to locate a potential valley. Therefore, an
algorithm using geodesics might be as follows: run a geodesic with zero initial speed, and
stop when its velocity starts to decrease. This should approximately give a point on the
desired contour. Of course, one may want to add a stopping term too. Also, such a geodesic,
if launched in the correct direction, should tend to go around the desired object—this might
be useful to get an initial guess, and for segmentation.

We should note that the above computation remains valid in any number of space dimen-
sions. For surfaces, these curves would swirl about the desired object. Since the equations
are conservative, we are guaranteed that the curves will not wander too far away. Numerical
calculations using this idea will be reported elsewhere.
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8 Numerical Calculations

We will now give a few numerical calculations to illustrate our methods. The implementations
we have used are based on the level set evolution methods developed by Osher-Sethian
[55, 56, 63, 64, 65], and the techniques in [47]. The equations described in this paper have
been coded for the case of active contours on two-dimensional images. The code is still in an
early form and work is in progress to improve various aspects of it. We will present here some
preliminary experimental results obtained by running this code on both binary (i.e., high
contrast images) and real images. At this stage of the work the images have been selected
purely for the purposes of illustration. The images are sampled at discrete pixel locations as
usual.

8.1 Numerical Aspects of Level Set Evolution

For 2D active contours, the evolution equation as derived in Section 4 is equation (8),

ov

o = ot (o | T

V]l

o ]—I—u)—FV(b-V\II,

where v is a constant inflation force and x := div( Vv ) is the curvature of the level sets of

VU
U(z,y,t). This equation describes a propagating fr|(|)ntl| and we are interested in its propaga-
tion in the plane of an image. It is known that a propagating front may not remain smooth
at all times (for example, it may cross itself). For evolution beyond the discontinuities the
solutions are required to satisfy an entropy condition to ensure that the front remains physi-
cally meaningful at all times. The discrete approximations to the spatial derivatives are thus
derived from the entropy condition. Osher-Sethian [56] have given such entropy satisfying
schemes and these have been used successfully in shape modelling [47]. Following [47] we

can regard a decomposition of our speed function as,

YA
F(k)=v+div( VU

) =v+k&, (18)

where v is regarded as the constant passive advection term and the curvature « is the diffusive
term of the speed function. The inflation part in equation (8), i.e., v¢||VV|| is approximated
using upwind schemes. The diffusive part, i.e., k¢||V¥|| is approximated using the usual
central differences. For the inner product term V¢ - VWU, we use a certain thresholding
smoothing method for the “doublet” V¢ which will be described in full detail in another
paper.

As discussed in [47], an important aspect of the propagation as given in equation (8)
is that the image-based terms only have meaning on the zero-level set. Thus these terms
must be extended to all the level sets to get a globally defined extension. To do this, we
have basically followed the methods reported in [47] to which we refer the reader for all the
details.

There are also stability implications of the choice of the step sizes, and in [47] it is noted
that for the evolution equation used in that work the requirement is At = O(Az?). Therefore
if small spatial step sizes are used, it forces a small time step and the resulting evolution
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can be very slow. One way to speed up the evolution is to use a larger inflationary force and
move the front faster (recall the advection term causes a constant contraction/expansion of
the front). However, in our experience with using the approach in [47] this results in large
motion of the front causing “overshooting” of the edge of the feature of interest in the image,
because ¢ might not be rigorously zero on the desired contour. This problem is resolved by
the evolution in equation (8). The gradient term V¢ has a behavior similar to a doublet
near an edge. Thus, it exerts a “stronger” stopping effect and arrests the evolution of the
contour close to an edge. In our calculations we have observed that this stopping behavior of
the V¢ - VU term allows use of large inflationary forces, resulting in features being extracted
in relatively fewer time steps.

8.2 Image Feature Extraction Results

Here we sketch a few experimental results obtained using the feature extraction algorithm
developed in this paper based on equation (8). First we present the result of feature extrac-
tion on a synthetic high contrast image consisting of three shapes. The image is a 150 x 150
binary image with intensity values 0 or 255. The entire image is used in the computations.
Figure 1(a) shows the image with the initial contour. The time step used was At = 0.000001
and Figures 1(b) through 1(d) show the evolving contour at intermediate time steps. Figure
1(d) corresponds to 400 iterations.

In Figure 2, we present a convoluted shape to be extracted using an active contour. The
image is a 150 x 150 binary image with binary intensity values as before. The entire image
was used in the computations. Figure 2(a) shows the initial contour. Figures 2(b) through
2(f) show the evolving contour at 200, 400, 600, 800, and 1000 iterations. The shape of
the feature has been completely captured by 1000 iterations. Again the time step used was
At = 0.000001.

Finally, we present the result of evolution of an active contour in a real image. The aim
of this experiment was to demonstrate the ability of the active contour in capturing the finer
features in real images and also the abililty to capture more than one feature. The image is
a 256 x 240 gray-scale image of a Rubik’s cube placed on a circular table with a pattern on
the table’s side. An initial contour is placed with the aim of capturing the cube, the edge of
the table and also the patterns on the side of the table. Figure 4(a) shows the intial contour.
Figures 4(b) through 4(d) show the evolving contour after 100, 200, and 300 iterations. The
time step used was At = 0.001. After 200 iterations the contour has captured the Rubik’s
cube and the table’s edge. At 300 iterations most of the patterns we wished to capture on
the table’s side have been obtained. Indeed, the active contour finds the edge of the table
from both the inside and the outside as well as the Rubik’s cube itself. Notice that the snake
also captures the shadow of the cube.

9 Conclusions

In this paper, we have considered a natural differential geometric approach based on image-
dependent Riemannian metrics and the associated gradient flows for conformal curvature
flows. This approach, applied to the segmentation problem, justifies and generalizes the
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procedures of [16, 47]. Our active contours flows to the desired feature regarded as lying at
the bottom of the corresponding potential energy well. Possible 3-D surface models were also
proposed using these ideas. We have also considered new edge detection and segmentation
schemes based on the ordinary differential equations which define geodesics relative to a
given Riemannian structure. We feel that this approach is especially promising in the 3D
case. We have also presented a detailed viscosity analysis and justification of our models as
well as some illustrative numerical examples.

Acknowledgement: We would like to thank Professor Tryphon Georgiou of the University
of Minnesota for a number of very helptul conversations.
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Figure 1: Feature extraction in a synthetic image. Left to right, top to bottom: (a) Initial

contour. (b),(c),and (d) contour after 200, 300, and 400 iterations. At = 0.000001.

27



Figure 2: Feature extraction in a synthetic image. Left to right, top to bottom: (a) Initial
contour. (b),(c),(d),(e),and (f) contour after 200, 400, 600, 800 and 1000 iterations. At =
0.000001.

Figure 3: Rubik’s Cube on a turntable.
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Figure 4: Feature extraction in a real image. Left to right, top to bottom: (a) Initial contour.

(b),(c),and (d) contour after 100, 200, and 300 iterations. At = 0.001.
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