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Abstract. This paper deals with the algorithm that invariantizes the existing numerical
schemes of differential equations with respect to their symmetry group using the moving
frame method. The Invariantization work as an adaptive transformation on the solutions
and provides much better circumstance for the numerical scheme. Error reduction of
numerical schemes such as the Runge-Kutta method by invariantization is studied and
some applications in ordinary differential equations are illustrated by examples including
a harmonic oscillator and a Hamiltonian system.

1. Introduction

Symmetry has long been recognized as the key to the study of differential equations. It
has a remarkable range of applications including simplification of equations by symmetry
reduction and determination of conservation laws by Noethers Theorem. Recently, there
is a growing interest in the applications of symmetries of differential equations to their
numerical solutions. Several different approaches are being pursued, closely related to an
extension of Lie group theory to difference equations.

One natural approach is to determine symmetries for given difference equations and
simplify the equations using them [16, 17, 21]. In order to obtain symmetries that coincide
with Lie symmetries in the continuous limit, one needs to significantly modify the Lie
techniques used in the continuous case. Another approach is to discretize differential
equations in a way that preserves some of the symmetries [4, 9, 10]. Given a differential
equation, one constructs a difference equation and a mesh in such a manner as to be
compatible with the original symmetry group. It is found [23, 26] that composition of
numerical schemes by manipulation from automorphism point of view can make some
geometric integrators, including one that preserves time-reversal symmetry.

The goal of this paper is to introduce a novel method, invariantization of numerical
schemes, which serves not only for preservation of symmetries of the system but also for
reduction of the error. Applying the moving frame method to the existing numerical
schemes, one can easily get an invariant numerical scheme without computation to find
difference invariants. Invariantization also enables delicate manipulations of numerical
schemes in geometric manner and therefore control of the error. We are able to utilize a
wide range of numerical techniques that have been already developed.

In a practical sense, invariantization is an adaptive transformation on numerical solu-
tions at each step of numerical schemes. The invariantization by the symmetry transfor-
mation allows us to transform the points at each step along the orbits of the symmetry
group to the proper places where the numerical scheme works better. Figure 1 illustrates
this idea. N stands for a given numerical scheme that evaluates xi+1 from xi. If the
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Figure 1. Basic idea of invariantization of numerical scheme

graph of solution varies rapidly or is highly oscillatory near the points, the scheme may
result in poor performance like (a). This situation can be avoided by applying symmetry
transformations, which map a solution of the differential equation to another one. In
many cases we can pick the transformation g wisely so that the pair of points is mapped
into another nicer solution that cooperates well with the numerical scheme. The transfor-
mation g practically means local substitution that updates numerical schemes N at each
step. The good choice of g usually depends on the position of the points being evaluated,
and therefore changes at steps. In the moving frame theory this procedure can be dealt
as the invariantization on the joint space.

The idea of solving a transformed system in a more convenient form and transforming
its result back has actually been widely adopted in numerical analysis. Local substitu-
tion can reduce the amount of computation for a linear system that has to be solved by
preconditioning it [20] or reducing its dimension [5]. Numerical scheme can inherit some
geometric properties such as first integrals, symmetries and symplectic structure from
their original systems by composition with proper transformations[14, 23, 28]. One of
the common strategies for integration of ordinary differential equations on manifolds is
mapping the system locally to other equations on a vector space and applying classical
methods. Combining with transformation, exponential integrators can decrease compu-
tational cost [8] and deal with highly oscillatory equations [19]. These are just a few
of examples of where the transformation technique is applied. Compared to the above
transformations, the symmetry transformations have a distinctive feature that serves for
direct error reduction: The symmetry transformations leave the equations exactly the
same, and therefore the control of error becomes much easier. Also, the accuracy are well
preserved in the inverse transformation for high order methods, since exact solutions are
mapped to other exact solutions under the symmetry transformation.

The invariantization technique can be applied to any numerical methods based on finite
difference scheme for both ordinary differential equations (ODEs) and partial differential
equations (PDEs). In this paper we mainly focus on ODEs with nonlinear symmetry
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transformations, since most of traditional numerical schemes are already invariant with
respect Affine symmetry [26]. The idea of invariantization of numerical schemes first
appeared in [25] in the form of an invariantization of multi-step methods for difference
equations.

The following simple example shows how this method improves the existing numerical
algorithms. Consider the differential equation

(1.1) ẏ = y.

It has a 1-parameter symmetry group G whose infinitesimal generator and finite trans-
formation are X = ex ∂

∂y , ε · (x, y) = (x, y + εex) for all ε ∈ R respectively. We

suppose the point (xi, yi) = (xi, y(xi)) is the initial condition, and yi+1 is the next
point generated by the Euler method for fixed xi+1. Let us set the transformed points
(x̃, ỹ) = ε · (x, y) and the step size h = xi+1 − xi = x̃i+1 − x̃i. The Euler method is
yi+1 = yi + hẏ(xi) = yi + hyi = (1+ h)yi. If we apply the method to the transformed pair
of the points, (x̃i, ỹi) and (x̃i+1, ỹi+1), we obtain ỹi+1 = (1 + h)ỹi or,

yi+1 + εexi+1 = (1 + h)(yi + εexi)

in terms of the original points. Using the fact that y = ẏ = ÿ = · · · and the Taylor
expansion at x0, we have

yi+1 = y(xi+1)− (yi + εexi)

(
h2

2!
+

h3

3!
+ . . .

)

So far, this is nothing more than the Euler method with error O(h2). Now suppose we
actually transform (xi, yi) to (x̃i+1, ỹi+1) = (xi, 0). That is, we set ε = −yi/exi . Then all
error terms are cancelled and we have exactly yi+1 = y(xi+1). Again, note that our choice
of transformation parameter ε depended on xi, yi and xi+1 and varies at steps. In this
simple example the Euler method yields an exact solution after an appropriate symmetry
transformation. However, the accuracy of the invariant scheme greatly depends on the
choice of ε.

2. Invariantization of Numerical Schemes by Moving Frames

Denote z = (x, y) ∈ M = R × Rn where x is the independent variable and y the
dependent. In our applications we focus on a normal ordinary differential equation

(2.1) ẏ = f(x, y).

To deal with distinct points on the graph, we introduce the joint product of M

M¦k = { (z1; . . . ; zk) | zi ∈M, zi 6= zj for all i 6= j}
which is the off-diagonal part of the Cartesian product. Every action of group G on M
naturally extends to the product action of g ∈ G on M ¦k as

g · z = g · (z1; . . . ; zk) = (g · z1; . . . ; g · zk) for z ∈M ¦k.

By numerical schemes we mean here a real-valued function N on M ¦k such that N(z) =
O(H) whenever z is on a solution of the differential equation, where H is a step size
function of which arguments are differences between independent variables of z1, · · · , zk.
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Let G be a Lie group acting on M . We say that a real-valued function f is an invariant
if f(g · z) = f(z) for all g ∈ G and z ∈ M . The g-transformation of numerical scheme of
N is defined as

N g(z) = N(g · z).
Proposition 2.1. Let N be the numerical scheme for a differential equation and G be
symmetry group of the equation. Then N g is also a numerical scheme for the equation
for all g ∈ G.

Example 2.1. Transformation of the Euler method
Let G be the 1-parameter symmetry group acting on R2 in the example of (1.1). We can
extend the action of ε ∈ G on (R2)¦2 as

ε · z = ε · (zi; zi+1)

= (ε · zi; ε · zi+1)

= (xi, yi + εexi ; xi+1, yi+1 + εexi+1).(2.2)

The Euler method for (2.1) is

N(zi; zi+1) = yi+1 − yi + (xi+1 − xi)f(xi, yi) with H = (xi+1 − xi)
2,

and its ε-transformed version is

N ε(zi; zi+1) = N(ε · (zi; zi+1))

= N(xi, yi + εexi ; xi+1, yi+1 + εexi+1)

= (yi+1 + εexi+1)− (yi + εexi)− (xi+1 − xi)f(xi, yi).(2.3)

Our main concern is not just invariantization, but also invariantization reducing error
in numerical schemes. It turned out that the moving frame methods are very effective at
the manipulation of numerical schemes for this purpose. Moving frames, which Fels and
Olver recently developed in [11, 12], are a powerful tool to investigate invariants of group
actions. The moving frames methods provide an algorithmic way to invariantize a given
function and to find complete set of invariants for general group actions.

Definition 2.1. A (right) moving frame is a map ρ : M → G such that ρ(g ·z) = ρ(z)g−1

for all g ∈ G.

The existence of a moving frame requires freeness of the underlying group action.

Theorem 2.2. A moving frame exists if and only if the action of the group is free and
regular.

Suppose G acts effectively on M. Except for few exceptional cases, for most group
actions including all those arising in known applications, it is true that the product action
is free and regular on an open subset of M×k for k À 0 sufficiently large. Consequently,
the moving frame method is applicable to such a joint space. The practical construction
of a moving frame can be done by taking a cross-section K to the orbits of G on M .
Normalization equations from a cross-section z̃ = g · z with z̃ ∈ K implicitly defines
g ∈ G as a function of z ∈ M . One solves this and obtains a moving frame g = ρ(z).
Once a moving frame is found, it is easy to make an invariant from a given function.



5

Definition 2.3. The invariantization of a scalar function F : M → G with respect to a
right moving frame ρ is the invariant function I = ι(F ) defined by I(z) = F (ρ(z) · z).

It is notable that the components of ρ(z) · z naturally provides a complete set of invari-
ants since they are the invariantization of the coordinate functions. We refer the reader
to [11] for more detail.

Example 2.2. For the transformation (2.2), let us choose a cross-section ỹi = 0. Then
the corresponding moving frame is

ε = ρ(z) = −yi/exi

where z = (xi, yi; xi+1, yi+1) in the joint space (R2)¦2. One can observe that the compo-
nents of ρ(z) · z = (xi, 0; xi+1, yi+1 − yie

xi+1−xi) are the joint invariants.

Example 2.3. Let G be a 1-parameter Lie group acting on R3 as

ε · (x, y, z) = (x̃, ỹ, z̃) =

(
x

1− εx
,

y

1− εx
, ε(y − xz) + z

)
for ε ∈ G.

Setting a cross-section z̃ = 0 gives the moving frame ρ(x, y, z) = z
xz−y

. Observe that

ρ(x, y, z) · (x, y, z) =
(
x(y−xz)

y
, y − xz, 0

)
are the invariants.

Suppose G is a symmetry group for a given differential equation and ρ is a moving
frame for G. The invariantization of the numerical scheme N with respect to the moving
frame ρ is

ι(N)(z) = N ρ(z)(z) = N(ρ(z) · z).
As mentioned before, most standard schemes are invariant under time translation,

space translation and scaling. Therefore we only need to focus on other more complicated
symmetries in invariantization. Also, the fact that invariantization is decided by the cross-
section implies we have families of infinitely many invariant schemes in most cases. In
the following example, the procedure of invariantizing numerical schemes is explained and
also the importance of choice of moving frames is shown by comparison of two different
invariantized schemes.

Example 2.4. Invariatization of the Euler method.
The equation

ẏ = xy + 1(2.4)

has a 1-parameter symmetry group whose infinitesimal generator is X = e
x2

2
∂
∂y . Its pro-

longed generator and the corresponding transformation are, respectively,

pr(2)X = e
x2

2
∂

∂y
+ xe

x2

2
∂

∂ẏ
+ (e

x2

2 + x2e
x2

2 )
∂

∂ÿ
,

pr(2)ε · (x, y, ẏ, ÿ) = (x̃, ỹ, ˜̇y, ˜̈y) =
(
x , y + εe

x2

2 , ẏ + εxe
x2

2 , ÿ + ε(e
x2

2 + x2e
x2

2 )
)
.
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To construct the first invariant scheme (type I), let us set a cross section as ˜̈y = 0 for
normalization. This gives the prolonged moving frame

ε(z) = −e−
1
2
x2

ÿ

x2 + 1
or

ε(z) = −e− 1
2
x2

(
y +

x

x2 + 1

)

as ÿ = y + xẏ = (x2 + 1)y + x. Now the invariantized Euler method for (2.4) can be
obtained by plugging ε to (2.3). Another way to understand the invariantization is using
a local substitution. Applying the moving frame ε to z = (zi; zi+1) = (xi, yi; xi+1, yi+1)
we have

ε(z) · z = ε(zi) · (zi; zi+1)

= (ε(zi) · zi; ε(zi) · zi+1)

=

(
xi,−

xi
x2
i + 1

; xi+1, yi+1 − αyi −
αxi

x2
i + 1

)

where α is e−
1
2
(xi+1

2−xi
2). The invariantization is a local change of variables in the Euler

method as

(xi, yi ; xi+1, yi+1) 7−→(
xi,−

xi
x2
i + 1

; xi+1, yi+1 − αyi +−
αxi

x2
i + 1

)
.

This substitutions seem complicated but are actually easily implementable using the mov-
ing frame. The step size remains the same under the transformation, so the error reduces
from O(h2) to O(h3). The second invariantization (type II) is done in the same way, but

with normalization ˜̈y = 100. The numerical solutions from the Euler method, the type I
invariant method and the type II are shown in Figure 2. (a),(b) and (c), respectively.

From Example 2.4 we can see that there are infinite choices for the moving frames
and each of them decides the corresponding symmetric integrator. It must be noted that
the result from type II is poorer than that of the standard Euler method, even though
the scheme preserves symmetry of the equation (2.4). This implies that preservation of
symmetries is not enough to gain high accuracy and must be accompanied by careful
design of the schemes.

However, there is not much surprise at the excellent performance of the type I scheme
either. This is because the invariantization in the example actually increased the number
of stages by requiring the value of the second derivative, which is higher than the order of
the Euler method. The true benefit of invariantization appears when applied to numerical
schemes of second order or higher, such as the Runge-Kutta method.

3. Invariantization of the Runge-Kutta method

The invariantizations shown in the previous examples bring up the issues about how
we can choose a proper section for a general case and what amount of error reduction
we can expect from that. We have learned that normalizing the second derivative to
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Figure 2. Invariantized Euler methods

zero is the best strategy for the Euler method. The situation becomes much complicated
when we adopt numerical schemes of higher order. The number of terms that we need to
deal with for the error analysis undergoes combinatorial explosion as the order increases
and we unavoidably face the huge complexity of the error. While there have been many
researches on error estimation related to the adaptive step size control, not much has
been done for the structural analysis of the error that enables direct error manipulation.
Because of such difficulty, we will mainly resort to quantitative methods which is based
on the plausible assumption,

On solution curves, numerical schemes generally work better where low or-
der derivatives are zero.

Indeed, this assumption is just a verbal description of Figure 1.
For a nth order numerical scheme, the method suggested here is to remove a substantial

number of the terms from the (n + 1)th order error by locally normalizing the first or
second derivatives to zero. We mainly focus on the Runge-Kutta method (RK) in this
paper, which is the one of the most widely used one-step multi-stage method. With help
of a computer algebra tool, we can easily enumerate the error terms of the RK for the
general cases. For example, the fifth order error from the fourth order RK for a first order
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Figure 3. ÿ − y + sin(y − ẏ) = 1, y(0) = ẏ(0) = 1.

differential equation is,

E5 =
1

5760
( 3fxxxx + 12ffxxxy − 12fxfxxy + 18f 2fxxyy + 12fxxfxy

+ 24ffxy
2 − 24ffxfxyy + 12f 3fxyyy + 8fxxxfy + 12ffxxyfy

− 24fxfxyfy − 12fxxfy
2 − 48ffxyfy

2 + 48fxfy
3 + 48ffy

4

− 36fx
2fyy + 12ffxxfyy + 36f 2fxyfyy − 96ffxfyfyy

− 72f 2fy
2fyy + 12f 3fyy

2 − 12f 2fxfyyy − 4f 3fyfyyy + 3f 4fyyyy ).

More than 70% of terms have ẏ = f as a factor if counted uniformly. It is observed that
for the high order RKs that the ratio of those terms in the error rises and approaches to 1
as the order of the methods increases. This implies that the local error of the high order
methods is very sensitive to the value of the first derivative. Therefore, invariantization
with ỹx = 0 brings much more improvement when we use the higher order schemes.

Through the examples in the rest of the paper, except the Hamiltonian system with the
exact solution, we use the pseudo error. The pseudo error is defined as difference from
a numerical solution with much smaller step size. We mostly compare the results from
h = 0.1 with those from h = 0.001.

Example 3.1. ÿ − y + sin(y − ẏ) = 1.
The corresponding system is

u̇ = f(u, v) = v

v̇ = g(u, v) = u− sin(u− v) + 1

The system is autonomous and admits a 1-parameter symmetry generator, X = ex ∂
∂u

and
the transformation (x, u, v, v̇) 7→ (x, u + εex, v + εex, v̇ + εex). Using computer algebra
tools, we can check that this system has 106 terms and 694 terms in the fifth order error



9

0 1 2 3 4 5

−8

−7

−6

−5

−4

−3

x

Lo
g 10

(|
E

rr
|)

No Inv

v
..

= 0
u
.

= 0
v
.

= 0

Figure 4. ÿ + xẏ − (x+ 1)y = sin(x), y(0) = ẏ(0) = 1.

in the RK for u and v respectively.

Eu
5 =

1

2880
( fgu

2 + fgguu + · · · 106 terms · · ·+ g2gygvv + g3gvvv )

Ev
5 =

1

2880
( ggu

2 + g2guu + · · · 694 terms · · · − g3gvgvvv − g4gvvvv ).

There are 71 terms and 539 terms respectively that have g as a factor in them. Therefore
setting ˜̇v = 0 gives 67% and 78% reduction of the error terms in Eu

5, E
v
5 respectively.

The corresponding moving frame for the cross-section is ε = −e−x(u− sin(u− v)+1) and
the transformation

ε · (x, u, v, v̇) = (x̃, ũ, ṽ, ˜̇v)

= (x, sin(u− v)− 1, −(u− v) + sin(u− v)− 1, 0).

Now the corresponding invariantized RK can be obtained by substitution at each step,

(xi, ui, vi;xi+1, ui+1, vi+1) 7→ (xi, ui − α, vi − α;xi+1, ui+1 − βα, vi+1 − βα).

where α = ui − sin(ui − vi) + 1 and β = exi+1−xi . Refer to Figure 3 to see the results of
the invariantized RK with different cross-sections that outperforms the standard one.

Example 3.2. ÿ + xẏ − (x+ 1)y = sinx
This linear differential equation is converted to the equivalent dynamical system,

u̇ = f(x, u, v) = v

v̇ = g(x, u, v) = (x+ 1)u− xv + sinx.
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The system has the same symmetry as the previous example. Quantitative error analysis
shows that the errors of the system are 226 and 487 terms for u and v respectively, as

Eu
5 =

1

2880
( gxxx + ggxu + · · · 226 terms · · ·+ fgugv

2 + ggv
3 )

Ev
5 =

1

2880
( gxxxx + fgxxxu + · · · 487 terms · · ·+ fgugv

3 + g4gvvvv ).

Among them 84 in Eu
5 and 108 in Ev

5 terms have v̇ as a factor. Therefore if we set
˜̇v = g = 0, 37% and 22% of the terms vanish respectively. These percentages seem
too small for us to expect error reduction. This cross-section gives the moving frame
ε = −e−x((x+ 1)u− xv + sinx) and the transformation

ε · (x, u, v, v̇) = (x̃, ũ, ṽ, ˜̇v)

= (x,−x(u− v)− sinx, −(x+ 1)(u− v)− sinx, 0).

However, from the simple analysis of the given equation we observe that u− v converges
rapidly to zero while |u|, |v| increase to infinity as time goes on. Therefore we have
two additional approximate normalizations ũ ≈ − sin x, ṽ ≈ − sin x under the setting
˜̇v = g = 0. This implies more that 70% of the error terms are transformed to zero or
almost zero. Now we obtain the corresponding invariantized RK by substitution at each
step,

(xi, ui, vi;xi+1, ui+1, vi+1) 7→ (xi, ui − α, vi − α;xi+1, ui+1 − βα, vi+1 − βα).

where α = (xi + 1)ui − xivi + sinxi and β = exi+1−xi .
Figure 4 shows the results from the RK and the invariantized RKs with the different

cross-sections. The one from v̇ = 0 is the best on the whole, which is also confirmed by
the quantitative error analysis.

Adding even one dependent variable greatly raises the complexity and lowers the den-
sity of the first derivatives in the errors. If a given system is non-autonomous and of three
dependent variables, the invariantizations into one cross-section usually do not make much
change. However, this situation can be improved if we can utilize more symmetry trans-
formations of the system. The following example is about an interesting synergy of two
symmetry transformations.

Example 3.3. Double invariantization
The system

u̇ = v

v̇ = w

ẇ =
−12x2w − 3xv +

√
4x2w + 4xv − u+ log x

4x3
.

has two symmetry generators

X1 =
√
x
∂

∂v
, X2 =

1√
x

∂

∂v
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Figure 5. The Double Invariantization

and the transformations

ε1·(x, u, v, w, ẇ)(3.1)

=

(
x, u+ ε1

√
x, v + ε1

1

2
√
x
,w − ε1

1

4x
√
x
, ẇ + ε1

3

8x2
√
x

)

ε2·(x, u, v, w, ẇ)(3.2)

=

(
x, u+ ε2

1√
x
, v − ε2

1

2x
√
x
,w + ε2

3

4x2
√
x
, ẇ − ε2

15

8x3
√
x

)
.

Using a symbolic algebra software we can confirm that there are 13,364 terms in the fifth
order for each u, v and w in the RK. In this example, since every derivative of u, v is either
one or zero, the actual numbers of the terms are are reduced, for example, to 3516 terms
in Ew

5. Suppose we pick ˜̇v = 0 for a cross-section and the corresponding moving frame
ε1 = 4x2

√
xw. This removes 1813 out of 3516 terms in the terms in Ew

5. The choice of
˜̇w = 0 with the moving frame ε1 = −8

3
x3
√
x works similarly. However, we can build a

better transformation by proper combination of the two transformations. Through the
successive applications of the two moving frames ε1 = −10x√xw+4x2

√
xẇ for (3.1) and

ε2 = 2x2
√
xw + 4

3
x3
√
xẇ for (3.2), every point (x, y) is projected to the intersection of

˜̇v = 0 and ˜̇w = 0. This implies we invariantize the numerical scheme as

(N ε1)ε2(z) = N( ε2(ε1(z) · z) · (ε1(z) · z) ).
This invariantization gets rid of 2916 out of terms from the errors, which is 83% reduction.
In Figure 5, one can see the the doubly-invariantized scheme excels other results by far.
The initial condition is y(0) = ẏ(0) = −1, ÿ(0) = 1.

Many geometric integrators, by preserving geometric properties of the solutions, shows
the excellent long-term behavior [15, 29]. It turned out that the invatiantization technique
also enhance the long term stability of the standard schemes considerably.
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Figure 6. Long term integration of harmonic oscillator

Example 3.4. Driven Harmonic oscillator.
The equation

ÿ + y = sin(xα)

describes a driven harmonic oscillator, one of whose examples is the inductor-capacitor
circuit. Recall that resonance occurs when α = 1. Here we use α = 0.99, which yields
solutions close to resonance but still bounded. Since this is linear constant-coefficient
equation, its symmetry generators are easily found as

X1 = sin x
∂

∂y
, X2 = cos x

∂

∂y
.

As in the previous example, we can doubly invariantize the RK setting ˜̇y = 0 and ˜̈y = 0.
Time interval h = 0.1 is used up to x = 1000. Figure 8 shows that the invariantized scheme
produces much better results in the long term-integration. Since the errors oscillate fast
around zero with varying amplitudes, we only compare their amplitudes as representative
values in the figure. On the contrary to the standard scheme case, 10,000 repetition of
applications hardly ruins the quality of the solution of the invariantized scheme.

From the above four examples of the invariantized RKs, it should be noted that this
invariantization does not change the number of the stages of the RK, although construc-
tion of moving frames often needs computation of the first stage of the RK. Once the RK
is invariantized by moving frames, the first stage of the transformed RK is to be zero and
therefore the total number of the stages remains the same.

4. Comparison with Other Geometric Integrators

Several types of Lie-symmetric integrators have been developed as mentioned in the
introduction, but still many of them remain untested on a practical level. In this section
the invariantization method is compared with two numerical methods that adopt geomet-
ric approaches. First, we study how symmetry reduction affects the performances of the
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Figure 7. Comparison with Symmetry Reduction in ẏ = sinx y + cosx.

numerical schemes in comparison to invariantization. Both of them are the same in that
they use a symmetry structure of a given differential equation, but symmetry reduction
is a global substitution while invariantization is a local one.

Example 4.1. Comparison with symmetry reduction.
Consider the equation

ẏ = sinx y + cosx.

This has symmetry generators X = e− cosx ∂
∂y
, which suggests the substitution u = ecosxy.

The substituted equation is
ẏ = cosx ecosx.

This equation is simpler than the original one in the view of the number of variables that
appear on the right hand side. It is interesting to see the difference of the performances
between the RK and the invariantized RK on the original equations, and the RK on the
substituted equation. In Figure 7 we can see the invariantized RK works better than
both of the RK on the original equation and substituted equation. In the long term, the
error of the invariantized RK is observed to slowly rise and converge to that of the RK
on substituted one.

It is certain that substitution by the symmetry group does not actually guarantee
simpler equations. For the linear equations ÿ+ x ẏ− (x+ 1)y = sinx in Example 3.2, the
substitution leads to a more complicated one even with the reduction of variables. Refer
to Figure 8.

The symplectic integrator is one of the most successful geometric integrators for ODEs[15].
The popularity of a symplectic integrator stems from its area-preservation, time-reversibility
and energy conservation in a time-independent Hamiltonian systems. Many of symplectic
integrators have been developed based on the RK method. Even though the invariantiza-
tion method does not use Hamiltonian structure directly, it is interesting to compare two
methods as geometric integrators.
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Figure 8. Comparison with Symmetry Reduction in ÿ + x ẏ − (x+ 1)y = sinx

Example 4.2. Comparison with symplectic integrators.
Suppose we have the Hamiltonian,

H(p, q) =
1

2
(p2 + q−2)

which leads to the system

ṗ = −Hq = q−3(4.1)

q̇ = Hp = p.

It has an exact solution q = ±
√
C1x2 + 2C1C2x+ C1C2

2 + C−1
1 for arbitrary C1, C2. The

system admits the symmetry groups,

X1 =
∂

∂x

X2 = x2 ∂

∂x
+ xq

∂

∂q
+ (q − xp)

∂

∂p

and the corresponding transformations,

ε1 · (x, q, p) = (x+ ε1, q, p)

ε2 · (x, q, p) = (
x

1− ε2x
,

q

1− ε2x
, p+ ε2(q − xp))

as in Example 2.3. We take the cross-section x = 1
2
(2−h+

√
h2 + 4) and p = 0. The first

equation is just for fixing the step size at h to avoid confusion in the error analysis. In fact,
the transformation of independent variables provides wider choices of the invariantization,
which will be dealt in detail in future studies. The numerical scheme is now invariantized
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Figure 9. Comparison with Symplectic integrator at the first order
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Figure 10. Comparison with Symplectic integrator at the fourth order

by the composite of the moving frames ε2 ◦ ε1 with

ε1 = −x+
1

2
(2− h+

√
h2 + 4)

ε2 =
p

xp− q
.

We compare the schemes at the first order (the Euler method) and the fourth (the RK).
Even though there is no known explicit symplectic method of the order greater than two
for the general Hamiltonian system, many explicit symplectic RKs have been introduced
for separable Hamiltonian systems like (4.1). Here we use the symplectic fourth-order
RK developed in [7, 13]. The initial condition q(0) =

√
2, p(0) = − 1√

2
, and the step size

h = 0.05 are used. Figure 9 compares the errors in the standard method, the symplectic
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method and the invariantized one in the long term. Although the invariantized Euler is
better than the Euler, it is still behind the symplectic Euler.

This situation changes dramatically when we move on to higher order methods, and
the invariantized RK4 excels other two methods as in Figure 10. While the method using
the symplectic structure brings almost the same improvement as in the Euler method, the
invariantization works much better for the higher order method. The growing dependency
of the error terms on the first derivative is responsible for this result.

5. Conclusions

In this paper, we have investigated that the technique of invariantization of numerical
schemes for ordinary differential equations. In the practical sense, the procedure of the
invariantization is a local substitution at each step in the existing numerical algorithms.
Through moving frames one can use the symmetry group of the differential equations to
improve the computational performance of the numerical schemes. Our work in this paper
suggests that the future study on invariant schemes should focus on implementation in
close relation to error reduction.

Beyond the fact that the invariantization method requires only small modification to
existing numerical schemes, another appealing point is its generality. Even though only
a few examples of single step methods for ODEs have been dealt in this paper, the in-
variantization technique can be applied to a wide range of numerical schemes both for
ODEs and PDEs. It is worth generalizing the invariantization process to other numeri-
cal schemes based on finite difference schemes such as multi-step methods or numerical
methods for for PDEs.
Acknowledgement. The author wishes to thank Prof. Olver and Prof. Iserles for
helpful guidance and many valuable comments regarding the results of this paper.
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