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Abstract. This paper introduces the symmetric collocation methods that take a new
approach to apply Lie symmetry theory to numerical analysis of differential equations.
The basic idea of the method is to approximate unknown solutions by collocation of other
solutions generated by symmetry transformations. Different from the existing numerical
methods, the symmetric collocation method does not use any discretization even for
time-dependant differential equations and therefor does not suffer from any geometric
restriction on the domain or the distribution of the data locations. Numerical realization
of some solutions of a linear heat equation is developed.

1. Introduction

Symmetries have long been recognized to be intrinsic and fundamental features of dif-
ferential equations. Once one has determined the (point) symmetry group of differential
equations, it can be used for a number of applications. Some of main applications are,
(a) A group action transforms a given solution to new ones; so the complete set of

solutions is transformed to itself.
(b) Using differential invariants obtainable in a systemical way, a given differential

equation reduces to its simpler invariant representation; the group-invariant solutions can
be found by solving the reduced system.
(c) The invariance of partial differential equations (PDEs) is a necessary condition to

obtain conservation laws in variational problem by the application of Noether’s theorem.
In the last decade there has been growing recognition on applications of Lie theory to

numerical analysis of differential equations. Most of efforts have been devoted to develop
the discrete version of symmetry theory, i.e. symmetric finite difference methods. One of
main stream is to determine symmetries for given difference equations [13, 16]. In order
to obtain symmetries that coincide with Lie symmetries in the continuous limit, one needs
to significantly modify the Lie techniques used in the continuous case. Another idea is to
discretize differential equations in a way that preserves some of the symmetries [5, 6, 7].
Given a differential equation one constructs a difference equation and a mesh in such
a manner as to be compatible with the original symmetry group. Recently alternative
approach was made in [18, 19]. Using the Cartan’s moving frame theory that is reformu-
lated in modern way in [10, 11], it improves the existing finite difference scheme greatly
for some differential equations.
In this paper we introduce the symmetric collocation method, the novel application of

Lie symmetry theory to numerical analysis that is not based on finite difference schemes.
The underlying idea of the method is actually simple; we generate sufficiently many
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solutions by using the property (a) of the symmetry group of the equation, and then
collocate them to approximate the target solutions.
For a linear differential equation Lu = f , let ϕ be a particular solution and {φi}i∈I a

set of solutions of the homogenous equation Lu = 0. Now the question is: can we find a
finite subset {φj}j∈J , J ⊂ I so that

U = ϕ+
∑

j∈J

φj

meets the initial and the boundary conditions closely enough?
The answer surely depends on then the number and the variety of the solutions φi that

we have. For the standard linear PDEs like the linear heat equations ut = uxx, there exist
infinite number of the polynomial solutions available. Moreover, those PDEs usually have
abundant symmetry groups that enable us to generate new solutions from trivial ones.
With help of symmetry analysis on a given differential equation, we can derive all of this
kind of transformations systemically. For example, the most general solution for the linear
heat equation that can be obtained is

u =
ε3√

1 + 4ε6t
exp

(

− ε5x+ ε6x
2 − ε5

2t

1 + 4ε6t

)

×f
(e−ε4(x− 2ε5t)

1 + 4ε6t
− ε1,

e−2ε4t

1 + 4ε6t
− ε2

)

+ g(x, t)

for any ε1, . . . , ε6, where f, g are any exact solutions. We refer the readers to [17] for more
detail.
The symmetric collocation method is basically data-fitting over the domain by the

symmetry transformation. Starting from the usual trivial solution, we search the general
solution spaces until we obtain one close enough to given data. The symmetry trans-
formations often provide surprisingly various solutions even out of trivial solutions and
relatively small number of collocations is needed to yield a good result.
As the collocated functions are all globally defined, the methods basically works the

same for any type of boundary or initial condition no matter what geometric restriction is
imposed. In addition, in case the given equation contains some unknown parameter, the
method can manage them just as extra symmetry transformation. Therefore the ill-posed
problems caused by bad geometry, unknown parameters, backward process in time, or any
combination of these can be managed as well as the usual conditions in the symmetric
collocation method.
One of the benefits of the method is that we can always check exactly what the error is

and how trustworthy the numerical solution is. Since the numerical solution is always one
of the general solutions, the only error comes from discrepancy between the given data
and the obtained value, which we can easily confirm.

2. Differential Error and Data Error

We are concerned with the numerical linear PDE problem of the form

Lu = f(x) , x ∈ Ω “differential condition”

u = g(x) , x ∈ D “ data condition”
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where Ω is a subset of Rn and D is a finite subset of Ω. 1 The data condition may include
a partial derivatives. In the examples through the rest of the paper we fix the differential
conditions to the 1-D heat equation ux2

− ux1x1
= 0 or more conventionally, ut− uxx = 0.

In order to verify validity of a numerical scheme, we usually apply it to the simple
problem that has the known solution u, and compare the numerical solution ũ to u point-
wise. However when we try to solve the practical problem without knowing the solution,
it is generally hard to find out how close the numerical solution is to the real solution.
The situation becomes worse considering that the practical problems given with a finite
data condition does not have unique solution, i.e., it is intrinsically ill-posed.
To verify a specific numerical solution, we introduce two error estimators,

Ediff(u) =
1√
A
‖Lu− f ‖2,Ω “ differential error”

Edata(u) =
1√
N
|u− g |2,D “ data error”

where A, N are the area of Ω and the size of D respectively. Here ‖ · ‖2,Ω, | · |2,D denote
L2-norm and l2-norm defined on each domain respectively. For most of the existing
numerical schemes including finite difference methods and finite element methods, the
data errors of their numerical solutions are zero or close to zero. Therefore their actual
errors are the differential errors. Unfortunately it is generally challenging to compute the
differential errors. In the case of finite difference method, we even have to make proper
local interpolations to compute integration.
On the contrary, since the collocations of solutions make another solutions, the differ-

ential error of (1.1) is zero. Therefore the solutions by the symmetric collocation method
have only the data error, of which computation is very easy and straightforward.

3. Simple Collocation of Solutions

For a linear homogeneous differential condition, suppose we are given a data condition
of size n, i.e., the values d1, . . . , dn of the unknown function u measured at n different lo-
cations p1, . . . , pn. With the same number of known solutions φ1, . . . , φn of the differential
condition, one natural idea of approximation of u is to set

u =
n
∑

i=1

ciφi.

Then it gives the n by n matrix equation on the points p1, . . . , pn,








φ1(p1) φ2(p1) . . . φn(p1)
φ1(p2) φ2(p2) . . . φn(p2)
...

...
. . .

...
φ1(pn) φ2(pn) . . . φn(pn)

















c1
c2
...
cn









=









d1
d2
...
dn









1We can convert a given nonhomogeneous problem into homogeneous one by constructing any partic-
ular solution numerically. This particular solution does not need to satisfy the data condition, so it can
be easily constructed with small cost up to any accuracy level we want.
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Figure 1. : The distribution of the 20 data locations (O) for the colloca-
tion of solution and Crank-Nicolson methods. The points (¤) at which the
error is evaluated.

which determines the coefficient c1, . . . , cn. In fact this is the simple analogue of manip-
ulation of general solutions in linear ordinary differential equations. If this equation can
be exactly solved, those coefficients make one of the exact numerical solutions with both
zero for the differential and the data error.
Unfortunately this is not the usual case, since the matrices often become ill-conditioned

as n increases. This means that it is hard to keep the solutions different enough from
each other with respect to the data locations for the large data set. This situation can be
avoided to some extent if we apply the symmetry transformations to simple solutions.

Example 3.1. Simple Collocation of Solutions The differential condition is again
the 1-D heat equation in the domain 0 ≤ x ≤ π, 0 ≤ t ≤ 0.5. The data condition consists
of the values at the 16 points which are generated by u = exp(−t) sin(x) on the boundary
since we want to compare the result of the method with that of finite difference methods.
See Figure 1. There are infinite number of polynomial solutions for the heat equation,

φ0 = 1 φ1 = x

φ2 = t+
1

2
x2 φ3 = tx+

1

6
x3

φ4 = t2 + tx2 +
1

12
x4 φ5 = t2x+

1

3
tx3 +

1

60
x5

φ6 = t3 +
3

2
t2x2 +

1

24
tx4 +

1

120
x6 φ7 = . . . . . .

These polynomials are similar with respect to the data locations, especially where t =
0. Since this may cause the corresponding matrix to be ill-conditioned, we apply the
symmetry transformation to them as in (1.2) to obtain a new set of solutions. Numerical
experiment shows that even a small transformations can greatly improve the situation.
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Some of the transformed solutions we use in this example are,

ψ0 = φ0(x, t)

= 1

ψ1 = exp(−x+ t) φ0(x− 2t, t)
= exp(−x+ t)

ψ2 =
1√
1 + 4t

exp
(

− x2

1 + 4t

)

φ0(
x√
1 + 4t

,
t√
1 + 4t

)

=
1√
1 + 4t

exp
(

− x2

1 + 4t

)

ψ3 = φ1(x, t)

= x

ψ4 = exp(−x+ t) φ1(x− 2t, t)
= (x− 2t) exp(−x+ t)

ψ5 =
1√
1 + 4t

exp
(

− x2

1 + 4t

)

φ1(
x√
1 + 4t

,
t√
1 + 4t

)

=
x

1 + 4t
exp

(

− x2

1 + 4t

)

ψ6 = . . . . . . .

Note that the first six functions are generated out of φ0 = 1, φ1 = x only.

Table 1 : Simple Collocation vs. Crank-Nicolson
Method Error at (x,t)

(0.2π,0.3) (0.5π,0.3) (0.8π,0.3) (0.2π,0.5) (0.5π,0.5) (0.8π,0.5)

Sim.Colloc. 2.3e-7 8.1e-8 2.5e-9 3.7e-7 8.8e-8 1.8e-8
Cr-Ni 1.0e-3 1.6e-3 1.0e-3 1.3e-3 2.2e-3 1.3e-3

Table 1 compares the numerical result of the collocation using these solutions with that
of Crank-Nicolson method that is a well-known finite difference method. It is definite
that the collocation of solutions beats the Crank-Nicolson method all over the domain.
It is also noteworthy that the method does not need any discretization even in time since
the basis functions are globally defined both in time and space, i.e., the method is a true
collocation method.
The differential error of the collocation method is zero as mentioned before and the

data error is 1.54 × 10−13 which is much lower than the actual errors in Table 1. This
discrepancy can be explained by ill-posedness of the given problem, i.e., the data at 19
points is too small to decide one unique solution. As we see in the examples in the section
4 later, for the problems with large data conditions, this difference disappears and the data
error actually indicates the real error of solutions. This means that one can easily check
the validity of the numerical solutions produced by the symmetric collocation methods
even without the real solutions. On the contrary, the error of the Crank-Nicolson method
is hard to figure out if the real solution is not given.
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However it becomes hard to find a appropriate set of solutions that yields a well-
conditioned matrix as the data set grows, even if we adopt the symmetry transformations.
For example, the condition number of the matrix in Example 3.1 is 4.42× 1011 and it is
the cause of the nonzero data error in practical computation. This difficulty makes us
turn our attention to finding a better scheme to adjust transformation parameters well
without increasing the number of solutions collocated.

4. Symmetric Collocation by Data-Fitting

To deal with transformations in clear way, we rewrite them in the view of group actions.
Then the symmetry transformation (1.2) is now,

ε · f(x, t) = (ε1, . . . , ε6) · f(x, t)

=
1√

1 + 4ε6t
exp

(

ε3 −
ε5x+ ε6x

2 − ε5
2t

1 + 4ε6t

)

× f
(e−ε4(x− 2ε5t)

1 + 4ε6t
− ε1,

e−2ε4t

1 + 4ε6t
− ε2

)

where ε = (ε1, . . . , ε6) is an element of a local Lie group G.
Now we claim that if a given differential equation have a sufficient number of symmetry

transformations, any solution can be approximated well by some transformations of rela-
tively small number of known solutions. In other words, for known solution φ1, . . . , φn and
a given solution u, there exist elements ε1, . . . , εn ∈ G such that ũ = ε1 · φ1 + . . .+ εn · φn

is close enough to u. Note that we have total mn number of transformation parameters.
Using the optimization algorithm the symmetric collocation method adjust the parame-
ters until they reach the ones that minimize the data error Edata(ũ). This implies that we
turn a given numerical PDE to a large-scale nonlinear optimization problem.
In the following two examples we collocate only seven polynomial solutions φ0, . . . , φ6

as in Example 3.1 for the data collected at over 100 points. The data is generated by the
function,

u =
1

4
exp(x+ t)− exp(−π2t) sin(πx) + 3 exp(−4t) cos(2x)

which is purposely made out of special functions as a target solution. For the both
examples we use the general optimization tool fminsearch in Matlab and the costs of
computation are not considered as the accuracy of the result is the concern at this point.

Example 4.1. Standard Data Condition

The values of a unknown function are collected at some points on the boundaries. Start-
ing with only seven polynomial solutions, we find the proper approximation which agrees
with the target function as closely as at 111 data locations. We can keep minimizing the
data error as far as it reduces to the level we want.

Table 2 : Point-wise Error according to the Data Error in Example 4.1
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Figure 2. : (a) The distribution of the 111 data measured on the rectan-
gular boundary. (b) The distribution of the 100 data measured at totally
scattered locations in time and space.

Data Error Error at (x,t)
Edata(u) (0.25,0.3) (0.5,0.3) (0.75,0.3) (0.25,0.5) (0.5,0.5) (0.75,0.5)

4.7e-3 1.0e-3 2.5e-3 4.4e-3 2.6e-3 4.5e-3 7.1e-3
4.7e-4 6.9e-5 2.0e-5 2.5e-5 2.5e-4 8.4e-5 4.7e-4
5.0e-5 1.7e-6 3.0e-6 2.7e-5 1.4e-6 3.2e-6 1.9e-5

Table 2 shows that the data error reflects error at each point, so it is a good indica-
tor of the real error. Of course the numerical result is characterized in the values of
parameters. The following is the list of the 42 parameters at a step when the data error
is 5.0× 10−5.

ε1 =( 0, 0, 0.2518, 0,−1.6165,−0.0283)
ε2 =( 0.3114, 0.0477,−0.2843,−1.2158,−0.7438,−0.0166)
ε3 =( 0.0702, 0.0906, 0.0253,−0.1699,−3.5317, 0.4295)
ε4 =(−5.4555,27.2645, 0.0012,−2.4305, 0.9266, 0.5495)
ε5 =(−4.0792, 2.4244, 0.0124,−0.9771,−1.0142, 0.4039)
ε6 =( 0.2032, 0.0093,−0.0104, 0.0890,−4.8000, 0.7450)
ε7 =(−1.2717, 3.1953,−0.0997,−0.2840, 0.3282, 0.8198)

Thus we have a good approximation on the domain,

u ≈ ε1 · φ1 + . . .+ ε6 · φ6
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or indeed,

1

4
exp(x+ t)− exp(−π2t) sin(πx) + 3 exp(−4t) cos(2x)

≈ ε0 · 1 + ε1 · x+ ε2 · (t+ 1
2
x2) + ε3 · (tx+ 1

3
x3)

+ ε4 · (t2 + tx2 + 1

12
x4) + ε5 · (t2x+ 1

3
tx3 +

1

60
x5)

+ ε6 · (t3 + 3
2
t2x2 +

1

24
tx4 +

1

120
x6)

Note that the two functions on the both sides of the approximated equality are all solutions
of the heat equation.

Example 4.2. Scattered Data Condition

There are many numerical methods that can deal with the data scattered in space with
good efficiency, such as radial basis functions[8, 9].
However, in many practical situations, the data streaming could come scattered both

in time and space. For example of atmospheric data assimilation, the observation plane in
the air measures the data round-the-clock, moving its position. There are still not many
methods for this kind of ill-conditioned problems.
One of the benefit of the symmetric collocation method is that the method can work

with any data condition no matter what geometric restriction it has. Suppose we have the
data totally scattered in time and space as in Figure 2(b). Even though the distribution
of the data locations is quite different from that in the previous example, the symmetric
collocation method works the same way.

Table 3 : Point-wise Error according to the Data Error in Example 4.2
Data Error Error at (x,t)
Edata(u) (0.25,0.3) (0.5,0.3) (0.75,0.3) (0.25,0.5) (0.5,0.5) (0.75,0.5)

4.7e-3 6.1e-3 3.9e-3 2.8e-3 7.6e-3 5.2e-3 2.5e-3
4.9e-4 6.8e-4 4.6e-4 4.6e-4 5.0e-4 5.2e-4 4.8e-4
5.0e-5 4.1e-5 2.1e-5 1.8e-5 6.5e-5 4.4e-5 6.6e-6

The following is the list of the parameters at a step when the data error is 5.0× 10−5.
ε1 = ( 0, 0, 4.4607, 0, 1.7378, 2.0731)

ε2 = ( 0.5493,−1.6470,−0.1371, 0.5961,−1.2232,−0.1353)
ε3 = ( 0.2455,−0.8448, 0.4464, 0.0218,−0.3851,−0.1911)
ε4 = ( 1.5755, 41.1203,−0.0008,−1.8603, 2.1399, 1.8788)
ε5 = ( 2.3376, 1.9193,−0.7298,−0.4620,−0.2444, 0.1288)
ε6 = (−1.3951, 0.3192, 0.5335, 3.4575,−3.6871, 0.3692)
ε7 = (−4.8248, 0.4228,−0.0298,−0.4769, 0.0082, 1.3220)
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In the result we see again that the result made out of seven polynomial solutions is
surprisingly close to the target solution. Also the data error reflects error at the each
point better than in Example 4.1.
While comparing Table 2 and 3 tells that the method performs almost equal results in

both cases, it is important to note that two sets of parameters corresponding the same
error level are very different. It suggests that the optimization problems produced from
the method might have many solutions up to some level and the method is strong enough
to search the solution space.
Though the results of other numerical schemes are often highly questionable for ill-posed

data problems, the result of the symmetric collocation method is much more trustable as
far as the data error is small, which we can always easily confirm.

There are remarks on the symmetric collocation method as an optimization. First we
can adopt any optimization algorithm based on gradient method, since a partial derivative
of the data error is easily obtainable as,

∂Edata(u)

∂εi
j

=
1√
N
|u− g |−1

2,D

∑

x∈D

(u(x)− g(x))× ∂(εi · φi)

∂εi
j

where u =
∑

εi · φi. Also it is a highly flexible optimization. We can try the procedure
repeatedly with an updated data condition, even changing a solution set. This is possible
due to linearity of a given PDE.
However, even though the method often comes with nice explicit functions whose gra-

dients are computable, the computational cost is relatively expensive compared to the
standard methods. This is why usefulness of the symmetric collocation methods should
be found in ability to deal with ill-conditioned problems, sometimes extremely ill-posed
far beyond ability of the standard schemes.

5. Conclusion and Future Work

While the most studies so far on applications of symmetry methods to the numerical
schemes have focused on finite difference schemes, the introduced new method adopts
collocation scheme. Through optimization process, the method constructs out of known
solutions an analytic solution that is close to the target one.
One of the most attractive features of the symmetric collocation methods is that it does

not suffer from ill-located data conditions. The method is purely based on collocations,
so it does not require any discretiztion even for time dependant equations. The idea of
method is simple, and its application is so flexible that one can combine it with other
numerical methods.
Further research should provide clearer relation between the type of symmetries and

the efficiency of the method. Dependance of computational cost on initial and boundary
conditions should be investigated to improve its data-fitting process as well.
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