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On geometry of the Liouville equation

A. V. KISELEV

Abstract. Various geometrical structures related to the Liouville equation, are con-
sidered. Properties of the symmetry algebra are discussed, and local conserved currents
are constructed. Bäcklund transformations for the Liouville equation are integrated,
and nontrivial generalizations of the latter are studied, as well as the structures on
them.

Introduction

The 2-dimensional elliptic Liouville equation

E = {uxx + uyy − exp(2u) = 0}, x ≡ x1, y ≡ x2,(1)

appears in numerous models of mathematical physics. In Riemannian geometry it rep-
resents the Gauss equation expressed in isothermic coordinates, for the Lobatchevsky
plane [9]. Equation (1) may be treated as an example of the continuous elliptic Toda
system [12, 15], see also [18] associated with the simple Lie algebra sl2(C); the coefficient
2 in the exponent stands for the Cartan 1×1 matrix of the algebra. FindingN-instanton
solutions, minimizing the free Yang–Mills equations’ action, for self-duality equations
Fµν = ∗Fµν, where Fµν is the stress tensor, also leads [20] to the Liouville equation.

Equation (1) was considered by Poincaré in [16], where uniformization of algebraic
curves was studied. It is known [22, 1] that for surfaces of genus 0 the specially regular-
ized action, computed on a classical solution of the Liouville equation, is a generating
function for accessor parameters that characterize uniformization of a Riemannian sur-
face; moreover, the action for equation (1) is a potential for the Weil–Peterson metric
on the Teichmüller space of marked Riemannian surfaces of (0, N) type.

The elliptic Liouville equation plays an important role in the modern field theory,
namely, in the strings theory, where the quantum Liouville field appears as a conformal
anomaly [1, 17]. Also equation (1) relates to self-similar solutions of the Kadomtsev–
Pogutse equations [6].

Equation (1) may be obtained formally from the hyperbolic equation [13]

E ′ = {F ≡ uξη − exp(λu) = 0}, ξ ≡ y1, η ≡ y2,(2)

with λ = 2 by the substitution ξ = (x+iy)/2, η = (x−iy)/2. In many cases investigation
of equation (1) in coordinates ξ ∈ C, η ∈ C, ξ̄ = η is convenient, because the results
of computations in the internal coordinates ξ, η, u, uk ≡ ∂ku/∂ξk, lu ≡ ∂lu/∂ηl are
simpler than similar expressions in real internal coordinates considered on (1).

Key words and phrases. Liouville equation, symmetries, conservation laws, Bäcklund transforma-
tions, the Toda systems.
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In Section 1 of this paper a nontrivial n-dimensional generalization of (1) is pro-
posed. In Section 2 generating sections of symmetries and conservation laws are studied
and the Lie algebra of classical symmetries of the Liouville equation is built. Invari-
ant solutions are considered and a special property of the energy-momentum tensor is
discussed. Classical and higher conservation laws for the hyperbolic Liouville equation
are constructed in Section 3. For a special case of higher generating sections an infinite
series of rational (nonpolynomial) higher conserved currents is obtained. In Section 4
shadows of classical nonlocal symmetries corresponding to Abelian coverings, based on
an arbitrary conserved current for the Liouville equation, are described. Bäcklund au-
totransformation for the Liouville equation uξη = exp(2u) and transformations between
the latter, the wave equation vξη = 0, and the scal+-Liouville equation wξη = exp(−2w)
are integrated. Classical symmetries and conserved currents for the elliptic Toda sys-
tems associated with the semisimple Lie algebras of rank 2 are obtained in Section
5.

1. The n-dimensional elliptic Liouville equation

1.1. Conformal equivalence of 2-dimensional metrics. Consider two pointwise
conformally equivalent Riemannian metrics ds2

j = fj(x, y) (dx2 + dy2), fj > 0, j = 1, 2,
on an open 2-dimensional Riemannian manifold of constant Gauss curvature

Kj = −(2fj)
−1∆ lnfj = constj .

Let f2 = f1 exp(2u), then u(x, y) satisfies the equation [9]

∆u = −K2f1 exp(2u)−K1f1.

It is easy to see that the 2-dimensional elliptic Liouville equation (1) corresponds to
the pair consisting of the flat metric with f1 ≡ 1, K1 ≡ 0 and the metric on the
Lobatchevsky plane (K2 ≡ −1).

Corollary 1. Every solution of equation (1) implies existence of the Lobatchevsky plane
model conformally equivalent to Euclidean space with the diagonal metric gij = δij.

Definition 1. We call the equation corresponding to f1 ≡ 1, K1 ≡ 0, K2 ≡ +1, the
scal+-Liouville equation.

1.2. General case: n ∈ N. Let the number n of independent variables x1, . . . , xn be
greater than 2. Then constancy of the open n-dimensional Riemannian manifold’s scalar
curvature

scal ≡ R = const(3)

is a natural condition appearing in a general case of pointwise conformal equivalence
between the Euclidean metric and the metric on the n-dimensional Riemannian mani-
fold. In order to adjust this construction to the 2-dimensional case (1) let us fix R = −2
(i.e., the Gauss curvature K = −1 for n = 2) and let

ds2 = exp(2u)dxkdxk.(4)

Condition (3) is a nonlinear PDE for u(x1, . . . , xn).
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Theorem 1. Condition (3) is

(n− 1)∆u+
(n− 1)(n− 2)

2
(grad u)2 = exp(2u),(5)

where ∆ is the Laplacian in the Euclidean space En.

Proof. Scalar curvature R of metric (4) is defined by the formula R = exp(−2u)Ri
qqi

(summation on repeated indices is assumed). One has

Ri
qqi = ∂i Γ

i
qq − ∂q Γi

qi + Γi
piΓ

p
qq − Γi

pqΓ
p
qi (no summation),

where the Christoffel symbols are

Γk
ij = ∂iu δ

k
j + ∂ju δ

k
i − ∂lu δijδ

kl.

Computing sums on q, i, p = 1, . . . n, one obtains (5).

Corollary 2. On a Riemannian manifold with constant negative scalar curvature −2,
there exists a class of conformal metrics parametrized by solutions of equation (5).

2. Classical symmetries of the Liouville equation

The determining equation on generating sections ϕ of symmetries and conservation
laws [2] for the elliptic Liouville equation (1) is

D2
1ϕ+D2

2ϕ− 2 exp(2u)ϕ = 0.

Let z, z̄ be the complex coordinates on the plane (x, y):

z = x+ iy, z̄ = x− iy,(6)

and let w(z) be an arbitrary analytic function.
Generating sections of classical symmetries and conservation laws depend on z and

z̄, function u and its first derivatives uz, uz̄: ϕ = ϕ(z, z̄, u, uz, uz̄).

Proposition 1. Generating sections of classical symmetries and conservation laws over
R for equation (1) are:

ϕ = w(z)uz + w(z)uz̄ +
1

2
(w′(z) + w′(z)).(7)

The real Lie algebra of classical infinitesimal symmetries of the 2-dimensional elliptic
Liouville equation consists of vector fields

Xw = −w(z)∂ − w(z) ∂ +
1

2

(
∂w + ∂w

) ∂

∂u
+ · · · ,(8)

where ∂ and ∂ correspond to differentiating with respect to z and z̄.
Proposition 1 and formula (8) imply

Theorem 2. The algebra sym E of classical infinitesimal symmetries of the elliptic
Liouville equation is isomorphic to the Lie algebra VectS1 of analytic vector fields on
circumference S1 [8].

The isomorphism is a projection −dz(Xw) for one turn and for another turn it is a
reconstruction of the Lie field (8) by generating section (7) corresponding to the analytic
w(z).
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Remark 1. The Lie fields Xw possess an obvious complex structure J : Xw �→ Xiw such
that J(JXw) = −Xw.

Remark 2. The Liouville equation has a discrete symmetry x1 → x2 invoking change of
orientation of the plane (x1, x2); under its action analytic functions of complex argument
z are mapped to conjugate ones, i.e., to antianalytic ones.

2.1. Invariant solutions. Obtaining solutions of equation (1), invariant under the
action of a certain point symmetry Xw of the form (8), is described in [6]. Denote by
W (z) = α

∫
dz/w(z) + iαβ, α, β ∈ R; then the answer is

u1(z, z̄) =
1

2
ln

W ′W ′

sinh2(ImW )
,(9)

u2(z, z̄) =
1

2
ln

W ′W ′

(ImW )2
,(10)

u3(z, z̄) =
1

2
ln

W ′W ′

sin2(ImW )
.(11)

Remark 3. Functions (9)–(11) map successively one into another:

W1(z) = i lnH(z), W2(z) = tan
W1(4z)

2
, W3(z) = lnW2(z),

where H(z) is an arbitrary analytic function [13], and finally they provide general
solution of the Liouville:

u[H] =
1

2
ln

4H ′H ′

(1−HH)2
.(12)

Remark 4. One easily checks that the analytic function w(z) is expressed via harmonic
one v(x, y) ≡ ImW (x+ iy) by

w(z) =
const

vy + ivx
, const ∈ R \ {0}.

Remark 5. General solution (12) may be also obtained by integrating the elliptic Toda
system associated with the simple Lie algebra A1 [12, 15].

Remark 6. According to Bianchi, 1879 (cf. [7]), one can construct a solution of equation
(1) using an arbitrary harmonic function v(x, y) in a way similar to (9)–(11):

u4(z, z̄) =
1

2
ln
v2

x + v2
y

cos2 v
.

2.1.1. The energy-momentum tensor on u = ∞ curves. Let caustic [5] be a connected
component of the curve

{ z | |H(z)| = 1, ∂lH(z) �= 0, l ≥ 1},
where solution (12) becomes ∞. The traceless energy-momentum tensor for equation
(1) may be considered as T (z) = ∂2u− (∂u)2, ∂T = 0.
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Proposition 2. The energy-momentum tensor T (z) is continuous on the caustics.

Proof. It is easy to check that for arbitrary solution (12)

T (z) =
1

2

(
H ′′′

H ′ − 3

2

(
H ′′

H ′

)2
)

≡ 1

2
{H, z},

where {H(z), z} is the Shwarzian derivative. The fact that T (z) does not depend on
values H(z) with |H| = 1, implies the result.

2.1.2. Nonlinear superposition for the Liouville equation. The Cauchy–Riemann equa-
tion ∂H/∂z̄ = 0 is linear, and superposition principle is valid for it. Thus one obtains
nonlinear superposition principle for equation (1) by means of formula (12): if H an
everywhere nongenerating function and a linear combination of arbitrary analytic func-
tions H1(z) and H2(z), then u[H], u′[H1], and u′′[H2] are independent solutions of the
elliptic Liouville equation (see (12) for the definition of u[H]).

Remark 7. The constants H = z0 ∈ C may be used for constructing new solutions
though none is defined by formula (12) for them solely; the trivial function H = 0 (or
v = 0) must be regarded as the neutral element (matching no solution (12)!)

Corollary 3. Solution u[H] and “antisolution” u[−H] vanish in presence of an arbi-
trary solution u[H1].

Really, u[(H1 +H) + (−H)] = u[H1].

Remark 8. The Lie algebra structure [H1, H2] = Wronsk(H1, H2) in the ring A of an-
alytic functions provides another mapping A × A → Sol E into the set of solutions to
the Liouville equation, i.e., H1 ⊗H2 �→ u [ [H1, H2] ].

3. Conservation laws and higher symmetries for the Liouville equation

3.1. Classical conservation laws for the hyperbolic Liouville equation. The
results obtained in [10] may be carried over literally to the hyperbolic case (2), which
is a simplification in some sense. Namely, the following statement is valid:

Proposition 3. For the hyperbolic Liouville equation one has

1. Generating sections γ(ξ, η, u, uξ, uη) of classical symmetries and conservation laws
are

γ(ξ)(ξ, uξ) =
( ∂
∂ξ

+ λuξ

)
Φ(ξ) or γ(η)(η, uη) =

( ∂
∂η

+ λuη

)
Ψ(η),(13)

where Φ(ξ), Ψ(η) are arbitrary functions.
2. Each of the generating sections corresponds a nontrivial conservation law.
3. The symmetries above are Noetherian symmetries of the action with the Lagrangian
density L = uξuη/2 + exp(λu)/λ.

4. The generating section γ(ξ) corresponds to the conserved current

(14) h =

(
uΦ′′ +

λ

2
uuξΦ

′ +
λ

2
uuξξΦ

)
dξ
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+

(
λ

2
uΦexp(λu)− Φexp(λu) + uηΦ

′ +
λ

2
uξuηΦ

)
dη,

the current for γ(η) may be obtained by the interchange ξ ↔ η, Φ ↔ Ψ.

Proof of the proposition is quite similar to the one given in [10] and is omitted.

Remark 9. Conserved currents h for both equations (1) and (2) form a Lie algebra with
the bracket induced by the Lie algebra of analytic functions [a, b] = Wronsk(a, b).

3.2. Generating sections of higher symmetries and conservation laws. Gener-
ating sections γ of higher symmetries and conservation for equation (2) are [7, 21]:

γn = (Dξ + λu1)Φ(ξ, w, w1, . . . , wn−3),(15)

where uk ≡ ∂ku/∂ξk, w ≡ u2 − λ
2
u2

1, wk ≡ Dk
ξw, Dξ is the total derivative with respect

to ξ, Φ is an arbitrary function (there exists a similar class of higher generating sections
with ξ and η interchanged; second order sections are absent).

Remark 10. The noncommutative Lie algebra of higher symmetries of equation (2)
contains an infinite commutative subalgebra defined by the higher Korteweg–de Vries
equations [21].

The complex substitution u(ξ, η)
∣∣
(z/2,z̄/2)

= u(z, z̄) with λ = 2 transforms (2) to

equation (1) in coordinates (6): 4uzz̄ = exp(2u), and also gives generating sections of
symmetries and conservation laws, defined over C, for the latter. In order to define these
structures over R and apply them to equation (1), one has to compensate imaginary
part with adding the conjugate structure:

ϕ = (Dz + 2uz)Φ(z, w, w1, . . . ) + (Dz̄ + 2uz̄)Φ̄(z̄, w̄, w̄1, . . . ).

Example 1. The function ϕ = 2uxxx−3 exp(2u)ux−u3
x+3uxu2

y is a generating section
of higher symmetry and higher conservation law for equation (1). The corresponding
conserved current h = S1 dy − S2 dx may be reconstructed with the same method [19]
as in the case of classical conserved currents [10]; the components of h are

4S1 = 3u2
xu

2
y − u4

x − 6uuxuyuxy − 6 exp(2u)u2
x + 2exp(2u)uxx

+ 4uxuxxx − 3 exp(4u) + 3u2
yu exp(2u)− 3u2

yuuxx + 8u exp(2u)uxx

+ 3u2
xuuxx − 6u2

y exp(2u)− 4uuxxxx +
6u2

y

u
exp(2u)

+
3

u
exp(4u) − 3uxx

u
exp(2u)−

3u2
y

u2
exp(2u) + 13u exp(2u)u2

x,

4S2 = 6uxuyuuxx + 4uyuxxx − uyu
3
x + 3uxu

3
y − 4uuxxxy − 3uuxyu

2
y

+ 3uu2
xuxy + 6uxy exp(2u)− 6uxuy

u
exp(2u)

− 3uxy

u
exp(2u) +

3uxuy

u2
exp(2u).

It is interesting that in the simplest case the conserved current is not polynomial,
but a rational function.
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3.2.1. Higher conservation laws. An infinite series of polynomial conserved currents for
equation (2) was described in [4], but the formulae given there do not describe all
local conservation laws. Below higher conservation laws for equation (2) are obtained.
They are rational in u(ξ, η). We obtain higher conserved current h corresponding to
generating section γn defined in (15).

Let the divergence ω be

ω = (uξη − exp(λu))(DξΦ + λu1Φ) dξ ∧ dη, ω
∣∣
E = d̄h = 0.

Literally repeating the reasoning for classical case, we have

G(0ω ◦ u) ≡ sξ dξ + sη dη =
[
uDξ(Φξ +

n−3∑
r=0

Φwrwr+1 + λu1Φ)
]
dη

+
[
1u(Φξ +

n−3∑
r=0

Φwrwr+1 + λu1Φ) + λ(uξη − eλu)Φ

+
n−3∑
s=0

s+2∑
t=1

t∑
p=1

(−1)p+1

(
t

p

)
Dp−1

ξ

(
(uξη − eλu)Φξws

∂ws

∂ut

ut−p

)

+

n−3∑
s=0

n−3∑
r=0

s+2∑
t=1

t∑
p=1

(−1)p+1

(
t

p

)
Dp−1

ξ

(
(uξη − eλu)wr+1Φwswr

∂ws

∂ut
ut−p

)

+

n−2∑
r=1

r+2∑
t=1

t∑
p=1

(−1)p+1

(
t

p

)
Dp−1

ξ

(
(uξη − eλu)Φwr−1

∂wr

∂ut
ut−p

)

+ λ

n−3∑
r=0

r+2∑
t=1

t∑
p=1

(−1)p+1

(
t

p

)
Dp−1

ξ

(
(uξη − eλu)u1Φwr

∂wr

∂ut
ut−p

)]
dξ,

where G is the Green operator and 0ω =
∑

σ ∂ω/∂uσ ·Dσ is the universal linearization
operator [2, 19]. The required conserved current h = Sξ dξ + Sη dη corresponding to
G(0ω ◦ u) is

h =

0∫
dτ A∗

τ

(
sξ dξ + sη dη

)
, d̄h = 0,

where Aτ : (yi, uσ) �→ (yi, uσ exp(τ )).

3.2.2. Infinite series of rational higher conserved currents. Let us obtain higher con-
served currents h for equation (2) in the case Φ = wk, k ≥ 0. The function Φ supplies
a higher generating section by means of (15).

Let

[
•

•, . . . , •

]
be the coefficient in the expansion of the q-th total derivative with

respect to ξ for the exponent exp(λu(ξ, η)):

Dq
ξ exp(λu) =

q∑
m=0

∑
j1+···+jq=m

exp(λu)λm

[
q

j1, . . . , jq

]
uj1

1 · · ·ujq
q , q ≥ 0.
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The coefficients

[
•

•, . . . , •

]
satisfy the following recursion relation:

[
q

j1, . . . , jq

]
=

[
q

j1 − 1, . . . , jq

]
+

[
q

j1, . . . , jq−1 + 1

]
· δjq ,1 · (jq−1 + 1)

+

q−2∑
k=1

[
q

j1, . . . , jk + 1, jk+1 − 1, . . . , jq

]
· (jk + 1),

where
∑

k jk = m ∈ N, and

[
. . .

. . . , jk − 1, . . .

]
≡ 0, if ther exists k such that jk = 0. The

relation follows from the Leibniz rule.

Remark 11. The following two integrals appear in computation of the conserved current
h with arbitrary σ = (σ1, . . . , σk), k > 0:

0∫
uσ1 · · · uσk

exp(kτ ) dτ =
1

k
uσ1 · · ·uσk

;

if the integrand contains exponent of u(ξ, η), one has to integrate by parts:

0∫
uσ1 · · · uσk

exp(kτ ) exp (λu exp(τ )) dτ =
uσ1 · · ·uσk

λkuk
·

k−1∑
j=1

(−1)j+1
((k − 1)!

(k − j)!
(λu)k−j exp(λu) − (−1)k(k − 1)! exp(λu)

)
.

Proposition 4. The higher conserved current h = S1 dη − S2 dξ for equation (2) re-
constructed from generating section (15) with Φ = wk, k ≥ 0, has the components

S1 =
1

2
1uuk+3 −

λ

6
1u

k+1∑
l=0

(
k + 1

l

)
ul+1uk−l+2 +

λ

3
1uu1uk+2 −

λ

8
1uu1 ·

·
k∑

l=0

(
k

l

)
ul+1uk−l+1 +

k+2∑
p=0

(
k + 2

p

)
(−1)k−p

k−p+2∑
m=0

(
k − p + 2

m

)
·

· uk−m+2

m∑
n=0

∑
j1+···+jm=n

eλu

[
m

j1, . . . , jm

]
uj1

1 . . . ujm
m ·

·
(λn

2
+

1

λun+1
·
{ n∑

j=1

(−1)j(λu)n−j+1 · n!

(n − j + 1)!
− (−1)nn!

})

− λ

2

k+1∑
l=0

(
k + 1

l

) l∑
p=0

(
l+ 1

p

)
(−1)l−p

l−p∑
i1=0

(
l − p

i1

) i1∑
i2=0

(
i1
i2

)
·

· uk−p−i1+2up+i1−i2

i2∑
m=0

∑
j1+···+ji2 =m

eλu

[
i2

j1, . . . , ji2

]
· uj1

1 . . . u
ji2
i2

·
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·
(λm

3
+

1

λ2um+2

{m+1∑
j=1

(−1)j(λu)m−j+2 (m+ 1)!

(m− j + 2)!

+ (−1)m(m+ 1)!
})

+
λ

2

k+1∑
l=0

(
k + 1

l

) k−l+1∑
p=0

(
k − l+ 2

p

)
(−1)k−l−p ·

·
k−l−p+1∑

i1=0

(
k − l− p + 1

i1

) i1∑
i2=0

(
i1
i2

)
uk−p+2up+i1−i2

i2∑
m=0

·

·
∑

j1+···+ji2=m

eλu ·
[

i2
j1, . . . , ji2

]
uj1

1 . . . u
ji2
i2

·
(λm

3

+
1

λ2um+2
·
{m+1∑

j=1

(−1)j(λu)m−j+2 (m+ 1)!

(m− j + 2)!

+ (−1)m(m+ 1)!
})

− λ

3
uuξηuk+2 +

λ2

8
uuξη

k∑
l=0

(
k

l

)
ul+1 ·

· uk−l+1 + uk+2e
λu − uk+2

λu
eλu − 1

2

k∑
l=0

(
k

l

)
·

· ul+1uk−l+1

λu2

{
λ2u2 − 2λu + 2

}
eλu

+ λ
k+1∑
p=0

(
k + 2

p

)
(−1)k−p

k−p+1∑
i1=0

(
k − p + 1

i1

) i1∑
i2=0

(
i1
i2

)
·

· uk−p−i1+2up+i1−i2

i2∑
m=0

∑
j1+···+ji2=m

eλu

[
i2

j1, . . . , ji2

]
·

· uj1
1 . . . u

ji2
i2

(λm

3
+

1

λ2um+2
·

·
{m+1∑

j=1

(−1)j(λu)m−j+2 (m+ 1)!

(m− j + 2)!
+ (−1)m(m+ 1)!

})

− λ2

2

k∑
l=0

(
k

l

) l∑
p=0

(
l + 1

p

)
(−1)l−p

l−p∑
i1=0

(
l − p

i1

) i1∑
i2=0

(
i1
i2

)
·

·
i2∑

i3=0

ul−p−i1+1 · uk−l+i1−i2+1up+i2−i3

i3∑
m=0

∑
j1+···+ji3=m

eλu ·

·
[

i3
j1, . . . , ji3

]
· uj1

1 . . . u
ji3
i3

·
(λm

4
+

1

λ3um+3
·
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·
{m+2∑

j=1

(−1)j(λu)m−j+3 (m+ 2)!

(m− j + 3)!
− (−1)m(m+ 2)!

})

− λ2

2

k∑
l=0

(
k

l

) k−l∑
p=0

(
k − l + 1

p

)
(−1)k−l

k−l∑
i1=0

(
k − l

i1

) i1∑
i2=0

(
i1
i2

) i2∑
i3=0

·

·
(
i2
i3

)
uk−l−i1+1ul+i1−i2+1up+i2−i3

i3∑
m=0

∑
j1+···+ji3=m

eλu ·

·
[

i3
j1, . . . , ji3

]
uj1

1 . . . u
ji3
i3

·
(λm

4
+

1

λ3um+3
·

·
{m+2∑

j=1

(−1)j(λu)m−j+3 (m+ 2)!

(m− j + 3)!
− (−1)m(m+ 2)!

})
,

S2 = −λ

3
uu1uk+3 +

λ2

8
uu1

k∑
l=0

(
k + 1

l

)
ul+1uk−l+2

+
λ

6
u

k+2∑
l=0

(
k + 2

l

)
ul+1uk−l+3 −

λ

3
uu2uk+2

+
λ2

8
uu2

k∑
l=0

(
k

l

)
ul+1uk−l+1 −

1

2
uuk+4.

4. Coverings of the Liouville equation, nonlocal symmetries, and

Bäcklund transformations

4.1. On nonlocal symmetries. One can construct an Abelian covering c̃h structure
[2] in the bundle ch : Ẽ → E∞ using a conserved current h = Sξ dξ + Sη dη for an
equation E with 2 independent variables. Then the fiber coordinate w is differentiated
with respect to ξ and η in the following way: wξ = Sξ, wη = Sη; the total derivatives

are extended to the form D̃i = D̄i + Syi
∂/∂w.

Consider the covering c̃h, provided by classical conserved current (14) correspond-
ing to generating section γξ of the form (13). The search for shadows of nonlocal c̃h-
symmetries of equation (2), i.e., solving the determining equation 0̃E

′
F (γ̃) = 0, where the

universal linearization operator 0̃F contains extended total derivatives D̃i leads to

Proposition 5. The shadows γ̃(ξ, η, w, u, uξ, uη) of the classical nonlocal c̃h-symmetries
are

γ̃(ξ)(ξ, uξ) =
( ∂
∂ξ

+ λuξ

)
Φ̃(ξ) or γ̃(η)(η, uη) =

( ∂
∂η

+ λuη

)
Ψ̃(η),(16)

where Φ̃(ξ), Ψ̃(η) are arbitrary functions.

In other words, the set of shadows of classical nonlocal c̃h-symmetries of equation (2)
is isomorphic to the Lie algebra of classical symmetries (13), and no new symmetries of
the latter equation are obtained.
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4.2. Bäcklund transformations. Bäcklund autotransformation for the Liouville equa-
tion and Bäcklund transformation between equation (2), the wave equation vξη = 0 and
the equation wξη = exp(−2w) corresponding to the Gaussian curvature K2 ≡ +1 in the
sense of Section 1.1, were found in [3]. Let us integrate all the these cases.

Remark 12. These transformations depend on formal parameter k, but the latter can
be eliminated with by a scale transformation.

4.2.1. Bäcklund autotransformation. Equation (2) possesses the Bäcklund autotrans-
formation

(u′ − u)ξ =
1

k
· exp(u′ + u),

(u′ + u)η = k · (exp(u′ − u)− exp(u− u′)) ,

k �= 0 being a formal parameter. Set k = 1 and denote τ− = u′ − u, τ+ = u′ + u. It is
easy to see that the functions τ− and τ+ satisfy the system

τ−ξ = exp(τ+),(17)

τ+
η = 2sinh τ−.(18)

From (17) it follows that τ+ = ln τ−ξ ; then equation (18) implies τ−ξη = 2τ−ξ sinh τ−, and

τ−η = 2cosh τ− + δ(η),(19)

where δ(η) is the integration constant. Resolving (19), one obtains the function τ−(ξ, η)
depending now on another integration constant ε(ξ), and thus one reconstructs τ+(ξ, η).
Knowing the functions τ− and τ+, one gets a pair of solutions u, u′ of equation (2), and
these solutions are bound by Bäcklund autotransformation.

There exists a similar transformation with ξ ↔ η.

4.2.2. Transformation between the Liouville equation and the wave equation. Bäcklund
transformation between equation (2) and the equation vξη = 0 is [18, 3]:

(v − u)ξ =
1

k
· exp(v + u), (v + u)η = −k · exp(u− v).

As before, denote τ− = u− v, τ+ = v + u; these functions satisfy the system

τ−ξ = − exp(τ+), τ+
η = − exp(τ−),

i.e., each of the functions τ−, τ+ is a potential for the other, e.g. τ+ = ln(−τ−ξ ). Solving

an easily obtained equation τ−ξη = exp(τ−)τ−ξ for τ−(ξ, η), one gets an equation with
separating variables,

dθ

exp(θ)
=

dη

exp(δ(η))
,(20)

where θ = (τ− + δ)(ξ, η) and δ(η) is the integration constant. The variable ξ is a
parameter in this equation, and thus another integration constant ε(ξ) appears. The
function

θ = − ln

(
−

η∫
ε(ξ)

exp(−δ(κ)) dκ
)
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is a solution of equation (20), and thus one successively reconstructs functions the τ−

and τ+ and obtains a pair u, v, where u(ξ, η) is a solution of and v(ξ, η) is a solution
of the wave equation.

Remark 13. Assuming ξ = η̄ = z/2, one has ∆2v(x, y) = 0, i.e., the above-mentioned
transformation bounds equation (1) and the 2-dimensional Laplace equation in complex
coordinates (6).

4.2.3. Transformation between the Liouville equation and the scal+-Liouville equation.
This transformation may be written down in the following way [3]:

(w − u)ξ =
1

k
· (exp(w + u) + exp(−w − u)),

(w + u)η = −k · exp(u− w),

where wξη = exp(−2w). Then −w is a solution of the scal+-Liouville equation (see
Section 1.1). Denote τ+ = u+ w, τ− = u− w, then

τ+
η = − exp(τ−), τ−ξ = −2 cosh τ+,

implying τ− = ln(−τ+
η ) and τ+

ξη = 2τ+
η cosh τ+. Solving the last equation gives τ+

ξ =
2sinh τ+ + δ(ξ), where δ(ξ) is the integration constant; further resolving the equation
on τ+(ξ, η) provides another integration constant ε(η). By τ+(ξ, η) one reconstructs
τ−(ξ, η) and finally obtains a pair of solutions u = (τ+ + τ−)/2 and w = (τ+ − τ−)/2.

Remark 14. The function w(ξ, η) = 1
2
ln

vξvη

cosh2 v
is a solution of the equation wξη =

exp(−2w), where v(ξ, η) is an arbitrary solution of the wave equation vξη = 0.

Some more results concerning nonlocal structures (zero curvature representation and
recursion operator for the Liouville equation) can be found in [7].

5. On the Toda systems associated with the semisimple Lie algebras of

rank 2

The 2-dimensional elliptic Toda systems [12, 15] associated with the semisimple Lie
algebras A2, B2 � C2, D2 � A1 ⊕A1, and G2, of rank 2, represented in the coordinates
z, z̄, uk(z, z̄) are:

uk
zz̄ =

1

4
exp
( 2∑

l=1

Kk
l u

l
)
, k = 1, 2,(21)

where Kk
l is the Cartan matrix of the corresponding Lie algebra. Denote u1 ≡ u and

u2 ≡ v, and let w(z) be an arbitrary analytic function. The following results take place
[11]:

Proposition 6. The following facts hold :

1. Generating sections ϕ = (ϕ1, ϕ2) for classical infinitesimal symmetries of Toda
system (21) associated to the simple Lie algebra of rank 2 with the Cartan matrix

K =

(
2 −a
−1 2

)
, a = const,(22)



On geometry of the Liouville equation 13

are

ϕ1 = w(z)u1
z + w(z)u1

z̄ +
a+ 2

4 − a
(wz + w̄z̄) ,

ϕ2 = w(z)u2
z + w(z)u2

z̄ +
3

4 − a
(wz + w̄z̄) .

2. Classical conserved currents H = Sz dz̄−S z̄ dz for this system have the components

Sz = −avw̄z̄z̄ − uw̄z̄z̄ + w̄u2
z̄ + wzuz̄ −

1

2
exp(2u− av)w+ awvzvz̄

− uw̄z̄uz̄ + aw̄z̄vz̄ −
1

8
auw exp(2v − u) +

1

2
auw̄vz̄z̄ + w̄z̄uz̄

+
1

2
avw̄z̄uz̄ − avw̄z̄vz̄ +

1

2
auw̄z̄vz̄ −

1

8
avw exp(2u − av)

− 1

2
awvzuz̄ −

1

2
awvz̄uz − aw̄vz̄uz̄ + awzvz̄ + wuzuz̄

+ aw̄v2
z̄ +

1

4
uw exp(2u− av) +

1

4
avw exp(2v − u)

− uw̄uz̄z̄ +
1

2
avw̄uz̄z̄ − avw̄vz̄z̄ −

1

2
a exp(2v − u)w,

S z̄ = −avwzz − uwzz + aw̄vzvz̄ + wzuz + w̄z̄uz + wu2
z

− awuzvz −
1

2
aw̄uzvz̄ −

1

2
aw̄uz̄vz − avwzvz +

1

2
avwzuz

+
1

2
auwvzz +

1

4
avw̄ exp(2v − u)− avwvzz +

1

2
auwzvz

− 1

8
avw̄ exp(2u − av) +

1

2
avwuzz −

1

8
auw̄ exp(2v − u)

− uwuzz +
1

4
uw̄ exp(2u− av)− uwzuz −

1

2
a exp(2v − u)w̄

− 1

2
exp(2u− av)w̄ + aw̄z̄vz + awzvz + w̄uzuz̄ + awv2

z .

For the Lie algebra A2 the constant a = 1, for B2, a = 2, and for G2, a = 3. The
Cartan matrix for C2 is transpose one for B2, so the change u ↔ v is needed for this
case. The Lie algebra D2 is not simple, and the conserved current for this algebra is a
sum of two independent conserved currents (14).

Computations of conserved currentsH for system (21) were rather tedious and Jet [14]
software was used.
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