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A QUICK PROOF OF THE CLASSIFICATION 
OF SIMPLE REAL LIE ALGEBRAS 

A. W. KNAPP 

(Communicated by Roe W. Goodman) 

ABSTRACT. Elie Cartan's classification of the simple Lie algebras over R1 is 
derived quickly from some structure theory over R and the classification over 
C. 

Elie Cartan classified the simple Lie algebras over R for the first time in 1914. 
There have been a number of simplifications in the proof since then, and these are 
described in [3, p. 537]. All proofs assume the classification over C and a certain 
amount of structure theory over JR. Recent proofs tend to run to 25 pages. Here is 
a shorter argument. 

Theorem. Up to isomorphism, the only simple Lie algebras over R that are neither 
complex nor compact are those in Cartan's list as organized in [3, p. 518]. 

We use terminology as in [3]. Let go = to D ipo be a Cartan decomposition of a 
noncomplex simple Lie algebra over IR, and let 0 be the Cartan involution. Choose 
a maximal abelian subspace to of to and extend to a maximally compact Cartan 
subalgebra bo = to (3 ao of go. Removal of subscripts 0 will indicate complexifica- 
tions. Let A = A(g, f) be the root system. Roots are imaginary on to and real 
on ao. All roots are imaginary-valued or complex on 40; there are no real-valued 
roots. Introduce a positive system A+ that takes ito before ao. The map 0 carries 
roots to roots and permutes the simple roots. The complex simple roots move in 
two-element orbits, while the imaginary simple roots are fixed. By the Diagram of 
(00, 0o iA+), we mean the Dynkin diagram of A with the two-element orbits under 
0 so labeled and with the imaginary roots shaded or not, according as the simple 
root is noncompact (root vector in p) or compact (root vector in t). 

Lemma 1. If (go, Oo, iA+) and (,g, O', (A')+) have the same Diagram, then go and 
0/ are isomorphic. 

Proof. We may assume that the complexifications (g, f,,A+) are the same and that 
the associated compact forms are the same: uo = to G ipo = t' G ip'. Using the 
conjugacy of compact forms, the conjugacy of maximal abelian subspaces within 
them, and the standard construction of a compact form from 0, we see that we can 
normalize root vectors Xa, a E A, as in Theorem 5.5 of [3, p. 176] and obtain u0 
from {X,} as in Theorem 6.3 of [3, p. 181]. 
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First suppose ao = 0, so that all roots are imaginary. For ae simple we have 
oXc, = ?Xa, the sign being + if ae is compact and - is ae is noncompact. The same 
formula holds for 0'. Since r and the Xa,'s for ae simple generate g, it follows that 

o = 0', hence that t = t' and p = p'. Then go = 0' is recovered as (uOnt)?fli(uoFnp). 
If ao i 0, we may not have 0 = 0'. For ae E A, write OXc, = aaXOa. 

Then aaa-a = 1 and aaa0a = 1. Since 0 maps uo n span{Xaj,X_a} to uo n 
span{XeOa,X_oa}, we see that a-. = a-a. Therefore laaI = 1. For each pair of 
complex simple roots ae and 0Oa, choose square roots al/2 and a1/2 whose product is 

1. Similarly write 0'Xc, = bc,XO6c with Ibc,I = 1, and define b?1/2 and b 1/2 for ae and 
0Oa simple. Define H and H' in r n uo by the conditions that a(H) = a(H') = 

O for ae simple imaginary and that exp(2oc(H)) = al, exp(20(H)) = Oa 

exp(2ca(H')) = b1/2, and exp(l0oa(H')) = b/2 if ae and 0Oa are complex simple. 
A little computation shows that 0' o Ad(exp 2 (H - H')) = Ad(exp 2 (H - H')) o 0, 
from which it follows that t' = Ad(exp 1 (H - H'))e, t' = Ad(exp 2 (H - H')) p, and 

= Ad(exp 1 (H - H'))0. D 

The next step is to identify some pairs of distinct Diagrams that correspond 
merely to changes of A+. The argument is inspired by [2]. First let us assume that 
ao = 0, i.e., that the automorphism of A given by 0 is the identity. Let A be the 
subset of ito where all roots take integer values and where all noncompact roots 
take odd-integer values. If {wj} is the basis dual to the simple roots, then the sum 
of those wj corresponding to the noncompact simple roots is a member of A. The 
set A is discrete, and we let Ho be a member of A as close to 0 as possible. 

Lemma 2. If (,A+))' is a positive system that makes Ho dominant, then there is at 
most one noncompact simple root, say ci. If the basis dual to the simple roots of 
(,A+)' is {wj }, then there cannot exist i' such that (w -wi, wil) > 0. 

Proof. Since Ho is in A and is dominant, Ho = , njwj with all ni integers > 0. 
If ni > 0, then Ho - wi is dominant and thus has (Ho - wi,wi) > 0 with equality 
if and only if Ho = wi. Then IHo - 2wi2 < IHo12 with equality only if Ho = wi, 
and minimality forces Ho = wi. Now let Ho = wi. If (iw - wil, wil) > 0, then 
HO - 2wi 12 < HO 12, in contradiction to minimality. D 

When ao i 0, Lemma 2 is to be applied to the part of ito corresponding to the 
span of the imaginary simple roots. The result is that we can associate to any go 
at least one Diagram in which at most one imaginary root is shaded. 

Now we can read off the possibilities. First suppose that the automorphism of A 
is the identity. If all roots are unshaded, then go is the compact form. Otherwise 
exactly one simple root is shaded. For the classical Dynkin diagrams, let the double 
line or triple point be at the right end, and let the ith root be shaded. In An, we 
are led to su(i, n + 1-i). In Bn, we are led to so(2i, 2n + 1- 2i). In Cn, we are led 
to sp(i, n - i) if i < n and to sp(n, R) if i = n. In Dn, we are led to so(2i, 2n - 2i) 
if i < n - 2 and to so*(2n) otherwise. 

For the exceptional Dynkin diagrams, a little checking that compares the second 
conclusion of Lemma 2 with the fundamental weights (see [1, pp. 260-275]) shows 
that aei in Lemma 2 has to be a node (endpoint vertex) of the Dynkin diagram. 
Moreover, in G2, aei has to be the long simple root, while in E8, it cannot be the 
node on the short branch. In E6 two nodes are equivalent by outer automorphism. 
Thus we obtain at most three Lie algebras for E7; at most two for E6, E8, F4; and 
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at most one for G2. These are E II, E III for E6, E V, E VI, E VII for E7; E VIII, 
E IX for E8; F I, F II for F4; and G for G2. 

When the automorphism of A is not the identity, the Dynkin diagram is An, Dn, 
or E6. For An, there is no imaginary simple root if n is even, and there is one if n is 
odd. For n even we are led to st(n + 1, R), while for n odd we are led to s(n + 1, R) 
if the root is shaded and to su* (n + 1) if the root is unshaded. For Dn, the first 
n - 2 simple roots are imaginary. If all are unshaded, we are led to so(1, 2n - 1). 
If the ith simple root is shaded, i < n - 2, we are led to so(2i + 1, 2n - 2i - 1). For 
E6, the triple point and the node on the short branch are imaginary. If neither is 
shaded, we are led to E IV, while if either one is shaded, we are led to E I. 

Note added in proof. David Vogan has pointed out that any Dynkin diagram 
marked with an involution and having a subset of its one-element orbits shaded 
is a Diagram for some go. The proof is in the spirit of Lemma 1. Existence of the 
exceptional simple real Lie algebras follows. 
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