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Foreword

In one word, this is a responsible book; the rest is commentary.

Around 1992 a few of us were led by Charles Bennett into a Garden of
Eden of quantum information, communication, and computation. No sooner
had we started exploring our surroundings and naming the birds and the
beasts, than Peter Shor put an end to that apparent innocence by showing
that factoring could be turned—Dby means of quantum hardware—into a poly-
nomial task. Fast factoring meant business; everybody seemed to be awfully
interested in factoring. Not that anyone had any use for factoring per se, but
it seemed that all the world’s secrets were protected by factor-keyed padlocks.
Think of all the power and the glory (and something else) that you might get
by acting as a consultant to big businesses and government agencies, helping
them pick everyone else’s locks and at the same time build unpickable ones
(well, nearly unpickable) for themselves. And if one can get an exponential
advantage in factoring, wouldn’t an exponential advantage be lying around
the corner for practically any other computational task? Quantum informa-
tion “and all that” has indeed blossomed in a few years into a wonderful new
chapter of physics, comparable in flavor and scope to thermodynamics. It has
also turned into a veritable “industry”—producing papers, conferences, exper-
iments, effects, devices—even proposals for quantum computer architectures.
Dutifully, also entire books on the subject have been appearing with a certain
regularity. Every time I see a new one, my first reaction tends to be, “Who
ordered that?” meaning, What needs does this book fill? What market does
it address?

I'm convinced that a bona fide academic book (as contrasted to a com-
mercial book) is first and foremost a knowledge-structuring exercise, a taut
“clothesline” (to use an image by Herbert Wilf) on which to neatly pin one’s
thoughts and find them still there in the morning. In this respect, the present
work is no exception. But one doesn’t have to go through all the labor of
producing a real book just for that. A second, also quite honorable motive, is
to let your colleagues know that you've been there yourself; that you’ve seen
a few things that they may have missed; that from a certain angle you get
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a much better view; and so on; that, in other words, by your meisterstiick
you claim full membership in the guild. In the meantime your colleagues had
of course been looking at what you were doing all along, and probably had
already made you member in pectore. I have no doubts that this applies to
the present case.

But in many, perhaps most, of the books I've seen I believe I detected in
an obstinate bass line, some sort of rumbling or blurbing that has no words
to it but I would be tempted to interpret like this: “Yes, this book of ours will
be good for an advanced undergraduate course in Quantum Computation,
Quantum Cryptography, or Entanglement Distillation (or any other permu-
tation of a number of similar sexy terms). But the real reason you must want
it, for yourself and for your students, is because we are nearing the moment
when a Quantium—rumored to be able to do all computations exponentially
faster—is to be commercially available as a drop-in replacement for the Pen-
tium! You need this book because you cannot afford not to be yourself one
of the very designers of the Quantium, or at least one of the first to design
it in!” T may just be hearing voices. But Quantum Information, Communica-
tion, and Computation is too rich a conceptual discipline to need debasing
with the subliminal lure of “universal exponential speedup.” For the moment
such a promise should be kept in the same class as “Energy so cheap it won’t
be worth metering;” it doesn’t even have to be false to be irresponsible. This
book steers clear of all that.

I recall the title of E.T. Jaynes’s book on information theory, Probability—
The Logic of Physics, and paraphrase it as “the logic of incomplete informa-
tion,” thus stressing that physics, even though central for motivation, is, from
a conceptual viewpoint, merely incidental to information theory. An incom-
plete description is just that, namely, one that is not sufficiently detailed to
identify a single individual: several individuals may fit it. The art of proba-
bility is nothing more than doing ordinary Aristotelian logic in parallel on all
those “several” (as often as not 10?4) individuals, and in the end lumping the
results into “bins” according to whatever traits are relevant to our question
of the moment. Introducing (that is, making up) a probability distribution is
in essence equivalent to doing some of that binning before putting the system
through the “logic engine” rather than after. In fact, if this is done prop-
erly, the two approaches commute, and the second, of course, may save much
computational effort.

Quantum behavior has confronted physics with many novelties. What mat-
ters here is that it has introduced formerly unsuspected ways for a description
to be incomplete. Introduced where? into physics? My gut feeling is that in
this business physics per se is largely irrelevant. (Think, for example, of how
entropy, introduced for very good reasons by physicists, is in fact the funda-
mental quantitative parameter of any probability distribution—and thus, as
we’ve seen—an essential aspect of any incomplete description.) Be that as it
may, one of the duties of information theory is to acknowledge these new as-
pects of incompleteness whose prototype is found in physics and incorporate
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them by adding the necessary new modules to the underlying “logic engine”
mentioned above. There is no need to attempt to “interpret” or “explain”
quantum mechanics before setting about this task; on the contrary, having
in hand the resulting formal “quantum-enhanced” information theory may in
the end make it easier to address the interpretation problem itself.

Jaeger’s book seems to me consistent with the above strategy. That is, it
takes quantum mechanics as a premise. It doesn’t waste time arguing about,
or changing, the premise itself, and concentrates instead on developing an
inference engine capable of handling premises of that kind. That’s how we get
Quantum Information Theory: An Overview rather than one more book on
“Quantum information communication computation and all that.”

Tommaso Toffoli






Preface

Quantum information science is a rapidly developing area of interdisciplinary
investigation at the nexus of quantum mechanics and information theory. It
now plays a significant role in a number of subdisciplines of physics, informa-
tion technology, and engineering. A number of books on quantum information
are available but are becoming outdated and/or differ significantly in approach
from this book, or cover only particular aspects of the subject. Historically,
lecture notes for the first general course on quantum information, given at
Hewlett-Packard and edited by Lo, Popescu, and Spiller, were published in
1998 [289]. Physicists have also long benefited from the generously provided
on-line lecture notes of Preskill [341]. At least one comprehensive monograph
on quantum information science was published at the turn of the century,
namely, the meticulous nearly 700-page book of Nielsen and Chuang [315].
More recent books by Paviéié [325] and Stenholm and Suominen [404] are
noteworthy for their utility. A monograph detailing the mathematical founda-
tions of quantum information theory by Hayashi, which originally appeared
in Japanese in 2003, has just appeared in English [208]. The books of Benenti,
Casati, and Strini [33] and Gruska [201] are valuable textbooks for teaching
the subject. Quantum key distribution and quantum computing are currently
the most exciting applications of quantum information science that are suf-
ficiently well developed that a number of books are specifically dedicated to
one or the other of them: in the case of quantum cryptography and com-
munication, comprehensive collections have been edited by Alber et al. [7],
Beth and Leuchs [59], Bouwmeester, Ekert, and Zeilinger [72], Braunstein et
al. [79], and Sergienko [375]; in the case of quantum computation, the books
of Brylinski and Chen [89], Hirvensalo [216], Kitaev, Shen, and Vyalyi [252],
and Pittenger [335], and that edited by Lomonaco [287] focus on quantum
algorithms and/or associated mathematics. A number of popular books on
quantum computing have also been published, for example [83, 121].

In our information age, electronic access to primary sources is widely avail-
able, allowing one to locate the finest details of original investigations once one
is well oriented with tools and references in hand. Therefore, now what one of-
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ten needs most when approaching the subject of quantum information science
is an overview that efficiently yet rigorously presents the fundamentals and
that provides a detailed weblinked bibliography to take one further [1]. This
book is intended to be such a handy reference for practitioners and students of
quantum physics and computer science that also treats foundational aspects
of quantum mechanics connected with quantum information science, includ-
ing those associated with quantum measurement which plays an essential role
in relating classical and quantum information. Most of the examples provided
here are quantum-optical ones as a pragmatic matter, arising from the fact
that interferometry is central to quantum information processing and the fact
that interferometry has primarily progressed through optical physics. How-
ever, exciting innovations have been made by experimental groups working
with a range of physical systems. Hopefully, workers in areas of experimental
physics and engineering other than optics will soon provide comprehensive
and detailed overviews of each of the experimental methods of manipulat-
ing quantum information. For the time being, discussions of various devices
for quantum information processing can be found [19, 74, 407]. Particularly
noteworthy are the books edited by Everitt [165] and Leggett et al. [274].

In the twentieth century, the formalism introduced in Dirac’s The Princi-
ples of Quantum Mechanics and von Neumann’s Mathematische Grundlagen
der Quantenmechanik was brought to bear on a broad range of physical prob-
lems. Elements of this formalism and related mathematics are outlined in the
appendices, together with standard quantum postulates. During the last two
decades of the twentieth century, investigations of the foundational problems
of quantum mechanics and the physics of computation were pivotal in giving
rise to quantum information science as a subject in its own right, providing
a conceptual basis for the development of quantum protocols and algorithms.
In turn, the investigation of foundational problems has benefited from the
work of those seeking solutions to central issues in quantum information sci-
ence, such as those of communication complexity. Aspects of this important
interplay have been addressed here.

It is my hope that, in addition to its serving as a practical tool for re-
searchers and students, this book will assist those seeking to understand the
subject to appreciate the many decades of work back to which the origins of
this exciting, relatively new field can be traced. Although the aim in includ-
ing this material is not to present a history of the exploration of foundations
of quantum mechanics or its philosophical underpinnings, a number of perti-
nent such results from earlier decades of the twentieth century are included
because they will likely prove important to future progress in both quantum
mechanics and information theory. The discussion of early work is here often
in the language of quantum information so as to facilitate access to earlier,
foundational work in quantum mechanics by those approaching fundamental
issues from a twenty-first century perspective.

Gregg Jaeger Cambridge, MA, August 2006
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Qubits

The differences between quantum information and classical information are
due to the difference of a qubit in a quantum-physical system capable of
storing it from a bit in a classical-physical system capable of storing it.!
This difference arises primarily from the superposition principle of quantum
mechanics; despite its being bivalent in the chosen computational basis, a
qubit system can be in one of an infinite number of significant states, whereas
a bit is capable of being in only one of two significant states.? A qubit system
in general also must be considered as at the same time potentially being in one
measurable state and/or the other opposite state rather than actually being
in just one of the two available states as must necessarily be the case for
a bit encoded in a classical physical system. Furthermore, unlike a classical
state, a single unknown qubit-system state cannot generally be found by a

! Physical bits in traditional digital computers are realized in memory elements,
metal-oxide semiconductor field-effect transistors, and electrical wires, all of which
carry substantial charge relative to a single electrical quantum [179]. Classical
information processors use such elements to store bits of information and per-
form operations on them, whereas quantum information processors operate on
individual quanta. The term “qubit” was coined by Benjamin Schumacher, “...al-
though Holevo’s theorem gives an information-theoretic significance to [quantum
entropy]... it does not provide an interpretation of [quantum entropy] in terms of
classical information theory. We could not use [it], for example, to interpret the
quantum entropy of some macrostate of a thermodynamic system as a measure
of resources necessary to represent information about the system’s quantum mi-
crostate... [Instead] this is accomplished by replacing the classical idea of a binary
digit with a quantum two-state system... These quantum bits, or ‘qubits,” are the
fundamental units of quantum information.” [367].

See Postulate I in Sect. B.1. Paul Dirac noted the unique character of the super-
position principle, “the superposition principle that occurs in quantum mechanics
is of an essentially different nature from any occurring in the classical theory, as
is shown by the fact that the quantum superposition principle demands indeter-
minacy in the results of observations in order to be capable of a sensible physical
interpretation . . . analogies are likely to be misleading” [Dirac’s emphasis] [136].
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single measurement. Rather, an ensemble of systems must be measured to
discover their unknown shared quantum state.® It is the nature of quantum
potentiality that alternative possibilities for reaching a given quantum state at
a given moment superpose, and so are capable of interfering with each other.

Quantum computing benefits from the quantum superposition principle as
it pertains to the states of a number of qubits forming a compound quantum
system. The space of possible states available to such multiple-qubit systems
grows more rapidly than does the space of states available to multiple-bit
systems; the number of parameters describing a quantum system that can
be used to encode information for the purpose of computing grows exponen-
tially in the number of qubits, whereas in a classical system it grows linearly
in the number of bits. Thus, quantum computers can be viewed as complex
quantum interferometric devices providing a unique sort of parallelism of com-
putational states described by these parameters. This novel parallelism can
be harnessed to make tractable some important computational tasks that are
thought intractable under the constraints of computing realized in systems
describable by classical physics. Any improvement in efficiency provided by
quantum algorithms over classical algorithms resulting from the exploitation
of this parallelism is known as quantum speedup. Quantum speedup and the
features enabling it are discussed in Section 1.7 and Chapters 13 and 14.4

Although the properties of a qubit system are bivalent and can only be
probabilistically predicted, a qubit system differs from a probabilistic classi-
cal system that randomly takes one of two computationally relevant values,
again because the latter can only actually be in one of two states at any time
irrespective of how it may be measured.® The probabilities of the outcomes
of measurements of any classical system are due only to the ignorance of the
measurer of the actual state of the system, rather than from a fundamental
indeterminacy of properties as is the case for quantum systems. That a quan-
tum bit is not reducible to some probabilistic bit becomes clear when seeking
a straightforward ignorance interpretation of quantum probabilities.®

3 Here, the only exceptions to this are situations in which precise information as to
the two particular alternative orthogonal states in which a single qubit happens to
have been prepared is possessed by the measuring agent and only these potential
states are measured. It is precisely this character of individual qubits that provides
the possibility of secure quantum key distribution. Here, the term ensemble is
meant in the sense of statistical thermodynamics, where it refers to a set of
identically prepared systems. See Postulates II and III in Sect. B.1.

It is important to note that speedup depends on the assumption that the time

required for arithmetic operations in quantum computing grows less than expo-

nentially with the number of qubits involved. On entanglement here, see [78, 246].

® The units of classical information are also sometimes referred to as c-bits (cf.
[100]). One might call a putative inherently probabilistic bit a probabit.

6 An argument supporting this statement is given in the following section. The
deeper philosophical aspects of the important differences between quantum sys-
tems encoding qubits and classical systems encoding bits have been well explored
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Because a familiarity with the various mathematical representations of the
qubit, which is the simplest nontrivial quantum system that can be considered
in quantum mechanics, is essential for understanding quantum information,
various representations of qubit states are reviewed in this chapter, as is their
interferometric behavior which endows quantum computers with added com-
putational power. The reader is reminded that quantum states are associated
with a complex Hilbert vector space, H, via a special class of linear operators
acting in it, the statistical operators, p, constituting the quantum state-space.”
In the case of the pure qubit states, the statistical operators are projectors onto
one-dimensional subspaces and can be uniquely associated with points on the
boundary of the Bloch ball, known as the Poincaré—Bloch sphere; pure states
can be equally well represented by these same one-dimensional subspaces (or
rays) {e'?|1)|¢ € R} or the state-vectors [1)) € H spanning them.® The re-
maining, essentially statistical states are mixed states that can be formed
from these pure states and lie in the interior of the Bloch ball.” The set of
statistical states available to a qubit system is concretely representable by the
2 x 2 complex Hermitian trace-one matrices [p;;] € H(2). By contrast, for the
full physical state description of a quantum system in spacetime, an infinite-
dimensional spatial representation is required in which the state-vectors are
referred to as wavefunctions. However, because quantum information theory
is based on the behavior of qubits and has thus far overwhelmingly dealt with
quantities with discrete eigenvalue spectra in the nonrelativistic regime, the
state-vectors considered here are usually taken to lie within finite-dimensional
Hilbert spaces constructed by taking the tensor product of multiple copies
of two-dimensional complex Hilbert space; in quantum mechanics, these are
traditionally associated with the spin subspaces of elementary particles; for
example, see [299]. Unless otherwise stated, the Hilbert spaces considered here
are only finite-dimensional subspaces of the larger full physical state-spaces
of particles, the other subspaces of which are rarely taken into account in the
study of quantum information processing.'® For example, in many cases we
consider the polarization states of photons as the systems of interest, without

and subtly articulated by Abner Shimony [381], Peter Mittelstaedt [304], Michael
Redhead [348], Jeffrey Bub [90], and others. For the most part, space does not
allow these to be adequately addressed in this book.
The term “Hilbert space” (Hilbertraum) was itself first introduced by John von
Neumann [443]; see Sect. A.3 for its definition.
Here, Paul Dirac’s notation, described in Appendix A, has been used.
The possible qubit states are illustrated in Fig. 1.1, below. Note, however, that
mixed states cannot be written as linear combinations of state vectors but only
of statistical operators. The natural structure generalizing the Poincaré—Bloch
sphere is the convex set, which may be used to study a variety of quantum systems;
see Appendix A and [300]. The distinction between pure and mixed states itself
is immediately addressed in detail in Sect. 1.1, below.
A review of quantum information in the context of continuous-variables systems
can be found in [81].

©
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considering the corresponding photon wavefunctions; c¢f. spin as considered
in Section 1.1 of [359]. This greatly simplifies the mathematics required to
discuss quantum information without compromising essentials.

In quantum mechanics, operators play several roles: they may represent
system states, physical quantities or transformations of states, including tem-
poral evolution (although not time itself) and measurement processes. Mea-
surable properties of quantum systems are traditionally referred to as observ-
ables and correspond to quantities represented by Hermitian linear operators
on Hilbert space, the eigenvalues of which are their possible measurable values.
Here, we merely refer to these as quantum properties. Similarly, although the
question of the role of the percipient (or observer) in quantum mechanics is a
deep and interesting one, space does not allow it to be taken up here in any
detail. Observers and observations are referred to as measurers (or agents)
and measurements, respectively, in order to avoid the impression that these
are assumed to have unusual physical characteristics beyond those attributed
to other physical objects or processes.!! It is also vital here to recognize the
distinctions between a physical system, its representation, and the informa-
tion the system is capable of storing, particularly when metaphysical and
epistemic considerations come into play, such as in the context of the statisti-
cal descriptions of microscopic phenomena discussed in this book, because the
term qubit is used ambiguously in the quantum-information literature. In ad-
dition to referring to the unit of quantum information, this term is often used
to refer to a system that can store it and sometimes to refer to the mathemat-
ical set representing possible quantum states of such systems. In this chapter
and elsewhere, we focus on the ideal physical system capable of storing one
qubit of information and refer to it simply as the qubit, in accordance with
the most common usage in the physics literature.

Readers unfamiliar with the postulates of quantum mechanics and its
mathematics are requested to refer when necessary to Appendix B, where
the standard postulates of quantum mechanics, including the superposition
principle, are briefly outlined, and Appendix A, where the notation and math-
ematics of quantum mechanics used in the sequel are summarized; the Dirac
notation is primarily used here because of its great practicality. Throughout
the text, examples and details of secondary importance are often provided
in separate boxes. Those very familiar with the various representations of
quantum states and their basic properties may wish to proceed directly to
Section 1.4, where the quantum circuit formalism and basic quantum gates
are discussed. This chapter ends with a preview of the basic requirements for
quantum information processing tasks to be discussed in more detail later. In
particular, complex quantum information processing requires quantum coher-
ence of states in multi-qubit Hilbert spaces (c¢f. Postulate IV, Section B.1).

1 For discussions of the role of the observer in quantum mechanics see, for example,
the papers included in [32, 384, 453].
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1.1 Quantum state purity

The purity, P, of a quantum state specified by the statistical operator p is
the trace of its square,

Pp) = trp®, (1.1)

where é < P(p) <1 and d is the dimension of the Hilbert space, H, attributed
to the system it describes. The quantum state is pure if P(p) = 1, that is,
if it spans a one-dimensional subspace of H. One can then naturally define
state mixedness as the complement of purity, M(p) = 1 — P(p). The purity
and mixedness of a quantum state are invariant under transformations of the
form p — Up UT, where U is unitary, most importantly under the dynamical
mapping U(t,ty) = e~ #wH(=to) where H is the Hamiltonian operator, which
can readily be seen upon recalling that the trace operation tr(-) is cyclic.!?
Pure states are those states that are maximally specified within quantum
mechanics.'® A quantum state is pure if and only if the statistical operator p
is idempotent, that is,
PP=pr, (1.2)

providing a convenient test for maximal state purity. It is then also a projec-
tor, P(|1;)), where [¢;) is the normalized vector representative of the corre-
sponding one-dimensional subspace of its Hilbert space; projectors are outer
products defined in Section A.5.'4 A quantum state is thus mixed if it is not
a pure state, that is, if P(p) < 1.

12 Unitary linear operators, U, are those for which UTU = UUT = I, where “'” indi-
cates Hermitian conjugation (see Sect. A.3). Here, the time-evolution prescribed
by Postulate V of quantum mechanics (cf. Sect. B.1) has been given with a time-
independent Hamiltonian. However, temporal evolution in quantum mechanics
need not be so simple (¢f. Sect. 2.1 of [359] and Ch. 5). The cyclic-invariance
property of the trace is simply that tr(BA) = tr(AB), which is independent of
changes of basis.

Pure states in quantum mechanics are often also called coherent states. By con-
trast with the classical case, coherent states and superpositions of such states are
meaningful in quantum mechanics only when described by linear wave equations.
Note that coherent states in quantum optics are related specific states different
from the general notion of quantum coherent state referred to above. The term
“coherent state,” in this book refers to the former.

Note that rays cannot be added, whereas vectors |¢;) can be, making the lat-
ter better for use in calculations involving pure states, where superpositions are
formed by addition. A Hermitian operator P acting in a Hilbert space H is a
projector if and only if P2 = P. It follows immediately from this definition that
P1 =1— P, where I is the identity operator, is also a projector. The projectors P
and Pt project onto orthogonal subspaces within H, Hs, and HZ, respectively,
thereby providing a decomposition of H as H. ®H; two subspaces are said to be
orthogonal if every vector in one is orthogonal to every vector in the other. In the
case of a general state of a single qubit, one may write p = p1 P(|1)) +pa P(|9)),
where the weights p; are eigenvalues of its statistical operator.

13

14



6 1 Qubits
In the Dirac notation, projectors are written
P([i)) = [¢i) (il - (1.3)

Consider a finite set, {P(|t);))}, of projectors corresponding to distinct, or-
thogonal pure states |¢;). Any state p’ that can be written

Pl = szP(lzm) ) (1.4)

with 0 < p; <1 and ), p; = 1, is then a normalized mixed state.

Consider the normalized sum
1
V2

of two orthogonal pure state-vectors |0) = (1 0)T and |1) = (0 1)T
of a qubit, the r.h.s.’s being given in the matrix representation and
(-- )T indicating matrix transposition, the 1.h.s.’s being given in the
Dirac notation. The superposition in Eq. 1.5 is a pure state, as can
be immediately verified by taking its square modulus. The similar
linear combination formed by subtraction rather than addition is
written | \); see Eq. 1.11 below. The corresponding projectors are
P72 =17 PAUND) = 1NN -

By contrast to the case of state-vector addition, the normalized sum
of a pair of projectors, for example, P(|0)) and P(|1)) corresponding
to pure states |0) and |1), namely,

|7 = —10) + 1) . (1.5)

o = 5 (PUOY) + P(L)) | (1.6)
is a mixed state that can also be written
pr =5 (PUN+PIND) - (17)

Furthermore, the statistical operator corresponding to the normal-
ized sum of | /) and | \) is P(|0)) # p+. Again, the pure state
| /) is the result of the quantum superposition of two state-vectors,
whereas py is the result of the nontrivial mixing of two distinct pure
ensembles and, therefore, cannot be represented as a projector.

A quantum system is said to be in a (partially) coherent superposition of
states |a;) from a given orthonormal basis if and only if its density matrix—
the representation of its statistical operator in matrix form (see [62])—is not
diagonal in the A-representation, where A is the Hermitian operator of which
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the |a;) are eigenvectors; it is said to be in a completely coherent superposition
if, in addition, it is in a pure state.'®

Quantum mixed states, unlike their classical analogues, do not arise merely
from ignorance of states of the systems they describe. To see this, consider that
an ignorance interpretation of quantum mixtures would hold that a system in
the state p = poP(|0)) +p1P(]1)) could actually be in some pure state—either
the one described by P(|0)) or the one described by P(|1))—where real coef-
ficients py and p; could be understood as the probabilities, summing to one,
of the system being in either one or the other pure state, as in the example of
Eq. 1.6. These probabilities would then be understood as epistemic probabil-
ities, in that they represent best estimates of the chances of the eigenvalues
corresponding to the pure states to be observed. One of the peculiarities of
quantum systems such as the qubits above, compared to classical systems,
is the nonuniqueness of the decomposition of a mixed state into pure states
illustrated in the above box.'® The nonuniqueness of the decomposition of any
mixed state would simply mean that an experimenter’s ignorance is greater
than expected; one couldn’t say which are the pure states one should assign
to any particular pair of probabilities that add to one. For composite systems,
however, ensembles described by states p can be formed that are pure but
whose component system states are mixed, as illustrated by Egs. 1.6-1.7.17
Such an interpretation of mixed states is, therefore, untenable.'®

Another peculiarity of quantum systems relative to classical systems is that
the maximal specification of a quantum state by preparation or measurement
can precisely determine the values of only half its properties. A basic example
illustrating this is that of a quantum particle: either its position or its momen-
tum can be precisely specified but not both. In classical physics, in principle,
both of these quantities of a system can be precisely specified, corresponding
to its location at a point in “phase space.” By contrast, quantum systems can
be located only within finite areas of phase space. This can be understood
by reference to the interpretation of the Heisenberg—Robertson uncertainty
relation for momentum and position as describing the impossibility of simul-
taneous specification of momentum and position more precisely than that the
product of their variances be less than half 7, the quantum of action; see
Appendix B.2 and [92] for discussions of uncertainty relations. For a detailed
discussion quantum phase space for discrete systems such as qubits, which is
not explicitly used in this book but is of ongoing interest, see [182].

15 See Eq. 2.21 and Sect. A.5 for details of operator representation.

16 Both the weights and the projectors may differ for any two of the infinite num-
ber of allowed decompositions of a statistical operator. The state space is not a
Choquet simplex, that is, not a space for which such a decomposition is unique.

17 For a careful treatment of this question see, for example [228, 430]. Chapters 3,
6, and 7 below treat composite quantum systems in detail.

18 1t is valuable in this regard to consider the information measures described in
Chapter 4. Radical interpretations taking all probabilities as ignorance probabil-
ities can nonetheless be found; for example, see [100].
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1.2 The representation of qubits

The pure states of the qubit can be represented by vectors in the two-
dimensional complex Hilbert space, H = C2. Any orthonormal basis for this
space can be put in correspondence with two bit values, 0 and 1, in order to
act as the single-qubit computational basis, sometimes also called the recti-
linear basis, and written {|0),|1)}:1° the elements of the chosen basis may be
identified with the finite (Galois) field of two elements, x; € GF(2), by writing
them as |z;) with z; € {0,1}.2 The computational basis states, {|z;)}, for
the qubit Hilbert space is often taken, as is done here, to correspond to the
poles of the Poincaré—Bloch sphere; see Fig. 1.1, below.

The superposition principle implies that any (complex) linear combination
of qubit basis states, such as |0) and |1), that is,

1) = aol0) + a1[1) (1.8)

with a; € C and |ag|*+|a1]|? = 1, is also a physical state of the qubit and is, as
we have seen, also a pure state. The scalar coefficients ag and a; are referred
to as quantum probability amplitudes because their square magnitudes, |ag|?
and |a;|?, are the probabilities py and p1, respectively, of the qubit described
by state |¢)) being found in these basis states |0) and |1), respectively, upon
measurement.?!

The vectors of the computational basis can be represented in matrix form

0=(5) (19)

) = (?) : (1.10)

Another commonly used basis is the diagonal basis, {| ,/*),| \,) }, sometimes
also written {|+),|—)}, given by

S S
V2 V2

19 This basis is generally taken either to be the z-axis of the traditional quantum
mechanical description of spin—% systems or to be the x—axis, as is typically the
case in the representation of polarization states of light. Here, we follow the former
convention, and identify |0) with the horizontal polarization state |H).

GF(2) is the Galois field of integers modulo 2. For the definition and properties
of the Galois field GF(N) and its relationship to the integers mod p, Z,, see Sect.
A.1. Here we have N = p™ with p = 2 and n = 1. Galois fields of higher values of
n appear later.

This relationship is given by the Born rule; see Sect. B.1 and [68]. A similar
statement holds for components of quantum states in any basis of the Hilbert
space of any finite-dimensional quantum system.

|7 = 7= (10) + 1)) and [ \) = —=(|0) = |1)) , (L.11)

20

21
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P(|0))

P () P (Ir)

P(7)

P (1)

10)

17) [~

1Y

Fig. 1.1. a: Top figure. Statistical operators represented in the unit Bloch ball,
a real-valued representation of the space of qubit states via the expectation
values, S;, of Pauli operators o;, ¢ = 1,2,3; see Egs. 1.19-1.22. Orthogo-
nal quantum states are antipodal in this representation; the conjugate bases
correspond to orthogonal axes. The pure qubit states, P(|1/J(9,qb)>), lie on
the periphery, known as the Poincaré-Bloch sphere [337]. The mixed qubit
states, p(r, 0, ¢), lie in the interior and are weighted convex combinations of
pure states. The maximally mixed state, %H, lies at the center of the ball, being
an evenly weighted linear combination of any two orthogonal pure states (cf.
Egs. 1.6-7). In the Poincaré presentation often used in polarization optics, the
sphere is rotated counter-clockwise about the diagonal-basis axis by 90° with
respect to the one here. b: Bottom figure. Pure states of the computational
and diagonal bases jointly represented both in a Poincaré great circle, where
orthogonal states are represented as antipodal, and in a single-qubit Hilbert-
space semicircle, where orthogonal states are represented by orthogonal di-
rections and the endpoints are identified with each other. The full circle in
this figure is the great circle in the Poincaré-Bloch sphere that intersects both
the computational and diagonal-basis axes. Note that the angle subtended by
a pair of directions in Hilbert space is half the corresponding angle in the
Poincaré-Bloch sphere (cf. Eq. 1.14), which corresponds to the fact that the
special unitary group SU(2) acting on the vectors in the complex representa-
tion is the universal (double) covering group of the special orthogonal group
of rotations SO(3) of the vectors of the real representation. Stereographic and
sinusoidal projections of the Poincaré-Bloch sphere are also sometimes used;
for an example of the rarer, latter case, see Section 3.1.1 of [33].



10 1 Qubits

which is conjugate to the computational basis.??

Together, the computational and diagonal bases are used to provide the
pairs of signal states used in the BB84 quantum key distribution (QKD)
protocol; see Section 12.3. In that regard, note that the probabilities of qubits
in states | ) and | \,) being found in the states [0) and |1) are (1/1/2)? = 0.5

and vice-versa.
The circular basis {|r), |1},

1 1
V=0 V2

sometimes also written {| O),| ©)}, is also useful for quantum cryptography,
being conjugate to both the computational and diagonal bases.?3 All three of
the above mutually conjugate bases are used to provide three pairs of signal
states in the six-state protocol for QKD (see Sect. 12.6); the probabilities of
qubits in the states |r) and |l) being found in the states |0}, |1), | /), and
| \) are all 0.5, and vice-versa. A graphical representation of the above three
sets of basis vectors is shown in Fig. 1.1.24

(10) +if1)), )= —(10) —i[1)) , (1.12)

Yet another basis, the Breidbart basis, is the “intermediate basis”
{cosg|0> +sing|1> ,fsing|0> +cosg|1>)} : (1.13)

which lies on the same great circle as the circular and rectilinear
bases. It is used in QKD and for eavesdropping; see Section 12.5.

22 Two bases are conjugate if the corresponding pairs of antipodal points of the
Poincaré-Bloch sphere are 90° apart from each other [455]; see Fig. 1.1.a.

23 In the convention where the computational and superposition bases lie on the
equator of the Poincaré-Bloch sphere, which we do not follow here, these two
states are identified with the poles; see the following footnote.

Basis states are sometimes labeled on the Poincaré—Bloch sphere by state-vectors
|1;) rather than by the corresponding projectors P(|t;)), which can be misleading
because each line segment passing between antipodal points through the center
of the Bloch ball corresponds to a set of real convex combinations of projectors
P(|1;)) rather than a complex linear combination of Hilbert-space vectors (cf.
Sect. 1.1). In Fig. 1.1b, the correspondence between the complex and real rep-
resentations is illustrated, allowing one to see the effect of vector addition on
the Poincaré sphere. Note also that the Bloch ball is often presented differently,
for example with the computational basis state P(|r)) at the “north pole,” for
example in the “Poincaré representation” of photon polarization, where the ball
is rotated in € by 90°, placing the chosen computational basis on the equator.

24
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A spinor representation of the general pure state of a qubit is provided by

506,00 = eos(0/20) + o/ = (S5 ) L

where 0 < < 7w and 0 < ¢ < 27; when # = 0 and 7, ¢ is taken to be
zero by convention (cf. Fig. 1.1). Thus ¢ is the relative phase between single-
qubit computational-basis states. With this parametrization, the general qubit
state is naturally visualized in the Bloch ball, the boundary of which is the
Poincaré-Bloch sphere consisting entirely of the pure states, [1(6, ¢)). It is
easy to see by inspection which pairs of values of the parameters 6 and ¢,
corresponding to the altitudinal-complement angle and the azimuthal angle,
respectively, provide the various states of the above bases. The Bloch vector
associated with a pure state is (sin 6 cos ¢, sin 0 sin ¢, cos ), as described in
the following section. The most general linear transformation of the qubit in
the above representation is (6,¢) — (0 — a,¢ — ), where 0 < a < 7 and
0 < B8 < 2m. This transformation is decomposable into two transformations,
one with respect to # and one with respect to ¢, the former capable of being
performed unitarily but the latter not.?> The generic mixed state, p, lies in
the interior of the Bloch ball, can be written as a convex combination of basis-
element projectors corresponding to the pure-state bases described above (cf.
Eq. 1.4), and can be most conveniently given in the Stokes-vector representa-
tion described in the following section.?® The effect of a general operation on a
qubit can be viewed as a (possibly stochastic) transformation within this ball;
for illustrations of this in practical context, see [333]. The parametrization
required to adequately describe mixed states is now discussed in detail.

1.3 Stokes parameters

The generic state of a qubit can also be specified by a real vector, most
naturally one in Minkowski space R‘i?,, as well as by a convex combination
p = {pi, P(|:))} of projectors P(|1;)) acting in the Hilbert space C? as
discussed above. A real description has most commonly been used to describe
polarization via Stokes parameters in the restricted space R? but can be used
to describe any qubit and embedded in R} 5 [14, 15, 240]. The components
of this four-vector, the four Stokes parameters S, have the advantage of
directly corresponding to empirical quantities, such as photon-counting rates

25 This is particularly pertinent in regard to the performance of the universal-NOT
operation [207].

26 The position of a state p is often given by coordinates (z,y,z) = ((0|p|1) +
(1]p|0), (1|p|1) — (0]p|0), i(0|p|1) —i(1|p|0)). We follow a different convention, pro-
vided just below Eq. 1.22; with respect to which this parametrization is rotated
90°, where the position of p is given by Eqs. 1.19-22. See also the footnote above
regarding the Poincaré representation, as well as the following section.
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in selective measurements; see Chapter 8. Three of the dimensions (u = 1,2, 3)
associated with these parameters are conventionally taken to be those of the
computational, diagonal, and circular bases, and correspond to orthogonal
directions in the Poincaré-Bloch sphere; see Fig. 1.1. We now consider the
relationship between the above state descriptions and this most general one.

The Stokes and density matrix descriptions are homomorphic:2” the den-
sity matrix and the Stokes four-vector, S,,, are related by

3
1
P= 53 S (1.15)

where 0, (1 = 1,2, 3) are the Pauli operators which, together with the identity
oo = I, are represented in the matrix space H(2) by the Pauli matrices

. (0 1 . (0 —i

. (1 0 . (1 0
U3=Uz=Z=(O _1)7 00=H2=I=(0 1>7

where X,Y,Z are the quantum-logic-gate labels often used to specify the cor-
responding operations; see Section 1.4. The Pauli matrices form a basis for
H(2), which contains the qubit density matrices.?® The nontrivial products
of the four Pauli matrices—those between the o; for i = 1,2, 3—are given by
0;0; = 0;j00~+1i€;,0%, which defines their algebra.? Appropriately exponenti-
ating the Pauli matrices provides the rotation operators, R;(§) = e~7i/2 for
Stokes vectors about the corresponding directions i (cf. [359]); these rotations
realize the group SO(3).

The Stokes parameters S, (u = 0,1, 2, 3) also allow one to directly visualize
the qubit state geometrically in the Bloch ball via S1, 52, 55. The Euclidean
length of this three-vector (also known as the Stokes vector, or Bloch vector)
is the radius 7 = (S7 + S% + S2)'/2 of the sphere produced by rotations of
this vector. With the matrix vector & = (01,02,03) and the three-vector
S = (54, 52, 53), one has

1
p= 5(50112 + S101 + Sa09 + Ss303) (1.16)

;1<So+53 Sl—i52>

=3\ 8 +iS So—Ss (1.17)

7 For a discussion of the pertinent homomorphism, see [237].

28 The qubit density matrices themselves are the positive-definite, trace-class ele-
ments of the set of 2 X 2 complex Hermitian matrices H(2) of unit trace, that is,
for which the total probability So is unity, as prescribed by the Born rule and the
well-definedness of quantum probabilities; see Appendix B. Density matrices are
similarly defined for systems of countable dimension; see Sect. A.5 and [416].
€ijk = 1 for even permutations of 123, = —1 for odd permutations of 123, and
= 0 otherwise.

29
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known as the Bloch-vector representation of the statistical operator, in accord
with Eq. 1.15. In optical situations, where S describes a polarization state of a
photon, the degree of polarization is given by P = /Sy, where Sy is positive.
For the qubit, when the state is normalized so that Sy = 1, Sy corresponds to
total quantum probability. The density matrix of a single qubit is then of the

form
- [ Poo Po1
= , 1.18
p ( P10 P11 ) ( )

where poo+p11 = 1, pii = p}; with (¢ = 0,1), and p19 = p7y, where * indicates
complex conjugation.?® One can write the Pauli matrices for p = 1,2,3 in
terms of outer products of computational basis vectors, as follows.

o1 = [0){1] +[1){0] , (1.19)
—ioy = [0)(1] — [1)(0] , (1.20)
o3 = P(|0)) = P([1)) , (1.21)

and o9 = P(]0))+P(]1)), which can be directly verified by inspecting their ma-
trix representation given above. Using the above-mentioned homomorphism,
the Stokes parameters are expressed in terms of the density matrix as

S, = tr(poy) | (1.22)

which are probabilities corresponding to ideal normalized counting rates of
measurements in the standard eigenbases (see box below); in the standard nor-
malized parametrization of Eq. 1.14, Sy = 1, .S; = sinf cos ¢, S = sin 0 sin ¢,
and S3 = cosf.

So = tr(pP(10))) +tr(pP([1))), S1 = tr(pP(| 7)) — tr(pP(| \)),
Sy = tr(pP(|1))) — tr(pP(|r)), S5 = tr(pP(|0))) — tr(pP(|1))).

The four-vectors formed by the individual Stokes parameters provide a
basis in Minkowski space R‘ig. The o, are the generators of rotations and hy-
perbolic rotations in this space.3! The proper, orthochronous Lorentz transfor-
mations O,(1,3) acting on the Stokes vector can be conveniently represented
as products of six transformations M, ..., Mg, of which the following two, M;
and My, are representative of the two basic types, ordinary and hyperbolic
rotations, respectively.

1 0 0 0 coshy sinhyx 0

. |0 cosae —sina O . [ sinhx coshy O
Mi(a) = 0 sina cosa 0|’ Ma(x) = 0 0 1 0
0 0 0 1 0 0 0 1

30 Due to the constraints on density matrices, one can make use of the four conve-
nient real parameters A, B, C and ¢ such that poo = A, p11 = B, po1 = C’eiqﬁ7 and
p10 = Ce™* where C < VAB. For example, in Eq 1.6, A= B = % and C' = 0.

31 For a discussion of the underlying mathematics, see [405].
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Of the full set {M;} of six transformations, the first three are parameterized by
a, 3,7, which are the angles of rotation about orthogonal directions in this real
representation (when ¢ = 1,2,3) leaving the zeroth component unchanged,
and the second three are parameterized by x,w,(, which are the angles of
hyperbolic rotation about the corresponding orthogonal directions in this real
representation (when i = 4,5, 6) that alter the zeroth component.>?

The Minkowskian (Lorentz-group invariant) length associated with the
transformation of the Stokes four-vector (Sy,S1,S2,S3) under the Lorentz
group is

S* =83 - S87 S5 —57, (1.23)

which is familiar from its more well-known analogue in spacetime, the proper
time.33 The Euclidean length r and “degree of polarization” P are related to
this invariant:

r? =82 - 5%, (1.24)
and )
pP?= <T> =1—(5/S,)? . (1.25)
So

As we show in Chapter 7, the generalization of the Lorentz-group invariant
length to multiple-qubit systems, in the product space formed from copies of
R‘i& provides a measure of pure-state entanglement [240].

1.4 Single-qubit gates

The logic operations of quantum information processing can be carried out
using quantum gates, which are unitary operations acting on quantum state-
vectors. These operations realize, in the computational basis, the truth tables
of the corresponding Boolean logic operations.?* Single-qubit quantum gates
are transformations on the vector spaces of individual qubits appropriately
mapping the computational basis {|0),|1)} to itself. For example, just as the
classical NOT gate takes the bit 0 to 1 and the bit 1 to 0, the quantum NOT
gate takes the computational-basis vectors |0) to |1) and |1) to |0). The group
of unitary transformations of the qubit state consists of operations described
by four parameters. As we have just seen, the space of qubit states can be

32 These parameters can be related to the effects of polarization-mode dispersion and
polarization-dependent loss in optical fiber that can affect photons in practical
applications such as QKD with polarization-based qubits [240].

33 It is important in this regard to note that here the transformations of interest are
qubit transformations, not spacetime transformations; the Stokes parameters are
not the parameters of spacetime. For discussions of the effect of boosts on qubits
in spacetime, see [116, 184, 331].

34 These operations should be distinguished from those of traditional quantum logic,
which is in a particular sense weaker than Boolean logic and in which, as a result,
distributivity sometimes fails; see Sects. A.1 and A.7.
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given as a three-dimensional real space (cf. Fig. 1.1) embedded in a larger one
of four real dimensions. Unitary transformations are trace-preserving, and so
do not change the norm of a state, that is, do not alter the value of the Stokes
parameter Sy. A range of single-qubit gates are now described that are used
in subsequent sections and chapters.

Hadamard H
Pauli o,
NOT @
Phase S

Rotation R
"/8" T

Fig. 1.2. Symbolic representations of single-qubit quantum logic gates.

The symbolic representations of a number of basic quantum logic gates
are shown in Fig. 1.2. The effects, matrix representations, and interrelations
of these and other gates are now described.

The Hadamard gate. This gate is one of the most significant quantum
logic gates, because it can be used to enable the qubit interference vital to
quantum computation, in which several qubits are transformed in parallel,
typically involving tensor products of operators corresponding to this gate,
that is, H®™ (cf. Figs. 14.1-2). It interchanges the computational and the
diagonal bases: |0) <+ | ) and |1) <> | \,). The Hadamard gate

(Y

induces a transformation equivalent to a rotation by the angle 7/4 of the
Poincaré—Bloch sphere about the y—axis, that is, the diagonal-basis axis, fol-
lowed by a reflection through the z-y—plane, that is, the plane intersecting the
equator.®

35 The symbol “H” indicates the Hadamard transformation and is not to be confused
with the symbols designating the space of Hermitian matrices H(2), the Hamil-
tonian operator H, or Hilbert space H. Hermitian matrices O (and operators)
are those such that O = O, where “!” indicates Hermitian conjugation which,
for matrices, corresponds to the operation of complex conjugation together with
transposition. Note that H?> = I. One can write H = %(X + Z); see below.
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The rotation gates. Each of these gates rotates a qubit state about a
corresponding axis of the Poincaré—Bloch sphere by an angle &:

Rz (&) = R(1,0,0)(§) = cos <§) 0o — isin (g) o1, (1.26)
Ry () = R(o,1,0)(§) = cos <§) 0o — isin (g) o2, (1.27)
R.(§) = R(o,0,1)(&§) = cos <§) oo — isin (g) o3 . (1.28)

More generally, one can consider a rotation by angle £ about an arbitrary
direction n:

Rn(§) = cos (g) I—4 sin (g) (ngo1 +nyos +n,os3) , (1.29)

where the directional unit vector n has components n,,n,,n.. For example,
in the context of photon polarization, these rotations can result from photon
polarization-mode dispersion of the medium of propagation, in which case &
will depend on the distance of photon propagation.

The NOT (bit-flip) gate. This gate induces a change of the computational-
basis value of the qubit, that is, takes |0) <> |1):

. (0 1
vor= (8 1.

performing a reflection through the z-y-plane, that is, that of the equator,

which is identical to the Pauli matrix o1, that is, X, and which is accordingly

often referred to as the “bit-flip operator.” Note that (NOT)'= NOT, and

(NOT)? = 1, (the identity) as one would expect from a logical-NOT operation.
The vNOT gate. This gate,

JNOT = L (1. Z) ,
voa it 1
is so named because applying it twice is equivalent to applying the NOT gate
once, up to an overall phase factor (—i). The vVNOT gate is readily realized
in beam optics by a beam-splitter acting on a spatial qubit; see Section 1.6.36
The phase-flip gate. This gate,

(10
7= (04)

induces a change of the phase angle ¢ of Eq. 1.14 by 7 and is identical to the
Pauli matrix o3. It has the effect on computational-basis states that it takes

36 Note that the Hadamard gate H is also somewhat loosely referred to as a “square-
root of NOT.” A beam-splitter must be supplemented to phase shifters in order
to realize a Hadamard gate.
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|0) — |1), |]1) — —|1). It can also be viewed as a variant “NOT” gate when
acting on the elements of the basis {| ), | \,) }, because it interchanges them:
| /) <> | \\). The product iXZ is the Y (bit+phase-flip) gate identical to the
Pauli matrix o9, which has the effect of inverting the qubit state-vector about
the origin of the Poincaré-Bloch sphere, performing “universal state-vector
inversion” [357].

The F-phase gate. This gate, also called the i-phase-shift gate, represented

by
(10
5= (o7)

shifts the angle ¢ of Eq. 1.14 by 7. It allows one to produce specific interfer-
ometric effects when implemented in conjunction with Hadamard gates. This
gate is also the “square root” of the phase-flip gate, in that S% = Z.

The “%7 gate. This gate, represented as

(1 0 s (€780
T= (0 eiﬂ'/4> =e / ( 0 eiﬂ'/8> ) (130)

is commonly used in nuclear magnetic resonance simulations of quantum com-
puting, and shifts the angle ¢ by 7. Note that this gate is the “square root”
of the -phase gate, so that one has T4 = 82 = Z. It is sometimes also called
“K.”

The phase rotation. This gate,

. /10 i3/2 e~ i0/2 0
P(é):(oei¢>:e¢/< )

shifts the qubit phase by an angle ¢, allowing, for example, the production of
an interferogram when implemented together with v/ NOT gates; for example,
see Fig. 1.4. This operation thus rotates a state-vector by the angle ¢ about
the polar axis in the Poincaré—Bloch sphere.

A generic unitary quantum-logic operation on a single qubit can be rep-
resented as a combination of an overall phase shift and three rotations. In
particular, one can represent the general unitary gate in terms of these gates
as

U(s,&,€,€") = e“Ro(€)Ry (€)R:(£") (1.31)

(¢f. Eqgs. 1.26-28).

The above set of gates is formally similar to the set of Jones matrices of
polarization optics.?” Nonunitary transformations of qubit states have been
thoroughly investigated as well, including those involved in the decoherence
process; for example, see [207].

37 For a thorough review of the practical creation, characterization, and manipula-
tion of single qubits in optics, see [333].
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1.5 The double-slit experiment

The simplest experimental situation in which uniquely quantum behavior is
manifest is the double-slit (or two-slit) experiment, which has proven highly
useful in illustrating the nature of quantum probability.>® Consider the double-
slit diaphragm and opaque-screen detector arrangement shown in Fig. 1.3.
Take a1 (z) to be the (complex) quantum probability amplitude corresponding
(via retrodiction, cf. the introduction to Ch. 2) to the passage of a quantum
system through one slit of a diaphragm toward the spatial point x on the
measurement screen oriented perpendicularly to the direction of the initial
beam. The corresponding probability density of later finding a particle at
o upon measurement is then pi(z) = |ai(z)[?. Similarly, let az(z) be the
amplitude corresponding to passage through a second slit and arrival at x;
the corresponding probability density is pe(z) = |aa(x)|?>. The normalized
quantum amplitude for the particle being found at x when both slits are
passable, so that either slit might be entered on the way to the screen, is then

az(z) = %(al(x) + as(x)) , (1.32)

according to the superposition principle.

The corresponding probability density of finding the particle at the point
x on the collection screen is thus

pr2(x) = |ara(2)|? (1.33)
- %|a1(x) +as(a)? . (1.34)

The probability density pia(z) # p1(x) 4+ p2(x), being the squared modulus
of the sum of amplitudes a1 (z) and as(z) which are complex numbers with
nontrivial phases, exhibits quantum interference modulated by the phase dif-
ference between these amplitudes—most dramatically under the conditions of
constructive and destructive interference—giving rise to locally “bright” (high
probability) and locally “dark” (vanishing probability) regions in the pattern

38 The two-slit experiment was first carried out with light by Fresnel and Young.
For a discussion of double-slit experiments with electrons see, for example, [355].
Richard Feynman said that the interferometric behavior in this experiment, “In
reality. . . contains the only mystery” of quantum mechanics and “We cannot make
the mystery go away by ‘explaining’ how it works. We will just tell you how it
works. In telling you how it works we will have told you about the basic peculiari-
ties of all quantum mechanics” [169]. The mystery is the nonclassical nature of the
quantum interference behavior described mathematically via quantum probability
amplitudes and their addition. In practice, measurements will involve detection
within a finite interval rather than a single point; the pointwise function described
here is the probability density, from which the pertinent probability is obtainable
by integration over the detection interval.
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X

Pia(x)

Fig. 1.3. The double-slit experiment, characterized by passage of a particle through
slit 1 and/or slit 2 and detection at points x with single-particle interference on an
opaque detection screen. Bright regions correspond to high values of the probability
pi2(x), dark regions to low probability values.

(interferogram) that results from the measurement of a collection of identi-
cally prepared particles; see Fig. 1.3. At these particular locations, quantum
amplitudes add to and cancel out one another out maximally, respectively.
Such an interference pattern is not observed when the measured systems are
classical particles. For a more detailed discussion, see Ch. III.1 of [169].
Niels Bohr considered two versions of the double-slit experiment while
exploring the nature of quantum interference [67]. In one, a rigid diaphragm
with two slits and the ability to move in response to a collision is used, allowing
the slit through which the particle passes to be determined by measurement
of the recoil of the diaphragm, but no interference pattern is observed; an
analogous apparatus for allowing path determination in two beams is shown
in Fig. 1.4. In the other, the rigid diaphragm is fixed in place, as in Fig.
1.3; see Fig. 1.5 below for a two-beam analogue to that case. In this second
version, an interference pattern in particle detections occurs, but the paths
of the particles are not determinable [242]. Thus, there is complementarity
between the distinguishability of the path of particles in the apparatus and
the visibility of interference patterns formed by them at the detection screen.
Arrangements interpolating between the two extreme arrangements con-
sidered by Bohr have since been quantitatively investigated. One finds that
measurements cannot be made that allow a posteriori precise determination
of which slit any given particle of the ensemble passed through with high
probability without destroying the interference pattern formed by the parti-
cles striking the measurement screen [373]. This was found to be expressible
as a quantitative complementarity bound on particle path (welcher weg, or
“which-way”) determinability and the interference visibility [462]. It is helpful
to consider discrete versions of the two-slit experiments of Bohr, which pro-
vide a “spatial qubit” corresponding to a pair of spatial paths, for example,
those emerging from exit ports of a beam-splitter, that could be coherently
recombined later, as in a Mach—Zehnder interferometer configuration. For our
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Fig. 1.4. An apparatus realizing a discrete two-beam experiment, in which detectors
D; and D3 are placed before the two orthogonal beams (A and A’) can merge. “BS”
indicates a 50-50 beam-splitter and “¢” a variable phase-shifter.

Fig. 1.5. Apparatus realizing a discrete two-beam experiment, in which detectors
D; and D, are placed after the two orthogonal beams (A and A’) have merged.
This apparatus has the advantage over the original two-slit apparatus of Fig. 1.3
that no intensity is lost from the original beam during quantum state preparation.
“BS” indicates a 50-50 beam-splitter and “¢” a variable phase-shifter.

purposes, it is also convenient that this provides a (dual rail) realization of
a qubit, as it makes use of two quantum field modes to represent a single
qubit. The apparatus in Figs. 1.4-5 represent two such mutually exclusive
experimental arrangements for a single qubit. The class of experiments inter-
polating between these is not shown here, but corresponds to a single wing of
the apparatus shown in Fig. 3.2 in Chapter 3.

The problem of interest in each of these experiments is again that of un-
derstanding microscopic behavior given a particular preparation, P, of an
ensemble of systems that emerges in two beams, A and A’, corresponding
to quantum-field spatial modes, emerging from a beam-splitter, directed to-
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ward a given point.?® Two distinct kinds of measurement apparatus can be
placed away from the beam-splitter, allowing measurements of spatial path
and interference to be made. In one apparatus, the features of the pattern of
interference between beams A and A’ that are allowed to merge, as in Fig.
1.5, enable measurement of the visibility, v, of the interference pattern arising
given P; a variable phaseshifter introduces a phase shift similarly to the way
that different path-lengths from diaphragm slits to a given point on the detec-
tion screen do in the double-slit experiment of Fig. 1.3. The other apparatus
consists of detectors placed in beams A and A’ before they reach a common
point, and enables measurement of the distinguishability, D, of path, as shown
in Fig. 1.4. Now, in order to consider individual systems without conceptual
difficulty, let us consider the prediction of path rather than its retrodiction.
It may prove useful in this situation to introduce an ancillary quantum
system to aid in the determination of the path a system may take. In such an
extended class of experiments, there exist distinct ensemble preparations, P
and P’, both determining the same statistical operator p describing a single
qubit but such that the resulting distinguishabilities are unequal, that is,

D(P) # D(P') (1.35)

with

D(P) > Pp , (1.36)

where Pp is any measure of path distinguishability that depends only on the
statistical operator, p; one sees that path distinguishability is a function of
preparation rather than of statistical operator alone [239].4°

One must, therefore, consider all measurements (arrangements) that can
be made consistently with the preparation P, not just two, and find a strategy
for predicting for each system in the ensemble whether it will most likely be
from beam A or from beam A’, where a strategy may make use of knowledge
of the preparation as well as the results of the measurements. The optimal

39 General quantum state preparations are discussed in the following chapter and
compared to quantum measurements.

Such a measure Pp was proposed by Mandel [294]. Generically, preparations con-
sist of the conditions leading to the arrival of a quantum system in an instrument;
see Chapter 2. For example, preparations can involve ancillary systems correlated
with the system of interest in such a way that a single reduced density matrix
(about which, see Sect. 2.5) may result from two different preparations, which
preparations potentially provide additional information about the state beyond
that evident in the single-particle statistical operator. For example, the particle
may be described by a fully mixed qubit state when uncorrelated with any other
system or when part of a fully correlated composite system of two-qubits in a
maximally entangled state, such as |#~); see Eq. 3.5, as well as Sect. 9.7. It is
important to note, nonetheless, that two systems described by the same statis-
tical operator are guaranteed to provide the same experimental results when no
additional information of this kind is provided.

40
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strategy, given P, is the one for which the probability of a correct prediction
has the maximum value, pyax. The path distinguishability, D(P), for a given
preparation P can be taken to be the difference between this probability and

the minimum probability of error, which can be written

D(P) = Pmax — @min = 2Pmax — 1 , (1.37)

because the probability of an incorrect prediction having a minimum value is
Slmply dmin = 1- Pmax [239]

Those preparations in which measurements of possible ancillary systems
that might interact with systems before they reach the beam-splitter can yield
no information useful for predicting the path of a system of interest are called
the simple preparations. Let us call the system initially under consideration
“system I,” propagating in beams A and/or A’, where “and/or” is used due
to the presence of quantum-mechanical amplitude superposition, as discussed
in the introduction to this chapter. A simple preparation where the ensemble
is such that all its systems are described by the same pure quantum state |¢)
is called a pure simple preparation. For such preparations, one has a state

[) = a|A) +d'|A") (1.38)
and the path distinguishability is given by
D(P) =] af* - |a'P| , (1.39)

as per Eq. 1.37, without loss of generality taking beam A to be that one
most likely to be entered. For these preparations, there is a complementarity
between path distinguishability D and visibility v given by an equality [239]:

D*(P) +v*(P)=1. (1.40)

For mixed simple preparations, where the systems of the ensemble are de-
scribed by a mixed state p and distinguishabilities are similarly obtained from
probabilities of the form p = tr(p0O;), where O1 = |A)(A| and Oy = |A")(A'|,
the complementarity is instead expressed by an inequality [239]:

D*(P) +v*(P) < 1. (1.41)

Now consider the broader class of preparations, the correlated prepara-
tions, consisting of situations where measurements of correlated ancillae may
be useful for predicting the path. The least complex such case involves the
use of a second system, “system I1.” Let |©) € H; ® Hyr be entangled, that
is, not factorable into a state-vector in H; and a state-vector in Hir; for a
discussion of entanglement, see Chapter 6. For such a pure correlated prepa-
ration, partially tracing out the variables associated with system II from the
corresponding projector P(|©)) provides the (reduced) state of system 1.4 An

41 See Sect. 2.5 for a discussion of reduced statistical operators and the partial-trace
operation.



1.6 The Mach—Zehnder interferometer 23

ensemble formed by mixing several pure correlated cases, each with a distinct
|©k) in H;@Hyr with respective proportion wy, is the case of mixed correlated
preparations. The first, strong complementarity relation above holds when D
is distinguishability in the pure correlated case, D(P(|©))); the second, weak
complementarity again holds when D is that of the mixed correlated case
[239].

Finally, consider the maximum distinguishability, maxD(P), for all prepa-
rations P determining a given statistical operator p and any vector |©) in
Hi ® Hip that yields this p for the system-I ensemble, that is, a purification
of this statistical operator.*?> One finds that

maxD(P) = D(|P(6))) . (1.42)

Complementarity relations for distinguishability and interference visibility
continue to hold for the extended class of preparations, namely,

[maxD(P)]? +v*(P) =1, (1.43)

and
[D(P)]? +v*(P) <1 (1.44)

see [239]. These single-system relations prove useful in practical applications
of qubit interferometry and signal detection in quantum cryptography; see
Section 9.4. Recall that the phenomena discussed in this section involve only
the self-interference of a single-qubit system, despite the consideration that it
might be entangled with a second, ancillary system.

1.6 The Mach—Zehnder interferometer

A double-slit-like arrangement where only two directions are available to the
self-interfering system is realized in the Mach—Zehnder interferometer, shown
in Fig. 1.6 below, wherein the exit ports of a beam-splitter act as “slits.” In
this interferometer, a quantum system, most commonly taken to be a photon,
enters from the left and/or from below into a beam-splitter with two exit
paths. It provides a spatial qubit, consisting of occupation of one and/or the
other interior beam path. Each path then encounters a mirror, a phase shifter,
a second beam-splitter, and finally a particle detector.*3> One can also use

42 Any mixed quantum state p can be purified in a larger Hilbert space where the
system in question is considered to be a subsystem of a bipartite composite system
in a pure state |©); also see Sect. 9.7.

Phaseshifters may also be placed in the paths leaving the exit ports to be used
along with the transmittance of the final beam-splitter—together comprising a
transducer T, as in each of the wings of the complex interferometer shown in Fig.
3.2—to prepare a more general pure state of this qubit and to implement specific
single-qubit logic operations or phase encoding for quantum key distribution when
connected to a quantum communication line [101, 239, 473].

43
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this interferometer to prepare a phase qubit by selecting only those systems
entering a single initial input port and exiting a single final output port.

P(1))

& DD‘
(] D,
BS 1 p(oy
aly |ps 2
LT
a,/0)

Fig. 1.6. The Mach—Zehnder interferometer providing a range of qubit states as the
input qubit amplitudes a; and phase shifts ¢; are varied, with detectors providing
count rates proportional to the probability of lying in the output computational-basis
states described by state-projectors P(|0)) and P(|1)). The corresponding probabil-
ities of detection for input amplitudes ap = 0, a; = 1 are p(0) = sin®[(¢po — ¢1)/2)
and p(1) = cos?[(do — ¢1)/2]; see also Fig. 13.1.

For specificity, let us now take the system in question to be a photon.
The beam-path state of a photon exiting the initial beam splitter can be
proportional to

either  ]0) +4|1)
or i0)+|1) ,

being the former if the photon were input from the left, or the latter if it
were input from below; see Fig 1.6. The beam-splitters can each be said to
implement the vVNOT quantum gate; see Section 1.4, above. This is so in the
sense that, by taking a null shift to occur in the phaseshifter, the second beam-
splitter has a similar effect to the first, with the net effect on the photon that
it exits the interferometer with the opposite qubit value from that input; as
a result of the destructive interference in one final exit path and constructive
interference in the other, depending on the beam-splitter port initially entered,
the two beam-splitters together acting as a NOT gate operation (up to a phase
factor) in the quantum computational basis, as the particle will exit in the
opposite path from which it entered.** However, when —7/2 phaseshifters
are placed in the paths |i) (i = 0,1) before and after each beam-splitter,

44 A phase difference may also be introduced by a difference of path length, for
example, in an unbalanced configuration where the location of the second beam-
splitter plus detector pair and the location of a mirror relative to those as shown in
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the resulting subapparatus about each beam-splitter can be seen to perform
a Hadamard transformation on the qubit; for example, see [101]. The result
of two such net transformations—in the absence of the introduction of any
phase difference between paths—is to leave the qubit state unchanged, because
H? = I. Introducing changes of phases and/or input amplitudes gives rise to
interference patterns at the detectors, which allows one to study quantum
effects in these spatial qubits.

1.7 Quantum coherence and information processing

Although important single-qubit quantum information-processing tasks exist,
such as quantum key distribution (QKD) using highly attenuated laser light,
where apparatus such as the Mach—Zehnder interferometer adequately induce
the relevant quantum phenomena, more interesting quantum information-
processing tasks require more than one qubit to be present on which logic
operations can be carried out so that quantum entanglement may be involved.
These multiple-qubit gates induce additional, yet more subtle phenomena that
are manifested only in more complex apparatus to be discussed in subsequent
chapters. For example, although QKD can be performed with individually en-
coded single qubits, QKD under the Ekert protocol requires a system of two
qubits. In particular, genuine quantum computing requires the maintenance
of highly coherent superpositions of computational basis states of multiple
qubit systems in order to be effective.*> A brief discussion of the relationship
between individual-qubit and multiple-qubit descriptions is therefore called
for here before we consider the important subject of quantum measurement,
which is also required for quantum computation.

Whenever one is dealing with a quantum system composed of two or more
subsystems, the Hilbert space of the system is the tensor product of the Hilbert
spaces of the subsystems.?8 N classical bits give rise to 2V possible classical
computational states parameterized by N-bit strings x; € GF(2)". By con-
trast, the pure-state space for a system of N qubits is the Hilbert space

HM =C?eC?w---C?. (1.45)

Fig. 1.6 are interchanged, as in each of the two wings of the Franson interferometer
illustrated in Fig. 3.3. This path length can also be varied, as is often done in
phase-encoded quantum-key-distribution apparatus.

45 Nonetheless, see [120]. Quantum computation can be viewed as in essence multi-
particle interferometry and vice-versa [151].

46 The tensor product is described in Appendix A. The prescription for its use in
the quantum mechanics is given by Postulate IV of standard quantum mechanics,
discussed in Appendix B.1. When notating quantum states associated with tensor
product spaces in Dirac notation, the tensor product symbol “®” is often omitted
but implied, as when |¢) ® |¢) is written [¢)|¢) which is sometimes also written
simply |¥@), as in Eq. 1.46 below.
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As a result, an N-qubit pure state is parameterized by 2V — 1 complex num-
bers. For example, there are 2 complex components of a vector [#) € HN)
written as a superposition state in the computational basis, which are then
reduced by one by fixing the value of its unphysical global phase and normal-
izing its length. It is important to note that the information representable in
N qubits in general cannot be represented in a polynomial number of classical
bits, preventing quantum systems from being efficiently simulated by classical
computation.*” The computational basis for this space, namely, {|x;)} can,
nonetheless, be labeled by the 2V possible N-bit strings x;, which can be
viewed as eigenvalues corresponding to the computational basis of eigenvec-
tors.*® A generic N-qubit (register) state-vector |#) € HV) according to the
superposition principle, can be written in the computational basis as

2N_1

@) = > ailxi) (1.46)

=0

where the sum is taken over all 2%V strings of N bits, a; € C, the global phase
angle is set to zero, and the total probability is unity,

2N

> lail*=1. (1.47)

=0

Standard quantum computation is described by the evolution of a multiple-
qubit state, typically beginning from the initial fiducial state |z¢) = |00...0),
according to a transformation that is decomposable as a series of unitary
multiple-qubit gate operations, followed by a measurement readout project-
ing the unitarily transformed state onto the computational basis.*® Thus,
quantum algorithms are ultimately irreversible and probabilistic in nature,
though the unitary (logical) portions of the evolution are themselves deter-
ministic and reversible; see Chapter 14.59

Quantum algorithms benefit from a unique form of computational par-
allelism arising from the presence of quantum superpositions within these
very large Hilbert spaces. This parallelism allows, in a particular sense, the

47 Indeed, the inability of classical computers to efficiently simulate quantum sys-
tems was one of the original motivations for the exploration of quantum comput-
ing. However, the difference between cases is not as great as sometimes presented;
see the discussion of the Knill-Gottesman theorem in the box in Sect. 13.5.

It is this correspondence that allows for classical readout of the result of quantum
computation, though not classical treatment of the quantum computation itself.
See Chapter 13 for a description of how general unitary logic operations may be
performed using a finite number of quantum gates.

Note, however, that practical models of quantum computation involve ancillae
that are measured for the purpose of error-correction and that have nondeter-
ministic and irreversible evolutions. Alternative, “one-way” quantum computa-
tion has also been defined, which operates somewhat differently [82].
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evaluation of a given function for many values at once. Unlike classical com-
putational parallelism, in which several circuits are required to operate at
one time, quantum parallelism operates with a single circuit on a number of
computational-basis vectors in a quantum superposition; this occurs because
the state of a quantum register can be a superposition of computational basis
states on which an algorithm can be realized as a unitary transformation up
until the readout stage. Multiple streams of data are, in essence, represented
together in a single quantum data set acted on by a single quantum circuit.
Due to the size of the Hilbert space available to a number of qubits, a single
quantum circuit operates, in effect, on an exponentially large data set.
Uniquely quantum states of multiple-qubit systems exist within these large
Hilbert spaces that exhibit a number of phenomena that have no local realis-
tic mechanical explanation due to their entanglement, which can be exploited
to help quantum computing surpass its classical counterpart in efficiency.’!
However, multiple-qubit states are also very fragile, being susceptible to de-
coherence effects [317, 470]. After a short period of time, the pure quantum
states described by Eq. 1.46 are inevitably altered by interactions with their
environments and must then be described instead by a mixed quantum states

of the form
oN_12N_1

pt) =Y > pilxi)(xg] - (1.48)
i=0 ;=0
Interestingly, a similar process is a natural element of the quantum measure-
ments that are essential to quantum computation, as they are necessary for
computational readout; although decoherence must be avoided in the middle
of quantum computation, it plays a role at the end of quantum computation
when classical information must be extracted by measurement of the comput-
ing system [475].52
Finally, as an example of quantum state decoherence, consider a state of
a multiple-qubit system presented in the standard form of Eq. 1.46 in contact
with a thermal bath at temperature T'. The density matrix of the state will
evolve toward the diagonal form

p(t) = 2 piiP(1xi)) (1.49)
i=0

where p;; = exp(—E;/kT)/ Zjigl exp(—E;/kT), k being the Boltzmann fac-
tor and F; energy eigenstates, because the off-diagonal matrix elements de-
scribing the coherence tend toward zero, a process that takes place over a
timescale dependent on the system—environment interaction [153, 319].

51 The question of local realistic descriptions of quantum states is immediately ad-
dressed in the following chapter. Entanglement itself is the focus of Chapters 6
and 7.

52 Quantum decoherence is addressed in detail in Chapter 10. Quantum measure-
ment is discussed in detail in the following chapter.
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Measurements and quantum operations

Quantum states can undergo two distinct sorts of transformation: in addition
to unitary transformations such as the quantum gates discussed in the previ-
ous chapter, non-unitary transformations can take place, measurements being
the most significant of these. Complete quantum information-processing tasks
generally involve a measurement step because quantum measurements are re-
quired for classical information to be read out from quantum states. Here,
before describing the general class of state transformations via the operations
formalism and before placing standard and generalized measurements within
it, a number of important early contributions to quantum measurement theory
are surveyed. These provide important distinctions and clarify the meaning of
the terms measurement, preparation, and selection in the quantum context.
However, because the issues with which these contributions are concerned are
often rather subtle, on a first reading one may wish to proceed directly to
Sections 2.3-5, in which quantum expectation values, projection postulates,
and reduced states are characterized, after which generalized operations and
measurements are discussed.

Quantum measurements must be performed in order to determine the
properties of a quantum system, which may have been prepared in an incom-
pletely known state.! They involve the physical coupling of an apparatus to

! Henry Margenau distinguished quantum measurement from quantum state prepa-
ration as follows. State preparation determines the state of a physical system
“but leaves us in ignorance as to the incumbency of that state after preparation,”
whereas measurement “certifies that some system responded to a process, even
though we are left in ignorance as to the state; after measurement, for example,
the measured system may have been destroyed.” [Margenau’s emphases.] The
latter situation is the case in photon counting, for example. See also Pauli’s dis-
tinction between first-kind and second-kind measurements in Sect. 2.2. Margenau
pointed out that there are numerous processes in which both of these character-
istics are combined, that is, that are both preparations and measurements [295].
In practice, preparation is often simply the selection of part of the output of a
nondestructive measurement device, for example, passage of a photon through
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the system to be measured in order to provide results given as the registration
of an appropriate property, sometimes referred to as a pointer observable. In
the quantum information context, typically the object system of interest is
a number of qubits serving as a quantum register and the pointer property
of the apparatus takes bit-string values, although pointer-property values can
differ from the computational-basis eigenvalues for the register, in which case
there must be a well-defined pointer function serving to bring the elements of
the two sets of values into one-to-one correspondence.

Regardless of the measurement model assumed, one also implicitly or ex-
plicitly assumes a formal relationship between system properties and eigen-
states, namely that a system property is attributed a definite value when and
only when the system is in an eigenstate of the operator corresponding to that
property; when in other states no such value is attributed. This is sometimes
called the eigenvalue—eigenstate link [348].%2 Similarly, a calibration postulate
is sometimes introduced, requiring that if a system is in an eigenstate of an op-
erator corresponding to a property then a measurement of this property leads
with certainty to an outcome indicating that the system is in this eigenstate
[303]. Typically, a quantum state is taken to be defined by its preparation (or
measurement), which is used either to select (or predict) or to post-select (or
retrodict) the state at times afterward or beforehand, respectively. Quantum
probabilities specified by the state therefore have an implicitly conditional
character.3

A fundamental difficulty arises when one attempts to provide a fully in-
ternal deterministic description of measurement in quantum mechanics, due
to the unitary character of the standard time-evolution (the Schrédinger evo-
lution described by the operator U) of closed systems, that is, systems not
interacting with anything outside of themselves, and the superposition princi-
ple. This difficulty is often referred to as the quantum measurement problem
and can be seen to arise as follows [90]. Consider a measuring apparatus (often
assumed to be macroscopic), initially in an eigenstate |pg) of the pointer prop-
erty, and a system to be measured (often assumed to be microscopic) having
a property of interest and corresponding operator O with discrete nondegen-
erate eigenvalues {o;} that is taken to be in a specific eigenstate |o;) before
the measurement process begins and that is assumed to remain unchanged
during the measurement process. With these assumptions, the measurement
process would result in the transformation

a given port of a polarizing beam-splitter, the output of the other port being
disregarded. By virtue of such selection, the apparatus acts as an analyzer; see
Fig. 2.2.2.

2 One can think of this assumption as a means of making more explicit the meaning
of Postulate I of standard quantum mechanics given in Sect. B.1.

3 Note, however, that the relative character of quantum states does not render them
essentially epistemic in nature; see the discussion of the ignorance interpretation
of quantum probability of Sect. 1.1 and hidden variables in Sect. 3.1. Note also
that closed-system quantum evolution is time-symmetric.
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7Y = |po)los) (2.1)
= @) = p)loy) (2.2)

for each value of j that is a possible measurement outcome. However, suppose
that the state of the system to be measured were instead initially not an
eigenstate of O but rather a superposition state Zj ajlo;), which is also an
allowed system state by the superposition principle. In that case, taken to be
a unitary operation acting linearly on state-vectors, the measurement process
would be described by the pure state transformation

) = |Po>zaj|0j> (2.3)
— [@') = Zaj Ipj)loj) - (2.4)

In the statistical operator description, the transformation of this initial pure
state to a final pure state would then be

p—p =UpU", (2.5)

where

p=r(#) . o =P(Salion) 26)

because unitary transformations preserve state purity. What one needs from a
successful measurement, however, is a transformation of the initial pure state,
p, of the complete system to a final state of the form

P =" la;PP(17;")) (2.7)

that is a mixed state for an ensemble of situations occurring with probabilities
corresponding to the probabilities of measurement outcomes, |a;|?, only one
of which is obtained upon measurement.

The result of the system’s evolving according to the unitary time-evolution
prescribed by the postulates of quantum mechanics is a coherent superposition
involving several distinct measuring system states. In particular, we see that
it is a coherent superposition of measurement states of the prescribed form
shown in Eq. 2.2 rather than a mixed state. Thus, unitary evolution alone
yields a measurement of the quantity O that remains indefinite in outcome
and so provides an inadequate description of the required measurement pro-
cess. The failure of the unitary evolution to provide a definite measurement
outcome is the quantum measurement problem, sometimes also called the
macro-objectification problem.* Nonetheless, this conceptual difficulty does
not prevent one from making practical use of the quantum formalism.

4 D’Espagnat identifies five aspects of the measurement problem, including this one
[128]. It is valuable to compare and contrast the composite system state in Eq.
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2.1 The von Neumann classification of processes

The quantum measurement problem has resulted in a long, though somewhat
uncomfortably held, fundamental distinction in quantum mechanics between
measurements and other processes. In particular, John von Neumann distin-
guished two types of quantum state change, or intervention: the first type be-
ing the sort taking place during measurement involving a process of subjective
perception of the measurement result by a percipient outside of the quantum
description, the second type being those taking place otherwise [444]. With
such a distinction, one can consistently treat measurement devices themselves
as quantum systems as above. By contrast, the approach of Niels Bohr in the
Copenhagen interpretation of quantum mechanics is to consider measurement
apparatus as classical systems not described by quantum mechanics [310].
The discontinuous change of quantum state at the end of the measurement
process—that is, upon its coming to be known by a percipient—was taken by
von Neumann to be accompanied by a change in the state of the measured
system such that an immediate repetition of the measurement would with
certainty yield the same result as the initial measurement. This is sometimes
referred to as the repeatability hypothesis. Von Neumann accordingly invoked
what is now known as the (traditional) projection postulate used by Dirac,
Heisenberg, Pauli and others beginning in the late 1920s.°

2.6 with the subsystem reduced state given by Eq. 1.49 which can result from
the unitary evolution of a composite system. A more detailed treatment of this
problem can be found in [380]. For a statistical perspective on the topics discussed
in this chapter one may wish to refer to [219].

Another alternative also not further discussed here due to its highly unpleasant
metaphysical implications but popular with some physicists and mathematicians
investigating quantum computing, most notably David Deutsch, is the so-called
many-worlds interpretation of quantum mechanics. In this interpretation, mea-
surement is to be fully described by a unitary evolution in the joint Hilbert space
of the measured system, the measuring system, and the entire environment of the
two, producing a von Neumann chain of superposition states of all these systems
of the sort given by Eq. 2.6, ultimately resulting in a “wavefunction of the uni-
verse” in an elaborate superposition state that never collapses; those portions of
the resulting ramifying set of situations in which different sets of measurement
outcomes are obtained by measurers are assumed in some way to be inaccessible
to one another; see [303] for a discussion of measurement under this interpreta-
tion and [381] for a discussion of metaphysical implications of the interpretation.
In essence, this interpretation attempts to circumvent the quantum measurement
problem by metaphysical fiat at the level of the entire universe, rather than in-
voking the subjective perception that is naturally present in any measurement
process the outcome of which comes to be known by a subject, as von Neumann
did. This idea was first carefully investigated by Hugh Everett III and John A.
Wheeler [134].

The name “projection postulate” itself was first given by Margenau in 1958 [295].
For his part, Dirac dictated that “a measurement always causes the system to
jump into an eigenstate of the dynamical variable being measured” [136].
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In von Neumann’s treatment, the discontinuous change of state during
measurement is expressed by the rule that, when subject to measurement, a
quantum system initially in a pure state evolves nonunitarily into a mixed
state. In particular, in accord with Eq. 2.7,

P([)) — o' =Y (Wil P(1)) 1)) P(19)) (2.8)

K3

where P(|1)) is a projector onto the initial state 1), the projectors P(|v;))
onto the eigenvectors [1);) sum to the identity, and the weights (1;| P(|¢)))];)
sum to unity and correspond to probabilities that the values of the property
being measured are found to be those of the subensembles corresponding to
the projectors P(|1);)), when the system is known to initially have been in
the state |¢); see Fig. 2.1. This stage of state evolution is sometimes also
referred to as pre-measurement, because no particular measurement outcome
is selected by it. For projectors, P(|1;))P(|¢;)) = d;;P(|1;)), guaranteeing
that if the same subspace is projected on immediately and repeatedly then
such measurements always return the same value.

Because the set of vectors {|1¢;)} form a basis for H, the matrix elements
of the final statistical operator are, in an arbitrary basis {|a;)},

[0 = Y (evilbi) (@hnc o) (lebw) (s ) (2.9)
k

= wilpilij - (2.10)
k

that is, the process takes pure states to mixtures described by the weights
wg, as required. This discontinuous process is von Neumann’s type-I process.
When this process gives rise to any change in state it is irreversible [444]. When
a subensemble, corresponding to a given value of k, constituting a proportion
wy, of the total normalized ideal ensemble, is then also selected—in the case of
an individual system by its being actualized, which happens with probability
wi—one has

P(9)) = P(lYr)le) (2.11)

the r.h.s. generally having nonunit norm. The resulting pure ensemble state
can then be renormalized, so that the statistical operator of the particular
selected pure subensemble has trace one and can then be described simply
by the statistical operator P(|¢)). The pair of processes described by Egs.
2.9-11 constitute a selective measurement.

Von Neumann’s type-II process is the usual continuous (automatic) pro-
cess described by the Schrédinger evolution

p—p =UpU", (2.12)

where U is the unitary operator describing temporal evolution discussed in
Section 1.1. In this process, the purity and trace of the statistical operator
remain unchanged, so that no renormalization of state is required.
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Fig. 2.1. Projection of a quantum state-vector |¢) into a vector subspace S by a
projector P(S). Specifically, the projection of |¢)) onto a ray corresponding to |t ),
with which it makes an angle 6, is shown here; the probability for this transition
to occur is cos®>#. A von Neumann-Liiders measurement corresponds to the set of
possible projections onto a complete orthogonal set of subspaces, not necessarily
rays, spanning the Hilbert space of the system being measured; see Sects. 2.3—4.

2.2 The Pauli classification of measurements

At a finer level of detail, Wolfgang Pauli classified measurements themselves
into two categories, those of the first kind and those of the second kind, as
follows [324].

(1) Measurements that, when they are known to have been performed on
a quantum system with outcomes that remain unknown, result in probabil-
ities for the quantity measured having definite values, which have become
determinate as a result of the measurement, that are equal immediately be-
fore and after it, though the state of the system will have been changed and
may subsequently provide different measurement results, are measurements of
the first kind. In this case, the state is changed only to the extent necessary
for a measurement to be performed, leaving unchanged the particular prop-
erty measured. Pauli further distinguished repeatable measurements, which
are those first-kind measurements that, when repeated, cannot lead to a new
result, which are the sort of measurements prescribed by the von Neumann
projection postulate. The Stern—Gerlach spin measurement is the archetyp-
ical example of such a measurement.” An example from linear optics is the
measurement of linear polarization by a birefringent crystal; see Fig. 2.2-1.

(2) Measurements in which the state of the measured system is controllably
changed in such a way that repeating them will lead to statistical results
different from those of the initial measurement. When definite conclusions can
be made regarding the quantity being measured in this way, the measurements
are measurements of the second kind. The measurement of light polarization
by a polarizer passing only one linear polarization state is an example of such
a measurement, because the state is required to come to match the known
state of the polarizer in this case; see Fig. 2.2-2. Photon counting wherein

" For a description of the Stern-Gerlach measurement, see Sect. 1.1 of [359]; for an
analysis of behavior of coherence in the Stern—Gerlach apparatus, see [162].
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Fig. 2.2. Examples of apparatus performing first kind and second kind measure-
ments, respectively, according to the Pauli classification—light polarization: (1) re-
fracted by a Rochon prism, and (2) selectively absorbed using a dichroic polarization
analyzer.

photons are destroyed is another example of a second-kind measurement (cf.
Footnote 1).

Pauli and von Neumann both emphasized that, when the interaction be-
tween a measurement apparatus and a system being measured is analyzed, the
linearity of the Schrodinger equation describing the state evolution of com-
posite system formed by these two (sub)systems provides consistency between
alternative descriptions of system behavior in which the division (or “cut”)
between measuring system and measured system is made differently. Pauli
viewed the need for a nondeterministic projection as arising naturally from
the fact that the interaction between the measuring system and the measured
system is “in many respects intrinsically uncontrollable.”8

2.3 Expectation values and the von Neumann projection

The expectation value of a property represented by an Hermitian operator O
of a quantum system in a pure state given by a state-vector |¢) is

(O)yy = (¥[O[¥) (2.13)
= Zoi\<0i|1/)>|2, (2.14)

8 For an example treatment of irreversible transformations in an experimental
situation involving Stern—Gerlach apparatus, see [372]. A contemporary formu-
lation of this measurement taxonomy that addresses subtle additional issues
that arise when various different interpretations of the quantum formalism are
introduced—such as the Copenhagen, minimal statistical, “realistic,” and many-
worlds interpretations—can be found in [303]. The standard model of quantum
measurement theory is surveyed in [93].
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where {0;} is the set of eigenvalues comprising the eigenvalue spectrum of O;°
when the state of the system is instead mixed, by necessity being described
by a statistical operator p that is not a projector, the expectation value is

(0), = tr(p0) . (2.16)

The measurement of a property O of a system in a general state (pure or
mixed), according to the von Neumann projection rule, is described by the
transition
p—p =Y tr(pP(l0:)) P(lo:)) - (2.17)
K3

A measurement of a property is said to be maximal (or complete) when it
provides fully distinct values for the quantity measured, so that no more in-
formation can be obtained by further measurements of the property. For such
measurements, the above projection rule is entirely adequate. If, instead, the
measurement performed is capable of discriminating only sets of values, the
measurement is said to be nonmaximal; in that case, it provides incomplete
information about the property. Consider, for example, the measurement of
a qutrit, a quantum system possessing a trivalent property O with values
0; = —1,0,1. A maximal measurement will have three possible outcomes,
one for each of the possible values. By contrast, a measurement with only
two outcomes, say “—” for system property values —1 or 0, and “+” for sys-
tem property value +1, is a nonmaximal measurement. An example situation
wherein the latter would be realized involves an imperfect Stern—Gerlach type
apparatus acting on a spin-1 system such that a particle with z-spin +1A en-
ters a distinct spatial beam downstream from the magnet but particles with
spins 07 or —1A are not allowed to separate, entering only a common, second
beam.

For measurements of properties whose operators have degenerate, that is,
nonunique eigenvalues, as in the above example, this projection rule can be
improved upon, as we show in the following section.

9 Expectation values thus take the form of average values for measurements on
ensembles of quantum systems prepared in the same state under statistically ideal
circumstances. A related mathematical theorem central to quantum mechanics is
the spectral theorem: each Hermitian operator, O, can be written

0= ZoiP(\ol)) , (2.15)

where P(Jo;)) is the projector onto the finite Hilbert subspace spanned by |o;).
Equation 2.15 provides the spectral decomposition (or eigenvalue expansion) of
the operator O. This theorem does not hold for operators in infinite-dimensional
Hilbert spaces, even when there exists a countably infinite set of basis vectors.
Such a decomposition does not exist in general in that case because there may
not exist a countably infinite set of eigenvectors that form a basis. There do exist
topologies on infinite-dimensional spaces for which the theorem in a generalized
form (the nuclear spectral theorem) does hold, however; for example, see [64].
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2.4 The Luders rule

If the projection operator corresponding to an outcome for a measurement of
a property O projects onto a subspace of finite dimension greater than one,
then the (original form of the) von Neumann projection postulate, including
subensemble selection and renormalization, prescribes that the measurement
process be described by the process

p—rp =P, (2.18)

where here the projector is written Pg. This rule yields a system state after
measurement that is independent of the details of the state before the mea-
surement, beyond those pertinent to the measurement outcome itself, as can
be seen by noting that p does not appear in the description of p’. Accord-
ingly, the von Neumann prescription fails to maintain the distinction between
initially pure states and initially mixed states and fails to preserve coherence
of pure states in nonmaximal measurements.

A more general prescription of projective state-change as a result of such
a selective quantum measurement is the Liiders projection (Liiders rule),

p— of = LerBi (2.19)
w(pP)’ |

under which the state after measurement clearly is dependent on the state of
the system beforehand. The values of successive measurements under this rule
will coincide when another measurement is made between successive measure-
ments of O of a property compatible with O in the sense that the correspond-
ing operators commute, unlike in the case of the measurements as character-
ized by the von Neumann projection described above [250, 290]. Thus, under
the Liiders prescription for state projection, if one prepares two ensembles
of systems in the state p, the first measured for some property compatible
with O and the second having O itself measured first, the relative frequencies
of the values of the compatible observable are the same for those two cases,
yielding pure subensembles from pure ensembles. Furthermore, when the ini-
tial state of the system is pure, the Liiders rule is the only projection rule
for which this is true [400]. The Liiders prescription is itself a consequence of
the Feynman rules for computing quantum probability amplitudes, which are
based on the concept of the indistinguishability of processes [399]. The Liiders
rule is now commonly considered to be the appropriate general description of
a “von Neumann” (read precise) measurement, as distinct from generalized
(POVM) measurement; see Section 2.7, below.1 Note that both of the above
prescriptions are descriptions of selective measurements.

10 Note that von Neumann measurements of a discrete ordinary observable are re-
peatable, but a repeatable measurement of such an observable need not be a von
Neumann measurement; for example, see [94]. For continuous variables, see [92].
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Nonselective measurements, by contrast, of systems in initial states p that
are not necessarily pure are described by the transition

p—p =Y PpP;, (2.20)

where P; is a projector onto the (not necessarily one-dimensional) eigensub-
space corresponding to the outcome 4, under the Liiders prescription.

The Liiders rule describes measurements that are minimally disturbing
(or coherent) in the sense that they project an initially pure state onto eigen-
subspaces with a weight proportional to the square of the projection onto
each subspace. By contrast, the original von Neumann measurement rule de-
scribes measurements that are maximally disturbing (or incoherent) relative
to other first-kind measurements.!! A distinction between these rules has also
been made as follows. The original von Neumann measurement is intended to
describe measurements of ensembles, whereas the Liiders rule is intended to
describe individual measurements [185].

2.5 Reduced statistical operators

Describing measurement quantum mechanically involves the examination of
the interaction between a measuring apparatus and the system it measures.'?
The joint state of the measurement apparatus and the system, initially a pure
state, can be considered to remain pure and described by the standard unitary
evolution throughout measurement. However, each of the subsystems, consid-
ered alone, enters a mixture described by the reduced statistical operators
obtained by partial tracing out parameters describing the other subsystem, as
the joint state becomes entangled. The quantum information as measured by
the quantum entropy of the state of each subsystem accordingly decreases, as
shown in Chapter 5. Such a description also applies to system—environment
interactions, which are described in Chapter 10.

Let {|u;)} and {|vj)} be bases for Hilbert spaces H; and Hs of countable
dimension, describing two subsystems 1 and 2, respectively, forming a compos-
ite system in state p. The set of vectors {|u;) @|v;)} (i =1,2,...; 1 =1,2,...)
is then a basis for the Hilbert space of the total system, H = H1 ® Ha. Any
operator O on H, such as p, can be written in the form

0 =" {Ju)lv;)Osjpa (k| (ual }, (2.21)

ij,kl

where O;; 11 are scalars (the matrix elements corresponding to O). Finding the
partial trace is somewhat like finding the marginal distribution of a component

1 For this reason the original, von Neumann projection rule is sometimes referred
to as the “clumsy experimenter’s rule.” See also [126].

12 For descriptions of the measurement process including details of measurement
interaction see, for example [6, 330]. For more tensor products, see Sect. A.5.
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of a two-dimensional random variable from the probability distribution of the
latter in classical probability theory: the partial trace of O, with respect to
the first subsystem, for example, is

tr10 = Z<u¢\0|ui> . (2.22)

In particular, the result of partial tracing the statistical operator p of the com-
bined system over each of the subsystems individually is the pair of reduced
statistical operators

pP1 = tI‘gp , (223)
p2 =trip, (2.24)

each describing the state of one subsystem, for example, in the case of the
dismissal of the other subsystem. The reduced statistical operator is the only
statistical operator providing correct measurement statistics for subsystems
[268]. When the overall state p is an entangled pure state, the reduced states
p1 and po describing the component systems are mixed rather than pure, a
situation not arising for marginal distributions in classical mechanics.

2.6 General quantum operations

As we saw in the description of the measurement process above, it is often valu-
able to describe transformations of quantum states besides those described by
the standard unitary evolution of closed systems yet still allowed by quantum
mechanics. Important examples of these include the evolution of open quan-
tum systems, which may also lie outside the class of transformations described
by the projections considered above. It is therefore useful to consider the class
of completely positive trace-preserving (CPTP) linear transformations,

p—Ep) (2.25)

often called operations, taking statistical operators to statistical operators,
each described by a superoperator, £(p), satisfying the following conditions.

(i) tr[€(p)] is the probability that the transformation p — &(p) takes place;

(ii) £(p) is a linear convex map on statistical operators, that is,

5<Zi:pim) - S n(e, (2.26)

p; being probabilities. (£(p) then extends uniquely to a linear map.)
(iii) £(p) is a completely positive (CP) map.

A linear map L : B(H) — B(#), where B(H) is the space of bounded linear
operators on H, is said to be positive if L(O) > O for all O > O, that is,
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all O € B(H) for which (1|O[) > 0 for all |¢) € H;'3 such a positive L is
completely positive (CP) if, in addition, any Iy ® L € B(CN @ H) is positive,
for all N € N. Note that matrix transposition in any basis,

T =)l = 1)l (2.27)

for example, the computational basis, is a positive map that is not completely
positive. A CPTP map is just a CP map that is also TP.

Operations &£(p) satisfy the above three conditions if and only if they are
such that

E(p) =D KipK] , (2.28)

for some set { K;} of Hilbert-space operators for which I-3". K] K; > 0 [261].
The elements K; are sometimes called decomposition operators (or operation
elements or Kraus operators) and the set {K;} called the operator decom-
position.'* Equation (2.28) provides the operator-sum representation for the
operation &(p). The trace preserving (TP) property for E(p), tr(E(p)) = tr(p),
translated in terms of the decomposition operators {K;}, is the property

Y KK =1, (2.29)
i

which is a completeness relation that, because K; and Kj do not necessarily
commute, may differ from the condition

> KK/ =1, (2.30)
i

which is required for a CP map to be a unital map, that is, a map for which
E(I) = 1. One example of such a map is the qubit-depolarizing channel; a
negative example is provided by the amplitude-damping channel; see Section
9.6. If the operator decomposition of a CP map satisfies both these conditions
the map is doubly stochastic.

The operator decomposition of an operation is not unique. In particular,
any two sets of operators {K;} related to each other by unitary transforma-
tions equally well represent the same operation £(p). A decomposition is said
to be minimal if there exists no decomposition into a smaller set of operators
than it contains, which is the case if and only if its operators are linearly inde-
pendent. An operation is said to be pure if there is a decomposition of it that
contains only one operator; the standard quantum-mechanical closed-system

13 A linear map L taking p — L(p) is one such that for p = pip1 + pap2, L(p) =
p1L(p1) + p2L(p2).

14 These decomposition operators K; are not necessarily Hermitian; for example,
see the operator elements of the amplitude-damping channel discussed in Sect.
9.6.
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time-evolution operation (the Schrédinger evolution) is an example of a pure
operation.

Any CPTP map can be understood in terms of a unitary transformation
acting in a Hilbert space larger than the Hilbert space H; associated with the
relevant statistical operator. In particular, for a state p € H; in the larger
space Hi ® Ho, there is a state p’ € Ha such that

p=tra(p®p) . (2.31)
Any CPTP map can be viewed as the transformation
T(p) = tra(U(p® p")UT) , (2.32)

for some unitary operator, U [261]. Some other examples of CPTP maps are
the nonselective measurement p — . P(|1;))pP(|1;)) and the composition
of quantum systems p — p® p’, such as when an ancilla is added to a system.

2.7 Positive-operator-valued measures

Consider, for a moment, measurement in the broadest setting, wherein the
eigenvalue spectrum of the Hermitian operator O representing a physical prop-
erty may be continuous, so that a measurement might place its value within
a Borel set A € R and leave the state of the system with support (O, A)
with respect to O. A projector Po(A) from the spectral decomposition of O
might describe the (quantum mechanically) maximally specified state of such
a system. There are significant difficulties arising from such a description; for
example, see [92, 398]. The generalized measurements we now consider pro-
vide one well-defined way of describing of such situations, although those will
not be explicitly dealt with here since we consider only discrete properties.

Generalized measurements are the class of quantum operations that are
described by positive-operator-valued measures (POVMs) [122]. Given a
nonempty set S and a o-algebra X' of its subsets X,,, a positive-operator-
valued measure F is a collection of operators { E(X,,)} satisfying the following
conditions.'®

(i) Positivity: E(X.,) > E(0), for all X,,, € X.
(ii) Additivity: for all countable collections of disjoint sets X, in X,

15 See Sect. A.7 for the definition of o-algebra. A Borel o-algebra is the o-algebra
generated by the open intervals (or the closed intervals) on a topological space—
for example, in R—which are the Borel sets. The set S is often a standard measur-
able space, that is, a Borel subset of a complete separable metric space. Because
such spaces of each cardinality are isomorphic, they are all measure-theoretically
equivalent to Borel subsets of the real line, R; see [217].
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B(UnXm) =Y B(Xp). (2.33)

(iii) Completeness: E(S) = L.

In the operator space of quantum mechanics, POVMs are the natural cor-
respondents of probability measures. If the value space, (S,Y), of a POVM
E is a subspace of the real Borel space (R, B(R)), then E provides a unique
Hermitian operator on H, namely

/ Id dE | (2.34)
R

where Id is the identity map. The probability of outcome m upon a generalized
measurement of a pure state |¢) is given by

p(m) = (Y[E(Xm)|¢) ; (2.35)
when the state is mixed, this probability is instead given by
p(m) = tr(pE(Xm)) ; (2-36)

see also the discussion of Gleason’s theorem and its extension in Section 3.4.

The effect of a POVM measurement of the initial state p is exhibited by
post-measurement states p,, and corresponding outcome probabilities p(m).
The positive operators E(X,,) in the range of a POVM are referred to as
effects and represent the events associated with outcomes of generalized mea-
surements. A collection of effects is said to be coexistent if the union of their
ranges is contained within the range of a POVM. The post-measurement state
of a system initially described by a statistical operator p under a POVM
{E(X,,)} is often taken to be

= Muph, (2.37)
tr(Mm pMJn)
where each of the E(X,,) can be written M, M,,, M,, being called a measure-
ment decomposition operator (cf. [315]); in the special case that the M, are
projectors, this expression coincides with the Liiders—von Neumann measure-
ment rule given by Eq. 2.19—this can be seen by recalling that projectors are
Hermitian and idempotent.'® When, and only when, the measurement oper-
ators M, are projectors—so that the POVM is a projection-operator-valued
measure (PVM)—are they identical to decomposition operators E(X,,), in
which case they are also multiplicative, that is, E(X,, N X,) = E(X)E(X,)

for all countable subsets of the corresponding set—equivalently, E(X,,)? =

16 For a more general extension of state projections for POVMS, see Sect. 3.3 of
[127].
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E(X,,). As noted above, von Neumann measurements of a discrete PV mea-
surement are always repeatable, although the converse is not true.!” Any
POVM can be given as an isometric embedding into a larger Hilbert space
together with a PV measurement, so that one can consider von Neumann
measurements in a total state space of a composite system consisting of the
measured system together with an ancilla.

POVM measurements play an important role in quantum key distribution,
where they have been used for a variety of quantum signal detection and esti-
mation tasks. POVM elements, when providing positive outcomes, allow one
to eliminate quantum states from consideration as describing the measured
system. An example of a POVM used for such a purpose is the following [37].
Given the two projectors

P(-lg)) =1-P(9) , (2.38)
P(=]¢")) =1-P(|¢)) , (2.39)

where (¢|¢') = sin 26, one can construct a POVM {E,,} with the following
elements.

Ey = P(=|¢)/(1+ [{gl¢")]) - (2.40)
Ey = P(=]¢")/(1+ [(8l¢)]) - (2.41)
By =1— (E + E,) . (2.42)

POVM measurements using {F1, E2, F5} prove more efficient for QKD and
eavesdropping thereon than traditional measurements described by the pro-
jectors { P(—|¢)), P(—|¢’))}. POVMs similarly sometimes allow quantum state
tomography to be performed with improved efficiency; see Chapter 8 and [349].

For example, in quantum key distribution under the B92 protocol, the
sender of cryptographic key bits uses the nonorthogonal states

|¢) = cos6|0) + sin 0]1) (2.43)
|¢") = sin6|0) 4 cos 0|1) (2.44)

to send a random binary sequence to the receiver, |¢) encoding bit 0 and
|¢") encoding 1. The receiver (or an eavesdropper) can perform measurements
of bits that sometimes fail to find the desired bit, but when they succeed
always provide the bit correctly. In particular, when used as arguments in the
POVM described by Eqs. 2.40-42 the first two elements correspond to definite
signal state identifications and the third element corresponds to an indefinite
result; see Sections 1.5, 9.4, 12.5, and, for example, [152]. The probability of
succeeding and obtaining any given bit correctly is 1 — sin 26 in this case. An
experimental realization of such a POVM in linear optics is shown in Fig. 2.3,
below.

17 For more detailed information-theoretical treatments of quantum measurement,
see [208] and [267].



Fig. 2.3. The realization of a projection-operator-valued measurement in linear
optics. PBS indicates a polarizing beam-splitter such as a Wollaston prism, BS
indicates an ordinary 50-50 beam-splitter, and R indicates a polarization rotator.
Such an apparatus can be used as a quantum key bit receiver, where D3 provides
indefinite-bit-value detections and D1 and D2 provide definite-bit-value detections.
See [76], and Sect 9.4 where an ancilla is used for similar purposes.
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Quantum nonlocality and interferometry

The most strikingly quantum-mechanical situations phenomena involve entan-
gled states with components located in spacelike-separated regions, customar-
ily referred to as laboratories. Each laboratory is taken to contain a physical
agent capable of performing quantum operations on subsystems within it and
potentially communicating with agents in other laboratories, via either one-
way or two-way classical and quantum communication channels. When con-
sidering two-component systems described by bipartite statistical operators,
pAB, the corresponding two agents are customarily referred to as “Alice” and
“Bob,” with the labels A and B indicating the corresponding subsystems or
laboratories. Entanglement-based quantum-key-distribution systems are prac-
tical examples in which this convention accurately reflects the experimental
situation. Locality considerations are often explicitly brought into play when
studying entanglement. However, it should also be kept in mind that it is by
no means obvious that violations of locality conditions in the traditional sense
are sufficient for the characterization of entanglement, despite their value in
the investigation of entangled quantum states. The distinction between lo-
cality violation and quantum state entanglement should therefore be kept in
mind. This chapter focuses on entanglement more in relation to local opera-
tions themselves than in relation to information, which relation is the focus of
Chapter 6; the intervening chapters introduce various information-theoretic
concepts and quantities, both classical and quantum, that will prove essential
for the important and often subtle discussion taken up there.

Operations on composite quantum systems are classified as follows. The
class of local operations (“LO”) is that of operations that are carried out on
individual subsystems located within the laboratories of their corresponding
agents. The operations of classical communication (“CC”) are information
transfer acts between agents in separate laboratories carried out via non-
quantum means, and may be in one or two directions—these are discussed in
detail in the following chapter. Local operations together with those of classi-
cal communication (“LOCC”) are operations on quantum systems by agents
who are also capable of communicating classically. The distinction between
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LOCC and mere LO is particularly important in that classical communication
between agents allows the local operations of an agent to be conditioned on
outcomes of previous measurements carried out by other agents; using LOCC,
the actions of Alice and Bob can be correlated in a way explicable as global
operations in both their laboratories that are not necessarily describable as
direct products of local operations. In this chapter, it is also important to keep
in mind that, although LOCC allows correlated mixed states to be created
from previously uncorrelated states, LOCC is not sufficient for the creation
of entangled states.

LOCC operations include local unitary operations, local measurement op-
erations, and the addition or disposal of parts of the total system, all of which
are independently addressed in preceding. Accordingly, a quantum operation
Oap carried out by Alice and Bob is implementable by a pair of parties via
LOCC when it can be written as a convex sum of local operations,

OuB = ZpiAi ® B; , (3.1)

so that operations by Alice and Bob are carried out independently in the
two laboratories with probabilities p;. In the case of operations on a number
of copies of a quantum system for any of the above classes, the adjective
“collective” is added to the above-mentioned classes, and the above acronyms
are given the prefix “C.” In cases where transformations are not achievable
deterministically, but rather only with some probability, they are considered
stochastic operations and the adjective “stochastic” is added, so that the
above acronyms are generally given the prefix “S,” as in SLOCC. These various
state transformations are discussed in greater detail in Chapters 6 and 7, where
bipartite and multipartite entanglement, respectively, are discussed.

The investigation of entanglement has long been bound up with the inves-
tigation of locality and realism and their relation to the quantum-mechanical
description of composite systems. In particular, one is interested in the ques-
tion of whether there may exist adequate local realistic descriptions of entan-
gled systems and the question of the whether any such description is compat-
ible with the postulates of quantum theory. These questions have often been
approached by considering the possibility of “hidden variables.”

3.1 Hidden variables and state completeness

Hidden-variables approaches to explaining the behavior of microscopic sys-
tems are predicated on the possibility that the quantum-mechanical specifica-
tion of physical states is in some sense incomplete. The first hidden-variables
model in the quantum context was that proposed by Louis de Broglie in
the mid-1920’s [124, 125] and more completely developed by David Bohm in
the early 1950’s [65]. Hidden-variables treatments of quantum phenomena are
based on the consideration of a putative complete state, \, which is often not
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specified in detail, underlying the (therefore inherently statistical) quantum
state, p. The “hidden” variables of these theories are those parameters not in
the quantum state that ostensibly complete the specification of the full set of
system properties. Statistical principles, namely, the preservation of functional
subordination in the space of quantum properties and the preservation of the
convex structure of the set of quantum states, impose some conditions on any
hidden-variables model. Despite their being called “hidden,” these variables
are not assumed to be in principle empirically inaccessible. They are often
taken to be fully contained in the complete state, which is sometimes also
called a dispersion-free state. The simplest sort of hidden-variables model is
that in which A provides definite values to all quantum system properties that
correspond to the projectors described in Chapter 1. Such models, sometimes
referred to as noncontextual hidden-variables theories, determine the value
of a quantity obtained by measurement, regardless of what other quantities
are simultaneously measured along with it, and specify the complete state
of the overall system composed of the measured system together with the
measurement apparatus.

John S. Bell provided the following example of a noncontextual hidden-
variables model for the qubit [31].} In this model, the qubit is described in the
spinorial representation, v, together with a real parameter | € [—%, %} that
serves to complete the specification of the dispersion-free state A\. The qubit
properties are represented by matrices in H(2) of the form aog + Zle Bio;,

having eigenvalues
a+ 8| (3.2)

and expectation values

e S n0)= (s (soos Sae)e) . o

where 3 is a three-component real vector and the o, (u = 0,1,2,3) are the
Pauli matrices. 3 is taken to have the component values (1, 32, 33 when the
qubit is in the zero computational-basis state. Measurement of the property
aog + Zle B;o; provides eigenvalues

-+ Blsign (81 + 1 Jsint (3.4)

WheI‘eX:ﬁgifﬁg#O,Xzﬁlifﬁg:Oaﬂdﬁl#O,al’ldX:Bg
if B3 = 0 and (; = 0; the sign function is defined by the conditions that
signF' = +1 if F' > 0, and signF’ = —1 if F' < 0. In this model, one finds that
the quantum-mechanical expectation values are indeed recovered by taking a
uniform average over the range of values of the hidden variable [.

! Kochen and Specker also produced an explicitly noncontextual hidden-variables
model [260].
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The more subtle contextual hidden-variables models, also introduced by
Bell, require not only A but also other relevant parameters associated with
the conditions (or context) of their measurement to assign each projector
a definite value. This idea was further developed by Stanley Gudder, who
considered the context to be a maximal Boolean subalgebra of the lattice of
quantum Hilbert subspaces [202].2 Algebraic contextuality involves the speci-
fication of any other quantities that are measured jointly with the quantity of
interest. Environmental contextuality involves there being some nonquantum-
mechanical interaction between the system subject to measurement and its
environment that occurs before measurement and influences the value of the
measured properties. An even weaker class of hidden-variables models, the
stochastic hidden-variables theories, requires the hidden variables and exper-
imental parameters to specify merely the probabilities of measurement out-
comes corresponding to projectors. Finally, a distinction is made between
local and nonlocal hidden-variables theories that becomes more clear as one
progresses through the series of significant results below; see, for example
Section 3.5. In the case of nonlocal hidden-variables theories, the action on a
subsystem of a composite system may have an immediate effect on another,
spacelike-separated system.

The results we examine now pertain to hidden-variables models, either di-
rectly or indirectly, and their relation to quantum statistics. These results and
associated empirical tests weigh mainly against the existence of hidden vari-
ables, but are ultimately insufficient to entirely eliminate the nonlocal type of
hidden-variables theory.> However, because the appeal of quantum cryptogra-
phy, for example, lies in the hope of absolute security in the sense of security
“guaranteed by the laws of nature” when eavesdroppers are allowed unlimited
technological capacities, such exotic hidden-variables theories remain impor-
tant to quantum information science and have recently begun to be explicitly
considered in regard to quantum cryptographic protocols; see, for example,
[5].

3.2 Von Neumann’s “no-go” theorem

The von Neumann “no-go” theorem explores dispersion-free states, thereby
addressing hidden-variables theories that might enable them as well [444].
One can imagine a situation wherein the measurement of a given quantity
attributed to an ensemble of systems gives different values even though all
members of the ensemble have the same specification. Then, either there exist
different subensembles distinguished by some hidden variable outside of the

2 See Sect. A.9 for associated mathematics.

3 In addition to the results described here, the Kochen—Specker theorem is discussed
briefly in Sect. A.8. A particularly noteworthy unified treatment of no-hidden-
variables theorems by N. David Mermin focusing on the Kochen—Specker theorem
should also be consulted [297].
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quantum description, or the measured dispersion of values arises from Nature.
In the former case, there must be as many subensembles as there are different
results. Von Neumann sought to show that no dispersion-free descriptions
exist that enable a hidden-variables description of quantum phenomena. A
state 1 is dispersion-free when the dispersion, Disp,,O, of all properties, O,
is zero when the system is in it.* The von Neumann “no-go” theorem makes
the following assumptions about operators in relation to physical properties
of the system to be explained by any putative hidden-variables model.

(i) Any real linear combination of three or more Hermitian self-adjoint
operators represents a measurable quantum property;

(ii) The corresponding linear combination of expectation values is the ex-
pectation value of that combination of operators.

Von Neumann’s no-go theorem is that no such hidden-variables model exists.

This result is less than definitive regarding the existence of a successful
hidden-variables theory for the following reason. Though the second condition
seems natural to impose on the dispersion-free states because it is satisfied by
quantum-mechanical operators, there is no a priori reason to expect that this
condition must be satisfied for individual dispersion-free states, because these
must be averaged over to be compared with the statistical behavior described
by traditional quantum mechanics and the statistics measured in experiments
on quantum systems. For example, Bell pointed out for his model described
in the previous section that von Neumann’s assumptions require expectation
values to be linear functions of both o and B and a dispersion-free state to have
the expectation value of a quantum property equal to one of its eigenvalues;
however, in that simple hidden-variables model the expectation value is not a
linear function of 3 [31].

3.3 The Einstein—Podolsky—Rosen argument

An early thought-provoking analysis of quantum composite-system states ex-
plicitly pointing out the surprising nature of entangled quantum states that
also introduced considerations of locality and realism in regard to microscopic
physical systems was made by Albert Einstein, Boris Podolsky and Nathan
Rosen (EPR), who provided a specific argument for the incompleteness—
though importantly, not the incorrectness—of the quantum-mechanical de-
scription of the microscopic world [147]. The conditions imposed by EPR,
here tailored to the case of two particles viewed as qubits the states of which
can be found by measurements along particular directions—for example, mea-
surement of photon polarization states by polarizers oriented along directions

4 See Sect. B.2 for the quantum-mechanical expression for dispersion.
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normal to the axis of photon counter-propagation (cf. Fig. 3.1)—are as fol-
lows.?

(i) Perfect correlation: When the states of qubits A and B are measured
along the same direction, the corresponding outcomes will be opposite.

(ii) Locality: Since at the time of measurement the two systems no longer
interact, no real change can take place in the second system in consequence
of anything that may be done to the first system.

(iii) Reality: If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this
physical quantity.

(iv) Completeness: Every element of the physical reality must have a coun-
terpart in the physical theory.

The initial EPR argument was given in the context of continuous proper-
ties of quantum systems but is readily and perhaps better suited to physical
systems involving discrete properties. In particular, without loss of essential
characteristics, one can consider the simple two-qubit system first brought
forward for this purpose by David Bohm in the state now recognized to be
central to quantum information processing, namely, the singlet state

1

#7) = 5 (0n) ~ 110)) (3.5)

which has the important property of remaining of the same form when re-
expressed in any orthonormal basis obtainable from the computational basis
by rotating the basis of a subsystem Hilbert space by an arbitrary nonzero
angle £ [66]. With this simplification, the EPR argument with the above as-
sumptions may be presented as follows (cf. [383]).

(i) If an agent can perform an operation that permits him to predict with
certainty the outcomes of a measurement without disturbing the measured
qubit, then the measurement has a definite outcome, whether this operation
is actually performed or not.

(ii) For a pair of qubits in the state |[#~), there is an operation that an
agent can perform allowing the outcome of a measurement of one subsystem
to be determined without disturbing the other qubit.

An agent can find, by measuring the quantity corresponding to P(|0)) for
one qubit, the value of the quantity corresponding to P(]1)) as well. Thus,
by (ii), she can obtain the values of the same two properties of the second
qubit without disturbing it, by virtue of the perfect anti-correlation between
qubits in the joint state |& ). By (i), these values of the second qubit are

® The first condition has been adapted to the case of qubits. Conditions (ii)—(iv)
are stated exactly as in original text of the EPR paper. For a modern version of
the EPR argument based on the logic of quantum conditionals, see [385].
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definite. However, the agent could just as well have checked the values of the
quantities corresponding to a different basis, say the diagonal basis represented
by P(| /) and P(] N\)). But then these other values must also be definite.
Thus, the value of the states of both systems for all values of ¢ must be
definite. The description of the system of particles by the quantum state |[¥~)
is in this way argued to be incomplete.

3.4 Gleason’s theorem

A definitive theoretical result regarding the hidden-variables question and the
completeness of the quantum-mechanical description of physical systems is
Gleason’s theorem. This result is often considered to be the most significant
technical advance in the foundations of quantum mechanics to be obtained af-
ter von Neumann’s initial investigation of the hidden-variables question. The
theorem demonstrates a sense in which the quantum statistical operators do
provide complete state descriptions [189]. It also clarifies the difficulties associ-
ated with putative hidden-variables descriptions touched on by von Neumann
without requiring the second of his assumptions, which is often viewed as
unwarranted.

A vital lemma underlying Gleason’s theorem is the following ([189]). Let
|¢) and |¢) be two state-vectors in a Hilbert space H of dimension at least 3,
such that for a given system state (P(]1))) = 1 and (P(|¢))) = 0. Then |¢) and
1) cannot be arbitrarily close to one another. In particular, || [¢)—[¢) || > 1 .

The physical system state is here taken to provide a map from each
projector, P;, to a real number, p(P;), between 0 and 1, p : P; — p(F;),
such that p(®) = 0 and p(I) = 1 where O is the projector onto the zero
vector 0 and I projects onto all of H, and such that PiP, = 0 implies
p(P1+ Py) = p(P1) + p(P»); p is also taken to be a countably additive proba-
bility measure.

Gleason’s theorem: All probability measures that can be defined on the
lattice of quantum propositions P; from the quantum statistical operators,
that is, all quantum probabilities, are of the form

p(P;) = tx(pFy) , (3.6)
for some statistical operator p on H, for all # of dimension greater than two.’

5 That is, the values corresponding to mutually orthogonal projectors are derivable
using a Born-type rule; see Postulate II of quantum mechanics in Appendix B
[68]. For a discussion of the lattice of quantum propositions formed from the
projectors P;, which represent bivalent quantities, see Appendix A. Gleason’s
lemma as presented above conforms to Bell’s re-derivation [32]. Gleason’s theorem
can be seen to provide a generalization of the Radon—-Nikodym theorem. The trace
measure assigns to each projector the dimension of its range, which can then be
normalized by the dimension of the pertinent (finite-dimensional) Hilbert space;
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Gleason’s theorem shows that every probability measure over the set of
projectors arises from a statistical operator on the Hilbert space of the system
of interest, as expressed in Eq. 3.6. The relation of Gleason’s lemma to the
question of the possibility of hidden variables is the following. Consider puta-
tive dispersion-free states for which projectors would take expectation values
of either 0 or 1 under the mapping. The condition ) (P(|¢;))) = 1 implies
that both values must occur, because there are no other possible values for
satisfying the condition and neither alone suffices. In this case, there must
be arbitrarily close pairs [¢), |¢) having different expectation values, 0 and 1
respectively. However, such pairs cannot be arbitrarily close, by the lemma.
Therefore, there are no dispersion-free states. Thus, no theory is capable of ad-
equately reproducing quantum statistics via hidden variables parameterizing
dispersion-free probability measures [32].

Gleason’s results show the set of quantum states to be complete in the
sense that they yield the probability measures definable on the lattice of quan-
tum propositions corresponding to the projectors.” This result is still open to
a reasonable objection, however. Namely, it can be considered unnatural to
require dispersion-free states to provide nontrivial relationships between ex-
periments that cannot be made simultaneously.®

3.5 Bell inequalities

John Bell famously further advanced the investigation of quantum behavior by
deriving a theorem in the form of a general inequality relation providing a clear
borderline between local classically explicable behavior and less intuitive forms
of behavior, such as nonlocality and contextuality as described in Section 3.1.°
Following the lead of EPR, Bell defined local models as follows. A local hidden-
variables theory for experimental situations of the EPR type is one such that
every complete state assigns a definite probability to a positive measurement
outcome for a bivalent property of one subsystem when the hidden parameter
describing it—taken to be capable of taking at least two values—takes a given
value independently of measurements performed on the other subsystem.!'®

it is thus obtainable by considering p to be the maximally mixed state on the
space; see Sect. 1.5 of [348].

7 An extension of Gleason’s theorem to the setting of POVMs having implications
for the interpretation of quantum probabilities has recently been proven by Paul
Busch [91].

8 A natural, weaker requirement would be merely to require that quantum mechan-
ical averages over them do so. For a more detailed discussion of this argument,
see Ch. 1 of [30].

It is interesting to note that Bell had himself officially listed as a “quantum
engineer” in the CERN personnel directory. For a detailed survey of the work of
Bell, see [231].

10 John Jarrett showed Bell’s locality condition to be the conjunction of two in-
dependent conditions [243], later named parameter independence and outcome
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This inequality is the prototype of the collection of inequalities now typically
referred to as the Bell inequalities.

Bell arrived at his crucial inequality for realistic hidden-variables theories
of the type that EPR had suggested might exist, as follows. He began by
considering a putative complete state, )\, describing a pair of particles, that
at a given instant fully specifies all the elements of physical reality present in
the pair.'' Any such state capable of giving rise to perfect correlations will
predetermine the outcomes of joint measurements of the component of spin of
these particles along a given direction, n;, for each particle i. Bell considered
a probability measure, u(A), on the entire space A of parameters providing
complete states. Expectation values, E#M) | of the relevant physical quantities
were taken to be of the form

EFO) (ny,ng) = /A A (1) B (m2)dpa(2) | (3.7)

where A € A, and Ax(n;) and By (n2) indicate measurement results along
directions n; on the two different systems of the arrangement. He then arrived
at an inequality of the form

|E*D(a,b) — B*Y(a,c)| <1+ E*D(b,c) (3.8)

where {a, b, ¢} is any set of three angles specifying directions of measurement
in planes normal to the line of counter-propagation of the particles; see Fig.
3.1 [30, 32].

Issues regarding the assumptions used to derive this inequality, noted by
Bell himself and others, subsequently led to a search for other related inequal-
ities now also referred to as Bell inequalities (or Bell-type inequalities), based
on weaker assumptions.'? In particular, the Clauser-Horne (CH) inequality
resulted from this investigation: classical probabilities must obey the relation

—1<pi3+pia+ps3—paa—p1—p3<0, (3.9)

as well as all the inequalities resulting from permutations of indices, where p;
and p3 are the probabilities that the first particle is found along the first of the

independence by Abner Shimony [382]. The term “Bell’s theorem” refers to a
collection of results having in common the demonstration of the impossibility of
a Local Realistic interpretation of quantum correlations.

The complete state as originally specified by Bell “determines the results of mea-
surements on the system, either by assigning a value to the measured quantity
that is revealed by measurement regardless of the details of the measurement
procedure, or by enabling the system to elicit a definite response whenever it is
measured, but a response which may depend on the macroscopic features of the
experimental arrangement or even on the complete state of the measured system
together with that arrangement” [386].

The full details of these other inequalities and assumptions can be found, for
example, in [32, 387].

11

12
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A
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/\92 ..
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Fig. 3.1. Geometry of an apparatus for performing a test of Bell-type inequalities by
two-qubit polarization interferometry. Two nonorthogonal states of qubits @ and Q'
are measured, parameterized by angles 61 and 62, respectively, in the plane normal
to the direction of qubit counter-propagation. (Compare this arrangement with that
of the two-qubit spatial interferometer of Fig 3.2, below.)

four directions {a, b, ¢,d} and the second particle is found along the third di-
rection; p;; stands for the joint probability of finding the first particle along the
direction ¢ and the second particle along direction j, 1 < 4,j < 4.13 Because
in actual experimental situations it is generally impossible to have control of
the complete state of the total system, one assumes that the experimental ar-
rangement prescribes a probability distribution over state specifications that
provides the above probabilities through averages over A. No special restric-
tion is placed on A or the probability distribution used in the derivation of
the above result; indeed, the inequality follows from the elementary algebra
of numbers lying between 0 and 1, as probabilities must by definition.

In order to lend greater practicality to explorations of issues of hidden-
variables and locality, allowing them to be precisely probed by experiment,
John Clauser, Michael Horne, Abner Shimony, and Richard Holt (CHSH)
then also modified Bell’s original treatment so as to be applicable in any
practical experimental arrangement sufficiently similar to that of the two-spin
atomic system that had been considered in experimental tests of locality-
related inequalities up until that time, arriving at what is now known as the
CHSH inequality:

[S] <2, (3.10)

for S= E(91,92) +E( 11,92) +E(91,9é) — E( 179/2) R (3.11)

where the E's are expectation values of the products of measurement outcomes
given parameter values 6; and 6} (the angles shown in Fig. 3.1) of the two
different directions fi; for the same laboratory i relative to a reference direction

13 Recall that these particles correspond to qubit-pair systems.
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[108].1* The CHSH inequality is the Bell-type inequality now most commonly
referred to in the literature. The correlation coefficients contributing to S can
be expressed in terms of experimental detection rates as

C(0,0;) + C(07,05) — C(6:,05) — C(6;+,6;)

E(6;,6;) = ,
(6:,6;) C(0,0;) + C(0F,01) + C(6;,65) + C(0;-,0;)

(3.12)

where the C(+,-) are, in particular, coincidence detection count rates, i is the
index for particle 1, j the index for particle 2, and the parameter §* indicates
a parameter corresponding to the direction perpendicular to that specified by
6 in the plane normal to the direction of particle propagation.!®

According to the predictions of quantum mechanics for noiseless quan-
tum channels, a maximum violation of this inequality by a factor of /2
can be achieve when, for example, one prepares the quantum state |¢+) =
%(|00> 4 [11)), where |0) indicates photon polarization oriented along one

of the orthogonal axes of the plane indicated in Fig. 3.1 and |1) indicates po-
larization oriented along the other, and performs measurements with ¢; = 7,
/ — O 9 — s
1 ; U2

%> and 05 = %r, steps of ¢ radians, where the two angles in

each lab (that is, side) differ by T radians, corresponding to 7 radians in the
Poincaré-Bloch sphere; see [386] for an explicit calculation and Section 12.4
for an application. Since its introduction, the observed value of S has served
experimentalists as a figure of merit for the quantum nature of sources of
entangled quantum systems in such “Bell tests.” It is useful in this context to

introduce the so-called Bell operator
B=a-c®((b+b)-oc+d -c0(b-b) o, (3.13)

where &, &/, b, b’ are unit-vectors defining the directions of the pertinent qubit
measurements, that is, the directions fi; and o = (01, 02,03). In particular,
the Bell operator can be used to provide a compact operator form of the
CHSH inequality via its expectation value, namely

(B) =tr(pB) < 2. (3.14)

The Bell operator is also an “entanglement witness”; see Section 6.7. Quantum
mechanics provides an experimentally well confirmed value near (B) = 2v/2.

A further Bell-type inequality having a particularly simple proof assuming,
unlike the proof of the CHSH inequality, perfect anticorrelations for measure-
ments along parallel axes, was first given by Eugene Wigner that has since
come to be known as the Wigner inequality, namely,

P++(a,b) + pi4(b,¢) = pii(a,c) 20, (3.15)

14 The first experiments to be studied to find nonclassical behavior related to in-
vestigations of quantum nonlocality were those published in 1950 by Wu and
Shaknov [463], with spin qubits in a singlet state [66].

15 Note that the denominator simply provides normalization.
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where one agent, say that of a quantum-key distributor Alice, chooses between
two polarization measurements along directions a and b of one of two parti-
cles and another agent, say a quantum-key receiver Bob, similarly chooses
between measurements along b or ¢ of the other [456]. The direction common
to the two parties, b, can be taken to be one of the elements of the reference
basis {|0),]1)} for the corresponding optical polarization-coincidence experi-
ment described by Fig. 3.1, where a qubit state parallel to a given polarizer
state is considered a “+” result and a state orthogonal to the polarizer state
is a “—” result. If every particle were to have hidden variables determining
the outcomes of the measurements on the particles, the probabilities of “+”
measurement outcomes on both sides, p4 (i, 7), would obey this inequality.

The assumptions of the derivation of Wigner’s inequality are that measure-
ment outcomes on the two particles in identical directions are anti-correlated
and that measurement outcomes on the two particles are independent of each
another, with the background assumption that the probabilities involved re-
fer to the statistics of an ensemble of identically prepared particle pairs. The
quantum-mechanical probability for such a result along arbitrary directions,
01 and 6, for a pair of particles in the Bell singlet state ¥ ™), namely,

poum(|¥7)) = %sinQ(Gl —02) , (3.16)

produces a maximal deviation from the satisfaction of this inequality when,
s

for example, a = —¢,b = 0 and ¢ = %, three directions ¢ radians apart,
which provides a value of —é for the left-hand-side of Eq. (3.15). The Wigner
inequality has been recently used to perform entangled-state quantum key
distribution in practice; see [449].

Such violations of Bell-type inequalities by quantum mechanics have by
this time been studied in great generality. Because they rely on fundamen-
tal properties of probability, the expressions bounding the probabilities and
expectation values in these inequalities can be derived by, for example, enu-
merating all conceivable classical possibilities. These can be viewed as extreme
points spanning the classical correlation polytopes, the faces of which are ex-
pressed by Bell-type inequalities; see Section A.8. All Bell-type inequalities
involve sums of (joint) probabilities and expectation values. To show the in-
compatibility of the predictions of quantum mechanics with these inequalities,
the quantum counterparts and expectation values can be substituted for the
probabilities and expectation values appearing in them. The results systemati-
cally show the violation of such local-realistic bounds by quantum-mechanical
predictions.'® Bell-type inequalities for pairs of systems of arbitrarily high
dimension have also been found [112].

16 All expressions entering the quantum expression corresponding to the pertinent
part of any Bell-type inequality are self-adjoint. Because the norm of the self-
adjoint transformation appearing in the inequality obeys the min-max principle,
finding the maximal violation of Bell inequalities corresponds to the solution of
a quantum eigenvalue problem, such as that for the Bell operator above. For a
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3.6 Interferometric complementarity

Tests of the above Bell-type inequalities illustrate the importance of quan-
tum interference for probing nonlocal properties of quantum systems, partic-
ularly the interference of qubit pairs. Nonlocal interferometric behavior can
be examined in other illuminating ways as well. For example, there is a gen-
eral quantum interferometric complementarity relation between single-qubit
interference visibility, v1, and two-qubit interference visibility, vio, further
illustrating the surprising nature of quantum correlations exhibited in two-
particle interferometry [239]. In this regard, it was first explicitly noted in
the late 1980’s that when the two-particle interference visibility is unity the
one-particle visibility is zero, and conversely [220]. In a doubled two-slit ex-
periment with a source of generic two-particle states, the former case can be
understood in terms of the washing out of photon self-interference due to un-
certainty of the initial direction of individual particles; see Fig. 3.2. In the
latter case, one notes that the arrival of one particle at one screen allows, in
effect, two “virtual slits” to exist for the other due to the correlation between
them, corresponding to reduced relative uncertainties, giving rise to single-
particle interference [197]. A systematic investigation of intermediate cases
was carried out to further explore this relationship, demonstrating that such
a general complementarity relation holds for a large family of pure states |©),
defined below [234].

A schematic illustration of the class of experimental arrangements in which
this complementarity can be exhibited is given in Fig. 3.2, namely, a dou-
bled version of the discrete two-beam experiment described in Section 1.5,
where the particle source produces generic pure two-particle states emerging
in beam pairs and transducers (variable beam-splitters together with sets of
phaseshifters) capable of exploring the full set of local unitary transformations
of two-qubit states (described by the group SU(2) x SU(2)) are introduced
(rather than merely 50-50 beam-splitters and single phaseshifters), followed
by pairs of particle detectors in two laboratories. Particle A is taken to be that
in beams 0 and/or 1, and similarly for particle B. Each pair contributing to
the output ensemble is produced by the source (say, by filtered spontaneous
parametric down-conversion; see Section 6.16) in a two-qubit pure state

16) =71[0)4]0") 5 +72(0) 4[1') B + 731) al0") B + 1) al1) B, (3.17)
with v; € C such that
al? + 2l® + sl + lal* =1, (3.18)

and |0)4 and |1)4 being basis vectors in the Hilbert space H 4 of the first
particle corresponding to propagation in the beams 0 and 1, and |0’)p and
[1") g being similar vectors in the Hilbert space Hp of the second particle.

more detailed exploration of this approach to Bell inequalities see, for example,
[336].
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source

Fig. 3.2. An interferometer containing two spatial qubits, Q and @Q’. T indicates a
transducer capable of performing all local unitary transformations of a single qubit.
D indicates a particle detector. The laboratory of Alice is to the right and that of Bob
is to the left. (Compare with the arrangement of Fig. 3.1 describing interferometry
with polarization qubits under a more restricted class of measurements.)

Beams 0 and 1 are brought together in lab A at a transducer, T4, cor-
responding to a single-party unitary gate producing two output beams U
and L, and similar beams in lab B are brought together into another trans-
ducer, Tz, implementing a similar gate that produces output beams, U’
and L', as indicated. The output beams are assumed to be equipped with
ideal particle detectors, D. As the transducers T4 and Ty are varied, the
probability P(UU’) of coincidence detection in beams U and U’, similar
joint-detection probabilities P(UL'), P(UL’), P(LL'), and single-detection
probabilities P(U), P(L), P(U’), P(L'), corresponding to particle coincidence-
detection and single-detection rates, respectively, are modulated and can be
used to provide interferometric visibilities, as described below.

Given that |©) = «|0)4|0)p + B|1)a|l)p, where a and 3 € C with
|a|? + |B]? = 1, the vectors |0) and |1) being orthonormal (cf. Sect. 6.2),
the most general single-qubit local unitary transformation (LUT), T4, can
in this context be described as acting on particle A, providing an output
spatial-qubit state that can be written

Ty |0)4 = ac® |U) + be’®t |L) (3.19)
Ta |1)a = —be ' |U) + ac—'*1|L) | (3.20)
where a and b are real numbers the squares of which together sum to unity (cf.

Egs. 1.12 and 1.30) and ¢; and ¢; being phase angles; similarly, for particle
B, providing a second output spatial-qubit state that can be written

Tp [0)5 = ce?|U’") + de'?| L) , (3.21)
Tp |15 = —de "2|U") + ce 2 |L/) | (3.22)

c and d also being real numbers, the squares of which together sum to unity,
and ¢ and ¢o are phase angles. The joint local operation of this pair of
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transducers is described by the general pair of local unitary operations induced
by them separately, namely,

T=Ta®Ts . (3.23)

Two-qubit interferometric behavior can then be studied via the modulation
of single-detection and joint-detection probabilities as 7" is varied over the full
range of parameters for the two LUTSs, altering the above amplitudes and
phases [29]. From the maximum and minimum probabilities of detection, one
can calculate visibilities characterizing the interference. One is particularly
interested in the one-qubit interferometric fringe visibility

[P(Y)lmax = [P(Y)]min

where i = A, B, Y = U, L, and in V}5, which is the two-qubit interferometric
visibility, in the sense of variations of detection probability as gates are var-
ied, calculable from the probabilities P(YY") of occupation of the joint-paths
YY' 7 generalizing the case of the single paths Y above giving rise to the
single-qubit visibilities V;; for example,

[PUU e = [PV i
[P(UU/)]max + [P(UU/)]min ’

Vi = (3.25)

where 1
PUU") = PUU") - PU)PU") + 1 (3.26)
represents nonaccidental coincidence probabilities and similarly for the three
other possible pairs of paths [234].18
The remarkable phenomena that take place in two-qubit interferometry
result from the fact that, when the joint state |©) is entangled, it can be the
case that

P(UU") # P(U)PU') , (3.27)

and likewise for the other joint probabilities P(UL'), P(LU"), and P(LL').
That is, highly correlated behavior of particles A and B arises due to quan-
tum entanglement. A strong complementarity relation, taking the form of an
equality [234], holds for all |®), namely,

Vi +Vi=1, (3.28)
VE+VE=1, (3.29)

17 Consider, as explicit examples, single and joint probabilities of the form of those
in Egs. 3.36-37 for the related (Franson) configuration of Sect. 3.7. (Also see Fig.
1.6 and Footnote 44 of Ch. 1.)

'8 The constant term = (3)(3) added here compensates for the over-subtraction

of the constant “background” in the product of single-qubit probabilities, so that
only accidental modulation is subtracted from the “raw” coincidence probability.
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as has been explicitly experimentally confirmed [2, 360].19

The two complementarities we have by this point discussed, that between
path distinguishability and single-qubit visibility of Eq. (1.40) and that di-
rectly above, are closely related. In particular, the more entangled |©) is,
the tighter the bound on the single-qubit visibility is. This result can be un-
derstood as follows. The information between basis vectors, |0) and |1), of
Ha is related by the vectors in Hp to which they can be correlated; ob-
servations made on only one particle of each pair cannot fully extract this
information. Similarly, a high degree of entanglement entails high two-qubit
interferometric-fringe visibility, and permits good inferences about the path of
particle A associated with spatial qubit @ from the results of measurements of
particle B associated with spatial qubit Q. Indeed, V32 is sometimes referred
to as the entanglement visibility (cf. [203]). The one-qubit interference visi-
bility thus enters into at least two complementarity relations, that between
single-qubit interference visibility and single-qubit bit-distinguishability (i.e.
path distinguishability, cf. Sect. 9.4) and that between single-qubit interfer-
ence visibility and two-qubit interference visibility (i.e. entanglement).

A distinction can be made between the “classical” and “nonclassical”
correlations of two qubits, which are manifested in the coincidence interfer-
ence visibility as described above. Consider a bipartite quantum system with
Hilbert space H = H1 ® Ho and described by a statistical operator p. Recall
that such a state is uncorrelated if one can write p = p™) @ p®), where p(9 are
the statistical operators on the H; (i = 1,2). The expectation values of prod-
ucts of bounded linear operators A on subsystems, such as the probabilities
of the form P(YY”) above, can then be factored, that is,

tr(p(AY ® A®)) = tr( (AD @) tr(p(le A®)) (3.30)
*Htr ) 4®) (3.31)

In this case, outcomes of measurements of the A(®) are such that the probabili-
ties of joint measurement outcomes are simply products of the probabilities of
outcomes of the measurements performed in the two laboratories. By contrast,
a statistical operator describing an ensemble wherein the quantum states of
the two portions of the total system are correlated, in that the subsystems p(*)
are in the same state p; (j = 1,...,n) with probabilities p;, can be written
as a convex combination of separable states,

D pipi©p; - (3.32)

In that case, the expectation values of measurements of the properties A(?)
are of the form

19 The first experiments explicitly confirming this complementarity relation were
performed in the Quantum Imaging Lab at Boston University [2, 360].
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n 2
ij H tr (p§Z)A(i)) . (3.33)
j=1 i=1

Any system with a density matrix of the form shown in Eq. 3.32 (with j > 2)
is said to be classically correlated, even if formed by mixing entangled states
[450]. The greatest two-particle interference visibility that can be obtained
with classically correlated states in the arrangement of Fig. 3.2 is 0.5 [353].
Nonclassically correlated states (i.e. entangled states) can give rise to higher
values of visibility of two-particle interference; the CHSH Bell-type inequality
of Eq. 3.10 can be violated once the visibility surpasses 1/v/2 ~ 0.71.

3.7 The Franson interferometer

Similarly to the above two-spatial-qubit interferometer, the Franson interfer-
ometer is a distributed interferometer composed of two single-qubit Mach—
Zehnder interferometers. In the Franson interferometer, the interference of
particle pairs with themselves is possible because there are alternative paths
of different length in both sub-interferometers, giving rise to a “temporal”
(time-bin, or phase) qubit in each due to the corresponding pair of alternative
times of arrival at each final beam-splitter; see Fig. 3.3. This interferometer
corresponds to a (constrained) temporal-qubit version of the two-spatial-qubit
interferometer considered above and shown in Fig. 3.2, with only the relative
phase between two-qubit alternative processes free to be altered (rather than
the general pair of local unitary transformations of Eq. 3.23) in order to
produce an interferogram in coincidence counts; it is designed to realize the
limiting case of maximal two-particle interference visibility. The path-length
difference, Al = diong — dshort, in each of the two single-qubit interferometers,
arranged to be the same for both, corresponds to the transit-time difference
between paths AT = Al/c in each and is arranged to be greater than the
single-particle coherence length, 61, corresponding to a single-particle coher-
ence time 71 = 0l/c¢, precluding single-particle self-interference in either wing.
In practice, the particles used in this interferometer are now typically photons
produced by spontaneous parametric down-conversion.2°

Thus, conditions are imposed so that there is no fixed phase-relation be-
tween amplitudes for single-photon passage along short and long paths at
the final beam-splitter of either interferometer as described above, ensuring
that the entanglement of the two qubits is as strong as possible, in accor-
dance with the interferometric complementarity relations described by Egs.
3.28-29.2! The transit-time difference AT is also kept shorter than the corre-
lation time 75 of the two photons, still allowing two-photon interference to be

20 This process is described in detail in Sect. 6.16. When James Franson introduced
this interferometer, he envisioned a source based on an atomic cascade [174].

21 Explicit entanglement measures beyond the visibility of entanglement are dis-
cussed in Chapter 6, below.
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Fig. 3.3. The Franson interferometer for two phase-time qubits. The unique portions
of the short and long paths of each wing are indicated by “S” and “L,” respectively.
The ¢4, ¢p indicate phase shifts in labs A and B, respectively [174].

observed. The effective quantum state in the interferometer is
1 i(pat+ér)
W) = §(|Short>|sh0rt) — e'(?4*95)|long) [long)) , (3.34)

where “short” and “long” are shorthand notation for the alternative (multi-
ple segment) photon paths available and ¢4 and ¢p are the variable phase
shifts of the two interferometers, because this temporal constraint ensures that
there are no other contributions to the state, such as e!®4|short)|long) and
e'®2 |long) |short), that would otherwise be present. AT is kept significantly
longer than the photon detector resolution dt (which is generally on the order
of 1 ns duration) allowing for the observation of the possibilities of passage of
pairs of photons in pairs of paths [short)|short) and |long)|long) above, and
their interference. Overall, then, one requires that

Ty > AT > T1 , (335)

with AT arranged to be, for example, of an order greater than that of 1 ns.
This results in the selection of the large, central interferometric feature of the
three features that can appear in the temporal coincidence interferogram in
an experimental configuration such as that shown in Fig. 3.3 [174].

Joint detection in distant wings A and B of the interferometer of Fig. 3.3,
at pairs of detectors Dx, (where X = A, B), thus occurs with the probabilities

P(Da,Dg,) = =(1+cos(¢a + ¢5)) , (3.36)

P(DAkDBk) = (1 - COS(¢A + ¢B)) ) (337)

e e

where 7,5,k = 1,2 and i # j, similarly to those appearing in the two-
spatial qubit interferometer discussed in the previous section. The probabili-
ties P(Dy,) of single-photon counts are just %, being marginal probabilities
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obtained by adding the joint probabilities (3.36) and (3.37) in which the corre-
sponding detector appears; the positive and negative cosine modulation terms
simply cancel each other out. That is, there is no interference of single-photon
possibilities, the counts of which occur at random, regardless of how the indi-
vidual phases ¢4 and ¢g—or the joint phase ¢4 + ¢, for that matter—are
varied.

The Franson interferometer has been used for entangled-photon QKD,
where component interferometers lie one each in the separated laboratories of
Alice or Bob; for example, see [188, 422].

3.8 Two-qubit quantum gates

The transformations carried out by the general single-qubit transducers (local
unitary gates) T; of Section 3.6 have been used in the various above-described
situations to realize independent pairs of local, single-qubit operations de-
scribed by Eq. 1.31, each acting on one of two qubits. Such local unitary
transformations allow the exhibition of the effect of existing entanglement in
quantum interferometers. More general two-qubit operations also exist, which
play an essential role in quantum information processing under the quantum
circuit model and can in some cases create entangled states rather than merely
aid in exhibiting existing entanglement.

Let us now consider the creation of entanglement through the use of the
very important two-qubit example of the C-NOT (or XOR) quantum gate.

b)) b))

[by) D [b,®b,)

Fig. 3.4. Action of the C-NOT gate. The computational-basis states are labeled by
binary values b; (i = 1,2); in the ket at lower-right, @ signifies addition mod 2.

The quantum C-NOT gate corresponds to a unitary operation of the form
|0)(0] @ T+ [1)(1] @ (|0)(1] 4 [1)(0]). The C-NOT gate can be used to create
entanglement between previously unentangled qubits and is represented by

the matrix
1000

0100
0001
0010

The first qubit of a C-NOT gate is called the “control qubit” and the second
the “target qubit.” From the point of view of the computational basis, the

C—-NOT =
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control bit is fixed and the target bit is changed if and only if the control bit
takes the value 1, as can be seen by noting that the lower-right submatrix,
corresponding to that condition, is that of the quantum bit-flip operator oy,
whereas the upper-left submatrix block, corresponding to the opposite condi-
tion, is that of the identity operator, I. The gate is usually drawn as shown
in Fig. 3.4, with the control bit on top and the target bit on the bottom.

This gate can be used together with the single-qubit Hadamard gate to
create Bell states from two independent qubits initially described collectively
by an unentangled product state, as described by the quantum circuit shown
in Fig. 3.5.

b)) H

Bys,)

by N

Fig. 3.5. A quantum circuit for the creation of the (entangled) Bell states [Bp;b,)
defined by Egs. 6.13-14 from a product state of two qubits, |b1)|b2).

It is important to note that the distinction between the control and target
qubits is relative to the choice of basis. Consider the effect of a quantum
gate that acts as a controlled gate in the computational basis in a different
basis, say the diagonal basis {| ),| \\)}. For example, the effect of the C-
NOT gate in this basis is to invert the role of control and target, leaving the
“target qubit” unaffected but interchanging the states | ) and | \,) of the
“control qubit” in the event that the former enters the gate in the state | \).
Controlled versions of all the single-qubit gates described previously can be
similarly implemented; their matrix representations can be obtained from that
of the C-NOT gate above by simply replacing the lower-right 2 x 2 submatrix
with that describing the single-qubit gate.?2 That is, one constructs operators
of the form |0)(0| @I+ |1){(1|® U, where U is the operation to be conditionally
performed.

One similarly obtains multiple-qubit controlled gates by generalizing this
construction. For example, in order to extend the controlled-NOT gate so
as to perform the NOT operation on a target qubit conditional on the state
of two control qubits, one performs a unitary operation represented by the
matrix

22 Explicit matrix representations for such gates in the case of path and polarization
degrees of freedom are readily worked out, and have been provided in full detail
in the literature; for example, see [161, 315].
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10000000
01000000
00100000
00010000
00001000
00000100
00000001
00000010

C—-C—-NOT =

This is the control-control-NOT (or Toffoli) gate, whereby the third target
bit is flipped if and only if the both control bits take the value 1: the upper-
left block is the two-qubit-space identity whereas the lower-right block is the
matrix representation of a control-NOT. The quantum circuit for this gate is
shown in Fig. 3.6.

b)) ¢ b))
[b) * [b)
[bs) D |(b,7b,)®bs)

Fig. 3.6. Action of the C-C-NOT (or Toffoli) gate on three qubits. In the ket at
lower-right, A signifies the AND operation and & indicates addition mod 2.
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Classical information and communication

Information theory has, until relatively recently, almost exclusively focused on
what is now considered classical information, namely, information as stored in
or transferred by classical mechanical systems. Quantum information theory
has also largely consisted of the extension of methods developed for classical
information to analogous situations involving quantum systems. Furthermore,
because measurements of quantum systems produce classical information, tra-
ditional information-theoretical methods play an essential role in quantum
communication and quantum information processing because measurements
play an essential role in them. Accordingly, a concise overview of the elements
of classical information theory is provided in this chapter. Several specific
classical information measures are discussed and related here, as are classical
error-correction and data-compression techniques. The quantum analogues of
these concepts and methods are discussed in subsequent chapters.

Classical information theory is based largely on the conception of informa-
tion developed by Claude Shannon in the late 1940s, which uses the bit as the
unit of information [378].! Entropies hold a central place in this approach to
information, following naturally from Shannon’s conception of information as
the improbability of the occurrence of symbols occurring in memories or sig-
nals. The choice of a binary unit of information naturally leads to the choice
of 2 as the logarithmic base for measuring information. Any device having
two states stable over the pertinent time scale is capable of storing one bit of
information. A number, n, of identical such devices can store logs2™ = n bits
of information, because there are 2" states available to them as a collective.
An example of such a set of devices is a memory register. A variable taking
two values 0 and 1 is also referred to as a bit and can be represented by
x € GF(2); similarly, strings of bits can be represented by x € GF(2)™.

Consider first the properties of a string of characters that are produced and
sequentially transmitted in a classical communication channel. The Shannon
information content of such a string of text can be understood in terms of how

! John W. Tukey first introduced the term bit for the binary information unit [12].
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improbable the string is to occur in such a channel. The information content
(or self-information, or surprisal) associated with a given signal event x is

1(x) = log, 5 = —log, p(x) (4.1)

where p(x) is the probability of occurrence of the event; the logarithm appears
as a matter of mathematical convenience because the number of available
states can be very large. The simplest events are the occurrence of individual
symbols, in which case one is concerned with their probabilities, as in the case
of bit transmission when one considers p(0) and p(1). The information asso-
ciated with an event is considered obtained when the event actually occurs.
This is consistent with the idea that no information is gained by learning an
event that occurs with certainty whereas learning, for example, the outcome
of a fair coin-toss provides all the information essential to the toss and entirely
eliminates previous uncertainty as to its outcome. One generally considers a
number of such events associated with a given signal.

A finite number of mutually exclusive events together with their probabil-
ities constitutes a finite scheme. To every such scheme there is an associated
uncertainty, because only the probabilities of occurrence of these events is
known.2 This uncertainty is captured by the Shannon entropy, which is in-
troduced below. The information associated with the joint occurrence of two
independent events, which happens with a probability given by the product
of those of the individual events, can therefore be written as a sum of the
associated information values.?

4.1 Communication channels

The fundamental task of communication is to obtain, at a remote destination
and with the greatest possible accuracy, information sent from a given ini-
tial source through a channel joining their locations. One way of defining a
classical information source is as a sequence of probability distributions over
sets of strings produced in a number of emissions by a transmitter into such
a communication channel to a receiver. The output at the end of the channel
endows an agent at the destination with a given amount of information about
its source, provided the information is not altered during transmission, that
is, provided the channel is noiseless. The essential requirement on a means
of communication is that any message sent via it belong to a set of possible
messages that could have been sent by a source in this way, because the actual
message being transmitted is not known a priori. Assuming a finite number
of such possible messages, any monotonic function of the number of messages
is a good measure of the information produced when one message is selected

% Various of measures of uncertainty are discussed in [427].
3 This follows from Bayes’ theorem; see Sect. A.8.
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from this set. The logarithmic function above is a natural choice because, in
addition to being mathematically convenient, it can also be retained when the
number of possible messages is infinite.

Communication channels can be attributed capacities for transmitting in-
formation. By comparing the entropy of a source with the capacity of a chan-
nel, one can determine whether the information produced by the source can
be fully transmitted through the channel. A very simple description of a re-

source [—»{ transmitter > receiver [—» destination

source of noise

Fig. 4.1. The additive noise channel.

alistic classical communication channel is that of the additive noise channel
wherein the transmitted signal, s(t), is influenced by additive random noise,
n(t); see Fig. 4.1. Due to the the presence of this noise, the resulting signal,
r(t), is given by

r(t) = s(t) +n(t) . (4.2)

The primary model of a discrete, memoryless noisy channel is the binary

1 1

Fig. 4.2. Schematic of the binary symmetric channel (BSC). A transition between
values of any given bit occurs with probability p, known as the symbol-error proba-
bility. Initial bit values appear at left, final bit values at right. Bit values therefore
remain unchanged with probability 1—p.

symmetric channel (BSC), which is schematized in Fig. 4.2. In this channel
there is a probability p that noise can introduce a bit error, an unintended
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change of value of any given bit during transmission.* Error correction, which
is discussed in Sections 4.5, is the process of eliminating such errors.

4.2 Shannon entropy

The traditional measure of classical information is the Shannon entropy,
n
H(X) EH[p1)p27"'apn] = _ZplIOngl ) (43)
i

which is a functional of the probability distribution {p;}? ,, associated with
events x; in a sample space S = {x;}, given by the probability mass function
as p; = px(z;) = P(X = ;) for the random variable X over n possible values
that characterizes the information.> The Shannon entropy is thus the average
information associated with the set of events, in units of bits.® It can also be
thought of as the number of bits, on average, needed to describe the random
variable X.

If one considers a sequence of n independent and identically distributed
(i.i.d.) random variables, X", drawn from a probability mass function p(X =
;), the probability of a typical sequence is of order 2~ (X): there are, ac-
cordingly, roughly 2"7(X) possible such sequences.” The latter can be seen
by noting that typical sequences will contain p(x;)n instances of z;, so that
the number of typical sequences is n!/ [} (np(x;))! which, under the Stirling

4 More detailed models of classical communication channels can be found, for ex-
ample, in [344].

See Sect. A.2 for pertinent definitions. The events associated with the random
variable X here correspond, for example, to different numbers or letters of an
alphabet on the sides of a die appearing face-up in a toss.

Such a measure and a fundamental unit of information were also independently
(and previously) introduced by Alan Turing, who chose 10 as a base rather than
Shannon’s 2, and so the “ban” rather than the bit as the fundamental information
unit, while he was working at Bletchley Park during the Second World War. For
a description of Turing’s formulation of information entropy, which involved the
“weight of evidence,” see [190].

This is known as the asymptotic equipartition property (AEP). One can distin-
guish two sets of sequences, the typical and atypical sequences, being comple-
ments of each other, where the typical sequences are those with probability close
to 277 (XD in particular, the typical set is that of sequences {x1,x2,...,xn} for
the random variable X such that 277 (X)—¢ < p(x1, T2, .y Tn) < g nH(X)te for
all ¢ > 0. The AEP is a consequence of the weak law of large numbers, namely
that, for i.i.d. random variables, the average is close to the expected value of X for
large n. The theorem of typical sequences can also be proven, which supports the
notion that in the limit of large sequence length almost all sequences produced
by a source belong to this set.

5
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approximation, is 2#(X)_ In the limit of large n, the probability of atypical
sequences is negligible.

The Shannon measure satisfies two requirements, invariance under permu-
tations of probabilities p;, and additivity,

D1 D2
p1+p2’ P14 D2
(4.4)
Referring back to the expression of the information content associated with
an event given in Eq. 4.1, we see that the above expression is just the ex-
pected value of the information content, which one can view as the expected
information gain in coming to know the associated events. From Eq. 4.3, we
see that, for a bit, the proper form of Shannon entropy is the binary entropy

H[p17p25"'apn] = H[pl + D2, D3, - 7pn] =+ (pl +pQ)]{

H (p)binary = —p logap — (1 —p) logy(1 —p) , (4.5)

where p is (without loss of generality) the probability of the bit value 0 and
1 — p is the probability of the alternative bit value, 1. When p = 1/2, one
finds that H(p) = 1. Shannon’s notion of entropy is similar to the familiar
physical notion of entropy in statistical mechanics, which serves as a mea-
sure of uncertainty or disorganization in a physical system; the second law of
thermodynamics requires that the entropy of a closed dynamical system be
nondecreasing. Shannon entropy has the concavity property

H(pz + (1 -p)a) = pH(z) + (1 - p)H(a') , (4.6)

where p, z, 2" lie in the interval [0, 1].
For a pair of random variables, A and B, one can also define the joint
entropy of the pair as

H(A,B)=— Zp(a,b) log, p(a,b) , (4.7)
a,b

where p(a,b) = Pap(A = a, B = b) are the joint probabilities that A = a and
B = b, and sums are taken over the two sample spaces associated with both
A and B. One finds that H(A) < H(A, B), meaning that one cannot be more
uncertain of the state of single physical system characterized by A than one
is about the joint state of two systems described by A and B.®

A useful method for comparing two different discrete probability distribu-
tions is provided by introducing a relative entropy function: given two prob-
ability distributions, p(a) = {p(a1),...,p(an)} and p(b) = {p(b1),...,p(bn)},
the Shannon relative entropy (or discrimination)? between them is

8 This property turns out not to hold for the quantum (von Neumann) entropy—as
we show later in the next chapter—marking a significant difference between the
classical and quantum cases, and so the unique character of quantum information.

9 The relative entropy was first introduced by Kullback and Leibler, and is therefore
often referred to simply as the Kullback—Leibler distance [263].
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a)||p(b) Zp a;) 10g2 )) : (4.8)

known as the Kul]back Leibler distance between p(a) and p(b), with the con-
ventions that 0 log, -9~ o = = 0 and 0 log, 2 pla) — oo However, H[p(a)||p(b)] is

not a metric because it is not symmetric in a and b. This distance is useful for
distinguishing statistical behaviors and states. The relative entropy satisfies

the Gibbs inequality,
Hip(a)|[p(b)] = 0, (4.9)

which is an equality only when p(a) = p(b). The sum of the Shannon entropy
of a random variable and the relative entropy of that variable under two
distributions,

H(A) + Hlp(a)||p(b)] , (4.10)

is sometimes referred to as the inaccuracy, because it characterizes the igno-
rance as to the correct distribution of A as produced by some communication
source.

The conditional entropy of a random variable A is its entropy conditional
upon knowledge of another random variable B:

H(A|B) = H(A,B) — H(B) . (4.11)

Imagine that one wishes to infer the value of random variable A from knowl-
edge of a random variable B. One can then use the Fano inequality

Hbinary (pcrror) +pcrror logQ(‘A| - 1) Z H(A|B) ) (412)

where perror is the probability of making this inference incorrectly and |A] is
the size of the sample space associated with A, for example, the number of
words in a code. This bound captures the intuition that a large conditional
entropy H(A|B) corresponds to a large probability of an erroneous inference
of A, given B. It is often relevant in channel coding; see Section 4.6 below.

The Shannon mutual information between two random variables, A and
B, described by the joint probability distribution p(a,b) = {p(a;,b;)} and
marginal distributions p(a) = {p(a;)} = >_;p(ai,b;) and p(b) = {p(b;)} =
> pla;, bj), respectively, is

I(A: B) = Hlp(a)] + H[p(b)] — H[p(a,b)] - (4.13)

This quantity can be understood as describing the degree of correlation be-
tween the two variables: the amount of information about A that is acquired
by determining the value of B, as well as the degree of distinguishability of
a given correlated situation from a fully uncorrelated situation, so that one
may also write

I(A: B) = Hp(a.b)|lp(a)p(d)] . (4.14)
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Classical information processing can be studied from the point of
view of Markov chains, that is, sequences of random variables. A
Markov process is such a sequence with the property that each ran-
dom variable in the sequence is independent of all preceding members
of the sequence. Markov chains obey the data-processing inequality

H(A)>I(A:B)>I(A:C), (4.15)

for a Markov chain A — B — C, where the first inequality is an
equality if and only if given B, A can be reconstructed. Thus, if a
given random variable B is obtained from random variable A, due
to noise, data-processing cannot increase the amount of mutual in-
formation between the input and output variables. This captures
the fact that though information can be lost, it cannot arise out of
nowhere. The reverse data-processing inequality,

I(A:C)<I(B:C) < H(C), (4.16)

describes the phenomenon that information processed in a second
processing step exceeds that processed overall. A third inequality,
namely, the data-pipelining inequality follows from recognizing that
given a Markov chain A - B — C, C — B — A is also a Markov
chain, and is written

I(C:B) > I(C: A), (4.17)

which captures the intuition that any information shared by A and
C is also shared by C' and B.

As we have seen, communication channels are such that their outputs
depend probabilistically on their inputs; a channel can be studied via the
distribution of its output given the possible input. The information channel
capacity is defined as the maximum mutual entropy over all possible inputs
described by probabilities pa(a;). The operational channel capacity is de-
fined as the greatest bit-rate at which input information can be transmitted
with arbitrarily low error. The noisy channel coding theorem shows these two
quantities to be equal: the capacity of a discrete, memoryless communication
channel is

C= max I(A:B), (4.18)

{pa(as)}

where A characterizes the input to the channel and B characterizes its output;
the units of channel capacity are bits-output-per-symbol-input. For a binary
channel, the capacity lies in the range [0, 1]. For the binary symmetric channel,
the capacity is simply 1 — H(p). In the case of a noiseless such channel, any
transmitted bit is received at the destination without error; each transmission
carries a bit to the receiver with certainty. The channel capacity is accordingly
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1 bit-output-per-symbol for a noiseless channel. If the transmission rate is less
than the channel capacity, then for any € > 0 there is a code having a block
length large enough that the error probability is less than e. Codes exist,
therefore, that allow error-free communication at rates below this (Shannon)
channel capacity. At rates above this capacity, some errors are guaranteed to
exist. This result is known as the Shannon—-Hartley theorem.

4.3 Rényi entropy

The Rényi entropy is a useful generalization of the Shannon entropy measure.
The Rényi entropy of order r, in the case of a discrete probability distribution,

is defined as

1 n
H(4) = T logy Y 1" (@) . (419)
=1

for 0 < r < oo and r # 1 [352]. H,(A) is a continuous positive decreasing
function of r. One obtains the Shannon entropy from the Rényi in the limit
r — 1, so that

Hi(A)=H(A). (4.20)
In the limit » — oo, one obtains the min-entropy
Hoo(A) = —logy max p(a;) . (4.21)

The Rényi entropy of order two is known as the extension entropy; the
inverse participation ratio, R(A), is its exponentiation

R(A) = exp(Hz(4)) , (4.22)

the inverse of which is index of coincidence, which in turn is the complement
of the linear entropy,

LA =1— —— . (4.23)

The Rényi entropy has proven useful in security analyses of quantum cryp-
tosystems, for example.!?

4.4 Coding

A particularly useful method of encoding a number of strings of k symbols
is to map each string into an n-element string of symbols (each taken from
a set of ¢ symbols, possibly different from those used in the original string),
taken as a block, that corresponds to an n-dimensional vector in a linear space
V(n,q).1! The result of such an encoding of a number of such strings into a

10" A specific of such an application is discussed in Chapter 12. Elsewhere in physics,
the Rényi entropy has been applied to the study of multi-fractal structures.

1 Any code composed entirely of codewords that are n-element strings is a block
code of length n.
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single such linear space V is a code that spans a k-dimensional subspace of
the space. If the codewords for a set of such strings are taken from the Galois
field GF(2)", then the code is referred to as a binary linear code.'? Such
linear codes (or parity-check codes) are characterized by the dimension, n, of
the space V' and an n x k binary matrix, the generator G, that describes the
encoding of messages according to a rule

x — Gx . (4.24)

A linear code that uses n bits to encode k-bit blocks is called an [n, k]
code. The “extra” n-k bits can serve as “parity-check” bits assisting in the
correction of errors. The sum of arbitrary number of code words of a linear
code is also a word in the code. Linear codes are thus easily specified: only the
kn bits describing the generator (or, alternatively, the corresponding parity-
check matrix, M, see below) need be given to provide the code, out of a
possible n2* bits of the exhaustive list of codewords that in some cases of
nonlinear codes must be provided. For example, if one were to use three-
bit coding to encode a single bit one, would be using a [3,1] code with the
generator

G=|[1 (4.25)
1

to encode a bit x into the two codewords w; = Gx;—the corresponding parity-
check matrix is given in the following section. This is an important example
of a repetition code.

The distance between two words in a linear code, that is, the number of
bits in which the words differ, can be used as a measure of their distinguisha-
bility. The Hamming weight of a string is given by its distance from the n-bit
string consisting entirely of zeroes. The Hamming distance, d, of a code is the
minimum of the distances over the set of pairings of codewords within it [205].
The above example has code words wo = (000)T and w; = (111)T, and so a
Hamming distance d = 3: wy has Hamming weight 0 and w; has Hamming
weight 3. Linear codes can accordingly be specified as [n, k, d] codes, that is,
[n, k] codes with a Hamming distance d. Noise affects code words with the
result that a given word, w, is transformed in a way describable as

wow =w+e, (4.26)

where w’ is the resulting word and e characterizes the bit error induced by
the noise. Such a code allows for the correction of m bit errors if and only if
its Hamming distance is larger than 2m.

2 In the general case, a Galois field GF(q), where g is prime, is used, the code being
referred to as g-ary.



76 4 Classical information and communication

For a code of length n, there is a parity-check matrix, M, satisfying (mod
2) the error-check property
Mw =0, (4.27)

for every symbol w. The parity-check matrix M and generator matrix G are
related by G’s being orthogonal to the columns of the transpose of M, that
is, the inner product between G and the columns of M7 is 0 mod 2. The
error-check property allows the receiver of an encoded message to discover
the bit errors induced by noise during transmission because it implies that

Mw' = Me (4.28)

provides the error syndrome for every correctable error e. The error syndrome
supplies information as to the particular error that must be corrected.'3 If
there exists an ordering of code bits such that a linear code has a parity-
check matrix that is cyclic, the code is known as a cyclic code. The codewords
created by such a code are cyclic as well, in that cyclic permutations of code
words are code words.*

It is also often advantageous to use codes of variable lengths, as
in the case of Morse code. In particular, Huffman coding is such
a method that approaches the minimum number of bits allowable
without resulting in a loss of information [227]. The method is based
on the use of a frequency-sorted binary tree. It is effective because,
although information is generally presented as a sequence of symbols
representable as a string of n bits, all possible 2 combinations of n
bits will not generally be used with the same probability. Huffman
coding replaces the presented symbols by a binary code based on
the decreasing probability of their appearance. Because the bene-
fits of this method are sometimes offset by its tendency to produce
long code strings, truncated versions in which only those more likely
symbols are encoded in this way and the remainder are coded by
fixed-length bit strings can be used to advantage. An important ap-
plication of Huffman coding is lossless data compression.

13 Corresponding quantum-coding and error-correction methods are discussed in
Chapter 10. The quantum analogues of linear codes are the quantum stabilizer
codes. For example, the seven-qubit quantum Steane code for the correction of
an arbitrary error on a qubit is closely related to the [7,4,3] classical Hamming
code for correcting classical bit errors; see [402, 403] and Chapter 10.

1 Cyeclic codes are central to algebraic error-correction coding methods. In gen-
eral, linear codes may also be conventionally viewed from the graph-theoretical
perspective; see, for example, [292].
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4.5 Error correction

Let us now consider an explicit example of a linear error-correction code.
Recall that such error-correction codewords are representable as vectors of
a k-dimensional subspace, the codespace, in the n-dimensional vector space
GF(2)". The quantity of greatest concern in the context of coding is the
loss, L, from a channel. If an encoded message having length n is subject
to loss, then for every output sequence through the channel the number of
input sequences will then typically be 2"’ which can render impossible the
decoding of messages. Error correction uses codewords chosen so as to take
the conditional entropy of this relevant ensemble to zero, so that there are
effectively no losses. The Fano inequality, introduced in Section 4.2, has the
consequence that the loss will go to zero if the error probability goes to zero,
though the noise of the channel itself need not be zero.

Consider a particular bit which is susceptible to error, recalling that for
classical binary information there is only one sort of error that can occur on a
bit, the bit flip, such as occurs in the binary symmetric channel described in
Section 4.1.1° If, in a given situation, such errors are relatively rare, meaning
they occur with a probability p < 1, they are easily corrected through the use
of encoding based on redundancy, as in repetition codes. Let us consider in
greater detail the repetition-based [3,1,3] code introduced above, specifically,

0+ 0p, = (4.29)

11, = , (4.30)

=== O OO

where the subscript is used to indicate logical bits. A parity-check matrix for

this repetition code is
1 10
M = (1 0 1) . (4.31)

Errors on individual bits, for example, single-bit errors on the first, second,
and third bits, respectively, will change the sequence of components of 01, and
1y, as

000 — 100 111+ 011 (4.32)
000 — 010 111 — 101 (4.33)
000 — 001 111+ 110 , (4.34)

respectively. Such errors can be found and corrected by the majority vote
method, in which one checks the three bits periodically; if there is an error

15 This is not the case for qubit errors, as we show in Sect. 10.4.
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one flips the bit that disagrees with the others, returning their state to one of
the logical states. As long as p < %, the probability of a net error occurring
using this method is reduced from its original value p to an improved value of
3p?. The price paid is the reduction of transmission rate by a factor of three,
because three physical bits are used to transmit each logical bit. A quantum
version of this method is considered later, in Section 10.4.

4.6 Data compression

Data compression is a method of encoding that reduces the length of the
strings required to capture a quantity of information given some knowledge
of the states provided, for example, by a transmitting source. The Shannon
entropy, H(A), of a random variable A provides a lower bound on the average
length of its shortest description. A basic result of the theory of data compres-
sion is the noiseless coding theorem, which provides a lower bound on data
compression by stating that a message cannot be compressed to less than its
Shannon entropy per bit, as follows.

For any 6,¢ > 0:

(i) With H(A) + § available bits per signal, there exists a coding-decoding
scheme with fidelity Fpy > 1 — ¢, for all M sufficiently large;

(ii) With H(A) — 0 available bits per signal, for any coding-decoding
scheme, the fidelity F); < €, for all M sufficiently large, where the fidelity
is given by

FM = ZP(AM)pexact (AM) 5 (435)
Am

Ay = agya4, ... a;,, being a bitstring (block) with prior probability as dis-
tributed by the sender, Alice, p(Anr) = pi, Piy - - - Diny» Pi, being the probability
of a given a;, .

This theorem provides a statistical justification for the Shannon entropy
being considered a measure of uncertainty; see [379]. It also allows one to
interpret the Shannon entropy as the mean number of bits needed to code
the output of a source using an ideal code. The Shannon entropy can thus
be viewed as a measure of the resources required to represent the information
provided by a source. A quantum analogue of this result is discussed in Section
10.8.

Different methods of data compression operate with different efficiencies,
depending on the statistical properties of the message. Generally, use of typ-
ical sequences is not the most efficient method of compressing information.
The sender Alice can, for example, use block coding to compress information
by jointly taking strings of M signals and coding them as shorter data se-
quences without the redundancies naturally contained in an arbitrary signal,
as mentioned above. The receiver, Bob, can then decode (or decompress) these
sequences, reconstructing them with any desired level of accuracy.
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A source code, C, for a random variable A is a map from the domain of A to
the set of finite-length strings in a given n-ary alphabet, S = {0,1,...,n—1}.
If the length of codeword C(a) is I(a) and the probability mass function is
p(a), then the expected length of the code is

L(C) = pla)l(a) . (4.36)

a€A

The extension, C*, of the code C' is provided by the concatenation of code-
words
C*(a1,ag,...,an) = C(a1)Claz)...C(ay) , (4.37)

which is a mapping from finite strings in the range of A to &*, the set of
finite strings of S. A code, C, is said to be nonsingular if a; # a; implies
C(a;) # C(a; ), and uniquely decodable if its extension is nonsingular. C' is
a prefix (or instantaneous or comma-free) code if no codeword is a prefix of
any other codeword. Transmitted codewords can be properly framed provided
the signal is synchronized so that the beginning of the initial codeword can be
identified. The expected length of any prefix code of any n-ary random variable
A is greater than or equal to the base-n Shannon entropy of the code. The
set of achievable codeword lengths is identical for prefix and decodable codes.
Shannon coding is such a coding that uses codeword lengths of [logi]

Many optimal codes can be constructed. The Shannon entropy pro-
vides a limit on data compression and the number of bits required for
the generation of random numbers. Huffman coding can be used to
systematically find one such code by finding minimum expected de-
scription length assignments. It is a “greedy” coding method, in the
sense that it replaces the two least likely symbols with one symbol
at a given step. Huffman codes are competitively optimal: a number
of fair coin flips given by the function H are required to generate a
sample of a random variable having comparable entropy. A quantum
analogue of Huffman coding can readily be carried out; see [80].

4.7 Communication complexity

Communication complexity can be used to investigate distributed tasks based
on the following simple scheme. Consider two separated parties, Alice and Bob,
each possessing an n-bit string and allowed to perform local computations and
to communicate, so that one of them is able to announce the value of a given
function, f : X x Y — Z, of these two strings to the other. This situation
can also be generalized to any number of parties. Let Alice’s string be x, and
Bob’s be y, with z € X = {0,1}*" and y € Y = {0,1}*", and Z = {0, 1}.
It is possible for Bob to determine f(z,y) if Alice simply communicates the
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values of z to Bob. One desires, however, to minimize the amount of commu-
nication required between Alice and Bob to accomplish this task, rather than,
say, the number of computational steps required.'® For such a function, the
communication complexity, K(f), is the minimum number of bits necessarily
communicated between Alice and Bob in order to determine f(x,y).

The required computations can be chosen to be either deterministic or
probabilistic in nature. A promise is also sometimes also added, which is a
Boolean function F'(x,y) such that Alice and Bob are required to find f(z,y)
only when F(z,y) = 1. In a deterministic protocol, a communicated bit is a
function only of previously sent bit-values of the input from the sender. One
is interested in the number of bits sent in the worst case in the best possible
correct deterministic protocol for computing the function f. By contrast, in
a nondeterministic protocol, the bits to be communicated may depend on
nondeterministic choices as well. A nondeterministic protocol for z is correct
if it always returns 1 — 2 for f(z,y) = 1 — 2 and for any z,y with f(z,y) = z,
it returns z for at least one sequence of nondeterministic choices made. The
worst-case number of bits sent, in the best possible correct nondeterministic
protocol for z, is written NZ(f).

The two complexity measures, K and N?, are accordingly related as

K(f) = N*(f) - (4.38)

In the following chapter, quantum-information measures are introduced, many
of which can be seen as extensions or analogues of the classical measures intro-
duced above. Particularly interesting for such purposes is the case where Alice
and Bob are allowed also to share random variables, because this situation is
similar to the quantum situation where entangled quantum states are shared
and corresponding qubit values are measured in the computational basis.

16 See Sect. 13.1 for a discussion of computational complexity, which is more com-
monly considered.
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Quantum information

The theory of quantum information, that is, of the transmission, storage, and
processing of information using quantum-mechanical systems, is now well de-
veloped. It has been constructed largely by the generalization to this context
of elements of traditional information theory, which have been designed to
explain the transmission, storage, and processing information using classical
means. The mathematical description of quantum systems differs fundamen-
tally from that of classical states, as we saw in Chapter 1.! This difference
lends quantum information a significantly different character from that of
classical information.

Unlike in the classical case, most of the information stored in a generic
quantum-mechanical system is stored in the form of correlations between sub-
systems. Not only is most quantum information stored in the form of such cor-
relations, but these can be extraordinarily strong correlations, as we have seen
in Chapter 3; fully entangled quantum states are the extreme cases. For exam-
ple, for the Bell states the reduced states of single qubits are entirely indefinite,
whereas the state of the qubit pair is fully correlated, that is, knowledge of
the state of one qubit actualized through a quantum measurement is tanta-
mount to knowledge of the other, as in the situation considered by Einstein,
Podolsky and Rosen as framed by Bohm. The greatest difference in complex-
ity between classical and quantum states arises when entanglement is present
among components of composite quantum systems. In bipartite systems, the
extraordinary correlations associated with entanglement are manifested, for
example, in the violation of the Bell-type inequalities discussed in Section 3.5

! For example, the number of parameters needed to specify the state of a quantum
information-bearing system grows exponentially with the number of its subsys-
tems. This point is addressed in detail in Sect. 7.6. Note that distinctions between
classical information and quantum information have been made in various ways—
on this point see, for example [100, 145, 367]. In this book, a distinction is made
on the basis of differences in the ability to transmit, store and process information
in quantum systems versus in classical systems.
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and the complementarity of self-interference visibility of subsystems and the
total system self-interference visibility discussed in Section 3.6.

As we show in the following chapter, entanglement between even two sub-
systems provides a novel type of information-processing resource complement-
ing that which can be provided by classical bits or unentangled quantum bits.
This difference is even more pronounced in the case of larger multiple-qubit
states, which can be distributed among a number of separate parties po-
tentially participating in distributed information-processing. In this chapter,
quantities characterizing both static and dynamical properties of quantum
information are considered. These will prove useful for the understanding of
quantum information processing tasks discussed in following chapters.

5.1 Quantum entropy

The standard measure of the information contained within a quantum system
described by the statistical operator p is the von Neumann entropy

S(p)

—tr(p logyp) (5.1)
== Alogyi , (5.2)

where ); are the members of the set of eigenvalues of p and Olog0 = 0.2
S(p) is nonnegative, achieves its maximum value for the maximally mixed
state, and is zero if and only if p is pure. For systems described by states in d-
dimensional Hilbert spaces, 0 < S(p) < log, d, so that for qubits 0 < S(p) < 1.
S(p) provides an information measure in units of qubits [367].

The von Neumann entropy plays a role in quantum information theory
analogous to that played by the Shannon entropy in traditional information
theory: the von Neumann entropy S(p) measures the uncertainty of a quantum
state associated with a quantum probability distribution.? However, the von
Neumann entropy differs in important ways from the Shannon entropy. In the
case of classical systems, the entropy can be viewed as the information gained
by identifying the system state, whereas in general p cannot be fully identified
by the observation of an event (cf. Section 2.2) so that S(p) provides only a
loose bound on this; see Section 9.3.

Writing the quantum joint entropies, S(A,B) = S(pap), S(4, B,C)
S(papc), and so on—and for uniformity of notation, also taking S(A)
S(pa)—one finds that the von Neumann entropy has the following properties.

2 Here, we have assumed the set of eigenvalues of p to be countable; see also [446].

3 This quantity should, however, be distinguished from the uncertainty in values of
incompatible quantum properties in the Heisenberg—Robertson uncertainty rela-
tion that exists even in the simplest pure state; see Section B.2.
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(i) Additivity for product states (also a property of classical states):

S(pa®pp) = S(A) + S(B). (5-3)

(ii) Strong subadditivity for all quantum states:

S(A,B,C) + 8(B) < S(A,B) + S(B,C) . (5.4)

iii) Concavity:

5(21%&') > piS(pi) - (5.5)
i i
iv) Invariance under unitary transformations of the quantum state:

SWUp U =S(p) - (5.6)

In the above, the p; are the probabilities, summing to one, of a system being
in the corresponding states p;. The last property is related to the conserva-
tion of state purity discussed in Section 1.1. The Shannon entropy and the
von Neumann entropy coincide only for an ensemble formed from mutually
orthogonal pure quantum states. Thus, if one were to send a message encoded
in a set of orthogonal qubit states, each pure, that can be described by an
overall tensor-product state, the transmission would be equivalent to sending
the same information as a set of classical bits, because each qubit is perfectly
distinguishable once the encoding basis has been determined.*

By contrast to the effect of unitary transformations, which leave the quan-
tum entropy unchanged, measurements can change it. For example, for a
system initially described by the statistical operator p and by the operator p’
after a measurement described by the Liiders rule the result of which is known,
the final quantum entropy S(p’) is less than or equal to the initial quantum
entropy, S(p). As an extreme but important example, consider a qubit initially
in the fully mixed state, say as the reduced statistical operator of one qubit of
a pair in a Bell-state, p = %]I; for it, S(%]I) = 1. A precise measurement of the
state of such a qubit will place it in a pure state P(|t)), at which point it will
have quantum entropy S(P(|1))) = 0. Generalized measurements with un-
known outcomes can similarly decrease the quantum entropy of a system. On
the other hand, if a Liiders-type measurement is performed but the outcome
remains unknown then the quantum entropy may increase.

4 Indeed, a set of states from a known basis can be cloned with perfect fidelity,
contrary to the general case which is imperfect and constrained as described
by the quantum “no-cloning theorem”; were unknown quantum states perfectly
distinguishable, they could be perfectly cloned; see Sect. 9.5.
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The following triangle inequality, known as the Araki—Lieb inequality, re-
lates the joint entropy and the subsystem entropies:

S(A,B) > |S(4) - S(B)| . (5.7)

For a composite system in a pure state |¥), one has pap = P(|¥)), yielding
S(A,B) = 05 so, it must also be that S(A) = S(B) for any such system.
Accordingly, for two individual quantum particles in a singlet state, |¥ ™),
S(A, B) = 0 whereas S(A) = S(B) = 1; that is, the correlation between the
states of subsystems A and B is fully certain, whereas the individual states
of subsystems A and of B are completely uncertain, as mentioned above.
Such examples demonstrate the sensibility of the (subsystem) von Neumann
entropy for describing entanglement, as we show in the next chapter.
The joint entropy theorem,

s(zpzp(i» ® m) = H({pi}) + Yo piS(o0) (5.8)

also holds for a set of orthogonal states {|i)} of a system A and n statistical
operators p; of a second system B, both occurring with probabilities, p;.

5.2 Quantum relative and conditional entropies

The quantum conditional entropy is given, analogously to the corresponding
classical quantity, by

S(A|B) = S(A, B) — S(B) (5.9)
= S(pap) — S(pB) (5.10)

(¢f. Eq. 4.11). However, unlike the classical conditional entropy, the quantum
conditional entropy can become negative, indicating that it is possible for
quantum systems to be more certain in the joint state of two component
systems than in the states of its individual components, as again can be seen
in the case of the singlet state |#~), the entropy values of which were given
in the previous section.

The quantum relative entropy between the two states, p and o, of a quan-
tum system is defined as

S(pllo) = tr(p(logyp — logyo)) - (5.11)
This quantity obeys Klein’s inequality,
S(pllo) >0, (5.12)

which is an equality if and only if p = o [253].° Klein’s inequality is analogous
to Gibbs inequality for the classical relative entropy (cf. Eq. 4.9). Like the

5 The quantum relative entropy was first introduced by Umegaki [428].
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corresponding classical measure, this quantity is also not a metric due to a
lack of symmetry with respect to its arguments. The quantum relative entropy
characterizes the distinguishability of states defined in the same Hilbert space.
In practice, one can use a POV measure to distinguish states, to the extent
physically possible, based on the corresponding detection distributions.®

5.3 Quantum mutual information

The quantum mutual information between two subsystems described by states
pa and pp of a composite system described by a joint state pap is

I(A: B) = S(A) + S(B) — S(A, B) (5.13)
= S(pa) + S(pe) — S(pas) , (5.14)

also by analogy with the corresponding classical quantity (cf. Eq. 4.14). Note,
however, that this quantum-mechanical quantity exceeds the bound for the
classical mutual information. In particular, note that the quantum mutual
information can reach twice the maximum value obtained in the corresponding
classical mechanical situation:

I(A: B) < 2 min{S(A),S(B)} , (5.15)

which is a corollary of the Araki-Lieb inequality (Eq. 5.7) and implies that
quantum systems can be supercorrelated, as mentioned previously. Note
specifically that when a bipartite quantum system is in a pure state I(A :
B) = 2S5(A) = 25(B), as can be readily shown using the Schmidt decomposi-
tion; see Section 6.2, below.

The quantum mutual information has two different but related operational
meanings [198, 370]. In particular, the total amount of correlation, as mea-
sured by the minimal rate of randomness that is required to completely erase
all the correlations in a state p4p (in a many-copy scenario), is equal to the
quantum mutual information, which leads to the strong subadditivity of the
von Neumann entropy [198]. The quantum mutual information can also be
viewed as a type of relative entropy, in as much as

I(A: B) = S(pagllpa @ pB) (5.16)

(¢f. Eq. 4.14). The quantum mutual information also has the important prop-
erty that it is nonincreasing under completely positive maps, which were intro-
duced in Section 2.6 (cf. [432]).7 As is the case for classical entropies, quantum

6 Uses of POVMs for distinguishability are discussed in Sect. 1.6 in relation to the
(limited) distinguishability of nonorthogonal states of a single qubit, and in Sect.
3.6 in relation to two-particle interference. POV measurements themselves are
discussed in Sect. 2.7

7 Note that the same symbol, I, has been used here for both the classical and
quantum mutual information functions (¢f. Section 4.2). Care should be taken in
this regard.
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entropies can be given for multipartite systems. For example, the quantum
conditional mutual information within a tripartite system can be written

I(A: B|C) = S(A|C) — S(A|B, C) (5.17)
= S(A|C) + S(B|C) — S(A, B|C) . (5.18)

There also exist quantum chain rules analogous to classical chain rules for
entropies.

An important theorem, known as Lieb’s theorem, is the basis of many
results related to quantum entropy measures. For example, the strong subad-
ditivity inequality, the second property of von Neumann entropy listed above,
is a very useful result that can be proven making use of it [369]. The strong
subadditivity property of the von Neumann entropy allows one to demon-
strate several useful properties of the entropies introduced in this section that
also take the form of inequalities. For example, note that conditioning reduces
entropy in the context of the tripartite division of a compound system:

S(A|B,C) < S(A|B) . (5.19)

Also note that discarding components of a compound system can decrease but
never increase quantum mutual information: I(A : B) < I(A : B, C), perhaps
the most meaningful manifestation of the strong subadditivity of quantum
entropy; see Eq. 5.4 and [198]. In the context of a four-component system,
A, B,C, D, the quantum conditional entropy is subadditive,

S(A, B|C, D) < S(A|C) + S(B|D) | (5.20)

whereas the quantum mutual information is not.® Furthermore, the strong-
subadditivity property of the von Neumann entropy allows one to show that
the quantum relative entropy is nonincreasing under CPTP maps [283].

5.4 Fidelity and coherent information

A measure of the fidelity of transmission of a pure-state input |¢) that pro-
duces final states o; with probabilities p; in the statistical state p = >, pio;
is

F(P(I)). p) = (¢]ol0) . (5.21)

or, in the case of a mixed-state input, w,

Flp,w) = H @p@r | (5.22)

8 A proof of this subadditivity property can be found in Sect. 11.4.2 of [315].
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The latter quantity is the maximum value attained by the pure-state expres-
sion over the set of pure states in a larger Hilbert space yielding p; by partial
tracing [244].% It is fundamental to the study of quantum communication.

The quantum analogue of the classical Fano inequality, the quantum Fano
inequality, is

S(p,€) < Hyinary (F(P,‘S)) + (1 - F(p, 5))10g2(d2 -1), (5.23)

for a quantum operation, £, on a system with a Hilbert space of dimension
d > 2, where the entropy exchange S.(p,&) = —tr(W log W) with the matrix
W having elements

W)i; = tre(EipE]) /e (p) . (5.24)

FE; being the elements of the operator-sum representation of the operation &,
which was first proved by Schumacher [368]. S.(p, ) quantifies the quantum
entropy introduced into a system as a result of the operation £ it has un-
dergone.l® F (p,E) above is the “entanglement fidelity,” which quantifies the
degree to which entanglement between the system and another needed to form
a pure total system is preserved under £, namely, the particular state fidelity

F(p, &) = (Ypqlprg [¥pPq) (5.25)

between the initial and final pure states of such a total system, where |¥pg)
is a pure state of the combined system of the input system ) and another
“reference” system P yielding p as the reduced state for @), and ppg- is the
state resulting from the effect of £ on Q [369].

In the case of such a pair of systems P and ) forming a possibly entangled
joint system P(Q), the subsystem () may be imperfectly isolated from its envi-
ronment, the effect of which is described by £. For example, @@ may be sent
through a quantum channel resulting in such a joint “output” state ppgs; if
the input is pure the output generally will not be. One may then consider the
coherent information between the subsystems,

Icoherent(pvg) = S(Q/) - S(Pv Ql) ’ (526)

where the quantities on the right-hand side are von Neumann entropies of the
transmitted subsystem and total system, respectively [369]. The coherent in-
formation, which can have any sign, in contrast to its classical analogue which
is always negative, has useful properties. In particular, I.onerent 1S positive if
and only if the output state is an entangled state, and can be viewed as a
measure of nonclassical character by virtue of the preservation of quantum
coherence by &. I oherent has the property that it cannot be increased by local
operations on (), so that

Icohcrcnt(pa 5) S S(Q) (527)

9 Note that the fidelity is also not a metric, though it is symmetric in its arguments.
10 Note that F'(p, ) is distinct from the state fidelity, F', defined in Eq. 5.21 above.
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after the influence of the environment on (). Because the reduction of the
coherent information due to the effect of the environment is irreversible, a
necessary and sufficient condition for the ability to perform perfect correction
of errors introduced by the interaction of () with the environment is that

Icoherent(,o, 5) = S(Q)ll

Consider a two-stage process formed by two subprocesses, & and
&,, in series. As a result of the first process, p = pgr = £1(pg). The
second process then results in

pQr = por = E2pqr) (5.28)
= &12(pq), (5.29)

where
812 = ((‘:2 ¢} 51)([)(2) . (530)

The coherent information then obeys the quantum information-
processing inequality

S(Q) = Lei(pg, &1) = Le2(pq, &12) (5.31)

where I.1(pg,&1) = S(Q') — Se1(Q) and I2(pg,&12) = S(Q) —
Se12(Q), where S, (Q) is the entropy exchange of the first stage
and Se12(Q) is the entropy exchange for the composition of the two
processes comprising the overall process £15. This is the quantum
analogue of the classical data-processing inequality, Eq. 4.15.

5.5 Quantum Rényi and Tsallis entropies

Finally, note that a quantum Rényi entropy, analogous to the classical Rényi
entropy introduced in Section 4.4, can be defined as well:

1
Su(p) = T—trp" (5.32)

where r > 0. Note, in particular, that

lim S, (p) = S(p) . (5.33)
r—1
In addition, when r = 0,
So(p) = logyR(p) , (5.34)
where R(p) is the rank of the corresponding density matrix. Furthermore,
lim S,(p) = —logs || - (5.35)
T—00

' Quantum error detection and correction are discussed in detail in Chapter 10.
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Like the von Neumann entropy, the quantum Rényi entropy has proven
valuable for characterizing entanglement.'? A related quantity is the Tsallis

entropy, defined as

T,(0) = 0

which, like S,.(p), also coincides with the von Neumann entropy in the limit
r — 1. Both entropies have conditional versions, namely,

(5.36)

Sy(B|A) = S.(p) — Sr(pa) (5.37)

and

tr(p1y) — tr(p")
(r—1)tr(p})

where p4 is the statistical operator of a subsystem A within the compound

system AB described by the state p. These conditional entropies are related

to each other with respect to positivity; in particular,

T,(B|A) = (5.38)

T.(B|A) > 0 < S,(B|A) >0, (5.39)

which is also equivalent to the positivity of the conditional von Neumann
entropy S(B|A) in the limit » — 1 [442].

12 For example, see Sect. 6.9.
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Quantum entanglement

Quantum interference arises from the indistinguishability in principle, by pre-
cise measurement at a specified final time, of alternative sequences of states
of a quantum system that begin with a given initial state and end with the
corresponding final state. It is manifested, for example, in the two-slit inter-
ferometer and the double Mach—Zehnder interferometer discussed in Chapters
1 and 3, respectively. Most important, when the indistinguishability of alter-
natives for producing joint events arises, as in the latter apparatus, entangle-
ment may be involved. Erwin Schrodinger, who first used the term “entangle-
ment,” called entanglement “the characteristic trait of quantum mechanics”
[364, 365, 366]. The extraordinary correlation between quantum subsystem
states associated with entanglement can be exploited by quantum computing
algorithms using interference to solve computational tasks, such as factoring,
far more efficiently than is possible using classical methods, as we show in
later chapters. Entangled states are similarly exploitable by uniquely quantum
communication protocols, such as quantum teleportation, superdense coding,
and advanced forms of quantum key distribution, using local operations and
classical communication (LOCC).

Entanglement is of perennial intrinsic interest because of the radically
counter-intuitive behavior associated with the strong correlations it entails,
that was discussed in Chapter 3. Albert Einstein, Boris Podolsky, and Nathan
Rosen argued early on that quantum mechanics is incomplete if understood as
a local realistic theory, based on the consideration of an (entangled) quantum
state of the form

@ (21, @2)) = Y ail (1))l p(w2))s (6.1)

=1

[147]. David Bohm later explored entanglement in a far simpler context, that
of a pair of spins in the singlet state

_ L

™) NG}

(I =141, (6.2)
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which has since been central to the investigation of the foundations of quantum
mechanics and quantum information, wherein {| 1),| J)} is typically taken as
the computational basis and written {|0), |1)} [66].

Following these developments, John Bell greatly advanced the investiga-
tion of quantum entanglement by clearly delimiting the border between local
classically explicable behavior and less intuitive sorts of behavior that are non-
local, by deriving an inequality that must be obeyed by local realistic theories
that might explain strong correlations between two distant subsystems form-
ing a compound system, such as those arising in systems described in quantum
mechanics by the singlet state [30]. Since these early investigations, the study
of extraordinarily correlated behavior between subsystems within larger sys-
tems has been ongoing, as have efforts to put this unusual behavior to use.
In this chapter, we consider the current understanding of quantum entangle-
ment in bipartite quantum systems, which often uses the various quantum
information measures introduced in the previous chapter.

6.1 Basic definitions

Under Schrodinger’s definition, entangled pure states are simply those pure
quantum states of multipartite systems that cannot be represented in the form
of a simple tensor product of subsystem states

@) # Y1) ® [2) @ -+ @ |thn) (6.3)

where |1¢;) are states of local subsystems, for example, spin states of funda-
mental particles [365, 366]. The remaining pure states of multipartite systems,
which can be represented as simple tensor products of independent subsystem
states, are called simply product states. The definition of entanglement can
be extended to include mixed states, as follows. The mixed quantum states
in which entanglement is most easily understood are states pap of bipartite
systems, usually labeled AB with components labeled A and B in correspon-
dence with the laboratories where they are located. Mixed states are called
separable (or factorable) when they can be written as convex combinations
of products,
PAB = Zpipm ® pBi, (6.4)
1
where p; € [0,1] and > ,p; = 1, pa and pp being statistical operators on
subsystem Hilbert spaces, H4 and Hp, respectively.! Entangled quantum
states are simply those that are inseparable.
Separable mixed states contain no entanglement, as they are by defini-
tion the mixtures of product states and so can be created by local operations

! This definition extends beyond the statistical operators to other operators, gen-
eralizing the concept of entanglement beyond states.
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and classical communication from pure product states: in order to create a
separable state, an agent in one lab needs merely to sample the probability
distribution {p;} and share the corresponding measurement results with an
agent the another; the two agents can then create their own sets of suitable
local states p; in their separate labs.? However, by contrast, not all entangled
states can be converted into each other in this way in the multi-party context,
something that leads to distinct classes of entangled states and thus to differ-
ent sorts of entanglement, as we show in the next chapter. In general, it is also
not always possible to tell whether a given statistical operator is entangled.
Given a set of subsystems, the problem of determining whether their joint
state is entangled is known as the separability problem.

The simplest states within the class of separable states are the product
states of the form pap = pa®ppB; pa and pp are then also the reduced statis-
tical operators for the two subsystems and are uncorrelated. When there are
correlations between properties of subsystems described by separable states,
these can be fully accounted for locally because the separate quantum states
pa and pp within spacelike-separated laboratories provide descriptions suffi-
cient for common cause explanations of the joint properties of A and B such
as that outlined above; also see [430]. In particular, the outcomes of local mea-
surements on any separable statistical operator can be simulated by a local
hidden-variables theory. The quantum states in which correlations between A
and B can be seen to violate a Bell-type inequality, referred to as Bell corre-
lated (or EPR correlated) states, cannot be accounted for by common cause
explanations. If a pure state is entangled then it is Bell correlated.? Thus,
pure entangled states do not admit a common cause explanation. However,
this is not true for the mixed entangled states. For example, the Werner state,

1\1 1 _
pw = <1 - ﬁ) eI+ EP(W ), (6.5)

is not Bell correlated yet is entangled, because there is no way to write py
as a convex combination of product states; in particular, it cannot be written
in the form of Eq. 6.4 with only one nonzero p;.*

The shortcoming of Bell-inequality violation as a necessary condition for
entanglement is that it is unknown whether there exist Bell inequality viola-
tions for many nonseparable mixed states. In the presence of manipulations
of such a state (or a collection of copies) by means of LOCC, some states can
be made to violate a Bell-type inequality; those states that can be made to

2 See Chapter 3 for a characterization of local operations.

3 This was first pointed out by Sandu Popescu and Daniel Rohrlich [338] and
Nicolas Gisin [186]. Note, however, that not all such states are Bell states, that
is, elements of the Bell basis as, say, |¥ ™) is; see Sect. 6.3, below [339].

4 Note also that the Werner state is diagonal in the Bell-basis representation. An
excellent review discussing the relationship between Bell inequalities and entan-
glement is [451].
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violate a Bell inequality in this way are referred to as distillable states. The
remaining, nondistillable states are known as bound states. What is clear is
that state entanglement should not change under local operations and should
not be increased by local operations together with classical communication,
assumptions that play a central role in quantifying entanglement, as we show
in Section 6.6 below. Let us first consider some fundamental tools in the study
of entanglement.

6.2 The Schmidt decomposition

There exist special state decompositions that clearly manifest the correlations
associated with entanglement. For pure bipartite states, the Schmidt decom-
position serves this purpose well. Any bipartite pure state |¥) € H = HaQHp
can be written as a sum of bi-orthogonal terms: there exists at least one or-
thonormal basis for H, {|u;) ® |v;)} where {|u;)} € Ha and {|v;)} € Hp such

that
&) = Zaz|uz> ® |vi) , (6.6)

a; € C, referred to as a Schmidt basis. This representation is a Schmidt (or
polar) decomposition of |¥), where the summation index runs up only to
the smaller of the corresponding two Hilbert space dimensions, dim H 4 and
dim Hp [363]. It is often convenient to take the amplitudes a; to be real
numbers by absorbing any phases into the definitions of the {|u;)} and {|v;)}.
Unfortunately, the availability of this decomposition in multipartite systems
is limited, being available with certainty only in the case of bipartite states.

For any entangled bipartite pure state, it is possible to find pairs
of measurable quantities violating the Bell inequality. In particular,
the Schmidt observables

U= Zui|ui><ui| , (6.7)
V= Zvi|vi><vi| ) (6.8)

are fully correlated when the system is in state |¥), providing such
violations [186].

The number of nonzero amplitudes a; in the Schmidt decomposition of a
quantum state is known as the Schmidt number (or Schmidt rank), Sch(|¥)).
The Schmidt number proves useful for distinguishing entangled states. In par-
ticular, the Schmidt number of a state is greater than 1 if and only if it is
entangled. It is useful as a (coarse) quantifier of the amount of entanglement
in a system, in addition to serving as a criterion for entanglement.
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The Schmidt number of a bipartite system is equivalently defined as
Sch(|#)) = dim supp pa = dim supp pp , (6.9)

where pa and pp are the reduced statistical operators for the two subsystems,

pa = Z @i |*|us) (ui] (6.10)
pB = Z |ai|*|vi) (vil (6.11)

which are diagonal, possess identical eigenvalue spectra, and hence have identi-
cal von Neumann entropies. Furthermore, Schmidt number is preserved under
local unitary state transformations.

Using the Schmidt decomposition, the Schmidt measure (Hartley strength)
of the entanglement of pure states is defined as

Es(|7)) = log, (Sch(|?))) (6.12)

providing entanglement in units of “e-bits,” a term, like “qubit,” introduced
by Schumacher, where the Bell states correspond to one e-bit of entangle-
ment. The probabilities that are the squares of the Schmidt coefficients a;
are precisely those quantities unchanged by unitary operations performed lo-
cally on the individual subsystems (LUT’s). For this reason, it is reasonable
to expect any more precise numerical measure of pure state entanglement to
be calculable from the quantities |a;|?.> Because the statistical operator p of
a bipartite system may have degenerate eigenvalues there is, however, not a
truly unique Schmidt basis. For example, in the case of the Bell state |[¥ ™),
the state takes the same form when represented in any other basis obtained
from the computational basis representation (Eq. 3.5), which is of Schmidt
form, by rotating the computational basis and performing a unitary transfor-
mation in the subspace of the first qubit and the conjugate transformation in
that of the second qubit [154].

Again, the Schmidt decomposition is not always available beyond the case
of bipartite systems. Consider the case of a system with three subsystems. If
there existed such a decomposition, the measurement of one subsystem would
provide the states of the remaining two; but, if these two are entangled, then
the individual states must be indefinite.5

6.3 Special bases and decompositions

Basic examples of states in Schmidt form are the four elements of the Bell
basis, which are the entangled states written

5 One example of this is the concurrence, defined in Sect. 6.10, below.

5 The generalization of this decomposition to special states of larger systems where
such a decomposition does exist, such as the GHZ state |GHZ) = (1/v/2)(]000) +
[111)), is discussed briefly later in Sect. 7.3.
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1
o) = 75101 & [10)) (6.13)
|pt) = i(|00> + [11)) (6.14)

V2

in the computational basis and which are symmetrical or antisymmetrical
under qubit exchange. These Bell states have played a central role in the
investigation of quantum entanglement and tests of local realism, as shown
in Chapter 3. The creation of the states of the Bell basis from a pair of
unentangled qubits can be carried out by a process described by a quantum
circuit involving only one Hadamard and one C-NOT gate; see Fig. 6.1. Bell
states are also readily produced ab initio using spontaneous parametric down-
conversion, which is discussed in Section 6.16. Bell states have the useful
property that transforming the state of only one subsystem locally suffices for
interconversion between them, which is not true, for example, of the two-qubit
computational-basis states, which are of product form. Of particular interest
is the singlet state, |# ), due to its great symmetry.

b)) H

|Bb1b2>

b,) NV,

Fig. 6.1. A quantum circuit for the synthesis of Bell states, |Bp,b,) from a product
state. The input states are indicated by the bit values b; € {0, 1}, i=1,2: biby =
00, 10,01, 11 yield |®T),|®7), |#T), |& ™), respectively.

Another basis of entangled states for two-qubits, the so-called “magic
basis,” is similar to the Bell basis but has different overall phases and

) = 5(100) + 1) (6.15)
jms) = £(100) ~ [11)) (6.16)
ms) = 2(101) + 10)) (617)
ma) = 5(101) ~ 110)) (6.15)

and is a natural one for concurrence-based entanglement studies,
discussed in Section 6.10, below [214].
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Another useful basis is the g-basis,

— Vl00) + /T ql11) |
= /T—ql00) - yal11)
)
)

lq1
g2
g3
|qa

= /q|01) + /1 — ¢[10
= /1 —q|01) —/q[10) ,

which, for values ¢ € [0, 1], interpolates between the (product) com-
putational basis (for which ¢ = 0,1) and the (entangled) Bell basis
(for which ¢ = 1/2). Varying the value of ¢, say by taking ¢ = cos 6
and varying 6, allows one to study the role of entanglement over this
important range of pure states; for example, see Section 9.11 and
[234].

9

- - I ~—

A Lewenstein-Sanpera (LS) decomposition of a statistical operator p €
C2? ® C? is one of the form

p = Apsep + (1 = A)P(|Pent)) (6.23)

with A € [0,1], where psp is separable and P(|Wen;)) is the projector for
a fully entangled state [282]. Such a decomposition exists for any two-qubit
state. Although this decomposition is not unique, the decomposition for which
A takes an optimal value, Ay ax, iS. Amax 1S sometimes referred to as the degree
of separability and can be viewed as the degree of classicality of the state.”
One example following from the LS decomposition is the Werner state (cf.
Equation 6.5, above). Varying X allows one to explore the role of entanglement
over an important range of mixed states; for example, see [309].

Yet another useful class of basis is that of the unextendable product bases,
which are sets of orthogonal product state-vectors such that there exists no
additional product state-vector orthogonal to them in order to span the entire
space in which they lie [45, 203]. A two-qutrit example is

1
) = —=10)(0) = 1) (6.21)
1
a) = —=(0) = )2} (6.25)
jo3) = —=(11) = 12)]0) (6:20)
1
joah = —=I2(11) = 12) (6.27)
05) = 30) + 1) + 12)(0) + 1) + 12)) (6.25)

7 Such a decomposition, which was anticipated by Shimony (see Sect. 6.15 and
[383]), is known as the best separable approximation.
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6.4 Stokes parameters and entanglement

As we saw in Chapter 1, qubits have a variety of representations, among these
the real-valued one provided by the single-qubit Stokes parameters. Although
they suffice when specifying individual qubits or several qubits in a separable
state, the single-qubit parameters must be supplemented by additional pa-
rameters in order to describe entangled systems. Consider the general state
of a pair of qubits. The two-particle Stokes parameters, S,, = tr(po, ® 7,)
(v =0,1,2,3), which are a generalization of the traditional Stokes param-
eters, are needed to describe entangled states, such as the Bell states, in the
real representation, due to the increasing complexity of quantum states as
number of qubits grows.® The two-qubit Stokes parameters, introduced by
Ugo Fano just before 1950, can also be used to find the two-qubit statistical
operator:

3
1
p=7 u;o S0, @0, (6.29)

where 0, ® 0, (p,v =0,1,2,3) are tensor products of the identity and Pauli
matrices [166];? the single-qubit Stokes parameters are recovered when either
1 or v is zero, so that the corresponding factor is an identity matrix.

The Stokes four-vector [S,] described in Section 1.3 is similarly general-
ized, as one can view the two-qubit Stokes parameters as forming a 16-element
Stokes tensor, [S#l,].lo This tensor captures all the quantum correlations po-
tentially present in a two-qubit system and plays a central role in the quan-
tum state tomography of such a system, corresponding to a compendium of
coincidence-measurement data.'!For example, the Bell state [ ) corresponds
to a Stokes tensor with Spg = 1,511 = —1, 522 = —1, S33 = 1, the remaining
parameters being zero. The Lorentz group invariant for the two-qubit Stokes
tensor,

3

3 3 3
Sty (P(l))) = i<(500)2 - Z(SiO)Q - Z(Soj)Q + Z Z(Sij)2> , (6.30)

i=1 j=1

can be related to the entanglement of the two-qubit state, as we show in
Section 7.4 [237].

8 The practical value of the generalized Stokes parameters is manifest in their
application to polarization-entangled photon pairs; for example, see [3].

9 Recall that the Hilbert space for two-qubit systems is C?> ® C?. The two-qubit
density matrices p are positive, unit-trace elements of the 16-dimensional complex
vector space of Hermitian 4 x 4 matrices, H(4). The operators 0., = 0, ® 0, pro-
vide a basis for H(4), which is isomorphic to the tensor product space H(2)®H(2)
of the same dimension, because 1tr(c,,0as) = duadyp and op, = Io.

19 The term “Stokes tensor” was first applied to this structure in [240].
1 Quantum state tomography is discussed in Chapter 8.
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The elements of the general two-particle matrix p = [pl“,} are re-

lated to the two-qubit Stokes tensor elements S, by the following

relations.
Soo = poo + p11 + p22 + P33 (6.31)
So1 = 2Re(po1 + pa3) (6.32)
So2 = —2Im(po1 + po3) (6.33)
So3 = poo — p11 + P22 — P33 (6.34)
S10 = 2Re(po2 + p13) (6.35)
S11 = 2Re(pos + p12) (6.36)
S1a = —2Im(po3 — p12) (6.37)
S13 = 2Re(po2 — p13) (6.38)
Sa0 = —2Im(po2 + p13) (6.39)
Sor = —2Im(po3 + p12) (6.40)
Soy = —2Re(po3 — p12) (6.41)
Saz = —2Im(po2 — p13) (6.42)
S30 = poo + P11 — P22 — P33 (6.43)
S31 = 2Re(po1 — p23) (6.44)
S35 = —2Im(po1 — p23) (6.45)
S33 = poo — p11 — P22 + P33 - (6.46)

6.5 Partial transpose and reduction criteria

In addition to the Schmidt number, Sch(|¥)), and Schmidt measure, Eg, for
pure states described in Section 6.2 above, another simple quantity measuring
entanglement for some mixed states is the negativity, N(p). This quantity
involves the sum of the negative eigenvalues of the partial transpose of the
density matrix of a bipartite system. It was first used to provide a criterion for
entanglement by Asher Peres, who noted that when the partial transposition
operation is performed on a separable mixed state the result is always another
mixed state [329]. Partial transposition is matrix transposition relative to the
indices of a subsystem; the matrix elements of the partially transposed density
matrix are thus

(iajnlp™kalp) = (kajslplials) . (6.47)

Specifically, the “Peres—Horodecki (PH) criterion” for entanglement is the
following: a state p is entangled if the partial transpose of the corresponding
density matrix is negative. One can take

Np) =5 (lP™ 1l - 1), (6.48)

N |
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where |[pT4||; is the trace-norm of the partial transpose matrix. Because
[|O]l1 = trvO10O for any Hermitian operator O, one can write

N(p) = ‘ZA : (6.49)

where i runs over the negative values among the set of eigenvalues {\;(p?%)}
of this density matrix.!?

The negativity is readily computed and has been used to develop entan-
glement bounds. Its logarithm, the logarithmic negativity, is also sometimes
considered, because it has operational interpretations such as an upper bound
to the distillable entanglement considered, a bound on teleportation capacity,
and an asymptotic entanglement cost under PPT; see Section 6.8 below and
[17, 42].

The positivity of p™ (or p2) is a necessary and sufficient condition
for the separability of the statistical operator p for 2 x2, 2 x 3 dimen-
sional systems and for two continuous-variable systems (modes) in a
Gaussian state [141]. For a related result not making use of a map
between matrices that is linear, as partial transposition is, but rather
a nonlinear map to solve the separability problem for Gaussian states
of an arbitrary number of modes per site, see [181].

When applied to a Bell state, the result of partial transposition is a
matrix with at least one negative eigenvalue. Positivity of the par-
tial transpose is, in general, a necessary but insufficient condition for
separability when subsystems with Hilbert spaces of higher dimen-
sion than that of a qubit are involved; for larger Hilbert spaces, there
exist entangled states whose density matrices are positive under par-
tial transpose (PPT). See Section 6.11 below for further discussion
of the PH criterion and examples of states having PPT.

The “PPT preserving” class of quantum operations includes all bi-
partite quantum operations for which input states that are positive
under partial transposition have output states that also have this
property; these operations can produce only the bound variety of
entanglement; see Section 6.8, below.

For the bound entangled states with PPT, all CHSH-inequalities are
obeyed. The PH criterion implies another useful criterion, namely, both

pa®@l—p=>0, (6.50)

I®pg—p>0, (6.51)

12 The eigenvalues of the density matrix are usually indicated in ascending order.
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known as the reduction criterion for entanglement, which implies the recov-
erability of entanglement by distillation; also see Section 6.8, below. The vi-
olation of the reduction criterion is also sufficient for separability of p in the
case of two qubits and the case of one qubit and one qutrit. Moreover, the
criterion implies that the ranks of the reduced density matrices are less than
or equal to that of the density matrix of the compound system [442].

6.6 The “fundamental postulate”

In addition to the conventional requirements that a measure of entanglement
be nonnegative and normalized in the sense that it be unity for the Bell
states, a fundamental pair of monotonicity conditions has been put forth for
any candidate, below indicated generically as Ex(p), to be good a measure of
entanglement. These conditions define the class of entanglement monotones,
which are functionals that characterize the strength of genuinely quantum
correlations through the requirement that no state can be converted by local
operations and classical communication (LOCC) to a state having a higher
value of the monotone. In particular, a quantity Fx (p) is called an entangle-
ment monotone if it satisfies

Ex(p) > ZpiEX(pi) : (6.52)

and
Bx ( > pz-pz-) <3 nBx(pi) (6.53)

for all local operations giving rise to states p; with probabilities p;, where
at the end of the LOCC operation i, classical information is available with
probability p; and the state is p; [437].

The first of the two conditions above, sometimes referred to as the fun-
damental postulate, requires monotonicity on the average for each local op-
eration. The second condition requires Ex (p) to be a convex function that
is monotonic under mixing, that is, the discarding of information, providing
mathematical convenience, which is sometimes relaxed. The above useful but
limited entanglement measures, the Schmidt measure Eg and negativity N,
are examples of entanglement monotones for bipartite quantum systems.

Consider two sets of entanglement monotones, Ef = """ |a;|* and
EP = 3" |bi|?, where [ = 1,...,n, obtained from the Schmidt
decomposition of two bipartite states |¥),|®) having n components
with Schmidt coefficients a; and b; respectively. The pure state |¥)
can be transformed with certainty by local transformations to the
pure state |®) if and only if EY > EP for all [ =1,...,n [439)].
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6.7 Entanglement monotones

Let us now explore the behavior of entanglement monotones in greater detail,
by considering not only the basic requirements on them, but also those that
relate to asymptotic behavior. The following conditions are those now com-
monly required of acceptable measures of bipartite entanglement Ex on all
states pap of a pair of systems.

(i) Ex(pap) = 0if pap is separable.

(ii) Ex(pap) is invariant under all local unitary operations Us ® Up,
that is, EX(pAB) = EX((UA ® UB),OAB(UA ® UB)T).

(iii) Ex(pap) cannot be increased by any LOCC transformation,
that is, Ex(pap) > Ex (8(/),45))7 where O(pap) is a CPTP map.

The necessity of the first condition is obvious: separable states, specified by
Eq. 6.4, are by definition not entangled. Conditions (ii) and (iii) are necessary
for entanglement to be considered a collective, global property of quantum sys-
tems; they render impossible the creation or distribution of entanglement via
LOCC alone. These conditions accord with each other because local unitary
operations are CPTP maps that can be inverted by local unitary operations.
The following further condition is sometimes also imposed.

(iv) The entanglement of n copies of a state pap is n times the entangle-
ment of one copy,
Ex(p3p) = nEx(pap) , (6.54)
in particular for the standard case of n Bell singlets, which are conventionally
taken to have entanglement equal to unity, that is, are n “e-bits.”

A continuity condition may also be imposed, namely,

(v) If (p®"|p, |9p®™) — 1 for n — oo, then
| Ex (P(w)®") — Bx (0™)] -0, (6.55)

for some joint state p(™) of n pairs of qubits [221].

With the fourth condition, known as partial additivity, and the fifth condi-
tion both in force, the pure state entanglement of bipartite quantum systems
is uniquely described by

E(|W)ap) = S(p) = —tr(p logyp) , (6.56)

the von Neumann entropy functional, where p is the (reduced) statistical
operator of either one of the two subsystems of the compound system in state
|¥) ap [339].13 The last two conditions are sometimes directly replaced by the
condition that, for pure states, the measure reduces to this entropy.

13 Full additivity would require that E(p ® o) = E(p) + E(o). However, because
bound entanglement may be activated, this condition is often viewed as unwar-
ranted.
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The von Neumann measure of entanglement has the property of being
additive on pure states of the composite system: using the von Neumann
entropy of the subsystem reduced states as Ex, and labeling the individual
particles of Alice and Bob in the n copies as A;, B;, the additivity property is

E([0) a5, ® W) a5, @+ ® W) a,m,) = Y E(¥)a,5,)
i=1

for all pure [¥)4p.' In the case of mixed states, additivity is desirable but
must be explicitly imposed, so in that context one refers to the additivity
conjecture.'® In the case of larger systems involving multiple parties, some
of the above conditions must be slightly modified as discussed in the next
chapter.

In the simplest case, the pure states of two qubits A and B, en-
tanglement is well quantified information-theoretically by the von
Neumann entropy of either one of the single-qubit reduced statisti-
cal operators, which are identical; these operators are obtained by
“tracing out” one qubit from the total system state described by the
projector P(|¥)ap); see Section 2.5. Thus,

E(|Lp>AB) = S(tI‘AP(|W>AB)) = S(trBP(|!l7>AB)) .

For mixed two-qubit states pap, a good entanglement measure is the (one-
shot) entanglement of formation, Ey, defined via the convex-roof construction
as the minimum average marginal entropy of the one-qubit reduced states for
all possible decompositions of psp as a mixture of pure subensembles each
described by a state P(|¥;) ap), that is,

FE min W E (1) 6.57
1(pap) = {p“WHZP (I (6.57)

where {p;, P(|¥;))} represents a decomposition of pap.'® One can similarly
define the entanglement of assistance as the corresponding maximum average

14 The product symbol ® is sometimes substituted for ® to emphasize that this
tensor product is formed from copies of a state possessed by the same pair of
agents, as opposed to distinct parties.

15 Note, however, that a uniqueness theorem not assuming additivity has also been
produced [437].

16 This quantity is analogous to the total energy of thermodynamics, something
discussed in greater detail in Sects. 6.12-13, below. Note that, although it can
be expressed directly in terms of the von Neumann entropy S(pa), the form
provided here allows for explicit reference to the states of the pertinent two-qubit
pure subensembles.
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marginal entropy. Pre-existing entanglement is not necessary to distribute en-
tanglement so long as a quantum channel—a means of transmitting quantum
systems—exists between Alice and Bob.

A related quantity is the entanglement cost, E¢, defined as the smallest
number of systems in Bell singlets, per copy, needed to form copies of the
given state pap by CLOCC operations P(|¢~))®¥ — p%" in the limit as
the number of shared pairs goes to infinity, which is

Rn
Ec(pap) = lim 2PaB) (6.58)

n— oo n

where the decomposition pertinent to the entanglement of formation here is

that of p§75.17

6.8 Distillation and bound entanglement

It is possible to obtain pure entangled states that violate Bell inequalities
beginning with mixed states that do not violate a Bell inequality, by using
entanglement distillation. Entanglement distillation, also known as entangle-
ment purification, is the local processing of a number of copies of a quantum
state so as to develop highly entangled states between parties, that is, the
inverse process to that considered when finding the entanglement cost dis-
cussed above. Any local process by which the degree of entanglement between
various subsystems of a larger overall quantum system is increased can be
considered entanglement distillation. Such a process is valuable, for example,
when channels of transmission of quantum information are noisy and degrade
the entanglement resources needed to successfully carry out quantum infor-
mation processing tasks. In particular, this process can assist in reducing the
impact of quantum decoherence. Specific protocols for purifying entanglement
are described in detail later in Section 9.11.

The associated functional, the entanglement of distillation, D(pag), is de-
fined as the maximum fraction of singlets that can be extracted, that is, dis-
tilled from n copies of pap by the CLOCC transformation p%p — P(|#~))®*
in the asymptotic limit as n — oo:

D(pap) = limsup (k), (6.59)
n—00 n

where k£ depends on n. This quantity can be viewed as analogous to thermo-

dynamical free energy, and so is sometimes called the free entanglement. It

expresses, for example, the utility of a given entangled mixed state for quan-

tum teleportation.'® However, D(pap) has none of the desirable convexity or

additivity properties to be an information-theoretic measure [392].

17 This result was first proven by Patrick Hayden, Michal Horode¢ki, and Barbara
Terhal [209].
18 See [47], for example, and Sect. 9.9, below for more on teleportation.
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According to condition (iii) of the previous section, it must be the case
that

D(pap) < Ef(pas) , (6.60)

which reflects the irreversible character of state mixing. The distillable en-
tanglement has been either evaluated or bounded for a variety of classes of
mixed states. For mixed states pap, it is also natural to consider the differ-
ence B(pap) = Ef(pap) — D(paB), between the entanglement of formation
and the entanglement of distillation, known as the bound entanglement. The
bound entanglement is clearly nonnegative:

B(pAB) Z O . (661)

Bound states are those statistical states that are not distillable yet the for-
mation of a single copy of which requires entanglement, which can be viewed
as a consequence of extreme state mixing.19

Entanglement distillation is irreversible, in the sense that more pure en-
tanglement cannot be distilled from PPT states than may have been used to
assist in their creation [438]. A discussion of general considerations surround-
ing the manipulation of entanglement considered as a quantum information
resource is given below in Section 6.12.

6.9 Entanglement and majorization

For bipartite separable states, sometimes designated pfﬁg, the following rela-
tionships hold between the quantum Rényi entropies of systems and subsys-
tems:

Sa(P)) < Sa(plip) (6.62)
Sa(p%) < Salpl)) . (6.63)

where p4 and pp are the reduced statistical operators of the components.
Similarly, for separable statistical operators

A <A (6.64)
Pa PaB

A <A, (6.65)
PB PaB

where A, is the ordered vector of eigenvalues of the statistical operator p and
> denotes majorization, affirming that separable states are at least as mixed

19 The first bound entangled states were discovered by Pawet Horodecki [223]. Note,
however, that the existence of bound states does not preclude situations where
forming a larger number of copies may require a vanishingly small amount of
entanglement per copy; the states that do not violate the PH criterion form a
known such class. Nonviolation of this criterion is preserved under LOCC.
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globally as they are locally, as is clear in the case of the entropic characteri-
zation of entanglement described above; see Section A.3 and [316].2° Indeed,
the majorization condition, known as Uhlmann’s relation, implies the above
entropic inequalities for r > 0.2'Nonviolation of the majorization condition is
not preserved under LOCC.

6.10 Concurrence

A practical measure of bipartite entanglement that has a geometrical mean-
ing and can often be easily calculated is the concurrence. For pure states, this
quantity can be written C(|Wap)) = [(¥ap|Pap)|, where [Fap) = o525 5)
which is referred to as the “spin-flipped” state-vector [460]. The concurrence
of a mixed two-qubit state, C(pap), can be expressed in terms of the mini-
mum average pure-state concurrence, C'(|¥4p)), where, as usual, the required
minimum is to be taken over all possible ensemble decompositions of pap.
The concurrence of a general state is then simply

C(pap) = max{0, A1 — A2 — A3 — Ay}, (6.66)

where the \; are the square roots of the matrix pagpap, indexed in order of
decreasing size, also known as the singular values, which are real and nonneg-
ative. For mixed states, the negativity is bounded by the concurrence:

N(pap) < C(pag) , (6.67)

which inequality is an equality in the case of pure states [18]. The entanglement
of formation of a mixed state pap of two qubits can be expressed in terms of
the concurrence as

E(pap) = h(C(pap)) (6.68)

where h(z) = —zlog,x — (1 — z)log,(1 — ) has the form of the (classical)
binary entropy function [460].22

20 One vector of eigenvalues of the statistical operator (arranged in decreasing order)
majorizes another if its statistical operator is more mixed than that of the other.
To make the above comparison, one appends the required number of zero values
to the vector of subsystem eigenvalues.

The quantum Rényi entropy is a concave function of these probabilities for 0 <
r < 1; see Sect. 5.5. The operators themselves are sometimes used in place of
the eigenvalue vectors in this notation. Uhlmann’s relation states that, for two
Hermitian operators K and L, K > L if and only if there exist unitary matrices U;
and probabilities p; such that K = ZipiUiLU;r, where the p; are understood as
describing the mixing of operators obtained from L by the corresponding unitary
transformations.

This result, obtained by William Wootters, relating geometric and entropic mea-
sures to entanglement, is conditional on a proof of the additivity conjecture for
entanglement of formation, which is supported by existing numerical evidence.

21

22
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An analytic expression for the concurrence of bipartite systems of
arbitrary finite dimensionalities d4 and dp in pure states, the I-
concurrence, is arrived at by generalizing the “spin-flip” operation
and is written

C(W)ap) = \/25a55(1 — tr(p?)) . (6.69)

where s4 and sp are scaling factors [358] and the labels A and B can
be interchanged without effect. This quantity is readily seen as the
square root of a scalar multiple of the mixedness of the subsystems.
One obtains a measure applicable to mixed states of such systems
by convex-roof extension:

Clp = {px, ¥)r}) = {p,fnglﬂzpkc(‘%k) (6.70)
C s k k

. (k)2
= min 25481 —tr ,
{m,%)}zk:pk\/ A B( (PA ))
(k)

where py” is the reduced state of the subsystem A within the pure
subensemble k. The squares of these quantities are the I-tangle mea-
sures. The concurrence also has a geometrical interpretation, which
is discussed later in Section 7.4, where a geometrical extension to
any finite even number of subsystems is introduced.

One can also straightforwardly define the concurrence of assistance,

Classist (pAB) {plg’l(za\“i))} zl:poﬂWz» s (671)
which is the maximum average concurrence of ensembles {p;, P(|¥;))} capable
of providing the state p4p by mixing. The states from which the mixed state
is formed can be taken, for example, to be those of a purification of p4p in
the presence of an ancillary system. Like the concurrence itself, this quantity
has the advantage of being readily calculable via the trace operation.

6.11 Entanglement witnesses

An entanglement witness is defined as an Hermitian operator such that its
expectation value is positive for every separable state but negative for some
entangled states [415]. Given these properties, entanglement can be detected
through the expectation value of an entanglement witness, because a negative
value indicates the system is entangled. More precisely, a statistical operator
p on the composite system space H4 ® Hp is entangled if and only if there is
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an entanglement witness, an Hermitian matrix W such that tr(pW) < 0 but
tr(p®) W) > 0 for all separable states p*) [223]. Such an operator will have
at least one negative eigenvalue.?? The Bell operator, B, is the most familiar
such operator; see Section 3.5. By measuring the value of an entanglement
witness for the state of a given system, one may be able to determine whether
it is in an entangled state: if a negative expectation value is obtained it cannot
be in a separable state.

Recall from our discussion of the Peres-Horodec¢ki (PH) criterion in
Section 6.5 above, that all positive maps on Ho @ Hs and Ho @ H3 can
be written in the form Ly + Lo o T, where T is the general matrix
transposition map; such maps are called decomposable. Then the
relevant entanglement witness can be written in the form

W=R+(IaT)S, (6.72)

where R and S are nonnegative Hermitian matrices. For larger
Hilbert spaces, there exist nondecomposable positive maps, so that
there exist entangled states for which the PH criterion is satisfied,
namely, the bound entangled statistical states with positive partial
transpose (PPT) [106].

6.12 Entanglement as a resource

Beyond simple collections of qubits, which serve as a resource for quantum
communication tasks such as sending copies of pure states from transmitter to
receiver for QKD, collections of shared entangled qubits allow one to perform a
number of quantum information processing tasks and to implement uniquely
quantum mechanical forms of communication, such as quantum dense cod-
ing and quantum teleportation.?* Transmissible qubits constitute a directed
resource, whereas entanglement is undirected, in that the direction of distri-
bution leading to entanglement being shared is not relevant to its utility.

Entanglement (at least in its bipartite form) can be viewed as a physical
resource similar to energy that can take several interchangeable forms and
can be transferred between different sorts of quantum system. In order to find
exactly how much of the resource of bipartite entanglement they share, two
parties can concentrate Bell singlet states between them. In particular, they
can distill, by collective LOCC (CLOCC) from a number, n, of copies of an
initial bipartite pure (not necessarily maximally) entangled state |®) 45, the
greatest number k < n of singlet states possible:

@)% = 127)5E - (6.73)

23 Methods for constructing such operators have been given, for example, in [417].
24 These tasks are discussed in Chapter 9.
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Distillation can be carried out with an efficiency given by the von Neumann
entropy S(p), where p is the reduced statistical operator of a subsystem of
AB [39]. This is a reversible process, in the sense that there is an asymptotic
scheme in which the inverse conversion

77)35 = 1235 (6.74)

can be performed, again via CLOCC, with equal efficiency. The monotonicity
condition (iii) of Section 6.7 implies that no entanglement distillation scheme
can perform better than this asymptotic scheme.?> Entanglement, like heat
energy, cannot be increased by local operations on remote subsystems. These
reversible transformations, consisting of only local operations that transform
one entangled state into another, produce the analogue of the Carnot cycle.
For pure states of a pair of qubits, both D(pap) and Ef(pap) are equal to
the entropy S(pa) of the reduced statistical operator pa = trg(pap), that is,

Ef(P(7)ap)) = D(P(1%)a5)) = S(pa) , (6.75)

where |¥) 45 is the pure state in question. This highly suggestive analogy has
stimulated an investigation into the depth of the similarities between quantum
information theory and thermodynamics.

6.13 The thermodynamic analogy

The analogy between entanglement theory and thermodynamics was first
drawn by Sandu Popescu and Daniel Rohrlich, who pointed out that any pro-
cess using collective local operations and classical communication (CLOCC)
that preserves entanglement must be reversible [339]. In particular, they have
provided an argument analogous to a traditional thermodynamic argument
for the ideal efficiency of the Carnot cycle; condition (iii) of Section 6.7 can
be viewed as the information-theoretic analogue of the second law of thermo-
dynamics, because it imposes the condition that an increase of entanglement
between systems in distinct laboratories cannot occur as a result of collective
local operations on the systems and classical communication between labora-
tories. This thermodynamic analogy is further enabled by the introduction of
a specific unit of entanglement via condition (iv) of Section 6.7, which has the

25 The limit n — oo is associated with the use of a standard unit of entanglement
to describe the transformation process; taking this limit provides one with a well-
defined ratio characterizing the conversion process of a whole number of states to
a whole number of states, because the entanglement of formation may take any
rational value. In the manipulation of n entangled pairs of particles in state |¥) ap,
the optimal probability of obtaining k singlets tends to 1 when & < D(P(|¢))ag)),
in the infinite n limit; it is not possible to achieve the desired conversion for finite
n. Potential problems arise from the use of this standard unit, however, which
are discussed in Sect. 6.14, below.
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consequence of establishing quantum entropy as the standard bipartite entan-
glement measure; the problem of finding a measure of entanglement of k pure
states is thereby reduced to the problem of defining a measure of entanglement
for n singlet states |&~).

A derivation from first principles of condition (iv) itself runs as follows
[339]. The allowed local transformations are reversible only when the number
of copies of a system becomes arbitrarily large. However, there is no way to
define total entanglement for n infinite, as it would then clearly take an infi-
nite, that is, unphysical value. It is therefore necessary to define entanglement
intensively: the measure of entanglement for n singlets must be proportional
to n. The entanglement of a collection of k systems in an arbitrary pure state,
|¥) A, then approaches that of n systems each in the singlet state |[¥~),

E(I0)az) = lim (Z)E(MAB) , (6.76)

n,k— oo

providing the entropy of entanglement of the state [39]. Any such measure of
pure-state entanglement is thus determined up to a constant factor. The con-
stant term describing the entanglement of the singlet, so far left undetermined,
is then taken to be unity, by convention.?6 This result provides constraints on
entanglement manipulation that can be seen already to be similar to those in-
volving heat in thermodynamics. It has been taken by some to be the starting
point in the development of a full theory of “entanglement thermodynam-
ics” analogous to traditional thermodynamics. However, it is not clear that
any depth is added by pursuing a full-blown version of this analogy; because
the entanglement measure chosen is an entropy, it perhaps would be more
surprising if some sort of analogy could not be developed.

Under this analogy, entanglement plays the sort of role that heat energy
does in traditional thermodynamics; the distillation of pure entangled states
plays the role of extracting work from heat. Recall that the bound entangle-
ment is given by

B(p) = Ef(p) — D(p) . (6.77)

This expression appears to be analogous to the Gibbs—Helmholtz equation of
thermodynamics,
TS=U-A, (6.78)

where U is the internal energy and A the free energy, if T'S is viewed as a
“bound energy.”

26 However, there are objections to having to make such a choice, which are discussed
in the following section.
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When contemplating the analogy between entanglement theory and
thermodynamics, it is helpful to consider the following simple for-
mulation of the three basic laws of thermodynamics.

(1) Heat is a form of energy.

(2) Tt is impossible for any cyclic process to occur the sole effect of
which is the extraction of heat from a reservoir and the performance
of an equivalent amount of work.

(3) The entropy of a system approaches a constant value as the
temperature approaches zero.

These three laws allow for the reversible transformation of work into
heat and vice versa. One can then formulate the assumptions of
thermodynamics as follows, “There is a form of energy (heat) that
cannot be used to do work, that nonetheless can be used to store
work though work can be stored in heat only if there is some heat
to begin with, in which case work can be stored reversibly.” [225].

Recall that, according to condition (iii) for well-defined entanglement mea-
sures given in Section 6.7, any good measure of entanglement, £, must satisfy

p—{pi,pit = E(p) > ZpiE(Pi) (6.79)

under LOCC. Consider then two parties, Alice and Bob, who initially share
a collection of pairs of subsystems described by an n-fold product of the bi-
partite system state p, p®" = p® --- ® p, where n is taken to be large,
collectively and locally operate on the members of each shared pair, com-
municate using a classical information channel if they desire, and/or arrange
their local subsystems into subensembles p; represented with probabilities p;.
The above condition indicates that the average entanglement remaining at the
end of such a CLOCC transformation cannot exceed the initial shared entan-
glement. The combination of the entangled-state distribution process and the
entanglement distillation process that accumulates pure entangled states from
mixed states and is seen to be analogous to the process of cycling an engine
that obtains work from heat; bound entangled states, being those entangled
states from which no pure entanglement can be distilled, are analogous to
thermodynamic systems from which no work can be drawn and are seen as
containing “fully disordered entanglement.”

Accordingly, the following “laws of entanglement thermodynamics” have
been suggested by analogy to the above traditional thermodynamic laws [225].
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(1) The entanglement of formation is conserved.
(2) The disorder of entanglement can only increase.
(3) One cannot distill singlet states with perfect fidelity.

The “law” (1) corresponds to condition (ii) of Section 6.7. There is an analogy
to reversible work extraction here, although in general one needs more entan-
glement (in the form of singlets) to create a state than can be drawn from it.
In traditional thermodynamics, the second law dictates that any thermody-
namical system has more energy than can be extracted from it, except when
one of the reservoirs is at zero temperature. The same holds in this “thermo-
dynamics of entanglement” where for a general mixed state p, D(p) < E¢(p).

However, attempts to continue further with this treatment of entanglement
in order to complete the analogy run into difficulties. The completion of such
an analogy requires the completion of the correspondence between fundamen-
tal quantities in the two theories. Given that the role of entropy is played by
S(p), it is by no means clear what quantity is to play the role of temperature,
T'; one is required to find a well-defined “temperature of entanglement,” T'(p),
for mixed states (when S(p) > 0) of the form

T(p) = B(p)/S(p); (6.80)

(c¢f. Egs. 6.77-78) if the “entropy of entanglement” is to be taken to be S(p),
as is suggested by the fact that this results, for pure states, in the equality of
the entanglement of formation and entanglement of distillation (cf. Eq. 6.76
and [111]). The temperature analogue is conspicuously absent from the above
statement of “laws of entanglement thermodynamics.” The lack of a well-
defined such quantity brings this approach strongly into question because,
for example, the third law of thermodynamics is expressed in terms of the
behavior of entropy with respect to temperature.

6.14 Information and the foundations of physics

The superposition principle is a fundamental principle of quantum mechan-
ics. In multipartite systems, this principle provides the entangled states, in
which the most unusual quantum phenomena arise through extraordinary
nonlocal correlations of physical properties. Physicists and philosophers have
long suggested that by studying entanglement one might develop a deeper in-
sight into the reality described by quantum mechanics. About this there can
be little doubt, as witnessed by the history of results discussed in Chapters
2 and 3. More recently, as shown in this chapter, the quantitative study of
entanglement by quantum information science has provided helpful and sug-
gestive relationships between information in the possession of agents having
the ability to perform local actions on quantum systems and to communicate
with each other and thermodynamics. As just shown, some of these relation-
ships suggest an analogy between entanglement and heat under which formal
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correspondences can be made between some thermodynamical quantities and
entanglement measures, under certain specific conditions, through a particular
novel use of quantum entropy functions.?” The analogue of the thermodynamic
limit is certainly important in the quantum information context, because the
limit of an infinite collection of copies of a quantum states must be considered
when quantifying the entanglements of formation and distillation, as we have
seen. The relationship between quantum mechanics and information theory
has led some to believe that information theory plays a special role in fully
exposing the deepest aspects of physical reality. Some investigators have even
suggested that information is more fundamental than matter, along the lines
of John Wheeler’s “it from bit” idea [452], that matter is reducible to infor-
mation [471] or vice versa [269, 271].2%

However, there are currently significant limitations to the information-
resource theory of entanglement itself. In addition to the difficulty of com-
pleting “entanglement thermodynamics,” the argument for the uniqueness of
the quantum entanglement measure based on a mutatis mutandis argument
may be seen to induce an unwarranted dependence on the choice of unit—
the introduction of the Bell singlet state as providing an “e-bit” of entangle-
ment—manifest in the ratio problem [314]: ratios of entanglement measures,
such as the entanglement of formation or distillable entanglement of two dif-
ferent states, may depend on the particular state chosen as the basic unit of
entanglement when the degree of entanglement is referenced to it. By con-
trast, the thermodynamic entropy does have a unique measure, as shown in
the axiomatic approach of Giles [183]. Furthermore, the investigation of en-
tanglement for multipartite systems reveals the existence of different sorts of
entanglement not quantifiable in terms of a fundamental e-bit unit, as discuss
in the next chapter. Moreover, it has been shown that no unique measure
of entanglement exists in the case of mixed states [306]. These represent sig-
nificant impediments to the reduction of quantum entanglement to informa-
tion. Thus, although within the context of quantum information processing
it clearly is possible to treat entanglement as an information-processing re-
source, it is by no means obvious that this approach is ultimately the best
way of understanding entanglement itself in the broader physical context.

Nonetheless, given the benefits of viewing entanglement as a quantum
resource, one may be under the impression that quantifying entanglement via
entropy measures, involving condition (iv) and explicated in Sections 6.7 and
6.12, is the only good method of quantifying entanglement. However, another,
related framework for quantifying entanglement has made significant progress
where the information-theoretic approach has run into difficulties, namely, in
the case of multipartite states. This second approach, outlined in the following

2T See also [433], where it was shown that Giles’s theory can be seen as encompassing
both quantum and classical information-processing models due to similarities in
mathematical structure.

28 For a discussion of some of these ideas, see [421].
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section, is more clearly rooted in traditional physical methodology in that it
is based more on geometry and symmetry than on information theory.

6.15 The geometry of entanglement

Entanglement can be investigated from the geometric point of view, because
the properties of quantum states and the classification of composite quantum
states according to these properties relate to geometry as well as information.
For example, measuring the degree of entanglement as the distance of the
state from the nearest factorable state, that is,

Eg(1#)) = 5 min| [#) - |2) ||* (6.81)

where | Z) is a (normalized) product state in Hilbert space and the minimum is
taken over the set of such normalized product states (cf. Eq. 6.23), provides the
distance of the closest separable approximation proposed by Shimony [383].
The Hilbert-space angle ¢ = cos™* (|(#|=)]) is the natural distance between
two state-vectors, and takes the state overlap to a distance function derivable
from the Fubini-Study metric, which is a Riemannian metric on projective
Hilbert-space [458]; see Section A.4. The above measure of entanglement is a
very natural one due to its generality and direct relationship to the original
definition of entanglement as nonfactorability unlike, say, the entanglement
as measured by the von Neumann entropy of subsystem reduced states.

Any monotonically increasing function of Eg(|¥)) gives the same ordering
of normalized vectors |¥), and serves as an equally acceptable such measure. In
the case of pure states of two-qubit systems, at least six such measures can be
found from conceptually distinct starting points that are monotonic functions
of E¢(|?)) [383]. One can find the nearest separable state to a given state by
solving the corresponding nonlinear eigenvalue problem [448]. This quantity is
defined independently of explicit locality considerations, something of value in
light of the limitations of locality conditions discovered in the context of the
use of Bell inequality violation for this purpose. Further geometrical treat-
ments are discussed in the following chapter, where entanglement in larger
multipartite states is explored.

The results of the geometric approach to quantum entanglement may im-
prove our understanding of entanglement in quantum information processing
and may also provide insight into the incompletely understood relationship be-
tween entanglement and quantum speedup, a question of fundamental impor-
tance to quantum information processing. Let us now consider how quantum
entanglement is created in practice, before considering multipartite systems.
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6.16 Creating entangled photons

Since Alain Aspect’s famous tests of the Bell inequalities confirming the pres-
ence of nonlocal quantum phenomena, which used a two-photon source based
on a double atomic-cascade transition, optical tests of quantum information
processing principles have used increasingly efficient sources of entanglement
based on spontaneous parametric down-conversion (SPDC) in second-order
x® nonlinear crystals [16].2° Bell-inequality violations and related phenom-
ena have most commonly been demonstrated through the use of highly cor-
related pairs of photons generated by SPDC. Parametric down-conversion is
an optical “three-wave mixing” process, in which an input light field “pump,”
with a frequency centered about a given value wp, induces oscillations in
electrons within a dielectric medium, traditionally chosen to be a noncen-
trosymmetric nonlinear bulk crystal, which in turn radiates light at two lower
frequencies; see Fig. 6.2. Because the electrons in the medium do not undergo
state transitions during this process, it is referred to as a parametric process.

signal s ks
— ©p, k
pump pump “r S
NLC idler
@, kg

Fig. 6.2. Spontaneous parametric down-conversion (SPDC). Photons down-
converted in a nonlinear crystal, NLC, from a pump laser beam, coming in at the
left, emerge pairwise, to the right, each in one of two cones, one as “signal” and one
as “idler,” on opposite sides of the pump-beam direction with frequencies obeying
phasematching conditions corresponding to the conservation of momentum.

An SPDC process is either of “type I” or of “type II,” depending on
whether the two photons of the down-conversion pair have identical or or-
thogonal polarizations, respectively. The two photons may leave the nonlinear
medium either in the same direction as or in different directions from that of
the pump beam, that is, collinearly and noncollinearly. Down-conversion pho-
tons are often accordingly described as collinear or noncollinear pairs, as well
as being considered to be of type I or type II. In SPDC, conserved quantities
of the electromagnetic field are preserved in the resulting photon pair due to
the constraints of their respective conservation laws, as the electrons of the

29 1) is the susceptibility tensor; see [206] for a general discussion of x® processes.
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medium do not ultimately exchange energy or momentum with the fields.?° In
particular, at the quantum level, such down-conversion is of one photon into a
pair of “daughter” photons, occurring spontaneously with a small probability
that is proportional to the input light intensity due to stimulated emission
induced by fluctuations of the vacuum field.3?

The phases of the corresponding wave-functions must satisfy the relations

w1 + w2 = wp, ki + ko = kp, (6.82)

the latter being known as phasematching conditions, on energies and mo-
menta, respectively, where the k; and w; are photon momenta and angu-
lar frequencies, respectively, and subscript P refers to pump photons. The
down-conversion photons (here labeled ¢ = 1,2) are called the signal and the
idler photon. In this process, energy and momentum are conserved within the
down-conversion medium, where differences in indices of refraction allow for
their conservation; as the down-converted photons leave the medium of down-
conversion, they are refracted, transferring momentum to the medium. With
strong pumping and phasematching conditions satisfied, down-conversion can
be viewed as a decay process. When the two photons of down-conversion have
the same frequency, the process is referred to as (frequency) degenerate.

Phasematching in SPDC requires a specific relationship between in-
put light and output light, the conditions for which are provided by
the medium of down-conversion [63]. In bulk nonlinear crystal such
as potassium titanyl phosphate, S-barium borate, and lithium nio-
bate, phase matching conditions can be satisfied by proper angular
alignment and polarization orientation of pump light. The range of
wavelengths over which phasematching can be achieved can be lim-
ited, because the phase relationship between beams changes as light
travels through nonlinear crystal but this can be counteracted by
the natural birefringence of the crystal. Periodic inversion, or “peri-
odic poling,” of the ¥ nonlinearity in a crystal allows the power
of down-conversion to continually increase, whereas it would other-
wise lead to a cyclic growth and decay of down-conversion intensity
over the interval of one coherence length. Such periodic poling pro-
vides “quasi-phasematching” and allows for significantly improved
SPDC output [13, 167, 173]. Improvements of photon-pair genera-
tion efficiency of several orders of magnitude over traditional bulk
crystal sources have been achieved by this method. For example,
quasi-phase-matching in the ferroelectric crystal lithium niobate al-
lows a nonlinear susceptibility tensor coefficient many times larger
than the largest one that can be used for birefringent phasematching.

30 Electrons can, however, be viewed as entering “virtual energy levels” within the
medium during the down-conversion process.

31 This is due to the very weak coupling among the three optical modes, even in
media with very strong nonlinear susceptibilities.
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In either type of SPDC, when the photons of a down-conversion pair are
allowed different individual momenta or energies by the phasematching con-
straints, entanglement arises when the pair is prepared in such a way that its
joint down-conversion possibilities are in principle indistinguishable; although
the values of energy and momentum for each individual photon are indefi-
nite, they are perfectly correlated. These photon pairs are created within a
time window defined by the laser pump-field coherence time, 7. The ability
to engineer such possibilities makes SPDC photon pairs especially useful in
a range of practical applications [236]. In particular, singlet states produced
in this way are a fundamental source of entanglement. The evolution of the
three optical modes involved in SPDC can be described as

o) e (— 1 [ rar) 1wo) (6.83)

in the interaction picture (about which see, for example, [359]). The interac-
tion Hamiltonian is H; = hg&{dé&p + h.c., where g is the interaction strength
and af(a) indicates a creation (annihilation) operator of an electromagnetic
field mode; |#(0)) is the initial state of the three-mode composite system and
“h.c.” denotes the Hermitian conjugate of the first term of the sum.3?

Type-I down-conversion is often the preferred process for creating entan-
gled photon pairs, because higher intensity down-conversion beams can gen-
erally be achieved under the corresponding phasematching conditions than in
the type-II case [265]. The ideal photon pair as produced by type-I SPDC
emerges in the state

|W> = |VaC> + n fdkldwl fdkgdwg
D(ky, koswi,wz) @l (ki,wr)ad(ke,ws)|0)]0) , (6.84)

where |vac) is the vacuum state and @(k;,ks;wi,ws) describes the energy-
momentum distribution of the resulting fields. The proportionality parameter,
7, between the vacuum state (resulting when no down-conversion takes place)
and the photon pair is the photon-pair creation efficiency; n is proportional
to the interaction strength g and /i, and has a squared value much less than
unity.

In this case, the two photons leave the nonlinear medium in the same
polarization state, which is orthogonal to that of pump photons, and the two

32 Note that the (optically) nonlinear interaction described here gives rise to a uni-
tary transformation of the composite system of pump and down-conversion light
beams. In the case of a planar continuous wave (c.w.) pump field, the initial state
of the system is simply |[#(0)) = [0)1|0)2|\/&)p, where y is the mean-photon num-
ber of the coherent state, |,/t)p, describing the pump field that is an important
parameter for producing effective single-pair production, and thus conditional
single-photon states for quantum key distribution by “heralding” the production
of one photon by the detection of the other.
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down-conversion photons may be entangled in direction but not polarization,
as in the state

@) = Z §(w1 + w2 —wp)d(ks + ko —kp)|k1)|k2) | (6.85)

1,2

where 1,2, and P refer to signal, idler, and pump, respectively; the vacuum
contribution has been left out. The down-conversion photons emerge within
two broad cones, one corresponding to each photon, where in any given pair
one photon appears within its cone on the opposite side of the direction defined
by the pump beam direction from that of its “twin sister” photon. These
two photons also generally differ in energy (color) in accordance with the
phasematching conditions. Pairs of beams can then be spatially filtered to
provide two spatial qubits, one for each beam, as in the double Mach—Zehnder
arrangement for two-particle interferometry discussed in Section 3.6.

As an example of type-II SPDC, consider a situation involving a pulsed
(noncontinuous wave) laser pump beam where, for simplicity, output beams
are collinear; in such a case, the two-photon state can be written

@) = /dwo/dwc B(Wo, we) @l (wo)al (we)|0)]0) (6.86)

(again neglecting the vacuum term) where o (ordinary) and e (extraordinary)
indicate the orthogonal polarization states that define this type of SPDC. By
taking the appropriate Schmidt decomposition

D(wo, we) = Zaj§j<w0)Xj(W6) (6.87)

of this state, one can study the frequency entanglement of the output photon
pair, where the amplitudes and eigenstates obey the integral equations

[ Kofws) &) = ad(o) (6.58)
/ ' Ko (w,0) x5 (0) = a2x(@) | (6.89)
with kernels
Kofor') = [ don@(w.w)0" (W, 00) (6.90)
Kolw) = [ a0, o) (6.91)

providing single-photon spectral correlation functions.
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Whenever more than one of the (without loss of generality, real) coeffi-
cients a; are nonzero, the state is frequency-entangled. Numerical study of
this state has shown an overwhelming majority of the state-vector compo-
nents to lie in a Hilbert subspace of small dimension, so that it is capable of
providing a physical qu-d-it for quantum information-processing applications.
To study entanglement in this case, one can examine an effective Schmidt
number by counting the number of nonnegligible contributions, a;, and using
the entropylike quantity

n
S = Z a?logyaj , (6.92)
j=1

which converges to the von Neumann entropy in the limit of infinite n [273].






7

Entangled multipartite systems

One unsatisfied desideratum for entanglement measures is that of full gener-
ality. There is no known single good entanglement measure applicable to all
mixed states of systems with arbitrary numbers of subsystems. At present, the
bipartite case is the only one in which definitive results may be said to have
been obtained, by reference to the number of Bell states asymptotically inter-
convertible by local operations and classical communication to other states.
The von Neumann entropy used in the previous chapter is a reliable measure
only of bipartite entanglement. The partial entropies, defined as the num-
ber of Bell-state pairs convertible to subsystem states, can be unequal for
distinct portions of a multipartite quantum system of more than two com-
ponents. Because partial entropies are conserved by asymptotically reversible
local operations and classical communication (LOCC) involved in the per-
tinent interconversions, they can therefore no longer be viewed as absolute
entanglement measures beyond the bipartite case, in which there is only one
way of partitioning the composite system [48]. This prevents the straight-
forward extension of the standard entanglement measure, the entanglement
of formation, to the general multipartite case, as would be natural given its
utility in characterizing bipartite entanglement. Schmidt number, a coarse
measure, has been generalized to n-parties and then applied independently to
various entanglement classes but, although it satisfies most of the conditions
on entanglement monotones, it fails to satisfy condition (v) of Section 6.7
[148, 149].

In the case of composite systems distributed among several parties, some
of the requirements on good entanglement measures are different from those
for the special case of bipartite systems. Recall from the discussion in Section
2.6 that local operations include local unitary transformations (LUTSs), the
addition of ancillary particles and/or degrees of freedom, local measurements
(including POVMs), and the discarding of parts of the system, as performed
by any agent on the subsystem within its laboratory, and are described by
CP maps. For a two-component partition of a composite system into a lo-
cal subsystem in lab A, and the remainder of the total system in lab B, a
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general local operation (LO without communication) can be described by a
superoperator transforming the total system statistical operator, namely,

p—Ep ZZ A; @ By)T, (7.1)

1=1 j=1

where A; and B; are operators acting separately in the Hilbert spaces of A
and B such that ) ATA; = Tand 3 BJT-BJ» = I. When communication between
laboratories, each possessing one part of the compound system, is allowed in
addition to local unitary transformations, the transformations belong to the
set of LOCC operations and both one-way and two-way classical communica-
tion may take place.

Those situations in which one laboratory, say A, may communicate mea-
surement results to another laboratory, say B, known as one-local operations,
are describable by superoperators of the form

m,n p

P =33 e B") Ay @ Dp(dy oD Ie BY) . (72)
1,7 k=1

where an operation B on lab B’s local subsystem may depend on a measure-
ment outcome k in lab A and 3, AL ;Ak; = I for each value of k. Two-local
operations are those allowing any sequence of such operations with classical
communication from agents in either laboratory; the set of LOCC operations
is that of all such operations by any pair among all the parties present in a
given situation. If such transformations are performed on a number of identi-
cal copies of a system they are collective local operations and classical com-
munications (CLOCC).? The generalization to multi-local transformations is
straightforward.

In the case of operations on a single copy of a system, when a state transfor-
mation under LOCC always succeeds it is called exact. If the transformation
can only be accomplished with some probability, it is a stochastic or local
filtering (SLOCC) transformation. If a state transformation can only be ac-
complished in the presence of another state it is called catalytic, by analogy
to situations in chemistry involving molecular reactions where the presence
of the chemical catalyst is required for certain reactions to occur and the
catalyst is intact after the reaction; a given such catalyst state can be used
repeatedly in various transformations.? When catalyst states supplement a
class of transformations, a “c” is appended to the acronym, as in the class of
LOCCc transformations. When a number k of parties each possessing a local
subsystem is involved in any of the above, the prefix k- can be prepended to
the class designation.

! The entanglement distillation process shown in Fig. 9.1 is an example of CLOCC.
2 For a discussion of catalytic processes, which will not be discussed further here,
see [48].
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In the special case of tripartite systems, entanglement for pure states of the
available bipartite partitions can still be indirectly quantified using bipartite
measures such as concurrence, by finding the residual tangle, 74 g¢; see Section
7.7 below. By considering the inter-convertability of three-qubit states under
SLOCC transformations, one is able to isolate two equivalence classes of three-
qubit pure states. However, for larger systems one has no choice but to seek
new entanglement measures. The first three conditions and the fifth condition
on entanglement measures Ex of Section 6.7 can be extended by replacing
paB by pap... and by removing the reference to singlet states in condition (iv)
to arrive at an alternative form of the condition (iv’), specifically,

(iv') Ex should be additive for tensor products of independent states
shared by the same parties.?

The resulting five conditions on good entanglement measures must then also
be supplemented by a sixth condition, specifically,

(vi) Ex should be stable under the transferral of subsystems between
parties.

At the four-qubit level, a necessary condition for the existence of a
reversible protocol for converting n copies of a four-qubit GHZ state,

L
V2

into singlet states corresponding to the quantum entropy unit, is that
the entropies of the initial and final states after transformation be
the same. However, no combination of singlets shared among four
parties has the same ratios of entropies as does the state |GHZy).
Thus, it is impossible for the four-party GHZ state to be reversibly
transformed into singlet states. This demonstrates the existence of
a genuinely new kind of entanglement beyond the bipartite kind
with the conditions imposed on entanglement measures above [48].
Indeed, even for the three-qubit GHZ state, which is entangled, any
two reduced states shared by two of three parties have no bipartite
entanglement. What is known is that any entangled state can be
nonreversibly obtained from a sufficiently large number of copies of
the singlet state.

|GH Z4) = —(|0000) + [1111)) , (7.3)

In this chapter a number of results and relations are presented, many
being essentially formal in nature, that can assist in navigating the states of
multiple-qubit systems. Of the various sections that follow, only Section 7.8 is

3 Condition (iv') is the additivity conjecture for multipartite systems.
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necessary for a basic understanding of quantum information processing. The
reader may wish to proceed immediately to that section on a first reading.

7.1 Stokes and correlation tensors

Symmetry has long played an important role in the investigation of quantum
mechanics, as in all parts of physics. Not surprisingly, a geometrical approach
also allows for progress in the classification of entangled states. The behavior of
quantum states under local unitary transformations (LUTSs) and stochastic lo-
cal quantum operations and classical communication (SLOCC), both of which
have associated symmetry properties, has helped illuminate the nature of en-
tanglement in multipartite quantum systems; from the geometrical point of
view, the associated group-invariant lengths are Euclidean and Minkowskian
in character, as we show in Section 7.4, below. Recall that for two-qubit sys-
tems, in addition to being quantified by the von Neumann entropy of one of its
single-qubit subsystems, entanglement can also be characterized in terms of
symmetry-based quantities, concurrence and tangle, through the introduction
of the two-qubit spin-flip operation, p = 0'892,0*05@2, where p* is the complex
conjugate of the two-qubit statistical operator p and o5 is the Pauli operator
performing universal single-qubit state-vector inversion [460]. As we show in
Section 7.2 below, related geometrical quantities can be defined for the study
of multiple-qubit states and have been used in attempts to provide absolute
multipartite-entanglement measures [28, 240, 383, 447].*

A helpful method for grounding the study of multipartite entangled states
that allows for their geometrical characterization is to connect them with
straightforwardly measurable quantities. Any practical measure of multipar-
tite entanglement must bear a clear relation to such measurable quantities,
such as n-fold coincidence counting rates in multi-photon interferometry [236].
Vectors of correlations in multipartite systems can be constructed that cap-
ture their collective nature.’ In particular, the Stokes parameters correspond
to empirical counting rates and can be generalized to aid in this task. In partic-
ular, the N-qubit Stokes parameters generalizing the traditional (single-qubit)
Stokes parameters can be used, which are given by

Siy v =tr(poy, @ ®0iy) i1,...,in=0,1,2,3, (7.4)

where O'Z =1, p=0,1,2,3, are the three Pauli matrices together with the
identity o9 = I, and itr(c,0,) = 8, [240]. These generalized Stokes pa-
rameters are simply the expectation values of Pauli group elements.® These

4 We show, however, that these measures have their own limitations.

5 Quantum state tomography, for example, involves the measurement of these pa-
rameters for reconstruction of the quantum state p ; see Section 8.1.

5 The elements of the Pauli group also play an important role in the description of
quantum bit errors and their correction. Quantum error correction and the Pauli
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directly observable parameters form an N-particle generalized Stokes tensor,
[Si, ..in ], the invariants of which are useful in characterizing states of multiple-
qubit systems, just as in the case of bipartite systems discussed in Section 6.4.
These quantities can be generalized so as to apply to qu-d-it systems [9].

One can then represent the statistical operator using the operators {5\1}
generating SU(N) rotations, of which the Pauli matrices above are those for
N = 2. In particular, the expectation values, A\; = tr(pj\i), of these generators
form the (N? — 1)-dimensional coherence vector, A, in terms of which the
statistical operator is

1 N
p= Tty XA 75)
j=1

which is the generalized Bloch-vector form of the state.” Consider the standard-
basis eigenvectors {|j)} for the Hilbert space of the system in question and
the transition operators, Pjj, = |j)(k| , the P;; = P(|5)) being corresponding
projectors. One then also has the vector of N? — 1 operators

A:{’11212711235’'''71}127@133@21%"'7uA}17’l1\)2)'"3111]]\/'—1} ) (76)
where
Uik = Pjr + Pyj (7.7)

ik = i(Pjr — Prj)

(7.8)
b= — |2 (Piy -+ By — 1Py o) (7.9)
wp = l(l+1) 11 1 I+1,14+1) » .

with1 <j< k<N, 1<1I<N-=-1((cf Egs. 1.19-21 for the case of SU(2))
[215]. In the case of the density matrices representing the statistical operator,
one then has matrix elements p;, = tr(ppjk) and corresponding expectation
values for 4y, Uk, and w; in terms of density matrix elements.®

It is also useful to construct trace relations involving the quantities

C(n,q) = tx(p?) , (7.10)
where
C(n,2) = pispji (7.11)
ij
C(n,3) = pijpjkpri » (7.12)
4,5,k

group are discussed in Chapter 10, below. See also the discussion of the Pauli
matrices in Sect. 1.3, which focuses on single-qubit Stokes parameters.

7 In this section, the notation “*” is in some cases used to designate operators, to
aid in distinguishing operators from scalars.

8 These operators have been treated in detail [276] and applied to a range of situ-
ations, as discussed in [293].
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and so on, which are invariant under unitarities and are related to state purity
and entanglement in Section 7.6, below [215]. The C(n,q) are particularly
useful for quantum state spectroscopy; see also Section 8.3.

One can construct correlation tensors in the qu-d-it case, as follows.
For bipartite decompositions, one has the tensor components

K = (AP (7.13)

and correlations

My = Kij — NP (7.14)

which, again, are zero for product states; for entangled states some of
the M;; are nonzero (cf. Eq. 3.26-27), where A and B indicate sub-
systems. Cluster operators, useful for the study of entangled states
of quantum networks, can also be constructed by taking the obvious
tensor products of generators A, as in the case of the Pauli group,
which are again expressible in terms of transition operators. Simi-
larly, useful cluster sums can be formed by summing over products
of expectation values \;, K;;, and M;;, and so on [293].

7.2 N-tangle

The bipartite tangle measure of entanglement, 7, which is equivalent to the
square of the concurrence introduced in Section 6.10, can be generalized so as
to apply to any even number of qubits. In particular, taking

@) = oSN o) | (7.15)

where |¥) is a multiple-qubit state, one can define an N-tangle measure, 7y,
generalizing 7 so as to apply to N-qubit states for those cases in which N is
even [457].% In particular, one can take

™ = |[(F|P)?, (7.16)

which is, therefore, a symmetry-based measure of entanglement as 7 itself is.
As an example, note that the four-qubit |GHZ,) state can be seen by in-
spection to be unaffected by the global spin-flip operation USM and hence to
have 74 = 1. The N-tangle is the Lorentz-group invariant length for N-qubit
states, and is further explored in Section 7.4, below [414]. For two-qubit pure
states, the Lorentz-group invariant coincides with the tangle [240]. Relation-
ships among entanglement, mixedness, and spin symmetry in multiple-qubit
quantum states are found by exploiting these symmetry properties, as is shown

in Section 7.4 below [10, 237].

9 Note also that the oo matrix performs the universal single-qubit inversion oper-
ation on pure states.
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7.3 Generalized Schmidt decomposition

Multipartite extensions of the Schmidt decomposition of pure states intro-
duced in Section 6.2 can also be found in special situations. For three parties,
each in possession of a system described by a d-dimensional space, the com-
bined pure state lies within in a d>-dimensional Hilbert space and depends
on 2(d® — 1) real parameters, whereas the transformations used to unitarily
transform this state have only 3(d? — 1) independent real parameters. Thus,
it is often impossible to obtain a Schmidt decomposition for a given pure
state. However, the construction of a generalized Schmidt decomposition may
proceed in some three-qubit systems [327]; the three-party states that are
uniquely determined by two-party reduced statistical operators for pairings
of component systems are just those admitting a three-particle Schmidt de-
composition [285]. Furthermore, an N-partite pure state can be written in
generalized Schmidt form if and only if each of its N — 1 partite reduced
states, resulting from tracing out one party, is separable [418].

7.4 Lorentz-group isometries
As noted in Section 7.2 above, concurrence and N-tangle are naturally ex-

pressed in terms of spin-flip transformations. Recall from Section 6.10 that
the generalized concurrence for bipartite pure states of any dimension is

C(IP)ap) = \/25.455(1 — tx(s?) , (7.17)

where py is the reduced statistical operator of either of the two subsystems,
I = A, B and the s’s are just scaling factors [358]. This is simply the square
root of a multiple of the mixedness M(p), as defined in Section 1.1, of the
reduced state. The spin-flip operation generalized to higher dimensions is the
universal state inversion, described by a superoperator Qg4 such that

(i) Oy4 is an automorphism on Hermitian operators,

(ii) Og4 commutes with all unitarities, and

(iii) The inner product ((#|apOa, @ Ouy P(I¥)aB))|¥) , , is nonnegative
for bipartite pure states |¥)4p, being zero for separable pure states.

The superoperators satisfying these conditions are the multiples of (I — p;),
where p; is the reduced statistical operator of one subsystem of AB [357].
Complementarity relations involving this and more general invariants have
been derived, as now shown [237]. First, note that the multi-local Lorentz-
group invariant, that is, the SL(2,C)*-invariant S?N) of the multiple-qubit
Stokes tensor, is expressible in terms of the generalization of the spin-flip op-
eration to any number of qubits (see box below), and for two-qubits coincides
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with the tangle:'°

Sty (P(|®))) = 7(P([w))) = C*(P(|))) . (7.18)

The SL(2,C)*N-invariant length, which can be compactly expressed
as

Sy (p) = tr(pp) , (7.19)

is expressible in terms of the generalization of the spin-flip operation
to any number of qubits that takes

p— p=oSNp aSN . (7.20)

This quantity is naturally related to the N-tangle, 7, a multipartite
entanglement measure for even numbers of qubits [457]; for pure
states, one has that

Stwy (P(0))) = (@) ? = 7 . (7.21)

7n and ) are defined in Section 7.2. See also Eq. 6.30 and [414].

By considering the spin-flip symmetry measure,

I(p,) = 1 — Dis(p— ) . (7.22)

where Dpg(p — p) is the (renormalized) Hilbert—Schmidt distance

Dus(p ') =/ 31r((o — p?) (7.23)
in the space of statistical operators, which measures their distinguishability,
the Lorentz-invariant length, the mixedness, and the spin-flip symmetry of
multiple-qubit quantum states can be related. First, note that S%(p) and state
purity are related by the square of the Hilbert—Schmidt distance between the
state p and its spin-flipped counterpart p :

Diis(p —p) =Plp) — Sx(p) , (7.24)

where P(p) is the purity of p, which is a Euclidean length in the real represen-
tation. One sees, then, that the following relation exists between the geomet-
rical quantities of Lorentz-invariant length associated with multipartite-state
entanglement, the Hilbert—Schmidt distance of p from p, and the state purity:

Stny () + Dits(p = p) = P(p) - (7.25)

10 Recall that the group SO(3) acting locally on Stokes tensors, which corresponds
to that of unitary transformations of statistical operators, is a subgroup of the
Lorentz group, SL(2,C); see Sect. 1.3.
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Equivalently, one has the following simple general relation between multi-
qubit Lorentz-group invariant and mixedness, M(p) =1 — P(p).

Sty (p) + M(p) = 1(p, p) (7.26)

[237]).11 When the state p is spin-flip symmetric, I(p, 5) = 1 so that this is
a (restricted) complementarity relation. For pure states, for which S(QN) is an
entanglement measure, P(P(|¥))) = 1, so that M(P(|¥))) = 0, and this
expression becomes the equivalence relation

Sty (19)) = I(P(1)), P(19))) - (7.27)

Thus, for pure states and N even, entanglement so defined coincides with
indistinguishability under the multi-local “spin-flip” transformation.

7.5 Entanglement classes

Consider now the question of quantum entangled-state classification for mul-
tipartite systems. A classification of entangled states can be obtained via the
inherent transformational properties of states. A useful starting point is an
ordering based on the accessibility of states from each other by local opera-
tions. For bipartite pure states under 2-LOCC, a partial ordering can be given
based on majorization that is a total ordering. In particular, one state can be
transformed into another by 2-LOCC if and only if the former is majorized
by the latter (see Section 6.9). For more than two parties, however, it is no
longer possible to find such a total ordering for all states. A generic multipar-
tite state, p, can be converted into a state p’ if and only if, for every e, there
is an integer m and a sequence of (deterministic) LOCC transformations Ly,
such that for any integer n > m

1L (p®") = 7| <€ (7.28)

for n copies of the state, where || - || is the trace norm [306]. When these
transformations are reversible, this allows for the identification of equivalence
classes represented by a given state, p'.

One can also define classes of multipartite quantum states by accessi-
bility through SLOCC. Recall that SLOCC transformations are local quan-
tum operations together with classical communication that transform states
with some finite probability of success, rather than with certainty. Two pure
states are of the same class in this sense if the parties involved have a chance
of successfully converting one state into another under SLOCC, that is, if
@'y = My @ My ® --- @ My|¥), where M; € SL(d,C) is an invertible ILO
acting on the d;-dimensional Hilbert space of subsystem 4 [48].12

1 The similarity of this expression to Eqs 3.28-29 is striking.

12 Quch classes of states pertain to the ability to perform quantum information-
processing tasks with a given probability, such as in the KLM proposal for quan-
tum computing (see Sect. 13.8).
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Let us, therefore, turn to the problem of classifying multipartite states
by finding equivalence classes under state transformations rather than via
their utility as resources for various tasks. One can find equivalence classes
under local unitary transformations (LUTs) of the statistical operator and
equivalently under (local) rotations of the Stokes tensor, as compound states
are equivalent in their nonlocal properties if they can be transformed into each
other by such operations. Each group, G, of transformations acts transitively
on an orbit O = G/S, where § is the stabilizer subgroup of the orbit and is a
subgroup of G.!3 This requirement is equivalent to invariance under the choice
of local Hilbert space basis. Lower bounds on the number of parameters needed
to describe equivalence classes have been provided that show the insufficiency
of the total set of state descriptions of local systems for specifying the state
description of the compound system they comprise.!*

In particular, because states of N qubits are equivalent in entanglement
when they lie on the same orbit under LUTSs of the statistical operator, each
such orbit corresponds to a single entanglement class with characteristic in-
variant quantities. The orbits have specific dimensionalities, dimQ, given by
the dimension of the stabilizer subgroups, dimS, of states on the orbit and
the dimension dim@G of the group in question:

dimO = dimG — dimS (7.29)

where for LUTSs, G, being local, has elements of the form U; ® Us ® - - - @ Uy so
that each unitary transformation U; acts on a Hilbert space corresponding to
a component of the total system in the possession of a single party in its local
laboratory. The dimension of the orbit is just the number of real parameters
required to specific the location of a state in the orbit. The Hilbert space of
pure states of IV parties, each in possession of a single qubit is, as we have

seen previously,
HM =C?@C?---@C?. (7.30)

Any pure state of the compound system is therefore described by 2(2V — 1)
real parameters, because there are 2V complex parameters and so 2N+ real
parameters describing any state on this space, of which normalization reduces
the number of real parameters by one, as does the freedom of global phase.
The number of parameters describing a state thus grows exponentially with
the number of components, N. Quantities invariant on an orbit thus specify
nonlocal equivalence classes of states, as discussed in the next section.

In contrast to situations described by LUTs, in LOCC each agent can per-
form generalized measurements on its local subsystem and classically com-
municate measurement outcomes to other agents. The other agents can then
choose their local transformations in way conditioned by these outcomes.!®

13 Consider S be the vector subspace kept fixed by a subgroup of elements of G,
which is defined by Eq. 10.17, below; this subgroup is the stabilizer, S, of S.

14 The extra parameters are known as “hidden nonlocalities;” see, for example [247].

15 Such a method is used, for example, in entanglement distillation; see Fig. 9.1.
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More generally, one is interested in equivalence classes of states under SLOCC.
One can seek equivalence classes of such multipartite states via the criterion
of mutual accessibility via invertible local operations (ILOs). The number of
state parameters that can be altered by a multiparty ILO grows linearly in
the number of parties, being in particular 6/N.16 It is difficult to find canonical
states on the orbits of these multipartite states because the set of equivalence
classes of multi-qubit states under SLOCC, in the space of orbits

HN)
SL(2,C) x SL(2,C) x --- x SL(2,C) ’

(7.31)

depends on at least [2(2Y — 1) — 6] parameters [144]. For N = 2,3 there is a
finite number of equivalence classes, but there may be an infinite number for
N > 3. The situation when one party possesses more than one qubit is worse,
even in the case of three parties. In the case of two parties, there is a maximally
entangled state from which all states may be accessed with certainty; in the
case of three parties, there is generally no such state [284].17

7.6 Algebraic invariants of multipartite systems

The invariant lengths under the isometries corresponding to LUTs, LOCC,
and SLOCC transformations providing multipartite-state equivalence classes
have been explicitly considered as algebraic entities [275]. For bipartite sys-
tems, the situation is simple because the coefficients of the Schmidt decom-
position form a complete set of LUT invariants. The next case of interest is
that of LUT invariants for tripartite states. Consider invariants for three-qubit
pure states

)= > auligk) - (7.32)

4,5,k=0

One obvious invariant, the invariant of degree two, is the norm of the state,
the generalized Stokes parameter Sggg, which can be written

1

1
* *
Il = E 5ii/5jj/§kk/oz,;jkai/j,k, = E Oéijkaijk (733)
i,1",5,3",k,k"'=0 1,4,k=0

16 A Jocal invertible operator is an operator that can be written in tensor product
form where each factor has a well-defined inverse and acts in a single-party Hilbert
subspace. A single-qubit ILO described by a four-complex-component matrix is
required to have a nonzero determinant scalable to unity because multiplication
by a scalar does not affect accessibility, and depends only on six real parameters
[144].

17 Accessing a generic state in this case would require additional resources, such as
shared singlet states.
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(¢f. Section 7.1 and [247]).
The purities of the statistical operators of three single qubits, obtained
from |¥) by partial tracing out the remaining two systems, namely,

1

_ . * *
I, = E ki Qi Cmipg Vhpg (7.34)
t,5,k,m,p,q=0
1
= T *
I3 = E Qikj Qi j YpmqUpkq » (735)
%,5,k,m,p,q=0
1
= .. * *
I, = E Qi O Cpgm Qg (7.36)
%,5,k,m,p,q=0

are LUT (and hence LOCC) invariants of degree four, which are sometimes
also labeled J;. Labeling the first qubit system A, the second B, and the third
C, one has the following relations between these quantities and the single-
qubit Minkowskian length

S?l)(pA) =1-1, S(Ql)(pB) =1-1I3, 5(21)(/)0) =1-1, (737)

which are simply related to the concurrences obtained by bipartite decompo-
sition of the corresponding three-qubit states; see below. The number of LUT
invariants of a state then grows exponentially with the number of local parts.
The LUT invariant of higher degree for three particles, known as the Kempe
invariant, is
1
Is = > ¥4k O Onlo OV o Opam g (7.38)
i,7,k,l,m,n,0,p,q=0

which is not, in general, algebraically independent of I, I, and I [247].

In the case of a general number of qubits, these states can be written
|¥) = a¥*|ijk...), and the general polynomial can be written

1

F= Z GZ;:Z::.’.‘izg‘Qk2...O‘iljlklmaizjmm GO e (7.39)

indices =0

where the numbers of o and o™ terms are equal and all the indices are con-
tracted between corresponding terms, by the coefficients azlglflw Jaka. being
products of Kronecker delta symbols each contracting an index, as is the case
for the I; above [275]. These allow one to fully distinguish the various orbits
under LUTs. Similarly, in the context of SLOCC transformations, the polyno-
mial invariants under SL(2, C)*" of pure states, characterized by amplitudes

@ j k... in the computational basis {|ijk...)}, are

1
Ko = E €irin€1ja€hiks -+ Cir_1ir€jr_1jrChy_1ky - - -
indices=0

QieIrmEu = qis@ir@bo@ | qiemirmkum- (7.40)
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where o = (0, T,v,...), the o(7), 7(¢), v(i), and so on, are permutations over r
elements, which correspond to the Lorentz-group invariant lengths S(QN) that

are squares of their moduli.'®

All SLOCC invariants can then be written in terms of these basic polyno-
mials. By examining state transformations beyond simple unitary operations,
it has been shown that one can classify multipartite entangled states under
Lorentz (SLOCC) transformations using the subset of filtering operations, as
mentioned above. In particular, for three-party states it has been shown that
there are nine different entanglement classes, which include the GHZ and W
classes of entangled three-qubit states; see the following section, as well as
[305]. In the case of mixed multipartite states, one considers the (squared)
magnitude of K, and the complex state-vector coefficients are replaced by
statistical operator elements.' In the bipartite case, the Schmidt decompo-
sition always exists and provides the quantities invariant under local unitary
operations. Furthermore, as mentioned above, it has been shown that pure
states of some multipartite quantum systems are multi-separable: they pro-
vide, upon averaging over the state of any given party, separable (generally
mixed) states if and only if they have a generalized Schmidt decomposition
as does, for example, the GHZ state [418].

In the following chapter, we return to the examination of multiple-qubit
entangled states that prove useful in the study of entanglement and for car-
rying out various quantum information-processing tasks. Now let us examine
in detail entanglement properties and state classification in the cases of three-
and four-qubit systems, and several other larger families of multiple-qubit
states.

7.7 Three-qubit states and residual tangle

As mentioned in the introduction to this chapter, progress has been made in
the quantification of multipartite entanglement for three-qubit states through
the application of bipartite entanglement measures to their two-qubit subsys-
tems. In particular, the residual genuinely three-party entanglement can be
found by isolating it from the bipartite entanglement present in a three-qubit
system. The residual tangle Tapc is a positive quantity for pure states,

TABC = TA(BC) — TAB — TAC (7.41)

'8 Here we have introduced the Levi-Civita symbol € defined by the elements ego =
0 = —€11 and €91 = 1 = —e€10 and related to the o2 Pauli matrix by o2 = —ie.
By contrast with the case of LOCC invariants, in the above one now contracts o
terms with each other rather than « terms with their complex conjugates.

19 Tt is worthwhile to consider Shimony’s geometrical result regarding the equiva-
lence of various entanglement measures in the case of bipartite pure states in this
light; see [383], as well as Sect. 6.15.
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that measures entanglement among the three components that does not arise
from bipartite entanglement within the composite system. The residual tangle
is invariant under permutations of the subsystems, as any good measure of
inherently three-way entanglement must be.2? In accordance with the above,
the three-tangle for three subsystems A, B, C can be expressed in terms of
two-qubit Lorentz-group invariant lengths, in particular,

2

TABC _‘ § €i1i3€j153€k1kaC€ioia€jojaChaoks (7'42)
1
alemIrmkr) qlo@Ir@kr(2) i (3)I7(3)kr(3) ol (a)Tr(aykr(a)

where, again, the o(¢) and 7(i) are permutations.
The generic class of three-particle pure states can be written as

[W3) = A1]000) 4+ A2e®®[101) 4+ A3]110) + Ag|111) , (7.43)

where the ); are real positive numbers such that ., A\? = 1 and 6 € [0,7].
These states include two classes of separable states, one that is fully separable
into a product of single-party pure states (ABC), and one separable into a
product of an entangled two-party pure (two-qubit) state and a single-party
pure (qubit) state, ( (AB)C, A(BC), B(AC) ). These divisions are known
as two-splits.?! There are two locally inequivalent classes of nonseparable,
hence genuinely tripartite-entangled pure states. One class is represented by
a particularly useful such state, the Greenberger—-Horne—Zeilinger (GHZ) state

1
V2
which has been shown to violate the predictions of local realism ([55, 196, 195])
introduced in Chapter 3;%2 the generic state [¥3) belongs to the GHZ class. The

remaining class non-separable three-particle pure states is that represented by
states of the form

IGHZ) = —(|000) — [111)) (7.44)

20 Thus, the apparent asymmetry of the above expression presents no difficulty.

21 The general case of division of a composite system into n parts is referred to as
an n-split, and illuminates the separability structure of larger compound-system
states [143].

The GHZ state is a eigenvector of all the Pauli group operators o, ® 0y @0y, 0y ®
Oz @ 0y, Oy ® 0y ® 0., with corresponding eigenvalue +1 and of the operator
0z ® 0z ® 05 with corresponding eigenvalue —1. With these four operators, a
measurement of operators o, or oy, on any two of the three qubits allows one
to infer the outcome of the third. Local realism would then allow one to assign

definite values to the local quantities o and oy), described by a function taking

ag@ and 015“ each to the set {—1,+1}, where the superscript indicates the sub-
system in question. There is therefore a violation of local realism: it is impossible
to find a product of such local functions assigning the needed values, because the

first three operators are assigned (+1) but the fourth is assigned (—1).

22
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[W) = A1|001) + A2|010) + A3|100) , (7.45)

and is a set of measure zero in the set of all pure states: a GHZ-class state as
close as desired to any W-class state can be obtained by simply adding an ad-
ditional term with a A4 as small as desired to it. Thus, the GHZ and W classes
of states are representative of the two equivalence classes of three-particle pure
states defined by interconvertibility under SLOCC transformations, the W-
states being those such that Tapc(|]WW)) = 0 [436].

The three-qubit mixed states are similarly readily classified, as follows.

(i) S, the class of separable mixed states;

(ii) B, the class of bi-separable mixed states;

(iii) W, the class of states expressible as convex combinations of projectors
onto the separable, bi-separable and pure W states;

(iv) GHZ, the generic class of three-qubit states.

These states are thus related as S C B C W C GH Z; states of later classes can
be converted stochastically to states of preceding classes by the application
of POVMs [4]. Furthermore, there exist methods for determining the class to
which a given state belongs.

7.8 Three-qubit quantum logic gates

Before leaving the topic of three-qubit states, let us consider some quantum
gates acting at the three-qubit level. Useful three-bit gates have been devel-
oped in the context of reversible computation, of which quantum gates are one
sort of realization because they are carried out using unitary transformations,
which are inherently reversible.

The Toffoli gate is one important three-qubit gate implementable in quan-
tum computing that performs the following operation on computational val-
ues. (z,y,2) = (z,y,z ANy @ z), where @ indicates the XOR operation and A
the AND operation; see Section A.1. The truth tables of classical and quantum
Toffoli gates, which are shown Figs. 3.6 and 7.1 respectively, are the same.
That is, both gates change the third bit, 2z, conditionally on the first two be-
ing 1, and otherwise have no effect. A Toffoli gate is clearly its own inverse.
Both the classical and quantum Toffoli gates are universal, in that one can
construct a circuit computing any reversible function using only Toffoli gates;
see Section 13.6. The unitary matrix representing the quantum Toffoli gate is
given Section 3.8.

The quantum Fredkin gate is a three-qubit gate performing the following
operation on three bits: (z,y,2) = (x,2 A2 ® 2 Ay,x Ay ® —-x A z), where
= indicates binary negation. The Fredkin gate has only one control input,
whereas the Toffoli gate has two control inputs. It swaps the values of second
and third bits if the first takes the value 0; see Fig. 7.1. Though the quantum
Fredkin gate is reversible, its classical analogue is not.
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SWAP

R,

d
|

Fig. 7.1. The Toffoli, Fredkin, and (up to a phase) Deutsch gates.

The Deutsch (quantum) gate, which Deutsch designated Q, is a uni-
versal quantum gate similar to the Toffoli gate, being again a controlled-
controlled gate, with the operation on the third qubit being the combined
phase shift/rotation operation iR, (6) [129]. In the computational basis for
three qubits, it performs the operation of switching the basis elements |110)
and |111), leaving the others unchanged; see Fig. 7.1. More information re-
garding universal logic gates is provided in Section 13.6.

7.9 States of higher qubit number

Entangled states of more than three qubits are also important, particularly for
quantum error correction, which is required for practical quantum information
processing. For example, the smallest code states for arbitrary single-qubit
errors are entangled five-qubit pure states; see Section 10.6.

In at least one sense, it is possible to generalize the entangled states of the
Bell basis by retaining the symmetry of its elements under changes of scale
from two to four and more qubits. The Bell gems are such a generalization
that can be recursively defined [232].23

A Bell gem, G, is a set of state-vectors of 2V qubits lying in the d = 22"

N
dimensional Hilbert space c? , of the form

1
i (I9)14) £ 15)15)) (7.46)
1
7 (I)15) £ 15)18) (7.47)
where [i) # |j) are elements of a Bell gem G4 of dimension d’ = 22"

N > 2, N €N, the simplest Bell gem, G4, being the Bell basis, namely,

23 A generalization of the Bell state [¥~) to N particles and N levels—the class of
“supersinglet” states—has also been examined [97].
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1

&%) = ﬁ(l00> +[11)) (7.48)
1
o) = ﬁqm) +[10)) , (7.49)

which is a basis for C*. The family of Bell gems has the following properties:

(i) The Bell gem G,,~ is an orthonormal basis for the 22" _dimensional
Hilbert space of state-vectors, H,.nv = (C2)®2N, that is, of 2V qubits.

(ii) The elements of G,,~ have maximal 2N _tangle, Ton.

The second-smallest Bell gem (after the Bell basis) is the four-qubit Bell gem,
which has 16 elements, |e;), lying in H6 = (C2)®2°:

Gis ={ 5 (I2)[2") £ |27)|27)), (7.50)
5 (@) £ @) o)), (7.51)
7 (127)|@7) £ [@7)[27)), (7.52)
75 (120)|F) £ [ F) @), (7.53)
75 (120)|7) £ |[o7)|2T)), (7.54)
5 (27)FF) £ [wT)|o7)), (7.55)
7 (127)7) £ |[w7)|e7)), (7.56)
75 (@H)w) £ jw)wh))} (7.57)

[232]. The first four of these elements, |e,), |e2), |e3), and |ey), are the code
states of the (extended) quantum erasure channel; see Chapter 10 and [39).
Furthermore, |eq),|es), and |e4) are codes states of a one-error correcting
detected-jump quantum code, as well as spanning a decoherence-free subspace

in which universal four-qubit quantum computations can be carried out; see
Chapter 13 and [8].
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Quantum state and process estimation

In addition to having a conceptual understanding of the entanglement and
other essential properties of quantum states, it is important to understand
how states and essential functionals thereof can be empirically determined,
particularly in a way that can be connected with formal results of the sort
described in previous chapters. As mentioned at the outset, the state of a given
quantum system cannot generally be discovered by simply measuring it once.
For an unknown state, at least an ensemble must be measured for one to come
to know an unknown state of a given quantum system. Quantum tomography
is a general method for estimating ensemble averages for operators and states
based on a complete set of quantum measurements.

Quantum state tomography allows one to find the statistical operator of a
system: a state description for a quantum system requires the measurement of
complementary properties of an ensemble in different, generally incompatible
experimental arrangements, rather than merely compatible ones, by deter-
mining, for example, the full set of generalized Stokes parameters in the case
of n-qubit systems. For present purposes, quantum state tomography and the
associated method of quantum process tomography, which determines trans-
formations of quantum states, allow one to characterize quantum sources and
quantum information channels for applications such as quantum cryptogra-
phy and quantum computing, which are described in later chapters. The basic
elements of these estimation methods are discussed here.

In addition to the estimation of states and their transformations, it is also
possible, and often necessary, to estimate quantum state functionals such as
purity and entanglement. One method for doing this, which can be more effi-
cient than the more general but often quite costly method of state tomography,
is also described here.
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8.1 Quantum state tomography

Given measurements on an ensemble of copies of a given quantum system,
the state can be estimated by quantum state tomography. Historically, G. G.
Stokes first introduced such a method, involving the four basic parameters
that now bear his name and that are still commonly used to describe the
polarization state of a light beam [406]. Such simple parameters also allow
one to find the statistical operator describing a qubit ensemble, locating it in
the Poincaré-Bloch sphere as described in Section 1.3 [241].} This procedure
is now known as qubit-state tomography.

Qubit-state tomography can be readily extended to multiple-qubit sys-
tems, as well as to multiple-qu-d-it systems in which case it is referred to as
qu-d-it-state tomography [420]. In general, (d* — 1) parameters must be mea-
sured to reconstruct a state lying in a d-dimensional complex Hilbert space,
as the global phase is not physical relevant. To find the state of a qubit, only
three quantities need be found, corresponding to the Stokes parameters S;
(i =1,2,3). The measurement of coincidence-count rates for multipartite sys-
tems correspond to generalized Stokes parameters and allow for the extension
of this method to the tomography of multiple-qubit states. In particular, the
statistical operator representing a quantum system state can, in principle,
be found from a direct linear transformation of correlation data, correspond-
ing to the generalized Stokes parameters [180, 459]. However, measurement
errors and/or environmental noise may render ill-defined the operators con-
structed in this straightforward way, such as when the resulting matrices fail
to be completely positive. Therefore, care must be taken to provide estimated
states that are well defined. This generally requires additional measurements,
as in the case of single qubits where one also measures the Stokes parameter
So [118]. A necessary and sufficient condition for the completeness of a set of
tomographic measurement vectors (or tomographic states), is that the matrix
of expectation values of the full set of Pauli-group operators, corresponding
to measurement bases, be nonsingular.? This condition is the requirement
for obtaining a well-defined density matrix from the data set of normalized
coincidence-measurement outcomes.

Quantum state tomography of multiple-qubit systems can be carried out
as follows. One first obtains a number of identical copies of the system in the
unknown state p to be determined. One then measures the system properties
using either a complete set of von Neumann measurements or a POVM [332].
The standard requirements for a matrix to represent a statistical operator are
then kept in force during the construction of the matrix best representing p
given the resulting data. A likelihood functional, L, that describes the qual-
ity of the estimated density matrix can be used to produce such a matrix.
One finds the optimal set of variables, for which the likelihood functional is

! Modern quantum tomography was first investigated in [277, 278, 346, 441].
2 The Pauli group is defined in Sect. 10.4, below.



8.1 Quantum state tomography 141

maximized, and arrives at a best estimate of the actual statistical operator
describing the system. Traditionally, precise measurements are performed to
find the value