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Foreword

In one word, this is a responsible book; the rest is commentary.
Around 1992 a few of us were led by Charles Bennett into a Garden of

Eden of quantum information, communication, and computation. No sooner
had we started exploring our surroundings and naming the birds and the
beasts, than Peter Shor put an end to that apparent innocence by showing
that factoring could be turned—by means of quantum hardware—into a poly-
nomial task. Fast factoring meant business; everybody seemed to be awfully
interested in factoring. Not that anyone had any use for factoring per se, but
it seemed that all the world’s secrets were protected by factor-keyed padlocks.
Think of all the power and the glory (and something else) that you might get
by acting as a consultant to big businesses and government agencies, helping
them pick everyone else’s locks and at the same time build unpickable ones
(well, nearly unpickable) for themselves. And if one can get an exponential
advantage in factoring, wouldn’t an exponential advantage be lying around
the corner for practically any other computational task? Quantum informa-
tion “and all that” has indeed blossomed in a few years into a wonderful new
chapter of physics, comparable in flavor and scope to thermodynamics. It has
also turned into a veritable “industry”—producing papers, conferences, exper-
iments, effects, devices—even proposals for quantum computer architectures.
Dutifully, also entire books on the subject have been appearing with a certain
regularity. Every time I see a new one, my first reaction tends to be, “Who
ordered that?” meaning, What needs does this book fill? What market does
it address?

I’m convinced that a bona fide academic book (as contrasted to a com-
mercial book) is first and foremost a knowledge-structuring exercise, a taut
“clothesline” (to use an image by Herbert Wilf) on which to neatly pin one’s
thoughts and find them still there in the morning. In this respect, the present
work is no exception. But one doesn’t have to go through all the labor of
producing a real book just for that. A second, also quite honorable motive, is
to let your colleagues know that you’ve been there yourself; that you’ve seen
a few things that they may have missed; that from a certain angle you get
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a much better view; and so on; that, in other words, by your meisterstück
you claim full membership in the guild. In the meantime your colleagues had
of course been looking at what you were doing all along, and probably had
already made you member in pectore. I have no doubts that this applies to
the present case.

But in many, perhaps most, of the books I’ve seen I believe I detected in
an obstinate bass line, some sort of rumbling or blurbing that has no words
to it but I would be tempted to interpret like this: “Yes, this book of ours will
be good for an advanced undergraduate course in Quantum Computation,
Quantum Cryptography, or Entanglement Distillation (or any other permu-
tation of a number of similar sexy terms). But the real reason you must want
it, for yourself and for your students, is because we are nearing the moment
when a Quantium—rumored to be able to do all computations exponentially
faster—is to be commercially available as a drop-in replacement for the Pen-
tium! You need this book because you cannot afford not to be yourself one
of the very designers of the Quantium, or at least one of the first to design
it in!” I may just be hearing voices. But Quantum Information, Communica-
tion, and Computation is too rich a conceptual discipline to need debasing
with the subliminal lure of “universal exponential speedup.” For the moment
such a promise should be kept in the same class as “Energy so cheap it won’t
be worth metering;” it doesn’t even have to be false to be irresponsible. This
book steers clear of all that.

I recall the title of E.T. Jaynes’s book on information theory, Probability—
The Logic of Physics, and paraphrase it as “the logic of incomplete informa-
tion,” thus stressing that physics, even though central for motivation, is, from
a conceptual viewpoint, merely incidental to information theory. An incom-
plete description is just that, namely, one that is not sufficiently detailed to
identify a single individual: several individuals may fit it. The art of proba-
bility is nothing more than doing ordinary Aristotelian logic in parallel on all
those “several” (as often as not 1024) individuals, and in the end lumping the
results into “bins” according to whatever traits are relevant to our question
of the moment. Introducing (that is, making up) a probability distribution is
in essence equivalent to doing some of that binning before putting the system
through the “logic engine” rather than after. In fact, if this is done prop-
erly, the two approaches commute, and the second, of course, may save much
computational effort.

Quantum behavior has confronted physics with many novelties. What mat-
ters here is that it has introduced formerly unsuspected ways for a description
to be incomplete. Introduced where? into physics? My gut feeling is that in
this business physics per se is largely irrelevant. (Think, for example, of how
entropy, introduced for very good reasons by physicists, is in fact the funda-
mental quantitative parameter of any probability distribution—and thus, as
we’ve seen—an essential aspect of any incomplete description.) Be that as it
may, one of the duties of information theory is to acknowledge these new as-
pects of incompleteness whose prototype is found in physics and incorporate
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them by adding the necessary new modules to the underlying “logic engine”
mentioned above. There is no need to attempt to “interpret” or “explain”
quantum mechanics before setting about this task; on the contrary, having
in hand the resulting formal “quantum-enhanced” information theory may in
the end make it easier to address the interpretation problem itself.

Jaeger’s book seems to me consistent with the above strategy. That is, it
takes quantum mechanics as a premise. It doesn’t waste time arguing about,
or changing, the premise itself, and concentrates instead on developing an
inference engine capable of handling premises of that kind. That’s how we get
Quantum Information Theory: An Overview rather than one more book on
“Quantum information communication computation and all that.”

Tommaso Toffoli





Preface

Quantum information science is a rapidly developing area of interdisciplinary
investigation at the nexus of quantum mechanics and information theory. It
now plays a significant role in a number of subdisciplines of physics, informa-
tion technology, and engineering. A number of books on quantum information
are available but are becoming outdated and/or differ significantly in approach
from this book, or cover only particular aspects of the subject. Historically,
lecture notes for the first general course on quantum information, given at
Hewlett-Packard and edited by Lo, Popescu, and Spiller, were published in
1998 [289]. Physicists have also long benefited from the generously provided
on-line lecture notes of Preskill [341]. At least one comprehensive monograph
on quantum information science was published at the turn of the century,
namely, the meticulous nearly 700-page book of Nielsen and Chuang [315].
More recent books by Pavičić [325] and Stenholm and Suominen [404] are
noteworthy for their utility. A monograph detailing the mathematical founda-
tions of quantum information theory by Hayashi, which originally appeared
in Japanese in 2003, has just appeared in English [208]. The books of Benenti,
Casati, and Strini [33] and Gruska [201] are valuable textbooks for teaching
the subject. Quantum key distribution and quantum computing are currently
the most exciting applications of quantum information science that are suf-
ficiently well developed that a number of books are specifically dedicated to
one or the other of them: in the case of quantum cryptography and com-
munication, comprehensive collections have been edited by Alber et al. [7],
Beth and Leuchs [59], Bouwmeester, Ekert, and Zeilinger [72], Braunstein et
al. [79], and Sergienko [375]; in the case of quantum computation, the books
of Brylinski and Chen [89], Hirvensalo [216], Kitaev, Shen, and Vyalyi [252],
and Pittenger [335], and that edited by Lomonaco [287] focus on quantum
algorithms and/or associated mathematics. A number of popular books on
quantum computing have also been published, for example [83, 121].

In our information age, electronic access to primary sources is widely avail-
able, allowing one to locate the finest details of original investigations once one
is well oriented with tools and references in hand. Therefore, now what one of-
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ten needs most when approaching the subject of quantum information science
is an overview that efficiently yet rigorously presents the fundamentals and
that provides a detailed weblinked bibliography to take one further [1]. This
book is intended to be such a handy reference for practitioners and students of
quantum physics and computer science that also treats foundational aspects
of quantum mechanics connected with quantum information science, includ-
ing those associated with quantum measurement which plays an essential role
in relating classical and quantum information. Most of the examples provided
here are quantum-optical ones as a pragmatic matter, arising from the fact
that interferometry is central to quantum information processing and the fact
that interferometry has primarily progressed through optical physics. How-
ever, exciting innovations have been made by experimental groups working
with a range of physical systems. Hopefully, workers in areas of experimental
physics and engineering other than optics will soon provide comprehensive
and detailed overviews of each of the experimental methods of manipulat-
ing quantum information. For the time being, discussions of various devices
for quantum information processing can be found [19, 74, 407]. Particularly
noteworthy are the books edited by Everitt [165] and Leggett et al. [274].

In the twentieth century, the formalism introduced in Dirac’s The Princi-
ples of Quantum Mechanics and von Neumann’s Mathematische Grundlagen
der Quantenmechanik was brought to bear on a broad range of physical prob-
lems. Elements of this formalism and related mathematics are outlined in the
appendices, together with standard quantum postulates. During the last two
decades of the twentieth century, investigations of the foundational problems
of quantum mechanics and the physics of computation were pivotal in giving
rise to quantum information science as a subject in its own right, providing
a conceptual basis for the development of quantum protocols and algorithms.
In turn, the investigation of foundational problems has benefited from the
work of those seeking solutions to central issues in quantum information sci-
ence, such as those of communication complexity. Aspects of this important
interplay have been addressed here.

It is my hope that, in addition to its serving as a practical tool for re-
searchers and students, this book will assist those seeking to understand the
subject to appreciate the many decades of work back to which the origins of
this exciting, relatively new field can be traced. Although the aim in includ-
ing this material is not to present a history of the exploration of foundations
of quantum mechanics or its philosophical underpinnings, a number of perti-
nent such results from earlier decades of the twentieth century are included
because they will likely prove important to future progress in both quantum
mechanics and information theory. The discussion of early work is here often
in the language of quantum information so as to facilitate access to earlier,
foundational work in quantum mechanics by those approaching fundamental
issues from a twenty-first century perspective.

Gregg Jaeger Cambridge, MA, August 2006
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5.5 Quantum Rényi and Tsallis entropies . . . . . . . . . . . . . . . . . . . . . . 88

6 Quantum entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 The Schmidt decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Special bases and decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Stokes parameters and entanglement . . . . . . . . . . . . . . . . . . . . . . . 98
6.5 Partial transpose and reduction criteria . . . . . . . . . . . . . . . . . . . . 99
6.6 The “fundamental postulate” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7 Entanglement monotones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.8 Distillation and bound entanglement . . . . . . . . . . . . . . . . . . . . . . . 104
6.9 Entanglement and majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.10 Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.11 Entanglement witnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.12 Entanglement as a resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.13 The thermodynamic analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.14 Information and the foundations of physics . . . . . . . . . . . . . . . . . 112
6.15 The geometry of entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.16 Creating entangled photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Entangled multipartite systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1 Stokes and correlation tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 N-tangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3 Generalized Schmidt decomposition . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 Lorentz-group isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5 Entanglement classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.6 Algebraic invariants of multipartite systems . . . . . . . . . . . . . . . . . 131
7.7 Three-qubit states and residual tangle . . . . . . . . . . . . . . . . . . . . . . 133



Contents xvii

7.8 Three-qubit quantum logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.9 States of higher qubit number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Quantum state and process estimation . . . . . . . . . . . . . . . . . . . . . 139
8.1 Quantum state tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Quantum process tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3 Direct estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 Quantum communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1 Quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.2 Quantum channel capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.3 Holevo’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.4 Discrimination of quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.5 The no-cloning theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.6 Basic quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.7 The GHJW theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.8 Quantum dense coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.9 Quantum teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.10 Entanglement “swapping” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.11 Entanglement “purification” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.12 Quantum data compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.13 Quantum communication complexity . . . . . . . . . . . . . . . . . . . . . . . 169

10 Quantum decoherence and its mitigation . . . . . . . . . . . . . . . . . . 171
10.1 Quantum decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.2 Decoherence and mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.3 Decoherence-free subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.4 Quantum coding, error detection, and correction . . . . . . . . . . . . 175
10.5 The nine-qubit Shor code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.6 Stabilizer codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.7 Concatenation of quantum codes . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11 Quantum broadcasting, copying, and deleting . . . . . . . . . . . . . . 185
11.1 Quantum broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.2 Quantum copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.3 Quantum deleting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
11.4 Landauer’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

12 Quantum key distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
12.1 Cryptography and cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . . 191
12.2 QKD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
12.3 The BB84 (four-state) protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
12.4 The E91 (Ekert) protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
12.5 The B92 (two-state) protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
12.6 The six-state protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



xviii Contents

12.7 Eavesdropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
12.8 Security proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

13 Classical and quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.1 Classical computing and computational complexity . . . . . . . . . . 204
13.2 Deterministic Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
13.3 Probabilistic Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13.4 Multi-tape Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
13.5 Quantum Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
13.6 Quantum computational complexity . . . . . . . . . . . . . . . . . . . . . . . 211
13.7 Fault-tolerant quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . 214
13.8 Linear optical quantum computation . . . . . . . . . . . . . . . . . . . . . . . 215

14 Quantum algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
14.1 The Deutsch–Jozsa algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
14.2 The Grover search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
14.3 The Shor factoring algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
14.4 The Simon algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A Mathematical elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.1 Boolean algebra and Galois fields . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.3 Vector Spaces and Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
A.4 The standard quantum formalism . . . . . . . . . . . . . . . . . . . . . . . . . 237
A.5 The Dirac notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A.6 Groups of transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
A.7 Probability, lattices, and posets . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
A.8 Projectors, correlations, and the Kochen–Specker theorem . . . . 242
A.9 Traditional quantum logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B The quantum postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
B.1 The standard postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
B.2 The Heisenberg–Robertson uncertainty relation . . . . . . . . . . . . . 247
B.3 Liouville space and open quantum systems . . . . . . . . . . . . . . . . . . 248

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271





1

Qubits

The differences between quantum information and classical information are
due to the difference of a qubit in a quantum-physical system capable of
storing it from a bit in a classical-physical system capable of storing it.1

This difference arises primarily from the superposition principle of quantum
mechanics; despite its being bivalent in the chosen computational basis, a
qubit system can be in one of an infinite number of significant states, whereas
a bit is capable of being in only one of two significant states.2 A qubit system
in general also must be considered as at the same time potentially being in one
measurable state and/or the other opposite state rather than actually being
in just one of the two available states as must necessarily be the case for
a bit encoded in a classical physical system. Furthermore, unlike a classical
state, a single unknown qubit-system state cannot generally be found by a
1 Physical bits in traditional digital computers are realized in memory elements,

metal-oxide semiconductor field-effect transistors, and electrical wires, all of which
carry substantial charge relative to a single electrical quantum [179]. Classical
information processors use such elements to store bits of information and per-
form operations on them, whereas quantum information processors operate on
individual quanta. The term “qubit” was coined by Benjamin Schumacher, “...al-
though Holevo’s theorem gives an information-theoretic significance to [quantum
entropy]... it does not provide an interpretation of [quantum entropy] in terms of
classical information theory. We could not use [it], for example, to interpret the
quantum entropy of some macrostate of a thermodynamic system as a measure
of resources necessary to represent information about the system’s quantum mi-
crostate... [Instead] this is accomplished by replacing the classical idea of a binary
digit with a quantum two-state system... These quantum bits, or ‘qubits,’ are the
fundamental units of quantum information.” [367].

2 See Postulate I in Sect. B.1. Paul Dirac noted the unique character of the super-
position principle, “the superposition principle that occurs in quantum mechanics
is of an essentially different nature from any occurring in the classical theory, as
is shown by the fact that the quantum superposition principle demands indeter-
minacy in the results of observations in order to be capable of a sensible physical
interpretation . . . analogies are likely to be misleading” [Dirac’s emphasis] [136].
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single measurement. Rather, an ensemble of systems must be measured to
discover their unknown shared quantum state.3 It is the nature of quantum
potentiality that alternative possibilities for reaching a given quantum state at
a given moment superpose, and so are capable of interfering with each other.

Quantum computing benefits from the quantum superposition principle as
it pertains to the states of a number of qubits forming a compound quantum
system. The space of possible states available to such multiple-qubit systems
grows more rapidly than does the space of states available to multiple-bit
systems; the number of parameters describing a quantum system that can
be used to encode information for the purpose of computing grows exponen-
tially in the number of qubits, whereas in a classical system it grows linearly
in the number of bits. Thus, quantum computers can be viewed as complex
quantum interferometric devices providing a unique sort of parallelism of com-
putational states described by these parameters. This novel parallelism can
be harnessed to make tractable some important computational tasks that are
thought intractable under the constraints of computing realized in systems
describable by classical physics. Any improvement in efficiency provided by
quantum algorithms over classical algorithms resulting from the exploitation
of this parallelism is known as quantum speedup. Quantum speedup and the
features enabling it are discussed in Section 1.7 and Chapters 13 and 14.4

Although the properties of a qubit system are bivalent and can only be
probabilistically predicted, a qubit system differs from a probabilistic classi-
cal system that randomly takes one of two computationally relevant values,
again because the latter can only actually be in one of two states at any time
irrespective of how it may be measured.5 The probabilities of the outcomes
of measurements of any classical system are due only to the ignorance of the
measurer of the actual state of the system, rather than from a fundamental
indeterminacy of properties as is the case for quantum systems. That a quan-
tum bit is not reducible to some probabilistic bit becomes clear when seeking
a straightforward ignorance interpretation of quantum probabilities.6

3 Here, the only exceptions to this are situations in which precise information as to
the two particular alternative orthogonal states in which a single qubit happens to
have been prepared is possessed by the measuring agent and only these potential
states are measured. It is precisely this character of individual qubits that provides
the possibility of secure quantum key distribution. Here, the term ensemble is
meant in the sense of statistical thermodynamics, where it refers to a set of
identically prepared systems. See Postulates II and III in Sect. B.1.

4 It is important to note that speedup depends on the assumption that the time
required for arithmetic operations in quantum computing grows less than expo-
nentially with the number of qubits involved. On entanglement here, see [78, 246].

5 The units of classical information are also sometimes referred to as c-bits (cf.
[100]). One might call a putative inherently probabilistic bit a probabit.

6 An argument supporting this statement is given in the following section. The
deeper philosophical aspects of the important differences between quantum sys-
tems encoding qubits and classical systems encoding bits have been well explored
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Because a familiarity with the various mathematical representations of the
qubit, which is the simplest nontrivial quantum system that can be considered
in quantum mechanics, is essential for understanding quantum information,
various representations of qubit states are reviewed in this chapter, as is their
interferometric behavior which endows quantum computers with added com-
putational power. The reader is reminded that quantum states are associated
with a complex Hilbert vector space, H, via a special class of linear operators
acting in it, the statistical operators, ρ, constituting the quantum state-space.7

In the case of the pure qubit states, the statistical operators are projectors onto
one-dimensional subspaces and can be uniquely associated with points on the
boundary of the Bloch ball, known as the Poincaré–Bloch sphere; pure states
can be equally well represented by these same one-dimensional subspaces (or
rays) {eiφ|ψ〉|φ ∈ R} or the state-vectors |ψ〉 ∈ H spanning them.8 The re-
maining, essentially statistical states are mixed states that can be formed
from these pure states and lie in the interior of the Bloch ball.9 The set of
statistical states available to a qubit system is concretely representable by the
2 × 2 complex Hermitian trace-one matrices [ρij ] ∈ H(2). By contrast, for the
full physical state description of a quantum system in spacetime, an infinite-
dimensional spatial representation is required in which the state-vectors are
referred to as wavefunctions. However, because quantum information theory
is based on the behavior of qubits and has thus far overwhelmingly dealt with
quantities with discrete eigenvalue spectra in the nonrelativistic regime, the
state-vectors considered here are usually taken to lie within finite-dimensional
Hilbert spaces constructed by taking the tensor product of multiple copies
of two-dimensional complex Hilbert space; in quantum mechanics, these are
traditionally associated with the spin subspaces of elementary particles; for
example, see [299]. Unless otherwise stated, the Hilbert spaces considered here
are only finite-dimensional subspaces of the larger full physical state-spaces
of particles, the other subspaces of which are rarely taken into account in the
study of quantum information processing.10 For example, in many cases we
consider the polarization states of photons as the systems of interest, without

and subtly articulated by Abner Shimony [381], Peter Mittelstaedt [304], Michael
Redhead [348], Jeffrey Bub [90], and others. For the most part, space does not
allow these to be adequately addressed in this book.

7 The term “Hilbert space” (Hilbertraum) was itself first introduced by John von
Neumann [443]; see Sect. A.3 for its definition.

8 Here, Paul Dirac’s notation, described in Appendix A, has been used.
9 The possible qubit states are illustrated in Fig. 1.1, below. Note, however, that

mixed states cannot be written as linear combinations of state vectors but only
of statistical operators. The natural structure generalizing the Poincaré–Bloch
sphere is the convex set, which may be used to study a variety of quantum systems;
see Appendix A and [300]. The distinction between pure and mixed states itself
is immediately addressed in detail in Sect. 1.1, below.

10 A review of quantum information in the context of continuous-variables systems
can be found in [81].
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considering the corresponding photon wavefunctions; cf. spin as considered
in Section 1.1 of [359]. This greatly simplifies the mathematics required to
discuss quantum information without compromising essentials.

In quantum mechanics, operators play several roles: they may represent
system states, physical quantities or transformations of states, including tem-
poral evolution (although not time itself) and measurement processes. Mea-
surable properties of quantum systems are traditionally referred to as observ-
ables and correspond to quantities represented by Hermitian linear operators
on Hilbert space, the eigenvalues of which are their possible measurable values.
Here, we merely refer to these as quantum properties. Similarly, although the
question of the role of the percipient (or observer) in quantum mechanics is a
deep and interesting one, space does not allow it to be taken up here in any
detail. Observers and observations are referred to as measurers (or agents)
and measurements, respectively, in order to avoid the impression that these
are assumed to have unusual physical characteristics beyond those attributed
to other physical objects or processes.11 It is also vital here to recognize the
distinctions between a physical system, its representation, and the informa-
tion the system is capable of storing, particularly when metaphysical and
epistemic considerations come into play, such as in the context of the statisti-
cal descriptions of microscopic phenomena discussed in this book, because the
term qubit is used ambiguously in the quantum-information literature. In ad-
dition to referring to the unit of quantum information, this term is often used
to refer to a system that can store it and sometimes to refer to the mathemat-
ical set representing possible quantum states of such systems. In this chapter
and elsewhere, we focus on the ideal physical system capable of storing one
qubit of information and refer to it simply as the qubit, in accordance with
the most common usage in the physics literature.

Readers unfamiliar with the postulates of quantum mechanics and its
mathematics are requested to refer when necessary to Appendix B, where
the standard postulates of quantum mechanics, including the superposition
principle, are briefly outlined, and Appendix A, where the notation and math-
ematics of quantum mechanics used in the sequel are summarized; the Dirac
notation is primarily used here because of its great practicality. Throughout
the text, examples and details of secondary importance are often provided
in separate boxes. Those very familiar with the various representations of
quantum states and their basic properties may wish to proceed directly to
Section 1.4, where the quantum circuit formalism and basic quantum gates
are discussed. This chapter ends with a preview of the basic requirements for
quantum information processing tasks to be discussed in more detail later. In
particular, complex quantum information processing requires quantum coher-
ence of states in multi-qubit Hilbert spaces (cf. Postulate IV, Section B.1).

11 For discussions of the role of the observer in quantum mechanics see, for example,
the papers included in [32, 384, 453].
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1.1 Quantum state purity

The purity, P, of a quantum state specified by the statistical operator ρ is
the trace of its square,

P(ρ) = tr ρ2 , (1.1)

where 1
d ≤ P(ρ) ≤ 1 and d is the dimension of the Hilbert space,H, attributed

to the system it describes. The quantum state is pure if P(ρ) = 1, that is,
if it spans a one-dimensional subspace of H. One can then naturally define
state mixedness as the complement of purity, M(ρ) ≡ 1 − P(ρ). The purity
and mixedness of a quantum state are invariant under transformations of the
form ρ → Uρ U†, where U is unitary, most importantly under the dynamical
mapping U(t, t0) = e− i

�
H(t−t0), where H is the Hamiltonian operator, which

can readily be seen upon recalling that the trace operation tr(·) is cyclic.12

Pure states are those states that are maximally specified within quantum
mechanics.13 A quantum state is pure if and only if the statistical operator ρ
is idempotent, that is,

ρ2 = ρ , (1.2)

providing a convenient test for maximal state purity. It is then also a projec-
tor, P (|ψi〉), where |ψi〉 is the normalized vector representative of the corre-
sponding one-dimensional subspace of its Hilbert space; projectors are outer
products defined in Section A.5.14 A quantum state is thus mixed if it is not
a pure state, that is, if P(ρ) < 1.

12 Unitary linear operators, U , are those for which U†U = UU† = I, where “†” indi-
cates Hermitian conjugation (see Sect. A.3). Here, the time-evolution prescribed
by Postulate V of quantum mechanics (cf. Sect. B.1) has been given with a time-
independent Hamiltonian. However, temporal evolution in quantum mechanics
need not be so simple (cf. Sect. 2.1 of [359] and Ch. 5). The cyclic-invariance
property of the trace is simply that tr(BA) = tr(AB), which is independent of
changes of basis.

13 Pure states in quantum mechanics are often also called coherent states. By con-
trast with the classical case, coherent states and superpositions of such states are
meaningful in quantum mechanics only when described by linear wave equations.
Note that coherent states in quantum optics are related specific states different
from the general notion of quantum coherent state referred to above. The term
“coherent state,” in this book refers to the former.

14 Note that rays cannot be added, whereas vectors |ψi〉 can be, making the lat-
ter better for use in calculations involving pure states, where superpositions are
formed by addition. A Hermitian operator P acting in a Hilbert space H is a
projector if and only if P 2 = P . It follows immediately from this definition that
P ⊥ ≡ I−P , where I is the identity operator, is also a projector. The projectors P
and P ⊥ project onto orthogonal subspaces within H, Hs, and H⊥

s , respectively,
thereby providing a decomposition of H as Hs ⊕H⊥

s ; two subspaces are said to be
orthogonal if every vector in one is orthogonal to every vector in the other. In the
case of a general state of a single qubit, one may write ρ = p1P (|ψ〉)+p2P (|ψ⊥〉),
where the weights pi are eigenvalues of its statistical operator.
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In the Dirac notation, projectors are written

P (|ψi〉) ≡ |ψi〉〈ψi| . (1.3)

Consider a finite set, {P (|ψi〉)}, of projectors corresponding to distinct, or-
thogonal pure states |ψi〉. Any state ρ′ that can be written

ρ′ =
∑

i

piP (|ψi〉) , (1.4)

with 0 < pi < 1 and
∑

i pi = 1, is then a normalized mixed state.

Consider the normalized sum

| ↗〉 =
1√
2
(|0〉+ |1〉) . (1.5)

of two orthogonal pure state-vectors |0〉 .= (1 0)T and |1〉 .= (0 1)T

of a qubit, the r.h.s.’s being given in the matrix representation and
(· · ·)T indicating matrix transposition, the l.h.s.’s being given in the
Dirac notation. The superposition in Eq. 1.5 is a pure state, as can
be immediately verified by taking its square modulus. The similar
linear combination formed by subtraction rather than addition is
written | ↘〉; see Eq. 1.11 below. The corresponding projectors are
P (| ↗〉) = | ↗〉〈↗ |, P (| ↘〉) = | ↘〉〈↘ | .
By contrast to the case of state-vector addition, the normalized sum
of a pair of projectors, for example, P (|0〉) and P (|1〉) corresponding
to pure states |0〉 and |1〉, namely,

ρ+ =
1
2
(
P (|0〉) + P (|1〉)

)
, (1.6)

is a mixed state that can also be written

ρ+ =
1
2
(
P (| ↗〉) + P (| ↘〉)

)
. (1.7)

Furthermore, the statistical operator corresponding to the normal-
ized sum of | ↗〉 and | ↘〉 is P (|0〉) 
= ρ+. Again, the pure state
| ↗〉 is the result of the quantum superposition of two state-vectors,
whereas ρ+ is the result of the nontrivial mixing of two distinct pure
ensembles and, therefore, cannot be represented as a projector.

A quantum system is said to be in a (partially) coherent superposition of
states |ai〉 from a given orthonormal basis if and only if its density matrix—
the representation of its statistical operator in matrix form (see [62])—is not
diagonal in the A-representation, where A is the Hermitian operator of which
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the |ai〉 are eigenvectors; it is said to be in a completely coherent superposition
if, in addition, it is in a pure state.15

Quantum mixed states, unlike their classical analogues, do not arise merely
from ignorance of states of the systems they describe. To see this, consider that
an ignorance interpretation of quantum mixtures would hold that a system in
the state ρ = p0P (|0〉)+p1P (|1〉) could actually be in some pure state—either
the one described by P (|0〉) or the one described by P (|1〉)—where real coef-
ficients p0 and p1 could be understood as the probabilities, summing to one,
of the system being in either one or the other pure state, as in the example of
Eq. 1.6. These probabilities would then be understood as epistemic probabil-
ities, in that they represent best estimates of the chances of the eigenvalues
corresponding to the pure states to be observed. One of the peculiarities of
quantum systems such as the qubits above, compared to classical systems,
is the nonuniqueness of the decomposition of a mixed state into pure states
illustrated in the above box.16 The nonuniqueness of the decomposition of any
mixed state would simply mean that an experimenter’s ignorance is greater
than expected; one couldn’t say which are the pure states one should assign
to any particular pair of probabilities that add to one. For composite systems,
however, ensembles described by states ρ can be formed that are pure but
whose component system states are mixed, as illustrated by Eqs. 1.6–1.7.17

Such an interpretation of mixed states is, therefore, untenable.18

Another peculiarity of quantum systems relative to classical systems is that
the maximal specification of a quantum state by preparation or measurement
can precisely determine the values of only half its properties. A basic example
illustrating this is that of a quantum particle: either its position or its momen-
tum can be precisely specified but not both. In classical physics, in principle,
both of these quantities of a system can be precisely specified, corresponding
to its location at a point in “phase space.” By contrast, quantum systems can
be located only within finite areas of phase space. This can be understood
by reference to the interpretation of the Heisenberg–Robertson uncertainty
relation for momentum and position as describing the impossibility of simul-
taneous specification of momentum and position more precisely than that the
product of their variances be less than half �, the quantum of action; see
Appendix B.2 and [92] for discussions of uncertainty relations. For a detailed
discussion quantum phase space for discrete systems such as qubits, which is
not explicitly used in this book but is of ongoing interest, see [182].

15 See Eq. 2.21 and Sect. A.5 for details of operator representation.
16 Both the weights and the projectors may differ for any two of the infinite num-

ber of allowed decompositions of a statistical operator. The state space is not a
Choquet simplex, that is, not a space for which such a decomposition is unique.

17 For a careful treatment of this question see, for example [228, 430]. Chapters 3,
6, and 7 below treat composite quantum systems in detail.

18 It is valuable in this regard to consider the information measures described in
Chapter 4. Radical interpretations taking all probabilities as ignorance probabil-
ities can nonetheless be found; for example, see [100].
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1.2 The representation of qubits

The pure states of the qubit can be represented by vectors in the two-
dimensional complex Hilbert space, H = C

2. Any orthonormal basis for this
space can be put in correspondence with two bit values, 0 and 1, in order to
act as the single-qubit computational basis, sometimes also called the recti-
linear basis, and written {|0〉, |1〉}:19 the elements of the chosen basis may be
identified with the finite (Galois) field of two elements, xi ∈ GF (2), by writing
them as |xi〉 with xi ∈ {0, 1}.20 The computational basis states, {|xi〉}, for
the qubit Hilbert space is often taken, as is done here, to correspond to the
poles of the Poincaré–Bloch sphere; see Fig. 1.1, below.

The superposition principle implies that any (complex) linear combination
of qubit basis states, such as |0〉 and |1〉, that is,

|ψ〉 = a0|0〉+ a1|1〉 (1.8)

with ai ∈ C and |a0|2+ |a1|2 = 1, is also a physical state of the qubit and is, as
we have seen, also a pure state. The scalar coefficients a0 and a1 are referred
to as quantum probability amplitudes because their square magnitudes, |a0|2
and |a1|2, are the probabilities p0 and p1, respectively, of the qubit described
by state |ψ〉 being found in these basis states |0〉 and |1〉, respectively, upon
measurement.21

The vectors of the computational basis can be represented in matrix form
as

|0〉 .=
(

1
0

)
, (1.9)

|1〉 .=
(

0
1

)
. (1.10)

Another commonly used basis is the diagonal basis, {| ↗〉, | ↘〉}, sometimes
also written {|+〉, |−〉}, given by

| ↗〉 ≡ 1√
2
(|0〉+ |1〉) and | ↘〉 ≡ 1√

2
(|0〉 − |1〉) , (1.11)

19 This basis is generally taken either to be the z-axis of the traditional quantum
mechanical description of spin- 1

2 systems or to be the x–axis, as is typically the
case in the representation of polarization states of light. Here, we follow the former
convention, and identify |0〉 with the horizontal polarization state |H〉.

20 GF (2) is the Galois field of integers modulo 2. For the definition and properties
of the Galois field GF (N) and its relationship to the integers mod p, Zp, see Sect.
A.1. Here we have N = pn with p = 2 and n = 1. Galois fields of higher values of
n appear later.

21 This relationship is given by the Born rule; see Sect. B.1 and [68]. A similar
statement holds for components of quantum states in any basis of the Hilbert
space of any finite-dimensional quantum system.
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P(| )

P(| )

P (|l )
1
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P (|r )

||

|0

|1

Fig. 1.1. a: Top figure. Statistical operators represented in the unit Bloch ball,
a real-valued representation of the space of qubit states via the expectation
values, Si, of Pauli operators σi, i = 1, 2, 3; see Eqs. 1.19–1.22. Orthogo-
nal quantum states are antipodal in this representation; the conjugate bases
correspond to orthogonal axes. The pure qubit states, P

(
|ψ(θ, φ)〉

)
, lie on

the periphery, known as the Poincaré–Bloch sphere [337]. The mixed qubit
states, ρ(r, θ, φ), lie in the interior and are weighted convex combinations of
pure states. The maximally mixed state, 1

2 I, lies at the center of the ball, being
an evenly weighted linear combination of any two orthogonal pure states (cf.
Eqs. 1.6–7). In the Poincaré presentation often used in polarization optics, the
sphere is rotated counter-clockwise about the diagonal-basis axis by 90◦ with
respect to the one here. b: Bottom figure. Pure states of the computational
and diagonal bases jointly represented both in a Poincaré great circle, where
orthogonal states are represented as antipodal, and in a single-qubit Hilbert-
space semicircle, where orthogonal states are represented by orthogonal di-
rections and the endpoints are identified with each other. The full circle in
this figure is the great circle in the Poincaré–Bloch sphere that intersects both
the computational and diagonal-basis axes. Note that the angle subtended by
a pair of directions in Hilbert space is half the corresponding angle in the
Poincaré–Bloch sphere (cf. Eq. 1.14), which corresponds to the fact that the
special unitary group SU(2) acting on the vectors in the complex representa-
tion is the universal (double) covering group of the special orthogonal group
of rotations SO(3) of the vectors of the real representation. Stereographic and
sinusoidal projections of the Poincaré–Bloch sphere are also sometimes used;
for an example of the rarer, latter case, see Section 3.1.1 of [33].
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which is conjugate to the computational basis.22

Together, the computational and diagonal bases are used to provide the
pairs of signal states used in the BB84 quantum key distribution (QKD)
protocol; see Section 12.3. In that regard, note that the probabilities of qubits
in states | ↗〉 and | ↘〉 being found in the states |0〉 and |1〉 are (

√
1/2)2 = 0.5

and vice-versa.

The circular basis {|r〉, |l〉},

|r〉 ≡ 1√
2
(|0〉+ i|1〉) , |l〉 ≡ 1√

2
(|0〉 − i|1〉) , (1.12)

sometimes also written {| �〉, | �〉}, is also useful for quantum cryptography,
being conjugate to both the computational and diagonal bases.23 All three of
the above mutually conjugate bases are used to provide three pairs of signal
states in the six-state protocol for QKD (see Sect. 12.6); the probabilities of
qubits in the states |r〉 and |l〉 being found in the states |0〉, |1〉, | ↗〉, and
| ↘〉 are all 0.5, and vice-versa. A graphical representation of the above three
sets of basis vectors is shown in Fig. 1.1.24

Yet another basis, the Breidbart basis, is the “intermediate basis”{
cos

π

8
|0〉+ sin

π

8
|1〉 ,− sin

π

8
|0〉+ cos

π

8
|1〉)

}
, (1.13)

which lies on the same great circle as the circular and rectilinear
bases. It is used in QKD and for eavesdropping; see Section 12.5.

22 Two bases are conjugate if the corresponding pairs of antipodal points of the
Poincaré–Bloch sphere are 90◦ apart from each other [455]; see Fig. 1.1.a.

23 In the convention where the computational and superposition bases lie on the
equator of the Poincaré–Bloch sphere, which we do not follow here, these two
states are identified with the poles; see the following footnote.

24 Basis states are sometimes labeled on the Poincaré–Bloch sphere by state-vectors
|ψi〉 rather than by the corresponding projectors P (|ψi〉), which can be misleading
because each line segment passing between antipodal points through the center
of the Bloch ball corresponds to a set of real convex combinations of projectors
P (|ψi〉) rather than a complex linear combination of Hilbert-space vectors (cf.
Sect. 1.1). In Fig. 1.1b, the correspondence between the complex and real rep-
resentations is illustrated, allowing one to see the effect of vector addition on
the Poincaré sphere. Note also that the Bloch ball is often presented differently,
for example with the computational basis state P (|r〉) at the “north pole,” for
example in the “Poincaré representation” of photon polarization, where the ball
is rotated in θ by 90◦, placing the chosen computational basis on the equator.
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A spinor representation of the general pure state of a qubit is provided by

|ψ(θ, φ)〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉 .=
(

cos(θ/2)
eiφ sin(θ/2)

)
, (1.14)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π; when θ = 0 and π, φ is taken to be
zero by convention (cf. Fig. 1.1). Thus φ is the relative phase between single-
qubit computational-basis states. With this parametrization, the general qubit
state is naturally visualized in the Bloch ball, the boundary of which is the
Poincaré–Bloch sphere consisting entirely of the pure states, |ψ(θ, φ)〉. It is
easy to see by inspection which pairs of values of the parameters θ and φ,
corresponding to the altitudinal-complement angle and the azimuthal angle,
respectively, provide the various states of the above bases. The Bloch vector
associated with a pure state is (sin θ cos φ, sin θ sin φ, cos θ), as described in
the following section. The most general linear transformation of the qubit in
the above representation is (θ, φ) → (θ − α, φ − β), where 0 ≤ α ≤ π and
0 ≤ β < 2π. This transformation is decomposable into two transformations,
one with respect to θ and one with respect to φ, the former capable of being
performed unitarily but the latter not.25 The generic mixed state, ρ, lies in
the interior of the Bloch ball, can be written as a convex combination of basis-
element projectors corresponding to the pure-state bases described above (cf.
Eq. 1.4), and can be most conveniently given in the Stokes-vector representa-
tion described in the following section.26 The effect of a general operation on a
qubit can be viewed as a (possibly stochastic) transformation within this ball;
for illustrations of this in practical context, see [333]. The parametrization
required to adequately describe mixed states is now discussed in detail.

1.3 Stokes parameters

The generic state of a qubit can also be specified by a real vector, most
naturally one in Minkowski space R

4
1,3, as well as by a convex combination

ρ
.= {pi, P (|ψi〉)} of projectors P (|ψi〉) acting in the Hilbert space C

2 as
discussed above. A real description has most commonly been used to describe
polarization via Stokes parameters in the restricted space R

3 but can be used
to describe any qubit and embedded in R

4
1,3 [14, 15, 240]. The components

of this four-vector, the four Stokes parameters Sµ, have the advantage of
directly corresponding to empirical quantities, such as photon-counting rates
25 This is particularly pertinent in regard to the performance of the universal-NOT

operation [207].
26 The position of a state ρ is often given by coordinates (x, y, z) ≡ (〈0|ρ|1〉 +

〈1|ρ|0〉, 〈1|ρ|1〉−〈0|ρ|0〉, i〈0|ρ|1〉− i〈1|ρ|0〉). We follow a different convention, pro-
vided just below Eq. 1.22, with respect to which this parametrization is rotated
90◦, where the position of ρ is given by Eqs. 1.19–22. See also the footnote above
regarding the Poincaré representation, as well as the following section.
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in selective measurements; see Chapter 8. Three of the dimensions (µ = 1, 2, 3)
associated with these parameters are conventionally taken to be those of the
computational, diagonal, and circular bases, and correspond to orthogonal
directions in the Poincaré–Bloch sphere; see Fig. 1.1. We now consider the
relationship between the above state descriptions and this most general one.

The Stokes and density matrix descriptions are homomorphic:27 the den-
sity matrix and the Stokes four-vector, Sµ, are related by

ρ =
1
2

3∑
µ=0

Sµσµ, (1.15)

where σµ (µ = 1, 2, 3) are the Pauli operators which, together with the identity
σ0 = I2, are represented in the matrix space H(2) by the Pauli matrices

σ1 = σx = X .=
(

0 1
1 0

)
, σ2 = σy = Y .=

(
0 −i
i 0

)
,

σ3 = σz = Z .=
(

1 0
0 −1

)
, σ0 = I2 = I .=

(
1 0
0 1

)
,

where X, Y, Z are the quantum-logic-gate labels often used to specify the cor-
responding operations; see Section 1.4. The Pauli matrices form a basis for
H(2), which contains the qubit density matrices.28 The nontrivial products
of the four Pauli matrices—those between the σi for i = 1, 2, 3—are given by
σiσj = δijσ0+iεijkσk, which defines their algebra.29 Appropriately exponenti-
ating the Pauli matrices provides the rotation operators, Ri(ξ) = e−iξσi/2, for
Stokes vectors about the corresponding directions i (cf. [359]); these rotations
realize the group SO(3).

The Stokes parameters Sµ (µ = 0, 1, 2, 3) also allow one to directly visualize
the qubit state geometrically in the Bloch ball via S1, S2, S3. The Euclidean
length of this three-vector (also known as the Stokes vector, or Bloch vector)
is the radius r = (S2

1 + S2
2 + S2

3)1/2 of the sphere produced by rotations of
this vector. With the matrix vector σ = (σ1, σ2, σ3) and the three-vector
S = (S1, S2, S3), one has

ρ =
1
2
(S0I2 + S1σ1 + S2σ2 + S3σ3) (1.16)

.=
1
2

(
S0 + S3 S1 − iS2
S1 + iS2 S0 − S3

)
, (1.17)

27 For a discussion of the pertinent homomorphism, see [237].
28 The qubit density matrices themselves are the positive-definite, trace-class ele-

ments of the set of 2 × 2 complex Hermitian matrices H(2) of unit trace, that is,
for which the total probability S0 is unity, as prescribed by the Born rule and the
well-definedness of quantum probabilities; see Appendix B. Density matrices are
similarly defined for systems of countable dimension; see Sect. A.5 and [416].

29 εijk = 1 for even permutations of 123, = −1 for odd permutations of 123, and
= 0 otherwise.
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known as the Bloch-vector representation of the statistical operator, in accord
with Eq. 1.15. In optical situations, where S describes a polarization state of a
photon, the degree of polarization is given by P = r/S0, where S0 is positive.
For the qubit, when the state is normalized so that S0 = 1, S0 corresponds to
total quantum probability. The density matrix of a single qubit is then of the
form

ρ
.=
(

ρ00 ρ01
ρ10 ρ11

)
, (1.18)

where ρ00 +ρ11 = 1, ρii = ρ∗
ii with (i = 0, 1), and ρ10 = ρ∗

10, where ∗ indicates
complex conjugation.30 One can write the Pauli matrices for µ = 1, 2, 3 in
terms of outer products of computational basis vectors, as follows.

σ1 = |0〉〈1|+ |1〉〈0| , (1.19)
−iσ2 = |0〉〈1| − |1〉〈0| , (1.20)

σ3 = P (|0〉)− P (|1〉) , (1.21)

and σ0 = P (|0〉)+P (|1〉), which can be directly verified by inspecting their ma-
trix representation given above. Using the above-mentioned homomorphism,
the Stokes parameters are expressed in terms of the density matrix as

Sµ = tr(ρσµ) , (1.22)

which are probabilities corresponding to ideal normalized counting rates of
measurements in the standard eigenbases (see box below); in the standard nor-
malized parametrization of Eq. 1.14, S0 = 1, S1 = sin θ cos φ, S2 = sin θ sin φ,
and S3 = cos θ.

S0 = tr
(
ρP (|0〉)

)
+ tr

(
ρP (|1〉)

)
, S1 = tr

(
ρP (| ↗〉)

)
− tr

(
ρP (| ↘〉)

)
,

S2 = tr
(
ρP (|l〉)

)
− tr

(
ρP (|r〉)

)
, S3 = tr

(
ρP (|0〉)

)
− tr

(
ρP (|1〉)

)
.

The four-vectors formed by the individual Stokes parameters provide a
basis in Minkowski space R

4
1,3. The σµ are the generators of rotations and hy-

perbolic rotations in this space.31 The proper, orthochronous Lorentz transfor-
mations Oo(1, 3) acting on the Stokes vector can be conveniently represented
as products of six transformations M1, ..., M6, of which the following two, M1
and M4, are representative of the two basic types, ordinary and hyperbolic
rotations, respectively.

M1(α) .=

⎛
⎜⎝

1 0 0 0
0 cos α − sin α 0
0 sin α cos α 0
0 0 0 1

⎞
⎟⎠ , M4(χ) .=

⎛
⎜⎝

cosh χ sinhχ 0
sinhχ cosh χ 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ .

30 Due to the constraints on density matrices, one can make use of the four conve-
nient real parameters A, B, C and φ such that ρ00 = A, ρ11 = B, ρ01 = Ceiφ̄, and
ρ10 = Ce−iφ̄, where C ≤ √

AB. For example, in Eq 1.6, A = B = 1
2 and C = 0.

31 For a discussion of the underlying mathematics, see [405].
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Of the full set {Mi} of six transformations, the first three are parameterized by
α, β, γ, which are the angles of rotation about orthogonal directions in this real
representation (when i = 1, 2, 3) leaving the zeroth component unchanged,
and the second three are parameterized by χ, ω, ζ, which are the angles of
hyperbolic rotation about the corresponding orthogonal directions in this real
representation (when i = 4, 5, 6) that alter the zeroth component.32

The Minkowskian (Lorentz-group invariant) length associated with the
transformation of the Stokes four-vector (S0, S1, S2, S3) under the Lorentz
group is

S2 = S2
0 − S2

1 − S2
2 − S2

3 , (1.23)

which is familiar from its more well-known analogue in spacetime, the proper
time.33 The Euclidean length r and “degree of polarization” P are related to
this invariant:

r2 = S2
0 − S2 , (1.24)

and

P 2 =
(

r

S0

)2

= 1− (S/S0)2 . (1.25)

As we show in Chapter 7, the generalization of the Lorentz-group invariant
length to multiple-qubit systems, in the product space formed from copies of
R

4
1,3, provides a measure of pure-state entanglement [240].

1.4 Single-qubit gates

The logic operations of quantum information processing can be carried out
using quantum gates, which are unitary operations acting on quantum state-
vectors. These operations realize, in the computational basis, the truth tables
of the corresponding Boolean logic operations.34 Single-qubit quantum gates
are transformations on the vector spaces of individual qubits appropriately
mapping the computational basis {|0〉, |1〉} to itself. For example, just as the
classical NOT gate takes the bit 0 to 1 and the bit 1 to 0, the quantum NOT
gate takes the computational-basis vectors |0〉 to |1〉 and |1〉 to |0〉. The group
of unitary transformations of the qubit state consists of operations described
by four parameters. As we have just seen, the space of qubit states can be
32 These parameters can be related to the effects of polarization-mode dispersion and

polarization-dependent loss in optical fiber that can affect photons in practical
applications such as QKD with polarization-based qubits [240].

33 It is important in this regard to note that here the transformations of interest are
qubit transformations, not spacetime transformations; the Stokes parameters are
not the parameters of spacetime. For discussions of the effect of boosts on qubits
in spacetime, see [116, 184, 331].

34 These operations should be distinguished from those of traditional quantum logic,
which is in a particular sense weaker than Boolean logic and in which, as a result,
distributivity sometimes fails; see Sects. A.1 and A.7.
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given as a three-dimensional real space (cf. Fig. 1.1) embedded in a larger one
of four real dimensions. Unitary transformations are trace-preserving, and so
do not change the norm of a state, that is, do not alter the value of the Stokes
parameter S0. A range of single-qubit gates are now described that are used
in subsequent sections and chapters.

HHadamard

Pauli i

NOT

SPhase

RRotation

T" /8"

Fig. 1.2. Symbolic representations of single-qubit quantum logic gates.

The symbolic representations of a number of basic quantum logic gates
are shown in Fig. 1.2. The effects, matrix representations, and interrelations
of these and other gates are now described.

The Hadamard gate. This gate is one of the most significant quantum
logic gates, because it can be used to enable the qubit interference vital to
quantum computation, in which several qubits are transformed in parallel,
typically involving tensor products of operators corresponding to this gate,
that is, H⊗n (cf. Figs. 14.1–2). It interchanges the computational and the
diagonal bases: |0〉 ↔ | ↗〉 and |1〉 ↔ | ↘〉. The Hadamard gate

H .=
1√
2

(
1 1
1 −1

)

induces a transformation equivalent to a rotation by the angle π/4 of the
Poincaré–Bloch sphere about the y–axis, that is, the diagonal-basis axis, fol-
lowed by a reflection through the x-y–plane, that is, the plane intersecting the
equator.35

35 The symbol “H” indicates the Hadamard transformation and is not to be confused
with the symbols designating the space of Hermitian matrices H(2), the Hamil-
tonian operator H, or Hilbert space H. Hermitian matrices O (and operators)
are those such that O† = O, where “†” indicates Hermitian conjugation which,
for matrices, corresponds to the operation of complex conjugation together with
transposition. Note that H2 = I. One can write H = 1√

2
(X + Z); see below.
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The rotation gates. Each of these gates rotates a qubit state about a
corresponding axis of the Poincaré–Bloch sphere by an angle ξ:

Rx(ξ) ≡ R(1,0,0)(ξ) = cos
(

ξ

2

)
σ0 − i sin

(
ξ

2

)
σ1 , (1.26)

Ry(ξ) ≡ R(0,1,0)(ξ) = cos
(

ξ

2

)
σ0 − i sin

(
ξ

2

)
σ2 , (1.27)

Rz(ξ) ≡ R(0,0,1)(ξ) = cos
(

ξ

2

)
σ0 − i sin

(
ξ

2

)
σ3 . (1.28)

More generally, one can consider a rotation by angle ξ about an arbitrary
direction n:

Rn(ξ) = cos
(

ξ

2

)
I− i sin

(
ξ

2

)
(nxσ1 + nyσ2 + nzσ3) , (1.29)

where the directional unit vector n has components nx, ny, nz. For example,
in the context of photon polarization, these rotations can result from photon
polarization-mode dispersion of the medium of propagation, in which case ξ
will depend on the distance of photon propagation.

The NOT (bit-flip) gate. This gate induces a change of the computational-
basis value of the qubit, that is, takes |0〉 ↔ |1〉:

NOT .=
(

0 1
1 0

)
,

performing a reflection through the x-y-plane, that is, that of the equator,
which is identical to the Pauli matrix σ1, that is, X, and which is accordingly
often referred to as the “bit-flip operator.” Note that (NOT)†= NOT, and
(NOT)2 = I2 (the identity) as one would expect from a logical-NOT operation.

The
√

NOT gate. This gate,

√
NOT .=

1√
2

(
1 i
i 1

)
,

is so named because applying it twice is equivalent to applying the NOT gate
once, up to an overall phase factor (−i). The

√
NOT gate is readily realized

in beam optics by a beam-splitter acting on a spatial qubit; see Section 1.6.36

The phase-flip gate. This gate,

Z .=
(

1 0
0 −1

)
,

induces a change of the phase angle φ of Eq. 1.14 by π and is identical to the
Pauli matrix σ3. It has the effect on computational-basis states that it takes
36 Note that the Hadamard gate H is also somewhat loosely referred to as a “square-

root of NOT.” A beam-splitter must be supplemented to phase shifters in order
to realize a Hadamard gate.
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|0〉 �→ |1〉, |1〉 �→ −|1〉. It can also be viewed as a variant “NOT” gate when
acting on the elements of the basis {| ↗〉, | ↘〉}, because it interchanges them:
| ↗〉 ↔ | ↘〉. The product iXZ is the Y (bit+phase-flip) gate identical to the
Pauli matrix σ2, which has the effect of inverting the qubit state-vector about
the origin of the Poincaré–Bloch sphere, performing “universal state-vector
inversion” [357].

The π
2 -phase gate. This gate, also called the i-phase-shift gate, represented

by

S .=
(

1 0
0 i

)
,

shifts the angle φ of Eq. 1.14 by π
2 . It allows one to produce specific interfer-

ometric effects when implemented in conjunction with Hadamard gates. This
gate is also the “square root” of the phase-flip gate, in that S2 = Z.

The “π
8 ” gate. This gate, represented as

T .=
(

1 0
0 eiπ/4

)
= eiπ/8

(
e−iπ/8 0

0 eiπ/8

)
, (1.30)

is commonly used in nuclear magnetic resonance simulations of quantum com-
puting, and shifts the angle φ by π

4 . Note that this gate is the “square root”
of the π

2 -phase gate, so that one has T4 = S2 = Z. It is sometimes also called
“K.”

The phase rotation. This gate,

P(φ̄) .=
(

1 0
0 eiφ̄

)
= eiφ̄/2

(
e−iφ̄/2 0

0 eiφ̄/2

)
,

shifts the qubit phase by an angle φ̄, allowing, for example, the production of
an interferogram when implemented together with

√
NOT gates; for example,

see Fig. 1.4. This operation thus rotates a state-vector by the angle φ̄ about
the polar axis in the Poincaré–Bloch sphere.

A generic unitary quantum-logic operation on a single qubit can be rep-
resented as a combination of an overall phase shift and three rotations. In
particular, one can represent the general unitary gate in terms of these gates
as

U(ς, ξ, ξ′, ξ′′) = eiςRz(ξ)Ry(ξ′)Rz(ξ′′) (1.31)

(cf. Eqs. 1.26–28).
The above set of gates is formally similar to the set of Jones matrices of

polarization optics.37 Nonunitary transformations of qubit states have been
thoroughly investigated as well, including those involved in the decoherence
process; for example, see [207].

37 For a thorough review of the practical creation, characterization, and manipula-
tion of single qubits in optics, see [333].
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1.5 The double-slit experiment

The simplest experimental situation in which uniquely quantum behavior is
manifest is the double-slit (or two-slit) experiment, which has proven highly
useful in illustrating the nature of quantum probability.38 Consider the double-
slit diaphragm and opaque-screen detector arrangement shown in Fig. 1.3.
Take a1(x) to be the (complex) quantum probability amplitude corresponding
(via retrodiction, cf. the introduction to Ch. 2) to the passage of a quantum
system through one slit of a diaphragm toward the spatial point x on the
measurement screen oriented perpendicularly to the direction of the initial
beam. The corresponding probability density of later finding a particle at
x upon measurement is then p1(x) = |a1(x)|2. Similarly, let a2(x) be the
amplitude corresponding to passage through a second slit and arrival at x;
the corresponding probability density is p2(x) = |a2(x)|2. The normalized
quantum amplitude for the particle being found at x when both slits are
passable, so that either slit might be entered on the way to the screen, is then

a12(x) =
1√
2

(
a1(x) + a2(x)

)
, (1.32)

according to the superposition principle.

The corresponding probability density of finding the particle at the point
x on the collection screen is thus

p12(x) = |a12(x)|2 (1.33)

=
1
2
|a1(x) + a2(x)|2 . (1.34)

The probability density p12(x) 
= p1(x) + p2(x), being the squared modulus
of the sum of amplitudes a1(x) and a2(x) which are complex numbers with
nontrivial phases, exhibits quantum interference modulated by the phase dif-
ference between these amplitudes—most dramatically under the conditions of
constructive and destructive interference—giving rise to locally “bright” (high
probability) and locally “dark” (vanishing probability) regions in the pattern

38 The two-slit experiment was first carried out with light by Fresnel and Young.
For a discussion of double-slit experiments with electrons see, for example, [355].
Richard Feynman said that the interferometric behavior in this experiment, “In
reality. . . contains the only mystery” of quantum mechanics and “We cannot make
the mystery go away by ‘explaining’ how it works. We will just tell you how it
works. In telling you how it works we will have told you about the basic peculiari-
ties of all quantum mechanics” [169]. The mystery is the nonclassical nature of the
quantum interference behavior described mathematically via quantum probability
amplitudes and their addition. In practice, measurements will involve detection
within a finite interval rather than a single point; the pointwise function described
here is the probability density, from which the pertinent probability is obtainable
by integration over the detection interval.
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x

p12(x)
1

2

Fig. 1.3. The double-slit experiment, characterized by passage of a particle through
slit 1 and/or slit 2 and detection at points x with single-particle interference on an
opaque detection screen. Bright regions correspond to high values of the probability
p12(x), dark regions to low probability values.

(interferogram) that results from the measurement of a collection of identi-
cally prepared particles; see Fig. 1.3. At these particular locations, quantum
amplitudes add to and cancel out one another out maximally, respectively.
Such an interference pattern is not observed when the measured systems are
classical particles. For a more detailed discussion, see Ch. III.1 of [169].

Niels Bohr considered two versions of the double-slit experiment while
exploring the nature of quantum interference [67]. In one, a rigid diaphragm
with two slits and the ability to move in response to a collision is used, allowing
the slit through which the particle passes to be determined by measurement
of the recoil of the diaphragm, but no interference pattern is observed; an
analogous apparatus for allowing path determination in two beams is shown
in Fig. 1.4. In the other, the rigid diaphragm is fixed in place, as in Fig.
1.3; see Fig. 1.5 below for a two-beam analogue to that case. In this second
version, an interference pattern in particle detections occurs, but the paths
of the particles are not determinable [242]. Thus, there is complementarity
between the distinguishability of the path of particles in the apparatus and
the visibility of interference patterns formed by them at the detection screen.

Arrangements interpolating between the two extreme arrangements con-
sidered by Bohr have since been quantitatively investigated. One finds that
measurements cannot be made that allow a posteriori precise determination
of which slit any given particle of the ensemble passed through with high
probability without destroying the interference pattern formed by the parti-
cles striking the measurement screen [373]. This was found to be expressible
as a quantitative complementarity bound on particle path (welcher weg, or
“which-way”) determinability and the interference visibility [462]. It is helpful
to consider discrete versions of the two-slit experiments of Bohr, which pro-
vide a “spatial qubit” corresponding to a pair of spatial paths, for example,
those emerging from exit ports of a beam-splitter, that could be coherently
recombined later, as in a Mach–Zehnder interferometer configuration. For our
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BS

D1

D2

A

A'

Fig. 1.4. An apparatus realizing a discrete two-beam experiment, in which detectors
D1 and D2 are placed before the two orthogonal beams (A and A′) can merge. “BS”
indicates a 50–50 beam-splitter and “φ” a variable phase-shifter.

BS BS
D1

D2

A

A'

Fig. 1.5. Apparatus realizing a discrete two-beam experiment, in which detectors
D1 and D2 are placed after the two orthogonal beams (A and A′) have merged.
This apparatus has the advantage over the original two-slit apparatus of Fig. 1.3
that no intensity is lost from the original beam during quantum state preparation.
“BS” indicates a 50–50 beam-splitter and “φ” a variable phase-shifter.

purposes, it is also convenient that this provides a (dual rail) realization of
a qubit, as it makes use of two quantum field modes to represent a single
qubit. The apparatus in Figs. 1.4–5 represent two such mutually exclusive
experimental arrangements for a single qubit. The class of experiments inter-
polating between these is not shown here, but corresponds to a single wing of
the apparatus shown in Fig. 3.2 in Chapter 3.

The problem of interest in each of these experiments is again that of un-
derstanding microscopic behavior given a particular preparation, P̄, of an
ensemble of systems that emerges in two beams, A and A′, corresponding
to quantum-field spatial modes, emerging from a beam-splitter, directed to-
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ward a given point.39 Two distinct kinds of measurement apparatus can be
placed away from the beam-splitter, allowing measurements of spatial path
and interference to be made. In one apparatus, the features of the pattern of
interference between beams A and A′ that are allowed to merge, as in Fig.
1.5, enable measurement of the visibility, v, of the interference pattern arising
given P̄; a variable phaseshifter introduces a phase shift similarly to the way
that different path-lengths from diaphragm slits to a given point on the detec-
tion screen do in the double-slit experiment of Fig. 1.3. The other apparatus
consists of detectors placed in beams A and A′ before they reach a common
point, and enables measurement of the distinguishability, D, of path, as shown
in Fig. 1.4. Now, in order to consider individual systems without conceptual
difficulty, let us consider the prediction of path rather than its retrodiction.

It may prove useful in this situation to introduce an ancillary quantum
system to aid in the determination of the path a system may take. In such an
extended class of experiments, there exist distinct ensemble preparations, P̄
and P̄ ′, both determining the same statistical operator ρ describing a single
qubit but such that the resulting distinguishabilities are unequal, that is,

D(P̄) 
= D(P̄ ′) (1.35)

with
D(P̄) > PD , (1.36)

where PD is any measure of path distinguishability that depends only on the
statistical operator, ρ; one sees that path distinguishability is a function of
preparation rather than of statistical operator alone [239].40

One must, therefore, consider all measurements (arrangements) that can
be made consistently with the preparation P̄, not just two, and find a strategy
for predicting for each system in the ensemble whether it will most likely be
from beam A or from beam A′, where a strategy may make use of knowledge
of the preparation as well as the results of the measurements. The optimal
39 General quantum state preparations are discussed in the following chapter and

compared to quantum measurements.
40 Such a measure PD was proposed by Mandel [294]. Generically, preparations con-

sist of the conditions leading to the arrival of a quantum system in an instrument;
see Chapter 2. For example, preparations can involve ancillary systems correlated
with the system of interest in such a way that a single reduced density matrix
(about which, see Sect. 2.5) may result from two different preparations, which
preparations potentially provide additional information about the state beyond
that evident in the single-particle statistical operator. For example, the particle
may be described by a fully mixed qubit state when uncorrelated with any other
system or when part of a fully correlated composite system of two-qubits in a
maximally entangled state, such as |Ψ−〉; see Eq. 3.5, as well as Sect. 9.7. It is
important to note, nonetheless, that two systems described by the same statis-
tical operator are guaranteed to provide the same experimental results when no
additional information of this kind is provided.



22 1 Qubits

strategy, given P̄, is the one for which the probability of a correct prediction
has the maximum value, pmax. The path distinguishability, D(P̄), for a given
preparation P̄ can be taken to be the difference between this probability and
the minimum probability of error, which can be written

D(P̄) = pmax − qmin = 2pmax − 1 , (1.37)

because the probability of an incorrect prediction having a minimum value is
simply qmin = 1− pmax [239].

Those preparations in which measurements of possible ancillary systems
that might interact with systems before they reach the beam-splitter can yield
no information useful for predicting the path of a system of interest are called
the simple preparations. Let us call the system initially under consideration
“system I,” propagating in beams A and/or A′, where “and/or” is used due
to the presence of quantum-mechanical amplitude superposition, as discussed
in the introduction to this chapter. A simple preparation where the ensemble
is such that all its systems are described by the same pure quantum state |ψ〉
is called a pure simple preparation. For such preparations, one has a state

|ψ〉 = a|A〉+ a′|A′〉 (1.38)

and the path distinguishability is given by

D(P̄) = | |a|2 − |a′|2| , (1.39)

as per Eq. 1.37, without loss of generality taking beam A to be that one
most likely to be entered. For these preparations, there is a complementarity
between path distinguishability D and visibility v given by an equality [239]:

D2(P̄) + v2(P̄) = 1 . (1.40)

For mixed simple preparations, where the systems of the ensemble are de-
scribed by a mixed state ρ and distinguishabilities are similarly obtained from
probabilities of the form ρ = tr(ρOi), where O1 = |A〉〈A| and O2 = |A′〉〈A′|,
the complementarity is instead expressed by an inequality [239]:

D2(P̄) + v2(P̄) ≤ 1 . (1.41)

Now consider the broader class of preparations, the correlated prepara-
tions, consisting of situations where measurements of correlated ancillae may
be useful for predicting the path. The least complex such case involves the
use of a second system, “system II.” Let |Θ〉 ∈ HI ⊗ HII be entangled, that
is, not factorable into a state-vector in HI and a state-vector in HII; for a
discussion of entanglement, see Chapter 6. For such a pure correlated prepa-
ration, partially tracing out the variables associated with system II from the
corresponding projector P (|Θ〉) provides the (reduced) state of system I.41 An
41 See Sect. 2.5 for a discussion of reduced statistical operators and the partial-trace

operation.
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ensemble formed by mixing several pure correlated cases, each with a distinct
|Θk〉 in HI⊗HII with respective proportion wk, is the case of mixed correlated
preparations. The first, strong complementarity relation above holds when D
is distinguishability in the pure correlated case, D(P (|Θ〉)); the second, weak
complementarity again holds when D is that of the mixed correlated case
[239].

Finally, consider the maximum distinguishability, maxD(P̄), for all prepa-
rations P̄ determining a given statistical operator ρ and any vector |Θ〉 in
HI ⊗ HII that yields this ρ for the system-I ensemble, that is, a purification
of this statistical operator.42 One finds that

maxD(P̄) = D(|P (Θ〉)) . (1.42)

Complementarity relations for distinguishability and interference visibility
continue to hold for the extended class of preparations, namely,

[maxD(P̄)]2 + v2(P̄) = 1, (1.43)

and
[D(P̄)]2 + v2(P̄) ≤ 1 ; (1.44)

see [239]. These single-system relations prove useful in practical applications
of qubit interferometry and signal detection in quantum cryptography; see
Section 9.4. Recall that the phenomena discussed in this section involve only
the self-interference of a single-qubit system, despite the consideration that it
might be entangled with a second, ancillary system.

1.6 The Mach–Zehnder interferometer

A double-slit-like arrangement where only two directions are available to the
self-interfering system is realized in the Mach–Zehnder interferometer, shown
in Fig. 1.6 below, wherein the exit ports of a beam-splitter act as “slits.” In
this interferometer, a quantum system, most commonly taken to be a photon,
enters from the left and/or from below into a beam-splitter with two exit
paths. It provides a spatial qubit, consisting of occupation of one and/or the
other interior beam path. Each path then encounters a mirror, a phase shifter,
a second beam-splitter, and finally a particle detector.43 One can also use
42 Any mixed quantum state ρ can be purified in a larger Hilbert space where the

system in question is considered to be a subsystem of a bipartite composite system
in a pure state |Θ〉; also see Sect. 9.7.

43 Phaseshifters may also be placed in the paths leaving the exit ports to be used
along with the transmittance of the final beam-splitter—together comprising a
transducer T , as in each of the wings of the complex interferometer shown in Fig.
3.2—to prepare a more general pure state of this qubit and to implement specific
single-qubit logic operations or phase encoding for quantum key distribution when
connected to a quantum communication line [101, 239, 473].
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this interferometer to prepare a phase qubit by selecting only those systems
entering a single initial input port and exiting a single final output port.

P(|1 )

a1|1

a0|0

P(|0 )

BS

BS

D1

D0

Fig. 1.6. The Mach–Zehnder interferometer providing a range of qubit states as the
input qubit amplitudes ai and phase shifts φi are varied, with detectors providing
count rates proportional to the probability of lying in the output computational-basis
states described by state-projectors P (|0〉) and P (|1〉). The corresponding probabil-
ities of detection for input amplitudes a0 = 0, a1 = 1 are p(0) = sin2[(φ0 − φ1)/2]
and p(1) = cos2[(φ0 − φ1)/2]; see also Fig. 13.1.

For specificity, let us now take the system in question to be a photon.
The beam-path state of a photon exiting the initial beam splitter can be
proportional to

either |0〉+ i|1〉
or i|0〉+ |1〉 ,

being the former if the photon were input from the left, or the latter if it
were input from below; see Fig 1.6. The beam-splitters can each be said to
implement the

√
NOT quantum gate; see Section 1.4, above. This is so in the

sense that, by taking a null shift to occur in the phaseshifter, the second beam-
splitter has a similar effect to the first, with the net effect on the photon that
it exits the interferometer with the opposite qubit value from that input; as
a result of the destructive interference in one final exit path and constructive
interference in the other, depending on the beam-splitter port initially entered,
the two beam-splitters together acting as a NOT gate operation (up to a phase
factor) in the quantum computational basis, as the particle will exit in the
opposite path from which it entered.44 However, when −π/2 phaseshifters
are placed in the paths |i〉 (i = 0, 1) before and after each beam-splitter,
44 A phase difference may also be introduced by a difference of path length, for

example, in an unbalanced configuration where the location of the second beam-
splitter plus detector pair and the location of a mirror relative to those as shown in
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the resulting subapparatus about each beam-splitter can be seen to perform
a Hadamard transformation on the qubit; for example, see [101]. The result
of two such net transformations—in the absence of the introduction of any
phase difference between paths—is to leave the qubit state unchanged, because
H2 = I. Introducing changes of phases and/or input amplitudes gives rise to
interference patterns at the detectors, which allows one to study quantum
effects in these spatial qubits.

1.7 Quantum coherence and information processing

Although important single-qubit quantum information-processing tasks exist,
such as quantum key distribution (QKD) using highly attenuated laser light,
where apparatus such as the Mach–Zehnder interferometer adequately induce
the relevant quantum phenomena, more interesting quantum information-
processing tasks require more than one qubit to be present on which logic
operations can be carried out so that quantum entanglement may be involved.
These multiple-qubit gates induce additional, yet more subtle phenomena that
are manifested only in more complex apparatus to be discussed in subsequent
chapters. For example, although QKD can be performed with individually en-
coded single qubits, QKD under the Ekert protocol requires a system of two
qubits. In particular, genuine quantum computing requires the maintenance
of highly coherent superpositions of computational basis states of multiple
qubit systems in order to be effective.45 A brief discussion of the relationship
between individual-qubit and multiple-qubit descriptions is therefore called
for here before we consider the important subject of quantum measurement,
which is also required for quantum computation.

Whenever one is dealing with a quantum system composed of two or more
subsystems, the Hilbert space of the system is the tensor product of the Hilbert
spaces of the subsystems.46 N classical bits give rise to 2N possible classical
computational states parameterized by N -bit strings xi ∈ GF (2)N . By con-
trast, the pure-state space for a system of N qubits is the Hilbert space

H(N) = C
2 ⊗ C

2 ⊗ · · · ⊗ C
2 . (1.45)

Fig. 1.6 are interchanged, as in each of the two wings of the Franson interferometer
illustrated in Fig. 3.3. This path length can also be varied, as is often done in
phase-encoded quantum-key-distribution apparatus.

45 Nonetheless, see [120]. Quantum computation can be viewed as in essence multi-
particle interferometry and vice-versa [151].

46 The tensor product is described in Appendix A. The prescription for its use in
the quantum mechanics is given by Postulate IV of standard quantum mechanics,
discussed in Appendix B.1. When notating quantum states associated with tensor
product spaces in Dirac notation, the tensor product symbol “⊗” is often omitted
but implied, as when |ψ〉 ⊗ |φ〉 is written |ψ〉|φ〉 which is sometimes also written
simply |ψφ〉, as in Eq. 1.46 below.
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As a result, an N -qubit pure state is parameterized by 2N − 1 complex num-
bers. For example, there are 2N complex components of a vector |Ψ〉 ∈ H(N)

written as a superposition state in the computational basis, which are then
reduced by one by fixing the value of its unphysical global phase and normal-
izing its length. It is important to note that the information representable in
N qubits in general cannot be represented in a polynomial number of classical
bits, preventing quantum systems from being efficiently simulated by classical
computation.47 The computational basis for this space, namely, {|xi〉} can,
nonetheless, be labeled by the 2N possible N -bit strings xi, which can be
viewed as eigenvalues corresponding to the computational basis of eigenvec-
tors.48 A generic N -qubit (register) state-vector |Ψ〉 ∈ H(N), according to the
superposition principle, can be written in the computational basis as

|Ψ〉 =
2N−1∑
i=0

ai|xi〉 , (1.46)

where the sum is taken over all 2N strings of N bits, ai ∈ C, the global phase
angle is set to zero, and the total probability is unity,

2N−1∑
i=0

|ai|2 = 1 . (1.47)

Standard quantum computation is described by the evolution of a multiple-
qubit state, typically beginning from the initial fiducial state |x0〉 ≡ |00 . . . 0〉,
according to a transformation that is decomposable as a series of unitary
multiple-qubit gate operations, followed by a measurement readout project-
ing the unitarily transformed state onto the computational basis.49 Thus,
quantum algorithms are ultimately irreversible and probabilistic in nature,
though the unitary (logical) portions of the evolution are themselves deter-
ministic and reversible; see Chapter 14.50

Quantum algorithms benefit from a unique form of computational par-
allelism arising from the presence of quantum superpositions within these
very large Hilbert spaces. This parallelism allows, in a particular sense, the
47 Indeed, the inability of classical computers to efficiently simulate quantum sys-

tems was one of the original motivations for the exploration of quantum comput-
ing. However, the difference between cases is not as great as sometimes presented;
see the discussion of the Knill–Gottesman theorem in the box in Sect. 13.5.

48 It is this correspondence that allows for classical readout of the result of quantum
computation, though not classical treatment of the quantum computation itself.

49 See Chapter 13 for a description of how general unitary logic operations may be
performed using a finite number of quantum gates.

50 Note, however, that practical models of quantum computation involve ancillae
that are measured for the purpose of error-correction and that have nondeter-
ministic and irreversible evolutions. Alternative, “one-way” quantum computa-
tion has also been defined, which operates somewhat differently [82].
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evaluation of a given function for many values at once. Unlike classical com-
putational parallelism, in which several circuits are required to operate at
one time, quantum parallelism operates with a single circuit on a number of
computational-basis vectors in a quantum superposition; this occurs because
the state of a quantum register can be a superposition of computational basis
states on which an algorithm can be realized as a unitary transformation up
until the readout stage. Multiple streams of data are, in essence, represented
together in a single quantum data set acted on by a single quantum circuit.
Due to the size of the Hilbert space available to a number of qubits, a single
quantum circuit operates, in effect, on an exponentially large data set.

Uniquely quantum states of multiple-qubit systems exist within these large
Hilbert spaces that exhibit a number of phenomena that have no local realis-
tic mechanical explanation due to their entanglement, which can be exploited
to help quantum computing surpass its classical counterpart in efficiency.51

However, multiple-qubit states are also very fragile, being susceptible to de-
coherence effects [317, 470]. After a short period of time, the pure quantum
states described by Eq. 1.46 are inevitably altered by interactions with their
environments and must then be described instead by a mixed quantum states
of the form

ρ(t) =
2N−1∑
i=0

2N−1∑
j=0

ρij |xi〉〈xj | . (1.48)

Interestingly, a similar process is a natural element of the quantum measure-
ments that are essential to quantum computation, as they are necessary for
computational readout; although decoherence must be avoided in the middle
of quantum computation, it plays a role at the end of quantum computation
when classical information must be extracted by measurement of the comput-
ing system [475].52

Finally, as an example of quantum state decoherence, consider a state of
a multiple-qubit system presented in the standard form of Eq. 1.46 in contact
with a thermal bath at temperature T . The density matrix of the state will
evolve toward the diagonal form

ρ(t) =
2N−1∑
i=0

ρiiP (|xi〉) , (1.49)

where ρii = exp(−Ei/kT )/
∑2N−1

j=0 exp(−Ej/kT ), k being the Boltzmann fac-
tor and Ei energy eigenstates, because the off-diagonal matrix elements de-
scribing the coherence tend toward zero, a process that takes place over a
timescale dependent on the system–environment interaction [153, 319].
51 The question of local realistic descriptions of quantum states is immediately ad-

dressed in the following chapter. Entanglement itself is the focus of Chapters 6
and 7.

52 Quantum decoherence is addressed in detail in Chapter 10. Quantum measure-
ment is discussed in detail in the following chapter.





2

Measurements and quantum operations

Quantum states can undergo two distinct sorts of transformation: in addition
to unitary transformations such as the quantum gates discussed in the previ-
ous chapter, non-unitary transformations can take place, measurements being
the most significant of these. Complete quantum information-processing tasks
generally involve a measurement step because quantum measurements are re-
quired for classical information to be read out from quantum states. Here,
before describing the general class of state transformations via the operations
formalism and before placing standard and generalized measurements within
it, a number of important early contributions to quantum measurement theory
are surveyed. These provide important distinctions and clarify the meaning of
the terms measurement, preparation, and selection in the quantum context.
However, because the issues with which these contributions are concerned are
often rather subtle, on a first reading one may wish to proceed directly to
Sections 2.3–5, in which quantum expectation values, projection postulates,
and reduced states are characterized, after which generalized operations and
measurements are discussed.

Quantum measurements must be performed in order to determine the
properties of a quantum system, which may have been prepared in an incom-
pletely known state.1 They involve the physical coupling of an apparatus to
1 Henry Margenau distinguished quantum measurement from quantum state prepa-

ration as follows. State preparation determines the state of a physical system
“but leaves us in ignorance as to the incumbency of that state after preparation,”
whereas measurement “certifies that some system responded to a process, even
though we are left in ignorance as to the state; after measurement, for example,
the measured system may have been destroyed.” [Margenau’s emphases.] The
latter situation is the case in photon counting, for example. See also Pauli’s dis-
tinction between first-kind and second-kind measurements in Sect. 2.2. Margenau
pointed out that there are numerous processes in which both of these character-
istics are combined, that is, that are both preparations and measurements [295].
In practice, preparation is often simply the selection of part of the output of a
nondestructive measurement device, for example, passage of a photon through
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the system to be measured in order to provide results given as the registration
of an appropriate property, sometimes referred to as a pointer observable. In
the quantum information context, typically the object system of interest is
a number of qubits serving as a quantum register and the pointer property
of the apparatus takes bit-string values, although pointer-property values can
differ from the computational-basis eigenvalues for the register, in which case
there must be a well-defined pointer function serving to bring the elements of
the two sets of values into one-to-one correspondence.

Regardless of the measurement model assumed, one also implicitly or ex-
plicitly assumes a formal relationship between system properties and eigen-
states, namely that a system property is attributed a definite value when and
only when the system is in an eigenstate of the operator corresponding to that
property; when in other states no such value is attributed. This is sometimes
called the eigenvalue–eigenstate link [348].2 Similarly, a calibration postulate
is sometimes introduced, requiring that if a system is in an eigenstate of an op-
erator corresponding to a property then a measurement of this property leads
with certainty to an outcome indicating that the system is in this eigenstate
[303]. Typically, a quantum state is taken to be defined by its preparation (or
measurement), which is used either to select (or predict) or to post-select (or
retrodict) the state at times afterward or beforehand, respectively. Quantum
probabilities specified by the state therefore have an implicitly conditional
character.3

A fundamental difficulty arises when one attempts to provide a fully in-
ternal deterministic description of measurement in quantum mechanics, due
to the unitary character of the standard time-evolution (the Schrödinger evo-
lution described by the operator U) of closed systems, that is, systems not
interacting with anything outside of themselves, and the superposition princi-
ple. This difficulty is often referred to as the quantum measurement problem
and can be seen to arise as follows [90]. Consider a measuring apparatus (often
assumed to be macroscopic), initially in an eigenstate |p0〉 of the pointer prop-
erty, and a system to be measured (often assumed to be microscopic) having
a property of interest and corresponding operator O with discrete nondegen-
erate eigenvalues {oj} that is taken to be in a specific eigenstate |oi〉 before
the measurement process begins and that is assumed to remain unchanged
during the measurement process. With these assumptions, the measurement
process would result in the transformation

a given port of a polarizing beam-splitter, the output of the other port being
disregarded. By virtue of such selection, the apparatus acts as an analyzer; see
Fig. 2.2.2.

2 One can think of this assumption as a means of making more explicit the meaning
of Postulate I of standard quantum mechanics given in Sect. B.1.

3 Note, however, that the relative character of quantum states does not render them
essentially epistemic in nature; see the discussion of the ignorance interpretation
of quantum probability of Sect. 1.1 and hidden variables in Sect. 3.1. Note also
that closed-system quantum evolution is time-symmetric.
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|Ψ (i)
j 〉 ≡ |p0〉|oj〉 (2.1)

→ |Ψ (f)
j 〉 ≡ |pj〉|oj〉 , (2.2)

for each value of j that is a possible measurement outcome. However, suppose
that the state of the system to be measured were instead initially not an
eigenstate of O but rather a superposition state

∑
j aj |oj〉, which is also an

allowed system state by the superposition principle. In that case, taken to be
a unitary operation acting linearly on state-vectors, the measurement process
would be described by the pure state transformation

|Ψ〉 ≡ |p0〉
∑

j

aj |oj〉 (2.3)

→ |Ψ ′〉 ≡
∑

j

aj |pj〉|oj〉 . (2.4)

In the statistical operator description, the transformation of this initial pure
state to a final pure state would then be

ρ → ρ′ = Uρ U† , (2.5)

where

ρ = P (|Ψ〉) , ρ′ = P

(∑
j

aj |pj〉|oj〉
)

, (2.6)

because unitary transformations preserve state purity. What one needs from a
successful measurement, however, is a transformation of the initial pure state,
ρ, of the complete system to a final state of the form

ρ(f) =
∑

j

|aj |2P
(
|Ψ (f)

j 〉
)

(2.7)

that is a mixed state for an ensemble of situations occurring with probabilities
corresponding to the probabilities of measurement outcomes, |aj |2, only one
of which is obtained upon measurement.

The result of the system’s evolving according to the unitary time-evolution
prescribed by the postulates of quantum mechanics is a coherent superposition
involving several distinct measuring system states. In particular, we see that
it is a coherent superposition of measurement states of the prescribed form
shown in Eq. 2.2 rather than a mixed state. Thus, unitary evolution alone
yields a measurement of the quantity O that remains indefinite in outcome
and so provides an inadequate description of the required measurement pro-
cess. The failure of the unitary evolution to provide a definite measurement
outcome is the quantum measurement problem, sometimes also called the
macro-objectification problem.4 Nonetheless, this conceptual difficulty does
not prevent one from making practical use of the quantum formalism.
4 D’Espagnat identifies five aspects of the measurement problem, including this one

[128]. It is valuable to compare and contrast the composite system state in Eq.
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2.1 The von Neumann classification of processes

The quantum measurement problem has resulted in a long, though somewhat
uncomfortably held, fundamental distinction in quantum mechanics between
measurements and other processes. In particular, John von Neumann distin-
guished two types of quantum state change, or intervention: the first type be-
ing the sort taking place during measurement involving a process of subjective
perception of the measurement result by a percipient outside of the quantum
description, the second type being those taking place otherwise [444]. With
such a distinction, one can consistently treat measurement devices themselves
as quantum systems as above. By contrast, the approach of Niels Bohr in the
Copenhagen interpretation of quantum mechanics is to consider measurement
apparatus as classical systems not described by quantum mechanics [310].5

The discontinuous change of quantum state at the end of the measurement
process—that is, upon its coming to be known by a percipient—was taken by
von Neumann to be accompanied by a change in the state of the measured
system such that an immediate repetition of the measurement would with
certainty yield the same result as the initial measurement. This is sometimes
referred to as the repeatability hypothesis. Von Neumann accordingly invoked
what is now known as the (traditional) projection postulate used by Dirac,
Heisenberg, Pauli and others beginning in the late 1920s.6

2.6 with the subsystem reduced state given by Eq. 1.49 which can result from
the unitary evolution of a composite system. A more detailed treatment of this
problem can be found in [380]. For a statistical perspective on the topics discussed
in this chapter one may wish to refer to [219].

5 Another alternative also not further discussed here due to its highly unpleasant
metaphysical implications but popular with some physicists and mathematicians
investigating quantum computing, most notably David Deutsch, is the so-called
many-worlds interpretation of quantum mechanics. In this interpretation, mea-
surement is to be fully described by a unitary evolution in the joint Hilbert space
of the measured system, the measuring system, and the entire environment of the
two, producing a von Neumann chain of superposition states of all these systems
of the sort given by Eq. 2.6, ultimately resulting in a “wavefunction of the uni-
verse” in an elaborate superposition state that never collapses; those portions of
the resulting ramifying set of situations in which different sets of measurement
outcomes are obtained by measurers are assumed in some way to be inaccessible
to one another; see [303] for a discussion of measurement under this interpreta-
tion and [381] for a discussion of metaphysical implications of the interpretation.
In essence, this interpretation attempts to circumvent the quantum measurement
problem by metaphysical fiat at the level of the entire universe, rather than in-
voking the subjective perception that is naturally present in any measurement
process the outcome of which comes to be known by a subject, as von Neumann
did. This idea was first carefully investigated by Hugh Everett III and John A.
Wheeler [134].

6 The name “projection postulate” itself was first given by Margenau in 1958 [295].
For his part, Dirac dictated that “a measurement always causes the system to
jump into an eigenstate of the dynamical variable being measured” [136].
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In von Neumann’s treatment, the discontinuous change of state during
measurement is expressed by the rule that, when subject to measurement, a
quantum system initially in a pure state evolves nonunitarily into a mixed
state. In particular, in accord with Eq. 2.7,

P (|ψ〉) −→ ρ′ =
∑

i

(
〈ψi|P (|ψ〉)|ψi〉

)
P (|ψi〉) , (2.8)

where P (|ψ〉) is a projector onto the initial state |ψ〉, the projectors P (|ψi〉)
onto the eigenvectors |ψi〉 sum to the identity, and the weights 〈ψi|P (|ψ〉)|ψi〉
sum to unity and correspond to probabilities that the values of the property
being measured are found to be those of the subensembles corresponding to
the projectors P (|ψi〉), when the system is known to initially have been in
the state |ψ〉; see Fig. 2.1. This stage of state evolution is sometimes also
referred to as pre-measurement, because no particular measurement outcome
is selected by it. For projectors, P (|ψi〉)P (|ψj〉) = δijP (|ψi〉), guaranteeing
that if the same subspace is projected on immediately and repeatedly then
such measurements always return the same value.

Because the set of vectors {|ψi〉} form a basis for H, the matrix elements
of the final statistical operator are, in an arbitrary basis {|αi〉},

[ρ′]ij =
∑

k

〈αi|ψk〉〈ψk|ψ〉〈ψ|ψk〉〈ψk|αj〉 (2.9)

=
∑

k

wk[ρ′
k]ij , (2.10)

that is, the process takes pure states to mixtures described by the weights
wk, as required. This discontinuous process is von Neumann’s type-I process.
When this process gives rise to any change in state it is irreversible [444]. When
a subensemble, corresponding to a given value of k, constituting a proportion
wk of the total normalized ideal ensemble, is then also selected—in the case of
an individual system by its being actualized, which happens with probability
wk—one has

P (|ψ〉) → P (|ψk〉)|ψ〉 , (2.11)

the r.h.s. generally having nonunit norm. The resulting pure ensemble state
can then be renormalized, so that the statistical operator of the particular
selected pure subensemble has trace one and can then be described simply
by the statistical operator P (|ψk〉). The pair of processes described by Eqs.
2.9–11 constitute a selective measurement.

Von Neumann’s type-II process is the usual continuous (automatic) pro-
cess described by the Schrödinger evolution

ρ → ρ′ = Uρ U† , (2.12)

where U is the unitary operator describing temporal evolution discussed in
Section 1.1. In this process, the purity and trace of the statistical operator
remain unchanged, so that no renormalization of state is required.
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|

P(S )|
| mS

Fig. 2.1. Projection of a quantum state-vector |ψ〉 into a vector subspace S by a
projector P (S). Specifically, the projection of |ψ〉 onto a ray corresponding to |ψm〉,
with which it makes an angle θ, is shown here; the probability for this transition
to occur is cos2 θ. A von Neumann-Lüders measurement corresponds to the set of
possible projections onto a complete orthogonal set of subspaces, not necessarily
rays, spanning the Hilbert space of the system being measured; see Sects. 2.3–4.

2.2 The Pauli classification of measurements

At a finer level of detail, Wolfgang Pauli classified measurements themselves
into two categories, those of the first kind and those of the second kind, as
follows [324].

(1) Measurements that, when they are known to have been performed on
a quantum system with outcomes that remain unknown, result in probabil-
ities for the quantity measured having definite values, which have become
determinate as a result of the measurement, that are equal immediately be-
fore and after it, though the state of the system will have been changed and
may subsequently provide different measurement results, are measurements of
the first kind. In this case, the state is changed only to the extent necessary
for a measurement to be performed, leaving unchanged the particular prop-
erty measured. Pauli further distinguished repeatable measurements, which
are those first-kind measurements that, when repeated, cannot lead to a new
result, which are the sort of measurements prescribed by the von Neumann
projection postulate. The Stern–Gerlach spin measurement is the archetyp-
ical example of such a measurement.7 An example from linear optics is the
measurement of linear polarization by a birefringent crystal; see Fig. 2.2-1.

(2) Measurements in which the state of the measured system is controllably
changed in such a way that repeating them will lead to statistical results
different from those of the initial measurement. When definite conclusions can
be made regarding the quantity being measured in this way, the measurements
are measurements of the second kind. The measurement of light polarization
by a polarizer passing only one linear polarization state is an example of such
a measurement, because the state is required to come to match the known
state of the polarizer in this case; see Fig. 2.2-2. Photon counting wherein
7 For a description of the Stern–Gerlach measurement, see Sect. 1.1 of [359]; for an

analysis of behavior of coherence in the Stern–Gerlach apparatus, see [162].
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Fig. 2.2. Examples of apparatus performing first kind and second kind measure-
ments, respectively, according to the Pauli classification—light polarization: (1) re-
fracted by a Rochon prism, and (2) selectively absorbed using a dichroic polarization
analyzer.

photons are destroyed is another example of a second-kind measurement (cf.
Footnote 1).

Pauli and von Neumann both emphasized that, when the interaction be-
tween a measurement apparatus and a system being measured is analyzed, the
linearity of the Schrödinger equation describing the state evolution of com-
posite system formed by these two (sub)systems provides consistency between
alternative descriptions of system behavior in which the division (or “cut”)
between measuring system and measured system is made differently. Pauli
viewed the need for a nondeterministic projection as arising naturally from
the fact that the interaction between the measuring system and the measured
system is “in many respects intrinsically uncontrollable.”8

2.3 Expectation values and the von Neumann projection

The expectation value of a property represented by an Hermitian operator O
of a quantum system in a pure state given by a state-vector |ψ〉 is

〈O〉|ψ〉 = 〈ψ|O|ψ〉 (2.13)

=
∑

i

oi|〈oi|ψ〉|2, (2.14)

8 For an example treatment of irreversible transformations in an experimental
situation involving Stern–Gerlach apparatus, see [372]. A contemporary formu-
lation of this measurement taxonomy that addresses subtle additional issues
that arise when various different interpretations of the quantum formalism are
introduced—such as the Copenhagen, minimal statistical, “realistic,” and many-
worlds interpretations—can be found in [303]. The standard model of quantum
measurement theory is surveyed in [93].
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where {oi} is the set of eigenvalues comprising the eigenvalue spectrum of O;9

when the state of the system is instead mixed, by necessity being described
by a statistical operator ρ that is not a projector, the expectation value is

〈O〉ρ = tr(ρO) . (2.16)

The measurement of a property O of a system in a general state (pure or
mixed), according to the von Neumann projection rule, is described by the
transition

ρ → ρ′ =
∑

i

tr
(
ρP (|oi〉)

)
P (|oi〉) . (2.17)

A measurement of a property is said to be maximal (or complete) when it
provides fully distinct values for the quantity measured, so that no more in-
formation can be obtained by further measurements of the property. For such
measurements, the above projection rule is entirely adequate. If, instead, the
measurement performed is capable of discriminating only sets of values, the
measurement is said to be nonmaximal; in that case, it provides incomplete
information about the property. Consider, for example, the measurement of
a qutrit, a quantum system possessing a trivalent property O with values
oi = −1, 0, 1. A maximal measurement will have three possible outcomes,
one for each of the possible values. By contrast, a measurement with only
two outcomes, say “−” for system property values −1 or 0, and “+” for sys-
tem property value +1, is a nonmaximal measurement. An example situation
wherein the latter would be realized involves an imperfect Stern–Gerlach type
apparatus acting on a spin-1 system such that a particle with z-spin +1� en-
ters a distinct spatial beam downstream from the magnet but particles with
spins 0� or −1� are not allowed to separate, entering only a common, second
beam.

For measurements of properties whose operators have degenerate, that is,
nonunique eigenvalues, as in the above example, this projection rule can be
improved upon, as we show in the following section.
9 Expectation values thus take the form of average values for measurements on

ensembles of quantum systems prepared in the same state under statistically ideal
circumstances. A related mathematical theorem central to quantum mechanics is
the spectral theorem: each Hermitian operator, O, can be written

O =
∑

i

oiP (|oi〉) , (2.15)

where P (|oi〉) is the projector onto the finite Hilbert subspace spanned by |oi〉.
Equation 2.15 provides the spectral decomposition (or eigenvalue expansion) of
the operator O. This theorem does not hold for operators in infinite-dimensional
Hilbert spaces, even when there exists a countably infinite set of basis vectors.
Such a decomposition does not exist in general in that case because there may
not exist a countably infinite set of eigenvectors that form a basis. There do exist
topologies on infinite-dimensional spaces for which the theorem in a generalized
form (the nuclear spectral theorem) does hold, however; for example, see [64].
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2.4 The Lüders rule

If the projection operator corresponding to an outcome for a measurement of
a property O projects onto a subspace of finite dimension greater than one,
then the (original form of the) von Neumann projection postulate, including
subensemble selection and renormalization, prescribes that the measurement
process be described by the process

ρ −→ ρ′ = Pk , (2.18)

where here the projector is written Pk. This rule yields a system state after
measurement that is independent of the details of the state before the mea-
surement, beyond those pertinent to the measurement outcome itself, as can
be seen by noting that ρ does not appear in the description of ρ′. Accord-
ingly, the von Neumann prescription fails to maintain the distinction between
initially pure states and initially mixed states and fails to preserve coherence
of pure states in nonmaximal measurements.

A more general prescription of projective state-change as a result of such
a selective quantum measurement is the Lüders projection (Lüders rule),

ρ −→ ρ′ =
PkρPk

tr(ρPk

) , (2.19)

under which the state after measurement clearly is dependent on the state of
the system beforehand. The values of successive measurements under this rule
will coincide when another measurement is made between successive measure-
ments of O of a property compatible with O in the sense that the correspond-
ing operators commute, unlike in the case of the measurements as character-
ized by the von Neumann projection described above [250, 290]. Thus, under
the Lüders prescription for state projection, if one prepares two ensembles
of systems in the state ρ, the first measured for some property compatible
with O and the second having O itself measured first, the relative frequencies
of the values of the compatible observable are the same for those two cases,
yielding pure subensembles from pure ensembles. Furthermore, when the ini-
tial state of the system is pure, the Lüders rule is the only projection rule
for which this is true [400]. The Lüders prescription is itself a consequence of
the Feynman rules for computing quantum probability amplitudes, which are
based on the concept of the indistinguishability of processes [399]. The Lüders
rule is now commonly considered to be the appropriate general description of
a “von Neumann” (read precise) measurement, as distinct from generalized
(POVM) measurement; see Section 2.7, below.10 Note that both of the above
prescriptions are descriptions of selective measurements.
10 Note that von Neumann measurements of a discrete ordinary observable are re-

peatable, but a repeatable measurement of such an observable need not be a von
Neumann measurement; for example, see [94]. For continuous variables, see [92].



38 2 Measurements and quantum operations

Nonselective measurements, by contrast, of systems in initial states ρ that
are not necessarily pure are described by the transition

ρ → ρ′ =
∑

i

PiρPi , (2.20)

where Pi is a projector onto the (not necessarily one-dimensional) eigensub-
space corresponding to the outcome i, under the Lüders prescription.

The Lüders rule describes measurements that are minimally disturbing
(or coherent) in the sense that they project an initially pure state onto eigen-
subspaces with a weight proportional to the square of the projection onto
each subspace. By contrast, the original von Neumann measurement rule de-
scribes measurements that are maximally disturbing (or incoherent) relative
to other first-kind measurements.11 A distinction between these rules has also
been made as follows. The original von Neumann measurement is intended to
describe measurements of ensembles, whereas the Lüders rule is intended to
describe individual measurements [185].

2.5 Reduced statistical operators

Describing measurement quantum mechanically involves the examination of
the interaction between a measuring apparatus and the system it measures.12

The joint state of the measurement apparatus and the system, initially a pure
state, can be considered to remain pure and described by the standard unitary
evolution throughout measurement. However, each of the subsystems, consid-
ered alone, enters a mixture described by the reduced statistical operators
obtained by partial tracing out parameters describing the other subsystem, as
the joint state becomes entangled. The quantum information as measured by
the quantum entropy of the state of each subsystem accordingly decreases, as
shown in Chapter 5. Such a description also applies to system–environment
interactions, which are described in Chapter 10.

Let {|ui〉} and {|vj〉} be bases for Hilbert spaces H1 and H2 of countable
dimension, describing two subsystems 1 and 2, respectively, forming a compos-
ite system in state ρ. The set of vectors {|ui〉⊗|vj〉} (i = 1, 2, . . . ; j = 1, 2, . . .)
is then a basis for the Hilbert space of the total system, H = H1 ⊗H2. Any
operator O on H, such as ρ, can be written in the form

O =
∑
ij,kl

{
|ui〉|vj〉Oij,kl〈uk|〈vl|

}
, (2.21)

where Oij,kl are scalars (the matrix elements corresponding to O). Finding the
partial trace is somewhat like finding the marginal distribution of a component
11 For this reason the original, von Neumann projection rule is sometimes referred

to as the “clumsy experimenter’s rule.” See also [126].
12 For descriptions of the measurement process including details of measurement

interaction see, for example [6, 330]. For more tensor products, see Sect. A.5.
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of a two-dimensional random variable from the probability distribution of the
latter in classical probability theory: the partial trace of O, with respect to
the first subsystem, for example, is

tr1O ≡
∑

i

〈ui|O|ui〉 . (2.22)

In particular, the result of partial tracing the statistical operator ρ of the com-
bined system over each of the subsystems individually is the pair of reduced
statistical operators

ρ1 = tr2ρ , (2.23)
ρ2 = tr1ρ , (2.24)

each describing the state of one subsystem, for example, in the case of the
dismissal of the other subsystem. The reduced statistical operator is the only
statistical operator providing correct measurement statistics for subsystems
[268]. When the overall state ρ is an entangled pure state, the reduced states
ρ1 and ρ2 describing the component systems are mixed rather than pure, a
situation not arising for marginal distributions in classical mechanics.

2.6 General quantum operations

As we saw in the description of the measurement process above, it is often valu-
able to describe transformations of quantum states besides those described by
the standard unitary evolution of closed systems yet still allowed by quantum
mechanics. Important examples of these include the evolution of open quan-
tum systems, which may also lie outside the class of transformations described
by the projections considered above. It is therefore useful to consider the class
of completely positive trace-preserving (CPTP) linear transformations,

ρ → E(ρ) , (2.25)

often called operations, taking statistical operators to statistical operators,
each described by a superoperator, E(ρ), satisfying the following conditions.

(i) tr[E(ρ)] is the probability that the transformation ρ → E(ρ) takes place;
(ii) E(ρ) is a linear convex map on statistical operators, that is,

E
(∑

i

piρi

)
=

∑
i

piE(ρi), (2.26)

pi being probabilities. (E(ρ) then extends uniquely to a linear map.)

(iii) E(ρ) is a completely positive (CP) map.
A linear map L : B(H) → B(H), where B(H) is the space of bounded linear
operators on H, is said to be positive if L(O) ≥ O for all O ≥ O, that is,



40 2 Measurements and quantum operations

all O ∈ B(H) for which 〈ψ|O|ψ〉 ≥ 0 for all |ψ〉 ∈ H;13 such a positive L is
completely positive (CP) if, in addition, any IN ⊗L ∈ B(CN ⊗H) is positive,
for all N ∈ N. Note that matrix transposition in any basis,

T : |i〉〈j| → |j〉〈i| , (2.27)

for example, the computational basis, is a positive map that is not completely
positive. A CPTP map is just a CP map that is also TP.

Operations E(ρ) satisfy the above three conditions if and only if they are
such that

E(ρ) =
∑

i

KiρK†
i , (2.28)

for some set {Ki} of Hilbert-space operators for which I−
∑

i K†
i Ki ≥ O [261].

The elements Ki are sometimes called decomposition operators (or operation
elements or Kraus operators) and the set {Ki} called the operator decom-
position.14 Equation (2.28) provides the operator-sum representation for the
operation E(ρ). The trace preserving (TP) property for E(ρ), tr(E(ρ)) = tr(ρ),
translated in terms of the decomposition operators {Ki}, is the property∑

i

K†
i Ki = I , (2.29)

which is a completeness relation that, because Ki and K†
i do not necessarily

commute, may differ from the condition∑
i

KiK
†
i = I , (2.30)

which is required for a CP map to be a unital map, that is, a map for which
E(I) = I. One example of such a map is the qubit-depolarizing channel; a
negative example is provided by the amplitude-damping channel; see Section
9.6. If the operator decomposition of a CP map satisfies both these conditions
the map is doubly stochastic.

The operator decomposition of an operation is not unique. In particular,
any two sets of operators {Ki} related to each other by unitary transforma-
tions equally well represent the same operation E(ρ). A decomposition is said
to be minimal if there exists no decomposition into a smaller set of operators
than it contains, which is the case if and only if its operators are linearly inde-
pendent. An operation is said to be pure if there is a decomposition of it that
contains only one operator; the standard quantum-mechanical closed-system
13 A linear map L taking ρ �→ L(ρ) is one such that for ρ = p1ρ1 + p2ρ2, L(ρ) =

p1L(ρ1) + p2L(ρ2).
14 These decomposition operators Ki are not necessarily Hermitian; for example,

see the operator elements of the amplitude-damping channel discussed in Sect.
9.6.
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time-evolution operation (the Schrödinger evolution) is an example of a pure
operation.

Any CPTP map can be understood in terms of a unitary transformation
acting in a Hilbert space larger than the Hilbert space H1 associated with the
relevant statistical operator. In particular, for a state ρ ∈ H1 in the larger
space H1 ⊗H2, there is a state ρ′ ∈ H2 such that

ρ = tr2(ρ⊗ ρ′) . (2.31)

Any CPTP map can be viewed as the transformation

T (ρ) = tr2
(
U(ρ⊗ ρ′)U†) , (2.32)

for some unitary operator, U [261]. Some other examples of CPTP maps are
the nonselective measurement ρ →

∑
i P (|ψi〉)ρP (|ψi〉) and the composition

of quantum systems ρ → ρ⊗ρ′, such as when an ancilla is added to a system.

2.7 Positive-operator-valued measures

Consider, for a moment, measurement in the broadest setting, wherein the
eigenvalue spectrum of the Hermitian operator O representing a physical prop-
erty may be continuous, so that a measurement might place its value within
a Borel set ∆ ∈ R and leave the state of the system with support (O, ∆)
with respect to O. A projector PO(∆) from the spectral decomposition of O
might describe the (quantum mechanically) maximally specified state of such
a system. There are significant difficulties arising from such a description; for
example, see [92, 398]. The generalized measurements we now consider pro-
vide one well-defined way of describing of such situations, although those will
not be explicitly dealt with here since we consider only discrete properties.

Generalized measurements are the class of quantum operations that are
described by positive-operator-valued measures (POVMs) [122]. Given a
nonempty set S and a σ-algebra Σ of its subsets Xm, a positive-operator-
valued measure E is a collection of operators {E(Xm)} satisfying the following
conditions.15

(i) Positivity: E(Xm) ≥ E(∅), for all Xm ∈ Σ.
(ii) Additivity: for all countable collections of disjoint sets Xm in Σ,

15 See Sect. A.7 for the definition of σ-algebra. A Borel σ-algebra is the σ-algebra
generated by the open intervals (or the closed intervals) on a topological space—
for example, in R—which are the Borel sets. The set S is often a standard measur-
able space, that is, a Borel subset of a complete separable metric space. Because
such spaces of each cardinality are isomorphic, they are all measure-theoretically
equivalent to Borel subsets of the real line, R; see [217].
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E(∪mXm) =
∑
m

E(Xm) . (2.33)

(iii) Completeness: E(S) = I.

In the operator space of quantum mechanics, POVMs are the natural cor-
respondents of probability measures. If the value space, (S, Σ), of a POVM
E is a subspace of the real Borel space (R,B(R)), then E provides a unique
Hermitian operator on H, namely∫

R

Id dE , (2.34)

where Id is the identity map. The probability of outcome m upon a generalized
measurement of a pure state |ψ〉 is given by

p(m) = 〈ψ|E(Xm)|ψ〉 ; (2.35)

when the state is mixed, this probability is instead given by

p(m) = tr
(
ρE(Xm)

)
; (2.36)

see also the discussion of Gleason’s theorem and its extension in Section 3.4.
The effect of a POVM measurement of the initial state ρ is exhibited by

post-measurement states ρ′
m and corresponding outcome probabilities p(m).

The positive operators E(Xm) in the range of a POVM are referred to as
effects and represent the events associated with outcomes of generalized mea-
surements. A collection of effects is said to be coexistent if the union of their
ranges is contained within the range of a POVM. The post-measurement state
of a system initially described by a statistical operator ρ under a POVM
{E(Xm)} is often taken to be

ρ′
m =

MmρM†
m

tr
(
MmρM†

m

) , (2.37)

where each of the E(Xm) can be written M†
mMm, Mm being called a measure-

ment decomposition operator (cf. [315]); in the special case that the Mm are
projectors, this expression coincides with the Lüders–von Neumann measure-
ment rule given by Eq. 2.19—this can be seen by recalling that projectors are
Hermitian and idempotent.16 When, and only when, the measurement oper-
ators Mm are projectors—so that the POVM is a projection-operator-valued
measure (PVM)—are they identical to decomposition operators E(Xm), in
which case they are also multiplicative, that is, E(Xm ∩Xn) = E(Xm)E(Xn)
for all countable subsets of the corresponding set—equivalently, E(Xm)2 =

16 For a more general extension of state projections for POVMS, see Sect. 3.3 of
[127].
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E(Xm). As noted above, von Neumann measurements of a discrete PV mea-
surement are always repeatable, although the converse is not true.17 Any
POVM can be given as an isometric embedding into a larger Hilbert space
together with a PV measurement, so that one can consider von Neumann
measurements in a total state space of a composite system consisting of the
measured system together with an ancilla.

POVM measurements play an important role in quantum key distribution,
where they have been used for a variety of quantum signal detection and esti-
mation tasks. POVM elements, when providing positive outcomes, allow one
to eliminate quantum states from consideration as describing the measured
system. An example of a POVM used for such a purpose is the following [37].
Given the two projectors

P (¬|φ〉) ≡ I− P (|φ〉) , (2.38)
P (¬|φ′〉) ≡ I− P (|φ′〉) , (2.39)

where 〈φ|φ′〉 = sin 2θ, one can construct a POVM {Em} with the following
elements.

E1 = P (¬|φ〉)/(1 + |〈φ|φ′〉|) . (2.40)
E2 = P (¬|φ′〉)/(1 + |〈φ|φ′〉|) . (2.41)
E3 = I− (E1 + E2) . (2.42)

POVM measurements using {E1, E2, E3} prove more efficient for QKD and
eavesdropping thereon than traditional measurements described by the pro-
jectors {P (¬|φ〉), P (¬|φ′〉)}. POVMs similarly sometimes allow quantum state
tomography to be performed with improved efficiency; see Chapter 8 and [349].

For example, in quantum key distribution under the B92 protocol, the
sender of cryptographic key bits uses the nonorthogonal states

|φ〉 = cos θ|0̄〉+ sin θ|1̄〉 (2.43)
|φ′〉 = sin θ|0̄〉+ cos θ|1̄〉 (2.44)

to send a random binary sequence to the receiver, |φ〉 encoding bit 0 and
|φ′〉 encoding 1. The receiver (or an eavesdropper) can perform measurements
of bits that sometimes fail to find the desired bit, but when they succeed
always provide the bit correctly. In particular, when used as arguments in the
POVM described by Eqs. 2.40–42 the first two elements correspond to definite
signal state identifications and the third element corresponds to an indefinite
result; see Sections 1.5, 9.4, 12.5, and, for example, [152]. The probability of
succeeding and obtaining any given bit correctly is 1− sin 2θ in this case. An
experimental realization of such a POVM in linear optics is shown in Fig. 2.3,
below.
17 For more detailed information-theoretical treatments of quantum measurement,

see [208] and [267].
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Fig. 2.3. The realization of a projection-operator-valued measurement in linear
optics. PBS indicates a polarizing beam-splitter such as a Wollaston prism, BS
indicates an ordinary 50–50 beam-splitter, and R indicates a polarization rotator.
Such an apparatus can be used as a quantum key bit receiver, where D3 provides
indefinite-bit-value detections and D1 and D2 provide definite-bit-value detections.
See [76], and Sect 9.4 where an ancilla is used for similar purposes.
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Quantum nonlocality and interferometry

The most strikingly quantum-mechanical situations phenomena involve entan-
gled states with components located in spacelike-separated regions, customar-
ily referred to as laboratories. Each laboratory is taken to contain a physical
agent capable of performing quantum operations on subsystems within it and
potentially communicating with agents in other laboratories, via either one-
way or two-way classical and quantum communication channels. When con-
sidering two-component systems described by bipartite statistical operators,
ρAB , the corresponding two agents are customarily referred to as “Alice” and
“Bob,” with the labels A and B indicating the corresponding subsystems or
laboratories. Entanglement-based quantum-key-distribution systems are prac-
tical examples in which this convention accurately reflects the experimental
situation. Locality considerations are often explicitly brought into play when
studying entanglement. However, it should also be kept in mind that it is by
no means obvious that violations of locality conditions in the traditional sense
are sufficient for the characterization of entanglement, despite their value in
the investigation of entangled quantum states. The distinction between lo-
cality violation and quantum state entanglement should therefore be kept in
mind. This chapter focuses on entanglement more in relation to local opera-
tions themselves than in relation to information, which relation is the focus of
Chapter 6; the intervening chapters introduce various information-theoretic
concepts and quantities, both classical and quantum, that will prove essential
for the important and often subtle discussion taken up there.

Operations on composite quantum systems are classified as follows. The
class of local operations (“LO”) is that of operations that are carried out on
individual subsystems located within the laboratories of their corresponding
agents. The operations of classical communication (“CC”) are information
transfer acts between agents in separate laboratories carried out via non-
quantum means, and may be in one or two directions—these are discussed in
detail in the following chapter. Local operations together with those of classi-
cal communication (“LOCC”) are operations on quantum systems by agents
who are also capable of communicating classically. The distinction between
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LOCC and mere LO is particularly important in that classical communication
between agents allows the local operations of an agent to be conditioned on
outcomes of previous measurements carried out by other agents; using LOCC,
the actions of Alice and Bob can be correlated in a way explicable as global
operations in both their laboratories that are not necessarily describable as
direct products of local operations. In this chapter, it is also important to keep
in mind that, although LOCC allows correlated mixed states to be created
from previously uncorrelated states, LOCC is not sufficient for the creation
of entangled states.

LOCC operations include local unitary operations, local measurement op-
erations, and the addition or disposal of parts of the total system, all of which
are independently addressed in preceding. Accordingly, a quantum operation
OAB carried out by Alice and Bob is implementable by a pair of parties via
LOCC when it can be written as a convex sum of local operations,

OAB =
∑

i

piAi ⊗Bi , (3.1)

so that operations by Alice and Bob are carried out independently in the
two laboratories with probabilities pi. In the case of operations on a number
of copies of a quantum system for any of the above classes, the adjective
“collective” is added to the above-mentioned classes, and the above acronyms
are given the prefix “C.” In cases where transformations are not achievable
deterministically, but rather only with some probability, they are considered
stochastic operations and the adjective “stochastic” is added, so that the
above acronyms are generally given the prefix “S,” as in SLOCC. These various
state transformations are discussed in greater detail in Chapters 6 and 7, where
bipartite and multipartite entanglement, respectively, are discussed.

The investigation of entanglement has long been bound up with the inves-
tigation of locality and realism and their relation to the quantum-mechanical
description of composite systems. In particular, one is interested in the ques-
tion of whether there may exist adequate local realistic descriptions of entan-
gled systems and the question of the whether any such description is compat-
ible with the postulates of quantum theory. These questions have often been
approached by considering the possibility of “hidden variables.”

3.1 Hidden variables and state completeness

Hidden-variables approaches to explaining the behavior of microscopic sys-
tems are predicated on the possibility that the quantum-mechanical specifica-
tion of physical states is in some sense incomplete. The first hidden-variables
model in the quantum context was that proposed by Louis de Broglie in
the mid-1920’s [124, 125] and more completely developed by David Bohm in
the early 1950’s [65]. Hidden-variables treatments of quantum phenomena are
based on the consideration of a putative complete state, λ, which is often not
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specified in detail, underlying the (therefore inherently statistical) quantum
state, ρ. The “hidden” variables of these theories are those parameters not in
the quantum state that ostensibly complete the specification of the full set of
system properties. Statistical principles, namely, the preservation of functional
subordination in the space of quantum properties and the preservation of the
convex structure of the set of quantum states, impose some conditions on any
hidden-variables model. Despite their being called “hidden,” these variables
are not assumed to be in principle empirically inaccessible. They are often
taken to be fully contained in the complete state, which is sometimes also
called a dispersion-free state. The simplest sort of hidden-variables model is
that in which λ provides definite values to all quantum system properties that
correspond to the projectors described in Chapter 1. Such models, sometimes
referred to as noncontextual hidden-variables theories, determine the value
of a quantity obtained by measurement, regardless of what other quantities
are simultaneously measured along with it, and specify the complete state
of the overall system composed of the measured system together with the
measurement apparatus.

John S. Bell provided the following example of a noncontextual hidden-
variables model for the qubit [31].1 In this model, the qubit is described in the
spinorial representation, ψ, together with a real parameter l ∈ [− 1

2 , 1
2 ] that

serves to complete the specification of the dispersion-free state λ. The qubit
properties are represented by matrices in H(2) of the form ασ0 +

∑3
i=1 βiσi,

having eigenvalues
α± |β| (3.2)

and expectation values

〈
α +

3∑
i=1

βiσi

〉
=

(
ψ,

(
ασ0 +

3∑
i=1

βiσi

)
ψ

)
, (3.3)

where β is a three-component real vector and the σµ (µ = 0, 1, 2, 3) are the
Pauli matrices. β is taken to have the component values β1, β2, β3 when the
qubit is in the zero computational-basis state. Measurement of the property
ασ0 +

∑3
i=1 βiσi provides eigenvalues

α + |β|sign
(

λ|β|+ 1
2
|β3|

)
signX , (3.4)

where X = β3 if β3 
= 0, X = β1 if β3 = 0 and β1 
= 0, and X = β2
if β3 = 0 and β1 = 0; the sign function is defined by the conditions that
signF = +1 if F ≥ 0, and signF = −1 if F < 0. In this model, one finds that
the quantum-mechanical expectation values are indeed recovered by taking a
uniform average over the range of values of the hidden variable l.
1 Kochen and Specker also produced an explicitly noncontextual hidden-variables

model [260].
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The more subtle contextual hidden-variables models, also introduced by
Bell, require not only λ but also other relevant parameters associated with
the conditions (or context) of their measurement to assign each projector
a definite value. This idea was further developed by Stanley Gudder, who
considered the context to be a maximal Boolean subalgebra of the lattice of
quantum Hilbert subspaces [202].2 Algebraic contextuality involves the speci-
fication of any other quantities that are measured jointly with the quantity of
interest. Environmental contextuality involves there being some nonquantum-
mechanical interaction between the system subject to measurement and its
environment that occurs before measurement and influences the value of the
measured properties. An even weaker class of hidden-variables models, the
stochastic hidden-variables theories, requires the hidden variables and exper-
imental parameters to specify merely the probabilities of measurement out-
comes corresponding to projectors. Finally, a distinction is made between
local and nonlocal hidden-variables theories that becomes more clear as one
progresses through the series of significant results below; see, for example
Section 3.5. In the case of nonlocal hidden-variables theories, the action on a
subsystem of a composite system may have an immediate effect on another,
spacelike-separated system.

The results we examine now pertain to hidden-variables models, either di-
rectly or indirectly, and their relation to quantum statistics. These results and
associated empirical tests weigh mainly against the existence of hidden vari-
ables, but are ultimately insufficient to entirely eliminate the nonlocal type of
hidden-variables theory.3 However, because the appeal of quantum cryptogra-
phy, for example, lies in the hope of absolute security in the sense of security
“guaranteed by the laws of nature” when eavesdroppers are allowed unlimited
technological capacities, such exotic hidden-variables theories remain impor-
tant to quantum information science and have recently begun to be explicitly
considered in regard to quantum cryptographic protocols; see, for example,
[5].

3.2 Von Neumann’s “no-go” theorem

The von Neumann “no-go” theorem explores dispersion-free states, thereby
addressing hidden-variables theories that might enable them as well [444].
One can imagine a situation wherein the measurement of a given quantity
attributed to an ensemble of systems gives different values even though all
members of the ensemble have the same specification. Then, either there exist
different subensembles distinguished by some hidden variable outside of the
2 See Sect. A.9 for associated mathematics.
3 In addition to the results described here, the Kochen–Specker theorem is discussed

briefly in Sect. A.8. A particularly noteworthy unified treatment of no-hidden-
variables theorems by N. David Mermin focusing on the Kochen–Specker theorem
should also be consulted [297].
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quantum description, or the measured dispersion of values arises from Nature.
In the former case, there must be as many subensembles as there are different
results. Von Neumann sought to show that no dispersion-free descriptions
exist that enable a hidden-variables description of quantum phenomena. A
state ψ is dispersion-free when the dispersion, DispψO, of all properties, O,
is zero when the system is in it.4 The von Neumann “no-go” theorem makes
the following assumptions about operators in relation to physical properties
of the system to be explained by any putative hidden-variables model.

(i) Any real linear combination of three or more Hermitian self-adjoint
operators represents a measurable quantum property;

(ii) The corresponding linear combination of expectation values is the ex-
pectation value of that combination of operators.
Von Neumann’s no-go theorem is that no such hidden-variables model exists.

This result is less than definitive regarding the existence of a successful
hidden-variables theory for the following reason. Though the second condition
seems natural to impose on the dispersion-free states because it is satisfied by
quantum-mechanical operators, there is no a priori reason to expect that this
condition must be satisfied for individual dispersion-free states, because these
must be averaged over to be compared with the statistical behavior described
by traditional quantum mechanics and the statistics measured in experiments
on quantum systems. For example, Bell pointed out for his model described
in the previous section that von Neumann’s assumptions require expectation
values to be linear functions of both α and β and a dispersion-free state to have
the expectation value of a quantum property equal to one of its eigenvalues;
however, in that simple hidden-variables model the expectation value is not a
linear function of β [31].

3.3 The Einstein–Podolsky–Rosen argument

An early thought-provoking analysis of quantum composite-system states ex-
plicitly pointing out the surprising nature of entangled quantum states that
also introduced considerations of locality and realism in regard to microscopic
physical systems was made by Albert Einstein, Boris Podolsky and Nathan
Rosen (EPR), who provided a specific argument for the incompleteness—
though importantly, not the incorrectness—of the quantum-mechanical de-
scription of the microscopic world [147]. The conditions imposed by EPR,
here tailored to the case of two particles viewed as qubits the states of which
can be found by measurements along particular directions—for example, mea-
surement of photon polarization states by polarizers oriented along directions
4 See Sect. B.2 for the quantum-mechanical expression for dispersion.
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normal to the axis of photon counter-propagation (cf. Fig. 3.1)—are as fol-
lows.5

(i) Perfect correlation: When the states of qubits A and B are measured
along the same direction, the corresponding outcomes will be opposite.

(ii) Locality: Since at the time of measurement the two systems no longer
interact, no real change can take place in the second system in consequence
of anything that may be done to the first system.

(iii) Reality : If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this
physical quantity.

(iv) Completeness: Every element of the physical reality must have a coun-
terpart in the physical theory.

The initial EPR argument was given in the context of continuous proper-
ties of quantum systems but is readily and perhaps better suited to physical
systems involving discrete properties. In particular, without loss of essential
characteristics, one can consider the simple two-qubit system first brought
forward for this purpose by David Bohm in the state now recognized to be
central to quantum information processing, namely, the singlet state

|Ψ−〉 =
1√
2

(
|01〉 − |10〉

)
, (3.5)

which has the important property of remaining of the same form when re-
expressed in any orthonormal basis obtainable from the computational basis
by rotating the basis of a subsystem Hilbert space by an arbitrary nonzero
angle ξ [66]. With this simplification, the EPR argument with the above as-
sumptions may be presented as follows (cf. [383]).

(i) If an agent can perform an operation that permits him to predict with
certainty the outcomes of a measurement without disturbing the measured
qubit, then the measurement has a definite outcome, whether this operation
is actually performed or not.

(ii) For a pair of qubits in the state |Ψ−〉, there is an operation that an
agent can perform allowing the outcome of a measurement of one subsystem
to be determined without disturbing the other qubit.

An agent can find, by measuring the quantity corresponding to P (|0〉) for
one qubit, the value of the quantity corresponding to P (|1〉) as well. Thus,
by (ii), she can obtain the values of the same two properties of the second
qubit without disturbing it, by virtue of the perfect anti-correlation between
qubits in the joint state |Ψ−〉. By (i), these values of the second qubit are

5 The first condition has been adapted to the case of qubits. Conditions (ii)–(iv)
are stated exactly as in original text of the EPR paper. For a modern version of
the EPR argument based on the logic of quantum conditionals, see [385].
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definite. However, the agent could just as well have checked the values of the
quantities corresponding to a different basis, say the diagonal basis represented
by P (| ↗〉) and P (| ↘〉). But then these other values must also be definite.
Thus, the value of the states of both systems for all values of ξ must be
definite. The description of the system of particles by the quantum state |Ψ−〉
is in this way argued to be incomplete.

3.4 Gleason’s theorem

A definitive theoretical result regarding the hidden-variables question and the
completeness of the quantum-mechanical description of physical systems is
Gleason’s theorem. This result is often considered to be the most significant
technical advance in the foundations of quantum mechanics to be obtained af-
ter von Neumann’s initial investigation of the hidden-variables question. The
theorem demonstrates a sense in which the quantum statistical operators do
provide complete state descriptions [189]. It also clarifies the difficulties associ-
ated with putative hidden-variables descriptions touched on by von Neumann
without requiring the second of his assumptions, which is often viewed as
unwarranted.

A vital lemma underlying Gleason’s theorem is the following ([189]). Let
|φ〉 and |ψ〉 be two state-vectors in a Hilbert space H of dimension at least 3,
such that for a given system state 〈P (|ψ〉)〉 = 1 and 〈P (|φ〉)〉 = 0. Then |φ〉 and
|ψ〉 cannot be arbitrarily close to one another. In particular, || |φ〉−|ψ〉 || > 1

2 .
The physical system state is here taken to provide a map from each

projector, Pi, to a real number, p(Pi), between 0 and 1, p : Pi �→ p(Pi),
such that p(O) = 0 and p(I) = 1 where O is the projector onto the zero
vector 0 and I projects onto all of H, and such that P1P2 = 0 implies
p(P1 + P2) = p(P1) + p(P2); p is also taken to be a countably additive proba-
bility measure.

Gleason’s theorem: All probability measures that can be defined on the
lattice of quantum propositions Pi from the quantum statistical operators,
that is, all quantum probabilities, are of the form

p(Pi) = tr(ρPi) , (3.6)

for some statistical operator ρ on H, for all H of dimension greater than two.6

6 That is, the values corresponding to mutually orthogonal projectors are derivable
using a Born-type rule; see Postulate II of quantum mechanics in Appendix B
[68]. For a discussion of the lattice of quantum propositions formed from the
projectors Pi, which represent bivalent quantities, see Appendix A. Gleason’s
lemma as presented above conforms to Bell’s re-derivation [32]. Gleason’s theorem
can be seen to provide a generalization of the Radon–Nikodym theorem. The trace
measure assigns to each projector the dimension of its range, which can then be
normalized by the dimension of the pertinent (finite-dimensional) Hilbert space;
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Gleason’s theorem shows that every probability measure over the set of
projectors arises from a statistical operator on the Hilbert space of the system
of interest, as expressed in Eq. 3.6. The relation of Gleason’s lemma to the
question of the possibility of hidden variables is the following. Consider puta-
tive dispersion-free states for which projectors would take expectation values
of either 0 or 1 under the mapping. The condition

∑
i〈P (|φi〉)〉 = 1 implies

that both values must occur, because there are no other possible values for
satisfying the condition and neither alone suffices. In this case, there must
be arbitrarily close pairs |ψ〉, |φ〉 having different expectation values, 0 and 1
respectively. However, such pairs cannot be arbitrarily close, by the lemma.
Therefore, there are no dispersion-free states. Thus, no theory is capable of ad-
equately reproducing quantum statistics via hidden variables parameterizing
dispersion-free probability measures [32].

Gleason’s results show the set of quantum states to be complete in the
sense that they yield the probability measures definable on the lattice of quan-
tum propositions corresponding to the projectors.7 This result is still open to
a reasonable objection, however. Namely, it can be considered unnatural to
require dispersion-free states to provide nontrivial relationships between ex-
periments that cannot be made simultaneously.8

3.5 Bell inequalities

John Bell famously further advanced the investigation of quantum behavior by
deriving a theorem in the form of a general inequality relation providing a clear
borderline between local classically explicable behavior and less intuitive forms
of behavior, such as nonlocality and contextuality as described in Section 3.1.9

Following the lead of EPR, Bell defined local models as follows. A local hidden-
variables theory for experimental situations of the EPR type is one such that
every complete state assigns a definite probability to a positive measurement
outcome for a bivalent property of one subsystem when the hidden parameter
describing it—taken to be capable of taking at least two values—takes a given
value independently of measurements performed on the other subsystem.10

it is thus obtainable by considering ρ to be the maximally mixed state on the
space; see Sect. 1.5 of [348].

7 An extension of Gleason’s theorem to the setting of POVMs having implications
for the interpretation of quantum probabilities has recently been proven by Paul
Busch [91].

8 A natural, weaker requirement would be merely to require that quantum mechan-
ical averages over them do so. For a more detailed discussion of this argument,
see Ch. 1 of [30].

9 It is interesting to note that Bell had himself officially listed as a “quantum
engineer” in the CERN personnel directory. For a detailed survey of the work of
Bell, see [231].

10 John Jarrett showed Bell’s locality condition to be the conjunction of two in-
dependent conditions [243], later named parameter independence and outcome
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This inequality is the prototype of the collection of inequalities now typically
referred to as the Bell inequalities.

Bell arrived at his crucial inequality for realistic hidden-variables theories
of the type that EPR had suggested might exist, as follows. He began by
considering a putative complete state, λ, describing a pair of particles, that
at a given instant fully specifies all the elements of physical reality present in
the pair.11 Any such state capable of giving rise to perfect correlations will
predetermine the outcomes of joint measurements of the component of spin of
these particles along a given direction, ni, for each particle i. Bell considered
a probability measure, µ(Λ), on the entire space Λ of parameters providing
complete states. Expectation values, Eµ(λ), of the relevant physical quantities
were taken to be of the form

Eµ(Λ)(n1,n2) =
∫

Λ

Aλ(n1)Bλ(n2)dµ(λ) , (3.7)

where λ ∈ Λ, and Aλ(n1) and Bλ(n2) indicate measurement results along
directions ni on the two different systems of the arrangement. He then arrived
at an inequality of the form

|Eµ(Λ)(a, b)− Eµ(Λ)(a, c)| ≤ 1 + Eµ(Λ)(b, c) , (3.8)

where {a, b, c} is any set of three angles specifying directions of measurement
in planes normal to the line of counter-propagation of the particles; see Fig.
3.1 [30, 32].

Issues regarding the assumptions used to derive this inequality, noted by
Bell himself and others, subsequently led to a search for other related inequal-
ities now also referred to as Bell inequalities (or Bell-type inequalities), based
on weaker assumptions.12 In particular, the Clauser–Horne (CH) inequality
resulted from this investigation: classical probabilities must obey the relation

−1 ≤ p13 + p14 + p23 − p24 − p1 − p3 ≤ 0 , (3.9)

as well as all the inequalities resulting from permutations of indices, where p1
and p3 are the probabilities that the first particle is found along the first of the

independence by Abner Shimony [382]. The term “Bell’s theorem” refers to a
collection of results having in common the demonstration of the impossibility of
a Local Realistic interpretation of quantum correlations.

11 The complete state as originally specified by Bell “determines the results of mea-
surements on the system, either by assigning a value to the measured quantity
that is revealed by measurement regardless of the details of the measurement
procedure, or by enabling the system to elicit a definite response whenever it is
measured, but a response which may depend on the macroscopic features of the
experimental arrangement or even on the complete state of the measured system
together with that arrangement” [386].

12 The full details of these other inequalities and assumptions can be found, for
example, in [32, 387].
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Fig. 3.1. Geometry of an apparatus for performing a test of Bell-type inequalities by
two-qubit polarization interferometry. Two nonorthogonal states of qubits Q and Q′

are measured, parameterized by angles θ1 and θ2, respectively, in the plane normal
to the direction of qubit counter-propagation. (Compare this arrangement with that
of the two-qubit spatial interferometer of Fig 3.2, below.)

four directions {a, b, c, d} and the second particle is found along the third di-
rection; pij stands for the joint probability of finding the first particle along the
direction i and the second particle along direction j, 1 ≤ i, j ≤ 4.13 Because
in actual experimental situations it is generally impossible to have control of
the complete state of the total system, one assumes that the experimental ar-
rangement prescribes a probability distribution over state specifications that
provides the above probabilities through averages over Λ. No special restric-
tion is placed on Λ or the probability distribution used in the derivation of
the above result; indeed, the inequality follows from the elementary algebra
of numbers lying between 0 and 1, as probabilities must by definition.

In order to lend greater practicality to explorations of issues of hidden-
variables and locality, allowing them to be precisely probed by experiment,
John Clauser, Michael Horne, Abner Shimony, and Richard Holt (CHSH)
then also modified Bell’s original treatment so as to be applicable in any
practical experimental arrangement sufficiently similar to that of the two-spin
atomic system that had been considered in experimental tests of locality-
related inequalities up until that time, arriving at what is now known as the
CHSH inequality:

|S| ≤ 2 , (3.10)

for S ≡ E(θ1, θ2) + E(θ′
1, θ2) + E(θ1, θ

′
2)− E(θ′

1, θ
′
2) , (3.11)

where the Es are expectation values of the products of measurement outcomes
given parameter values θi and θ′

i (the angles shown in Fig. 3.1) of the two
different directions n̂i for the same laboratory i relative to a reference direction
13 Recall that these particles correspond to qubit-pair systems.
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[108].14 The CHSH inequality is the Bell-type inequality now most commonly
referred to in the literature. The correlation coefficients contributing to S can
be expressed in terms of experimental detection rates as

E(θi, θj) =
C(θi, θj) + C(θ⊥

i , θ⊥
j )− C(θi, θ

⊥
j )− C(θ⊥

i , θj)
C(θi, θj) + C(θ⊥

i , θ⊥
j ) + C(θi, θ⊥

j ) + C(θ⊥
i , θj)

, (3.12)

where the C(·, ·) are, in particular, coincidence detection count rates, i is the
index for particle 1, j the index for particle 2, and the parameter θ⊥ indicates
a parameter corresponding to the direction perpendicular to that specified by
θ in the plane normal to the direction of particle propagation.15

According to the predictions of quantum mechanics for noiseless quan-
tum channels, a maximum violation of this inequality by a factor of

√
2

can be achieve when, for example, one prepares the quantum state |Φ+〉 =
1√
2

(
|00〉 + |11〉

)
, where |0〉 indicates photon polarization oriented along one

of the orthogonal axes of the plane indicated in Fig. 3.1 and |1〉 indicates po-
larization oriented along the other, and performs measurements with θ1 = π

4 ,
θ′
1 = 0, θ2 = π

8 , and θ′
2 = 3π

8 , steps of π
8 radians, where the two angles in

each lab (that is, side) differ by π
4 radians, corresponding to π

2 radians in the
Poincaré–Bloch sphere; see [386] for an explicit calculation and Section 12.4
for an application. Since its introduction, the observed value of S has served
experimentalists as a figure of merit for the quantum nature of sources of
entangled quantum systems in such “Bell tests.” It is useful in this context to
introduce the so-called Bell operator

B ≡ â · σ ⊗ (b̂ + b̂′) · σ + â′ · σ ⊗ (b̂− b̂′) · σ , (3.13)

where â, â′, b̂, b̂′ are unit-vectors defining the directions of the pertinent qubit
measurements, that is, the directions n̂i and σ = (σ1, σ2, σ3). In particular,
the Bell operator can be used to provide a compact operator form of the
CHSH inequality via its expectation value, namely

〈B〉 = tr(ρB) ≤ 2 . (3.14)

The Bell operator is also an “entanglement witness”; see Section 6.7. Quantum
mechanics provides an experimentally well confirmed value near 〈B〉 = 2

√
2.

A further Bell-type inequality having a particularly simple proof assuming,
unlike the proof of the CHSH inequality, perfect anticorrelations for measure-
ments along parallel axes, was first given by Eugene Wigner that has since
come to be known as the Wigner inequality, namely,

p++(a, b) + p++(b, c)− p++(a, c) ≥ 0 , (3.15)
14 The first experiments to be studied to find nonclassical behavior related to in-

vestigations of quantum nonlocality were those published in 1950 by Wu and
Shaknov [463], with spin qubits in a singlet state [66].

15 Note that the denominator simply provides normalization.
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where one agent, say that of a quantum-key distributor Alice, chooses between
two polarization measurements along directions a and b of one of two parti-
cles and another agent, say a quantum-key receiver Bob, similarly chooses
between measurements along b or c of the other [456]. The direction common
to the two parties, b, can be taken to be one of the elements of the reference
basis {|0〉, |1〉} for the corresponding optical polarization-coincidence experi-
ment described by Fig. 3.1, where a qubit state parallel to a given polarizer
state is considered a “+” result and a state orthogonal to the polarizer state
is a “−” result. If every particle were to have hidden variables determining
the outcomes of the measurements on the particles, the probabilities of “+”
measurement outcomes on both sides, p++(i, j), would obey this inequality.

The assumptions of the derivation of Wigner’s inequality are that measure-
ment outcomes on the two particles in identical directions are anti-correlated
and that measurement outcomes on the two particles are independent of each
another, with the background assumption that the probabilities involved re-
fer to the statistics of an ensemble of identically prepared particle pairs. The
quantum-mechanical probability for such a result along arbitrary directions,
θ1 and θ2, for a pair of particles in the Bell singlet state |Ψ−〉, namely,

pQM(|Ψ−〉) =
1
2

sin2(θ1 − θ2) , (3.16)

produces a maximal deviation from the satisfaction of this inequality when,
for example, a = −π

6 , b = 0 and c = π
6 , three directions π

6 radians apart,
which provides a value of − 1

8 for the left-hand-side of Eq. (3.15). The Wigner
inequality has been recently used to perform entangled-state quantum key
distribution in practice; see [449].

Such violations of Bell-type inequalities by quantum mechanics have by
this time been studied in great generality. Because they rely on fundamen-
tal properties of probability, the expressions bounding the probabilities and
expectation values in these inequalities can be derived by, for example, enu-
merating all conceivable classical possibilities. These can be viewed as extreme
points spanning the classical correlation polytopes, the faces of which are ex-
pressed by Bell-type inequalities; see Section A.8. All Bell-type inequalities
involve sums of (joint) probabilities and expectation values. To show the in-
compatibility of the predictions of quantum mechanics with these inequalities,
the quantum counterparts and expectation values can be substituted for the
probabilities and expectation values appearing in them. The results systemati-
cally show the violation of such local-realistic bounds by quantum-mechanical
predictions.16 Bell-type inequalities for pairs of systems of arbitrarily high
dimension have also been found [112].
16 All expressions entering the quantum expression corresponding to the pertinent

part of any Bell-type inequality are self-adjoint. Because the norm of the self-
adjoint transformation appearing in the inequality obeys the min-max principle,
finding the maximal violation of Bell inequalities corresponds to the solution of
a quantum eigenvalue problem, such as that for the Bell operator above. For a
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3.6 Interferometric complementarity

Tests of the above Bell-type inequalities illustrate the importance of quan-
tum interference for probing nonlocal properties of quantum systems, partic-
ularly the interference of qubit pairs. Nonlocal interferometric behavior can
be examined in other illuminating ways as well. For example, there is a gen-
eral quantum interferometric complementarity relation between single-qubit
interference visibility, v1, and two-qubit interference visibility, v12, further
illustrating the surprising nature of quantum correlations exhibited in two-
particle interferometry [239]. In this regard, it was first explicitly noted in
the late 1980’s that when the two-particle interference visibility is unity the
one-particle visibility is zero, and conversely [220]. In a doubled two-slit ex-
periment with a source of generic two-particle states, the former case can be
understood in terms of the washing out of photon self-interference due to un-
certainty of the initial direction of individual particles; see Fig. 3.2. In the
latter case, one notes that the arrival of one particle at one screen allows, in
effect, two “virtual slits” to exist for the other due to the correlation between
them, corresponding to reduced relative uncertainties, giving rise to single-
particle interference [197]. A systematic investigation of intermediate cases
was carried out to further explore this relationship, demonstrating that such
a general complementarity relation holds for a large family of pure states |Θ〉,
defined below [234].

A schematic illustration of the class of experimental arrangements in which
this complementarity can be exhibited is given in Fig. 3.2, namely, a dou-
bled version of the discrete two-beam experiment described in Section 1.5,
where the particle source produces generic pure two-particle states emerging
in beam pairs and transducers (variable beam-splitters together with sets of
phaseshifters) capable of exploring the full set of local unitary transformations
of two-qubit states (described by the group SU(2) × SU(2)) are introduced
(rather than merely 50–50 beam-splitters and single phaseshifters), followed
by pairs of particle detectors in two laboratories. Particle A is taken to be that
in beams 0 and/or 1, and similarly for particle B. Each pair contributing to
the output ensemble is produced by the source (say, by filtered spontaneous
parametric down-conversion; see Section 6.16) in a two-qubit pure state

|Θ〉 = γ1|0〉A|0′〉B + γ2|0〉A|1′〉B + γ3|1〉A|0′〉B + γ4|1〉A|1′〉B , (3.17)

with γi ∈ C such that

|γ1|2 + |γ2|2 + |γ3|2 + |γ4|2 = 1 , (3.18)

and |0〉A and |1〉A being basis vectors in the Hilbert space HA of the first
particle corresponding to propagation in the beams 0 and 1, and |0′〉B and
|1′〉B being similar vectors in the Hilbert space HB of the second particle.

more detailed exploration of this approach to Bell inequalities see, for example,
[336].
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Fig. 3.2. An interferometer containing two spatial qubits, Q and Q′. T indicates a
transducer capable of performing all local unitary transformations of a single qubit.
D indicates a particle detector. The laboratory of Alice is to the right and that of Bob
is to the left. (Compare with the arrangement of Fig. 3.1 describing interferometry
with polarization qubits under a more restricted class of measurements.)

Beams 0 and 1 are brought together in lab A at a transducer, TA, cor-
responding to a single-party unitary gate producing two output beams U
and L, and similar beams in lab B are brought together into another trans-
ducer, TB , implementing a similar gate that produces output beams, U ′

and L′, as indicated. The output beams are assumed to be equipped with
ideal particle detectors, D. As the transducers TA and TB are varied, the
probability P (UU ′) of coincidence detection in beams U and U ′, similar
joint-detection probabilities P (UL′), P (UL′), P (LL′), and single-detection
probabilities P (U), P (L), P (U ′), P (L′), corresponding to particle coincidence-
detection and single-detection rates, respectively, are modulated and can be
used to provide interferometric visibilities, as described below.

Given that |Θ〉 = α|0̄〉A|0̄〉B + β|1̄〉A|1̄〉B , where α and β ∈ C with
|α|2 + |β|2 = 1, the vectors |0̄〉 and |1̄〉 being orthonormal (cf. Sect. 6.2),
the most general single-qubit local unitary transformation (LUT), TA, can
in this context be described as acting on particle A, providing an output
spatial-qubit state that can be written

TA |0̄〉A = aeiφ1 |U〉+ beiφ̄1 |L〉 , (3.19)

TA |1̄〉A = −be−iφ̄1 |U〉+ ae−iφ1 |L〉 , (3.20)

where a and b are real numbers the squares of which together sum to unity (cf.
Eqs. 1.12 and 1.30) and φ1 and φ̄1 being phase angles; similarly, for particle
B, providing a second output spatial-qubit state that can be written

TB |0̄〉B = ceiφ2 |U ′〉+ deiφ̄2 |L′〉 , (3.21)

TB |1̄〉B = −de−iφ̄2 |U ′〉+ ce−iφ2 |L′〉 , (3.22)

c and d also being real numbers, the squares of which together sum to unity,
and φ2 and φ̄2 are phase angles. The joint local operation of this pair of
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transducers is described by the general pair of local unitary operations induced
by them separately, namely,

T = TA ⊗ TB . (3.23)

Two-qubit interferometric behavior can then be studied via the modulation
of single-detection and joint-detection probabilities as T is varied over the full
range of parameters for the two LUTs, altering the above amplitudes and
phases [29]. From the maximum and minimum probabilities of detection, one
can calculate visibilities characterizing the interference. One is particularly
interested in the one-qubit interferometric fringe visibility

Vi =
[P (Y )]max − [P (Y )]min

[P (Y )]max + [P (Y )]min
, (3.24)

where i = A, B, Y = U, L, and in V12, which is the two-qubit interferometric
visibility, in the sense of variations of detection probability as gates are var-
ied, calculable from the probabilities P (Y Y ′) of occupation of the joint-paths
Y Y ′,17 generalizing the case of the single paths Y above giving rise to the
single-qubit visibilities Vi; for example,

V12 =
[P̄ (UU ′)]max − [P̄ (UU ′)]min

[P̄ (UU ′)]max + [P̄ (UU ′)]min
, (3.25)

where
P̄ (UU ′) = P (UU ′)− P (U)P (U ′) +

1
4

(3.26)

represents nonaccidental coincidence probabilities and similarly for the three
other possible pairs of paths [234].18

The remarkable phenomena that take place in two-qubit interferometry
result from the fact that, when the joint state |Θ〉 is entangled, it can be the
case that

P (UU ′) 
= P (U)P (U ′) , (3.27)

and likewise for the other joint probabilities P (UL′), P (LU ′), and P (LL′).
That is, highly correlated behavior of particles A and B arises due to quan-
tum entanglement. A strong complementarity relation, taking the form of an
equality [234], holds for all |Θ〉, namely,

V 2
12 + V 2

A = 1 , (3.28)
V 2

12 + V 2
B = 1 , (3.29)

17 Consider, as explicit examples, single and joint probabilities of the form of those
in Eqs. 3.36–37 for the related (Franson) configuration of Sect. 3.7. (Also see Fig.
1.6 and Footnote 44 of Ch. 1.)

18 The constant term 1
4 = ( 1

2 )( 1
2 ) added here compensates for the over-subtraction

of the constant “background” in the product of single-qubit probabilities, so that
only accidental modulation is subtracted from the “raw” coincidence probability.
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as has been explicitly experimentally confirmed [2, 360].19

The two complementarities we have by this point discussed, that between
path distinguishability and single-qubit visibility of Eq. (1.40) and that di-
rectly above, are closely related. In particular, the more entangled |Θ〉 is,
the tighter the bound on the single-qubit visibility is. This result can be un-
derstood as follows. The information between basis vectors, |0〉 and |1〉, of
HA is related by the vectors in HB to which they can be correlated; ob-
servations made on only one particle of each pair cannot fully extract this
information. Similarly, a high degree of entanglement entails high two-qubit
interferometric-fringe visibility, and permits good inferences about the path of
particle A associated with spatial qubit Q from the results of measurements of
particle B associated with spatial qubit Q′. Indeed, V12 is sometimes referred
to as the entanglement visibility (cf. [203]). The one-qubit interference visi-
bility thus enters into at least two complementarity relations, that between
single-qubit interference visibility and single-qubit bit-distinguishability (i.e.
path distinguishability, cf. Sect. 9.4) and that between single-qubit interfer-
ence visibility and two-qubit interference visibility (i.e. entanglement).

A distinction can be made between the “classical” and “nonclassical”
correlations of two qubits, which are manifested in the coincidence interfer-
ence visibility as described above. Consider a bipartite quantum system with
Hilbert space H = H1 ⊗H2 and described by a statistical operator ρ. Recall
that such a state is uncorrelated if one can write ρ = ρ(1)⊗ρ(2), where ρ(i) are
the statistical operators on the Hi (i = 1, 2). The expectation values of prod-
ucts of bounded linear operators A(i) on subsystems, such as the probabilities
of the form P (Y Y ′) above, can then be factored, that is,

tr
(
ρ(A(1) ⊗A(2))

)
= tr

(
ρ(A(1) ⊗ I)

)
tr
(
ρ(I⊗A(2))

)
(3.30)

=
2∏

i=1

tr
(
ρ(i)A(i)) . (3.31)

In this case, outcomes of measurements of the A(i) are such that the probabili-
ties of joint measurement outcomes are simply products of the probabilities of
outcomes of the measurements performed in the two laboratories. By contrast,
a statistical operator describing an ensemble wherein the quantum states of
the two portions of the total system are correlated, in that the subsystems ρ(i)

are in the same state ρj (j = 1, . . . , n) with probabilities pj , can be written
as a convex combination of separable states,

n∑
j=1

pjρj ⊗ ρj . (3.32)

In that case, the expectation values of measurements of the properties A(i)

are of the form
19 The first experiments explicitly confirming this complementarity relation were

performed in the Quantum Imaging Lab at Boston University [2, 360].
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n∑
j=1

pj

2∏
i=1

tr
(
ρ
(i)
j A(i)) . (3.33)

Any system with a density matrix of the form shown in Eq. 3.32 (with j ≥ 2)
is said to be classically correlated, even if formed by mixing entangled states
[450]. The greatest two-particle interference visibility that can be obtained
with classically correlated states in the arrangement of Fig. 3.2 is 0.5 [353].
Nonclassically correlated states (i.e. entangled states) can give rise to higher
values of visibility of two-particle interference; the CHSH Bell-type inequality
of Eq. 3.10 can be violated once the visibility surpasses 1/

√
2 ≈ 0.71.

3.7 The Franson interferometer

Similarly to the above two-spatial-qubit interferometer, the Franson interfer-
ometer is a distributed interferometer composed of two single-qubit Mach–
Zehnder interferometers. In the Franson interferometer, the interference of
particle pairs with themselves is possible because there are alternative paths
of different length in both sub-interferometers, giving rise to a “temporal”
(time-bin, or phase) qubit in each due to the corresponding pair of alternative
times of arrival at each final beam-splitter; see Fig. 3.3. This interferometer
corresponds to a (constrained) temporal-qubit version of the two-spatial-qubit
interferometer considered above and shown in Fig. 3.2, with only the relative
phase between two-qubit alternative processes free to be altered (rather than
the general pair of local unitary transformations of Eq. 3.23) in order to
produce an interferogram in coincidence counts; it is designed to realize the
limiting case of maximal two-particle interference visibility. The path-length
difference, ∆l = dlong − dshort, in each of the two single-qubit interferometers,
arranged to be the same for both, corresponds to the transit-time difference
between paths ∆T = ∆l/c in each and is arranged to be greater than the
single-particle coherence length, δl, corresponding to a single-particle coher-
ence time τ1 = δl/c, precluding single-particle self-interference in either wing.
In practice, the particles used in this interferometer are now typically photons
produced by spontaneous parametric down-conversion.20

Thus, conditions are imposed so that there is no fixed phase-relation be-
tween amplitudes for single-photon passage along short and long paths at
the final beam-splitter of either interferometer as described above, ensuring
that the entanglement of the two qubits is as strong as possible, in accor-
dance with the interferometric complementarity relations described by Eqs.
3.28–29.21 The transit-time difference ∆T is also kept shorter than the corre-
lation time τ2 of the two photons, still allowing two-photon interference to be
20 This process is described in detail in Sect. 6.16. When James Franson introduced

this interferometer, he envisioned a source based on an atomic cascade [174].
21 Explicit entanglement measures beyond the visibility of entanglement are dis-

cussed in Chapter 6, below.
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B A

L L

S DA1
DB1

DB2
DA2

S
source

Fig. 3.3. The Franson interferometer for two phase-time qubits. The unique portions
of the short and long paths of each wing are indicated by “S” and “L,” respectively.
The φA, φB indicate phase shifts in labs A and B, respectively [174].

observed. The effective quantum state in the interferometer is

|Ψ〉 =
1
2
(
|short〉|short〉 − ei(φA+φB)|long〉|long〉

)
, (3.34)

where “short” and “long” are shorthand notation for the alternative (multi-
ple segment) photon paths available and φA and φB are the variable phase
shifts of the two interferometers, because this temporal constraint ensures that
there are no other contributions to the state, such as eiφA |short〉|long〉 and
eiφB |long〉|short〉, that would otherwise be present. ∆T is kept significantly
longer than the photon detector resolution dt (which is generally on the order
of 1 ns duration) allowing for the observation of the possibilities of passage of
pairs of photons in pairs of paths |short〉|short〉 and |long〉|long〉 above, and
their interference. Overall, then, one requires that

τ2 > ∆T > τ1 , (3.35)

with ∆T arranged to be, for example, of an order greater than that of 1 ns.
This results in the selection of the large, central interferometric feature of the
three features that can appear in the temporal coincidence interferogram in
an experimental configuration such as that shown in Fig. 3.3 [174].

Joint detection in distant wings A and B of the interferometer of Fig. 3.3,
at pairs of detectors DXi (where X = A, B), thus occurs with the probabilities

P (DAi
DBj

) =
1
4
(
1 + cos(φA + φB)

)
, (3.36)

P (DAk
DBk

) =
1
4
(
1− cos(φA + φB)

)
, (3.37)

where i, j, k = 1, 2 and i 
= j, similarly to those appearing in the two-
spatial qubit interferometer discussed in the previous section. The probabili-
ties P (DXi

) of single-photon counts are just 1
2 , being marginal probabilities
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obtained by adding the joint probabilities (3.36) and (3.37) in which the corre-
sponding detector appears; the positive and negative cosine modulation terms
simply cancel each other out. That is, there is no interference of single-photon
possibilities, the counts of which occur at random, regardless of how the indi-
vidual phases φA and φB—or the joint phase φA + φB , for that matter—are
varied.

The Franson interferometer has been used for entangled-photon QKD,
where component interferometers lie one each in the separated laboratories of
Alice or Bob; for example, see [188, 422].

3.8 Two-qubit quantum gates

The transformations carried out by the general single-qubit transducers (local
unitary gates) Ti of Section 3.6 have been used in the various above-described
situations to realize independent pairs of local, single-qubit operations de-
scribed by Eq. 1.31, each acting on one of two qubits. Such local unitary
transformations allow the exhibition of the effect of existing entanglement in
quantum interferometers. More general two-qubit operations also exist, which
play an essential role in quantum information processing under the quantum
circuit model and can in some cases create entangled states rather than merely
aid in exhibiting existing entanglement.

Let us now consider the creation of entanglement through the use of the
very important two-qubit example of the C-NOT (or XOR) quantum gate.

|b1 |b1

|b1 b2|b2

Fig. 3.4. Action of the C-NOT gate. The computational-basis states are labeled by
binary values bi (i = 1, 2); in the ket at lower-right, ⊕ signifies addition mod 2.

The quantum C-NOT gate corresponds to a unitary operation of the form
|0〉〈0| ⊗ I + |1〉〈1| ⊗

(
|0〉〈1| + |1〉〈0|

)
. The C-NOT gate can be used to create

entanglement between previously unentangled qubits and is represented by
the matrix

C−NOT .=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

The first qubit of a C-NOT gate is called the “control qubit” and the second
the “target qubit.” From the point of view of the computational basis, the
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control bit is fixed and the target bit is changed if and only if the control bit
takes the value 1, as can be seen by noting that the lower-right submatrix,
corresponding to that condition, is that of the quantum bit-flip operator σ1,
whereas the upper-left submatrix block, corresponding to the opposite condi-
tion, is that of the identity operator, I. The gate is usually drawn as shown
in Fig. 3.4, with the control bit on top and the target bit on the bottom.

This gate can be used together with the single-qubit Hadamard gate to
create Bell states from two independent qubits initially described collectively
by an unentangled product state, as described by the quantum circuit shown
in Fig. 3.5.

H|b1

|Bb1b2

|b2

Fig. 3.5. A quantum circuit for the creation of the (entangled) Bell states |Bb1b2〉
defined by Eqs. 6.13–14 from a product state of two qubits, |b1〉|b2〉.

It is important to note that the distinction between the control and target
qubits is relative to the choice of basis. Consider the effect of a quantum
gate that acts as a controlled gate in the computational basis in a different
basis, say the diagonal basis {| ↗〉, | ↘〉}. For example, the effect of the C-
NOT gate in this basis is to invert the role of control and target, leaving the
“target qubit” unaffected but interchanging the states | ↗〉 and | ↘〉 of the
“control qubit” in the event that the former enters the gate in the state | ↘〉.
Controlled versions of all the single-qubit gates described previously can be
similarly implemented; their matrix representations can be obtained from that
of the C-NOT gate above by simply replacing the lower-right 2× 2 submatrix
with that describing the single-qubit gate.22 That is, one constructs operators
of the form |0〉〈0|⊗ I+ |1〉〈1|⊗U , where U is the operation to be conditionally
performed.

One similarly obtains multiple-qubit controlled gates by generalizing this
construction. For example, in order to extend the controlled-NOT gate so
as to perform the NOT operation on a target qubit conditional on the state
of two control qubits, one performs a unitary operation represented by the
matrix
22 Explicit matrix representations for such gates in the case of path and polarization

degrees of freedom are readily worked out, and have been provided in full detail
in the literature; for example, see [161, 315].
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C− C−NOT .=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is the control-control-NOT (or Toffoli) gate, whereby the third target
bit is flipped if and only if the both control bits take the value 1: the upper-
left block is the two-qubit-space identity whereas the lower-right block is the
matrix representation of a control-NOT. The quantum circuit for this gate is
shown in Fig. 3.6.

|b1 |b1

|b2 |b2

|(b1 b2) b3|b3

Fig. 3.6. Action of the C-C-NOT (or Toffoli) gate on three qubits. In the ket at
lower-right, ∧ signifies the AND operation and ⊕ indicates addition mod 2.
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Classical information and communication

Information theory has, until relatively recently, almost exclusively focused on
what is now considered classical information, namely, information as stored in
or transferred by classical mechanical systems. Quantum information theory
has also largely consisted of the extension of methods developed for classical
information to analogous situations involving quantum systems. Furthermore,
because measurements of quantum systems produce classical information, tra-
ditional information-theoretical methods play an essential role in quantum
communication and quantum information processing because measurements
play an essential role in them. Accordingly, a concise overview of the elements
of classical information theory is provided in this chapter. Several specific
classical information measures are discussed and related here, as are classical
error-correction and data-compression techniques. The quantum analogues of
these concepts and methods are discussed in subsequent chapters.

Classical information theory is based largely on the conception of informa-
tion developed by Claude Shannon in the late 1940s, which uses the bit as the
unit of information [378].1 Entropies hold a central place in this approach to
information, following naturally from Shannon’s conception of information as
the improbability of the occurrence of symbols occurring in memories or sig-
nals. The choice of a binary unit of information naturally leads to the choice
of 2 as the logarithmic base for measuring information. Any device having
two states stable over the pertinent time scale is capable of storing one bit of
information. A number, n, of identical such devices can store log22n = n bits
of information, because there are 2n states available to them as a collective.
An example of such a set of devices is a memory register. A variable taking
two values 0 and 1 is also referred to as a bit and can be represented by
x ∈ GF (2); similarly, strings of bits can be represented by x ∈ GF (2)n.

Consider first the properties of a string of characters that are produced and
sequentially transmitted in a classical communication channel. The Shannon
information content of such a string of text can be understood in terms of how
1 John W. Tukey first introduced the term bit for the binary information unit [12].
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improbable the string is to occur in such a channel. The information content
(or self-information, or surprisal) associated with a given signal event x is

I(x) = log2
1

p(x)
= − log2 p(x) , (4.1)

where p(x) is the probability of occurrence of the event; the logarithm appears
as a matter of mathematical convenience because the number of available
states can be very large. The simplest events are the occurrence of individual
symbols, in which case one is concerned with their probabilities, as in the case
of bit transmission when one considers p(0) and p(1). The information asso-
ciated with an event is considered obtained when the event actually occurs.
This is consistent with the idea that no information is gained by learning an
event that occurs with certainty whereas learning, for example, the outcome
of a fair coin-toss provides all the information essential to the toss and entirely
eliminates previous uncertainty as to its outcome. One generally considers a
number of such events associated with a given signal.

A finite number of mutually exclusive events together with their probabil-
ities constitutes a finite scheme. To every such scheme there is an associated
uncertainty, because only the probabilities of occurrence of these events is
known.2 This uncertainty is captured by the Shannon entropy, which is in-
troduced below. The information associated with the joint occurrence of two
independent events, which happens with a probability given by the product
of those of the individual events, can therefore be written as a sum of the
associated information values.3

4.1 Communication channels

The fundamental task of communication is to obtain, at a remote destination
and with the greatest possible accuracy, information sent from a given ini-
tial source through a channel joining their locations. One way of defining a
classical information source is as a sequence of probability distributions over
sets of strings produced in a number of emissions by a transmitter into such
a communication channel to a receiver. The output at the end of the channel
endows an agent at the destination with a given amount of information about
its source, provided the information is not altered during transmission, that
is, provided the channel is noiseless. The essential requirement on a means
of communication is that any message sent via it belong to a set of possible
messages that could have been sent by a source in this way, because the actual
message being transmitted is not known a priori. Assuming a finite number
of such possible messages, any monotonic function of the number of messages
is a good measure of the information produced when one message is selected
2 Various of measures of uncertainty are discussed in [427].
3 This follows from Bayes’ theorem; see Sect. A.8.
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from this set. The logarithmic function above is a natural choice because, in
addition to being mathematically convenient, it can also be retained when the
number of possible messages is infinite.

Communication channels can be attributed capacities for transmitting in-
formation. By comparing the entropy of a source with the capacity of a chan-
nel, one can determine whether the information produced by the source can
be fully transmitted through the channel. A very simple description of a re-

source transmitter receiver destination

source of noise

Fig. 4.1. The additive noise channel.

alistic classical communication channel is that of the additive noise channel
wherein the transmitted signal, s(t), is influenced by additive random noise,
n(t); see Fig. 4.1. Due to the the presence of this noise, the resulting signal,
r(t), is given by

r(t) = s(t) + n(t) . (4.2)

The primary model of a discrete, memoryless noisy channel is the binary

0 0

p

p

1 1
Fig. 4.2. Schematic of the binary symmetric channel (BSC). A transition between
values of any given bit occurs with probability p, known as the symbol-error proba-
bility. Initial bit values appear at left, final bit values at right. Bit values therefore
remain unchanged with probability 1−p.

symmetric channel (BSC), which is schematized in Fig. 4.2. In this channel
there is a probability p that noise can introduce a bit error, an unintended
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change of value of any given bit during transmission.4 Error correction, which
is discussed in Sections 4.5, is the process of eliminating such errors.

4.2 Shannon entropy

The traditional measure of classical information is the Shannon entropy,

H(X) ≡ H[p1, p2, . . . , pn] = −
n∑
i

pilog2pi , (4.3)

which is a functional of the probability distribution {pi}n
i=1, associated with

events xi in a sample space S = {xi}, given by the probability mass function
as pi ≡ pX(xi) = P (X = xi) for the random variable X over n possible values
that characterizes the information.5 The Shannon entropy is thus the average
information associated with the set of events, in units of bits.6 It can also be
thought of as the number of bits, on average, needed to describe the random
variable X.

If one considers a sequence of n independent and identically distributed
(i.i.d.) random variables, Xn, drawn from a probability mass function p(X =
xi), the probability of a typical sequence is of order 2−nH(X); there are, ac-
cordingly, roughly 2nH(X) possible such sequences.7 The latter can be seen
by noting that typical sequences will contain p(xi)n instances of xi, so that
the number of typical sequences is n!/

∏n
i (np(xi))! which, under the Stirling

4 More detailed models of classical communication channels can be found, for ex-
ample, in [344].

5 See Sect. A.2 for pertinent definitions. The events associated with the random
variable X here correspond, for example, to different numbers or letters of an
alphabet on the sides of a die appearing face-up in a toss.

6 Such a measure and a fundamental unit of information were also independently
(and previously) introduced by Alan Turing, who chose 10 as a base rather than
Shannon’s 2, and so the “ban” rather than the bit as the fundamental information
unit, while he was working at Bletchley Park during the Second World War. For
a description of Turing’s formulation of information entropy, which involved the
“weight of evidence,” see [190].

7 This is known as the asymptotic equipartition property (AEP). One can distin-
guish two sets of sequences, the typical and atypical sequences, being comple-
ments of each other, where the typical sequences are those with probability close
to 2−nH(X); in particular, the typical set is that of sequences {x1, x2, ..., xn} for
the random variable X such that 2−nH(X)−ε ≤ p(x1, x2, ..., xn) ≤ 2−nH(X)+ε for
all ε > 0. The AEP is a consequence of the weak law of large numbers, namely
that, for i.i.d. random variables, the average is close to the expected value of X for
large n. The theorem of typical sequences can also be proven, which supports the
notion that in the limit of large sequence length almost all sequences produced
by a source belong to this set.
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approximation, is 2nH(X). In the limit of large n, the probability of atypical
sequences is negligible.

The Shannon measure satisfies two requirements, invariance under permu-
tations of probabilities pi, and additivity,

H[p1, p2, . . . , pn] = H[p1 + p2, p3, . . . , pn] + (p1 + p2)H
[

p1

p1 + p2
,

p2

p1 + p2

]
.

(4.4)
Referring back to the expression of the information content associated with
an event given in Eq. 4.1, we see that the above expression is just the ex-
pected value of the information content, which one can view as the expected
information gain in coming to know the associated events. From Eq. 4.3, we
see that, for a bit, the proper form of Shannon entropy is the binary entropy

H(p)binary = −p log2p− (1− p) log2(1− p) , (4.5)

where p is (without loss of generality) the probability of the bit value 0 and
1 − p is the probability of the alternative bit value, 1. When p = 1/2, one
finds that H(p) = 1. Shannon’s notion of entropy is similar to the familiar
physical notion of entropy in statistical mechanics, which serves as a mea-
sure of uncertainty or disorganization in a physical system; the second law of
thermodynamics requires that the entropy of a closed dynamical system be
nondecreasing. Shannon entropy has the concavity property

H
(
px + (1− p)x′) ≥ pH(x) + (1− p)H(x′) , (4.6)

where p, x, x′ lie in the interval [0, 1].
For a pair of random variables, A and B, one can also define the joint

entropy of the pair as

H(A, B) = −
∑
a,b

p(a, b) log2 p(a, b) , (4.7)

where p(a, b) ≡ PAB(A = a, B = b) are the joint probabilities that A = a and
B = b, and sums are taken over the two sample spaces associated with both
A and B. One finds that H(A) ≤ H(A, B), meaning that one cannot be more
uncertain of the state of single physical system characterized by A than one
is about the joint state of two systems described by A and B.8

A useful method for comparing two different discrete probability distribu-
tions is provided by introducing a relative entropy function: given two prob-
ability distributions, p(a) = {p(a1), . . . , p(an)} and p(b) = {p(b1), . . . , p(bn)},
the Shannon relative entropy (or discrimination)9 between them is
8 This property turns out not to hold for the quantum (von Neumann) entropy—as

we show later in the next chapter—marking a significant difference between the
classical and quantum cases, and so the unique character of quantum information.

9 The relative entropy was first introduced by Kullback and Leibler, and is therefore
often referred to simply as the Kullback–Leibler distance [263].
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H[p(a)||p(b)] ≡
∑

i

p(ai) log2
p(ai)
p(bi)

, (4.8)

known as the Kullback–Leibler distance between p(a) and p(b), with the con-
ventions that 0 log2

0
p(bi)

= 0 and 0 log2
p(ai)

0 = ∞. However, H[p(a)||p(b)] is
not a metric because it is not symmetric in a and b. This distance is useful for
distinguishing statistical behaviors and states. The relative entropy satisfies
the Gibbs inequality,

H[p(a)||p(b)] ≥ 0 , (4.9)

which is an equality only when p(a) = p(b). The sum of the Shannon entropy
of a random variable and the relative entropy of that variable under two
distributions,

H(A) + H[p(a)||p(b)] , (4.10)

is sometimes referred to as the inaccuracy, because it characterizes the igno-
rance as to the correct distribution of A as produced by some communication
source.

The conditional entropy of a random variable A is its entropy conditional
upon knowledge of another random variable B:

H(A|B) ≡ H(A, B)−H(B) . (4.11)

Imagine that one wishes to infer the value of random variable A from knowl-
edge of a random variable B. One can then use the Fano inequality

Hbinary(perror) + perror log2(|A| − 1) ≥ H(A|B) , (4.12)

where perror is the probability of making this inference incorrectly and |A| is
the size of the sample space associated with A, for example, the number of
words in a code. This bound captures the intuition that a large conditional
entropy H(A|B) corresponds to a large probability of an erroneous inference
of A, given B. It is often relevant in channel coding; see Section 4.6 below.

The Shannon mutual information between two random variables, A and
B, described by the joint probability distribution p(a, b) = {p(ai, bj)} and
marginal distributions p(a) = {p(ai)} =

∑
j p(ai, bj) and p(b) = {p(bj)} =∑

i p(ai, bj), respectively, is

I(A : B) ≡ H[p(a)] + H[p(b)]−H[p(a, b)] . (4.13)

This quantity can be understood as describing the degree of correlation be-
tween the two variables: the amount of information about A that is acquired
by determining the value of B, as well as the degree of distinguishability of
a given correlated situation from a fully uncorrelated situation, so that one
may also write

I(A : B) = H[p(a, b)||p(a)p(b)] . (4.14)
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Classical information processing can be studied from the point of
view of Markov chains, that is, sequences of random variables. A
Markov process is such a sequence with the property that each ran-
dom variable in the sequence is independent of all preceding members
of the sequence. Markov chains obey the data-processing inequality

H(A) ≥ I(A : B) ≥ I(A : C) , (4.15)

for a Markov chain A → B → C, where the first inequality is an
equality if and only if given B, A can be reconstructed. Thus, if a
given random variable B is obtained from random variable A, due
to noise, data-processing cannot increase the amount of mutual in-
formation between the input and output variables. This captures
the fact that though information can be lost, it cannot arise out of
nowhere. The reverse data-processing inequality,

I(A : C) ≤ I(B : C) ≤ H(C) , (4.16)

describes the phenomenon that information processed in a second
processing step exceeds that processed overall. A third inequality,
namely, the data-pipelining inequality follows from recognizing that
given a Markov chain A → B → C, C → B → A is also a Markov
chain, and is written

I(C : B) ≥ I(C : A) , (4.17)

which captures the intuition that any information shared by A and
C is also shared by C and B.

As we have seen, communication channels are such that their outputs
depend probabilistically on their inputs; a channel can be studied via the
distribution of its output given the possible input. The information channel
capacity is defined as the maximum mutual entropy over all possible inputs
described by probabilities pA(ai). The operational channel capacity is de-
fined as the greatest bit-rate at which input information can be transmitted
with arbitrarily low error. The noisy channel coding theorem shows these two
quantities to be equal: the capacity of a discrete, memoryless communication
channel is

C = max
{pA(ai)}

I(A : B) , (4.18)

where A characterizes the input to the channel and B characterizes its output;
the units of channel capacity are bits-output-per-symbol-input. For a binary
channel, the capacity lies in the range [0, 1]. For the binary symmetric channel,
the capacity is simply 1 −H(p). In the case of a noiseless such channel, any
transmitted bit is received at the destination without error; each transmission
carries a bit to the receiver with certainty. The channel capacity is accordingly
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1 bit-output-per-symbol for a noiseless channel. If the transmission rate is less
than the channel capacity, then for any ε > 0 there is a code having a block
length large enough that the error probability is less than ε. Codes exist,
therefore, that allow error-free communication at rates below this (Shannon)
channel capacity. At rates above this capacity, some errors are guaranteed to
exist. This result is known as the Shannon–Hartley theorem.

4.3 Rényi entropy

The Rényi entropy is a useful generalization of the Shannon entropy measure.
The Rényi entropy of order r, in the case of a discrete probability distribution,
is defined as

Hr(A) =
1

1− r
log2

n∑
i=1

pr(ai) , (4.19)

for 0 < r < ∞ and r 
= 1 [352]. Hr(A) is a continuous positive decreasing
function of r. One obtains the Shannon entropy from the Rényi in the limit
r → 1, so that

H1(A) = H(A) . (4.20)
In the limit r →∞, one obtains the min-entropy

H∞(A) = − log2 max
ai

p(ai) . (4.21)

The Rényi entropy of order two is known as the extension entropy; the
inverse participation ratio, R(A), is its exponentiation

R(A) = exp
(
H2(A)

)
, (4.22)

the inverse of which is index of coincidence, which in turn is the complement
of the linear entropy,

L(A) = 1− 1
R(A)

. (4.23)

The Rényi entropy has proven useful in security analyses of quantum cryp-
tosystems, for example.10

4.4 Coding

A particularly useful method of encoding a number of strings of k symbols
is to map each string into an n-element string of symbols (each taken from
a set of q symbols, possibly different from those used in the original string),
taken as a block, that corresponds to an n-dimensional vector in a linear space
V (n, q).11 The result of such an encoding of a number of such strings into a
10 A specific of such an application is discussed in Chapter 12. Elsewhere in physics,

the Rényi entropy has been applied to the study of multi-fractal structures.
11 Any code composed entirely of codewords that are n-element strings is a block

code of length n.
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single such linear space V is a code that spans a k-dimensional subspace of
the space. If the codewords for a set of such strings are taken from the Galois
field GF (2)n, then the code is referred to as a binary linear code.12 Such
linear codes (or parity-check codes) are characterized by the dimension, n, of
the space V and an n× k binary matrix, the generator G, that describes the
encoding of messages according to a rule

x �→ Gx . (4.24)

A linear code that uses n bits to encode k-bit blocks is called an [n, k]
code. The “extra” n-k bits can serve as “parity-check” bits assisting in the
correction of errors. The sum of arbitrary number of code words of a linear
code is also a word in the code. Linear codes are thus easily specified: only the
kn bits describing the generator (or, alternatively, the corresponding parity-
check matrix, M , see below) need be given to provide the code, out of a
possible n2k bits of the exhaustive list of codewords that in some cases of
nonlinear codes must be provided. For example, if one were to use three-
bit coding to encode a single bit one, would be using a [3,1] code with the
generator

G =

⎛
⎝ 1

1
1

⎞
⎠ (4.25)

to encode a bit x into the two codewords wi = Gxi—the corresponding parity-
check matrix is given in the following section. This is an important example
of a repetition code.

The distance between two words in a linear code, that is, the number of
bits in which the words differ, can be used as a measure of their distinguisha-
bility. The Hamming weight of a string is given by its distance from the n-bit
string consisting entirely of zeroes. The Hamming distance, d, of a code is the
minimum of the distances over the set of pairings of codewords within it [205].
The above example has code words w0 = (000)T and w1 = (111)T, and so a
Hamming distance d = 3: w0 has Hamming weight 0 and w1 has Hamming
weight 3. Linear codes can accordingly be specified as [n, k, d] codes, that is,
[n, k] codes with a Hamming distance d. Noise affects code words with the
result that a given word, w, is transformed in a way describable as

w → w′ = w + e , (4.26)

where w′ is the resulting word and e characterizes the bit error induced by
the noise. Such a code allows for the correction of m bit errors if and only if
its Hamming distance is larger than 2m.

12 In the general case, a Galois field GF (q), where q is prime, is used, the code being
referred to as q-ary.
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For a code of length n, there is a parity-check matrix, M , satisfying (mod
2) the error-check property

Mw = 0 , (4.27)

for every symbol w. The parity-check matrix M and generator matrix G are
related by G’s being orthogonal to the columns of the transpose of M , that
is, the inner product between G and the columns of MT is 0 mod 2. The
error-check property allows the receiver of an encoded message to discover
the bit errors induced by noise during transmission because it implies that

Mw′ = Me , (4.28)

provides the error syndrome for every correctable error e. The error syndrome
supplies information as to the particular error that must be corrected.13 If
there exists an ordering of code bits such that a linear code has a parity-
check matrix that is cyclic, the code is known as a cyclic code. The codewords
created by such a code are cyclic as well, in that cyclic permutations of code
words are code words.14

It is also often advantageous to use codes of variable lengths, as
in the case of Morse code. In particular, Huffman coding is such
a method that approaches the minimum number of bits allowable
without resulting in a loss of information [227]. The method is based
on the use of a frequency-sorted binary tree. It is effective because,
although information is generally presented as a sequence of symbols
representable as a string of n bits, all possible 2n combinations of n
bits will not generally be used with the same probability. Huffman
coding replaces the presented symbols by a binary code based on
the decreasing probability of their appearance. Because the bene-
fits of this method are sometimes offset by its tendency to produce
long code strings, truncated versions in which only those more likely
symbols are encoded in this way and the remainder are coded by
fixed-length bit strings can be used to advantage. An important ap-
plication of Huffman coding is lossless data compression.

13 Corresponding quantum-coding and error-correction methods are discussed in
Chapter 10. The quantum analogues of linear codes are the quantum stabilizer
codes. For example, the seven-qubit quantum Steane code for the correction of
an arbitrary error on a qubit is closely related to the [7,4,3] classical Hamming
code for correcting classical bit errors; see [402, 403] and Chapter 10.

14 Cyclic codes are central to algebraic error-correction coding methods. In gen-
eral, linear codes may also be conventionally viewed from the graph-theoretical
perspective; see, for example, [292].
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4.5 Error correction

Let us now consider an explicit example of a linear error-correction code.
Recall that such error-correction codewords are representable as vectors of
a k-dimensional subspace, the codespace, in the n-dimensional vector space
GF (2)n. The quantity of greatest concern in the context of coding is the
loss, L, from a channel. If an encoded message having length n is subject
to loss, then for every output sequence through the channel the number of
input sequences will then typically be 2nL, which can render impossible the
decoding of messages. Error correction uses codewords chosen so as to take
the conditional entropy of this relevant ensemble to zero, so that there are
effectively no losses. The Fano inequality, introduced in Section 4.2, has the
consequence that the loss will go to zero if the error probability goes to zero,
though the noise of the channel itself need not be zero.

Consider a particular bit which is susceptible to error, recalling that for
classical binary information there is only one sort of error that can occur on a
bit, the bit flip, such as occurs in the binary symmetric channel described in
Section 4.1.15 If, in a given situation, such errors are relatively rare, meaning
they occur with a probability p � 1, they are easily corrected through the use
of encoding based on redundancy, as in repetition codes. Let us consider in
greater detail the repetition-based [3,1,3] code introduced above, specifically,

0 �→ 0L
.=

⎛
⎝ 0

0
0

⎞
⎠ (4.29)

1 �→ 1L
.=

⎛
⎝ 1

1
1

⎞
⎠ , (4.30)

where the subscript is used to indicate logical bits. A parity-check matrix for
this repetition code is

M =
(

1 1 0
1 0 1

)
. (4.31)

Errors on individual bits, for example, single-bit errors on the first, second,
and third bits, respectively, will change the sequence of components of 0L and
1L as

000 �→ 100 111 �→ 011 (4.32)
000 �→ 010 111 �→ 101 (4.33)
000 �→ 001 111 �→ 110 , (4.34)

respectively. Such errors can be found and corrected by the majority vote
method, in which one checks the three bits periodically; if there is an error
15 This is not the case for qubit errors, as we show in Sect. 10.4.
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one flips the bit that disagrees with the others, returning their state to one of
the logical states. As long as p ≤ 1

3 , the probability of a net error occurring
using this method is reduced from its original value p to an improved value of
3p2. The price paid is the reduction of transmission rate by a factor of three,
because three physical bits are used to transmit each logical bit. A quantum
version of this method is considered later, in Section 10.4.

4.6 Data compression

Data compression is a method of encoding that reduces the length of the
strings required to capture a quantity of information given some knowledge
of the states provided, for example, by a transmitting source. The Shannon
entropy, H(A), of a random variable A provides a lower bound on the average
length of its shortest description. A basic result of the theory of data compres-
sion is the noiseless coding theorem, which provides a lower bound on data
compression by stating that a message cannot be compressed to less than its
Shannon entropy per bit, as follows.
For any δ, ε > 0:

(i) With H(A)+ δ available bits per signal, there exists a coding-decoding
scheme with fidelity FM > 1− ε, for all M sufficiently large;

(ii) With H(A) − δ available bits per signal, for any coding-decoding
scheme, the fidelity FM < ε, for all M sufficiently large, where the fidelity
is given by

FM =
∑
AM

p(AM )pexact(AM ) , (4.35)

AM = ai1ai2 . . . aiM
being a bitstring (block) with prior probability as dis-

tributed by the sender, Alice, p(AM ) = pi1pi2 . . . piM
, piJ

being the probability
of a given aiJ

.
This theorem provides a statistical justification for the Shannon entropy

being considered a measure of uncertainty; see [379]. It also allows one to
interpret the Shannon entropy as the mean number of bits needed to code
the output of a source using an ideal code. The Shannon entropy can thus
be viewed as a measure of the resources required to represent the information
provided by a source. A quantum analogue of this result is discussed in Section
10.8.

Different methods of data compression operate with different efficiencies,
depending on the statistical properties of the message. Generally, use of typ-
ical sequences is not the most efficient method of compressing information.
The sender Alice can, for example, use block coding to compress information
by jointly taking strings of M signals and coding them as shorter data se-
quences without the redundancies naturally contained in an arbitrary signal,
as mentioned above. The receiver, Bob, can then decode (or decompress) these
sequences, reconstructing them with any desired level of accuracy.
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A source code, C, for a random variable A is a map from the domain of A to
the set of finite-length strings in a given n-ary alphabet, S = {0, 1, . . . , n−1}.
If the length of codeword C(a) is l(a) and the probability mass function is
p(a), then the expected length of the code is

L(C) =
∑
a∈A

p(a)l(a) . (4.36)

The extension, C∗, of the code C is provided by the concatenation of code-
words

C∗(a1, a2, . . . , an) = C(a1)C(a2) . . . C(an) , (4.37)

which is a mapping from finite strings in the range of A to S∗, the set of
finite strings of S. A code, C, is said to be nonsingular if ai 
= aj implies
C(ai) 
= C(aj), and uniquely decodable if its extension is nonsingular. C is
a prefix (or instantaneous or comma-free) code if no codeword is a prefix of
any other codeword. Transmitted codewords can be properly framed provided
the signal is synchronized so that the beginning of the initial codeword can be
identified. The expected length of any prefix code of any n-ary random variable
A is greater than or equal to the base-n Shannon entropy of the code. The
set of achievable codeword lengths is identical for prefix and decodable codes.
Shannon coding is such a coding that uses codeword lengths of �log 1

pi
�.

Many optimal codes can be constructed. The Shannon entropy pro-
vides a limit on data compression and the number of bits required for
the generation of random numbers. Huffman coding can be used to
systematically find one such code by finding minimum expected de-
scription length assignments. It is a “greedy” coding method, in the
sense that it replaces the two least likely symbols with one symbol
at a given step. Huffman codes are competitively optimal: a number
of fair coin flips given by the function H are required to generate a
sample of a random variable having comparable entropy. A quantum
analogue of Huffman coding can readily be carried out; see [80].

4.7 Communication complexity

Communication complexity can be used to investigate distributed tasks based
on the following simple scheme. Consider two separated parties, Alice and Bob,
each possessing an n-bit string and allowed to perform local computations and
to communicate, so that one of them is able to announce the value of a given
function, f : X × Y → Z, of these two strings to the other. This situation
can also be generalized to any number of parties. Let Alice’s string be x, and
Bob’s be y, with x ∈ X = {0, 1}×n and y ∈ Y = {0, 1}×n, and Z = {0, 1}.
It is possible for Bob to determine f(x, y) if Alice simply communicates the
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values of x to Bob. One desires, however, to minimize the amount of commu-
nication required between Alice and Bob to accomplish this task, rather than,
say, the number of computational steps required.16 For such a function, the
communication complexity, K(f), is the minimum number of bits necessarily
communicated between Alice and Bob in order to determine f(x, y).

The required computations can be chosen to be either deterministic or
probabilistic in nature. A promise is also sometimes also added, which is a
Boolean function F (x, y) such that Alice and Bob are required to find f(x, y)
only when F (x, y) = 1. In a deterministic protocol, a communicated bit is a
function only of previously sent bit-values of the input from the sender. One
is interested in the number of bits sent in the worst case in the best possible
correct deterministic protocol for computing the function f . By contrast, in
a nondeterministic protocol, the bits to be communicated may depend on
nondeterministic choices as well. A nondeterministic protocol for z is correct
if it always returns 1− z for f(x, y) = 1− z and for any x, y with f(x, y) = z,
it returns z for at least one sequence of nondeterministic choices made. The
worst-case number of bits sent, in the best possible correct nondeterministic
protocol for z, is written Nz(f).

The two complexity measures, K and Nz, are accordingly related as

K(f) ≥ Nz(f) . (4.38)

In the following chapter, quantum-information measures are introduced, many
of which can be seen as extensions or analogues of the classical measures intro-
duced above. Particularly interesting for such purposes is the case where Alice
and Bob are allowed also to share random variables, because this situation is
similar to the quantum situation where entangled quantum states are shared
and corresponding qubit values are measured in the computational basis.

16 See Sect. 13.1 for a discussion of computational complexity, which is more com-
monly considered.
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Quantum information

The theory of quantum information, that is, of the transmission, storage, and
processing of information using quantum-mechanical systems, is now well de-
veloped. It has been constructed largely by the generalization to this context
of elements of traditional information theory, which have been designed to
explain the transmission, storage, and processing information using classical
means. The mathematical description of quantum systems differs fundamen-
tally from that of classical states, as we saw in Chapter 1.1 This difference
lends quantum information a significantly different character from that of
classical information.

Unlike in the classical case, most of the information stored in a generic
quantum-mechanical system is stored in the form of correlations between sub-
systems. Not only is most quantum information stored in the form of such cor-
relations, but these can be extraordinarily strong correlations, as we have seen
in Chapter 3; fully entangled quantum states are the extreme cases. For exam-
ple, for the Bell states the reduced states of single qubits are entirely indefinite,
whereas the state of the qubit pair is fully correlated, that is, knowledge of
the state of one qubit actualized through a quantum measurement is tanta-
mount to knowledge of the other, as in the situation considered by Einstein,
Podolsky and Rosen as framed by Bohm. The greatest difference in complex-
ity between classical and quantum states arises when entanglement is present
among components of composite quantum systems. In bipartite systems, the
extraordinary correlations associated with entanglement are manifested, for
example, in the violation of the Bell-type inequalities discussed in Section 3.5
1 For example, the number of parameters needed to specify the state of a quantum

information-bearing system grows exponentially with the number of its subsys-
tems. This point is addressed in detail in Sect. 7.6. Note that distinctions between
classical information and quantum information have been made in various ways—
on this point see, for example [100, 145, 367]. In this book, a distinction is made
on the basis of differences in the ability to transmit, store and process information
in quantum systems versus in classical systems.
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and the complementarity of self-interference visibility of subsystems and the
total system self-interference visibility discussed in Section 3.6.

As we show in the following chapter, entanglement between even two sub-
systems provides a novel type of information-processing resource complement-
ing that which can be provided by classical bits or unentangled quantum bits.
This difference is even more pronounced in the case of larger multiple-qubit
states, which can be distributed among a number of separate parties po-
tentially participating in distributed information-processing. In this chapter,
quantities characterizing both static and dynamical properties of quantum
information are considered. These will prove useful for the understanding of
quantum information processing tasks discussed in following chapters.

5.1 Quantum entropy

The standard measure of the information contained within a quantum system
described by the statistical operator ρ is the von Neumann entropy

S(ρ) = −tr(ρ log2ρ) (5.1)

= −
∑

i

λilog2λi , (5.2)

where λi are the members of the set of eigenvalues of ρ and 0 log 0 ≡ 0.2

S(ρ) is nonnegative, achieves its maximum value for the maximally mixed
state, and is zero if and only if ρ is pure. For systems described by states in d-
dimensional Hilbert spaces, 0 ≤ S(ρ) ≤ log2 d, so that for qubits 0 ≤ S(ρ) ≤ 1.
S(ρ) provides an information measure in units of qubits [367].

The von Neumann entropy plays a role in quantum information theory
analogous to that played by the Shannon entropy in traditional information
theory: the von Neumann entropy S(ρ) measures the uncertainty of a quantum
state associated with a quantum probability distribution.3 However, the von
Neumann entropy differs in important ways from the Shannon entropy. In the
case of classical systems, the entropy can be viewed as the information gained
by identifying the system state, whereas in general ρ cannot be fully identified
by the observation of an event (cf. Section 2.2) so that S(ρ) provides only a
loose bound on this; see Section 9.3.

Writing the quantum joint entropies, S(A, B) ≡ S(ρAB), S(A, B, C) ≡
S(ρABC), and so on—and for uniformity of notation, also taking S(A) ≡
S(ρA)—one finds that the von Neumann entropy has the following properties.

2 Here, we have assumed the set of eigenvalues of ρ to be countable; see also [446].
3 This quantity should, however, be distinguished from the uncertainty in values of

incompatible quantum properties in the Heisenberg–Robertson uncertainty rela-
tion that exists even in the simplest pure state; see Section B.2.
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(i) Additivity for product states (also a property of classical states):

S(ρA ⊗ ρB) = S(A) + S(B). (5.3)

(ii) Strong subadditivity for all quantum states:

S(A, B, C) + S(B) ≤ S(A, B) + S(B, C) . (5.4)

iii) Concavity :

S

(∑
i

piρi

)
≥

∑
i

piS(ρi) . (5.5)

iv) Invariance under unitary transformations of the quantum state:

S(Uρ U†) = S(ρ) . (5.6)

In the above, the pi are the probabilities, summing to one, of a system being
in the corresponding states ρi. The last property is related to the conserva-
tion of state purity discussed in Section 1.1. The Shannon entropy and the
von Neumann entropy coincide only for an ensemble formed from mutually
orthogonal pure quantum states. Thus, if one were to send a message encoded
in a set of orthogonal qubit states, each pure, that can be described by an
overall tensor-product state, the transmission would be equivalent to sending
the same information as a set of classical bits, because each qubit is perfectly
distinguishable once the encoding basis has been determined.4

By contrast to the effect of unitary transformations, which leave the quan-
tum entropy unchanged, measurements can change it. For example, for a
system initially described by the statistical operator ρ and by the operator ρ′

after a measurement described by the Lüders rule the result of which is known,
the final quantum entropy S(ρ′) is less than or equal to the initial quantum
entropy, S(ρ). As an extreme but important example, consider a qubit initially
in the fully mixed state, say as the reduced statistical operator of one qubit of
a pair in a Bell-state, ρ = 1

2 I; for it, S( 1
2 I) = 1. A precise measurement of the

state of such a qubit will place it in a pure state P (|ψ〉), at which point it will
have quantum entropy S

(
P (|ψ〉)

)
= 0. Generalized measurements with un-

known outcomes can similarly decrease the quantum entropy of a system. On
the other hand, if a Lüders-type measurement is performed but the outcome
remains unknown then the quantum entropy may increase.
4 Indeed, a set of states from a known basis can be cloned with perfect fidelity,

contrary to the general case which is imperfect and constrained as described
by the quantum “no-cloning theorem”; were unknown quantum states perfectly
distinguishable, they could be perfectly cloned; see Sect. 9.5.
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The following triangle inequality, known as the Araki–Lieb inequality, re-
lates the joint entropy and the subsystem entropies:

S(A, B) ≥ |S(A)− S(B)| . (5.7)

For a composite system in a pure state |Ψ〉, one has ρAB = P (|Ψ〉), yielding
S(A, B) = 0; so, it must also be that S(A) = S(B) for any such system.
Accordingly, for two individual quantum particles in a singlet state, |Ψ−〉,
S(A, B) = 0 whereas S(A) = S(B) = 1; that is, the correlation between the
states of subsystems A and B is fully certain, whereas the individual states
of subsystems A and of B are completely uncertain, as mentioned above.
Such examples demonstrate the sensibility of the (subsystem) von Neumann
entropy for describing entanglement, as we show in the next chapter.

The joint entropy theorem,

S

( n∑
i=1

piP (|i〉)⊗ ρi

)
= H({pi}) +

n∑
i=1

piS(ρi) , (5.8)

also holds for a set of orthogonal states {|i〉} of a system A and n statistical
operators ρi of a second system B, both occurring with probabilities, pi.

5.2 Quantum relative and conditional entropies

The quantum conditional entropy is given, analogously to the corresponding
classical quantity, by

S(A|B) ≡ S(A, B)− S(B) (5.9)
= S(ρAB)− S(ρB) (5.10)

(cf. Eq. 4.11). However, unlike the classical conditional entropy, the quantum
conditional entropy can become negative, indicating that it is possible for
quantum systems to be more certain in the joint state of two component
systems than in the states of its individual components, as again can be seen
in the case of the singlet state |Ψ−〉, the entropy values of which were given
in the previous section.

The quantum relative entropy between the two states, ρ and σ, of a quan-
tum system is defined as

S(ρ||σ) ≡ tr
(
ρ(log2ρ− log2σ)

)
. (5.11)

This quantity obeys Klein’s inequality,

S(ρ||σ) ≥ 0 , (5.12)

which is an equality if and only if ρ = σ [253].5 Klein’s inequality is analogous
to Gibbs inequality for the classical relative entropy (cf. Eq. 4.9). Like the
5 The quantum relative entropy was first introduced by Umegaki [428].
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corresponding classical measure, this quantity is also not a metric due to a
lack of symmetry with respect to its arguments. The quantum relative entropy
characterizes the distinguishability of states defined in the same Hilbert space.
In practice, one can use a POV measure to distinguish states, to the extent
physically possible, based on the corresponding detection distributions.6

5.3 Quantum mutual information

The quantum mutual information between two subsystems described by states
ρA and ρB of a composite system described by a joint state ρAB is

I(A : B) ≡ S(A) + S(B)− S(A, B) (5.13)
= S(ρA) + S(ρB)− S(ρAB) , (5.14)

also by analogy with the corresponding classical quantity (cf. Eq. 4.14). Note,
however, that this quantum-mechanical quantity exceeds the bound for the
classical mutual information. In particular, note that the quantum mutual
information can reach twice the maximum value obtained in the corresponding
classical mechanical situation:

I(A : B) ≤ 2 min{S(A), S(B)} , (5.15)

which is a corollary of the Araki–Lieb inequality (Eq. 5.7) and implies that
quantum systems can be supercorrelated, as mentioned previously. Note
specifically that when a bipartite quantum system is in a pure state I(A :
B) = 2S(A) = 2S(B), as can be readily shown using the Schmidt decomposi-
tion; see Section 6.2, below.

The quantum mutual information has two different but related operational
meanings [198, 370]. In particular, the total amount of correlation, as mea-
sured by the minimal rate of randomness that is required to completely erase
all the correlations in a state ρAB (in a many-copy scenario), is equal to the
quantum mutual information, which leads to the strong subadditivity of the
von Neumann entropy [198]. The quantum mutual information can also be
viewed as a type of relative entropy, in as much as

I(A : B) = S(ρAB ||ρA ⊗ ρB) (5.16)

(cf. Eq. 4.14). The quantum mutual information also has the important prop-
erty that it is nonincreasing under completely positive maps, which were intro-
duced in Section 2.6 (cf. [432]).7 As is the case for classical entropies, quantum
6 Uses of POVMs for distinguishability are discussed in Sect. 1.6 in relation to the

(limited) distinguishability of nonorthogonal states of a single qubit, and in Sect.
3.6 in relation to two-particle interference. POV measurements themselves are
discussed in Sect. 2.7

7 Note that the same symbol, I, has been used here for both the classical and
quantum mutual information functions (cf. Section 4.2). Care should be taken in
this regard.
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entropies can be given for multipartite systems. For example, the quantum
conditional mutual information within a tripartite system can be written

I(A : B|C) = S(A|C)− S(A|B, C) (5.17)
= S(A|C) + S(B|C)− S(A, B|C) . (5.18)

There also exist quantum chain rules analogous to classical chain rules for
entropies.

An important theorem, known as Lieb’s theorem, is the basis of many
results related to quantum entropy measures. For example, the strong subad-
ditivity inequality, the second property of von Neumann entropy listed above,
is a very useful result that can be proven making use of it [369]. The strong
subadditivity property of the von Neumann entropy allows one to demon-
strate several useful properties of the entropies introduced in this section that
also take the form of inequalities. For example, note that conditioning reduces
entropy in the context of the tripartite division of a compound system:

S(A|B, C) ≤ S(A|B) . (5.19)

Also note that discarding components of a compound system can decrease but
never increase quantum mutual information: I(A : B) ≤ I(A : B, C), perhaps
the most meaningful manifestation of the strong subadditivity of quantum
entropy; see Eq. 5.4 and [198]. In the context of a four-component system,
A, B, C, D, the quantum conditional entropy is subadditive,

S(A, B|C, D) ≤ S(A|C) + S(B|D) , (5.20)

whereas the quantum mutual information is not.8 Furthermore, the strong-
subadditivity property of the von Neumann entropy allows one to show that
the quantum relative entropy is nonincreasing under CPTP maps [283].

5.4 Fidelity and coherent information

A measure of the fidelity of transmission of a pure-state input |ψ〉 that pro-
duces final states σi with probabilities pi in the statistical state ρ =

∑
i piσi

is
F
(
P (|ψ〉), ρ

)
= 〈ψ|ρ|ψ〉 , (5.21)

or, in the case of a mixed-state input, ω,

F (ρ, ω) =
[
tr
(√√

ωρ
√

ω

)]2

. (5.22)

8 A proof of this subadditivity property can be found in Sect. 11.4.2 of [315].
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The latter quantity is the maximum value attained by the pure-state expres-
sion over the set of pure states in a larger Hilbert space yielding ρi by partial
tracing [244].9 It is fundamental to the study of quantum communication.

The quantum analogue of the classical Fano inequality, the quantum Fano
inequality, is

S(ρ, E) ≤ Hbinary
(
F̃ (ρ, E)

)
+

(
1− F̃ (ρ, E)

)
log2(d

2 − 1) , (5.23)

for a quantum operation, E , on a system with a Hilbert space of dimension
d ≥ 2, where the entropy exchange Se(ρ, E) = −tr(W log W ) with the matrix
W having elements

[W ]ij ≡ tr(EiρE†
j )/trE(ρ) , (5.24)

Ei being the elements of the operator-sum representation of the operation E ,
which was first proved by Schumacher [368]. Se(ρ, E) quantifies the quantum
entropy introduced into a system as a result of the operation E it has un-
dergone.10 F̃ (ρ, E) above is the “entanglement fidelity,” which quantifies the
degree to which entanglement between the system and another needed to form
a pure total system is preserved under E , namely, the particular state fidelity

F̃ (ρ, E) = 〈ΨPQ|ρPQ′ |ΨPQ〉 (5.25)

between the initial and final pure states of such a total system, where |ΨPQ〉
is a pure state of the combined system of the input system Q and another
“reference” system P yielding ρ as the reduced state for Q, and ρPQ′ is the
state resulting from the effect of E on Q [369].

In the case of such a pair of systems P and Q forming a possibly entangled
joint system PQ, the subsystem Q may be imperfectly isolated from its envi-
ronment, the effect of which is described by E . For example, Q may be sent
through a quantum channel resulting in such a joint “output” state ρPQ′ ; if
the input is pure the output generally will not be. One may then consider the
coherent information between the subsystems,

Icoherent(ρ, E) = S(Q′)− S(P, Q′) , (5.26)

where the quantities on the right-hand side are von Neumann entropies of the
transmitted subsystem and total system, respectively [369]. The coherent in-
formation, which can have any sign, in contrast to its classical analogue which
is always negative, has useful properties. In particular, Icoherent is positive if
and only if the output state is an entangled state, and can be viewed as a
measure of nonclassical character by virtue of the preservation of quantum
coherence by E . Icoherent has the property that it cannot be increased by local
operations on Q, so that

Icoherent(ρ, E) ≤ S(Q) (5.27)
9 Note that the fidelity is also not a metric, though it is symmetric in its arguments.

10 Note that F̃ (ρ, E) is distinct from the state fidelity, F , defined in Eq. 5.21 above.
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after the influence of the environment on Q. Because the reduction of the
coherent information due to the effect of the environment is irreversible, a
necessary and sufficient condition for the ability to perform perfect correction
of errors introduced by the interaction of Q with the environment is that
Icoherent(ρ, E) = S(Q).11

Consider a two-stage process formed by two subprocesses, E1 and
E2, in series. As a result of the first process, ρ → ρQ′ = E1(ρQ). The
second process then results in

ρQ′ → ρQ′′ = E2(ρQ′) (5.28)
= E12(ρQ), (5.29)

where
E12 =

(
E2 ◦ E1

)
(ρQ) . (5.30)

The coherent information then obeys the quantum information-
processing inequality

S(Q) ≥ Ie1(ρQ, E1) ≥ Ie12(ρQ, E12) , (5.31)

where Ie1(ρQ, E1) = S(Q′) − Se1(Q) and Ie12(ρQ, E12) = S(Q′′) −
Se12(Q), where Se1(Q) is the entropy exchange of the first stage
and Se12(Q) is the entropy exchange for the composition of the two
processes comprising the overall process E12. This is the quantum
analogue of the classical data-processing inequality, Eq. 4.15.

5.5 Quantum Rényi and Tsallis entropies

Finally, note that a quantum Rényi entropy, analogous to the classical Rényi
entropy introduced in Section 4.4, can be defined as well:

Sr(ρ) =
1

1− r
trρr , (5.32)

where r ≥ 0. Note, in particular, that

lim
r→1

Sr(ρ) = S(ρ) . (5.33)

In addition, when r = 0,
S0(ρ) = log2R(ρ) , (5.34)

where R(ρ) is the rank of the corresponding density matrix. Furthermore,

lim
r→∞ Sr(ρ) = −log2||ρ|| . (5.35)

11 Quantum error detection and correction are discussed in detail in Chapter 10.
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Like the von Neumann entropy, the quantum Rényi entropy has proven
valuable for characterizing entanglement.12 A related quantity is the Tsallis
entropy, defined as

Tr(ρ) =
1− tr(ρr)
(r − 1)

, (5.36)

which, like Sr(ρ), also coincides with the von Neumann entropy in the limit
r → 1. Both entropies have conditional versions, namely,

Sr(B|A) = Sr(ρ)− Sr(ρA) (5.37)

and

Tr(B|A) =
tr(ρr

A)− tr(ρr)
(r − 1)tr(ρr

A)
, (5.38)

where ρA is the statistical operator of a subsystem A within the compound
system AB described by the state ρ. These conditional entropies are related
to each other with respect to positivity; in particular,

Tr(B|A) ≥ 0 ⇔ Sr(B|A) ≥ 0 , (5.39)

which is also equivalent to the positivity of the conditional von Neumann
entropy S(B|A) in the limit r → 1 [442].

12 For example, see Sect. 6.9.
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Quantum entanglement

Quantum interference arises from the indistinguishability in principle, by pre-
cise measurement at a specified final time, of alternative sequences of states
of a quantum system that begin with a given initial state and end with the
corresponding final state. It is manifested, for example, in the two-slit inter-
ferometer and the double Mach–Zehnder interferometer discussed in Chapters
1 and 3, respectively. Most important, when the indistinguishability of alter-
natives for producing joint events arises, as in the latter apparatus, entangle-
ment may be involved. Erwin Schrödinger, who first used the term “entangle-
ment,” called entanglement “the characteristic trait of quantum mechanics”
[364, 365, 366]. The extraordinary correlation between quantum subsystem
states associated with entanglement can be exploited by quantum computing
algorithms using interference to solve computational tasks, such as factoring,
far more efficiently than is possible using classical methods, as we show in
later chapters. Entangled states are similarly exploitable by uniquely quantum
communication protocols, such as quantum teleportation, superdense coding,
and advanced forms of quantum key distribution, using local operations and
classical communication (LOCC).

Entanglement is of perennial intrinsic interest because of the radically
counter-intuitive behavior associated with the strong correlations it entails,
that was discussed in Chapter 3. Albert Einstein, Boris Podolsky, and Nathan
Rosen argued early on that quantum mechanics is incomplete if understood as
a local realistic theory, based on the consideration of an (entangled) quantum
state of the form

|Ψ(x1, x2)〉 =
∞∑

i=1

ai|ψ(x1)〉i|φ(x2)〉i (6.1)

[147]. David Bohm later explored entanglement in a far simpler context, that
of a pair of spins in the singlet state

|Ψ−〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) , (6.2)



92 6 Quantum entanglement

which has since been central to the investigation of the foundations of quantum
mechanics and quantum information, wherein {| ↑〉, | ↓〉} is typically taken as
the computational basis and written {|0〉, |1〉} [66].

Following these developments, John Bell greatly advanced the investiga-
tion of quantum entanglement by clearly delimiting the border between local
classically explicable behavior and less intuitive sorts of behavior that are non-
local, by deriving an inequality that must be obeyed by local realistic theories
that might explain strong correlations between two distant subsystems form-
ing a compound system, such as those arising in systems described in quantum
mechanics by the singlet state [30]. Since these early investigations, the study
of extraordinarily correlated behavior between subsystems within larger sys-
tems has been ongoing, as have efforts to put this unusual behavior to use.
In this chapter, we consider the current understanding of quantum entangle-
ment in bipartite quantum systems, which often uses the various quantum
information measures introduced in the previous chapter.

6.1 Basic definitions

Under Schrödinger’s definition, entangled pure states are simply those pure
quantum states of multipartite systems that cannot be represented in the form
of a simple tensor product of subsystem states

|Ψ〉 
= |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 , (6.3)

where |ψi〉 are states of local subsystems, for example, spin states of funda-
mental particles [365, 366]. The remaining pure states of multipartite systems,
which can be represented as simple tensor products of independent subsystem
states, are called simply product states. The definition of entanglement can
be extended to include mixed states, as follows. The mixed quantum states
in which entanglement is most easily understood are states ρAB of bipartite
systems, usually labeled AB with components labeled A and B in correspon-
dence with the laboratories where they are located. Mixed states are called
separable (or factorable) when they can be written as convex combinations
of products,

ρAB =
∑

i

piρAi ⊗ ρBi, (6.4)

where pi ∈ [0, 1] and
∑

i pi = 1, ρA and ρB being statistical operators on
subsystem Hilbert spaces, HA and HB , respectively.1 Entangled quantum
states are simply those that are inseparable.

Separable mixed states contain no entanglement, as they are by defini-
tion the mixtures of product states and so can be created by local operations
1 This definition extends beyond the statistical operators to other operators, gen-

eralizing the concept of entanglement beyond states.
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and classical communication from pure product states: in order to create a
separable state, an agent in one lab needs merely to sample the probability
distribution {pi} and share the corresponding measurement results with an
agent the another; the two agents can then create their own sets of suitable
local states ρi in their separate labs.2 However, by contrast, not all entangled
states can be converted into each other in this way in the multi-party context,
something that leads to distinct classes of entangled states and thus to differ-
ent sorts of entanglement, as we show in the next chapter. In general, it is also
not always possible to tell whether a given statistical operator is entangled.
Given a set of subsystems, the problem of determining whether their joint
state is entangled is known as the separability problem.

The simplest states within the class of separable states are the product
states of the form ρAB = ρA⊗ρB ; ρA and ρB are then also the reduced statis-
tical operators for the two subsystems and are uncorrelated. When there are
correlations between properties of subsystems described by separable states,
these can be fully accounted for locally because the separate quantum states
ρA and ρB within spacelike-separated laboratories provide descriptions suffi-
cient for common cause explanations of the joint properties of A and B such
as that outlined above; also see [430]. In particular, the outcomes of local mea-
surements on any separable statistical operator can be simulated by a local
hidden-variables theory. The quantum states in which correlations between A
and B can be seen to violate a Bell-type inequality, referred to as Bell corre-
lated (or EPR correlated) states, cannot be accounted for by common cause
explanations. If a pure state is entangled then it is Bell correlated.3 Thus,
pure entangled states do not admit a common cause explanation. However,
this is not true for the mixed entangled states. For example, the Werner state,

ρW =
(

1− 1√
2

)
1
4

I⊗ I +
1√
2
P (|Ψ−〉) , (6.5)

is not Bell correlated yet is entangled, because there is no way to write ρW

as a convex combination of product states; in particular, it cannot be written
in the form of Eq. 6.4 with only one nonzero pi.4

The shortcoming of Bell-inequality violation as a necessary condition for
entanglement is that it is unknown whether there exist Bell inequality viola-
tions for many nonseparable mixed states. In the presence of manipulations
of such a state (or a collection of copies) by means of LOCC, some states can
be made to violate a Bell-type inequality; those states that can be made to
2 See Chapter 3 for a characterization of local operations.
3 This was first pointed out by Sandu Popescu and Daniel Rohrlich [338] and

Nicolas Gisin [186]. Note, however, that not all such states are Bell states, that
is, elements of the Bell basis as, say, |Ψ−〉 is; see Sect. 6.3, below [339].

4 Note also that the Werner state is diagonal in the Bell-basis representation. An
excellent review discussing the relationship between Bell inequalities and entan-
glement is [451].



94 6 Quantum entanglement

violate a Bell inequality in this way are referred to as distillable states. The
remaining, nondistillable states are known as bound states. What is clear is
that state entanglement should not change under local operations and should
not be increased by local operations together with classical communication,
assumptions that play a central role in quantifying entanglement, as we show
in Section 6.6 below. Let us first consider some fundamental tools in the study
of entanglement.

6.2 The Schmidt decomposition

There exist special state decompositions that clearly manifest the correlations
associated with entanglement. For pure bipartite states, the Schmidt decom-
position serves this purpose well. Any bipartite pure state |Ψ〉 ∈ H = HA⊗HB

can be written as a sum of bi-orthogonal terms: there exists at least one or-
thonormal basis for H, {|ui〉 ⊗ |vi〉} where {|ui〉} ∈ HA and {|vi〉} ∈ HB such
that

|Ψ〉 =
∑

i

ai|ui〉 ⊗ |vi〉 , (6.6)

ai ∈ C, referred to as a Schmidt basis. This representation is a Schmidt (or
polar) decomposition of |Ψ〉, where the summation index runs up only to
the smaller of the corresponding two Hilbert space dimensions, dim HA and
dim HB [363]. It is often convenient to take the amplitudes ai to be real
numbers by absorbing any phases into the definitions of the {|ui〉} and {|vi〉}.
Unfortunately, the availability of this decomposition in multipartite systems
is limited, being available with certainty only in the case of bipartite states.

For any entangled bipartite pure state, it is possible to find pairs
of measurable quantities violating the Bell inequality. In particular,
the Schmidt observables

U =
∑

i

ui|ui〉〈ui| , (6.7)

V =
∑

i

vi|vi〉〈vi| , (6.8)

are fully correlated when the system is in state |Ψ〉, providing such
violations [186].

The number of nonzero amplitudes ai in the Schmidt decomposition of a
quantum state is known as the Schmidt number (or Schmidt rank), Sch(|Ψ〉).
The Schmidt number proves useful for distinguishing entangled states. In par-
ticular, the Schmidt number of a state is greater than 1 if and only if it is
entangled. It is useful as a (coarse) quantifier of the amount of entanglement
in a system, in addition to serving as a criterion for entanglement.
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The Schmidt number of a bipartite system is equivalently defined as

Sch(|Ψ〉) ≡ dim supp ρA = dim supp ρB , (6.9)

where ρA and ρB are the reduced statistical operators for the two subsystems,

ρA =
∑

i

|ai|2|ui〉〈ui| , (6.10)

ρB =
∑

i

|ai|2|vi〉〈vi| , (6.11)

which are diagonal, possess identical eigenvalue spectra, and hence have identi-
cal von Neumann entropies. Furthermore, Schmidt number is preserved under
local unitary state transformations.

Using the Schmidt decomposition, the Schmidt measure (Hartley strength)
of the entanglement of pure states is defined as

ES(|Ψ〉) ≡ log2
(
Sch(|Ψ〉)

)
, (6.12)

providing entanglement in units of “e-bits,” a term, like “qubit,” introduced
by Schumacher, where the Bell states correspond to one e-bit of entangle-
ment. The probabilities that are the squares of the Schmidt coefficients ai

are precisely those quantities unchanged by unitary operations performed lo-
cally on the individual subsystems (LUT’s). For this reason, it is reasonable
to expect any more precise numerical measure of pure state entanglement to
be calculable from the quantities |ai|2.5 Because the statistical operator ρ of
a bipartite system may have degenerate eigenvalues there is, however, not a
truly unique Schmidt basis. For example, in the case of the Bell state |Ψ−〉,
the state takes the same form when represented in any other basis obtained
from the computational basis representation (Eq. 3.5), which is of Schmidt
form, by rotating the computational basis and performing a unitary transfor-
mation in the subspace of the first qubit and the conjugate transformation in
that of the second qubit [154].

Again, the Schmidt decomposition is not always available beyond the case
of bipartite systems. Consider the case of a system with three subsystems. If
there existed such a decomposition, the measurement of one subsystem would
provide the states of the remaining two; but, if these two are entangled, then
the individual states must be indefinite.6

6.3 Special bases and decompositions

Basic examples of states in Schmidt form are the four elements of the Bell
basis, which are the entangled states written
5 One example of this is the concurrence, defined in Sect. 6.10, below.
6 The generalization of this decomposition to special states of larger systems where

such a decomposition does exist, such as the GHZ state |GHZ〉 = (1/
√

2)(|000〉+
|111〉), is discussed briefly later in Sect. 7.3.
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|Ψ±〉 =
1√
2
(|01〉 ± |10〉) (6.13)

|Φ±〉 =
1√
2
(|00〉 ± |11〉) (6.14)

in the computational basis and which are symmetrical or antisymmetrical
under qubit exchange. These Bell states have played a central role in the
investigation of quantum entanglement and tests of local realism, as shown
in Chapter 3. The creation of the states of the Bell basis from a pair of
unentangled qubits can be carried out by a process described by a quantum
circuit involving only one Hadamard and one C-NOT gate; see Fig. 6.1. Bell
states are also readily produced ab initio using spontaneous parametric down-
conversion, which is discussed in Section 6.16. Bell states have the useful
property that transforming the state of only one subsystem locally suffices for
interconversion between them, which is not true, for example, of the two-qubit
computational-basis states, which are of product form. Of particular interest
is the singlet state, |Ψ−〉, due to its great symmetry.

H|b1

|Bb1b2

|b2

Fig. 6.1. A quantum circuit for the synthesis of Bell states, |Bb1b2〉 from a product
state. The input states are indicated by the bit values bi ∈ {0, 1}, i = 1, 2: b1b2 =
00, 10, 01, 11 yield |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉, respectively.

Another basis of entangled states for two-qubits, the so-called “magic
basis,” is similar to the Bell basis but has different overall phases and
norm,

|m1〉 =
1
2
(|00〉+ |11〉) , (6.15)

|m2〉 =
i

2
(|00〉 − |11〉) , (6.16)

|m3〉 =
i

2
(|01〉+ |10〉) , (6.17)

|m4〉 =
1
2
(|01〉 − |10〉) , (6.18)

and is a natural one for concurrence-based entanglement studies,
discussed in Section 6.10, below [214].
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Another useful basis is the q-basis,

|q1〉 =
√

q|00〉+
√

1− q|11〉 , (6.19)

|q2〉 =
√

1− q|00〉 − √q|11〉 , (6.20)

|q3〉 =
√

q|01〉+
√

1− q|10〉 , (6.21)

|q4〉 =
√

1− q|01〉 − √q|10〉 , (6.22)

which, for values q ∈ [0, 1], interpolates between the (product) com-
putational basis (for which q = 0, 1) and the (entangled) Bell basis
(for which q = 1/2). Varying the value of q, say by taking q = cos θ
and varying θ, allows one to study the role of entanglement over this
important range of pure states; for example, see Section 9.11 and
[234].

A Lewenstein-Sanpera (LS) decomposition of a statistical operator ρ ∈
C

2 ⊗ C
2 is one of the form

ρ = λρsep + (1− λ)P (|Ψent〉) , (6.23)

with λ ∈ [0, 1], where ρsep is separable and P (|Ψent〉) is the projector for
a fully entangled state [282]. Such a decomposition exists for any two-qubit
state. Although this decomposition is not unique, the decomposition for which
λ takes an optimal value, λmax, is. λmax is sometimes referred to as the degree
of separability and can be viewed as the degree of classicality of the state.7

One example following from the LS decomposition is the Werner state (cf.
Equation 6.5, above). Varying λ allows one to explore the role of entanglement
over an important range of mixed states; for example, see [309].

Yet another useful class of basis is that of the unextendable product bases,
which are sets of orthogonal product state-vectors such that there exists no
additional product state-vector orthogonal to them in order to span the entire
space in which they lie [45, 203]. A two-qutrit example is

|υ1〉 =
1√
2
|0〉(|0〉 − |1〉) , (6.24)

|υ2〉 =
1√
2
(|0〉 − |1〉)|2〉 , (6.25)

|υ3〉 =
1√
2
(|1〉 − |2〉)|0〉 , (6.26)

|υ4〉 =
1√
2
|2〉(|1〉 − |2〉) , (6.27)

|υ5〉 =
1
3
(|0〉+ |1〉+ |2〉)(|0〉+ |1〉+ |2〉) . (6.28)

7 Such a decomposition, which was anticipated by Shimony (see Sect. 6.15 and
[383]), is known as the best separable approximation.
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6.4 Stokes parameters and entanglement

As we saw in Chapter 1, qubits have a variety of representations, among these
the real-valued one provided by the single-qubit Stokes parameters. Although
they suffice when specifying individual qubits or several qubits in a separable
state, the single-qubit parameters must be supplemented by additional pa-
rameters in order to describe entangled systems. Consider the general state
of a pair of qubits. The two-particle Stokes parameters, Sµν ≡ tr(ρσµ ⊗ σν)
(µ, ν = 0, 1, 2, 3), which are a generalization of the traditional Stokes param-
eters, are needed to describe entangled states, such as the Bell states, in the
real representation, due to the increasing complexity of quantum states as
number of qubits grows.8 The two-qubit Stokes parameters, introduced by
Ugo Fano just before 1950, can also be used to find the two-qubit statistical
operator:

ρ =
1
4

3∑
µ,ν=0

Sµνσµ ⊗ σν , (6.29)

where σµ ⊗ σν (µ, ν = 0, 1, 2, 3) are tensor products of the identity and Pauli
matrices [166];9 the single-qubit Stokes parameters are recovered when either
µ or ν is zero, so that the corresponding factor is an identity matrix.

The Stokes four-vector [Sµ] described in Section 1.3 is similarly general-
ized, as one can view the two-qubit Stokes parameters as forming a 16-element
Stokes tensor, [Sµν ].10 This tensor captures all the quantum correlations po-
tentially present in a two-qubit system and plays a central role in the quan-
tum state tomography of such a system, corresponding to a compendium of
coincidence-measurement data.11For example, the Bell state |Ψ+〉 corresponds
to a Stokes tensor with S00 = 1, S11 = −1, S22 = −1, S33 = 1, the remaining
parameters being zero. The Lorentz group invariant for the two-qubit Stokes
tensor,

S2
(2)

(
P (|ψ〉)

)
=

1
4

(
(S00)2 −

3∑
i=1

(Si0)2 −
3∑

j=1

(S0j)2 +
3∑

i=1

3∑
j=1

(Sij)2
)

, (6.30)

can be related to the entanglement of the two-qubit state, as we show in
Section 7.4 [237].

8 The practical value of the generalized Stokes parameters is manifest in their
application to polarization-entangled photon pairs; for example, see [3].

9 Recall that the Hilbert space for two-qubit systems is C
2 ⊗ C

2. The two-qubit
density matrices ρ are positive, unit-trace elements of the 16-dimensional complex
vector space of Hermitian 4×4 matrices, H(4). The operators σµν ≡ σµ ⊗σν pro-
vide a basis for H(4), which is isomorphic to the tensor product space H(2)⊗H(2)
of the same dimension, because 1

4 tr(σµνσαβ) = δµαδνβ and σ2
µν = I2.

10 The term “Stokes tensor” was first applied to this structure in [240].
11 Quantum state tomography is discussed in Chapter 8.
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The elements of the general two-particle matrix ρ =
[
ρµν

]
are re-

lated to the two-qubit Stokes tensor elements Sµν by the following
relations.

S00 = ρ00 + ρ11 + ρ22 + ρ33 (6.31)
S01 = 2Re(ρ01 + ρ23) (6.32)
S02 = −2Im(ρ01 + ρ23) (6.33)
S03 = ρ00 − ρ11 + ρ22 − ρ33 (6.34)
S10 = 2Re(ρ02 + ρ13) (6.35)
S11 = 2Re(ρ03 + ρ12) (6.36)
S12 = −2Im(ρ03 − ρ12) (6.37)
S13 = 2Re(ρ02 − ρ13) (6.38)
S20 = −2Im(ρ02 + ρ13) (6.39)
S21 = −2Im(ρ03 + ρ12) (6.40)
S22 = −2Re(ρ03 − ρ12) (6.41)
S23 = −2Im(ρ02 − ρ13) (6.42)
S30 = ρ00 + ρ11 − ρ22 − ρ33 (6.43)
S31 = 2Re(ρ01 − ρ23) (6.44)
S32 = −2Im(ρ01 − ρ23) (6.45)
S33 = ρ00 − ρ11 − ρ22 + ρ33 . (6.46)

6.5 Partial transpose and reduction criteria

In addition to the Schmidt number, Sch(|Ψ〉), and Schmidt measure, ES , for
pure states described in Section 6.2 above, another simple quantity measuring
entanglement for some mixed states is the negativity, N (ρ). This quantity
involves the sum of the negative eigenvalues of the partial transpose of the
density matrix of a bipartite system. It was first used to provide a criterion for
entanglement by Asher Peres, who noted that when the partial transposition
operation is performed on a separable mixed state the result is always another
mixed state [329]. Partial transposition is matrix transposition relative to the
indices of a subsystem; the matrix elements of the partially transposed density
matrix are thus

〈iAjB |ρTA |kAlB〉 ≡ 〈kAjB |ρ|iAlB〉 . (6.47)

Specifically, the “Peres–Horodečki (PH) criterion” for entanglement is the
following: a state ρ is entangled if the partial transpose of the corresponding
density matrix is negative. One can take

N (ρ) =
1
2
(
||ρTA ||1 − 1

)
, (6.48)
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where ||ρTA ||1 is the trace-norm of the partial transpose matrix. Because
||O||1 ≡ tr

√
O†O for any Hermitian operator O, one can write

N (ρ) =
∣∣∣∣∑

i

λi

∣∣∣∣ , (6.49)

where i runs over the negative values among the set of eigenvalues {λi(ρTB )}
of this density matrix.12

The negativity is readily computed and has been used to develop entan-
glement bounds. Its logarithm, the logarithmic negativity, is also sometimes
considered, because it has operational interpretations such as an upper bound
to the distillable entanglement considered, a bound on teleportation capacity,
and an asymptotic entanglement cost under PPT; see Section 6.8 below and
[17, 42].

The positivity of ρTA (or ρTB ) is a necessary and sufficient condition
for the separability of the statistical operator ρ for 2×2, 2×3 dimen-
sional systems and for two continuous-variable systems (modes) in a
Gaussian state [141]. For a related result not making use of a map
between matrices that is linear, as partial transposition is, but rather
a nonlinear map to solve the separability problem for Gaussian states
of an arbitrary number of modes per site, see [181].
When applied to a Bell state, the result of partial transposition is a
matrix with at least one negative eigenvalue. Positivity of the par-
tial transpose is, in general, a necessary but insufficient condition for
separability when subsystems with Hilbert spaces of higher dimen-
sion than that of a qubit are involved; for larger Hilbert spaces, there
exist entangled states whose density matrices are positive under par-
tial transpose (PPT). See Section 6.11 below for further discussion
of the PH criterion and examples of states having PPT.
The “PPT preserving” class of quantum operations includes all bi-
partite quantum operations for which input states that are positive
under partial transposition have output states that also have this
property; these operations can produce only the bound variety of
entanglement; see Section 6.8, below.

For the bound entangled states with PPT, all CHSH-inequalities are
obeyed. The PH criterion implies another useful criterion, namely, both

ρA ⊗ I− ρ ≥ 0 , (6.50)

I⊗ ρB − ρ ≥ 0 , (6.51)

12 The eigenvalues of the density matrix are usually indicated in ascending order.
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known as the reduction criterion for entanglement, which implies the recov-
erability of entanglement by distillation; also see Section 6.8, below. The vi-
olation of the reduction criterion is also sufficient for separability of ρ in the
case of two qubits and the case of one qubit and one qutrit. Moreover, the
criterion implies that the ranks of the reduced density matrices are less than
or equal to that of the density matrix of the compound system [442].

6.6 The “fundamental postulate”

In addition to the conventional requirements that a measure of entanglement
be nonnegative and normalized in the sense that it be unity for the Bell
states, a fundamental pair of monotonicity conditions has been put forth for
any candidate, below indicated generically as EX(ρ), to be good a measure of
entanglement. These conditions define the class of entanglement monotones,
which are functionals that characterize the strength of genuinely quantum
correlations through the requirement that no state can be converted by local
operations and classical communication (LOCC) to a state having a higher
value of the monotone. In particular, a quantity EX(ρ) is called an entangle-
ment monotone if it satisfies

EX(ρ) ≥
∑

i

piEX(ρi) , (6.52)

and

EX

(∑
i

piρi

)
≤

∑
i

piEX(ρi) , (6.53)

for all local operations giving rise to states ρi with probabilities pi, where
at the end of the LOCC operation i, classical information is available with
probability pi and the state is ρi [437].

The first of the two conditions above, sometimes referred to as the fun-
damental postulate, requires monotonicity on the average for each local op-
eration. The second condition requires EX(ρ) to be a convex function that
is monotonic under mixing, that is, the discarding of information, providing
mathematical convenience, which is sometimes relaxed. The above useful but
limited entanglement measures, the Schmidt measure ES and negativity N ,
are examples of entanglement monotones for bipartite quantum systems.

Consider two sets of entanglement monotones, EΨ
l =

∑n
i=1 |ai|2 and

EΦ
l =

∑n
i=1 |bi|2, where l = 1, . . . , n, obtained from the Schmidt

decomposition of two bipartite states |Ψ〉, |Φ〉 having n components
with Schmidt coefficients ai and bi respectively. The pure state |Ψ〉
can be transformed with certainty by local transformations to the
pure state |Φ〉 if and only if EΨ

l ≥ EΦ
l for all l = 1, . . . , n [439].
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6.7 Entanglement monotones

Let us now explore the behavior of entanglement monotones in greater detail,
by considering not only the basic requirements on them, but also those that
relate to asymptotic behavior. The following conditions are those now com-
monly required of acceptable measures of bipartite entanglement EX on all
states ρAB of a pair of systems.

(i) EX(ρAB) = 0 if ρAB is separable.
(ii) EX(ρAB) is invariant under all local unitary operations UA ⊗ UB ,

that is, EX(ρAB) = EX

(
(UA ⊗ UB)ρAB(UA ⊗ UB)†).

(iii) EX(ρAB) cannot be increased by any LOCC transformation,
that is, EX(ρAB) ≥ EX

(
Θ(ρAB)

)
, where Θ(ρAB) is a CPTP map.

The necessity of the first condition is obvious: separable states, specified by
Eq. 6.4, are by definition not entangled. Conditions (ii) and (iii) are necessary
for entanglement to be considered a collective, global property of quantum sys-
tems; they render impossible the creation or distribution of entanglement via
LOCC alone. These conditions accord with each other because local unitary
operations are CPTP maps that can be inverted by local unitary operations.
The following further condition is sometimes also imposed.

(iv) The entanglement of n copies of a state ρAB is n times the entangle-
ment of one copy,

EX(ρ⊗n
AB) = nEX(ρAB) , (6.54)

in particular for the standard case of n Bell singlets, which are conventionally
taken to have entanglement equal to unity, that is, are n “e-bits.”
A continuity condition may also be imposed, namely,

(v) If 〈ψ⊗n|ρn|ψ⊗n〉 → 1 for n →∞, then

1
n

∣∣EX

(
P (|ψ〉)⊗n

)
− EX

(
ρ(n))∣∣→ 0 , (6.55)

for some joint state ρ(n) of n pairs of qubits [221].
With the fourth condition, known as partial additivity, and the fifth condi-

tion both in force, the pure state entanglement of bipartite quantum systems
is uniquely described by

E(|Ψ〉AB) ≡ S(ρ) = −tr(ρ log2ρ) , (6.56)

the von Neumann entropy functional, where ρ is the (reduced) statistical
operator of either one of the two subsystems of the compound system in state
|Ψ〉AB [339].13 The last two conditions are sometimes directly replaced by the
condition that, for pure states, the measure reduces to this entropy.
13 Full additivity would require that E(ρ ⊗ σ) = E(ρ) + E(σ). However, because

bound entanglement may be activated, this condition is often viewed as unwar-
ranted.
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The von Neumann measure of entanglement has the property of being
additive on pure states of the composite system: using the von Neumann
entropy of the subsystem reduced states as EX , and labeling the individual
particles of Alice and Bob in the n copies as Ai, Bi, the additivity property is

E(|Ψ〉A1B1 ⊗ |Ψ〉A2B2 ⊗ · · · ⊗ |Ψ〉AnBn
) =

n∑
i=1

E(|Ψ〉AiBi
)

for all pure |Ψ〉AB .14 In the case of mixed states, additivity is desirable but
must be explicitly imposed, so in that context one refers to the additivity
conjecture.15 In the case of larger systems involving multiple parties, some
of the above conditions must be slightly modified as discussed in the next
chapter.

In the simplest case, the pure states of two qubits A and B, en-
tanglement is well quantified information-theoretically by the von
Neumann entropy of either one of the single-qubit reduced statisti-
cal operators, which are identical; these operators are obtained by
“tracing out” one qubit from the total system state described by the
projector P (|Ψ〉AB); see Section 2.5. Thus,

E(|Ψ〉AB) = S
(
trAP (|Ψ〉AB)

)
= S

(
trBP (|Ψ〉AB)

)
.

For mixed two-qubit states ρAB , a good entanglement measure is the (one-
shot) entanglement of formation, Ef , defined via the convex-roof construction
as the minimum average marginal entropy of the one-qubit reduced states for
all possible decompositions of ρAB as a mixture of pure subensembles each
described by a state P (|Ψi〉AB), that is,

Ef (ρAB) = min
{pi,|Ψi〉}

∑
i

piE(|Ψi〉) , (6.57)

where {pi, P (|Ψi〉)} represents a decomposition of ρAB .16 One can similarly
define the entanglement of assistance as the corresponding maximum average
14 The product symbol � is sometimes substituted for ⊗ to emphasize that this

tensor product is formed from copies of a state possessed by the same pair of
agents, as opposed to distinct parties.

15 Note, however, that a uniqueness theorem not assuming additivity has also been
produced [437].

16 This quantity is analogous to the total energy of thermodynamics, something
discussed in greater detail in Sects. 6.12–13, below. Note that, although it can
be expressed directly in terms of the von Neumann entropy S(ρA), the form
provided here allows for explicit reference to the states of the pertinent two-qubit
pure subensembles.
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marginal entropy. Pre-existing entanglement is not necessary to distribute en-
tanglement so long as a quantum channel—a means of transmitting quantum
systems—exists between Alice and Bob.

A related quantity is the entanglement cost, EC , defined as the smallest
number of systems in Bell singlets, per copy, needed to form copies of the
given state ρAB by CLOCC operations P (|Ψ−〉)⊗k′ → ρ⊗n

AB , in the limit as
the number of shared pairs goes to infinity, which is

EC(ρAB) = lim
n→∞

Ef (ρ⊗n
AB)

n
, (6.58)

where the decomposition pertinent to the entanglement of formation here is
that of ρ⊗n

AB .17

6.8 Distillation and bound entanglement

It is possible to obtain pure entangled states that violate Bell inequalities
beginning with mixed states that do not violate a Bell inequality, by using
entanglement distillation. Entanglement distillation, also known as entangle-
ment purification, is the local processing of a number of copies of a quantum
state so as to develop highly entangled states between parties, that is, the
inverse process to that considered when finding the entanglement cost dis-
cussed above. Any local process by which the degree of entanglement between
various subsystems of a larger overall quantum system is increased can be
considered entanglement distillation. Such a process is valuable, for example,
when channels of transmission of quantum information are noisy and degrade
the entanglement resources needed to successfully carry out quantum infor-
mation processing tasks. In particular, this process can assist in reducing the
impact of quantum decoherence. Specific protocols for purifying entanglement
are described in detail later in Section 9.11.

The associated functional, the entanglement of distillation, D(ρAB), is de-
fined as the maximum fraction of singlets that can be extracted, that is, dis-
tilled from n copies of ρAB by the CLOCC transformation ρ⊗n

AB → P (|Ψ−〉)⊗k

in the asymptotic limit as n →∞:

D(ρAB) = lim sup
n→∞

(
k

n

)
, (6.59)

where k depends on n. This quantity can be viewed as analogous to thermo-
dynamical free energy, and so is sometimes called the free entanglement. It
expresses, for example, the utility of a given entangled mixed state for quan-
tum teleportation.18 However, D(ρAB) has none of the desirable convexity or
additivity properties to be an information-theoretic measure [392].
17 This result was first proven by Patrick Hayden, Micha�l Horodečki, and Barbara

Terhal [209].
18 See [47], for example, and Sect. 9.9, below for more on teleportation.
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According to condition (iii) of the previous section, it must be the case
that

D(ρAB) ≤ Ef (ρAB) , (6.60)

which reflects the irreversible character of state mixing. The distillable en-
tanglement has been either evaluated or bounded for a variety of classes of
mixed states. For mixed states ρAB , it is also natural to consider the differ-
ence B(ρAB) = Ef (ρAB) −D(ρAB), between the entanglement of formation
and the entanglement of distillation, known as the bound entanglement. The
bound entanglement is clearly nonnegative:

B(ρAB) ≥ 0 . (6.61)

Bound states are those statistical states that are not distillable yet the for-
mation of a single copy of which requires entanglement, which can be viewed
as a consequence of extreme state mixing.19

Entanglement distillation is irreversible, in the sense that more pure en-
tanglement cannot be distilled from PPT states than may have been used to
assist in their creation [438]. A discussion of general considerations surround-
ing the manipulation of entanglement considered as a quantum information
resource is given below in Section 6.12.

6.9 Entanglement and majorization

For bipartite separable states, sometimes designated ρ
(s)
AB , the following rela-

tionships hold between the quantum Rényi entropies of systems and subsys-
tems:

Sα

(
ρ
(s)
A

)
≤ Sα

(
ρ
(s)
AB

)
(6.62)

Sα

(
ρ
(s)
B

)
≤ Sα(ρ(s)

AB

)
, (6.63)

where ρA and ρB are the reduced statistical operators of the components.
Similarly, for separable statistical operators

λ
ρ
(s)
A

≺ λ
ρ
(s)
AB

(6.64)

λ
ρ
(s)
B

≺ λ
ρ
(s)
AB

, (6.65)

where λρ is the ordered vector of eigenvalues of the statistical operator ρ and
� denotes majorization, affirming that separable states are at least as mixed
19 The first bound entangled states were discovered by Pawe�l Horodečki [223]. Note,

however, that the existence of bound states does not preclude situations where
forming a larger number of copies may require a vanishingly small amount of
entanglement per copy; the states that do not violate the PH criterion form a
known such class. Nonviolation of this criterion is preserved under LOCC.
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globally as they are locally, as is clear in the case of the entropic characteri-
zation of entanglement described above; see Section A.3 and [316].20 Indeed,
the majorization condition, known as Uhlmann’s relation, implies the above
entropic inequalities for r ≥ 0.21Nonviolation of the majorization condition is
not preserved under LOCC.

6.10 Concurrence

A practical measure of bipartite entanglement that has a geometrical mean-
ing and can often be easily calculated is the concurrence. For pure states, this
quantity can be written C(|ΨAB〉) = |〈ΨAB |Ψ̃AB〉|, where |Ψ̃AB〉 ≡ σ⊗2

2 |Ψ∗
AB〉

which is referred to as the “spin-flipped” state-vector [460]. The concurrence
of a mixed two-qubit state, C(ρAB), can be expressed in terms of the mini-
mum average pure-state concurrence, C(|ΨAB〉), where, as usual, the required
minimum is to be taken over all possible ensemble decompositions of ρAB .
The concurrence of a general state is then simply

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4} , (6.66)

where the λi are the square roots of the matrix ρAB ρ̃AB , indexed in order of
decreasing size, also known as the singular values, which are real and nonneg-
ative. For mixed states, the negativity is bounded by the concurrence:

N (ρAB) ≤ C(ρAB) , (6.67)

which inequality is an equality in the case of pure states [18]. The entanglement
of formation of a mixed state ρAB of two qubits can be expressed in terms of
the concurrence as

Ef (ρAB) = h(C(ρAB)) , (6.68)

where h(x) = −xlog2x − (1 − x)log2(1 − x) has the form of the (classical)
binary entropy function [460].22

20 One vector of eigenvalues of the statistical operator (arranged in decreasing order)
majorizes another if its statistical operator is more mixed than that of the other.
To make the above comparison, one appends the required number of zero values
to the vector of subsystem eigenvalues.

21 The quantum Rényi entropy is a concave function of these probabilities for 0 ≤
r ≤ 1; see Sect. 5.5. The operators themselves are sometimes used in place of
the eigenvalue vectors in this notation. Uhlmann’s relation states that, for two
Hermitian operators K and L, K 
 L if and only if there exist unitary matrices Ui

and probabilities pi such that K =
∑

i piUiLU†
i , where the pi are understood as

describing the mixing of operators obtained from L by the corresponding unitary
transformations.

22 This result, obtained by William Wootters, relating geometric and entropic mea-
sures to entanglement, is conditional on a proof of the additivity conjecture for
entanglement of formation, which is supported by existing numerical evidence.
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An analytic expression for the concurrence of bipartite systems of
arbitrary finite dimensionalities dA and dB in pure states, the I-
concurrence, is arrived at by generalizing the “spin-flip” operation
and is written

C(|Ψ〉AB) =
√

2sAsB

(
1− tr(ρ2

A)
)

, (6.69)

where sA and sB are scaling factors [358] and the labels A and B can
be interchanged without effect. This quantity is readily seen as the
square root of a scalar multiple of the mixedness of the subsystems.
One obtains a measure applicable to mixed states of such systems
by convex-roof extension:

C
(
ρ

.= {pk, |Ψ〉k}
)

= min
{pk,|Ψk〉}

∑
k

pkC(|Ψ〉k) (6.70)

= min
{pk,|Ψk〉}

∑
k

pk

√
2sAsB

(
1− tr

(
ρ
(k)2
A

))
,

where ρ
(k)
A is the reduced state of the subsystem A within the pure

subensemble k. The squares of these quantities are the I-tangle mea-
sures. The concurrence also has a geometrical interpretation, which
is discussed later in Section 7.4, where a geometrical extension to
any finite even number of subsystems is introduced.

One can also straightforwardly define the concurrence of assistance,

Cassist(ρAB) = max
{pi,P (|Ψi〉)}

∑
i

piC(|Ψi〉) , (6.71)

which is the maximum average concurrence of ensembles {pi, P (|Ψi〉)} capable
of providing the state ρAB by mixing. The states from which the mixed state
is formed can be taken, for example, to be those of a purification of ρAB in
the presence of an ancillary system. Like the concurrence itself, this quantity
has the advantage of being readily calculable via the trace operation.

6.11 Entanglement witnesses

An entanglement witness is defined as an Hermitian operator such that its
expectation value is positive for every separable state but negative for some
entangled states [415]. Given these properties, entanglement can be detected
through the expectation value of an entanglement witness, because a negative
value indicates the system is entangled. More precisely, a statistical operator
ρ on the composite system space HA⊗HB is entangled if and only if there is
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an entanglement witness, an Hermitian matrix W such that tr(ρW ) < 0 but
tr(ρ(s)W ) ≥ 0 for all separable states ρ(s) [223]. Such an operator will have
at least one negative eigenvalue.23 The Bell operator, B, is the most familiar
such operator; see Section 3.5. By measuring the value of an entanglement
witness for the state of a given system, one may be able to determine whether
it is in an entangled state: if a negative expectation value is obtained it cannot
be in a separable state.

Recall from our discussion of the Peres-Horodečki (PH) criterion in
Section 6.5 above, that all positive maps onH2⊗H2 andH2⊗H3 can
be written in the form L1 + L2 ◦ T , where T is the general matrix
transposition map; such maps are called decomposable. Then the
relevant entanglement witness can be written in the form

W = R + (I⊗ T )S , (6.72)

where R and S are nonnegative Hermitian matrices. For larger
Hilbert spaces, there exist nondecomposable positive maps, so that
there exist entangled states for which the PH criterion is satisfied,
namely, the bound entangled statistical states with positive partial
transpose (PPT) [106].

6.12 Entanglement as a resource

Beyond simple collections of qubits, which serve as a resource for quantum
communication tasks such as sending copies of pure states from transmitter to
receiver for QKD, collections of shared entangled qubits allow one to perform a
number of quantum information processing tasks and to implement uniquely
quantum mechanical forms of communication, such as quantum dense cod-
ing and quantum teleportation.24 Transmissible qubits constitute a directed
resource, whereas entanglement is undirected, in that the direction of distri-
bution leading to entanglement being shared is not relevant to its utility.

Entanglement (at least in its bipartite form) can be viewed as a physical
resource similar to energy that can take several interchangeable forms and
can be transferred between different sorts of quantum system. In order to find
exactly how much of the resource of bipartite entanglement they share, two
parties can concentrate Bell singlet states between them. In particular, they
can distill, by collective LOCC (CLOCC) from a number, n, of copies of an
initial bipartite pure (not necessarily maximally) entangled state |Φ〉AB , the
greatest number k < n of singlet states possible:

|Φ〉⊗n
AB → |Ψ−〉⊗k

AB . (6.73)
23 Methods for constructing such operators have been given, for example, in [417].
24 These tasks are discussed in Chapter 9.
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Distillation can be carried out with an efficiency given by the von Neumann
entropy S(ρ), where ρ is the reduced statistical operator of a subsystem of
AB [39]. This is a reversible process, in the sense that there is an asymptotic
scheme in which the inverse conversion

|Ψ−〉⊗k
AB → |Φ〉⊗n

AB (6.74)

can be performed, again via CLOCC, with equal efficiency. The monotonicity
condition (iii) of Section 6.7 implies that no entanglement distillation scheme
can perform better than this asymptotic scheme.25 Entanglement, like heat
energy, cannot be increased by local operations on remote subsystems. These
reversible transformations, consisting of only local operations that transform
one entangled state into another, produce the analogue of the Carnot cycle.
For pure states of a pair of qubits, both D(ρAB) and Ef (ρAB) are equal to
the entropy S(ρA) of the reduced statistical operator ρA = trB(ρAB), that is,

Ef

(
P (|Ψ〉AB)

)
= D

(
P (|Ψ〉AB)

)
= S(ρA) , (6.75)

where |Ψ〉AB is the pure state in question. This highly suggestive analogy has
stimulated an investigation into the depth of the similarities between quantum
information theory and thermodynamics.

6.13 The thermodynamic analogy

The analogy between entanglement theory and thermodynamics was first
drawn by Sandu Popescu and Daniel Rohrlich, who pointed out that any pro-
cess using collective local operations and classical communication (CLOCC)
that preserves entanglement must be reversible [339]. In particular, they have
provided an argument analogous to a traditional thermodynamic argument
for the ideal efficiency of the Carnot cycle; condition (iii) of Section 6.7 can
be viewed as the information-theoretic analogue of the second law of thermo-
dynamics, because it imposes the condition that an increase of entanglement
between systems in distinct laboratories cannot occur as a result of collective
local operations on the systems and classical communication between labora-
tories. This thermodynamic analogy is further enabled by the introduction of
a specific unit of entanglement via condition (iv) of Section 6.7, which has the
25 The limit n → ∞ is associated with the use of a standard unit of entanglement

to describe the transformation process; taking this limit provides one with a well-
defined ratio characterizing the conversion process of a whole number of states to
a whole number of states, because the entanglement of formation may take any
rational value. In the manipulation of n entangled pairs of particles in state |Ψ〉AB ,
the optimal probability of obtaining k singlets tends to 1 when k < D(P (|ψ〉AB)),
in the infinite n limit; it is not possible to achieve the desired conversion for finite
n. Potential problems arise from the use of this standard unit, however, which
are discussed in Sect. 6.14, below.



110 6 Quantum entanglement

consequence of establishing quantum entropy as the standard bipartite entan-
glement measure; the problem of finding a measure of entanglement of k pure
states is thereby reduced to the problem of defining a measure of entanglement
for n singlet states |Ψ−〉.

A derivation from first principles of condition (iv) itself runs as follows
[339]. The allowed local transformations are reversible only when the number
of copies of a system becomes arbitrarily large. However, there is no way to
define total entanglement for n infinite, as it would then clearly take an infi-
nite, that is, unphysical value. It is therefore necessary to define entanglement
intensively: the measure of entanglement for n singlets must be proportional
to n. The entanglement of a collection of k systems in an arbitrary pure state,
|Ψ〉AB , then approaches that of n systems each in the singlet state |Ψ−〉,

E(|Ψ〉AB) = lim
n,k→∞

(
n

k

)
E(|Ψ−〉AB) , (6.76)

providing the entropy of entanglement of the state [39]. Any such measure of
pure-state entanglement is thus determined up to a constant factor. The con-
stant term describing the entanglement of the singlet, so far left undetermined,
is then taken to be unity, by convention.26 This result provides constraints on
entanglement manipulation that can be seen already to be similar to those in-
volving heat in thermodynamics. It has been taken by some to be the starting
point in the development of a full theory of “entanglement thermodynam-
ics” analogous to traditional thermodynamics. However, it is not clear that
any depth is added by pursuing a full-blown version of this analogy; because
the entanglement measure chosen is an entropy, it perhaps would be more
surprising if some sort of analogy could not be developed.

Under this analogy, entanglement plays the sort of role that heat energy
does in traditional thermodynamics; the distillation of pure entangled states
plays the role of extracting work from heat. Recall that the bound entangle-
ment is given by

B(ρ) = Ef (ρ)−D(ρ) . (6.77)

This expression appears to be analogous to the Gibbs–Helmholtz equation of
thermodynamics,

TS = U −A , (6.78)

where U is the internal energy and A the free energy, if TS is viewed as a
“bound energy.”
26 However, there are objections to having to make such a choice, which are discussed

in the following section.
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When contemplating the analogy between entanglement theory and
thermodynamics, it is helpful to consider the following simple for-
mulation of the three basic laws of thermodynamics.

(1) Heat is a form of energy.
(2) It is impossible for any cyclic process to occur the sole effect of
which is the extraction of heat from a reservoir and the performance
of an equivalent amount of work.
(3) The entropy of a system approaches a constant value as the
temperature approaches zero.

These three laws allow for the reversible transformation of work into
heat and vice versa. One can then formulate the assumptions of
thermodynamics as follows, “There is a form of energy (heat) that
cannot be used to do work, that nonetheless can be used to store
work though work can be stored in heat only if there is some heat
to begin with, in which case work can be stored reversibly.” [225].

Recall that, according to condition (iii) for well-defined entanglement mea-
sures given in Section 6.7, any good measure of entanglement, E, must satisfy

ρ → {ρi, pi} ⇒ E(ρ) ≥
∑

i

piE(ρi) (6.79)

under LOCC. Consider then two parties, Alice and Bob, who initially share
a collection of pairs of subsystems described by an n-fold product of the bi-
partite system state ρ, ρ⊗n = ρ ⊗ · · · ⊗ ρ, where n is taken to be large,
collectively and locally operate on the members of each shared pair, com-
municate using a classical information channel if they desire, and/or arrange
their local subsystems into subensembles ρi represented with probabilities pi.
The above condition indicates that the average entanglement remaining at the
end of such a CLOCC transformation cannot exceed the initial shared entan-
glement. The combination of the entangled-state distribution process and the
entanglement distillation process that accumulates pure entangled states from
mixed states and is seen to be analogous to the process of cycling an engine
that obtains work from heat; bound entangled states, being those entangled
states from which no pure entanglement can be distilled, are analogous to
thermodynamic systems from which no work can be drawn and are seen as
containing “fully disordered entanglement.”

Accordingly, the following “laws of entanglement thermodynamics” have
been suggested by analogy to the above traditional thermodynamic laws [225].



112 6 Quantum entanglement

(1) The entanglement of formation is conserved.
(2) The disorder of entanglement can only increase.
(3) One cannot distill singlet states with perfect fidelity.

The “law” (1) corresponds to condition (ii) of Section 6.7. There is an analogy
to reversible work extraction here, although in general one needs more entan-
glement (in the form of singlets) to create a state than can be drawn from it.
In traditional thermodynamics, the second law dictates that any thermody-
namical system has more energy than can be extracted from it, except when
one of the reservoirs is at zero temperature. The same holds in this “thermo-
dynamics of entanglement” where for a general mixed state ρ, D(ρ) < Ef (ρ).

However, attempts to continue further with this treatment of entanglement
in order to complete the analogy run into difficulties. The completion of such
an analogy requires the completion of the correspondence between fundamen-
tal quantities in the two theories. Given that the role of entropy is played by
S(ρ), it is by no means clear what quantity is to play the role of temperature,
T ; one is required to find a well-defined “temperature of entanglement,” T̄ (ρ),
for mixed states (when S(ρ) > 0) of the form

T̄ (ρ) = B(ρ)/S(ρ), (6.80)

(cf. Eqs. 6.77–78) if the “entropy of entanglement” is to be taken to be S(ρ),
as is suggested by the fact that this results, for pure states, in the equality of
the entanglement of formation and entanglement of distillation (cf. Eq. 6.76
and [111]). The temperature analogue is conspicuously absent from the above
statement of “laws of entanglement thermodynamics.” The lack of a well-
defined such quantity brings this approach strongly into question because,
for example, the third law of thermodynamics is expressed in terms of the
behavior of entropy with respect to temperature.

6.14 Information and the foundations of physics

The superposition principle is a fundamental principle of quantum mechan-
ics. In multipartite systems, this principle provides the entangled states, in
which the most unusual quantum phenomena arise through extraordinary
nonlocal correlations of physical properties. Physicists and philosophers have
long suggested that by studying entanglement one might develop a deeper in-
sight into the reality described by quantum mechanics. About this there can
be little doubt, as witnessed by the history of results discussed in Chapters
2 and 3. More recently, as shown in this chapter, the quantitative study of
entanglement by quantum information science has provided helpful and sug-
gestive relationships between information in the possession of agents having
the ability to perform local actions on quantum systems and to communicate
with each other and thermodynamics. As just shown, some of these relation-
ships suggest an analogy between entanglement and heat under which formal
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correspondences can be made between some thermodynamical quantities and
entanglement measures, under certain specific conditions, through a particular
novel use of quantum entropy functions.27 The analogue of the thermodynamic
limit is certainly important in the quantum information context, because the
limit of an infinite collection of copies of a quantum states must be considered
when quantifying the entanglements of formation and distillation, as we have
seen. The relationship between quantum mechanics and information theory
has led some to believe that information theory plays a special role in fully
exposing the deepest aspects of physical reality. Some investigators have even
suggested that information is more fundamental than matter, along the lines
of John Wheeler’s “it from bit” idea [452], that matter is reducible to infor-
mation [471] or vice versa [269, 271].28

However, there are currently significant limitations to the information-
resource theory of entanglement itself. In addition to the difficulty of com-
pleting “entanglement thermodynamics,” the argument for the uniqueness of
the quantum entanglement measure based on a mutatis mutandis argument
may be seen to induce an unwarranted dependence on the choice of unit—
the introduction of the Bell singlet state as providing an “e-bit” of entangle-
ment—manifest in the ratio problem [314]: ratios of entanglement measures,
such as the entanglement of formation or distillable entanglement of two dif-
ferent states, may depend on the particular state chosen as the basic unit of
entanglement when the degree of entanglement is referenced to it. By con-
trast, the thermodynamic entropy does have a unique measure, as shown in
the axiomatic approach of Giles [183]. Furthermore, the investigation of en-
tanglement for multipartite systems reveals the existence of different sorts of
entanglement not quantifiable in terms of a fundamental e-bit unit, as discuss
in the next chapter. Moreover, it has been shown that no unique measure
of entanglement exists in the case of mixed states [306]. These represent sig-
nificant impediments to the reduction of quantum entanglement to informa-
tion. Thus, although within the context of quantum information processing
it clearly is possible to treat entanglement as an information-processing re-
source, it is by no means obvious that this approach is ultimately the best
way of understanding entanglement itself in the broader physical context.

Nonetheless, given the benefits of viewing entanglement as a quantum
resource, one may be under the impression that quantifying entanglement via
entropy measures, involving condition (iv) and explicated in Sections 6.7 and
6.12, is the only good method of quantifying entanglement. However, another,
related framework for quantifying entanglement has made significant progress
where the information-theoretic approach has run into difficulties, namely, in
the case of multipartite states. This second approach, outlined in the following
27 See also [433], where it was shown that Giles’s theory can be seen as encompassing

both quantum and classical information-processing models due to similarities in
mathematical structure.

28 For a discussion of some of these ideas, see [421].
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section, is more clearly rooted in traditional physical methodology in that it
is based more on geometry and symmetry than on information theory.

6.15 The geometry of entanglement

Entanglement can be investigated from the geometric point of view, because
the properties of quantum states and the classification of composite quantum
states according to these properties relate to geometry as well as information.
For example, measuring the degree of entanglement as the distance of the
state from the nearest factorable state, that is,

EG(|Ψ〉) =
1
2

min
∣∣∣∣ |Ψ〉 − |Ξ〉 ∣∣∣∣2, (6.81)

where |Ξ〉 is a (normalized) product state in Hilbert space and the minimum is
taken over the set of such normalized product states (cf. Eq. 6.23), provides the
distance of the closest separable approximation proposed by Shimony [383].
The Hilbert-space angle φ ≡ cos−1

(
|〈Ψ |Ξ〉|

)
is the natural distance between

two state-vectors, and takes the state overlap to a distance function derivable
from the Fubini–Study metric, which is a Riemannian metric on projective
Hilbert-space [458]; see Section A.4. The above measure of entanglement is a
very natural one due to its generality and direct relationship to the original
definition of entanglement as nonfactorability unlike, say, the entanglement
as measured by the von Neumann entropy of subsystem reduced states.

Any monotonically increasing function of EG(|Ψ〉) gives the same ordering
of normalized vectors |Ψ〉, and serves as an equally acceptable such measure. In
the case of pure states of two-qubit systems, at least six such measures can be
found from conceptually distinct starting points that are monotonic functions
of EG(|Ψ〉) [383]. One can find the nearest separable state to a given state by
solving the corresponding nonlinear eigenvalue problem [448]. This quantity is
defined independently of explicit locality considerations, something of value in
light of the limitations of locality conditions discovered in the context of the
use of Bell inequality violation for this purpose. Further geometrical treat-
ments are discussed in the following chapter, where entanglement in larger
multipartite states is explored.

The results of the geometric approach to quantum entanglement may im-
prove our understanding of entanglement in quantum information processing
and may also provide insight into the incompletely understood relationship be-
tween entanglement and quantum speedup, a question of fundamental impor-
tance to quantum information processing. Let us now consider how quantum
entanglement is created in practice, before considering multipartite systems.
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6.16 Creating entangled photons

Since Alain Aspect’s famous tests of the Bell inequalities confirming the pres-
ence of nonlocal quantum phenomena, which used a two-photon source based
on a double atomic-cascade transition, optical tests of quantum information
processing principles have used increasingly efficient sources of entanglement
based on spontaneous parametric down-conversion (SPDC) in second-order
χ(2) nonlinear crystals [16].29 Bell-inequality violations and related phenom-
ena have most commonly been demonstrated through the use of highly cor-
related pairs of photons generated by SPDC. Parametric down-conversion is
an optical “three-wave mixing” process, in which an input light field “pump,”
with a frequency centered about a given value ωP , induces oscillations in
electrons within a dielectric medium, traditionally chosen to be a noncen-
trosymmetric nonlinear bulk crystal, which in turn radiates light at two lower
frequencies; see Fig. 6.2. Because the electrons in the medium do not undergo
state transitions during this process, it is referred to as a parametric process.

pump

signal

idler

S , kS

I, kI

P, kPpump'

NLC

Fig. 6.2. Spontaneous parametric down-conversion (SPDC). Photons down-
converted in a nonlinear crystal, NLC, from a pump laser beam, coming in at the
left, emerge pairwise, to the right, each in one of two cones, one as “signal” and one
as “idler,” on opposite sides of the pump-beam direction with frequencies obeying
phasematching conditions corresponding to the conservation of momentum.

An SPDC process is either of “type I” or of “type II,” depending on
whether the two photons of the down-conversion pair have identical or or-
thogonal polarizations, respectively. The two photons may leave the nonlinear
medium either in the same direction as or in different directions from that of
the pump beam, that is, collinearly and noncollinearly. Down-conversion pho-
tons are often accordingly described as collinear or noncollinear pairs, as well
as being considered to be of type I or type II. In SPDC, conserved quantities
of the electromagnetic field are preserved in the resulting photon pair due to
the constraints of their respective conservation laws, as the electrons of the

29 χ(2) is the susceptibility tensor; see [206] for a general discussion of χ(2) processes.
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medium do not ultimately exchange energy or momentum with the fields.30 In
particular, at the quantum level, such down-conversion is of one photon into a
pair of “daughter” photons, occurring spontaneously with a small probability
that is proportional to the input light intensity due to stimulated emission
induced by fluctuations of the vacuum field.31

The phases of the corresponding wave-functions must satisfy the relations

ω1 + ω2 = ωP, k1 + k2 = kP, (6.82)

the latter being known as phasematching conditions, on energies and mo-
menta, respectively, where the ki and ωi are photon momenta and angu-
lar frequencies, respectively, and subscript P refers to pump photons. The
down-conversion photons (here labeled i = 1, 2) are called the signal and the
idler photon. In this process, energy and momentum are conserved within the
down-conversion medium, where differences in indices of refraction allow for
their conservation; as the down-converted photons leave the medium of down-
conversion, they are refracted, transferring momentum to the medium. With
strong pumping and phasematching conditions satisfied, down-conversion can
be viewed as a decay process. When the two photons of down-conversion have
the same frequency, the process is referred to as (frequency) degenerate.

Phasematching in SPDC requires a specific relationship between in-
put light and output light, the conditions for which are provided by
the medium of down-conversion [63]. In bulk nonlinear crystal such
as potassium titanyl phosphate, β-barium borate, and lithium nio-
bate, phase matching conditions can be satisfied by proper angular
alignment and polarization orientation of pump light. The range of
wavelengths over which phasematching can be achieved can be lim-
ited, because the phase relationship between beams changes as light
travels through nonlinear crystal but this can be counteracted by
the natural birefringence of the crystal. Periodic inversion, or “peri-
odic poling,” of the χ(2) nonlinearity in a crystal allows the power
of down-conversion to continually increase, whereas it would other-
wise lead to a cyclic growth and decay of down-conversion intensity
over the interval of one coherence length. Such periodic poling pro-
vides “quasi-phasematching” and allows for significantly improved
SPDC output [13, 167, 173]. Improvements of photon-pair genera-
tion efficiency of several orders of magnitude over traditional bulk
crystal sources have been achieved by this method. For example,
quasi-phase-matching in the ferroelectric crystal lithium niobate al-
lows a nonlinear susceptibility tensor coefficient many times larger
than the largest one that can be used for birefringent phasematching.

30 Electrons can, however, be viewed as entering “virtual energy levels” within the
medium during the down-conversion process.

31 This is due to the very weak coupling among the three optical modes, even in
media with very strong nonlinear susceptibilities.
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In either type of SPDC, when the photons of a down-conversion pair are
allowed different individual momenta or energies by the phasematching con-
straints, entanglement arises when the pair is prepared in such a way that its
joint down-conversion possibilities are in principle indistinguishable; although
the values of energy and momentum for each individual photon are indefi-
nite, they are perfectly correlated. These photon pairs are created within a
time window defined by the laser pump-field coherence time, τ . The ability
to engineer such possibilities makes SPDC photon pairs especially useful in
a range of practical applications [236]. In particular, singlet states produced
in this way are a fundamental source of entanglement. The evolution of the
three optical modes involved in SPDC can be described as

|Ψ(t)〉 = exp
(
− i

�

∫ t

0
ĤI(t′)dt′

)
|Ψ(0)〉 (6.83)

in the interaction picture (about which see, for example, [359]). The interac-
tion Hamiltonian is HI = �gâ†

1â
†
2âp + h.c., where g is the interaction strength

and â†(â) indicates a creation (annihilation) operator of an electromagnetic
field mode; |Ψ(0)〉 is the initial state of the three-mode composite system and
“h.c.” denotes the Hermitian conjugate of the first term of the sum.32

Type-I down-conversion is often the preferred process for creating entan-
gled photon pairs, because higher intensity down-conversion beams can gen-
erally be achieved under the corresponding phasematching conditions than in
the type-II case [265]. The ideal photon pair as produced by type-I SPDC
emerges in the state

|Ψ〉 = |vac〉+ η
∫

dk1dω1
∫

dk2dω2

Φ(k1,k2; ω1, ω2) â†
1(k1, ω1)â

†
2(k2, ω2)|0〉|0〉 , (6.84)

where |vac〉 is the vacuum state and Φ(k1,k2; ω1, ω2) describes the energy-
momentum distribution of the resulting fields. The proportionality parameter,
η, between the vacuum state (resulting when no down-conversion takes place)
and the photon pair is the photon-pair creation efficiency; η is proportional
to the interaction strength g and

√
µ, and has a squared value much less than

unity.
In this case, the two photons leave the nonlinear medium in the same

polarization state, which is orthogonal to that of pump photons, and the two
32 Note that the (optically) nonlinear interaction described here gives rise to a uni-

tary transformation of the composite system of pump and down-conversion light
beams. In the case of a planar continuous wave (c.w.) pump field, the initial state
of the system is simply |Ψ(0)〉 = |0〉1|0〉2|√µ〉P, where µ is the mean-photon num-
ber of the coherent state, |√µ〉P, describing the pump field that is an important
parameter for producing effective single-pair production, and thus conditional
single-photon states for quantum key distribution by “heralding” the production
of one photon by the detection of the other.
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down-conversion photons may be entangled in direction but not polarization,
as in the state

|Ψ〉 =
∑
1,2

δ(ω1 + ω2 − ωP )δ(k1 + k2 − kP )|k1〉|k2〉 , (6.85)

where 1, 2, and P refer to signal, idler, and pump, respectively; the vacuum
contribution has been left out. The down-conversion photons emerge within
two broad cones, one corresponding to each photon, where in any given pair
one photon appears within its cone on the opposite side of the direction defined
by the pump beam direction from that of its “twin sister” photon. These
two photons also generally differ in energy (color) in accordance with the
phasematching conditions. Pairs of beams can then be spatially filtered to
provide two spatial qubits, one for each beam, as in the double Mach–Zehnder
arrangement for two-particle interferometry discussed in Section 3.6.

As an example of type-II SPDC, consider a situation involving a pulsed
(noncontinuous wave) laser pump beam where, for simplicity, output beams
are collinear; in such a case, the two-photon state can be written

|Ψ〉 =
∫

dωo

∫
dωe Φ(ωo, ωe) â†

o(ωo)â†
e(ωe)|0〉|0〉 , (6.86)

(again neglecting the vacuum term) where o (ordinary) and e (extraordinary)
indicate the orthogonal polarization states that define this type of SPDC. By
taking the appropriate Schmidt decomposition

Φ(ωo, ωe) =
∑

j

ajξj(ωo)χj(ωe) (6.87)

of this state, one can study the frequency entanglement of the output photon
pair, where the amplitudes and eigenstates obey the integral equations∫

dω′Ko(ω, ω′) ξj(ω′) = a2
jξ(ω) , (6.88)∫

dω′Ke(ω, ω′) χj(ω′) = a2
jχ(ω) , (6.89)

with kernels

Ko(ω, ω′) =
∫

dωeΦ(ω, ωe)Φ∗(ω′, ωe) , (6.90)

Ke(ω, ω′) =
∫

dωoΦ(ωo, ω)Φ∗(ωo, ω
′) , (6.91)

providing single-photon spectral correlation functions.
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Whenever more than one of the (without loss of generality, real) coeffi-
cients aj are nonzero, the state is frequency-entangled. Numerical study of
this state has shown an overwhelming majority of the state-vector compo-
nents to lie in a Hilbert subspace of small dimension, so that it is capable of
providing a physical qu-d-it for quantum information-processing applications.
To study entanglement in this case, one can examine an effective Schmidt
number by counting the number of nonnegligible contributions, ai, and using
the entropylike quantity

S̄ =
n∑

j=1

a2
j log2 a2

j , (6.92)

which converges to the von Neumann entropy in the limit of infinite n [273].





7

Entangled multipartite systems

One unsatisfied desideratum for entanglement measures is that of full gener-
ality. There is no known single good entanglement measure applicable to all
mixed states of systems with arbitrary numbers of subsystems. At present, the
bipartite case is the only one in which definitive results may be said to have
been obtained, by reference to the number of Bell states asymptotically inter-
convertible by local operations and classical communication to other states.
The von Neumann entropy used in the previous chapter is a reliable measure
only of bipartite entanglement. The partial entropies, defined as the num-
ber of Bell-state pairs convertible to subsystem states, can be unequal for
distinct portions of a multipartite quantum system of more than two com-
ponents. Because partial entropies are conserved by asymptotically reversible
local operations and classical communication (LOCC) involved in the per-
tinent interconversions, they can therefore no longer be viewed as absolute
entanglement measures beyond the bipartite case, in which there is only one
way of partitioning the composite system [48]. This prevents the straight-
forward extension of the standard entanglement measure, the entanglement
of formation, to the general multipartite case, as would be natural given its
utility in characterizing bipartite entanglement. Schmidt number, a coarse
measure, has been generalized to n-parties and then applied independently to
various entanglement classes but, although it satisfies most of the conditions
on entanglement monotones, it fails to satisfy condition (v) of Section 6.7
[148, 149].

In the case of composite systems distributed among several parties, some
of the requirements on good entanglement measures are different from those
for the special case of bipartite systems. Recall from the discussion in Section
2.6 that local operations include local unitary transformations (LUTs), the
addition of ancillary particles and/or degrees of freedom, local measurements
(including POVMs), and the discarding of parts of the system, as performed
by any agent on the subsystem within its laboratory, and are described by
CP maps. For a two-component partition of a composite system into a lo-
cal subsystem in lab A, and the remainder of the total system in lab B, a
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general local operation (LO without communication) can be described by a
superoperator transforming the total system statistical operator, namely,

ρ → E(ρ) =
m∑

i=1

n∑
j=1

(Ai ⊗Bj)ρ(Ai ⊗Bj)† , (7.1)

where Ai and Bj are operators acting separately in the Hilbert spaces of A
and B such that

∑
A†

iAi = I and
∑

B†
jBj = I. When communication between

laboratories, each possessing one part of the compound system, is allowed in
addition to local unitary transformations, the transformations belong to the
set of LOCC operations and both one-way and two-way classical communica-
tion may take place.

Those situations in which one laboratory, say A, may communicate mea-
surement results to another laboratory, say B, known as one-local operations,
are describable by superoperators of the form

E(ρ) =
m,n∑
i,j

p∑
k=1

(I⊗B
(i)
j )(Akj ⊗ I)ρ(Akj ⊗ I)†(I⊗B

(i)
j )† , (7.2)

where an operation B on lab B’s local subsystem may depend on a measure-
ment outcome k in lab A and

∑
j A†

kjAkj = I for each value of k. Two-local
operations are those allowing any sequence of such operations with classical
communication from agents in either laboratory; the set of LOCC operations
is that of all such operations by any pair among all the parties present in a
given situation. If such transformations are performed on a number of identi-
cal copies of a system they are collective local operations and classical com-
munications (CLOCC).1 The generalization to multi-local transformations is
straightforward.

In the case of operations on a single copy of a system, when a state transfor-
mation under LOCC always succeeds it is called exact. If the transformation
can only be accomplished with some probability, it is a stochastic or local
filtering (SLOCC) transformation. If a state transformation can only be ac-
complished in the presence of another state it is called catalytic, by analogy
to situations in chemistry involving molecular reactions where the presence
of the chemical catalyst is required for certain reactions to occur and the
catalyst is intact after the reaction; a given such catalyst state can be used
repeatedly in various transformations.2 When catalyst states supplement a
class of transformations, a “c” is appended to the acronym, as in the class of
LOCCc transformations. When a number k of parties each possessing a local
subsystem is involved in any of the above, the prefix k- can be prepended to
the class designation.
1 The entanglement distillation process shown in Fig. 9.1 is an example of CLOCC.
2 For a discussion of catalytic processes, which will not be discussed further here,

see [48].



7 Entangled multipartite systems 123

In the special case of tripartite systems, entanglement for pure states of the
available bipartite partitions can still be indirectly quantified using bipartite
measures such as concurrence, by finding the residual tangle, τABC ; see Section
7.7 below. By considering the inter-convertability of three-qubit states under
SLOCC transformations, one is able to isolate two equivalence classes of three-
qubit pure states. However, for larger systems one has no choice but to seek
new entanglement measures. The first three conditions and the fifth condition
on entanglement measures EX of Section 6.7 can be extended by replacing
ρAB by ρAB... and by removing the reference to singlet states in condition (iv)
to arrive at an alternative form of the condition (iv′), specifically,

(iv′) EX should be additive for tensor products of independent states
shared by the same parties.3

The resulting five conditions on good entanglement measures must then also
be supplemented by a sixth condition, specifically,

(vi) EX should be stable under the transferral of subsystems between
parties.

At the four-qubit level, a necessary condition for the existence of a
reversible protocol for converting n copies of a four-qubit GHZ state,

|GHZ4〉 =
1√
2
(|0000〉+ |1111〉) , (7.3)

into singlet states corresponding to the quantum entropy unit, is that
the entropies of the initial and final states after transformation be
the same. However, no combination of singlets shared among four
parties has the same ratios of entropies as does the state |GHZ4〉.
Thus, it is impossible for the four-party GHZ state to be reversibly
transformed into singlet states. This demonstrates the existence of
a genuinely new kind of entanglement beyond the bipartite kind
with the conditions imposed on entanglement measures above [48].
Indeed, even for the three-qubit GHZ state, which is entangled, any
two reduced states shared by two of three parties have no bipartite
entanglement. What is known is that any entangled state can be
nonreversibly obtained from a sufficiently large number of copies of
the singlet state.

In this chapter a number of results and relations are presented, many
being essentially formal in nature, that can assist in navigating the states of
multiple-qubit systems. Of the various sections that follow, only Section 7.8 is
3 Condition (iv′) is the additivity conjecture for multipartite systems.
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necessary for a basic understanding of quantum information processing. The
reader may wish to proceed immediately to that section on a first reading.

7.1 Stokes and correlation tensors

Symmetry has long played an important role in the investigation of quantum
mechanics, as in all parts of physics. Not surprisingly, a geometrical approach
also allows for progress in the classification of entangled states. The behavior of
quantum states under local unitary transformations (LUTs) and stochastic lo-
cal quantum operations and classical communication (SLOCC), both of which
have associated symmetry properties, has helped illuminate the nature of en-
tanglement in multipartite quantum systems; from the geometrical point of
view, the associated group-invariant lengths are Euclidean and Minkowskian
in character, as we show in Section 7.4, below. Recall that for two-qubit sys-
tems, in addition to being quantified by the von Neumann entropy of one of its
single-qubit subsystems, entanglement can also be characterized in terms of
symmetry-based quantities, concurrence and tangle, through the introduction
of the two-qubit spin-flip operation, ρ̃ = σ⊗2

2 ρ∗σ⊗2
2 , where ρ∗ is the complex

conjugate of the two-qubit statistical operator ρ and σ2 is the Pauli operator
performing universal single-qubit state-vector inversion [460]. As we show in
Section 7.2 below, related geometrical quantities can be defined for the study
of multiple-qubit states and have been used in attempts to provide absolute
multipartite-entanglement measures [28, 240, 383, 447].4

A helpful method for grounding the study of multipartite entangled states
that allows for their geometrical characterization is to connect them with
straightforwardly measurable quantities. Any practical measure of multipar-
tite entanglement must bear a clear relation to such measurable quantities,
such as n-fold coincidence counting rates in multi-photon interferometry [236].
Vectors of correlations in multipartite systems can be constructed that cap-
ture their collective nature.5 In particular, the Stokes parameters correspond
to empirical counting rates and can be generalized to aid in this task. In partic-
ular, the N -qubit Stokes parameters generalizing the traditional (single-qubit)
Stokes parameters can be used, which are given by

Si1...iN
= tr(ρ σi1 ⊗ · · · ⊗ σiN

) , i1, . . . , iN = 0, 1, 2, 3 , (7.4)

where σ2
µ = I, µ = 0, 1, 2, 3, are the three Pauli matrices together with the

identity σ0 = I2, and 1
2 tr(σµσν) = δµν [240]. These generalized Stokes pa-

rameters are simply the expectation values of Pauli group elements.6 These
4 We show, however, that these measures have their own limitations.
5 Quantum state tomography, for example, involves the measurement of these pa-

rameters for reconstruction of the quantum state ρ ; see Section 8.1.
6 The elements of the Pauli group also play an important role in the description of

quantum bit errors and their correction. Quantum error correction and the Pauli
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directly observable parameters form an N -particle generalized Stokes tensor,
[Si1...iN

], the invariants of which are useful in characterizing states of multiple-
qubit systems, just as in the case of bipartite systems discussed in Section 6.4.
These quantities can be generalized so as to apply to qu-d-it systems [9].

One can then represent the statistical operator using the operators {λ̂i}
generating SU(N) rotations, of which the Pauli matrices above are those for
N = 2. In particular, the expectation values, λi = tr(ρλ̂i), of these generators
form the (N2 − 1)-dimensional coherence vector, λ, in terms of which the
statistical operator is

ρ =
1
N

I +
1
2

N2−1∑
j=1

λj λ̂j , (7.5)

which is the generalized Bloch-vector form of the state.7 Consider the standard-
basis eigenvectors {|j〉} for the Hilbert space of the system in question and
the transition operators, P̂jk ≡ |j〉〈k| , the P̂jj = P (|j〉) being corresponding
projectors. One then also has the vector of N2 − 1 operators

λ̂ = {û12, û23, . . . , v̂12, v̂13, v̂23, . . . , ŵ1, ŵ2, . . . , ŵN−1} , (7.6)

where

ûjk = P̂jk + P̂kj , (7.7)

v̂jk = i(P̂jk − P̂kj) , (7.8)

ŵl = −
√

2
l(l + 1)

(P̂11 + · · ·+ P̂ll − lP̂l+1,l+1) , (7.9)

with 1 ≤ j < k ≤ N , 1 ≤ l ≤ N − 1 (cf. Eqs. 1.19-21 for the case of SU(2))
[215]. In the case of the density matrices representing the statistical operator,
one then has matrix elements ρjk = tr(ρP̂jk) and corresponding expectation
values for ûjk, v̂jk, and ŵl in terms of density matrix elements.8

It is also useful to construct trace relations involving the quantities

C(n, q) = tr(ρq) , (7.10)

where

C(n, 2) =
n∑
ij

ρijρji (7.11)

C(n, 3) =
n∑

i,j,k

ρijρjkρki , (7.12)

group are discussed in Chapter 10, below. See also the discussion of the Pauli
matrices in Sect. 1.3, which focuses on single-qubit Stokes parameters.

7 In this section, the notation “ˆ” is in some cases used to designate operators, to
aid in distinguishing operators from scalars.

8 These operators have been treated in detail [276] and applied to a range of situ-
ations, as discussed in [293].
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and so on, which are invariant under unitarities and are related to state purity
and entanglement in Section 7.6, below [215]. The C(n, q) are particularly
useful for quantum state spectroscopy; see also Section 8.3.

One can construct correlation tensors in the qu-d-it case, as follows.
For bipartite decompositions, one has the tensor components

Kij =
〈
λ̂A

i λ̂B
j

〉
, (7.13)

and correlations
Mij = Kij − λA

i λB
j , (7.14)

which, again, are zero for product states; for entangled states some of
the Mij are nonzero (cf. Eq. 3.26–27), where A and B indicate sub-
systems. Cluster operators, useful for the study of entangled states
of quantum networks, can also be constructed by taking the obvious
tensor products of generators λ̂i, as in the case of the Pauli group,
which are again expressible in terms of transition operators. Simi-
larly, useful cluster sums can be formed by summing over products
of expectation values λi, Kij , and Mij , and so on [293].

7.2 N-tangle

The bipartite tangle measure of entanglement, τ , which is equivalent to the
square of the concurrence introduced in Section 6.10, can be generalized so as
to apply to any even number of qubits. In particular, taking

|Ψ̃〉 ≡ σ⊗N
2 |Ψ∗〉 , (7.15)

where |Ψ〉 is a multiple-qubit state, one can define an N -tangle measure, τN ,
generalizing τ so as to apply to N -qubit states for those cases in which N is
even [457].9 In particular, one can take

τN = |〈Ψ |Ψ̃〉|2 , (7.16)

which is, therefore, a symmetry-based measure of entanglement as τ itself is.
As an example, note that the four-qubit |GHZ4〉 state can be seen by in-
spection to be unaffected by the global spin-flip operation σ⊗4

2 and hence to
have τ4 = 1. The N -tangle is the Lorentz-group invariant length for N -qubit
states, and is further explored in Section 7.4, below [414]. For two-qubit pure
states, the Lorentz-group invariant coincides with the tangle [240]. Relation-
ships among entanglement, mixedness, and spin symmetry in multiple-qubit
quantum states are found by exploiting these symmetry properties, as is shown
in Section 7.4 below [10, 237].
9 Note also that the σ2 matrix performs the universal single-qubit inversion oper-

ation on pure states.
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7.3 Generalized Schmidt decomposition

Multipartite extensions of the Schmidt decomposition of pure states intro-
duced in Section 6.2 can also be found in special situations. For three parties,
each in possession of a system described by a d-dimensional space, the com-
bined pure state lies within in a d3-dimensional Hilbert space and depends
on 2(d3 − 1) real parameters, whereas the transformations used to unitarily
transform this state have only 3(d2 − 1) independent real parameters. Thus,
it is often impossible to obtain a Schmidt decomposition for a given pure
state. However, the construction of a generalized Schmidt decomposition may
proceed in some three-qubit systems [327]; the three-party states that are
uniquely determined by two-party reduced statistical operators for pairings
of component systems are just those admitting a three-particle Schmidt de-
composition [285]. Furthermore, an N -partite pure state can be written in
generalized Schmidt form if and only if each of its N − 1 partite reduced
states, resulting from tracing out one party, is separable [418].

7.4 Lorentz-group isometries

As noted in Section 7.2 above, concurrence and N -tangle are naturally ex-
pressed in terms of spin-flip transformations. Recall from Section 6.10 that
the generalized concurrence for bipartite pure states of any dimension is

C(|Ψ〉AB) =
√

2sAsB

(
1− tr(ρ2

I)
)

, (7.17)

where ρI is the reduced statistical operator of either of the two subsystems,
I = A, B and the s’s are just scaling factors [358]. This is simply the square
root of a multiple of the mixedness M(ρ), as defined in Section 1.1, of the
reduced state. The spin-flip operation generalized to higher dimensions is the
universal state inversion, described by a superoperator Od such that

(i) Od is an automorphism on Hermitian operators,
(ii) Od commutes with all unitarities, and
(iii) The inner product

(
〈Ψ |ABOdA

⊗OdB
P (|Ψ〉AB)

)∣∣Ψ〉
AB

is nonnegative
for bipartite pure states |Ψ〉AB , being zero for separable pure states.

The superoperators satisfying these conditions are the multiples of (I − ρi),
where ρi is the reduced statistical operator of one subsystem of AB [357].

Complementarity relations involving this and more general invariants have
been derived, as now shown [237]. First, note that the multi-local Lorentz-
group invariant, that is, the SL(2, C)×N -invariant S2

(N) of the multiple-qubit
Stokes tensor, is expressible in terms of the generalization of the spin-flip op-
eration to any number of qubits (see box below), and for two-qubits coincides
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with the tangle:10

S2
(2)

(
P (|Ψ〉)

)
= τ

(
P (|Ψ〉)

)
≡ C2(P (|Ψ〉)

)
. (7.18)

The SL(2, C)×N -invariant length, which can be compactly expressed
as

S2
(N)(ρ) = tr(ρρ̃) , (7.19)

is expressible in terms of the generalization of the spin-flip operation
to any number of qubits that takes

ρ −→ ρ̃ ≡ σ⊗N
2 ρ∗σ⊗N

2 . (7.20)

This quantity is naturally related to the N -tangle, τN , a multipartite
entanglement measure for even numbers of qubits [457]; for pure
states, one has that

S2
(N)

(
P (|Ψ〉)

)
= |〈Ψ |Ψ̃〉|2 = τN . (7.21)

τN and |Ψ̃〉 are defined in Section 7.2. See also Eq. 6.30 and [414].

By considering the spin-flip symmetry measure,

I(ρ, ρ̃) ≡ 1−D2
HS(ρ− ρ̃) , (7.22)

where DHS(ρ− ρ′) is the (renormalized) Hilbert–Schmidt distance

DHS(ρ− ρ′) ≡
√

1
2
tr
(
(ρ− ρ′)2

)
(7.23)

in the space of statistical operators, which measures their distinguishability,
the Lorentz-invariant length, the mixedness, and the spin-flip symmetry of
multiple-qubit quantum states can be related. First, note that S2

N (ρ) and state
purity are related by the square of the Hilbert–Schmidt distance between the
state ρ and its spin-flipped counterpart ρ̃ :

D2
HS(ρ− ρ̃) = P(ρ)− S2

N (ρ) , (7.24)

where P(ρ) is the purity of ρ, which is a Euclidean length in the real represen-
tation. One sees, then, that the following relation exists between the geomet-
rical quantities of Lorentz-invariant length associated with multipartite-state
entanglement, the Hilbert–Schmidt distance of ρ from ρ̃, and the state purity:

S2
(N)(ρ) + D2

HS(ρ− ρ̃) = P(ρ) . (7.25)

10 Recall that the group SO(3) acting locally on Stokes tensors, which corresponds
to that of unitary transformations of statistical operators, is a subgroup of the
Lorentz group, SL(2, C); see Sect. 1.3.
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Equivalently, one has the following simple general relation between multi-
qubit Lorentz-group invariant and mixedness, M(ρ) = 1− P(ρ).

S2
(N)(ρ) +M(ρ) = I(ρ, ρ̃) (7.26)

[237].11 When the state ρ is spin-flip symmetric, I(ρ, ρ̃) = 1 so that this is
a (restricted) complementarity relation. For pure states, for which S2

(N) is an
entanglement measure, P

(
P (|Ψ〉)

)
= 1, so that M

(
P (|Ψ〉)

)
= 0, and this

expression becomes the equivalence relation

S2
(N)(|Ψ〉) = I

(
P (|Ψ〉), P (|Ψ̃〉)

)
. (7.27)

Thus, for pure states and N even, entanglement so defined coincides with
indistinguishability under the multi-local “spin-flip” transformation.

7.5 Entanglement classes

Consider now the question of quantum entangled-state classification for mul-
tipartite systems. A classification of entangled states can be obtained via the
inherent transformational properties of states. A useful starting point is an
ordering based on the accessibility of states from each other by local opera-
tions. For bipartite pure states under 2-LOCC, a partial ordering can be given
based on majorization that is a total ordering. In particular, one state can be
transformed into another by 2-LOCC if and only if the former is majorized
by the latter (see Section 6.9). For more than two parties, however, it is no
longer possible to find such a total ordering for all states. A generic multipar-
tite state, ρ, can be converted into a state ρ′ if and only if, for every ε, there
is an integer m and a sequence of (deterministic) LOCC transformations Ln

such that for any integer n ≥ m

||Ln(ρ⊗n)− ρ′⊗n|| ≤ ε , (7.28)

for n copies of the state, where || · || is the trace norm [306]. When these
transformations are reversible, this allows for the identification of equivalence
classes represented by a given state, ρ′.

One can also define classes of multipartite quantum states by accessi-
bility through SLOCC. Recall that SLOCC transformations are local quan-
tum operations together with classical communication that transform states
with some finite probability of success, rather than with certainty. Two pure
states are of the same class in this sense if the parties involved have a chance
of successfully converting one state into another under SLOCC, that is, if
|Ψ ′〉 = M1 ⊗M2 ⊗ · · · ⊗MN |Ψ〉, where Mi ∈ SL(d, C) is an invertible ILO
acting on the di-dimensional Hilbert space of subsystem i [48].12

11 The similarity of this expression to Eqs 3.28–29 is striking.
12 Such classes of states pertain to the ability to perform quantum information-

processing tasks with a given probability, such as in the KLM proposal for quan-
tum computing (see Sect. 13.8).
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Let us, therefore, turn to the problem of classifying multipartite states
by finding equivalence classes under state transformations rather than via
their utility as resources for various tasks. One can find equivalence classes
under local unitary transformations (LUTs) of the statistical operator and
equivalently under (local) rotations of the Stokes tensor, as compound states
are equivalent in their nonlocal properties if they can be transformed into each
other by such operations. Each group, G, of transformations acts transitively
on an orbit O = G/S, where S is the stabilizer subgroup of the orbit and is a
subgroup of G.13 This requirement is equivalent to invariance under the choice
of local Hilbert space basis. Lower bounds on the number of parameters needed
to describe equivalence classes have been provided that show the insufficiency
of the total set of state descriptions of local systems for specifying the state
description of the compound system they comprise.14

In particular, because states of N qubits are equivalent in entanglement
when they lie on the same orbit under LUTs of the statistical operator, each
such orbit corresponds to a single entanglement class with characteristic in-
variant quantities. The orbits have specific dimensionalities, dimO, given by
the dimension of the stabilizer subgroups, dimS, of states on the orbit and
the dimension dimG of the group in question:

dimO = dimG − dimS , (7.29)

where for LUTs, G, being local, has elements of the form U1⊗U2⊗· · ·⊗UN so
that each unitary transformation Ui acts on a Hilbert space corresponding to
a component of the total system in the possession of a single party in its local
laboratory. The dimension of the orbit is just the number of real parameters
required to specific the location of a state in the orbit. The Hilbert space of
pure states of N parties, each in possession of a single qubit is, as we have
seen previously,

H(N) = C
2 ⊗ C

2 ⊗ · · · ⊗ C
2 . (7.30)

Any pure state of the compound system is therefore described by 2(2N − 1)
real parameters, because there are 2N complex parameters and so 2N+1 real
parameters describing any state on this space, of which normalization reduces
the number of real parameters by one, as does the freedom of global phase.
The number of parameters describing a state thus grows exponentially with
the number of components, N . Quantities invariant on an orbit thus specify
nonlocal equivalence classes of states, as discussed in the next section.

In contrast to situations described by LUTs, in LOCC each agent can per-
form generalized measurements on its local subsystem and classically com-
municate measurement outcomes to other agents. The other agents can then
choose their local transformations in way conditioned by these outcomes.15

13 Consider S be the vector subspace kept fixed by a subgroup of elements of Gn,
which is defined by Eq. 10.17, below; this subgroup is the stabilizer, S, of S.

14 The extra parameters are known as “hidden nonlocalities;” see, for example [247].
15 Such a method is used, for example, in entanglement distillation; see Fig. 9.1.
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More generally, one is interested in equivalence classes of states under SLOCC.
One can seek equivalence classes of such multipartite states via the criterion
of mutual accessibility via invertible local operations (ILOs). The number of
state parameters that can be altered by a multiparty ILO grows linearly in
the number of parties, being in particular 6N .16 It is difficult to find canonical
states on the orbits of these multipartite states because the set of equivalence
classes of multi-qubit states under SLOCC, in the space of orbits

H(N)

SL(2, C)× SL(2, C)× · · · × SL(2, C)
, (7.31)

depends on at least [2(2N −1)−6N ] parameters [144]. For N = 2, 3 there is a
finite number of equivalence classes, but there may be an infinite number for
N > 3. The situation when one party possesses more than one qubit is worse,
even in the case of three parties. In the case of two parties, there is a maximally
entangled state from which all states may be accessed with certainty; in the
case of three parties, there is generally no such state [284].17

7.6 Algebraic invariants of multipartite systems

The invariant lengths under the isometries corresponding to LUTs, LOCC,
and SLOCC transformations providing multipartite-state equivalence classes
have been explicitly considered as algebraic entities [275]. For bipartite sys-
tems, the situation is simple because the coefficients of the Schmidt decom-
position form a complete set of LUT invariants. The next case of interest is
that of LUT invariants for tripartite states. Consider invariants for three-qubit
pure states

|Ψ〉 =
1∑

i,j,k=0

αijk|ijk〉 . (7.32)

One obvious invariant, the invariant of degree two, is the norm of the state,
the generalized Stokes parameter S000, which can be written

I1 =
1∑

i,i′,j,j′,k,k′=0

δii′δjj′δkk′αijkα∗
i′j′k′ =

1∑
i,j,k=0

αijkα∗
ijk (7.33)

16 A local invertible operator is an operator that can be written in tensor product
form where each factor has a well-defined inverse and acts in a single-party Hilbert
subspace. A single-qubit ILO described by a four-complex-component matrix is
required to have a nonzero determinant scalable to unity because multiplication
by a scalar does not affect accessibility, and depends only on six real parameters
[144].

17 Accessing a generic state in this case would require additional resources, such as
shared singlet states.
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(cf. Section 7.1 and [247]).
The purities of the statistical operators of three single qubits, obtained

from |Ψ〉 by partial tracing out the remaining two systems, namely,

I2 =
1∑

i,j,k,m,p,q=0

αkijα
∗
mijαmpqα

∗
kpq , (7.34)

I3 =
1∑

i,j,k,m,p,q=0

αikjα
∗
imjαpmqα

∗
pkq , (7.35)

I4 =
1∑

i,j,k,m,p,q=0

αijkα∗
ijmαpqmα∗

pqk , (7.36)

are LUT (and hence LOCC) invariants of degree four, which are sometimes
also labeled Ji. Labeling the first qubit system A, the second B, and the third
C, one has the following relations between these quantities and the single-
qubit Minkowskian length

S2
(1)(ρA) = 1− I2 , S2

(1)(ρB) = 1− I3 , S2
(1)(ρC) = 1− I4 , (7.37)

which are simply related to the concurrences obtained by bipartite decompo-
sition of the corresponding three-qubit states; see below. The number of LUT
invariants of a state then grows exponentially with the number of local parts.
The LUT invariant of higher degree for three particles, known as the Kempe
invariant, is

I5 =
1∑

i,j,k,l,m,n,o,p,q=0

αijkα∗
ilmαnloα

∗
pjoαpqmα∗

nqk , (7.38)

which is not, in general, algebraically independent of I2, I3, and I4 [247].
In the case of a general number of qubits, these states can be written

|Ψ〉 = αijk|ijk . . .〉, and the general polynomial can be written

F =
1∑

indices =0

airjrkr...
i1j1k1...i2j2k2...α

i1j1k1...αi2j2k2... . . . α∗
irjrkr... . . . , (7.39)

where the numbers of α and α∗ terms are equal and all the indices are con-
tracted between corresponding terms, by the coefficients airjrkr...

i1j1k1...i2j2k2... being
products of Krönecker delta symbols each contracting an index, as is the case
for the Ii above [275]. These allow one to fully distinguish the various orbits
under LUTs. Similarly, in the context of SLOCC transformations, the polyno-
mial invariants under SL(2, C)×N of pure states, characterized by amplitudes
αi,j,k,... in the computational basis {|ijk . . .〉}, are

Kσ =
1∑

indices=0

εi1i2εj1j2εk1k2 . . . εir−1ir
εjr−1jr

εkr−1kr
. . .

αiσ(1)jτ(1)kυ(1)...αiσ(2)jτ(2)kυ(2)... . . . αiσ(r)jτ(r)kυ(r)... (7.40)
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where σ = (σ, τ, υ, . . .), the σ(i), τ(i), υ(i), and so on, are permutations over r
elements, which correspond to the Lorentz-group invariant lengths S2

(N) that
are squares of their moduli.18

All SLOCC invariants can then be written in terms of these basic polyno-
mials. By examining state transformations beyond simple unitary operations,
it has been shown that one can classify multipartite entangled states under
Lorentz (SLOCC) transformations using the subset of filtering operations, as
mentioned above. In particular, for three-party states it has been shown that
there are nine different entanglement classes, which include the GHZ and W
classes of entangled three-qubit states; see the following section, as well as
[305]. In the case of mixed multipartite states, one considers the (squared)
magnitude of Kσ and the complex state-vector coefficients are replaced by
statistical operator elements.19 In the bipartite case, the Schmidt decompo-
sition always exists and provides the quantities invariant under local unitary
operations. Furthermore, as mentioned above, it has been shown that pure
states of some multipartite quantum systems are multi-separable: they pro-
vide, upon averaging over the state of any given party, separable (generally
mixed) states if and only if they have a generalized Schmidt decomposition
as does, for example, the GHZ state [418].

In the following chapter, we return to the examination of multiple-qubit
entangled states that prove useful in the study of entanglement and for car-
rying out various quantum information-processing tasks. Now let us examine
in detail entanglement properties and state classification in the cases of three-
and four-qubit systems, and several other larger families of multiple-qubit
states.

7.7 Three-qubit states and residual tangle

As mentioned in the introduction to this chapter, progress has been made in
the quantification of multipartite entanglement for three-qubit states through
the application of bipartite entanglement measures to their two-qubit subsys-
tems. In particular, the residual genuinely three-party entanglement can be
found by isolating it from the bipartite entanglement present in a three-qubit
system. The residual tangle τABC is a positive quantity for pure states,

τABC ≡ τA(BC) − τAB − τAC , (7.41)

18 Here we have introduced the Levi–Civita symbol ε defined by the elements ε00 =
0 = −ε11 and ε01 = 1 = −ε10 and related to the σ2 Pauli matrix by σ2 = −iε.
By contrast with the case of LOCC invariants, in the above one now contracts α
terms with each other rather than α terms with their complex conjugates.

19 It is worthwhile to consider Shimony’s geometrical result regarding the equiva-
lence of various entanglement measures in the case of bipartite pure states in this
light; see [383], as well as Sect. 6.15.
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that measures entanglement among the three components that does not arise
from bipartite entanglement within the composite system. The residual tangle
is invariant under permutations of the subsystems, as any good measure of
inherently three-way entanglement must be.20 In accordance with the above,
the three-tangle for three subsystems A, B, C can be expressed in terms of
two-qubit Lorentz-group invariant lengths, in particular,

τABC =
∣∣∣∣

2∑
1

εi1i3εj1j3εk1k4εi2i4εj2j4εk2k3 (7.42)

αiσ(1)jτ(1)kτ(1)αiσ(2)jτ(2)kτ(2)αiσ(3)jτ(3)kτ(3)αiσ(4)jτ(4)kτ(4)

∣∣∣∣ ,

where, again, the σ(i) and τ(i) are permutations.
The generic class of three-particle pure states can be written as

|Ψ3〉 = λ1|000〉+ λ2e
iθ|101〉+ λ3|110〉+ λ4|111〉 , (7.43)

where the λi are real positive numbers such that
∑

i λ2
i = 1 and θ ∈ [0, π].

These states include two classes of separable states, one that is fully separable
into a product of single-party pure states (ABC), and one separable into a
product of an entangled two-party pure (two-qubit) state and a single-party
pure (qubit) state, ( (AB)C, A(BC), B(AC) ). These divisions are known
as two-splits.21 There are two locally inequivalent classes of nonseparable,
hence genuinely tripartite-entangled pure states. One class is represented by
a particularly useful such state, the Greenberger–Horne–Zeilinger (GHZ) state

|GHZ〉 =
1√
2
(|000〉 − |111〉) , (7.44)

which has been shown to violate the predictions of local realism ([55, 196, 195])
introduced in Chapter 3;22 the generic state |Ψ3〉 belongs to the GHZ class. The
remaining class non-separable three-particle pure states is that represented by
states of the form
20 Thus, the apparent asymmetry of the above expression presents no difficulty.
21 The general case of division of a composite system into n parts is referred to as

an n-split, and illuminates the separability structure of larger compound-system
states [143].

22 The GHZ state is a eigenvector of all the Pauli group operators σx ⊗σy ⊗σy, σy ⊗
σx ⊗ σy, σy ⊗ σy ⊗ σx, with corresponding eigenvalue +1 and of the operator
σx ⊗ σx ⊗ σx with corresponding eigenvalue −1. With these four operators, a
measurement of operators σx or σy on any two of the three qubits allows one
to infer the outcome of the third. Local realism would then allow one to assign
definite values to the local quantities σ

(i)
x and σ

(i)
y , described by a function taking

σ
(i)
x and σ

(i)
y each to the set {−1, +1}, where the superscript indicates the sub-

system in question. There is therefore a violation of local realism: it is impossible
to find a product of such local functions assigning the needed values, because the
first three operators are assigned (+1) but the fourth is assigned (−1).
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|W 〉 = λ1|001〉+ λ2|010〉+ λ3|100〉 , (7.45)

and is a set of measure zero in the set of all pure states: a GHZ-class state as
close as desired to any W-class state can be obtained by simply adding an ad-
ditional term with a λ4 as small as desired to it. Thus, the GHZ and W classes
of states are representative of the two equivalence classes of three-particle pure
states defined by interconvertibility under SLOCC transformations, the W-
states being those such that τABC(|W 〉) = 0 [436].

The three-qubit mixed states are similarly readily classified, as follows.
(i) S, the class of separable mixed states;
(ii) B, the class of bi-separable mixed states;
(iii) W , the class of states expressible as convex combinations of projectors

onto the separable, bi-separable and pure W states;
(iv) GHZ, the generic class of three-qubit states.

These states are thus related as S ⊂ B ⊂W ⊂ GHZ; states of later classes can
be converted stochastically to states of preceding classes by the application
of POVMs [4]. Furthermore, there exist methods for determining the class to
which a given state belongs.

7.8 Three-qubit quantum logic gates

Before leaving the topic of three-qubit states, let us consider some quantum
gates acting at the three-qubit level. Useful three-bit gates have been devel-
oped in the context of reversible computation, of which quantum gates are one
sort of realization because they are carried out using unitary transformations,
which are inherently reversible.

The Toffoli gate is one important three-qubit gate implementable in quan-
tum computing that performs the following operation on computational val-
ues. (x, y, z) → (x, y, x ∧ y ⊕ z), where ⊕ indicates the XOR operation and ∧
the AND operation; see Section A.1. The truth tables of classical and quantum
Toffoli gates, which are shown Figs. 3.6 and 7.1 respectively, are the same.
That is, both gates change the third bit, z, conditionally on the first two be-
ing 1, and otherwise have no effect. A Toffoli gate is clearly its own inverse.
Both the classical and quantum Toffoli gates are universal, in that one can
construct a circuit computing any reversible function using only Toffoli gates;
see Section 13.6. The unitary matrix representing the quantum Toffoli gate is
given Section 3.8.

The quantum Fredkin gate is a three-qubit gate performing the following
operation on three bits: (x, y, z) → (x, x ∧ z ⊕ ¬x ∧ y, x ∧ y ⊕ ¬x ∧ z), where
¬ indicates binary negation. The Fredkin gate has only one control input,
whereas the Toffoli gate has two control inputs. It swaps the values of second
and third bits if the first takes the value 0; see Fig. 7.1. Though the quantum
Fredkin gate is reversible, its classical analogue is not.
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SWAP
Rx

Fig. 7.1. The Toffoli, Fredkin, and (up to a phase) Deutsch gates.

The Deutsch (quantum) gate, which Deutsch designated Q, is a uni-
versal quantum gate similar to the Toffoli gate, being again a controlled-
controlled gate, with the operation on the third qubit being the combined
phase shift/rotation operation iRx(θ) [129]. In the computational basis for
three qubits, it performs the operation of switching the basis elements |110〉
and |111〉, leaving the others unchanged; see Fig. 7.1. More information re-
garding universal logic gates is provided in Section 13.6.

7.9 States of higher qubit number

Entangled states of more than three qubits are also important, particularly for
quantum error correction, which is required for practical quantum information
processing. For example, the smallest code states for arbitrary single-qubit
errors are entangled five-qubit pure states; see Section 10.6.

In at least one sense, it is possible to generalize the entangled states of the
Bell basis by retaining the symmetry of its elements under changes of scale
from two to four and more qubits. The Bell gems are such a generalization
that can be recursively defined [232].23

A Bell gem, Gd, is a set of state-vectors of 2N qubits lying in the d = 22N

-
dimensional Hilbert space C

22N

, of the form

1√
2

(|i〉|i〉 ± |j〉|j〉) (7.46)

1√
2

(|i〉|j〉 ± |j〉|i〉) , (7.47)

where |i〉 
= |j〉 are elements of a Bell gem Gd′ of dimension d′ = 22(N−1)
,

N ≥ 2, N ∈ N, the simplest Bell gem, G4, being the Bell basis, namely,

23 A generalization of the Bell state |Ψ−〉 to N particles and N levels—the class of
“supersinglet” states—has also been examined [97].
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|Φ±〉 =
1√
2
(|00〉 ± |11〉) , (7.48)

|Ψ±〉 =
1√
2
(|01〉 ± |10〉) , (7.49)

which is a basis for C
4. The family of Bell gems has the following properties:

(i) The Bell gem G22N is an orthonormal basis for the 22N

-dimensional
Hilbert space of state-vectors, H22N = (C2)⊗2N

, that is, of 2N qubits.

(ii) The elements of G22N have maximal 2N -tangle, τ2N .

The second-smallest Bell gem (after the Bell basis) is the four-qubit Bell gem,
which has 16 elements, |ei〉, lying in H16 = (C2)⊗22

:

G16 = { 1√
2

(|Φ+〉|Φ+〉 ± |Φ−〉|Φ−〉), (7.50)
1√
2

(|Ψ+〉|Ψ+〉 ± |Ψ−〉|Ψ−〉), (7.51)
1√
2

(|Φ+〉|Φ−〉 ± |Φ−〉|Φ+〉), (7.52)
1√
2

(|Φ+〉|Ψ+〉 ± |Ψ+〉|Φ+〉), (7.53)
1√
2

(|Φ+〉|Ψ−〉 ± |Ψ−〉|Φ+〉), (7.54)
1√
2

(|Φ−〉|Ψ+〉 ± |Ψ+〉|Φ−〉), (7.55)
1√
2

(|Φ−〉|Ψ−〉 ± |Ψ−〉|Φ−〉), (7.56)
1√
2

(|Ψ+〉|Ψ−〉 ± |Ψ−〉|Ψ+〉)} (7.57)

[232]. The first four of these elements, |e1〉, |e2〉, |e3〉, and |e4〉, are the code
states of the (extended) quantum erasure channel; see Chapter 10 and [39].
Furthermore, |e2〉, |e3〉, and |e4〉 are codes states of a one-error correcting
detected-jump quantum code, as well as spanning a decoherence-free subspace
in which universal four-qubit quantum computations can be carried out; see
Chapter 13 and [8].
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Quantum state and process estimation

In addition to having a conceptual understanding of the entanglement and
other essential properties of quantum states, it is important to understand
how states and essential functionals thereof can be empirically determined,
particularly in a way that can be connected with formal results of the sort
described in previous chapters. As mentioned at the outset, the state of a given
quantum system cannot generally be discovered by simply measuring it once.
For an unknown state, at least an ensemble must be measured for one to come
to know an unknown state of a given quantum system. Quantum tomography
is a general method for estimating ensemble averages for operators and states
based on a complete set of quantum measurements.

Quantum state tomography allows one to find the statistical operator of a
system: a state description for a quantum system requires the measurement of
complementary properties of an ensemble in different, generally incompatible
experimental arrangements, rather than merely compatible ones, by deter-
mining, for example, the full set of generalized Stokes parameters in the case
of n-qubit systems. For present purposes, quantum state tomography and the
associated method of quantum process tomography, which determines trans-
formations of quantum states, allow one to characterize quantum sources and
quantum information channels for applications such as quantum cryptogra-
phy and quantum computing, which are described in later chapters. The basic
elements of these estimation methods are discussed here.

In addition to the estimation of states and their transformations, it is also
possible, and often necessary, to estimate quantum state functionals such as
purity and entanglement. One method for doing this, which can be more effi-
cient than the more general but often quite costly method of state tomography,
is also described here.
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8.1 Quantum state tomography

Given measurements on an ensemble of copies of a given quantum system,
the state can be estimated by quantum state tomography. Historically, G. G.
Stokes first introduced such a method, involving the four basic parameters
that now bear his name and that are still commonly used to describe the
polarization state of a light beam [406]. Such simple parameters also allow
one to find the statistical operator describing a qubit ensemble, locating it in
the Poincaré–Bloch sphere as described in Section 1.3 [241].1 This procedure
is now known as qubit-state tomography.

Qubit-state tomography can be readily extended to multiple-qubit sys-
tems, as well as to multiple-qu-d-it systems in which case it is referred to as
qu-d-it-state tomography [420]. In general, (d2− 1) parameters must be mea-
sured to reconstruct a state lying in a d-dimensional complex Hilbert space,
as the global phase is not physical relevant. To find the state of a qubit, only
three quantities need be found, corresponding to the Stokes parameters Si

(i = 1, 2, 3). The measurement of coincidence-count rates for multipartite sys-
tems correspond to generalized Stokes parameters and allow for the extension
of this method to the tomography of multiple-qubit states. In particular, the
statistical operator representing a quantum system state can, in principle,
be found from a direct linear transformation of correlation data, correspond-
ing to the generalized Stokes parameters [180, 459]. However, measurement
errors and/or environmental noise may render ill-defined the operators con-
structed in this straightforward way, such as when the resulting matrices fail
to be completely positive. Therefore, care must be taken to provide estimated
states that are well defined. This generally requires additional measurements,
as in the case of single qubits where one also measures the Stokes parameter
S0 [118]. A necessary and sufficient condition for the completeness of a set of
tomographic measurement vectors (or tomographic states), is that the matrix
of expectation values of the full set of Pauli-group operators, corresponding
to measurement bases, be nonsingular.2 This condition is the requirement
for obtaining a well-defined density matrix from the data set of normalized
coincidence-measurement outcomes.

Quantum state tomography of multiple-qubit systems can be carried out
as follows. One first obtains a number of identical copies of the system in the
unknown state ρ to be determined. One then measures the system properties
using either a complete set of von Neumann measurements or a POVM [332].
The standard requirements for a matrix to represent a statistical operator are
then kept in force during the construction of the matrix best representing ρ
given the resulting data. A likelihood functional, L, that describes the qual-
ity of the estimated density matrix can be used to produce such a matrix.
One finds the optimal set of variables, for which the likelihood functional is
1 Modern quantum tomography was first investigated in [277, 278, 346, 441].
2 The Pauli group is defined in Sect. 10.4, below.
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maximized, and arrives at a best estimate of the actual statistical operator
describing the system. Traditionally, precise measurements are performed to
find the values of the system properties, each being a measurement of an in-
stance of the system state projecting onto a pure state; in the case of qubits,
these measurements provide the generalized Stokes parameters described in
the previous chapter, that is, the expectation values of Pauli-group elements.

Consider the case in which a complete set of measurements corresponding
to the projectors P (|ψi〉) is made, providing m distinct outcomes with relative
frequencies fi. The probabilities of measurement outcomes in the limit of an
infinite sample size are provided by the Born rule, namely pi = 〈ψi|ρ|ψi〉, such
as are given by Eq. 1.22 for the case of a single qubit.3 One then seeks the state
ρ most likely to provide the observed finite number of measurement outcomes.
A density matrix, ρest, for this state is one minimizing the Kullback–Leibler
distance (cf. Eq. 4.8) between the relative frequencies provided by the data
and the probabilities provided by the Born rule, considered as vectors [256].4

Minimizing this distance is tantamount to finding the maximum likelihood,
where the likelihood is given by the functional

L(ρ) =
∏

i

pfi

i . (8.1)

Treating this as a linear positive (LP) problem, one can make use of the
expectation maximization (EM) algorithm. One writes

pi =
∑

j

rjhji , (8.2)

where the rj are the components of the vector r used to describe the system
during a given step in the solution of this problem and [hji] is a positive kernel.
The EM algorithm iterates the value of such a vector, which at step n is given
by

r
(n)
j = r

(n−1)
j

∑
i

hjifi

pi(r(n−1))
, (8.3)

beginning from a first step with an initially chosen positive r(1) ≡ {r(1)
j }. In

the basis {|λi〉} in which the density matrix ρ is diagonal, one has

ρ =
∑

i

λiP (|λi〉) , (8.4)

the λi being its eigenvalues. The Born rule then provides a well-defined LP
problem.
3 The Born rule is Postulate II of quantum mechanics; see Appendix B.
4 In general, measurements can be made using a set of measurements of nonorthog-

onal states. However, uncertainties for a given number of measurements will in-
crease as progressively fewer orthogonal basis elements are measured, so that a
given accuracy requires that increasingly larger data sets be collected.
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In particular, one addresses the LP problem provided by the (first-order)
variational contribution

δ lnL =
∑

j

δrj(〈φj |R|φj〉 − 1) + iθ tr(G) , (8.5)

where the operator R is given by

R =
∑

i

(fi

pi

)
P (|ψi〉) , (8.6)

the operator G ≡ i[ρ, R] is the generator of a unitary transformation allowing
updated eigenvalues to be determined, and θ is a very small angle of rotation
corresponding to this unitary operation. Success in attaining the desired global
maximum values is guaranteed by the convexity of L [350].
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Fig. 8.1. An apparatus for quantum state tomography on two-qubit joint-
polarization states of photon pairs produced by spontaneous parametric down-
conversion (about which, see Section 6.16). The PBSs alone enable measurements of
the projections involving σ3; invoking the half-wave plates (HWP) as well enables
measurements involving σ1; using the PBS, entirely deflecting one linearly polar-
ized component (cf. Fig. 2.2), together with the quarter-wave plates (QWP) enables
measurements at detectors D1 and D2 involving σ2 (cf. Section 1.3 and, for example,
[11, 302, 454]).

As an example, consider now single-qubit-state tomography in particular.
The most straightforward tomographic approach is to measure three orthogo-
nal components of the Pauli operators, σi, providing the single-particle Stokes
parameters, Si. Determining these three parameters involves the measurement
and estimation of six quantities, one pair for each of the Pauli operators, on
an ensemble of qubits; when measuring each of the σi, two measurement out-
comes can occur. In the case of the measurement of the photon polarization
qubits, for example, one performs ellipsometry in a linear-optical apparatus
constructed of beam-splitters, polarizing beam-splitters, and polarization ro-
tators feeding photodetectors providing photon-counting statistics, providing
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a set of six counting bin values, nij (j = 1, 2), corresponding to the operators
σi above (cf. Eqs. 1.19–22) and the states of the three bases, the computa-
tional, diagonal, and circular bases [376]. These values are then normalized
by dividing each by the sum of the total number of counts, N̄ =

∑
ij nij ,

providing the needed likelihoods

pij =
nij

N̄
, (8.7)

and thus the pi; for example, see [226].
Two-qubit state tomography can be performed by doubling the above-

described apparatus and constructing a probability vector composed of coin-
cidence count rates corresponding to the two-photon generalized Stokes pa-
rameters to obtain an invertible square matrix from these coincidence mea-
surements for the possible pairings of single-qubit states; see Fig. 8.1 [3]. For
larger numbers of qubits one similarly extends the measurement apparatus to
include the corresponding number of duplicates of the basic apparatus.

8.2 Quantum process tomography

Quantum process tomography involves the reconstruction of the process E(ρ)
describing the transformation of a quantum system, such as occurs in the
transmission of a quantum system through a quantum channel.5 It is con-
venient to consider the process matrix, M, representing this superoperator
acting on the vector of independent coefficients of the nonnormalized density
matrix ρinput, such that

ρoutput = Mρinput , (8.8)

constructed using the multi-particle Stokes parameters for a complete set of
measurements,

ρ
.=
(

ρ11, ρ22, . . . ,Re(ρ12), Im(ρ12), Re(ρ13), . . . , Im(ρn−1,n)
)T

. (8.9)

Though, formally, the matrix M can be thought of as being obtained by in-
version, errors in actual measurement can give rise to ill-defined resulting
“density matrices.” Thus, as mentioned in the previous section, it is a better
strategy to estimate M using maximum-likelihood estimation to find the ap-
propriate completely positive superoperator. The same optical elements from
a wing of the apparatus above can be used for the initial state-tomography
step in the case of two-qubit systems, for example; see Fig. 8.1 and [302, 340].

In particular, to carry out quantum process tomography on a quantum
channel, one prepares quantum systems in different states {ρ(i)}, transforms

5 Quantum channels are discussed in detail the following chapter.
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them by the process of interest, and performs quantum-state tomographic
measurements of the resulting states. It is convenient to consider the de-
composition elements, Ej , of the operator-sum representation of E(ρ), where
Ej =

∑
k ejkĒk (where, for example, in the single-qubit case, Ēk = σk, with

k = 0, 1, 2, 3 [315]), so that we also have

E(ρ) =
∑
k,l

ĒkρĒ†
l Mkl , (8.10)

where the Mkl are the elements of the process matrix. Thus,

Mmn =
∑

k

ekm(ekn)∗ . (8.11)

Then
E(ρj) =

∑
k

cjkρk (8.12)

and, writing ĒnρjĒ
†
p =

∑
k mnp

jk ρk, we have

Mnp =
∑
j,k

(m−1)np
jk cjk , (8.13)

forming the desired matrix representation of the process.

8.3 Direct estimation methods

In addition to the estimation of states and the processes describing their trans-
formation, it is possible and often desirable to estimate other simpler quanti-
ties discussed in previous chapters, such as purity and analytically computable
entanglement measures. Although it is possible to perform tomography to ob-
tain a state as well as information about its dynamics from which these can be
evaluated in many cases, it is valuable and more efficient to have a method of
directly estimating these properties. One may perform some of these estimates
using LOCC alone [156].

Quantum interferometry provides such a method. To see this, consider a
Mach–Zehnder interferometer including coupling to an ancilla by a controlled
unitary operation; see Fig. 8.2. The usual interferogram resulting from varia-
tion of the phase shift in such an interferometer is sensitive to this coupling.
Consider the expectation value of the corresponding unitary operator,

veiα = tr(Uρ) , (8.14)

where the real parameters v and α are (an ideal) visibility and (a Patcharat-
nam) phaseshift, respectively, that depend on ρ. The form of this expression
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H H

Uf

P( )|0

Fig. 8.2. Quantum circuit for the direct estimation of quantum state functionals of
a system in state ρ [156].

shows that the observed effect on the interferogram of the controlled-U oper-
ation is simply the expectation value of the corresponding operator, U . This
can be exploited to perform more efficient estimates of important quantities.

For example, to directly estimate the state purity, P(ρ), one can take U
to be the SWAP operation, namely,

V =
∑
ij

|ji〉〈ij|

=
∑
ij

T (|i〉〈j|)⊗ Idn(|i〉〈j|) ,

where T is the transposition operator, noting that

V
(
|φ〉|ψ〉

)
→ |ψ〉|φ〉 , V

(
P (|φ〉|ψ〉)

)
→ P (|ψ〉|φ〉) (8.15)

for all single-party states |ψ〉 possessed by Alice and Bob; see Section 2.6. Now,
if the input to this interferometer is two identical subsystems, described by a
separable statistical operator ρA ⊗ ρB = ρ⊗2, a measurement of the resulting
interferogram provides a measurement of state overlap, which in this case is

v(ρ) = tr
(
V (ρ⊗ ρ)

)
(8.16)

= tr(ρ2) (8.17)
= P(ρ) , (8.18)

from which the Rényi entropy can be directly obtained as well.6

Replacing the SWAP operation by its generalization, the shift operation
V (i) defined by

V (i)(|ψ1〉|ψ2〉 . . . |ψi〉) = |ψi〉|ψ1〉 . . . |ψi−1〉 , (8.19)

and considering the fully separable input state of k copies of ρ, ρ⊗k, the above
construction provides an estimate of the eigenvalue spectrum of ρ [248]. This
6 Such a measurement has been explicitly carried out [73, 240].
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shift operation is constructed through a cascaded arrangement of i−1 SWAP
gates, V [156, 275].7 Taking a product state for each value of k provides one
with the visibility

v′(ρ) = tr
(
V (k)(ρ⊗k)

)
(8.20)

=
n∑

i=1

λk
i , (8.21)

where the λi are the eigenvalues of ρ. Thus, estimation of the statistical-
operator spectral elements can be performed.

This direct-estimation method also allows one to estimate the SLOCC-
invariant length S2

(N) corresponding to the multipartite-entanglement measure
τN in the case of pure states; see Sections 7.2, 7.4 and [240]. For example, in
the case of N = 2, taking ρA = P (|Ψ12〉) and ρB = ˜P (|Ψ12〉) provides one with
the invariant

S2
(2)(ρ) = tr(ρρ̃) = τ(ρ) , (8.22)

namely, the tangle; this accords with what we have just seen in that the
concurrence, of which the tangle is the square, is a function of the eigenvalue
spectrum only.

7 Note, however, that the shift operation V (k) is not implementable as a LOCC
operation, but must be implemented by a global network, as described in [307].
Note also that, though the eigenvalue spectrum may be found in this way, the full
density matrix is not provided, as it is in the more laborious procedure required
for quantum state tomography.
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Quantum communication

The communication of information between two spatially separated parties
requires a directed resource, such as a bit or qubit, that is naturally con-
strained by the speed of light and, in the case of the quantum information,
is subject to the constraints of the no-cloning theorem. Several specifically
quantum-mechanical protocols are discussed in this chapter that illustrate
different uses of the combination of resources available to support communi-
cation and information processing when quantum resources are available. It
is important to note that, despite the value of entanglement for communica-
tion, classical communication cannot be simulated by the resource of shared
quantum entanglement alone in an attempt to circumvent this speed-of-light
constraint, due to the undirected nature of entanglement.1

In the direct transmission of a quantum system, communication resource
requirements are satisfied via a single channel. In quantum teleportation, re-
source requirements are satisfied by two distinct systems, one passing through
a classical channel as classical information and one passing through a quantum
channel, in order to transmit quantum information. A third task considered
here, quantum dense coding, uses previously shared entanglement and classi-
cal communication to double, in a specific sense, the capacity of a quantum
channel to transmit classical information.

Entanglement swapping and entanglement purification are quantum re-
source distribution tasks that are discussed in this chapter as well. Quantum
cryptography, which uses both a quantum channel and a classical channel to
distribute correlate keys securely, is discussed later in Chapter 12; see Fig.
12.1. We begin now by considering what quantum channels and their commu-
nication capacities are.
1 For more on the “peaceful coexistence” of quantum mechanics and relativity, see

Ch. 8 of [384].
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9.1 Quantum channels

A quantum channel is a means for transmitting quantum information. Phys-
ically, a quantum channel may be viewed as a medium of transmission, such
as an optical fiber, together with an ensemble of quantum systems, such as
photons, prepared by the sender in quantum states ρi, i = 1, 2, . . . , n, carry-
ing n symbols with corresponding probabilities pi. As with classical channels,
quantum channels that transmit information without introducing errors are
called noiseless; those that introduce errors are called noisy.2 However, quan-
tum channels are fundamentally different in character from classical channels,
just as qubits differ from bits. For example, due to the inevitable, generally ir-
reversible, interaction of a transmitted quantum system with the environment
of a realistic quantum channel, the input quantum states per se will not be
retrievable from output states themselves by unitary transformations alone.
Nonetheless, quantum signal theory allows one to use encoding–decoding to
improve signal fidelity.

To understand a quantum channel through which a pure quantum state
|ψ〉 can be sent, it is again helpful to consider the fidelity

F (|ψ〉, ρ′) = 〈ψ|ρ′|ψ〉 , (9.1)

where now ρ′ is the state of the system after transmission, as a measure of
channel faithfulness; a quantum channel is faithful if this expectation value
goes to unity in the appropriate information-processing limit. It is also useful
to consider the effect of quantum channels in the operations formalism dis-
cussed in Chapter 2, wherein the final state of a statistical operator after the
effect of a channel is given by

ρ′ =
∑

i

KiP (|ψ〉)K†
i , (9.2)

{Ki} being an operator decomposition of the CPTP map E(ρ) describing the
channel.3

Quantum channels are most often taken to be stationary and memoryless,
so as to have the same effect on every block of qubits they may transmit.
The CPTP map describing a channel is sometimes referred to as the super-
scattering operator and is analogous to the Markov matrix describing the
probabilities of outputs in terms of inputs in the description of classical chan-
nels. Any one of the above Ki has the effect of projecting a pure state onto
a pure state, whereas the collective effect of the operator sum is typically to
take pure states to mixed states.

2 Quantum channels can be characterized empirically using quantum process to-
mography, described in the previous chapter.

3 Operator decompositions were previously discussed in Sect. 2.6.
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As noted in Section 2.6, the Ki are generally not unique. In particu-
lar, any pair of decompositions {Ki} and {K̄j}, of r and s elements
respectively, for the same operation are related as

Ki =
s∑

j=1

fijK̄j , (9.3)

where [fij ] is the matrix representing a maximal partial isometry
between the vector spaces H(r) and H(s). A partial isometry is an
operation more general than a unitary transformation, such that
V V † = P where P is a projector. In the event that r 
= s, V is
nonunitary; a maximal partial isometry is a V for which either V V †

or V †V is the identity. The freedom of choice of decomposition can
be viewed in this context as the freedom of choice of the basis for
the environment of the channel [27].

If a quantum channel is noiseless and distortion-free, then it is described
by the identity operator I and fully preserves the quantum coherence of the
input state. At the other extreme, the completely decohering channel destroys
all off-diagonal elements of the statistical operators input to it, so that ρ →
ρ′ =

∑
ρiiP (|ψi〉).4 The completely decohering channel can transmit classical

information perfectly, but will destroy the coherence properties essential for
transmitting genuinely quantum information.5 Interestingly, the ratio of the
entanglement-assisted classical capacity to the unassisted classical capacity
generally increases with the amount of noise in the quantum channel, even
when the quantum capacities go to zero. Let us now precisely define a number
of quantum channel capacities and further consider the relationship between
various pairs of them.

9.2 Quantum channel capacities

An information source for a quantum channel provides an ensemble of quan-
tum states; a given state that a quantum source is capable of producing can
be broadcast over a quantum channel using a number of copies of the state. In
the case of two parties sharing such a channel, subsystems of a larger quantum
system can also be prepared in an entangled joint state ρAB , shared by sender
Alice and receiver Bob, the partial trace of which over either subsystem, A or
B, is described by ρI , I = A, B.6 These two situations reflect the situations
in quantum key distribution using the BB84 and E91 protocols, respectively.
4 This expression corresponds to a transition between states given in Eqs. 11.48–49.
5 Specific examples of quantum channels are given below in Sect. 9.6.
6 Note, however, the existence of constraints on broadcasting, such as the “no-

broadcasting” theorem, described in Sect. 11.1.
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In general, n qubits can be encoded by a process described by a super-
operator E(ρ) to m inputs for a quantum transmission channel, which may
be affected by noise process N , and then decoded back to n qubits from
m outputs of the channel in a process described by another superoperator,
D(ρ). Though E(ρ) and D(ρ) serve opposite purposes, they are not necessar-
ily operator-inverses of each other. Various operations can then be performed
locally to prepare various joint states shared by the parties at the ends of the
channel.

Any quantum channel can be attributed at least three basic types of trans-
mission capacity: a classical capacity, C, an (unassisted) quantum capacity,
Q, and an entanglement-assisted classical capacity, CE [49, 50]. C is simply
the capacity of a channel to transmit classical information using quantum
systems. Q is the capacity for transmitting intact quantum states. CE is the
capacity for transmitting classical information making use of quantum entan-
glement resources, as in the case of quantum dense coding which is discussed
in detail in Section 9.8, below.

The (asymptotic) classical capacity of a quantum channel is given by

C(N ) = lim
ε→0

lim sup
n→∞

{
n

m

∣∣∣∣ ∃m,E,D∀|ψ〉∈{|0〉,|1〉}×n

〈
ψ
∣∣DN⊗mE

(
P (|ψ〉)

)∣∣ψ〉
> 1− ε

}
, (9.4)

the maximum asymptotic rate at which bits can be transmitted with arbitrar-
ily good reliability using elements of the computational basis. It is the optimal
asymptotic (classical) mutual information per channel use, where possibly en-
tangled input quantum states are mapped back to classical data by possibly
collective measurement during decoding.7 For cases where only one use is
made of the channel, it provides the one-shot classical capacity, C1(N ).

The (protected subspace definition of the) unassisted quantum channel
capacity is

Q(N ) = lim
ε→0

lim sup
n→∞

{
n

m

∣∣∣∣ ∃m,E,D∀|ψ〉∈H2n

〈
ψ
∣∣DN⊗mE

(
P (|ψ〉)

)∣∣ψ〉
> 1− ε

}
. (9.5)

Q(N ) is bounded from below by C(N ), because if a quantum channel faith-
fully transmits a generic qubit state then it can always at least transmit a
computational basis state, |0〉 or |1〉. Q(N ) is known to be a nonadditive
quantity, in that it can surpass the maximum value of the coherent informa-
tion that can be sent by a single channel use. Forward classical communication
7 Note the role of the channel fidelity in the context of encoding-decoding in this

and the following definition.
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cannot increase the quantum capacity of a channel [47].8 However, if a clas-
sical back-channel from Bob to Alice is also available, allowing for two-way
communication, an increase in channel capacity is then possible; the quan-
tum capacity in that case will have a potentially higher value Q2(N ) ≥ Q(N )
through multiple adaptive uses of communication [46]. Q2(N ) is known as the
classically assisted quantum capacity.

The entanglement-assisted classical capacity, CE(N ), is defined similarly
to Q(N ) but instead for an interactive protocol that makes use of the quantum
channel, shared entanglement, and unlimited classical communication between
source and destination laboratories, instead of a quantum encoding-decoding
scheme. This capacity can be written

CE(N ) = sup
P (|ψ〉)

{
S(ρ) + S

(
N (ρ)

)
− S

(
(N ⊗ I)P (|ψ〉)

)}
, (9.6)

where ρ is the state obtained by taking the partial trace of P (|ψ〉) over system
B.9 The value of Q(N ) bounds CE(N ) from below; for example, see Section
9.8 below.

Various further capacities exist for quantum channels when assisted by
entangled states shared by senders and receivers [46, 88]. As mentioned in the
introduction to this chapter, entanglement alone, being undirected, cannot
serve to transmit information from A to B but is capable of improving the
capacity of a quantum channel, as in quantum dense coding. In particular, for
a channel described by the identity map the entanglement-assisted classical
capacity is twice that of the unassisted classical capacity when the dense
coding protocol is used; see Section 9.8, below.

9.3 Holevo’s theorem

Let us now consider the limitations on optimal communication using a noise-
less quantum channel and data compression.10 The Holevo theorem, which
provides the Holevo bound, which was originally conjectured by Gordon [191]
and stated without proof by Levitin [279, 280, 281], describes the fundamental
limit on the amount of classical information from a sender that is accessible
to a receiver in terms of the entropy of an ensemble of quantum systems
decomposable as signal states {pi, ρi}.

The unassisted quantum channel capacity given by Eq. 9.5 can also be
written in terms of entropies as
8 Note that the definition of Q(N ) involves consideration of all n qubit states, rather

than only the two computational basis states of each bit, as in the definition of
C(N ).

9 It is worthwhile to compare this expression with that of Eq. 4.18.
10 Quantum data compression is specifically addressed in Sect. 10.8.
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Q(N ) = maxpi

(
S

(∑
i

piρi

)
−

∑
i

piS(ρi)

)
, (9.7)

the quantity optimized being referred to as the Holevo information

χ ≡ S

(∑
i

piρi

)
−

∑
i

piS(ρi) , (9.8)

which has a form that accounts for the fact that the information present in
the ensemble is reduced from that given by the von Neumann entropy as its
components become increasingly impure. This quantity can also be written in
terms of quantum relative entropy as

χ =
∑

i

piS(ρi||ρavg) ,

where ρavg =
∑

i piρi.
This can be understood in terms of information accessible to the receiver,

as follows. Consider a message received as such an ensemble. The optimal
value of the mutual information I(A : B) between sender Alice’s input, A, and
receiver Bob’s measurement result, B, is bounded by the Holevo information:

I(A : B) ≤ χ , (9.9)

with Bob making measurements providing outcomes m with probabilities qm

resulting in a post-measurement ensemble {pi|m, ρi|m} and mutual information

I(i : m) = H({pi})−
∑
m

qmH({pi|m}) , (9.10)

which Bob desires to maximize over all possible measurement strategies, H
being the Shannon entropy.11 In this way, Bob arrives at the maximum acces-
sible information I(A : B) = max I(i : m). If the signal states are pure states,
then I(A : B) ≤ S(ρ), the bound being achieved if and only if the encoding
states ρi commute and Bob measures in the basis where they are represented
by diagonal matrices. This upper bound is not generally a very strong one,
however.

A tighter bound holds when the receiver’s measurements are not complete
and must be described by a POVM. Take the elements of such a POVM to
be {Em} and the corresponding measurement outcomes to be indexed by m.
The tighter, Schumacher–Westmoreland–Wootters bound is then given by

I(A : B) ≤ χ−
∑

pmχm , (9.11)

11 The Holevo information has the properties of additivity and monotonicity inher-
ited from the von Neumann entropy, asymptotic continuity, and of being bounded
by the Hartley entropy, log2 dim ρ.



9.4 Discrimination of quantum states 153

where pm is the probability of measurement outcome m and χm is the Holevo
information for the state after a measurement with outcome m.12 The bound
on the information is thus reduced by the amount of information that can still
be obtained from the system after this measurement as well as the Holevo
bound on that information [371].

The Holevo bound implies that I(A : B) ≤ S(ρ) ≤ log2 d, where d is the
dimensionality of the Hilbert space of the encoding system, indicating that
the amount of information encodable in a system is bounded by d, which
corresponds to the number of orthogonal states available. In particular, one
sees that the greatest amount of information that can be encoded in a qubit
is one bit.

9.4 Discrimination of quantum states

The use of quantum channels to send information has specific advantages over
the use of classical channels. For example, the use of qubits to encode bits al-
lows one to perform cryptographic key distribution (QKD) without trusted
couriers, and so to provide cryptographic security based on fundamental phys-
ical principles, something that has never been achieved classically. The ability
to distinguish possible signals in communication is central to the transmission
of information of any kind, quantum or classical. The problem of distinguish-
ing quantum states is essential for QKD, and is relevant to many issues in the
foundations of quantum theory as well.

For successful quantum communication in general, one needs to be able to
distinguish the different states in which a quantum system can be prepared.
Unless a measured collection of systems constitutes an ensemble of orthogo-
nal subensembles, a given signal state cannot be perfectly discriminated from
other possible signal states, so one must find an optimal strategy for discrimi-
nating between these possibilities. Indeed, the ability to perfectly discriminate
all members of a set of nonorthogonal states would contradict the “no-cloning
theorem,” which is a simple corollary of basic quantum postulates; see Section
9.5 below. This fact is the basis of QKD protocols, which are based on the
use of states from conjugate nonorthogonal bases. Furthermore, the behavior
of any QKD strategy must be consistent with Holevo’s theorem. The problem
of determining the state of an individual qubit prepared in one of two, not
necessarily orthogonal states |p〉 and |q〉 was explicitly considered in the 1980s
as an issue in the foundations of quantum mechanics [135, 230, 328]. This
issue has since been approached in several ways.

One approach considers what is now known as the problem of hypothesis
testing or ambiguous state discrimination [211, 218, 466]. It is to find the pro-
cedure that yields on the average a maximum number of correct classifications
12 The Schumacher–Westmoreland–Wootters bound is sometimes also called the

Holevo–Schumacher–Westmoreland bound.
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of state in an ensemble of such cases, assuming that for each member of the
ensemble a definite classification is made. A different approach is to consider
what is known as the problem of unambiguous state discrimination. It is to
find the procedure that enables one, in a maximum number of cases, to infer
with certainty whether the system was prepared in |p〉 or |q〉, leaving a mini
mum number of cases unclassified.

The primary interest has been in solving the problem of unambiguous state
discrimination, which pertains directly to QKD, and which here we address
first [152, 146]. The solution to the unambiguous state-discrimination problem
in the simple case where one assumes that half of the ensemble is prepared in
the state |p〉 and half in the state |q〉, as is ideally the case in, for example,
BB84 QKD, was found through the following evaluation of the maximum
probability of correct classification and minimum probability of no decisions.

P = 1− |〈p|q〉| (9.12)
1− P = |〈p|q〉| , (9.13)

the former expression, now known as the Ivanovic–Dieks–Peres (IDP) limit, is
the probability of correct classification, the latter expression being the prob-
ability of making no classification [230]. The overlap |〈p|q〉| of the two states
|p〉 and |q〉 is a measure of the degree to which they cannot be distinguished.

To better understand this result, consider preparing an ancillary system
in an initial state |s0〉 in addition to the given qubit and inducing a unitary
state evolution on the resulting composite system:

|p〉|s0〉 → a|p1〉|s1〉+ b|p2〉|s2〉 , (9.14)
|q〉|s0〉 → c|q1〉|s1〉+ d|q2〉|s2〉 , (9.15)

the state-vectors |s1〉, |s2〉, |p1〉, |p2〉, |q1〉, |q2〉 being normalized and such that

〈p1|q1〉 = 0 , (9.16)
〈s1|s2〉 = 0 , (9.17)

|q2〉 being identical to |p2〉 except for a (unphysical) phase factor [135, 328].
This process provides one with the ability to make a measurement on the
ancilla that distinguishes |s1〉 from |s2〉, something typically done by a QKD
eavesdropper. When the state is |s1〉, then measurement outcomes p1 and q1
determine whether the state of the qubit is |p〉 or |q〉. When the state is instead
|s2〉, that of the qubit must be |p2〉 (or, equivalently, |q2〉) and the question of
whether one has state |p〉 or state |q〉 is left undetermined.

This approach was extended in the mid-1990s to the consideration of sit-
uations in which an arbitrary proportion r of systems of the ensemble are
initially prepared in |p〉, with the remaining amount, s = 1 − r, being pre-
pared in |q〉 (where, without loss of generality, one may take r ≥ s) rather than
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making the simplifying assumption that r = s = 1
2 [238]. Again, one considers

the unitary evolutions above, but then seeks to optimize the probability

P = r|a|2 + s|c|2 , (9.18)

where |〈p|q〉| = |b| |d| |〈p2|q2〉| and so |b| |d| ≥ |〈p|q〉|. This is achieved when
|b|2 = max{|〈p|q〉|

√
s/r, |〈p|q〉|2} and |p2〉 = |q2〉. There are then two possi-

bilities: one in which the above maximum is achieved by the former quantity
and one in which it is achieved by the latter quantity. One then finds

P = 1− 2
√

rs|〈p|q〉| (9.19)

in the former case and in the latter case

P = r
(
1− |〈p|q〉|2

)
, (9.20)

known as the Jaeger–Shimony bound [103, 238]. This solution is the one of
interest in QKD because, for example, eavesdroppers seek to exploit more
realistic situations where the QKD system is working imperfectly, in that
signal states will not always be sent with the identical probabilities called for
by the QKD protocol in use, so the quantum key distribution system must be
described by r as well as by the nonorthogonal states designated in the ideal
protocol.

Consider a system of interest attributed a Hilbert space of greater
dimension than that of a qubit, which is the case for the qubits used
in real-world QKD, where qubits are encoded in photons. In such
situations a similar result is found; the above method of solution can
still be followed in such cases without the need for an external ancilla,
because additional degrees of freedom can serve the same function
as an ancilla (cf. 6.86–92). Such a procedure might be followed by
a QKD eavesdropper wishing, for example, to exploit other degrees
of freedom in the photon that have may been neglected by QKD
system designers or users. Because of the greater dimension of such
a Hilbert space in this case, |p〉 and |q〉 can be written

|p〉 = a|p1〉+ b|p2〉, (9.21)
|q〉 = c|q1〉+ d|p2〉, (9.22)

where |p1〉, |q1〉 and |p2〉 are orthonormal, b and d satisfy the same
conditions as above, and a and c are real numbers. Then |q〉 can be
expressed in terms of |p〉 and a normalized state |p⊥〉 orthogonal to
it:

|q〉 = eiθn|p〉+ (1− n2)1/2|p⊥〉, (9.23)

where n = |〈p|q〉|. This produces the same results as the problem of
determining a qubit state described above, but without the need of
introducing an ancillary system [238].
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A different approach can be used to solve the hypothesis testing problem
not addressed above, that of find the maximal correct classification on aver-
age, with a determinate classification being made for every member of the
ensemble. This can be done in the case of a general preparation by seeking a
binary scheme that measures a projection operator O on the Hilbert space of
the system and classifies for every measurement the measured state as either
|p〉 or |q〉, depending on the measurement outcome. Label the projector eigen-
values as 1 and 0, where in measurements with the outcome 1, |p〉 is selected
and in those with the outcome 0, |q〉 is selected. The probability of a correct
selection is then

P = r〈p|O|p〉+ s
(
1− 〈q|O|q〉

)
. (9.24)

One considers |q〉 as a superposition of orthonormal vectors |p〉 and |p⊥〉, as
in Eq. 9.23, then finds the expectation values of this projection operator O
for the states |p〉 and |q〉 and solves the corresponding optimization problem
to find the appropriate projection, arriving at

P =
1
2

(
1 +

√
1− 4rs|〈p|q〉|2

)
, (9.25)

in accordance with the Helstrom bound [211, 238]. This result has been applied
to the problem of providing an error-free optimum quantum receiver for binary
pure quantum signals [21].13

9.5 The no-cloning theorem

A problem related to the above results regarding quantum state discrimination
is that of copying quantum states. It is impossible to make perfect copies of
an unknown state of a quantum system by unitary operations. Were unknown
quantum states able to be perfectly so cloned, a large number of perfect copies
could be made and used to distinguish quantum states to whatever precision
desired, contradicting the Holevo bound, for example. Another simple argu-
ment that such cloning cannot be performed by a unitary operation is that
such an operation would then allow for the simultaneous measurement of two
properties represented by noncommuting operators, which is precluded by the
basic principles of quantum mechanics: it would enable the measurement of
two such properties via the measurement of a different one of the two in each
of the identical copies. The no-cloning theorem is the direct mathematical
demonstration of the impossibility of cloning an unknown quantum state by
a unitary operation.
13 Related problems, including that of discriminating a larger number of states

as well as mixed states in the form of state comparison—the determination
of whether two systems are described by the same state—and state filtering—
discriminating a pure state from a set of pure states—have also been considered
since 2000; see, for example, [53, 104, 157, 158, 356, 409, 410].



9.6 Basic quantum channels 157

A simple proof of the theorem is the following. Consider a unitary operator
U that could perform both of the following transformations on two different
nonorthogonal vectors |ψ〉, |φ〉:

|a〉|ψ〉 → |ψ〉|ψ〉 , (9.26)
|a〉|φ〉 → |φ〉|φ〉 , (9.27)

resulting in perfect copies of two such two unknown vectors |ψ〉 and |φ〉 made
from a given quantum state |a〉. This transformation would then give

〈ψ|φ〉 = 〈ψ|〈a|a〉|φ〉 = c (9.28)
→ 〈ψ|〈ψ|φ〉|φ〉 = 〈ψ|φ〉〈φ|ψ〉 = (〈ψ|φ〉)2 = c2 ; (9.29)

but this is possible only if c = 0 or c = 1, implying that |ψ〉 and |φ〉 are
either identical or orthogonal, contradicting our initial assumption. Thus, no
unitary process can make identical copies of a general, unknown quantum
state via such a process. At the same time, this calculation is compatible with
the important task of copying of states from a known orthogonal basis.

The impossibility of a universal cloning procedure strongly distinguishes
quantum information from classical information, and has broad practical im-
plications such as lending security to quantum key distribution; see Chapter
12. Given this result, the practical problem of interest becomes that of optimal
universal copying, which is addressed in Section 11.2.

9.6 Basic quantum channels

Let us now consider the effects of several nontrivial quantum channels on
individual qubits, to better understand what quantum channels are like in
practical, rather than noiseless, circumstances.

The depolarizing channel has been extensively studied in the context of
the polarization encoding of quantum information. It can be viewed as taking
a system to a fully mixed state with a probability, p, known as the strength
of depolarization, or leaving it unchanged with a probability q = 1 − p, and
so is described by

E(ρ) = p
1
2

I + (1− p)ρ , (9.30)

with corresponding decomposition operators

E0 =
√

1− (3/4)pσ0, Ei = (1/2)
√

pσi,

where i = 1, 2, 3. The effect of this channel on the set of states initially de-
scribed by the entire Poincaré–Bloch sphere (i.e. the pure states) is to uni-
formly reduce its radius by multiplying it by q in the Stokes parameter rep-
resentation, in accordance with Eqs. 1.24–25. This channel is the quantum
analogue of the classical binary symmetric channel discussed in Section 4.1.
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Pauli channels. The phase-flip channel is described by the map

E(ρ) = p(σ3ρσ3) + (1− p)ρ , (9.31)

which can be described by the two decomposition operators

E0 =
√

1− pσ0 and E1 =
√

pσ3 ,

where σ3 is the Pauli operator corresponding to the single-qubit gate de-
scribing phase-flipping. This channel has the effect on a set of states initially
described by the entire Poincaré–Bloch sphere of reducing its width in the
equatorial plane by multiplying it by a factor of 1−2p. This channel also acts
as a phase-damping channel channel as the operation elements are related
by unitary transformations (cf. the box below Eq. 2.31). Under it, quantum
information can be lost without energy being lost.

The descriptions and effects of the bit-flip and bit+phase-flip channels are
analogous to that of the phase-flip channel, with the Pauli operators σ1 and σ2,
respectively, taking the place of the σ3 in the above, producing contractions
of the Poincaré–Bloch sphere occurring along the corresponding orthogonal
directions. Analogous basis vectors are similarly left unaffected by these chan-
nels. Decomposition operators for these are thus

E′
0 =

√
1− pσ0, E

′
1 =

√
pσ1, and E′′

0 =
√

1− pσ0, E
′′
1 =

√
pσ2,

respectively. A qubit pure-state |ψ〉 that undergoes an arbitrary “error” by
coupling to an environment, taken to be in some initial state |Ē〉, evolves
unitarily together with the environment into the entangled state

|ψ〉|Ē〉 = (a0|0〉+ a1|1〉)|Ē〉 → (a0|0〉+ a1|1〉)|Ē0〉 (9.32)
+ (a1|0〉+ a0|1〉)|Ē1〉 (9.33)
+ (a0|0〉 − a1|1〉)|Ē2〉 (9.34)
+ (a1|0〉 − a0|1〉)|Ē3〉 , (9.35)

where the |Ēµ〉 are not necessarily orthogonal states of the environment. Each
of the above summands is the result of a distinct one of the above Pauli
“errors”; see [401] and Sections 10.2–4.

The amplitude-damping channel produces the asymmetrical “decay” of
one computational-basis state to the other, for example |1〉 to |0〉 as assumed
below, with probability p. It can be described by the two decomposition op-
erators

E0 =
(

0
√

p
0 0

)
, (9.36)

E1 =
(

1 0
0
√

1− p

)
. (9.37)
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Its effect on the states of the Poincaré–Bloch sphere is to produce an ellipsoidal
set of states with a height multiplied by a scaling factor of q = 1−p, contract-
ing it upward (as in our choice of decay direction here, or downward in the
alternative choice) rather than uniformly contracting it as in the cases above,
due to its asymmetrical character, and a width multiplied by

√
q, contracting

it uniformly inward as well.
In the context of quantum information processing, the most significant

effect on a system is decoherence, which can take at least two forms, decay
and dephasing, and is discussed in detail in the following chapter.14 A number
of specific values of the capacities introduced in Section 9.2 for some of the
above-described channels can be found in [51].

9.7 The GHJW theorem

The GHJW theorem points out the fundamental nature of mixed states. By
performing different measurements on individual qu-d-its of a system in a
bipartite pure state |Ψ〉AB , decompositions of a single-system ensemble can
be produced that differ but are described by the same statistical operator.

Consider two different decompositions of the same statistical state of the
first system

ρA =
∑

i

|ai|2P (|ψi〉) , (9.38)

ρA =
∑

i

|a′
i|2P (|ψ′

i〉) , (9.39)

via Hilbert-space bases {|ψi〉}, {|ψ′
i〉}. These have differing purifications de-

scribing the total bipartite system that can be written

|Ψ〉 =
∑

i

ai|ψi〉|χi〉 , (9.40)

|Ψ ′〉 =
∑

i

a′
i|ψ′

i〉|χ′
i〉 , (9.41)

where {|χi〉} and {|χ′
i〉} are orthonormal bases for the Hilbert space of the

second system. By measuring the second qu-d-it, B, in these bases, two differ-
ent ensembles are therefore obtained that are described by the same reduced
statistical operator ρA. The purifications |Ψ〉 and |Ψ ′〉 are related to each other
by a unitary transformation of the state of the second system acting only on
the space of the second system, that is, of the form I⊗U . Thus, either of the
two ensemble descriptions is obtainable by a measurement on the second sys-
tem alone. Likewise, one can consider different decompositions for the reduced
14 For detailed examples of quantum channels producing decoherence effects via

dephasing, see [465].
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state of the second system and find bases for the first system and purifications
giving rise to that statistical operator by measurements of the first system.
This result, known as the GHJW theorem, was shown by Gisin, Hughston,
Jozsa, and Wootters [187, 229], is similar to a result originally obtained by
Schrödinger [249, 298], and has been extended by Cassinelli et al. [99].15

This result can also be seen to describe “quantum erasure” at its most
general, in that it describes the effect of the choice of measurement basis or,
equivalently, choice of measurement apparatus: the information obtained by
a measurement of system B, when classically communicated to A, results in
a change of the description of the subsystem at A. It shows that any finite
ensemble of bipartite quantum states can be remotely prepared by two agents
in distant laboratories through local operations and classical communication
(LOCC). A range of experiments demonstrating quantum erasure have been
carried out (cf. [213]).

9.8 Quantum dense coding

A quantum communication scheme that provides insight into the value of
entanglement for facilitating communication is quantum dense coding, first
proposed by Charles Bennett and Stephen Wiesner [52]. Without shared en-
tanglement, the transmission of a single qubit between Alice and Bob can
only communicate one bit of information, as per Holevo’s theorem. Because
sending two units of information requires twice the resources needed to send
a single unit of information, Holevo’s theorem appears to require two qubits
to be physically transmitted to send two bits of information when using a
quantum channel. A property of systems in Bell states is that local opera-
tions on one qubit of the pertinent pair enable transformations between any
one of the Bell states and any other. Quantum dense coding is a means of
using a Bell state already shared by Alice and Bob that exploits this property
to achieve the transmission of two bits of information by directly transmit-
ting only one qubit. Quantum dense coding demonstrates that the addition
of shared entanglement resources can enable Alice and Bob, in effect, to en-
hance the capacity of a shared quantum channel “beyond” the Holevo limit,
as mentioned in Section 9.2 above.

A standard implementation of quantum dense coding proceeds as follows.
(i) Alice and Bob are provided with a shared pair of qubits in one of the

states of the Bell basis, say, the singlet state |Ψ−〉.
(ii) Alice performs on her qubit either the identity, basis-state flip, phase

flip or basis-state+phase flip transformation, placing the full two-qubit system
in the one of the four Bell states of her choice, then sends it to Bob.

(iii) Bob performs a Bell-state measurement on the pair of qubits now
completely in his possession, providing him with two bits of information.
15 This theorem is not to be confused with the identically named factorization the-

orem in differential geometry.
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Thus, only one physical qubit is transmitted from Alice to Bob, in step (ii);
step (i) can be carried out by a well-characterized entanglement source in
the possession of neither Alice nor Bob. The choice of Alice is effectively
one among the four available Bell states encoding a two-bit message that is
obtained by Bob through his Bell-state measurement (cf. box and Fig. 3.5).

Because quantum communication is generally realized using photons,
it is useful to explicitly consider Bell-state analysis in that context.
The Bell-state measurement (Bell-state analysis) used in the dense-
coding protocol and elsewhere can be performed on a pair of photons
that are polarization-encoded and, being bosons, must be described
by a total wavefunction that is symmetric under interchange of par-
ticles. Because the total wavefunction of the photon pair includes
both polarization and spatial parts, it can be written in the form

|Ψ〉 = |Σ〉space|Π〉polarization . (9.42)

The spatial part can be consider to be specified by the beam oc-
cupation of the pair after encountering a (nonpolarizing) beam-
splitter. This spatial part itself, |Σ〉space, can be either symmet-
ric or antisymmetric, as can the polarization part, |Π〉polarization.
In the polarization-Bell-state basis, there are four vectors each of
which must be correlated with the spatial part in order to provide
the required overall state symmetry. Only in the case of the (anti-
symmetric) singlet state |Ψ−〉polarization can the spatial part be anti-
symmetric. The remainder of the polarization-Bell-basis states (the
triplet states) are symmetric. In the former case, both photons must
emerge anti-symmetrically from the beam-splitter, i.e., in the same
beam. This case will thus not appear in measurements conditioned
by a positive simultaneous coincidence of single photons in different
beams; this allows the polarization singlet, in which both spatial and
polarization parts are anti-symmetric, to be distinguished from the
remaining three cases by using two detectors, one in each beam.
One then notes that, although the remaining states are all exchange-
symmetric polarization states, they can still differ in polarization
correlations. Only the state |Ψ+〉 will have its photon polarizations
anti-correlated. Therefore, by also performing polarization selection
using polarizers in the two output beams, one performs a partial
polarization-Bell-state analysis using only linear optical elements (a
beam-splitter and a pair of polarizers) into a total of three sets of
polarization Bell state: |Ψ−〉, |Ψ+〉, and {|Φ+〉, |Φ−〉}. The remaining
two states of the third set can then finally be distinguished using a
measurement of polarization with appropriate nonlinear optics. For
a detail discussion of Bell-state discrimination, see [472].
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9.9 Quantum teleportation

Consider now the task of transmitting an unknown qubit state, |ψ〉.16 This
can be done provided, as in quantum dense coding, Alice and Bob have first
come to share a Bell state (of two additional qubits), using the technique of
quantum teleportation. To accomplish this task, Alice first measures, in the
Bell basis, the state of the two qubits in her laboratory, namely, the qubit the
state of which is to be transmitted and one qubit of the pair which she jointly
shares with Bob, and communicates the result of this measurement to Bob as
two bits. Based on the values of these two bits of classical information, when
received, Bob performs one of four operations on the second qubit of the pair
the state of which is shared by Alice and Bob, in order finally to obtain the
desired state |ψ〉 of his qubit [42, 69, 71].

Let us consider this process in greater detail. Take the unknown state to
be transmitted to be

|ψ〉 = a0|0〉+ a1|1〉 (9.43)

and the shared initial Bell state to be |Φ+〉 = 1√
2
(|00〉 + |11〉). Take the first

of the shared qubits to be in the possession of Alice and the second to be in
the possession of Bob. The three qubits involved in teleportation thus begin
in the total, three-qubit state

|Ψ〉 = |ψ〉|Φ+〉 =
1√
2
(a0|0〉+ a1|1〉)(|00〉+ |11〉) . (9.44)

By an algebraic rearrangement, this state can be written as a sum of four
terms wherein each term has the first two qubits—those in the lab of Alice—
in a different Bell state, namely,

|Ψ〉 =
1
2
[

(|00〉+ |11〉) (a0|0〉+ a1|1〉)

+ (|00〉 − |11〉) (a0|0〉 − a1|1〉)
+ (|10〉+ |01〉) (a1|0〉+ a0|1〉)
+ (|10〉 − |01〉) (a1|0〉 − a0|1〉)

]
.

When Alice performs a Bell-state measurement on her qubits, she thus effec-
tively obtains a two-bit result, corresponding to the particular one of the four
Bell states her two qubits ended up in after her measurement. It is these two
bits that she then sends to Bob, allowing him to perform the required local
unitary transformation on his qubit, in order for it to end up in the unknown
state |ψ〉, as described at the bottom of the box below.

16 This task should be distinguished from the task of transmitting a physical qubit
system itself, as it is only state “teleportation.”
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It is worthwhile here to consider in some detail how the Bell-basis mea-
surement of the quantum state teleportation protocol can be carried out
by Bell-state analysis described by a simple quantum circuit. In particular,
this allows one to see how a two-bit outcome can be obtained by Alice more
explicitly than by mere reference to the fact that she obtains a measurement
result that is one among four alternatives.
To obtain two bits, Alice can transform her two qubits during the
“pre-measurement” portion of this analysis, into the four two-qubit
computational-basis states |00〉, |01〉, |10〉, |11〉 that correspond explicitly to
the two-bit result of her measurement before a quantum state projection is
effected. In particular, by performing a C-NOT operation on the two qubits
in her laboratory (using the qubit the state of which is to be teleported as
the control qubit) followed by a one-qubit Hadamard transformation on
this unknown (control) qubit state, the four Bell-states are transformed
into computational-basis states in a deterministic way. (Together, these
two operations of the Bell-state measurement constitute running backward
through the circuit for Bell-state creation shown in Fig 3.5.)
After these two unitary transformations, a correlated total three-qubit state
results that is an evenly weighted linear combination of four states, each of
which is of a form where the first two qubits are in a computational-basis
state corresponding to a two-qubit eigenvalue and the third qubit is in a
computational-basis superposition state with weights arising from that of
the unknown state |ψ〉 being teleported, namely,

|Ψ〉 =
1
2
[
|00〉 (a0|0〉+ a1|1〉) (9.45)

+ |01〉 (a1|0〉+ a0|1〉)
+ |10〉 (a0|0〉 − a1|1〉)
+ |11〉 (−a1|0〉+ a0|1〉)

]
.

Writing the three-qubit state in this way explicitly exhibits the perfect
correlation between the (eigen)values of Alice’s possible measurement out-
comes and the possible quantum states of Bob’s single qubit. When the
Bell-state analysis is complete, the corresponding measurement projection
produces an explicitly two-bit outcome and only one of the four above
addends remains. By communicating the two-bit eigenvalue of her mea-
surement result, Alice provides Bob with the required information as to
the local unitary operation (described by a Pauli operator σµ) he must
perform in order to recover the still unknown state |ψ〉 = a0|0〉 + a1|1〉 in
the qubit in his laboratory, namely, the appropriate combination of (poten-
tially trivial) bit-flip and (potentially trivial) phase-flip: for the bit-string
00, µ = 0, for 01, µ = 1, for 10, µ = 3, and for 11, µ = 2.
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It is important to note that neither Alice nor Bob comes to learn the state
|ψ〉 as a result of the teleportation process itself; the state is merely transferred
from the first qubit to the third qubit. Alice learns nothing about the unknown
qubit state itself by performing the Bell state measurement, in that she has
come to know nothing about the (complex) amplitudes a0 and a1. Even Bob
must still measure the qubit in his laboratory after teleportation in order to
come to learn anything about its state.17 Quantum teleportation of qubits
and more complicated quantum systems has been carried out experimentally,
for example, in systems described by continuous variables [177].

9.10 Entanglement “swapping”

Another quantum information-processing task closely related to quantum tele-
portation is the redistribution of entanglement. For example, two particles
that are initially entangled with respective partner particles but not with
each other can become entangled with each other if an appropriate measure-
ment is made on a pair of qubits, one from each pair.18 This is accomplished
by a procedure known as the entanglement-swapping protocol [70, 320, 474].

For specificity, let us examine this process in an optical context. Con-
sider two photon pairs simultaneously emerging in Bell-singlet states from
two sources, each pair created by spontaneous parametric down-conversion
(as discussed in Section 6.16) in a separate nonlinear crystal; call the photons
from one source 1 and 2 and those from the other source 3 and 4. Performing a
Bell-state measurement on two photons, one from each source, provides a pro-
jection of the state of the remaining two photons, also from different sources,
onto a Bell state, changing the pairing of photons that are entangled, in that
sense transferring the entanglement. The initial state of the pair of photon
pairs, rewritten in the following way, exhibits the pertinent correlations.

|Ξ〉 =
1
2
(
|0〉|1〉 − |1〉|0〉

)
12

(
|0〉|1〉 − |1〉|0〉

)
34 (9.46)

=
1
2
(
|Ψ+〉14|Ψ+〉23 + |Ψ−〉14|Ψ−〉23 + |Φ+〉14|Φ+〉23 + |Φ−〉14|Φ−〉23

)
.

A Bell-state measurement of the joint state of photons 2 and 3, for example,
will leave photons 1 and 4 in the same Bell state as photons 2 and 3, accom-
plishing the task of redistributing the entanglement among the photons.
17 Even then Bob could not come precisely to learn the state |ψ〉 by a single mea-

surement unless he were told the basis in which it had initially been prepared.
18 As in the case of quantum teleportation, this activity was first experimentally

carried out by members of the research groups of Francesco de Martini in Italy
and Anton Zeilinger in Austria.
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9.11 Entanglement “purification”

As the above protocols demonstrate, entanglement resources allow one to per-
form various uniquely quantum communication and information-processing
tasks. Yet another important such task can be accomplished, namely, the
consolidation of quantum resources shared between laboratories. If a source
of entanglement is imperfect or the quantum states involved are imperfectly
transmitted due to the quantum channel being noisy, resulting in, for exam-
ple, a product of q-basis states with q 
= 0, 1

2 , 1 (see the box above Eq. 6.23),
the shared collective state may be distilled via LOCC to a more valuable
collective state by agents in two laboratories. This process is referred to as
entanglement purification [43].

Alice

Bob

U

U'

U''

U'''

M

M'

M''

M'''

…

…

|Bijsource

Fig. 9.1. The entanglement-distillation process. The Us are local unitary transfor-
mations. The Ms are local measurements. The lines represent classical communica-
tion between laboratories. |Bij〉 represents the factors of the result [39].

A simple example of an entanglement-purification protocol (EPP), some-
times also referred to as an entanglement-concentration or entanglement-
distillation protocol, uses local quantum operations and classical communi-
cation between two parties (2-LOCC) on an initially shared state of a number
of copies of a bipartite quantum system that may be mixed or pure but non-
maximally entangled [43, 47]. After performing a number of sets of prescribed
operations in stages, a smaller number of pure, highly entangled bipartite
states of these systems can come to be shared, e.g. Bell states |Bij〉.

Recall that the quantity of distillable entanglement can be identified with
the number of Bell-basis states that can be so obtained. A quantum state
ρ ∈ H is considered distillable if there is a number k ∈ N and state |Ψ〉 ∈
Hs ⊂ (HA ⊗HB)⊗k, where Hs is a 2× 2-dimensional subspace, such that〈

Ψ
∣∣(ρTA)⊗k

∣∣Ψ〉
< 0 . (9.47)

The problem under consideration then is the conversion, by 2-LOCC, of a
number n of joint states ρAB constituting the collective state (ρAB)⊗n, into
a smaller number, nR, of pure fully entangled states, say P (|Φ+

AB〉)⊗nR. To
carry out this task, one introduces a third, purifying system, E.
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After purification, the state of all three systems will thus be

P (|Φ+
AB〉)⊗nR ⊗ ρE . (9.48)

where ρE is the final state of the purifying system. In general, it is difficult to
distill out of a mixed state exactly the number of Bell states required for its
production. One-way communication may also be insufficient for entanglement
distillation. In an EPP protocol, the two parties, Alice and Bob, begin with
a bipartite state of n entangled pairs in the state ρM . The protocols proceed
by the repeated application of the following actions by the two parties.

(i) LUTs U are performed on local subsystems.
(ii) Measurements M are performed on subsets of local subsystems.
(iii) Measurement results conditioning the next stage are exchanged.

This process is represented schematically in Fig. 9.1. During this process, some
shared particles are discarded and others are brought progressively closer to
the desired state, such as a product of a number of Bell states smaller than the
number of initially shared particle pairs. The upper bound on the amount of
entanglement that can be distilled is given by Ef (ρM ) per initially shared pair;
if this amount were exceeded, the extra entanglement would allow more mixed
states to be generated than those initially shared, an increase of entanglement
by LOCC, which is impossible by the first principles of entanglement theory
(cf. Sections 6.6–7).

For example, the Schmidt projection method for entanglement concentra-
tion proceeds from an initial set of n shared pure entangled pairs of qubits
described by a product of entangled pure states

|Ψ〉 =
n∏

i=1

(
cos θ

∣∣α1(i)β1(i)
〉

+ sin θ
∣∣α2(i)β2(i)

〉)
, (9.49)

where the αj and βj label Schmidt-basis states of two qubits, that when ex-
panded binomially has n2 terms and n+1 distinct coefficients [39]. When one
of the two agents sharing these pairs makes a precise measurement with out-
come k described by a projection onto a state |Ψk〉 in one of the corresponding
n+1 orthogonal subspaces of dimension 2

(
n
k

)
corresponding to the distinct co-

efficients, where k = 0, . . . , n, they are left with a shared maximally entangled
state in a known subspace of the initial 22n-dimensional state space, each of
the two agents being in possession of a system state lying in a

(
n
k

)
-dimensional

subspace.
If a particular such state, labeled by k, is desired, it is obtained with

probability

pk =
(

n

k

)(
cos2 θ

)n−k( sin2 θ
)k

. (9.50)

The corresponding residual state is maximally entangled and can be trans-
formed into the form of a product of a smaller number of Bell states by again
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making use of the Schmidt decomposition. This method is efficient when n is
large, and works for any n > 2. A less efficient process, known as the Pro-
crustean method can also be used that will work with as little as one shared
entangled pair by making use of bivalent POVMs rather than precise mea-
surements [39]. The above procedure can be straightforwardly extended to the
case of entangled states of qu-d-its.

One reason entanglement purification may be required is that the
quantum channel used to share entanglement is noisy. In that case,
entanglement purification improves the fidelity of a subset of the en-
tangled states agents intend to distribute. In this sense, entanglement
purification can be viewed as a form of quantum error correction,
about which more is provided in the following chapter. Furthermore,
because quantum error-correction methods do not traditionally al-
low for classical communications, whereas entanglement purification
protocols may, EPPs can be used for error correction in situations
where quantum error-correction codes are insufficient.
For example, if Alice and Bob have a very noisy quantum channel
between them and Alice desires to send an unknown qubit to Bob, she
may not be able to do so using an error correction code but can do so
by sharing Bell states with Bob through this noisy quantum channel,
purifying them to a smaller number of pairs after transmission, and
using the resulting purified pairs to teleport the qubit to Bob with the
aid of their classical channel. This illustrates the fact, mentioned in
Section 9.2, that the quantum capacity assisted by two-way classical
communication, Q2, can exceed the unassisted quantum capacity, Q.

9.12 Quantum data compression

In order to efficiently store quantum states produced by a known source of
quantum systems in m possibly nonorthogonal states |ψj〉, which is repre-
sented by ρ =

∑m
j=1 pjP (|ψj〉) when each occurs with a corresponding proba-

bility pj , a quantum version of data compression can be used. If an n-symbol
string of such states is sent, it will occur with probability

∏n
k=1 pk. An ensem-

ble of possible n-symbol messages {p̄i, P (|Ψi〉)} will be represented by ρ̄ = ρ⊗n.
In general, such an ensemble will contain redundancies, which quantum data
compression effectively eliminates.

In order to effect such compression, one can use a quantum code that
allows one to move messages into states on a Hilbert subspace smaller than the
2nlog2m-dimensional one corresponding to ρ̄. This can be realized by collecting
a large number of copies of the system at the source and encoding their joint
state into a smaller system that is transmitted through a quantum channel;
the compressed state can be decoded finally by the receiver into a system



168 9 Quantum communication

of the same kind as the original system, in a state sufficiently close to the
original one.19 Keeping in mind the classical noiseless coding theorem given
in Section 4.6, one may view the source as essentially classical in nature and
described by a Shannon entropy H({λij}) = S(ρ), sending messages as strings
of eigenstates of ρ with probabilities equal to the product λi1λi2 · · ·λin of
their eigenvalues by considering the orthonormal basis in which the statistical
operator ρ is diagonal. As in classical coding theory, it is helpful for this to
consider a “typical sequence.” Its analogue in quantum coding takes the form
of the typical quantum subspace associated with ρ̄, in the sense now described.

Consider a (discrete) quantum source capable of producing qu-d-its, con-
sidered without loss of generality as d log2d qubits, together with an opera-
tion to carry out quantum data compression on the chosen message. Again,
as might be expected by analogy to the classical data-compression results,
S(ρ) qubits per source state is the minimum number required [367]. Nontriv-
ial compression can be carried out provided the message is nonrandom, that
is, provided ρ 
= 1

2 I. The von Neumann entropy value indeed describes the
limit of compression of quantum information in an ensemble described by the
source state ρ, regardless of the manner in which the quantum information is
generated. n qubits can therefore be encoded in at best nS(ρ) qubits.

In particular, consider independent identically distributed (i.i.d.) states
sequentially produced by a quantum source and characterized by Shannon
entropy H({λ}) = S(ρ) ≤ log2d. One may make use of the following typical
subspace theorem (Schumacher [367]): Given a real ε > 0, for any δ > 0 and
sufficiently large n there exists a projector P (n) onto an at most 2n[S(ρ)+ε]-
dimensional subspace, such that tr

(
ρ̄P (n)

)
> 1 − δ, that commutes with ρ̄.

Under the same conditions, the dimension tr
(
P (n)

)
of this “typical subspace”

is bounded:
(1− δ)2n[S(ρ)−ε] ≤ tr

(
P (n)) ≤ 2n[S(ρ)+ε] , (9.51)

that is, the signal strings converge to states on the typical subspace as n
becomes large. For a projector P̄ (n) onto any subspace of at most 2nR di-
mensions, for a fixed R < S(ρ), for any δ > 0 and sufficiently large n, one
has

tr
(
ρ̄P̄ (n)(ρ)

)
≤ δ . (9.52)

One also has the quantum noiseless coding theorem (Schumacher): Given
an i.i.d. quantum source described by ρ, there exists a reliable compression
scheme with compression rate R > S(ρ) for it, and for R < S(ρ) there exists
no such reliable scheme.20 It therefore suffices in practice to code the typical
19 When the states characterizing the subensembles are orthogonal, the problem

reduces to a classical one. When the states are nonorthogonal, however, classical
compression methods will damage them. Furthermore, the quantum encoder must
not contain any memory of them or they will not be recoverable during decoding
(cf. comments at the end of Sect. 9.9).

20 In addition to Schumacher’s original proofs cited above, one can find alternative
proofs of these theorems in [315].
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subspace and to ignore its complement. Jozsa and Schumacher accordingly
provided the following scheme for quantum data compression [245]. Given
a source, characterized by ρ, and large M -symbol blocks,

∣∣Ψ (M)
〉
, states of

the typical subspace of dimension 2M [S(ρ)+ε] are transformed by a unitary
operation U to the subspace of the first M [S(ρ)+ ε] qubits of a corresponding
sequence of M log2 d qubits, where d is the dimension of the states produced by
the source. Placing in the state |0〉 the remaining R = M log2 d−M [S(ρ)+ ε]
qubits of the full sequence of qubits results in a (generally mixed) state ρ(M).
In a transmission making use of such data compression, sender Alice carries
out the above process and then sends only the first M [S(ρ) + ε] qubits. The
receiver Bob then decompresses them, by first adding R null qubits in |0〉 so
as to recover ρ(M), and then performing the transformation U−1. The result is
that Bob obtains the signal block with an average fidelity greater than 1− δ.

9.13 Quantum communication complexity

Given the procedures of entanglement purification and quantum data com-
pression, a straightforward modification of the schema of classical communi-
cation allows one to use quantum resources such as entangled qubit pairs to
obtain substantial improvements in the efficiency of communication. Quantum
communication complexity theory is the general study of computational tasks
and their efficiency in a context where quantum channels as well as classical
communication channels are available to agents [262, 464]. One can consider
communication that remains largely classical but where an unlimited supply
of quantum entanglement resources are available to the parties that have the
ability to perform local operations [109]. For example, rather than communi-
cating using only bits, parties communicate making use of entangled qubits
as in dense coding, as described above. Yet more complex situations involve
communication using qubits as well as previously shared entangled systems.

As already shown in this chapter, quantum resources allow a number
of tasks to be accomplished more efficiently than possible when only the
transmission of classical bits is allowed and quantum entanglement between
physical systems is not present; without quantum entanglement, laboratories
must communicate with each other to come to possess nonlocal correlations,
whereas with shared entanglement present no communication is necessary to
produce such correlations, which can then be used to carry out tasks.

Indeed, quantum nonlocality demonstrations can be understood as com-
munication complexity problems in which shared quantum entanglement re-
duces the amount of communication required. In particular, a two-party quan-
tum communication protocol has been shown to operate more efficiently than
the corresponding classical protocol for determining a binary function f(x, y)
of two input bits x0 and y0 received by an Alice and a Bob, respectively,
who can thereafter no longer communicate. Such a function can be deter-
mined provided the two agents output two bits a and b, respectively, such
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that a⊕ b = x0 ∧ y0 with as high a probability as possible, where ⊕ indicates
XOR (addition mod 2) and ∧ indicates AND.21

Assume an Alice and a Bob initially to have random two-bit strings a =
a1a2 and b = b1b2, respectively, with bits satisfying the conditions ai⊕ bj = 0
for all i, j, except when i = j = 1 in which case a1⊕b1 = 1. All four conditions
cannot be simultaneously satisfied deterministically, but any three of them can
be; they can thus be satisfied by classical random variables with probability
at best 3

4 . Assume the ai and bj to be randomly distributed independently of
inputs x0 and y0. There is a quantum protocol in which Alice sends a single bit
to Bob, which he uses to compute the function f(a, b) = a1⊕b1⊕(a2⊕b2) but
must sometimes fail to accomplish this task; Bob can compute f(a, b) if he can
obtain the proper information about Alice’s string (either a1 or the binary sum
of her two bits), which can be done with probability p(1−p) = cos2(π/8) > 3

4
by performing measurements on a Bell state and performing the appropriate
pair of rotations on Alice’s and Bob’s qubits [85].

To see this, consider Alice and Bob each to possess one of two qubits
initially in the shared Bell state |Φ−〉AB and then to perform the following
actions, with the string x0y0 as their input. They wish to determine the func-
tion f(x, y) = x1⊕ y1⊕ (x0 ∧ y0). If x0 = 0, then Alice applies a − π

16 rotation
to her qubit in the appropriate plane; otherwise, she applies a rotation of
3π
16 . She then measures the qubit, obtaining the outcome bit a. Bob proceeds
equivalently with his qubit, obtaining his outcome bit b. These actions pro-
duce a two-qubit superposition of states |Φ−〉AB and |Ψ+〉AB wherein the
probability amplitude of the former is cos(θA + θB) and that of the latter is
sin(θA + θB), where the rotational angles θX (X = A, B) are those actually
performed. Thus, the probability that a ⊕ b = 0, that is, the two qubits end
up in their original state is p(a⊕b) = cos2(θA +θB), where the rotation angles
actually executed are here labeled according to the party implementing them
and p(a⊕ b) is the probability of producing the desired outputs. In all cases,
θA + θB = π

8 . Alice then sends a ⊕ x1 to Bob, who sends b ⊕ y1 to Alice, so
that both parties can individually determine f(a, b), because they can at that
point determine the bit (a⊕ x1)⊕ (b⊕ y1) = x1 ⊕ y1 ⊕ (a⊕ b), which equals
the f(x, y) given above with probability cos2(π

8 ), which exceeds 3
4 .

Investigations of quantum communication complexity have been made ex-
perimentally [84] and extended to multiparty situations [86]. Consider n par-
ties in possession of partial input data for some n-variable function. The com-
munication complexity of the function is the minimum number of classical
bits that must be broadcast for every party to come to know the value of
the function. Interestingly, it has been found that there exists a broad class
of quantum communication complexity protocols that can improve the ef-
ficiency of solution of communication complexity problems beyond what is
possible classically if and only if a Bell-type inequality for qutrits is violated
[84].

21 This function has also been used to probe quantum mechanics itself [102].
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Quantum decoherence and its mitigation

One of the greatest challenges in quantum information science is the develop-
ment of methods for efficiently maintaining the uniquely quantum properties
of states during the performance of quantum information-processing tasks. In
particular, quantum information-processing hardware designs are faced with
two competing requirements, that of strong interactions between their inter-
nal components for the performance of controlled quantum gates and that of
isolating qubits from the environment in which the hardware operates.1 Quan-
tum decoherence is the loss of coherence within a quantum state behind the
second of these requirements, and can take the form of dephasing or the loss
of state population described by a nonunitary evolution of local system states,
due to unwanted interaction with the environment.2 This interaction generally
necessitates the correction of errors it induces, which are highly detrimental
to quantum information-processing tasks.

One of the benefits of information processing with few qubits, say the one
or two qubits of quantum key distribution with photons, is that the coupling
of qubit and environment can be kept small for photons. On the other hand,
effective deterministic quantum computing generally requires many qubits
and the ability to implement conditional quantum gates between different,
intersecting sets of qubits. In the case of multi-photon states, the lack of
direct photon–photon coupling renders deterministic quantum computation
ineffective, but probabilistic approaches remain viable. In the case of more
strongly interacting particles, their coupling with the environment tends to
be strong as well, leading to increased decoherence. A number of techniques for
avoiding and mitigating decoherence have been developed that are discussed
here, along with principles and methods of quantum error correction that are
vital to the further development of quantum information processing.
1 See, for example, [429].
2 A more general theory of decoherence was laid out by Roland Omnès in [317].
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10.1 Quantum decoherence

Quantum decoherence can result from an environment’s interacting with in-
dividual qubits in such a way that an independent random average phase
shift 〈φi〉 (i = 0, 1) is given to each basis state, and thus a phase shift rel-
ative to its complement, that is, the environment may induce the following
transformation on these states

|0〉 → ei〈φ0〉|0〉 , (10.1)
|1〉 → ei〈φ1〉|1〉 , (10.2)

resulting in an observable relative phase difference (dephasing) between com-
putational basis states. Decoherence may also transform qubits in such a
way that the population of qubit states is changed in a manner describ-
able by a nonunitary evolution of the statistical operator of each qubit.3 Ini-
tially pure states are then transformed to mixed states in which off-diagonal
terms have simply vanished due to decay (i.e., amplitude damping).4 More
precisely, the decoherence of the state of an ensemble of pure qubit states
|ψ〉Q = a0|0〉Q + a1|1〉Q may occur in a quantum channel so that

P
(
|ψ〉Q

)
→ ρ′

Q =
(

|a0|2 a0a
∗
1e

−γ(t)

a∗
0a1e

−γ(t) |a1|2
)

, (10.3)

where γ(t) is a positive, time-dependent real parameter characterizing cou-
pling to the environment and the statistical operator is kept normalized. For
example, in a d-level system, the dephasing due to coupling with the environ-
ment has the following effect in the case of a generic, possible mixed, initial
qubit state.

ρQ → ρ′
Q =

ε

d
I + (1− ε)ρQ , (10.4)

where ε is the strength of depolarization. Such behavior has been carefully
studied experimentally in the important case of the qubit (d = 2), as described
in Chapter 8 [334].

Decoherence can also be viewed as the unitary evolution of a compound
system consisting of the qubit and its environment under which the sys-
tem and environment become entangled. This is just the situation faced by
Schrödinger’s cat when it becomes entangled with its environment [365]. Con-
sider two pertinent environmental states |Ē0〉 and |Ē1〉 that are not necessar-
ily orthogonal, in particular, that are such that 〈Ē0|Ē1〉 = e−γ(t).5 The pure
3 See [317] for the presentation of a general theory of decoherence.
4 See also Sect. 9.6, where the joint evolution of a qubit and environment is de-

scribed. For a detailed treatment of decoherence effects described as quantum
channels and a discussion of the effects on state entanglement, see [465].

5 The bar notation for the |Ēi〉 here, as before, serves to distinguish these states
from decomposition operators for CPTP maps used to describe the effects of
quantum channels.
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time-dependent statistical operator for the total system of qubit and its envi-
ronment can be written

ρQ+Ē(t) = |a0|2|Q0Ē0〉〈Q0Ē0| + a0a
∗
1|Q0Ē0〉〈Q1Ē1| (10.5)

+ a∗
0a1|Q1Ē1〉〈Q0Ē0|+ |a1|2|Q1Ē1〉〈Q1Ē1| .

The reduced statistical operator of the qubit provides its individual descrip-
tion, namely,

ρQ(t) = trĒρQ+Ē(t) (10.6)
= 〈Ē0|ρQ+Ē(t)|Ē0〉+ 〈Ē′|ρQ+Ē(t)|Ē′〉 , (10.7)

where |Ē′〉 = (|Ē1〉 − e−γ(t)|Ē0〉)/
√

1− e−2γ(t) is a state effectively orthogo-
nal to |Ē0〉 at time t. As the qubit and its environment continue to interact
over the decoherence time, an increasingly mixed ensemble of computational-
basis states with no mutual coherence ultimately results, which is the limiting
behavior of the initially pure qubit state described by Eq. 10.3, namely,

ρQ(t) → ρ′
Q = |a0|2P

(
|0〉Q

)
+ |a1|2P

(
|1〉Q

)
. (10.8)

Decoherence occurs rapidly in quantum computing systems, which by nature
are generally far more complex than, say, those required to implement quan-
tum key distribution.6

Quantum information-processing systems must be engineered and their
states encoded so as to minimize such unwanted interaction with the environ-
ment and to sufficiently slow the rate of decoherence that all needed quantum
logic operations may be well performed. Random errors accumulate as steps
in a random walk do, that is, with a probability that accumulates linearly in
the number of operations leading to them, say, the number of quantum gates
effected. Three primary methods for mitigating and counteracting the effect of
decoherence in quantum information-processing systems are decoherence-free
subspace methods, quantum error-correction methods, and dynamical decou-
pling methods. The first two of these are considered below.

10.2 Decoherence and mixtures

It might be thought that the need to describe quantum systems by statisti-
cal operators arises simply from the influence of noise on quantum systems,
that is, that all such states could be described by some pure state, being con-
taminated by random external influences. However, noise is generally local
in character, as in the description above, and is certainly so in cases where
one is dealing with photons separating from each other at the speed of light.
6 The behavior of such a large number of qubits under decoherence is also described

in Sect. 1.7.
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This severely constrains the ability of noise alone to give rise to mixed states.
Mixed states that can be produced by local noise influences alone are referred
to as locally contaminated (LC) and those in which local measurements and
classical communication may occur are considered states produced by local
contamination and classical communication (LCCC). This lends further sup-
port to the view that mixed states are fundamental in nature.

Let us consider in some detail the question of which statistical operators
are accessible from pure states under such local processes. For N -partite sys-
tems with qu-d-it subsystems, the initial pure states are described by 2(dN−1)
real parameters, whereas the number of real numbers necessary for describing
a general mixed state of the system is larger, namely d2N − 1, as discussed
in Chapter 7. That not all statistical operators are accessible from initially
pure states via noise effects can be seen by noting that the number of real
parameters characterizing state contamination is only linear in the number of
parties, N , so that the number of parameters describing the pure states and
their contamination is less than the number describing the statistical states.

In particular, note that the most general transformation of each of N qu-
d-its |i〉 interacting locally with its environment is

|i〉|0〉Ē →
∑

j

|j〉|Ēij〉Ē , (10.9)

where |Ēij〉Ē are (not necessarily orthonormal) environmental states specified
by d4 parameters and constrained by d2 conditions arising from the orthonor-
mality of the qu-d-it states, which are therefore described by (d4 − d2) pa-
rameters. Thus, the number of parameters governing the interaction of all N
qu-d-its with their local environments together with the number of real param-
eters describing the initial pure states is 2(dN − 1) + N(d4 − d2), whereas the
statistical operators of the qu-d-its may require up to (d2N −1) parameters to
be fully described. As a result, it is not possible to account for the appearance
of all statistical operators from initially pure states by local environmental
effects alone for systems composed of more than two qu-d-its [212].

10.3 Decoherence-free subspaces

In the decoherence-free subspace method of decoherence mitigation, one makes
use of a specially chosen type of subspace, a decoherence-free subspace (DFS),
of the full Hilbert space of the information-processing system that by construc-
tion is protected from the influence of noise from its environment. This sub-
space is spanned by logical-qubit states of several physical qubits [468, 469].
This approach to decoherence mitigation typically assumes that the qubits
under consideration are subject to decoherence of a sort in which the environ-
mental disturbances are identical for all qubits, with each qubit interacting



10.4 Quantum coding, error detection, and correction 175

with the environment in a similar but uncorrelated way, sometimes called col-
lective decoherence. The logical states (sometimes called error-avoiding quan-
tum code states) of decoherence-free subspaces accordingly possess a symme-
try, for example, under permutation of physical components. This symmetry
is associated with the fact that the logical states of DFSs are often maximally
entangled states.

To see how a properly chosen encoding subspace can help mitigate deco-
herence, consider the encoding of a logical qubit into the Bell states |Ψ±〉, by
the mapping

|0〉 �→ |0L〉 = |Ψ−〉 , (10.10)
|1〉 �→ |1L〉 = |Ψ+〉 . (10.11)

A dephasing-noise environment such as the first one described above in Section
10.1 will have no influence on encoded states in the subspace spanned by |Ψ±〉.
It will have the effect

|Ψ−〉 → ei〈φ0〉|0〉ei〈φ1〉|1〉 − ei〈φ1〉|1〉ei〈φ0〉|0〉 (10.12)
= ei(〈φ0〉+〈φ1〉)(|0〉|1〉 − |1〉|0〉) (10.13)

= ei(〈φ0〉+〈φ1〉)|Ψ−〉 (10.14)

in the case of the Bell state |Ψ−〉, the resulting global phase factor being
unobservable; a similar global phase will clearly also result in the case of
such noise on the Bell state |Ψ+〉, and therefore on linear combinations of
the two. This sort of noise will accordingly have no computationally rele-
vant effect on the logical states of this decoherence-free subspace, because
|0〉L → ei(〈φ0〉+〈φ1〉)|0〉L and |1〉L → ei(〈φ0〉+〈φ1〉)|1〉L; the logical states remain
orthogonal despite the noise, as can be seen by taking their inner product.7

10.4 Quantum coding, error detection, and correction

Bit errors in classical systems can be corrected, for example, through the use
of a simple repetition code, wherein each bit is encoded into a logical bit
consisting of several duplicates of itself: i �→ iL = ii . . . i, i = 1, 2. In this
way, provided errors are independent and unlikely, by checking the values
of the encoding bits and maintaining each at the dominant bit value, one
may render single-bit errors incapable of flipping the value of the logical bit,
which is similarly decoded by the receiver using such a majority vote.8 More
generally, linear codes are special subgroups of the full error group consisting
of errors that take codewords to codewords and, as such, are undetectable.
7 This situation has been well investigated experimentally by the groups of Paul

Kwiat and Aephraim Steinberg; for example, see [264, 302].
8 The classical case is described in Sect. 4.6.
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A noisy quantum channel can similarly cause the value of a transmitted
bit to flip value with a given probability, p, analogously to the situation in the
classical binary symmetric channel (see Fig. 4.2). A quantum majority vote
procedure can also be carried out. For example, for three qubits, one can use
the encoding

|i〉 �→ |iii〉 (10.15)

for this purpose. A simple quantum circuit consisting of a C-NOT gate control-
ling each of two ancillae initially in the state |0〉 suffices for the construction
of these codestates. Although an essential component of any quantum error-
correction scheme is the encoding of quantum information, quantum states are
often susceptible to a broader range of errors that may render unrecoverable
superpositions of states encoded in this simple way.9

In the quantum context, a majority vote procedure analogous to
the classical one encounters the difficulty that one must perform a
measurement on all the “voter” qubits in order to correct errors, a
process that can also destroy quantum coherence. Unlike classical
bit errors, qubit errors are not discrete but rather have a continuous
character just as have qubit states themselves. Thus, a qubit can
enter any of an infinite number of possible states, rather than just
two, as a result of the presence of environmental noise. Because of
this continuous character, the quantum fidelity

F
(
P (|ψ〉), ρ

)
= 〈ψ|ρ|ψ〉 (10.16)

is a helpful tool to supplement the simple discrete accounting of
errors. It is also important to note that the unitary operations re-
quired by quantum information processing may also be imperfectly
executed. A corrected or processed qubit must have nearly full fi-
delity, F = 1, with its desired state. In fault-tolerant quantum infor-
mation processing, a corresponding amplitude of failure is also often
introduced [258].

The quantum parallelism of quantum computing uses high-visibility multi-
qubit interference to operate efficiently, which requires coherence to be main-
tained throughout computation. To avoid the difficulties potentially posed
by decoherence, quantum error correction uses entangled states and partial-
state measurements to extract only that information associated with errors
without disturbing vital state coherence. If errors on distinct qubits occur
independently and the probability p of an error to occur on any given qubit
9 Note that here, because the basis is known and the states involved are orthogonal,

this does not violate the no-cloning theorem. Only bits are actually copied in this
process. Also note that by contrast with quantum data compression, which seeks
to eliminate redundancy, quantum coding introduces it.
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is sufficiently small, it is a good approximation to ignore the possibility of
more than n total errors occurring, because more than n errors will occur
with a very small probability, of the order O(pn+1). Therefore, one generally
considers the most common situations, which deal with a limited number of
errors.

Similarly to the logical states of decoherence-free subspaces discussed in
the previous section, quantum error-correcting code (QECC) states are typ-
ically also entangled states. QECCs can be understood as functioning, in
essence, by storing information in the quantum correlations among differ-
ent components of the composite system realizing the code. If a portion of
a system in a code state is influenced by its environment but remains well
correlated with other portions of the system, then the encoded information
still remains in these correlations and remains salvageable from them through
error recovery procedures.

The continuous nature of quantum errors does not present an insurmount-
able problem because quantum errors can be reduced to a few types of error.
Just as the classical binary symmetric channel produces a number of classical
bit-flip errors e ∈ GF (2) with a given maximum Hamming weight, quantum
Pauli channels are those where single-qubit errors and products thereof pro-
duce at most a given number of errors. The two fundamental types of qubit
error are the bit-flip error and sign-flip error. A bit-flip error on a single qubit
is described by the operation of the Pauli operator σ1 on it. Sign-flip errors
(also known as phase-flip errors) are similarly described by the operation of
σ3 on the qubit at which they occur, as mentioned in the discussion in Sec-
tion 9.6 on the quantum channels inducing them.10 The errors arising from
a number of these basic errors in Pauli channels are thus naturally described
by the Pauli error group, Gn, for n qubits:

Gn =
{
e1 ⊗ e2 ⊗ · · · ⊗ en|ei ∈ G, i ∈ {1, . . . , n}

}
, (10.17)

where G is the single-qubit Pauli group, {±σµ,±iσµ} (µ = 0, 1, 2, 3), which is
G1.11 Thus, the multiple-qubit error group consisting of such tensor products
is seen to be a subset of the group U(2n) of unitary operators on (C2)⊗n.
An error weight consisting of the sum of the number of bit-flip errors plus
the number of phase-flip errors is attributed to a given error-group element
10 Both types of qubit error are thus describable by the corresponding gates dis-

cussed in Sect. 1.4.
11 See Sect. 9.6 for a discussion of quantum channels inducing the errors comprising

G, the Pauli channels. Note that G is a finite group of order 16, with a center
consisting of diagonal matrices with a related “effective” error group Geff being
G modulo this center, which is a cyclic group of order 4. The effective error group
is thus an Abelian two-group of order 4 that is isomorphic to Z

2
2. The algebra of

the Pauli matrices is such that any of them can be constructed from at most two
of the remaining three.
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e ∈ Gn. These errors are correctable, as are linear combinations of them,
because Gn is a basis for the space of 2n × 2n matrices.

Consider now a single-qubit state of the generic form

|ψ〉 = a0|0〉+ a1|1〉 (10.18)

to be mapped into a linear combination of quantum-code states (logical states)
|0L〉, |1L〉 lying in a higher-dimensional Hilbert space of a larger system in-
cluding additional, ancillary qubits. In the DFS example presented in the
previous section, only a single ancilla was used to support this. More robust
logical states for error correction involve a greater number of ancillae, and
hence larger spaces. Specifically, the state of each qubit Qi of a k-element
quantum register is encoded in a logical state of an element C̄i of a larger
n-element register by a mapping of the form(

a0|0〉Qi
+ a1|1〉Qi

)
|00 . . . 0〉 �→ a0|0L〉C̄i

+ a1|1L〉C̄i
, (10.19)

so that k logical qubits are present in an integral number n ≥ k of physical
qubits.12

Geometrically, QECCs are subspaces such that any error in a small number
of qubits moves the state in a direction perpendicular to them, allowing the
error to be corrected by reference to this change. The (logical) computational
basis {|0L〉, |1L〉}⊗k is chosen such that errors induced by the environment
also take each basis state to a subspace that preserves the required quantum
coherence and leave the computational register and the environment in a joint
tensor product state. States susceptible to decoherence are initially encoded by
a unitary operation into the corresponding error-correction codespace within
a larger subspace of the full encoding system of original bits plus the ancillae.
The ancillae evolve into mutually orthogonal states dependent on interaction
with the environmental noise, so that error correction is possible based on
the results of measurements of these ancillae, which provide information as
to the specific errors induced, in a procedure known as error extraction: error
detection is performed, whenever necessary, using a quantum measurement
that projects the computational state onto a superposition of projectors each
derived from a specific code states by introducing the corresponding error in
it. The original state can be then recovered by a unitary transformation into
the codespace that depends on the result of the detection known as the error
syndrome, which corresponds to a specific error.

Consider a projector P onto the codespace. To each error syndrome there
will correspond one of a set of orthogonal subspaces. Error correction is car-
ried out via a (trace-preserving) recovery operation R(ρ). In the statistical-
operator description, a proper error-correction recovery process corrects the
error process E(ρ) in the sense that
12 Note that even in cases of repetition coding this process does not involve the

cloning of qubits because the local physical qubit states obtained by partial trac-
ing out all others will not in general be the same as that of the initial qubit.
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R
(
E(ρ)

)
= ρ , (10.20)

where ρ is the statistical operator of the system being corrected. Such an
operation exists for a given error if and only if

Pe†
iejP = aijP , (10.21)

where the ei, ej are the errors correctable by R(ρ) and aij is a complex scalar.
For a multiple-qubit pure state |Ψ0〉 lying in the codespace of a nonde-

generate error-correcting code, C, whereby k qubits are encoded in a n-qubit
space, a quantum codespace is a 2k-dimensional Hilbert subspace such that

〈Ψ0|eα1
ν1

eα2
ν2

. . . eαn
νn
|Ψ ′

0〉 = 0 , (10.22)

where 1 ≤ n ≤ 2K, for any two, possibly identical states |Ψ0〉, |Ψ ′
0〉 in the

codespace and any product of Pauli matrices of up to 2n factors in the error
group acting on different qubits, K being the number of errors that the code
can correct, where the action of (σ1)νi

, (σ2)νi
or (σ3)νi

on any of the n qubits
is considered to be a single error, the νi indicating the error locations and the
αi indicating the multiplicities of the errors. A good error-correcting code will
have a coding rate and an error rate that tend to nonzero values as n becomes
large.

In the face of known types of error, one thus wishes to preserve a 2k-
dimensional subspace, S, within the full 2n-dimensional space using the code
C, which is then called an [n, k] quantum code. The (n − k) ancillae are
used as primary memory during the error correction process. Let A be a
family of interaction operators ea = 〈µa|U |χ0〉, where {|µa〉} is a Hilbert-
space basis for the environment the initial state of which is |χ0〉. The necessary
and sufficient conditions for correcting individual errors resulting from Gk are
together known as the Knill–Laflamme conditions:

〈0L|e†
aeb|1L〉 = 0 , (10.23)

〈0L|e†
aeb|0L〉 = 〈1L|e†

aeb|1L〉 , (10.24)

[47, 155, 256]. The first condition requires that the encoded states remain
orthogonal under any correctable error; the second condition requires that
the lengths and inner product of the encoded states remain equal under any
correctable error. The error behavior in a network of quantum gates can be
represented by a sum of all networks that represent all possible errors, known
as the error expansion of the network [258, 259].

10.5 The nine-qubit Shor code

Let us now consider some specific error-correction codes used to implement
the above general methods. As mentioned previously, classical bit-flip errors
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have obvious quantum analogues, where the value of a qubit is flipped in the
computational basis. Such bit flips can be detected and corrected in direct
analogy to the manner in which they are detected and corrected for classical
bits, by a majority vote method. However, in particular, the phase-flip error,
described by the action of the Pauli operator σ3, and the bit+phase-flip error
induced by the product of both errors −iσ2, have no classical counterparts.
Nonetheless, recalling from their discussion in Section 1.4 that the bit-flip and
phase-flip operations interchange roles in the diagonal basis {| ↗〉, | ↘〉}, one
sees that phase-flip errors can still be corrected if one uses an encoding taking
computational-basis states into diagonal-basis states.

In order to be able to handle both sorts of error at one time, one can, for
example, make use of the following binary linear code and then apply it repet-
itively. Taking the dual of the classical Reed–Müller code RM(1, 3), namely
C = {(0, 0, 0), (1, 1, 1)} discussed in Section 4.4, one can use the following two
(three-qubit) GHZ-type entangled states

| ⇑〉 =
1√
2

(
|000〉+ |111〉

)
, (10.25)

| ⇓〉 =
1√
2

(
|000〉 − |111〉

)
(10.26)

as logical qubits.13 These logical qubits inherit the one-bit-flip-error correction
property of the classical code used in its construction [402]. Using these logical
qubits and an additional repetition coding step, one has

|0〉L = | ⇑〉| ⇑〉| ⇑〉 , (10.27)
|1〉L = | ⇓〉| ⇓〉| ⇓〉 . (10.28)

The resulting code is the nine-bit Shor code which makes use of nine physical
qubits to encode each logical qubit [391].14

Recall, from the discussion in Section 10.1, that the decoherence process
can be understood as a process in a larger space whereby an environment
described by the pure state |Ē0〉 becomes entangled with computational basis
state-vectors of one of the qubits, that is,

|Ē0〉|0〉 → |a0〉|0〉+ |a1〉|1〉 , (10.29)
|Ē0〉|1〉 → |a2〉|0〉+ |a3〉|1〉 . (10.30)

Thus, for example, as a result of the entangling of the environment with the
first physical qubit of the three-qubit state | ⇑〉, the following evolution of the
overall environment and system state is
13 An rth order Reed-Müller code RM(r, m) consists of the binary strings of length

n = 2m associated with the Boolean polynomials of degree at most r.
14 This code is degenerate in the sense that different errors in the total space have

an identical effect in the codespace.
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|Ē0〉| ⇑〉 →
1√
2

(
(|a0〉|0〉+ |a1〉|1〉)|00〉+ (|a2〉|0〉+ |a3〉|1〉)|11〉

)
, (10.31)

and similarly for the three-qubit state | ⇓〉,

|Ē0〉| ⇓〉 →
1√
2

(
(|a0〉|0〉+ |a1〉|1〉)|00〉 − (|a2〉|0〉+ |a3〉|1〉)|11〉

)
. (10.32)

These two expressions can be rearranged as a product of superposition states
of the environmental final states |ai〉 and three-qubit GHZ-type computa-
tional basis superposition states |ijk〉 ± |lmn〉, with the result that the same
environmental states are found to be entangled with orthogonal states in the
encoding basis {| ⇑〉, | ⇓〉}. Then, by examining the states of the remaining six
qubits, one can determine the original states. Finally, ancillary qubits can be
introduced to allow error extraction, providing an error syndrome describing
which of the three encoded qubits was in fact the one that suffered decoherence
and whether there was phase flip between the two elements of the three-qubit
code GHZ superposition state [391]. With this information, the error can be
corrected.

10.6 Stabilizer codes

In applying quantum error-correction methods, it is often more convenient to
work with a set of operators than with a set of state-vectors to find specific im-
plementations.15 The stabilizer-code formalism is useful for finding codespaces
in this way. The Pauli group Gn described above is the basic mathematical
structure underlying this formalism. Take S to be the vector subspace kept
fixed by a subgroup of elements of Gn; this subgroup is the stabilizer, S, of S.
Given the generators of a subgroup, the subspace it stabilizes can be efficiently
found.

For example, the Steane code is given by the logical states

|0L〉 =
1√
8

(
|0000000〉 + |1010101〉

+|0110011〉 + |1100110〉
+|0001111〉 + |1011010〉
+|0111100〉 + |1101001〉

)
, (10.33)

|1L〉 =
1√
8

(
|1111111〉 + |0101010〉

+|1001100〉 + |0011001〉
+|1110000〉 + |0100101〉
+|1000011〉 + |0010110〉

)
, (10.34)

15 A method for simplifying the description of QECCs and their construction based
on orthogonal geometry can also be found in [98].
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of seven physical qubits [402].16 The six generators, si, of the stabilizer sub-
group corresponding to this code are the operators

σ0 ⊗ σ0 ⊗ σ0 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 (10.35)
σ0 ⊗ σ1 ⊗ σ1 ⊗ σ0 ⊗ σ0 ⊗ σ1 ⊗ σ1 (10.36)
σ1 ⊗ σ0 ⊗ σ1 ⊗ σ0 ⊗ σ1 ⊗ σ0 ⊗ σ1 (10.37)
σ0 ⊗ σ0 ⊗ σ0 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 (10.38)
σ0 ⊗ σ3 ⊗ σ3 ⊗ σ0 ⊗ σ0 ⊗ σ3 ⊗ σ3 (10.39)
σ3 ⊗ σ0 ⊗ σ3 ⊗ σ0 ⊗ σ3 ⊗ σ0 ⊗ σ3 . (10.40)

Consider the set of unitary operators leaving Gn unchanged; this set of oper-
ators is the normalizer N(Gn). The set of errors e ∈ Gn for which eg = ge
for all g ∈ S is the centralizer, Z(S). Encoding, decoding, error detection
and recovery for stabilizer codes require only gates in the normalizer, which is
generated by the tensor products of identity, C-NOT, Hadamard, and phase
gates. The conditions for a stabilizer code to be an error-correcting code suf-
ficient for the correction of an error set {ei} are that e†

iej 
∈ N(S) \ S, for all
i, j.

The smallest code that allows for the correction of arbitrary errors within
a single-qubit subspace is the five-qubit code

|0L〉 =
1
4

(
|00000〉+ |10010〉+ |01001〉+ |10100〉

+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉+ |00101〉

)
|1L〉 =

1
4

(
|11111〉+ |01101〉+ |10110〉+ |01011〉

+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |01111〉
− |01110〉 − |10011〉 − |01000〉+ |11010〉

)
,

which has the stabilizer

σ1 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ σ0 (10.41)
σ0 ⊗ σ1 ⊗ σ3 ⊗ σ3 ⊗ σ1 (10.42)
σ1 ⊗ σ0 ⊗ σ1 ⊗ σ3 ⊗ σ3 (10.43)
σ3 ⊗ σ1 ⊗ σ0 ⊗ σ1 ⊗ σ3 (10.44)
σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 (10.45)
σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 (10.46)

16 For an extended pedagogical discussion of this code, its encoding and syndrome
quantum circuits and relationship to the corresponding classical Hamming code,
see [343].
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[266]. The entanglement inherent in these code states allows one to combat the
unwanted entanglement of qubits with their environment. These code states
and those of the seven-qubit Steane code, like the GHZ state, can be shown
to contradict local realism; see Footnote 22 of Chapter 7 and [139].

10.7 Concatenation of quantum codes

In quantum concatenated coding, quantum codes are combined so that data
are encoded in some [n, k, d] code, as categorized analogously to classical cod-
ing discussed in Section 4.5, where n describes the size of the codespace, k
is the number of bits encoded, and d is the Hamming distance of the code.
Each qubit in a block of the first code is encoded an additional time, in an
[n1, 1, d1] code. Qubits forming blocks in the second code can be further en-
coded using an [n2, 1, d2] code, and so on, to a desired number of levels, l.
After encoding is complete, one has an [nn1n2 · · ·nl−1, k, dd1d2 · · · dl−1] code.
To find the error syndrome for a concatenated code, one first finds the error
syndrome for the [nl−1, 1, dl−1] code at the first level of code, for all of the
blocks of nl−1 qubits. One then finds the error syndrome for the [nl−2, 1, dl−2]
code at the second level of code, and so on, for all l levels of code, each level
being measured in parallel. One thus finds the error syndrome for the overall
code in a total number of steps obtained by summing those required at each
level of code. A simplification often made is to assume that the operations
at level j are essentially similar to the operations at level j + 1, as in the
above example. This coding method allows frequently occurring errors to be
preferentially corrected.

In the evolution of an encoded state, the effect of errors is reduced by such
concatenation, simultaneously allowing for error correction at various levels.
For sufficiently low basic-error rates, arbitrarily long computations can be
performed with arbitrarily low error-rates by implementing a sufficient number
of concatenation levels, allowing one to accomplish fault-tolerant quantum
computation, providing a computational accuracy threshold; for example, see
[345]. The nine-bit Shor code discussed in Section 10.5 is an example of the
use of the quantum dual to the Reed–Müller code as the inner code, where
GHZ-type states were used as the inner code the logical qubits of which were
then encoded with the three-logical-qubit repetition code as the outer code.
As mentioned previously, one can similarly view some of the states of the Bell
gem G16 of Eq. 7.63 as the result of the encoding |0(1)〉 �→ |Ψ±〉 = |0(1)〉L,
repeated once [235].
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Quantum broadcasting, copying, and deleting

Even with a good set of tools for maintaining the coherence properties of
quantum states, there exist fundamental limitations on the set of tasks that
can be carried out in quantum communication and quantum information pro-
cessing. In this brief chapter, we consider some of these limitations and meth-
ods of working within them to approximate quantum tasks that are desired
but cannot be performed perfectly. For example, perfect quantum deleting
cannot be performed due to the linearity of quantum mechanics. Similarly,
the no-cloning theorem discussed in Section 9.5, which is also based on the
superposition principle, precludes the exact copying of an unknown quantum-
information bearing pure state. Particularly important for quantum commu-
nication are limitations arising in the context of state broadcasting, that is,
the distribution of the same quantum information to a number of parties.

Consider a quantum copier, a quantum machine for producing quantum
states that approximate as closely as possible a given original state or set of
states with the smallest possible effect on originals. One finds that approx-
imate copying of unknown quantum states is possible: copies so produced
approximate the state of the measured system to the degree there is overlap
between the original and projected states. The goal in such situations is thus
to find the precise bounds imposed by fundamental quantum principles.

11.1 Quantum broadcasting

Quantum state broadcasting is the provision of locally identical quantum
states to each of a number of spacelike-separated parties. Consider a quan-
tum system in an arbitrary unknown (invertible) mixed state, ρ. The no-
broadcasting theorem is that the broadcasting of one such input state to two
identical output copies is impossible [26]: it is impossible to find a transfor-
mation of a mixed state ρ to the state of a composite system ρAB , consisting
of the original and a copy, such that the partial traces of ρAB over one system
A and another system B, respectively, are both equal to ρ, where ρ is, say,
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an element of a set of two arbitrarily chosen states {ρ0, ρ1}. Such a transfor-
mation would broadcast this original single quantum state onto two systems
that can be considered separately. A more powerful process would be that of
cloning quantum states, wherein

ρ⊗ τ → ρ⊗ ρ , (11.1)

where τ is a specified standard state of a system similar to the one the state
of which is to be broadcast.

For pure states, quantum state broadcasting and quantum cloning are
identical processes; deterministic state broadcasting is impossible for pure
states. Nonetheless, this does not preclude superbroadcasting, wherein one
begins the broadcasting process with more than one instance of the input
state forming a product state. In particular, it has been shown that it is
possible both to broadcast quantum states in this way and, when beginning
with at least four input copies of a state, to purify the broadcast state in
the process [119]. For mixed states, a distinction exists between the cloning
of states and the broadcasting of states, in that there are ways to specify
nonseparable composite system states giving rise to identical subsystem-state
descriptions through partial tracing, which are the states locally accessible
to agents. Proving the impossibility of broadcasting arbitrary mixed states
is more difficult than proving a no-cloning theorem for mixed states in that,
unlike in the case of pure states, for mixed states the latter is insufficient for
a no-broadcasting result: there are many ways of broadcasting a mixed state
without the result of this broadcasting being a state that is of product form,
as in Eq. 11.1.

Although the broadcasting and cloning of a single copy of an arbitrary
quantum state is impossible, it is quite possible to clone known quantum
states. One can in that case make use of classical information from precise
measurements of a quantum state in order to prepare copies of the eigen-
state onto which the system state is thereby projected. However, the general
problem of practical interest in quantum broadcasting is that of performing
optimal imperfect broadcasting of unknown states. Let us now consider quan-
tum copying in a more general sense.

11.2 Quantum copying

The basic problem of quantum copying is the following: given an unknown
state, ρ, find a device that will produce a number of copies of this state, col-
lectively described by ρ⊗n, in either a deterministic or in a probabilistic way.
This is essentially what one requires of a classical copier, but with quantum
states being copied. One provides the copier with a number of blanks and
receives a particular number of copies when it is run.
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In quantum information theory, by contrast to classical information theory,
there is a distinction between the (unitary quantum) copying and the (unitary
quantum) transposition of information from one quantum system, M , to an-
other, M ′: in the quantum case, perfect copying (quantum cloning) requires
also that the state of M be unchanged by the process; transposition does not
require that the original remain intact but rather requires that the state of
the original be brought to the null or blank state. Quantum teleportation is
an example of quantum state transposition. In the simplest case, quantum
states can be approximately or statistically copied in a process described by a
unitary evolution together with a quantum measurement. In particular, given
two nonorthogonal states of a quantum system, |φ1〉 and |φ2〉, there exists
a total (nonunitary) process involving both a unitary transformation and a
measurement such that

|φi〉|Σ〉 → |φi〉|φi〉 , (11.2)

for i = 1, 2; see, for example [142].

In general, there exists, for any unknown state chosen from a set
A = {|i〉} (i = 1, 2, . . . , k) a copying machine that produces, by

executing a unitary evolution U , a linear superposition of multiple
clones together with possible failure copies [322]. Given states |i〉 ∈ A
belonging to Hilbert space HA = C

⊗NA of the primary system A,
a state consisting of a number M of “blank” states (each of dimen-
sion NA) lying in the second Hilbert space HB = C

⊗NB associated
with an ancillary system B, and yet another state in a third, NC-
dimensional space HC = C

⊗Nc of the subsystem C used to measure
the number of copies produced, the copying process results in a com-
posite system (ABC) state of the form

U(|i〉|Σ〉|P 〉) =
M∑

n=1

√
p
(i)
n |i〉⊗(n+1)|0〉⊗(M−n)|n〉

+
Nc∑

l=M+1

√
f

(i)
l |Ψl〉AB |l〉 , (11.3)

where p
(i)
n (i = 1, 2, . . . , M) is the probability with which n copies of

the original input state can be produced, and f
(i)
l is the failure rate

of the machine, for the ith input state. In the above expression, we
have consider as “blanks” the states |Σ〉 = |0〉⊗M and have taken the
state |P 〉 ∈ HC to be the initial state of the copy-number indicator.
The resulting output is found upon measurement.
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A universal quantum copier is a copier that outputs two identical copies
of the original with a quality that is independent of the specifics of the input
state. The total quantum system involved in universal quantum copying con-
sists of three parts: the original, the blank system onto which the state is to
be copied, and the copier. In the copying process, one desires to maximize the
fidelity of copying, that is, to minimize the difference between output states,
say as measured by the (single-copy) fidelities fi = 〈ψ|ρi|ψ〉, where ρi is the
reduced statistical operator of the ith copy.

R R

R

| in

| out

|0

|0

I II

Fig. 11.1. Quantum circuit description of a universal quantum circuit realizing a
universal quantum cloning machine (cf. [95]). I indicates the preparation stage and
II the copying stage. The R are single-qubit rotations.

A simple model of a single-qubit universal quantum cloning machine
(UQCM) that outputs two copies of a qubit state |ψ〉 involves the two-step
pre-measurement procedure illustrated in Fig. 11.1. In this model, a four-
dimensional ancilla is prepared in a known blank state |Θ〉 and coupled to the
qubit to be cloned, as shown in the left side of the figure. Then, a unitary
operation is performed on this combined system, resulting in an output state,
|Ψf 〉, containing two clones of the input state in the sense that the reduced
statistical operator for each of the resulting systems is

ρ = (1− η)
1
2

I + ηP (|ψ〉) , (11.4)

where η characterizes the quality of the copies.1 The optimal UQCM is that
carrying out cloning with the greatest fidelity

max F
(
P (|ψ〉), ρ

)
= max〈ψ|ρ|ψ〉 , (11.5)

which is the probability that the copy produced is found upon measurement
to be in the desired state; in this case, Fmax = 1

2 + η
2 .

1 Compare this with the depolarizing channel of Sect. 9.6.
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The unitary transformation realizing this process transforms the product
basis including the computational basis states of the original qubit so that

|0〉A|Θ〉BC →
√

2
3
|00〉AB |0〉C +

√
1
3
|Ψ+〉AB |1〉C , (11.6)

|1〉A|Θ〉BC →
√

2
3
|11〉AB |1〉C +

√
1
3
|Ψ+〉AB |0〉C . (11.7)

This UQCM makes two copies of a single qubit with a fidelity Fmax = 5
6 < 1,

that is, has η = 2
3 [96].2

One can go on further to define symmetric quantum copying machines as
those producing all copies with equal fidelity, and asymmetric copying ma-
chines as those in which the individual copy fidelities fi may differ. A copying
machine is said to be optimal if the fidelities of the copies are maximal.3

11.3 Quantum deleting

Just as perfect deterministic quantum copying cannot occur, perfect reversible
deletion of nonorthogonal quantum states cannot be performed. Consider two
copies of an unknown qubit in a pure state, |ψ〉. The quantum no-deleting
theorem states that it is impossible to delete one copy of such a state: no linear
transformation exists from HA ⊗ HB ⊗ HC to itself such that |ψ〉|ψ〉|C〉 �→
|ψ〉|B〉|C ′〉, where |ψ〉 is the state to be deleted, |B〉 is a blank state, and |C ′〉
is a state that is independent of |ψ〉; the only linear transformation capable of
performing a transformation of the above form is one that violates this final
requirement by swapping the unknown state |ψ〉 with the ancilla state |C〉;
that is, that has |C〉 = |ψ〉.

To see this, consider any two different nonorthogonal qubit states, |φ〉 and
|φ′〉. Given two copies of |φ〉, consider the deletion of one copy by sending it
to the null computational basis state |0〉 by a unitary transformation of the
two states together with that of the environment

|φ〉|φ〉|Ē0〉 → |φ〉|0〉|Ē〉 , (11.8)

as well as using this same transformation to delete one of two copies of the
second nonorthogonal state |φ′〉,

|φ′〉|φ′〉|Ē0〉 → |φ′〉|0〉|Ē′〉 . (11.9)

2 Universal copying via the specific physical process of parametric down-conversion
has been carried out using type-II phase-matched parametric down-conversion
producing polarization-entangled two-photon singlet-state output; see [393].

3 A comprehensive review of quantum cloning and its relation to quantum cryp-
tography can be found in [362].
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As in the case of cloning, a unitary transformation accomplishing both tasks
is impossible: such a transformation is identical to the state swapping trans-
formation and has the effect that the environment enters two different states,
which allows for the recovery of the states by inversion of the unitary trans-
formation.

11.4 Landauer’s principle

The no-cloning and no-deleting theorems have suggested to some a funda-
mental conservation of quantum information, somewhat different from that
discussed in Chapter 6. This is becausequbits cannot be erased by unitary
transformations, as we saw in the previous section, and, like classical bits, are
subject to Landauer’s principle, laid down by Rolf Landauer.4 This principle
is that bit erasure dissipates a minimum energy of kT ln 2 into the environ-
ment. Quantum error-correction processes can be viewed as being similar to
Maxwell’s demon, in that they both act to prevent the increase of entropy
of encoded states. In particular, the storage of the results of syndrome mea-
surements of error correction in a finite memory come with a thermodynamic
cost due to the need for their inevitable erasure as classical bits, even though
in the correction of each error the system state is unitarily returned to its
original state.

Very recent results show that it is impossible to partially erase quantum
information, even when irreversible (nonunitary) processes are present, if par-
tial erasure is taken to correspond to a reduction of the size of the parameter
space of the quantum state encoding the quantum information in question.
In particular, such partial erasure reduces the dimension of the parameter do-
main of a qubit without leaving its state entangled with other systems, say by
restricting a qubit to a great circle of the Poincaré–Bloch sphere, where par-
tial erasure is taken to be the CPTP map of all pure states |ψi〉 (i = 1, . . . , n)
with real parameters πi from a Hilbert space H(n) to pure states in a smaller,
m-dimensional Hilbert subspace H(m) under a constraint κi(πi). It has been
shown that one can erase complete information with an associated cost, as
mentioned above, but not such partial information: no physically allowed op-
eration can partially erase a pair of qu-d-its that are nonorthogonal [323].
Moreover, no qu-d-it can be partially erased by any irreversible operation.

4 Landauer’s principle dictates that the erasure of information is irreversible, with
a “energy cost” of kT ln 2 per bit in an environment of temperature T [270, 272].
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Quantum key distribution

The most regularly performed nontrivial task using quantum information to
date has been quantum key distribution. Quantum key distribution (QKD) is
a method of securely distributing cryptographic key material for subsequent
cryptographic use. In particular, it is the sharing of random classical bit strings
using quantum states. Its use of a set of nonorthogonal quantum states then
requires this key material to be considered quantum information.1 The quan-
tum encoding of cryptographic keys for distribution is valuable because the
no-cloning theorem and the superposition principle governing quantum states
confer a uniquely powerful form of information security during transmission
of key bits. For maximal security, it can be followed by one-time pad message
encryption, which is the only cryptographic method that has been proven to
be unbreakable once a random key has been securely shared.

12.1 Cryptography and cryptosystems

Cryptography is a method of providing information security by preventing
unintended recipients from coming to know private information by encryp-
tion, a special application of coding. Cryptanalysis is the methodology for
decoding information encoded in this way. To carry out cryptography, an al-
gorithm known as a cryptosystem (cipher) is first applied that transforms
(encrypts) the information to be kept secret, referred to as a plaintext mes-
sage, which requires the use of additional information, referred to as a key,
resulting in the production of a cryptogram (ciphertext). Ideally, as in the
case of one-time-pad encryption (using the Vernam cipher), the encryption
algorithm and decryption algorithm are chosen such that, without possessing
the key, an unintended recipient (or eavesdropper) can decrypt the message
no more efficiently than by performing an exhaustive search over all possible
cryptographic keys [434, 435].
1 Quantum key distribution evolved from the idea of “quantum money” introduced

by Charles Wiesner in the early 1970s but left unpublished until 1983 [455].
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Cryptosystems are of one of two types, symmetrical or asymmetrical. Sym-
metrical systems are those that use the same (shared) key for encryption and
decryption; asymmetrical systems are those that use different keys for encryp-
tion and decryption. Public-key cryptosystems are asymmetrical, and function
as follows. The receiver of a private message, Bob, first creates or obtains a
private key that he keeps secret. Bob then creates a corresponding public
key using this private key and provides it to the eventual sender, Alice. Alice
uses Bob’s public key to encrypt her message and transmits this encrypted
message to him. Finally, Bob decrypts the cryptogram produced by Alice us-
ing his private key. The security of a public-key cryptosystem is based on
the difficulty—more precisely, the computational complexity—of decrypting
encoded messages. Traditionally, mathematical one-way functions, which are
functions that are believed to be hard to invert, have been used in public key
cryptosystems. There is currently no publicly known proof that such functions
are so; the deduction of x from a putative one-way function, f(x), is believed
to be hard in the sense that the time required to invert the function grows
exponentially with the size of the input information, as opposed to growing at
most polynomially.2 Examples of such functions include exponentiation mod-
ulo p, the RSA function, and the Rabin function [296]. Multiplying integers is
a convenient method of encryption because the inverse operation of factoring
has a trap door, that is, it is easy to perform the required inversion with
additional information.3

However, Shor’s polynomial-complexity quantum algorithm enables the
fast factorization of integers; see Chapter 14 below. If realized in practice
for sufficiently large numbers, this algorithm would render insecure cryptog-
raphy using such factoring-based public-key cryptosystems. Thus, quantum
information processing poses a potentially great threat to this popular form
of information security. The only cipher proven to be secure is a symmetri-
cal cipher, the one-time pad (also known as the Vernam cipher [434]), which
proceeds as follows.4 Sender Alice encrypts her message, M , originally put
into the form of a string of plaintext bits, mi, using a random string (or
keystream, K) of bits, ki, by summing via binary addition (⊕) each bit of
the message to a corresponding key bit, resulting in an encrypted string of
bits c1c2 . . . cn = (m1 ⊕ k1)(m2 ⊕ k2) . . . (mn ⊕ kn) that comprises the cryp-
togram, C. After transmission, receiver Bob decrypts the message using the
same shared key, by the inverse operation of binary subtraction, returning
the mi = ci ⊕ ki. With this cryptosystem, one has H(M |C) = H(M) and

2 For a discussion of computational complexity, see Chapter 13.1.
3 Again, it is not presently publicly known whether factoring is indeed hard by

traditional computational means, but it appears to be.
4 The one-time pad cipher was first discovered in 1917 by Gilbert Vernam of AT&T

and Joseph Mauborgne, who was then a captain in the U.S. Army and later was
head of the U.S. Signal Corps lab in the U.S. Bureau of Standards and Chief
of the Signal Corps, continuing until several months before the attack on Pearl
Harbor.
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I(M : C) = 0, so that the cryptogram provides no information about the
plaintext message. This method is unconditionally secure no matter what the
statistical properties of the plaintext message. The difficulty of this method,
in addition to the property that the key must be as long as the plaintext
message, lies in the problem of Alice and Bob coming to share the key, the
problem of key distribution. The secret key must be transmitted by some
trusted means, such as a courier who is incapable of being compromised.

Quantum key distribution (QKD) offers a solution to the cryptographic
key distribution problem through the quantum encoding of binary informa-
tion, potentially “secured by the laws of physics,” in particular, the principles
of quantum mechanics [40]. When combined with the Vernam cipher, quan-
tum key distribution offers an unprecedented level of cryptographic security
by eliminating the need for a trusted human courier. Thus, a quantum key
distribution system is sometimes referred to as untrusted because no trust of
the system is required beyond its proper physical operation. QKD operates as
follows. The sender of the (random) cryptographic key material, Alice, encodes
random bits of information in a set of not all mutually orthogonal quantum
states, for example, of individual photons, that are then directly or indirectly
provided to her intended recipient, Bob, through a quantum channel or by en-
tanglement sharing. If Bob receives this information in an uninfluenced state,
the transmitted photon states can be considered to be unknown to any poten-
tial eavesdropper, usually known as an Eve (cf. Fig. 12.1). In this case, any
eavesdropping agent obtains none of the desired information about the bit-
coding subspaces of the photon states due to the physical constraints imposed
by the Heisenberg uncertainty relation and the no-cloning theorem, both of
which follow from the quantum superposition principle. In practice, by com-
municating through a classical communication channel, Alice and Bob can
check whether Eve may have been attempting to obtain key material from
their shared quantum channel by compare a randomly chosen subset of their
(now shared) bit material. If any perturbation has occurred, the associated
(random) key material is considered compromised and so is disregarded. Tra-
ditional means of improving key quality can also be employed at this stage.
A more sophisticated method for detecting the presence of an eavesdropper,
described below, makes use of entanglement and Bell’s theorem.

12.2 QKD systems

Current quantum-key-distribution methods for quantum cryptography use
one of two physical means, either a single-photon qubit (or qu-d-it) or one
of a number of such systems from a compound system such as a photon pair
in an entangled state. Encoding states are chosen from a number of states, not
all mutually orthogonal and hence imperfectly distinguishable without knowl-
edge of the basis in which each lies. The first, and most common, approach
uses quantum coherent states produced by a laser source that is attenuated
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so as to adequately approximate single-photon states. The second approach
uses photon pairs in entangled states, such as those produced by spontaneous
parametric down-conversion and spatial filtering, and exploits quantum nonlo-
cality. This second approach directly provides cryptographic key information
with just those statistical characteristics required by QKD without the need
of active physical encoding or decoding of individual qubits.

To accomplish the local transmission of quantum keys (less than 10
km), optical-fiber-based systems can use wavelengths in the telecom-
munications wavelength window near 800 nm, for which efficient
silicon-based avalanche photodiode (APD) detectors are available.
Larger transmission distances have used telecommunications wave-
length windows near 1300 nm and 1550 nm, for which undesirable
effects such as attenuation and mode dispersion are less pronounced
but for which photon detection has so far proven more difficult; sig-
nal attenuation in optical fibers imposes clear efficiency-over-distance
limits on QKD.
For distances greater than 10 km, free-space links from ground to
satellite have been developed after years of successful short-distance
ground-to-ground tests using free-space as the medium of trans-
mission. Quantum cryptographic-key generation over distances on
the order of tens of kilometers have been realized in metro-area
networks (MANs) and currently achieve megabit-per-second rates
[159, 160]. Optical-fiber-based systems, however, can suffer from sig-
nificant polarization-mode dispersion (PMD) effects. In turn, these
can be mitigated by actively measuring this effect in real-time and
compensating for their variation using feedback methods.
An elegant solution to the problem of quantum state dephasing due
to PMD is the plug-and-play QKD line [308]. Such autocompensat-
ing systems are often favored for QKD using current telecommuni-
cations technology over existing optical-fiber-based networks. These
systems have the receiver send relatively bright, orthogonally polar-
ized pairs of optical pulses to the sender, who encodes her qubits in
relative phase and reflects the light with a 90◦ polarization, attenu-
ating it to the appropriately weak intensity as it is returned back to
the receiver. The receiver then interferometrically obtains the phase-
encoded information. The optical phase of the photon quantum am-
plitude contributed by polarization-mode dispersion in the fiber is,
as a result, self-canceled due to the round-trip nature of its journey.

It is impossible to amplify single-photon quantum states in order to eaves-
drop on QKD communication, because accurate such amplification amounts
to quantum cloning of unknown quantum states, which is disallowed by the no-
cloning theorem. However, undesirable multiple-photon pulses arise in current
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QKD practice because genuinely single-photon sources are presently unavail-
able, making QKD vulnerable to undetectable monitoring—for example, by
the use of a beam-splitter—because photons must be transmitted from sender
to receiver in determinate signal states. True single-photon light sources are
thus now being aggressively sought.

12.3 The BB84 (four-state) protocol

The most easily understood quantum-key-distribution method is based on
attenuated coherent states and polarization coding of qubits according to
the BB84 protocol, which uses four pure quantum states from two conjugate
Hilbert-space bases each capable of being encoding with two bit values [41].
Because all QKD implementations use methods and apparatus very similar
to those for implementing this protocol, this section is pertinent to other
protocols discussed later and, as a result, more briefly.

A

PC

BE

QC

Fig. 12.1. Schematic of a quantum cryptography system including sender, A, and
receiver, B. The quantum channel, QC, appearing at bottom is a private one-way
channel. The two-way classical channel appearing at top, PC, is a public channel.
An eavesdropper, E, with access to both channels is also shown.

To carry out QKD in this realization, ideally Alice prepares single-photon
states; in current practice, this is done to a good approximation by attenuating
pulsed laser light so as to provide a photon rate on the order of 0.1 photon
per pulse, so that “nonempty” pulses with very high probability provide only
one photon. Bit values 0 and 1 can, for example, be encoded in one basis as
vertical and horizontal linear polarization states of single photons, |H〉 and
|V 〉, respectively; see Section 1.2 and Fig. 1.1 for details. The second basis
of states must be conjugate to the first basis and can be chosen to be the
diagonal basis in which, without loss of generality, | ↗〉 encodes the bit value
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1 and | ↘〉 encodes the bit value 0.5 The required communications channels
between Alice and Bob, and those of a possible Eve, are shown in Fig. 12.1.

Alice sends the individually encoded photons through a quantum chan-
nel to Bob using a random sequence of encoding-basis/bit-value pairs, each
corresponding to one of the four state-vectors designated, making use of a
random-number generator, one preferably based on a physical source of gen-
uine randomness as opposed to a mathematical pseudo-random source. Bob
then measures each of the incoming qubits in one of the two bases, similarly
chosen at random, obtaining a bit value at the end of each measurement. Af-
ter a sequence of such actions, Bob and Alice each possess random strings,
their raw keys. Whenever the transmitter and receiver use the same basis for
a given qubit, the corresponding bit values are perfectly correlated, provided
the channel is noise-free and Eve has not intervened. For each bit, Bob tells
Alice through a classical public channel the basis in which he measured, with-
out having to mention the bit-value obtained (because Alice will already know
it having encoded that value in the first place). Alice similarly reveals only
whether the state in which she encoded that qubit was from same basis as
his. This two-way classical communication is known as basis reconciliation.

In basis reconciliation, in those cases where measurement bases differ the
results of Alice and Bob are uncorrelated and are thrown away, whereas those
bits for which their choices agree are retained as good bits constituting the
process of key sifting. Thus, approximately one half of the bits are eliminated
leaving each with an (ideally) identical copy of the sifted key. The classical
channel used for basis reconciliation need only be an authentic one rather than
a secure one, because transmissions through it reveal no information useful to
eavesdropper Eve, provided the quantum channel is indeed noiseless and all
equipment is functioning perfectly.

If Eve were to intercept every photon used in this form of QKD,
measure, and then replace the photon with one matching her mea-
surement result, an error rate of 25 to 50 percent would be induced
in an ideal system. The lower limit is reached only when Eve’s mea-
surements are made in the same bases chosen by both Alice and
Bob, or in a basis lying in the same great circle on the Poincaré–
Bloch sphere; the upper limit is reached when she measures in the
basis corresponding to the Poincaré–Bloch-sphere poles relative to
this great circle.

5 The circular-polarization basis can equally well be used as one of the two encoding
bases, replacing either the computational or diagonal basis, because all three are
mutually conjugate.
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In practice, the sifted key will actually contain some erroneous bit-values,
occurring with a rate referred to as the quantum bit-error rate (QBER) that
is typically a few percent of the total. Such errors arise because of imperfect
equipment, noise in the quantum channel, or the interaction of Eve with the
channel, which for security purposes are all attributed to Eve’s intervention.
These errors can then be eliminated using traditional classical error-correction
methods, as is discussed in Section 12.7, below.

12.4 The E91 (Ekert) protocol

By contrast with the above single-photon method, the entangled-photon
(EPR) pair scheme introduced by Artur Ekert, commonly known as E91, is
based on measurements of two particles in a Bell state, such as |Ψ−〉, shared
by the two communicating parties [150]. It is hard to over-emphasize the re-
markable elegance of this protocol for QKD, because its nature is precisely
matched to its task: cryptographic key distribution is the provision of fully
random bits to two parties, where these bits are fully correlated with each
other. These are precisely the statistics of an n-fold tensor product of maxi-
mally entangled two-qubit states wherein one qubit of each pair is shared by
the two parties.

In this QKD method, each photon that is created and measured is accom-
panied by exactly one other perfectly synchronized photon, preventing any
attempts at undetected beam-splitting by Eve. Attenuation of the required
photon pair beams is generally about 0.01, reducing the key transmission rate
by an order of magnitude relative to the single-photon method. In the realiza-
tion originally suggested by Ekert, both Alice and Bob receive one particle of
each entangled pair and perform measurements along at least three different
polarizer orientations during the course of measurement of the emitted ensem-
ble. Measurements along parallel axes are used for key generation, whereas
those along oblique angles are not thrown out as in BB84, but are used for
security verification. Measurements are performed with just the sort of ap-
paratus used in linear optical tests of Bell’s theorem; see Fig. 3.1 of Section
3.5.

As in the BB84 protocol, Alice and Bob both randomly and independently
measure their respective qubits. To take full advantage of the situation pro-
vided by entangled-photon pairs, one may use a “passive basis choice” method
where a beam-splitter is placed in each of the detection suites in the laborato-
ries of Alice and Bob, allowing each photon to “choose” its own coding basis,
obviating the need of introducing (inevitably pseudo-random) basis-choice in-
put by the experimenter. Alice and Bob, as in BB84, retain outcomes of mea-
surements taken in the same basis, in which case their results are perfectly
correlated, providing them with a shared key. The security of this protocol
can be checked using the Bell inequality, as follows [150]. The oblique angle
of the third, nonconjugate basis is chosen so as to effectively perform a test
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for violation of a Bell-type inequality (cf. Eq. 3.8); the probability that they
choose the same basis is reduced, but incompatible choices can then be used
to verify the quality of the source and line, and to provide information as to
whether an eavesdropper may be present.

In single-photon BB84 implementations, when qubit states may be en-
coded using different sources for different bit values, the state of the qubit
as encoded in one degree of freedom may be leaked to another, ostensibly
nonencoding degree of freedom. This could allow Eve to detect the qubit state
without inducing errors in the encoding subspace. By contrast, in a symmet-
ric configuration of the entangled-photon E91 protocol in which neither Alice
nor Bob possesses the source, such a leakage of information to other quantum
degrees of freedom of the photon is detectable through an increased QBER.
Even if Eve were to take control of the source of entangled states, she would
be able to obtain no additional information because the source itself plays
no role in encoding or decoding. Moreover, because the key does not exist,
even in raw form, until the two photons are measured (if one has access to a
quantum memory) then key material can be created even when the quantum
channel is no longer available.

12.5 The B92 (two-state) protocol

The security of quantum cryptography depends on the indistinguishability of
nonorthogonal quantum states and the inevitable perturbation arising from
measurements of these states when the sequence of encoding states is unknown
to an eavesdropper. In fact, just two nonorthogonal pure states are sufficient
to implement QKD. A simple QKD scheme demonstrating this is the two-state
protocol, also known as the B92 protocol [37]. In this protocol, Alice and Bob
choose two nonorthogonal states of a single-photon, say |φ〉 ≡ cos θ|0〉+sin θ|1〉
and |φ′〉 ≡ sin θ|0〉+cos θ|1〉, and associate the bit value 1 with the former and
0 with the latter. Alice then uses this correspondence to send a random binary
sequence to Bob. Bob performs measurements of qubits which, as in the case
of BB84, sometimes fail, but now when a measurement succeeds it always
provides the bit correctly, that is, he uses unambiguous state discrimination,
as described in detail in Section 9.4.

In particular, Bob measures at random one of the POVM elements, E1,
E2, and E3 = I−E1−E2, where 〈φ|φ′〉 = sin 2θ; see Section 2.7 and [152]. The
probability of obtaining any given bit correctly is then 1−sin 2θ, in accordance
with Eqs. 9.19–20. As in BB84, when Bob’s measurement choice does not
coincide with Alice’s choice, these events are disregarded, leaving only good
bits, with strings verified by parity checks of strings between parties. When
implemented using interference between a macroscopic bright laser pulse and
a dim laser pulse, with less than one photon per pulse on average, this protocol
becomes more resistant to eavesdropping: Bob can monitor the bright pulses,
ensuring that Eve is not removing pulses, in as much as removing a dim pulse
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noticeably alters the interference of the bright pulse with the resulting empty
state.

12.6 The six-state protocol

A complex six-state QKD protocol has also been proposed, which has the
advantage of greater symmetry within the Poincaré–Bloch sphere [87]. In this
protocol, the six states used are the four used in the BB84 protocol plus
the two remaining conjugate-basis states; see Fig. 1.1a. These states are sent
with equal probabilities. The probability that, choosing bases randomly, Alice
and Bob will use the same basis for a given bit is thereby reduced, but the
optimal information gain for Eve at a given error rate is also lowered for her
eavesdropping strategy in the single-qubit-based attack; by contrast to the
BB84 protocol, the six-state protocol compels Eve to measure in an additional
basis in a single-qubit-based attack, which increases her concomitant bit-error
rate. If Eve measures every photon, the QBER is, in particular, one-third
rather than one-fourth, as in the BB84 protocol, enhancing the detectability
of eavesdropping. The enhancement of Eve’s error rate under this protocol has
been verified experimentally in an entanglement-based implementation [163].
In the range of low error rates, however, the efficiency of secret-key generation
is found to be higher when using the four-state BB84 protocol.

12.7 Eavesdropping

The individual-bit eavesdropping strategies available to Eve may induce state
projection and/or decoherence of transmitted qubits and so give rise to ob-
servable effects. From the point of view of Alice and Bob, any such effect that
could have been produced by an eavesdropper must be assumed to be a result
of successful eavesdropping, because in quantum key distribution the goal is
to support absolute security. Alice and Bob must find the bounds of tolerable
error within which a truly secure key can be recovered [291]. In the protocols
discussed above, there is a region of safety in which such security exists.

To understand the effect of a given eavesdropping strategy, one can cal-
culate the quantum bit-error rate (QBER), Q, and inconclusive transmission
rate, R, and study the mutual information between Alice and Bob, between
Alice and Eve, and between Bob and Eve [152]. Alice and Bob can remove and
compare a randomly chosen substring of their sifted key in order to obtain its
specific QBER. Although Eve may but does not necessarily alter R, again it
is assumed that any change in R is due to the presence of Eve; if R is found
to differ from its expected value R0, this is taken to be an indication of eaves-
dropping. Let ε be the “raw” error probability characterizing a QKD channel
before any inconclusive bits have been eliminated. The resulting portion of
errors after these bits have been eliminated is
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Q = ε/(1−R) . (12.1)

Alice, Bob, and Eve may be attributed random variables A, B, and E, de-
scribed by a joint probability distribution P (A, B, E) describing their key
bits. The information known to Alice and Bob is the marginal distribution
P (A, B). A lower bound on P (A, B, E) is the larger of the differences be-
tween the (classical) mutual Shannon information I(A : B) of Alice and Bob
and the (classical) mutual information of Eve with either of them, that is,

H(A, B|E) ≥ max{I(A : B)− I(A : E), I(A : B)− I(B : E)} . (12.2)

Eve’s information can be made smaller by a privacy-amplification method,
either classical [44, 77, 326] or quantum [131] in nature. If Alice and Bob share
more information with each other than with Eve, they can use a classical
protocol to eliminate all errors. For this purpose, Alice and Bob can use a
classical cryptographic privacy-amplification protocol such as the following.
One of the parties chooses pairs of bits at random, computes their XOR
value, and discloses the position of the bits in the string, but not the value
obtained. These bits are then replaced by their XOR value, shortening the key
without introducing any additional errors and, with repeated implementation,
reducing the eavesdropper’s information [44]. The effect is to “smear out” the
value of each initially shared bit across the remaining bits remaining in the
shortened key. By sufficiently shortening the resulting key, the eavesdropper’s
information about the key can be made arbitrarily small.

When the eavesdropper carries out attacks by attaching independent probe
systems to each qubit and measures them individually, the attack is referred to
as an individual (or incoherent) attack. This sort of attack is the most realistic
given current technology. Eve is usually taken to measure her probe systems as
soon as the public-channel reconciliation of basis choice is performed by Alice
and Bob. The most general sort of attack, known as the coherent attack, is
based on the simultaneous manipulation of probes attached to several qubits.
A coherent attack where no conditions are placed on how probes are attached
to several qubits is known as a joint attack. In a coherent attack, if Eve
constrains herself to attaching one probe per qubit but measures these probes
collectively, then the resulting attack is referred to as a collective attack. In
the case of coherent attacks, Eve is usually assumed to refrain from measuring
probe systems until the full procedure of basis reconciliation, error correction,
and privacy amplification has been completed, so as to be able to maximize
the value of information available in the full set of probes by measurement
of them as a single composite system rather than as a number of individual
systems.

Opaque strategies involve the capture of signal states that are subsequently
measured and then resent, and are also called intercept–resend strategies. Eve
measures the quantum signal by a standard quantum measurement in such a
way that her information about its state is maximized. This procedure will
not affect R but increases Q, because Eve will fail some fraction of the time
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by performing measurements in a basis not used for encoding, causing Eve
to misidentify the state she retransmits in an attempt to avoid detection. To
understand such a procedure, information effectively transmitted from Alice
to Eve can be viewed as a symmetric channel; the information effectively
transmitted from Eve and Bob can be viewed as an erasure channel.6 If the
intercept-resend procedure is carried out as an individual attack, the receiver
and eavesdropper can analyze the situation on the basis of the random vari-
ables obtained through the individual measurements as classical information,
allowing them to make use of traditional cryptanalysis techniques.

Translucent eavesdropping strategies can instead be used, wherein the
reading of signal photon states with small disturbance is followed by the read-
ing out of the desired information. Such approaches are translucent in the
sense that Eve may disturb the photon state but does not intercept it. In or-
der to do this, she can use a POVM involving an ancillary probe system that
becomes correlated with the transmitted particle under a unitary evolution.
Furthermore, this probe can be stored indefinitely by Eve in a quantum mem-
ory, which allows her to make use of basis-choice information that is later
communicated classically between Alice and Eve in the basis reconciliation
stage of their quantum-key-distribution protocol [76, 163].

12.8 Security proofs

Ideally, proofs of the security of quantum key distribution demonstrate uncon-
ditional security, proving security in the face of all conceivable attacks within
the bounds of quantum mechanical and other physical principles. However,
currently available sources fail to produce, for example, single-photon quan-
tum states, and current detectors have less than perfect efficiency. Recall also
that the QKD agents, Alice and Bob, are assumed initially to share no in-
formation and are taken to share identical copies of a secret key (bit string)
at the end of key distribution. Eve must be unable to obtain any information
whatsoever about the resulting shared key. Furthermore, any QKD protocol
will fail if Eve is capable of impersonating Alice or Bob during the execution of
the protocol. In practice, Alice and Bob must execute classical authentication
protocols on classical messages between each other to prevent such spoofing.
For these required messages to be secure, Alice and Bob must share at least
a small secret key for authentication purposes before executing the protocol,
say by meeting each other before executing the protocol. Thus, in practice,
any automated QKD protocol not initially using a trusted courier will, strictly
speaking, ultimately implement a key expansion protocol, rather than a key
distribution protocol. Moreover, Eve usually can with relative ease jam the
6 The quantum erasure channel is one where an initial qubit state is replaced by a

state “|2〉” orthogonal to both computational basis states |0〉 and |1〉 with some
probability p.
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communication protocol, requiring Alice and Bob to continually revalidate
their communication security.

Security proofs for QKD are generally applicable only to particular proto-
cols faced with a limited set of possible attack methods, but remain significant
because the options of a real-world Eve are limited. One generally quantifies
secrecy in practical quantum key distribution under a given realization of a
given protocol. As an example, therefore, consider the implementation of the
BB84 protocol with single-photon states and an eavesdropper who is restricted
to carrying out individual translucent attacks on one qubit at a time using
a probe particle that becomes entangled with the attacked photon. Take m
to be the number of bits of raw key transmitted and n to be the number of
bits of sifted key remaining after the discarding of (m− n) inconclusive bits,
ultimately leaving (n − ē) bits after the removal of ē erroneous bits, consti-
tuting the error-corrected key. One can then implement privacy amplification
to obtain a shorter key that is more secure, as discussed previously, remov-
ing an additional number of bits, corresponding to the privacy-amplification
compression level

s = t(n, ē) + q + ν + g , (12.3)

where t(n, ē) is the defense function, q is the number of bits estimated to have
been “leaked” during error correction, and ν is the estimate of bits leaked due
to multiple-photon transmission during putative single-photon transmission
intervals, leaving (n − ē − s) bits of key material, if g is a “safety margin;”
see, for example [75].

The defense function is an estimate of the greatest possible leakage of
information due to eavesdropping and depends in general on the number of
sifted data bits and the number of errors and is found by maximizing the total
Rényi information gained by the eavesdropper as determined by minimizing
the quantum overlap, o, of measured eavesdropping ancilla states and receiver
Bob’s signal states for a fixed induced error rate, namely,

IR
optimal = log2(2− o2) (12.4)

[396, 397]. The privacy-amplified key can be kept secret provided one takes
into account the upper bound on the maximum Rényi information gained by
eavesdropping on the corrected key material. The average secrecy capacity
of the quantum cryptosystem under consideration is given by the number of
secret bits obtained (n−ē−s) over the number of bits m originally transmitted
in the long transmission limit, m →∞.
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Classical and quantum computing

The fundamental limitations of any form of computation can be expressed in
terms of the resource requirements of standard computational tasks under it.
Within traditional models of computation, such as the Turing machine model,
many problems are found to be intractable due to the limited computational
capabilities of classical physical systems. However, quantum systems allow
the range of tractable computations to be extended beyond that achievable
by classical computation because the superposition principle offers a radically
different sort of computational parallelism. The quantum circuit model (or
gate array model), in which networks composed of quantum logic gates act
on sets of qubits, is the dominant model of quantum computation and has an
equivalent (quantum) Turing machine model. Both of these models and the
general principles of quantum computation are discussed in this chapter. A
number of specific algorithms, which illustrate the novel character of quantum
computation, are described in the following chapter.

Any good model of computation will allow arbitrary operations to be ac-
curately performed through a set of basic operations, as the quantum circuit
model does. A very simple picture of how quantum computation works in a
qubit architecture, in which operations are performed on elements of a Hilbert
space with a dimension that is a power of 2, is the following. One begins
with classical input information, that is, bits encoded in qubits in the com-
putational basis, and a number of ancillary qubits each generally assumed
to be in the standard state |0〉. In the quantum circuit model, a sequence
of logic operations described by unitary transformations then takes place on
this full collection of qubits, in parallel, as a result of which their values may
be changed. After some specific number of logical operations, one measures
designated output qubits to obtain the result (readout) of computation.

In this chapter, we begin by discussing Turing machines of various sorts,
quantum as well as classical. We then examine computational complexity in
quantum computing. Finally, we briefly consider fault tolerance in quantum
computing and a specific proposal for accomplishing quantum computation
in linear optics.
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13.1 Classical computing and computational complexity

Alan Turing was responsible for introducing what is now known as the Tur-
ing machine, an abstract machine he considered to be a universal computing
device in the sense that it is assumed to be capable of simulating any other con-
ceivable computing device. Specifically, he assumed that the class of functions
that can be evaluated via algorithms is identical to the class of computable
functions, an assumption that has been taken both as a fundamental principle
and an empirical hypothesis and is now known as the Church–Turing thesis
[107, 426].

The Turing machine is now understood to be universal in at least two
respects. First, it provides a universal definition of computability in the sense
of computability in Lambda calculus.1 Secondly, all reasonable computing
machines—by which is meant all machines that can in principle be physically
realized—are polynomially equivalent to Turing machines: the minimal time
required for any reasonable machine and for a Turing machine to produce an
output given an input of a given size are polynomially related. That such a
single universal device could actually exist still remains open to question. It is
noteworthy, for example, that the running times of Turing machines are not
predictive of those of digital computers that use floating point numbers to
address scientific problems, as is commonly the case in practice. In particular,
such computations have computational costs associated with operations that
are independent of operand size, unlike Turing machines. Nonetheless, the
Turing machine model is a central element of the dogma of current computer
science and, as such, is a good model in which to consider quantum compu-
tation here. Furthermore, Turing machines have the very attractive feature of
capturing the intuitive essence of computation in a simple schema.

Because quantum computing devices have other properties not likely fore-
seen by Turing, they provide a ground for scrutinizing the Church–Turing
thesis. For example, the Turing machine is a finite machine not designed to
address continuous mathematical models. Richard Feynman touched on the
question of the adequacy of the Turing machine model from the physical point
of view when he raised the question of the ability of quantum systems to
perform efficient simulations of other physical systems, particularly quantum
systems [170].

The question of the difficulty of performing a computational task, such
as computing the value of a function for a given argument, can be addressed
both qualitatively and quantitatively. A function is computable if there ex-
ists an algorithm for computing it. Computational complexity theory seeks
bounds on the resources necessary for solving computational problems.2 The
computational complexity of obtaining the value of a function can be given
in terms of the number of computational steps required to calculate it for a
1 For information regarding Lambda calculus, see [25].
2 It has, as a result, been referred to as the thermodynamics of computation [318].
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generic argument. Those problems for which there exists no algorithm at all,
as a matter of principle, are known as uncomputable problems. The following
“halting problem” is an example of an uncomputable problem [426].3 Con-
sider the problem of determining whether any given Turing machine will halt
given any input. Suppose there were an algorithm for determining this using
a Turing machine. Then it would be possible to have a Turing machine that
halts when provided the description of any Turing machine yet does not halt
if the machine does not halt given its own description, which is absurd [123].
The situation is akin to that of the famous Liar Paradox.

The complexity of computable problems can also be assessed in terms of
the time and space requirements for their solution. Computational problems
can be classified as either “easy” or “hard.” Easy problems are those for
which the required computation time is a polynomial function of the size of
the input, as measured in bits. Hard problems are those for which the required
computation time is an exponential function of the size of the input measured
in bits. The majority of problems of interest appear to be hard problems,
though hardness is often difficult to prove for a given problem. As is often
the case in general, the reduction of one problem to another the properties
of which are already known is a good method for tackling assessments of
complexity. Thus, when addressing computational complexity in the context
of quantum computation, it is often helpful to make use of the results obtained
for similar classical situations.

Classical algorithms can be classified as effective (or polytime) when the
number of steps, and the time to execute them all, grows as a polynomial func-
tion of the size of the input, that is, f ≤ anb for some constants a, b and for
input sizes n sufficiently large.4 The computational complexity class of effec-
tively solvable problems is accordingly denoted P. The class of problems that
are solvable nondeterministically in polynomial time is denoted NP, an ex-
ample being the problem of factoring integers.5 The subclass of NP consisting
of the hardest problems of this class are the NP-complete problems, a large
number of which have been identified, examples being the Traveling Salesman
Problem and the determination of membership in a correlation polytope; see
Section A.8 and [451]. The NP-complete problems are those such that if
any one of them is solvable by an efficient algorithm then all NP problems
are so solvable. The class of problems solvable with an amount of memory
3 The halting problem for quantum computers has been explicitly addressed; see

[311, 313].
4 One must take care to note the encoding of input as well, because the number

of steps may depend on the encoding used. Unless otherwise stated, we assume
here n is given in bits.

5 Note that this class is only defined for predicates; see, for example, Part 1.3
of [252] for several definitions of NP, the complement of which is designated
coNP, corresponding to the class of languages decided by a probabilistic Turing
machine always accepting members of the language and rejecting any string not
in the language with finite probability.
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polynomial in the input size is PSPACE. The class of problems that can be
solved with high probability in polynomial time with the help of a random
number generator is called BPP, for “bounded error probability in polyno-
mial time.” The class of problems that can be solved in polynomial time if
sums of exponentially many addends (themselves computable in polynomial
time) can is denoted P#P. These classes are related as

P ⊂ BPP,P ⊂ NP ⊂ P#P ⊂ PSPACE .

The relation of BPP to NP is currently unknown, as is the question of
whether P and NP are, in fact, identical.6

These classes can be defined precisely in terms of Turing machines. A
special class of problems, the decision problems, which are equivalent to the
evaluation of predicate functions, have yes/no answers and can be used to
clarify further such an assessment. Decision problems can be cast as questions
about formal languages, defined as the set of all finite strings constructible
from a given alphabet of symbols. Turing machines also allow one to formalize
the notion of language (decision problem) reduction: a given language may be
reduced to another if there exists a Turing machine operating in polynomial
time for which, given an input in the reduced language, it provides an output,
and for which this input is in the reduced language if and only if the out-
put is in the reducing language. There are several types of Turing machines,
corresponding to different types of computation, some of which are briefly
examined next.

13.2 Deterministic Turing machines

The deterministic Turing machine is attributed a finite set of fundamental
information units (letters) known as its alphabet, A, a finite set of control
states, Q, and a transition function,

δ : Q×A → Q×A×D , (13.1)

where D = {1, 0,−1}. If necessary, A may be replaced by the null set. Strings
of letters in A are known as words.7 A deterministic Turing machine may
be defined as (Q, A, δ, q0, qα, qr); the state of the machine is specified by q ∈
Q where, in particular, q0, qα, qr ∈ Q act as the initial machine state, the
accepting state, and the rejecting state, respectively. The configuration of the
machine at any stage is given by c = (q, x, y), where x, y ∈ A∗, A∗ being the set
6 A more detailed hierarchy of complexity classes is succinctly presented in Part

1.5 of [252]. For more on the P-NP question, see [395]. Quantum computational
complexity is addressed in Sect. 13.6, below.

7 Here, and in the cases of the other machines below, often one considers instead
of A a subset, A′, of A, of input/output strings not including the blank symbol,
in which case A′ is referred to as the external alphabet [216].
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of all words from A. One also has use of the set A0 that contains only the empty
word, ε, consisting of no letters. The transition function δ describes transitions
between configurations, the first of which yields the second, its successor. The
Turing machine also has a tape that we consider here to contain a two-letter
word xy, the first letter of which it is said to be scanning (or reading).

In each computational step, the symbol being scanned is replaced with
another symbol, which is said to be printed in the process; the machine enters
a new state, q′, scanning either the same symbol, the symbol to the left, or
the symbol to the right, as dictated by the given value d ∈ D that represents
the behavior of the read-write head of the machine at the computational step.
Every Turing machine computes a partial function f : A∗ → A∗. A compu-
tation is a sequence of configurations beginning with an initial input word
and an initial configuration, c0, proceeding toward a halting configuration; a
computation halts after t computational steps when either one of its configu-
rations has no successor or if its state is either qα or qr in which it is said to
be accepting or rejecting, respectively; a Turing machine accepts its input if
it halts in the accepting state, or rejects its input if it halts in the rejecting
state or fails to halt. Let gM (a) denote the output string for a given machine,
M , and input string, a. The partial function f is computable if there exists a
Turing machine M such that gM (a) = f(a) for all a ∈ A∗, in which case M
is said to compute f .

A set of words over an alphabet forms a recursively enumerable language
if there exists a Turing machine that accepts a word if and only if it is a
member of the set. A set of words forms a recursive language if there exists a
Turing machine such that every computation halts and accepts a word if and
only if it is a member of the set. In this light, the decision problems can be
seen as the set of problems in which an input word w must be found either
to belong to a given language or not to belong to that language. In the case
of recursive languages, a Turing machine accepting a given language provides
an algorithm for solving a given decision problem. To each of these two sorts
of language there corresponds a class of algorithmic decision problems: those
constituting the class R are recursively solvable (or decidable), whereas those
not in R are recursively unsolvable (or undecidable).

In addition to these broad classifications, one can examine the specific
computational time required for solutions to be found in order to determine
their computational complexity. For a Turing machine that halts for every
input, the time-complexity function, T (n), is the greatest computation time
required for inputs of length n.

13.3 Probabilistic Turing machines

The probabilistic Turing machine is more general in character than the de-
terministic Turing machine. It has a transition function that is a mapping
assigning probabilities to possible operations of the machine, of the form
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δ : Q×A×Q×A×D → [0, 1] . (13.2)

For well-definedness, the sum of probabilities over all successor states for each
configuration is required to be unity. As a result, the machine-state transitions
may be described by a stochastic matrix. The deterministic machine can then
be viewed as a special case of the probabilistic machine. A given configuration
is said to yield a successor configuration with a probability given by δ. A given
final configuration is computed from an initial configuration with a probability
given by the product of the probabilities of those configurations leading to it
by a particular computation defined by the sequence of states leading to it.8

Unlike a deterministic Turing machine, a probabilistic Turing machine may
accept an input in one execution but reject it in another.

The family of languages L that can be accepted in polynomial time by
a probabilistic Turing machine, RP (for “randomized polynomial time”), is
such that if a word is in L the probabilistic Turing machine accepts it with a
probability at least 1

2 , and if not, the probabilistic Turing machine rejects it
with certainty. BPP can be identified with the family of languages such that
if a word is in L then the probabilistic Turing machine accepts it with prob-
ability at least 2

3 , and if the word is not in L, it is rejected with probability
at least 2

3 . In addition to P ⊂ BPP, as mentioned in Section 13.1, it is the
case that P ⊂ RP. Probabilistic Turing machines are helpful in defining the
class of interactive proof systems, which are machines modeling computation
as communication between two parties for the purpose of determining mem-
bership of strings in L, because they allow the verifier, which is attributed
finite computation resources, to make use of randomness against the prover,
which is attributed unlimited computational resources.

13.4 Multi-tape Turing machines

An m-tape (deterministic) Turing machine is one attributed m tapes, an
alphabet, A, a finite set of control states, Q, and a transition function δ such
that

δ : Q×Am → Q× (A×D)×m , (13.3)

and is defined by (Q, A, δ, q0, qα, qr), where as usual q0, qα, qr ∈ Q act as
the initial machine state, accepting state, and rejecting state, respectively. A
configuration for such a machine is given by (q, x1, y1, . . . , xm, ym), where the
current machine state is q, (xi, yi) ∈ A∗×A∗, and the content of the ith tape
is xiyi. What is computable by a single-tape machine in time t is computable
by a multi-tape machine in time O(

√
t). Such a machine is naturally suited

to the study of situations involving computational parallelism. However, from
8 Note that although quantum Turing machines also have transitions that are non-

deterministic, the property of factorability of probabilities in particular does not
hold for them.
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the point of view of computational complexity, multi-tape Turing machines
are no more powerful than single-tape machines.

13.5 Quantum Turing machines

Charles Bennett has shown that traditional multi-tape Turing machines can
be simulated by reversible Turing machines, in particular, that arbitrary ir-
reversible computations can be seen as reversible ones, often with little re-
duction in efficiency [36]. A reversible computation operates as a permutation
of input bit-strings: Tommaso Toffoli has shown that any finite mapping can
be reversibly computed by a process of padding strings with zeros, their per-
mutation, and the projection of some bit strings onto other bit strings; see,
for example, [423]. In order to represent permutations of bit-strings by logic
circuits, one can use elementary reversible gates each having the same num-
ber of outputs as inputs; a logic-gate output leads to precisely one input of
a succeeding gate. This picture of computing bears a strong resemblance to
quantum computing in the quantum circuit model. Paul Benioff first showed
that unitary quantum state evolution, which is inherently reversible, can be as
powerful as a Turing machine, demonstrating that quantum mechanical sys-
tems can be at least as computationally powerful as classical computers are
[34, 35]; the corresponding machine is known as the quantum Turing machine.
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Fig. 13.1. The behavior of quantum probability amplitudes ci in, for example, the
apparatus illustrated in Figure 1.5. Interferometric background counts correspond
to outputs O1 and O3; quantum interference arises in output O2.

To distinguish quantum computing from classical computing, it is valu-
able to consider a probabilistic classical process, such as coin-tossing. Such a
process has a state description that is an exponentially growing tree; in the
case of coin-tossing there are 2n possible outcomes. The quantum comput-
ing process is similar, with the important difference that the probabilities for
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each branch are given by quantum probability amplitudes for the quantum
computer that are capable of interfering with each other, provided coherence
within its quantum state is maintained, as discussed in Chapter 1; there is a
global dependency of any given branch on the remainder of branches, which
comes into play whenever there is quantum indistinguishability between paths
through the tree to a given node; see output O2 in Fig. 13.1.

The extent to which classical systems can simulate quantum com-
putation was addressed by Emanuel Knill and Daniel Gottes-
man, who showed that any quantum computation beginning with
computational-basis state preparation and involving only the quan-
tum gates of the (Clifford group) set {π

2 -phase, H, σi,C-NOT} can
be efficiently simulated by a classical system [254]. This is so be-
cause such computations have only polynomial-size state descriptions
rather than exponential-size descriptions, as discussed in Section 1.7.
Not all quantum computations have polynomial state descriptions,
however.

Let us now formally consider quantum computation, in order to better
understand the relationship between it and classical computation. As with
classical computation, quantum computation may be investigated via a type
of Turing machine. The quantum Turing machine is a Turing machine with a
transition function of the form

δ : Q×A×Q×A×D → C, (13.4)

from one configuration to a range of successors, each attributed a complex
quantum probability amplitude, corresponding to a unitary transformation
of a quantum state. Efficient universal quantum Turing machines have been
shown to exist [54]. It appears that such machines violate the strong version
of the Church–Turing thesis, “Any reasonable model of computation can be
efficiently simulated using a probabilistic Turing machine,” because there exist
computational problems that can be solved in polynomial time by a quantum
Turing machine but that are solvable only in superpolynomial time for a
probabilistic Turing machine [56, 57].

Any computation that can be performed by a classical Turing machine can
be performed by a reversible Turing machine viewable as a three-tape machine
equipped with an input tape, a history tape, and an output tape, where the
history tape records the history of the computation needed to reverse the
computation.9 Everything that can be computed in polynomial time on such
a classical machine can be calculated on a quantum Turing machine [54].

9 A traditional Turing machine is said to be reversible if each configuration has a
unique predecessor.



13.6 Quantum computational complexity 211

13.6 Quantum computational complexity

There are several ways of describing computations on qubit architectures,
which involve tensor products of spaces having dimensions that are powers
of two; see Section 1.7. The dominant model of quantum computation is the
quantum circuit (or quantum-gate array) model, in which one studies quan-
tum networks composed of quantum gates. This model is polynomially equiv-
alent the quantum Turing machine model just sketched. Because the quantum
circuits have been shown to be polynomially equivalent to the quantum Tur-
ing machines [464], here we work within the quantum circuit model, which
is helpful in understanding specific quantum algorithms in detail, as we show
in the following chapter. The physical systems required to implement these
models, the quantum hardware, must have several important properties for
reliable computing: the ability to sustain the coherence of multi-qubit states
for times sufficient for completing computations in the face of decoherence
effects (described in Chapter 10), the ability to read out results via reliable
measurements (described in Chapter 2), and the ability to perform controlled
gating operations (described in Chapters 1,3, and 7) with precision [138].

The quantum-mechanical state-space of an n-qubit quantum computer is
the 2n-dimensional Hilbert space that is the tensor product of its individual
qubit subspaces

H(n) = C
2 ⊗ C

2 ⊗ · · · ⊗ C
2 (13.5)

(see Sect. B.1). Every state |Ψ〉 ∈ H(n) is a superposition of n-qubit states,
each representing a binary word xi ∈ GF (2)n, that can be written

|Ψ〉 =
∑

i

ci|xi〉 , (13.6)

where
∑

i |ci|2 = 1. In the quantum circuit model, quantum computation is
realized by performing unitary transformations on n qubits describable as se-
quences (polynomial in n) of quantum gates from a universal family of gates,
examples of which are given below. In the quantum circuit model, one com-
monly uses a graphical notation based on quantum wires, corresponding to
qubits, which operate from left to right, as done in the discussions of quan-
tum gates in previous chapters.10 When a qubit is transformed, it is left
unconnected at a given position in the sequence of operations, except when
it controls another qubit in which case a dot is placed on its wire connected
by vertical lines to any qubit it controls and it is referred to as a control
bit.11 When qubits may be acted upon nontrivially, a symbol describing the
operation of the corresponding gate is placed over them (cf. Fig. 1.2). Qubits
are typically but not necessarily ordered in location from top to bottom in a
10 As an example, see the circuit for Bell-state synthesis shown in Fig. 6.1.
11 See, for example, the two-qubit and three-qubit gates in Sect. 3.8, which are

shown in Figs. 3.4-8
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complex circuit according to their significance in it; for examples, see Fig. 7.1
and 8.2 and the following chapter.

The set of all permutations of computational-basis states corresponds to
the set of all invertible Boolean transformations of GF (2)n and is a subgroup
of the unitary group U(2n). Because, with a polynomial number of constant
inputs and empty ports, any Boolean transformation can be embedded in a
unitary one, a quantum computer is universal once the generic unitary opera-
tion, which is reversible by definition, can be performed with it. A given uni-
tary transformation U is implementable if U ≈ Ugk

· · ·Ug1 for k = O(poly(n)).
A set, G, of quantum gates is universal if, for any ε > 0 and any unitary trans-
formation U on n qubits, there is a sequence of gates g1, . . . , gl ∈ G such that
‖U − (ugl

· · ·ug2ug1)‖ ≤ ε, where ugj is V (k) ⊗ I
(n−k), V (k) being the unitary

transformation on k qubits operated on by the quantum gate gj , and I
(n−k)

is the identity acting on the remaining n − k qubits, || · || being the spectral
norm defined in Section A.3. Output information is finally extracted as clas-
sical information from the quantum computing system via measurement. The
most well-known examples of universal sets of quantum gates are

(i) the C-NOT and all single-qubit gates;
(ii) the C-NOT, Hadamard, and suitable phase-flip gates;
(iii) the Toffoli and Hadamard gates.

[23, 24, 130, 137, 286].12 Any particular gate in a given such family can be
well approximated by a finite number of gates in another such family. By
contrast, for classical reversible computation there exists a universal three-bit
logic gate, the classical Toffoli gate, but not a universal two-bit gate; there is
not even an adequate set of two-bit gates.

Any useful model of computation must describe processes including arbi-
trary operations carried out by the execution of elementary operations that
can be counted, allowing one to describe the complexity of computational
problems. Given a computation U ∈ U(2n), the quantum computational com-
plexity, κ(U), is the minimum number of operations in the chosen universal
set of gates necessary for it to be carried out as a sequence of elementary quan-
tum operations U = u1u2...uk. Due to the linearity of quantum mechanics,
one finds that κ(A⊗B) ≤ κ(A) + κ(B), for all A ∈ U(2n1) and B ∈ U(2n2).
It is very often useful to consider unitary operations described by networks
that approximate a given desired unitary transformation in order to discover
whether it can be implemented. The complexity for such approximations is
written as κε, when ∥∥∥∥U −

n∏
i=1

ui

∥∥∥∥ < ε . (13.7)

Specific algorithms have been discovered that demonstrate that the use of
quantum systems for computation allows some speedup over classical compu-
12 The Toffoli gate is a three-qubit gate that flips the third bit if and only if the

first two, control bits both take the value 1; see Sect. 7.9.
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tation. For example, the Grover search algorithm provides a quadratic speedup
relative to any classical algorithm requiring a search component. It is impor-
tant to note that there have been, to date, a limited number of specific ex-
amples of quantum algorithms that achieve superpolynomial speedups over
classical algorithms. Most significant of these is the quantum Fourier trans-
form, which plays a role in Shor’s factoring algorithm. These two algorithms,
and others, are discussed in detail in the following chapter.

Quantum-computational complexity theory focuses primarily on the class
of problems known as BQP, for “bounded quantum polynomial” or “bounded
error probability, quantum polynomial time,” which is the quantum analogue
of the BPP class and which can in principle be solved in polynomial time by
a quantum computer. It can be seen that BPP⊆BQP, because a quantum
computer can simulate a probabilistic classical computer by simply prepar-
ing the state | ↗〉 and projecting it to the single-bit computational basis to
generate a random bit. It has also been shown that there is an oracle relative
to which there are problems in BQP that cannot be solved with small error
probability by probabilistic Turing machines running in nO(log n) steps, which
is evidence that quantum computers are fundamentally more powerful than
classical computers [56].

A quantum computer can be simulated on a classical computer with a
memory of polynomial size, so that BQP⊆PSPACE, despite the intuitive
sense one may have that exponential memory resources might be needed,
simply due to the fact that simulation of an n-qubit quantum circuit involves
matrices of size 2n. In particular, it is known that BQP⊆P#P, which is
contained in PSPACE. The difference between classical and quantum com-
putation is rather one of efficiency. The relationships between BQP-class and
NP-class problems and between the class BQP and the class PH, “polyno-
mial hierarchy,” are currently of great interest. It is known that, relative to
a random oracle NP 
⊂BQP: a quantum computer is incapable of inverting
black-box (oracle) one-way functions [38].13

The quantum analogue of the NP class for classical computation is the
class BQNP, “bounded error probability, quantum nondeterministic polyno-
mial.” A problem is a member of NP if an offered answer can be verified
within a time period growing no more rapidly than polynomially in the size
of the input; a computational problem is in BQNP if its solution can be
checked within a polynomial-time period on a quantum computer. Relative
to an oracle, the class BQP is not contained in the class known as MA
(the Merlin–Arthur class), the probabilistic generalization of NP [54].14 Rel-
ative to a random oracle, quantum computers also cannot solve NP-complete
13 Note, however, oracle results must be dealt with carefully, because they have often

proven misleading in the past.
14 Even were it found that P=NP, quantum computers may still be capable of

being more efficient than their classical counterparts. In the context of an inter-
active proof system, Merlin plays the role of prover and Arthur, a probabilistic
polynomial-time machine, plays the role of verifier; see Sect. 13.3.
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problems. Finally, note that the class denoted QSAT, for “quantum ana-
logue of satisfiability problem,” is known to be complete for BQNP and thus
BQNP⊆PSPACE [251].15

13.7 Fault-tolerant quantum computing

Fault-tolerance is the ability of an information-processing system to operate
properly even when its elements function imperfectly. Before we consider prac-
tical proposals for realizing quantum computation, it is important to have an
idea of the nature of fault tolerance in quantum computing; as we have seen,
quantum computers are even more susceptible to errors than classical digital
computers, which themselves often include such a capability. Not only must
errors in quantum memories be corrected but also those arising from imperfect
quantum gates. This makes quantum computation an affair involving quan-
tum networks significantly more complex than the simple ideal ones discussed
in relation to the quantum-communication tasks discussed so far and, indeed,
the basic descriptions of fundamental algorithms appearing in the following
chapter [140, 342, 389]. An extremely brief sketch of some basic elements of
fault-tolerant quantum computing in relation to methods described previously
is now given.16

Recall that quantum computational complexity theory focuses on BQP,
the class of problems that are efficiently solvable using quantum resources.
Efficient fault-tolerant quantum computing is possible provided the decoher-
ence rate during computation is below a certain threshold, η.17 A valid fault-
tolerant encoded operation can be performed by a combination of SWAP
operations within a block of an error-correcting code and transversal oper-
ations on the block, in such a way that the elements of the stabilizer are
permuted. The set operations of this kind can be identified with the automor-
phism group, A(S), of the stabilizer S; see Section 10.6. Given an encoded
operation U, its effect on encoded states can be found by studying N(S) \ S
under its action: the action on N(S) \ S describes the result of the operation
on the k encoded qubits, where N(S) is the normalizer [192, 193].

Ancilla preparation and measurement can also be used for fault-tolerant
quantum computing. Measurements are equivalent to random applications of
a set of projection operators. One can apply an element of a set of opera-
tors conditioned on the quantum state that results. In the case of a binary
measurement—those with eigenvalues ±1—one eigenvalue can indicate that a
projection should be applied and the other eigenvalue indicates the contrary.
15 For a more detailed discussion of these classes, see [38, 252].
16 A detailed discussion of fault-tolerant computing, using the seven-qubit Steane

code as its central example, is given in [343].
17 The hard bound on η is η < 1

2 (unless BQP=BQNC); the best available methods
of fault-tolerant quantum computing suggest that 10−3 ≥ η ≥ 10−4, with η ≈
10−2 being highly desirable [347].
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Preparing an ancilla in a known state and applying a known set of opera-
tions in the normalizer of the Pauli group can provide a state describable
using a stabilizer S. One can measure elements of the Pauli group fault tol-
erantly when they anti-commute with an element of S in order to carry out
the corresponding projection and to correct the result [192].

Rendering quantum gates fault-tolerant adds considerably to their size. For
example, a three-qubit Toffoli gate is rendered fault-tolerant by constructing a
quantum circuit involving 63 qubits and a number of measurement processes
using the Steane code [343].18 However, when quantum computations provide
considerable speedup, as in the case of the quantum factoring algorithm dis-
cussed in the following chapter, the performance of a quantum computer will
nonetheless greatly outperform any classical computer.

13.8 Linear optical quantum computation

Ideally, quantum gates perform their designated operations perfectly and the
state transformations they induce are deterministic, even though quantum
computations must end with quantum measurements. However, linear optics
are insufficient for deterministically realizing, say, the two qubit gates C-NOT
and controlled phase-flip, as one may wish to use for quantum computation
on generic photonic qubits. The principal difficulty for deterministic imple-
mentations of these gates is that achieving nonlinear coupling of two optical
modes containing only a few photons, which is the typical situation in optical
quantum computing, is quite difficult. Nonetheless, nondeterministic linear
optical realizations are possible.

It is easier to realize nondeterministic gates than deterministic ones, for
example, by rendering computations conditional on appropriate measurement
outcomes. It has been shown by Emanuel Knill, Raymond LaFlamme, and
Gerald Milburn (KLM) that single-photon sources, passive linear optics, and
photodetectors are collectively sufficient for the implementation of reliable
quantum computation along these lines [257]. In such linear optical imple-
mentations of quantum computing (LOQC), one can consider optical modes
as realizing “bosonic qubits.” For example, qubits can be encoded using two
spatial modes, one of which contains a single photon excitation while the other
does not. Spontaneous parametric down-converting systems may be used as
nondeterministic sources of individual photons by using the detection of one
photon of a down-conversion pair to “herald” the presence of the other indi-
vidual photon.19

The properties of a mode i are those corresponding to the application
of a particular annihilation operator â

(i)
j . The vacuum state, in which all

modes are in the occupation-number operator N̂ = â
(i)†
j â

(i)
j -eigenstate |0〉, is

18 See Fig. 3.6 in Sect. 3.8.
19 For details of the down-conversion process, see Sect. 6.16.
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here written “|vac〉” to distinguish it from ground states of particular modes.
Measurements of such modes are generally made destructively using particle
detectors (assumed to have nearly 100% efficiency) that measure whether
photons are present in the mode, producing outcomes that can be used for
controlling linear-optical elements.

Probabilistic quantum computing can be performed fault-tolerantly pro-
vided the probability of error in the performance of gates is sufficiently small
[259]. An exponential improvement in the probability of success for gates and
state preparation can ultimately be obtained using quantum codes, as needed.
Furthermore, as described in the examination of the process of partial Bell-
state analysis in Section 9.8, for example, the Bose statistics of photons and
the nonlinearity of measurements can be used as an effective substitute for
interactions unavailable when one is limited to linear optics.

An essential part of the KLM proposal for LOQC is the use of the nonlinear
sign-change operation to achieve a controlled phase-flip gate, which is now
explicated in some detail;20 the C-NOT can be realized nondeterministically
once the controlled phase-flip has been [257]. Consider two (dual-rail) qubits
encoded in four spatial modes corresponding to mode-pairs 1, 2 and 3, 4.
One first applies 50–50 beam-splitters to the odd-numbered optical modes.21

When the two dual-rail qubits are both |1〉, the resulting state for the modes
1 and 3 will be

|Φ+〉 =
1√
2
(|20〉+ |02〉) . (13.8)

One then applies the nondeterministic nonlinear sign-change (NS) transfor-
mation

|ψ〉 = c0|0〉+ c1|1〉+ c2|2〉 (13.9)
→ c0|0〉+ c1|1〉 − c2|2〉 = |ψ′〉 (13.10)

to modes 1 and 3 using a sequence of beamsplitters and measuring the an-
cilla, accepting the result only when the ancilla is found to be in the desired
state, which by design is also the desired state of the computational qubit.
Each instance of this operation can be performed with a success probability
1
4 . Finally, one performs the inverse of the original beam-splitter operation.
The desired conditional phase-flip (also known as the controlled sign-change
operation) is thus achieved with probability 1

4 ×
1
4 = 1

16 .
Quantum teleportation can be implemented as a fundamental computa-

tional element in this approach as well, reducing the controlled phase-flip gate
to what is essentially a state preparation task.22 To accomplish teleportation
in this context, an initial qubit state |ψ〉 in mode 1 is combined with modes
20 For elements of the formal constitution of this gate, see Sects. 1.4 and 3.8.
21 Care should be taken here not to confuse occupation eigenstates with mode labels.

Here c’s are used for amplitudes instead of a’s to avoid confusion with annihilation
operators.

22 Quantum teleportation is described in detail in Sect. 9.9
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2 and 3 in the state |Φ+〉23, and the composite system of modes 1 and 2
is measured in the Bell basis: the parity of the number of photons in these
modes and the sign of the two-mode superposition state is determined (cf.
Section 9.9). When the parity is odd, if the sign is positive the state of mode
3 is the initial state of mode 1, accomplishing the task; if the sign is negative
then mode 2 has an inverted single-mode superposition sign, which is then
inverted to complete teleportation. Teleportation is achievable with a prob-
ability 1

2 of success by sending modes 1 and 2 into a balanced beam-splitter
and then measuring the number of photons in them. Two such teleportation
operations are required to accomplished a controlled sign-change in this way,
so that the probability of success is 1

4 . The probability of success of this sort
of teleportation can be improved by increasing the number of modes to obtain
quantum networks for state preparation of a size linear in the qubit number
[257].

Photon losses and detector inefficiencies are treated as erasure events;
they destroy all information about qubit states but can be counteracted after
photon-loss detection. Such an approach is successful if the rate of failures due
to loss is kept much smaller than unitary-gate failure rates. Phase-error correc-
tions are handled by reducing unitary-gate failures using quantum repetition
codes, allowing unknown phase-errors in half the qubits to be corrected. Using
a two-qubit quantum code, arbitrarily high probabilities of gating success can
be achieved in principle using concatenated stabilizer codes. In particular, one
can use the two-qubit quantum code having the logical qubits

|0L〉 = |Φ+〉 , (13.11)
|1L〉 = |Ψ+〉 . (13.12)

The full KLM proposal for quantum computation involves an array of tech-
niques developed within quantum information science as it has matured. Only
the basic elements have been very briefly sketched above. The implementation
of quantum computing according to the methods of this proposal represents
a significant step in moving quantum information processing forward toward
a real-world technology, as has already been achieved in the case already with
quantum cryptography. The following chapter will discuss a few of the earliest
quantum-computing algorithms to be developed.
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Quantum algorithms

There is no reason in principle why powerful quantum computers cannot be
realized, despite the numerous technological challenges involved. As we have
seen, the necessary conceptual basis now exists for real-world implementations
of nontrivial algorithms that exploit the tremendous parallelism provided by
quantum mechanics. Quantum algorithms are procedures for carrying out
computations in quantum systems that are implementable as quantum cir-
cuits in those cases where finite numbers of gates are required. Fortuitously,
the parallelism provided by quantum states grows exponentially with the size
of the problem to be solved. However, one cannot simply read out the results
from the output quantum states, because the required measurement set will
also grow exponentially. Quantum algorithms are thus designed to map such
large superposition states back to the computational basis in a way that al-
lows them to be read out efficiently.1 In some cases, quantum algorithms are
exponentially faster than any corresponding classical algorithm.

Two broad classes of quantum algorithm have been identified so far. The
first is that including the Grover search algorithm that make use of simple
quantum superpositions but not necessarily entanglement. The second is that
of those using the quantum Fourier transform, including the Shor factoring
algorithm, which make essential use of entangled states. At this point in the
history of quantum computing, a few extraordinary quantum algorithms have
been produced that provide exponential speedup, as does the Shor algorithm.
More algorithms providing exponential speedup are anticipated the discovery
of which, however, appears to be just as challenging as the building of robust
quantum hardware. In this chapter, the structures of the most well studied
of the currently known algorithms are outlined. These examples exhibit the
fundamental features and components characteristic of this novel form of com-
puting and come from both of the above classes. A third class, not discussed in
1 Fourier transforms, in particular, have proven valuable in assisting in achieving

final states that can be read out efficiently.
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any detail here, is sometimes added to this taxonomy, consisting of algorithms
for simulating the behavior of quantum systems themselves.

14.1 The Deutsch–Jozsa algorithm

The first quantum algorithm that was found to provide a speedup relative
to corresponding classical algorithms in accomplishing a computational task
is the Deutsch algorithm in its extended form, known as the Deutsch–Jozsa
algorithm [133, 110]. This algorithm is of the first of the above three classes
of quantum algorithm and illustrates (subexponential) speedup within the
quantum circuit model of quantum computation introduced by David Deutsch
[129]. This algorithm serves primarily as an existence proof for the concept of
the nontrivial quantum algorithm and can be realized using a very symmet-
rical circuit, an example of which is given below. It distinguishes two classes
of binary function using n qubits. In particular, the Deutsch–Jozsa algorithm
distinguishes members of the class of constant functions, which take all input
values to a single output value, from the balanced functions, in which half of
the input values are taken to each element of the range.

For clarity, let us consider here the n = 3 -qubit Deutsch–Jozsa algorithm,
which classifies binary functions with a domain of just n− 1 = 2 bits and the
usual range of one bit, f : {0, 1}× {0, 1} → {0, 1} within the general context.
In the Deutsch problem, the function is provided as an “oracle” unknown to
the agent evaluating it, to whom it is therefore a black box. One sees directly
that this domain and range together allow for a total of N = 2n = 8 functions
to be classified. The Deutsch–Jozsa algorithm allows one to decide, using only
one query of the oracle function f , whether f is constant or whether it is
balanced, based on the value of an output bit. The algorithm, in this simple
case involving f(i, j), proceeds as follows.2

(i) The n = 3–qubit system is prepared in the initial state |0〉|0〉|1〉;.
(ii) These n = 3 qubits are individually Hadamard transformed, so that

|0〉|0〉|1〉 → (|0〉+ |1〉)(|0〉+ |1〉)(|0〉 − |1〉). (14.1)

(iii) The oracle function f is then queried using the oracle operation Uf

|i〉|j〉|k〉 �→ |i〉|j〉|f(i, j)⊕ k〉 , (14.2)

effectively producing phases with powers f(i, j) in state components

|i〉|j〉|k〉 �→
1∑

j=0

1∑
i=0

(−1)f(i,j)|i〉|j〉(|0〉 − |1〉) . (14.3)

(iv) The inverses of the Hadamard transforms of step (ii) are performed.
2 For clarity, state-vector normalization has been omitted here and later.
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The phases do the work here. The result of the above operations is that
the output quantum state-vector for the first n − 1 qubits in the case of
the constant functions lies entirely in the direction |0〉⊗n−1; in the case of the
balanced functions it lies entirely in the subspace orthogonal to this direction,
that is, it has no component along the |0〉⊗n−1 direction. This allows the two
classes to be distinguished by a projective measurement of the binary property
of being an element of one subspace or not being so.

Uf

H H

H H

H

|0

|0

H|1

Fig. 14.1. A quantum circuit implementing the pre-measurement portion of the
Deutsch–Jozsa algorithm for f : {0, 1}×2 → {0, 1}. H indicates a Hadamard trans-
formation and Uf the oracle. For an experimental three-qubit realization, see [413].

Any classical algorithm performing the same task requires the oracle f to
be evaluated a total number of 2(n−1) + 1 times for the n-qubit version of the
Deutsch–Jozsa algorithm to obtain a certainly correct classification; in the
case of the above example, this number is five. The algorithm generalizes in
the obvious way. This algorithm has already been carried out in several sorts
of system. Let us now consider an algorithm of greater practical import.

14.2 The Grover search algorithm

Database searching is a fundamental task of information processing, having
applications in cryptography, for example.3 Given a database, one often de-
sires to find a given one of its states among the set of its N possible states,
provided as an unsorted list. This is equivalent to the problem of finding a par-
ticular “target” entry in the database that is “marked” in a situation where
it is known that there exists one such entry in the database, because each
possible state of the database corresponds to having a distinct entry marked.
Lov Grover discovered a quantum algorithm for database searching having
an efficiency that surpasses that of classical search algorithms, providing a
quadratic speedup: a query taking O(N) steps classically can be performed in

3 For example, the 56-bit DES code can be broken with certainty by performing a
complete search over the 256 available possibilities [312].
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O(
√

N) steps using this algorithm [199, 200]. Although less dramatic than the
speedup provided by quantum algorithms involving period finding (discussed
below), such an improvement is still significant, just as, for example, the clas-
sical Fast Fourier Transform is of practical importance as an improvement
over the standard Fourier transform. The database involved in a search can
be accessed, similarly to how the function in the Deutsch–Jozsa algorithm can
be queried, using a representative binary oracle function f . The function in
this case is defined over the pertinent set of states that takes the value 1 for
a given “marked” state and is 0 for all other states.

Database searching is an “NP-oracle problem,” a standard “oracle ideal-
ization” in which one has no internal access to the mechanism realizing the
black box function f . The quantum circuit corresponding to the Grover op-
erator, defined below, can “recognize” the target state but cannot directly
provide its location. Rather, with each iteration, the central quantum circuit
rotates the quantum register by increasing the magnitude of the quantum
amplitude representing the actual database state relative to the amplitudes
corresponding to all other possible database states, allowing it eventually to
be distinguished from them. The oracle can be queried in this way as many
times as necessary in the course of carrying out the algorithm which, however,
involves only a prescribed number of queries. The best classical algorithm re-
quires N

2 oracle evaluations, on average, to solve the database search problem
for an N -element database, whereas this algorithm requires only O(

√
N) or-

acle evaluations. The full Grover algorithm takes only O(
√

N log2 N) steps.
The Grover search is carried out primarily by repeatedly applying the

unitary Grover operator, UG ≡ −I(|Ψin〉)HnI(|m〉)Hn, involving one oracle
query per iteration, beginning with an initial register state, |Ψin〉, of which
a given component |m〉 is sought; Hn is an n-qubit operation performing an
individual Hadamard transformation on every qubit state within the total
quantum system on which it acts; each operator of the Householder form
I(|Φ〉) ≡ I−2P (|Φ〉) inverts the register state by flipping the sign of its vector
argument |Φ〉 and leaving unchanged all the state-vectors orthogonal to it.
The oracle “marks” the target amplitude using I(|m〉) = I− 2P (|m〉).

I(|m〉) is a selective inversion about the hyperplane orthogonal to
the target state |m〉 in a sense that is away from it within a plane S
defined by |Ψin〉 and |m〉; −I(|Ψin〉) is a selective inversion in the op-
posite sense by a larger angle in S, back toward the target state. The
planar subspace S is invariant under the actions of both I(|m〉) and
I(|Ψin〉). The net result of this pair of inversions is the pertinent rota-
tion in S, by twice the angle between the directions of |Ψin〉 and |m〉,
one step toward the target state: the effect of the (unitary) Grover
operator UG in each iteration is to provide a register superposition-
state rotated by fixed-angle θ in this plane to a direction making a
smaller angle with that of the target state.
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The result of a single Grover transformation is a rotational step (see the
box above). When this step is taken an appropriate number of times, a mea-
surement in the computational basis finds the register in the target state |m〉
with very high probability, in essence completing the search. The effect of the
n + 1 qubits repeatedly encountering the corresponding Grover circuit is a
clock-like rotation of the register state by constant steps that progressively
“amplify” the component along the target state vector, so that the register ap-
proaches the final state as the prescribed number of iterations is approached.

The initialized state for this algorithm is an N = 2n–entry “unstructured
database,” where n is the size of the register R in qubits, that can be written

|Ψin〉 =
1√
N

N−1∑
i=0

|i〉R = H⊗n|0〉⊗n , (14.4)

where the index i counts over the 2n elements of the computational basis, that
is, all possible database states, of which one component, |m〉R, is “marked”
in the sense that the oracle picks it out. One adds a single ancillary qubit
in the diagonal-basis state | ↘〉A, allowing the oracle output values f(i) to
influence the phases of the database amplitudes by giving |m〉R a minus sign;
the ancilla A can be referred to as the oracle’s qubit for this reason.

The initial state of the complete system of n-qubit register plus single
ancillary qubit A in the combined Hilbert space HR ⊗HA is the product

|Ψ〉 =
1√
N

N−1∑
i=0

|i〉R| ↘〉A (14.5)

=
1√
N

N−1∑
i=0

|i〉R|0〉A − 1√
N

N−1∑
i=0

|i〉R|1〉A . (14.6)

Then, in each iteration, the following transformations constituting the Grover
transformation take place, realizing the “amplitude amplification” procedure,
beginning with the evaluation (or query) of f .

i) For the “marked” state, there is a state reflection |m〉R → −|m〉R via

I(|m〉R) =
[
I− 2P (|m〉)

]
R ⊗ IA . (14.7)

ii) All qubits are Hadamard transformed;

iii) For i 
= m, there is a state reflection |i〉R → −|i〉R via

−I(|Ψin〉R) =
[ ∑

i�=m

2P (|i〉)− I

]
R
⊗ IA . (14.8)

iv) All qubits are again Hadamard transformed.
After each iteration, the overall system R+A is in a product state. The an-
cillary qubit in HA is left in the same superposition state, | ↘〉A, as at the
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outset. By contrast, as a result of the above two inversions, the state in HR
is left rotated by a net angle θ with each iteration, where

cos θ = 1− 2
N

(14.9)

sin θ = 2
√

N − 1
N

, (14.10)

and θ ≈ sin θ = 1√
N

, bringing it closer to the target state |m〉R. Thus, the

register state is sufficiently close to |m〉R after π
4

√
N iterations, each inducing

a rotation by the fixed angle θ, for a measurement to determine the state of
the database with high probability. Hence only O(

√
N) queries are needed,

an improvement over the O(N) queries required by a classical algorithm.
To summarize: the computational state is progressively rotated so as to

allow for the identification of the marked state; the resulting state is measured
after the required number of iterations, providing the the marked state among
the possible database states.4 If the problem is instead such that there is more
than one marked state that is unknown, the situation is not greatly changed
as long as the number M of marked states is much smaller than the size of the
database, N . One can in that case choose, at random, the number of iterations
to be performed as a number between 0 and π

√
N

4 , because the probability of
finding a marked state is close to 50 percent for every M . Any algorithm for
this problem will require O(

√
N/M) queries of the oracle.

The Grover search algorithm has been shown to provide an optimal search
in the sense that it cannot be parallelized better than by assigning different
parts of the searching space to a number of independent quantum processors
[467].

14.3 The Shor factoring algorithm

The prime factoring of integers is of central importance to the security of
classical public-key cryptosystems: the ability to efficiently factor allows one
more easily to break cryptosystems that are dependent on the costliness of
performing this operation using classical computers; see Section 12.1. Prime
factoring was believed to be an NP problem because the difficulty of factoring
increases exponentially with the size of the input number, in marked contrast
to the “inverse” problem of multiplication which increases only polynomially
with the size of the input. However, in 1993, Peter Shor discovered an effi-
cient quantum algorithm for factoring integers that reduces the number of
steps from the exponential time of exp(N1/3) steps classically required to the
polynomial time of N2 steps [388, 390]. This speedup can be understood by
4 Note, however, that after the required number of iterations determined by the

size of the database, if left unmeasured, the state will move past the desired state,
overshooting it. Graphic illustrations of this rotation are often deceptive.
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noting that the quantum version of the fast Fourier transform can be carried
out efficiently, since the number of quantum-parallel computations increases
exponentially with number with the number of bits involved.

Integer prime factoring is the discovery of the product of prime numbers,
each potentially appearing repeatedly in the product, equal to the compound
positive integer in question (see Eq. 14.16 below). Factoring a number N is
easy, once finding the multiplicative order of an arbitrary element of Z

×
N has

been made easy, because integer factorization reduces to the problem of order
finding [301].5 Order finding is performed in the Shor algorithm by carrying
out phase estimation, in particular, the estimation of the eigenvalues associ-
ated with eigenvectors of unitary operators. The phase-estimation algorithm,
in turn, makes use of the quantum version of the discrete Fourier transform.
We now examine these algorithmic elements individually before providing an
explication of the (relatively complex) Shor algorithm.

The quantum Fourier transform is the quantum version of the discrete
Fourier transform (DFT). Consider a function f that can be written as a
normalized vector of the form

f =
n−1∑
i=0

ciβi , (14.11)

where {βi} is an orthonormal basis for the vector space formed by functions
into C, and its discrete Fourier transform, f̄ . In a quantum-state description,
the βi form an orthonormal basis for the Hilbert space of the system. The
quantum Fourier transform corresponds to the operation

f =
n−1∑
i=0

ciβi →
n−1∑
i=0

c̄iβi = f̄ , (14.12)

which is linear and unitary.6 The quantum Fourier transform accomplishes a
reduction of the number of steps required to perform this operation by acting
on the amplitudes of a quantum superposition-state. The quantum Fourier
transform (QFT) is similar in character to the classical fast Fourier transform
(FFT).7

5 Here, Z
×
N is the multiplicative group of units of the integers mod N , ZN , the

cyclic group of order N ; a cyclic group is a group that can be generated by a
single element (the generator) by repeated multiplication.

6 It is also the case that ||f̄ || = 1, as can be seen to be so by noting that a quantum
Fourier transform pair must obey the Parseval identity ||f || = ||f̄ ||, which can
be thought of as the Pythagorean theorem for inner-product spaces, as does the
traditional Fourier transform.

7 The fast Fourier transform, originally used by Gauss and rediscovered by James
Cooley and John Tukey in 1965, reduces the number of steps needed to compute
the Fourier transform from 2N2 to 2N log2 N steps, by recursively reducing the
transform for a number N = 2M to two transforms each of length N/2 [113, 178].
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The QFT on the integers modulo n has the desired effect on basis states,
namely, the mapping

|x〉 �→ 1√
n

n−1∑
k=0

e−2πixy/n|y〉 , (14.13)

where x, y are representatives of cosets x+nZ and y +nZ, respectively. How-
ever, the outcome of the quantum Fourier transform remains, in a sense,
hidden in the complex amplitudes of the output state, so that only global
properties such as the period of the function—which is fortunately what is
of interest in this case—can be efficiently determined. As an example, the
quantum circuit for performing a QFT on three qubits is shown in Fig. 14.2.

H P1

H

H

P1

P2
|b1|b1

|b2 |b2

|b3|b3

Fig. 14.2. A quantum circuit for carrying out the quantum Fourier transform on
three qubits for input computational basis states specified by the bi with outputs
specified by the b′

i. The H indicate Hadarmard gates and P1 = P(π
2 ) and P2 = P(π

4 )
phase-shift gates.

The phase-estimation component of the Shor algorithm determines the
phase of a unit-magnitude complex eigenvalue from the solution of the eigen-
value problem of a unitary operator,

U |u〉 = e2πiφ|u〉 , (14.14)

making use of the QFT; the estimate is made via controlled-U operations
involving a pair of registers in the product state

|0〉⊗n|u〉⊗n . (14.15)

The first register is acted on by an n-qubit Hadamard transformation and
functions as an array of n control qubits for a sequence of controlled-Um

operations acting on collections of m qubits of the second register, where
the power m is equal to the position of the control qubit in its register. An
inverse discrete Fourier transform is then applied by the algorithm to the first
register. This transform returns a product state that provides the solution to
the phase-estimation problem upon measurement in the computational basis.
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By the fundamental theorem of arithmetic, the prime-factored form of any
positive integer N is

N = pα1
1 pα2

2 · · · pαk

k , (14.16)

where pi are the primes and αi their powers, which are found using the (clas-
sical) Euclidean algorithm and a method of determining periods of (periodic)
functions. The central component of the Shor algorithm, which is summarized
briefly below, is the process of order finding, which makes use of the quantum
phase-estimation procedure discussed above to assist in finding periods.

To factor N , consider an integer y between 1 and N − 1. One can use the
(classical) Euclidean algorithm to find whether gcd(y, N) = 1, in O((log2 N)3)
(classical) steps. If gcd(y, N) > 1, this y is a desired nontrivial factor of N .
Otherwise, i.e. if gcd(y, N) = 1, one takes the (base N) order of y to be r,
that is, r = ord(y), yr = 1 (modN) and N divides yr − 1. If r is even, then
yr − 1 is readily factored as (yr/2− 1)(yr/2 + 1); N necessarily has a factor in
common with at least one of the elements of this product, which is similarly
found using the Euclidean algorithm. A function of the form

fy(x) = yxmod N, (14.17)

is periodic because fy(x + r) = fy(x); when f has period r, which is the case
here, ar = a0 = 1.8 To obtain the period, one takes a number of the form
M = 2m as the length of the Fourier transform, where N2 ≤ M ≤ 2N2,
allowing it to be efficiently performed, as below. With an efficient process for
obtaining a nontrivial factor thus in hand, one applies it recursively to all
factors until the full factorization of the form of Eq. 14.16 is obtained.

Factoring can therefore be carried out in the Shor algorithm as follows.9

(i) Randomly choose an integer y between 1 and N − 1, and find gcd(y, N).
If gcd(y, N) > 1, y is a nontrivial factor; otherwise, proceed.

(ii) Prepare two quantum registers in a tensor product state, one of m qubits
for the arguments and a second one of m′ = �log2 N� qubits for the values
of the periodic function, with each qubit taking the zero bit-value in the
computational basis

|Ψ〉 = |0〉1|0〉2 , (14.18)

where |0〉1 = |0〉⊗m and |0〉2 = |0〉⊗m′
.10

8 A function f(t) is periodic, with period T , if for all t, f(t + T ) = f(t), where T
is a positive number.

9 Here, again, most normalization factors have been omitted, cf. [60].
10 Note that the number m′ of qubits can be exponentially smaller than the period

of the function fy(x).
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(iii) Perform the Hadamard transform on every one of the m qubits of the
first register, providing a superposition of all possible input number values,
resulting in the state

|Ψ ′〉 =
M−1∑
x=0

|x〉1|0〉2 . (14.19)

(iv) Compute the function fy(x) = yx mod N for each x using a unitary
transformation taking |x〉|0〉 �→ |x〉|yx mod N〉, to obtain

|Ψ ′′〉 = ξ

M−1∑
x=0

|x〉1|yx mod N〉2 , (14.20)

where ξ provides normalization.

(v) Measure the second register in the computational basis, obtaining a value
z0, leaving the system in the quantum state

|Ψ ′′′〉 =
K−1∑
k=0

|x0 + kr〉1|z0〉2 , (14.21)

where the first register is placed in a uniform superposition of all states |x〉 for
which fy(x) = z0, where yx0 = z0 and K = 'M

r (. The second register serves
to prepare the first register; the particular value z0 obtained in the process
has in itself no significance for the operation of the algorithm.

(vi) Perform the (inverse) quantum Fourier transform on the first register,
leaving the system in the state

|Ψ ′′′′〉 =
M−1∑
l=0

K−1∑
k=0

e2πi(x0+kr)l/M |l〉1|z0〉2 , (14.22)

with the effect that x0 in the basis of the first register appears now in the
phases of the superposition instead of the kets, “inverting” the periodicity of
the input.

(vii) Measure the first register in the computational basis, providing the phase
estimate from among the values of l.

(viii) Given the result, which has benefited from the speedup provided by
quantum parallelism, the period r of the function is then determinable by
classical computational methods.11 The order, and hence a nontrivial factor,
is obtained.

The above process is repeatedly applied until the full prime factorization,
Eq. 14.16, is obtained.
11 For example, see the discussion in Sect. 4.5 of [60].
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14.4 The Simon algorithm

Factoring using the Shor algorithm involves finding the period of a function.
Another algorithm that involves this is Simon’s algorithm [60, 394], which is
an instance of a more general problem, the Abelian hidden-subgroup problem.

Given a function f from (Z2)N to itself (cf. Section A.1), representable as
a unitary map

|x〉|0〉 �→ |x〉|f(x)〉 , (14.23)

for all x, that can be evaluated on quantum states in the presence of a sub-
group H̄ ∈ (Z2)N on which f takes a constant unique value on each right
coset of H̄, Simon’s problem is to find the generators of this subgroup. Si-
mon’s algorithm uses a number, of order O(N), of evaluations of the oracle
f , classical computation, and a polynomial number of quantum operations to
solve the problem. This algorithm operates as follows.

(i) Prepare two N -qubit quantum registers in tensor product states wherein
each qubit has the computational-basis-value zero,

|Ψ〉 = |0〉⊗N
1 |0〉⊗N

2 . (14.24)

(ii) Perform a multiple-qubit Hadamard transformation on all qubits of the
first register, providing a superposition of all possible inputs, namely,

|Ψ ′〉 =
1√
2N

∑
x∈(Z2)N

|x〉1|0〉2 . (14.25)

(iii) Act on this superposition with the unitary operation corresponding to f ,
yielding

|Ψ ′′〉 =
1√
2N

∑
x∈(Z2)N

|x〉1|f(x)〉2 . (14.26)

(iv) Measure the second register, obtaining a value y from the second register
and the coset of the hidden subgroup H̄ in the first register:

|Ψ ′′′〉 =
1√
|H̄|

∑
f(x)=y

|x〉1|y〉2 . (14.27)

(v) Apply the multiple-qubit Hadamard transformation to the first register.

(vi) Measure the first register in the computational basis.

(vii) Repeat the above steps the anticipated number
(
that is, O(N)

)
of times,

generating with high probability the orthogonal complement of H̄ with respect
to the scalar product in (Z2)N .

(viii) Solve linear equations, for example, via Gauss’ classical algorithm for
finding the kernel of a square matrix, to obtain the generators of H̄.
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Mathematical elements

The language of quantum mechanics is rooted in linear algebra and functional
analysis. It often expands when the foundations of the theory are reassessed,
which they periodically have been. As a result, additional mathematical struc-
tures not ordinarily covered in physics textbooks, such as the logic of linear
subspaces and Liouville space, have come to play a role in quantum mechan-
ics. Information theory makes use of statistical quantities, some of which are
covered in the main text, as well as discrete mathematics, which are also
not included in standard treatments of quantum theory. Here, before describ-
ing the fundamental mathematical structure of quantum mechanics, Hilbert
space, some basic mathematics of binary arithmetic, finite fields and random
variables is given. After a presentation of the basic elements of Hilbert space
theory, the Dirac notation typically used in the literature of quantum informa-
tion science, and operators and transformations related to it, some elements
of quantum probability and quantum logic are also described.

A.1 Boolean algebra and Galois fields

A Boolean algebra Bn is an algebraic structure given by the collection of 2n

subsets of the set I = {1, 2, . . . , n} and three operations under which it is
closed: the two binary operations of union (∨) and intersection (∧), and a
unary operation, complementation (¬). In addition to there being comple-
ments (and hence the null set ∅ being an element), the following axioms hold.

(i) Commutativity: S ∨ T = T ∨ S and S ∧ T = T ∧ S;
(ii) Associativity: S∨ (T ∨U) = (S∨T )∨U and S∧ (T ∧U) = (S∧T )∧U ;
(iii) Distributivity: S ∧ (T ∨ U) = (S ∧ T ) ∨ (S ∧ U) and S ∨ (T ∧ U) =

(S ∨ T ) ∧ (S ∨ U);
(iv) ¬∅ = I, ¬I = ∅, S ∧ ¬S = ∅, S ∨ ¬S = I, ¬(¬S) = S ,

for all its elements S, T, U . The algebra B1 is the propositional calculus arising
from the set I = {1}, which is also used in digital circuit theory, where ∅
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corresponds to FALSE, I to TRUE, ∨ to OR, ∧ to AND, and ¬ to NOT. The
“basic” logic operation XOR corresponds to (S ∨ T ) ∧ (¬S ∨ ¬T ).

A field is a set of elements, with two operations (called multiplication and
addition) under which it is closed, that satisfies the axioms of associativity,
commutativity and distributivity and in which there exist additive and mul-
tiplicative identity elements and inverses. The order of a field is the number
of its elements. Theorem (Galois): There exists a field of order q if and only
if q is a prime power, that is, q = pn where p is prime and n is a positive
integer; furthermore, if q is a prime power, then there is (up to a relabeling),
only one field of that order. A field of order q is known as a Galois field and is
denoted GF (q). If p is prime, then GF (p) is simply the set {0, 1, ..., p−1} with
mod-p arithmetic. GF (pn) is a linear space of dimension n over Zp (the set of
integers 0 to p−1) containing a copy of it as a subfield. For Z2, GF (2) is such
a field over the set {0, 1} with XOR as addition and AND as multiplication.
In computing, one is primarily interested in functions f : {0, 1}m → {0, 1}n;
for example, two-bit logic gates g : GF (2) → GF (2).

A.2 Random variables

A random variable is a deterministic function from a given sample space S,
that is, the set of all possible outcomes of a given experiment, the subsets of
which are known as events, those containing only a single element being the
elementary events, to the real numbers. The expectation value, E[Y (X)], of
a function Y (X) of a random variable X is given by a linear operator such
that

E[Y (X)] =
n∑

i=1

Y (xi)P (X = xi) , (A.1)

E[Y (X)] =
∫ +∞

−∞
Y (x)f(x)dx , (A.2)

in the cases of discrete and continuous variables, respectively, where in the
former P (X = xi) is the probability and in the latter f(x) is the probability
density (p.d.f.), that is, a collection of numbers between 0 and 1 summing to
unity. For a random variable with a (differentiable) cumulative distribution
function F (X), f(x) ≡ dF/dx; a random variable has the cumulative distri-
bution function F (X) if the probability of an experiment with sample space
S to yield x < X as an outcome is

F (x) = P (X < x) =
∫ x

−∞
f(x′)dx′ . (A.3)

A Markov chain is a sequence of random variables X1, X2, . . . such that a
given random variable Xi is independent of all the variables X1, X2, . . . Xi−1,
that is, is memoryless.
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A.3 Vector Spaces and Hilbert space

The central mathematical structure of quantum mechanics is Hilbert space,
which is a specific sort of vector space. The Dirac notation commonly used
to describe Hilbert-space calculations in the physics literature is introduced
below, after this structure is described in standard mathematical notation.

A vector space V over a field F is a set of vectors together with operations
of scalar-multiplication and addition satisfying the following. For all elements
a, b ∈ F and u, v, w ∈ V (with the zero vector denoted 0), scalar multiples
and vector sums are elements of V such that:

(i) There is a unique scalar zero element 0 ∈ F such that 0u = 0 for all u;
(ii) 0 + u = u;
(iii) a(u + v) = au + av and (a + b)u = au + bu; and
(iv) u + v = v + u, and u + (v + w) = (u + v) + w .

A (scalar) inner product (u, v) is assumed for all pairs u, v ∈ V such that:
(i) (u, v) = (v, u)∗, where ∗ indicates complex conjugation;
(ii) (u, u) ≥ 0, with (u, u) = 0 if and only if u = 0;
(iii) (u, v + w) = (u, v) + (u, w); and
(iv) (u, av) = a(u, v).

The norm of a vector, ||u|| ≡
√

(u, u), satisfies:
(i) ||u|| ≥ 0 for all u ∈ V , with ||u|| = 0 if and only if u = 0;
(ii) ||u + v|| ≤ ||u||+ ||v||, for all u, v ∈ V ; and
(iii) ||au|| = |a| ||u||, for all a ∈ F and all u ∈ V .

The field F used in quantum mechanics is usually taken to be that of the
complex numbers, C. The vectors for which ||u|| = 1 are the unit vectors.
Vectors u and v are orthogonal (u ⊥ v) if and only if (u, v) = 0.

A function of two vector arguments that is more general than the inner
product, which serves similar purposes but is applicable in broader contexts,
is the Hermitian form, h(u, v), which satisfies:

(i) h(u, v) = h(v, u)∗;
(ii) h(u, av) = ah(u, v), for all a ∈ F , u, v ∈ V ; and
(iii) h(u + v, w) = h(u, w) + h(v, w), for all u, v, w ∈ V .

A positive Hermitian form is an Hermitian form that also satisfies the con-
dition h(u, u) ≥ 0 for every u ∈ V . An Hermitian form is positive-definite
if h(u, u) = 0 implies u = 0; a positive-definite Hermitian form is an inner
product.

A basis for a vector space is a set of mutually orthogonal vectors such that
every u ∈ V can be written as a linear combination of its elements; a basis is
orthonormal if it is composed entirely of unit vectors. A set S of vectors in V
is a subspace of V if S is a vector space in the same sense as V itself is. The
one-dimensional subspaces of V are called rays.
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A Hilbert space, H, is a complete complex vector space with an inner
product for which (u, u) ≥ 0 for all u ∈ H. A map A : H → H, u �→ Au is a
linear operator if, for all u, v ∈ H and scalars a ∈ F :

(i) A(u + v) = Au + Av; and
(ii) A(au) = a(Au).

If, instead of (ii), one has A(au) = a∗(Au), then A is an anti-linear operator.
(Together, the linear and anti-linear operators are fundamental to quantum
mechanics; see Wigner’s theorem, below.)

A vector space with an inner product, such as a Hilbert space, can be
attributed a norm || · || = (v, v)1/2, which provides a distance via d(v, w) =
||v − w||. Such a vector space is separable if there exists a countable subset
in the space that is everywhere dense, that is, for every vector there is an
element of the space within a distance ε of it for every positive real ε; the space
is complete if every Cauchy sequence—namely, every sequence such that for
every ε > 0 there is a number N(ε) such that ||vm− vn|| < ε if m, n > N(ε)—
has a limit in the space. (For finite-dimensional spaces, one usually considers
the norm topology, although weak topologies may be required to define needed
limits and to give proper definitions of continuity.) A subspace of a Hilbert
space H is a closed linear manifold, that is, a linear manifold containing its
limit points; a linear manifold in H is a collection of vectors such that the
scalar multiples and sums of all its vectors are in it.

A bounded linear operator is a linear transformation L between normed
vector spaces V and W such that the ratio of the norm of L(v) to the norm
of v is bounded by the same number, for all non-zero vectors v ∈ V . The
set of bounded linear operators on a Hilbert space H is designated B(H).
The sum of two operators A and B, A + B, is another operator defined by
(A + B)v = Av + Bv, for all v ∈ H; multiplication of an operator by a scalar
a is defined by (aA)v = a(Av), for all v ∈ H; multiplication of two operators
is defined by (AB)v = A(Bv), for all v ∈ H. The zero operator, O, and
the unit operator, I, are defined by Ov = 0 and Iv = v, respectively. An
operator B is the inverse of another operator A whenever AB = BA = I; it
can be written B = A−1. Two operators A and B commute if the commutator
[A, B] ≡ AB − BA = 0. A ordering relation A ≥ B for self-adjoint bounded
linear operators is defined by A−B ≥ O.

A nonzero vector v ∈ H is an eigenvector of the linear operator A if Av =
λv, for any scalar λ, which is said to be the eigenvalue of A corresponding to
v; one can then write

(A− λI)v = 0 . (A.4)

By considering the linear operator A in its matrix representation, the solutions
to this eigenvalue problem can be found by solving the characteristic equation
det(A− λI) = 0, the left-hand side of which, in cases where A has a finite set
(spectrum) of eigenvalues, is an nth-degree polynomial in λ.



A.3 Vector Spaces and Hilbert space 235

The adjoint, A† of the operator A is defined by the property that
(A†v, w) = (v, Aw) for every v, w ∈ H. Any operator for which A† = A is
said to be (Hermitian) self-adjoint and has the two following properties.

(i) All eigenvalues are real.
(ii) Any two eigenvectors v1 and v2 with corresponding eigenvalues λ1 and

λ2, respectively, are orthogonal to each other when λ1 and λ2 are nonidentical.

A linear operator O is unitary if OO† = O†O = I, in which case O† =
O−1. Unitary operators are usually designated by the symbol U and have the
following properties.

(i) The rows of U form an orthonormal basis.
(ii) The columns of U form an orthonormal basis.
(iii) U preserves inner products, that is, (v, w) = (Uv, Uw) for all v, w ∈ H.
(iv) U preserves norms and angles.
(v) The eigenvalues of U are of the form eiθ.

The matrix representing any unitary transformation U on a Hilbert space of
countable dimension d can be diagonalized as above, to take the form⎛

⎜⎜⎜⎜⎝
eiθ1 0 · · · 0

0
. . . . . . 0

...
. . . . . .

...
0 · · · 0 eiθd

⎞
⎟⎟⎟⎟⎠ .

A bounded linear operator O ∈ B(H) is positive, O ≥ O, if 〈ψ|O|ψ〉 ≥ 0
for all |ψ〉 ∈ H. The set of positive operators is convex. Positive operators
are Hermitian, always admit a positive square root, and, if invertible, have a
unique decomposition into polar form, by which is meant that such an operator
O can be written O = |O|U with U a unitary operator and |O| =

√
OO†,

analogous to the polar form of a complex number.
The singular-value decomposition theorem for operators can be stated as

follows. For any operator A representable as an m×n matrix of rank r, there
exists an m× n matrix Σ of the form

Σ =
(

D 0
0 0

)
, (A.5)

where D is an r × r diagonal matrix having as diagonal entries the first r
singular values of A, namely, σi such that σ1 ≥ σ2 ≥ · · · ≥ σr, and there
exists an m×m matrix U and an n× n orthogonal matrix V such that

A = UΣV T , (A.6)

where T indicates matrix transpose, that is, [AT]ij = [A]ji. Any such factor-
ization is a singular-value decomposition of A.
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An Hermitian operator A is a projection operator (projector) if and only
if A2 = A, in which case it is usually denoted P (S), where S is a subspace of
H, often a ray. A bounded linear operator is a trace-class operator if its trace,

trA ≡
∑

k

(Avk, vk) , (A.7)

is absolutely convergent for any orthonormal basis {vk} of H. The trace is
a linear functional over the space of trace-class operators, that is, tr(aA +
bB) = a trA+ b trB, for A, B trace-class, and is cyclic, i.e. tr(AB) = tr(BA).
The bilinear map 〈A, B〉 ≡ tr(A†B) is an inner product on the trace-class
operators, and provides the Hilbert–Schmidt norm. By contrast, the spectral
norm of an operator described by an n× n complex matrix A is

max
{
|λ|

∣∣λ ∈ Spec(A)
}

, (A.8)

where Spec(A) is the eigenvalue spectrum of A; it is the square root of the
spectral radius of A, which is the largest eigenvalue of A†A.

KyFan’s maximization principle provides a useful constraint on the eigen-
values of a sum of two Hermitian matrices. It can be stated as follows. Given
an Hermitian operator A and a set of k-dimensional projectors {Pi},

k∑
j=1

λj = maxPi
[tr(APi)] , (A.9)

where λj ∈ Spec(A).
Majorization is a method of ordering vectors that captures their relative

degree of order. One writes v↓ for v reordered so that v1 ≥ v2 ≥ v3 ≥
. . . ≥ vd. Consider two d-dimensional vectors u = (u1, u2, u3, . . . , ud) and
v = (v1, v2, v3, . . . , vd). The relation ≺ defined as follows.

u ≺ v if
k∑

j=1

u↓
j ≤

k∑
j=1

v↓
j , (A.10)

with k ≤ d, equality occurring when k = d; one then says that v majorizes u.
One valuable result involving this ordering is that

u ≺ v iff u =
∑

j

pjΠjv , (A.11)

for some probability distribution {pj} and permutation matrix Πj , which is
a binary matrix with exactly one entry 1 in each row and each column and
zeros elsewhere that implements a permutation on a vector. With majoriza-
tion, KyFan’s maximization principle mentioned above gives rise to a helpful
constraint on the sum of eigenvalue-vectors of two Hermitian matrices:

λ(A + B) ≺ λ(A) + λ(B) . (A.12)
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If one vector majorizes another, then the latter can be obtained from the
former by multiplication by a doubly stochastic matrix—a matrix is said to
be doubly stochastic when its entries are nonnegative entries and each row
and each column sum to one. Birkhoff’s theorem states that a d× d matrix
D is doubly stochastic if and only if it can be written D =

∑
j pjΠj .

A.4 The standard quantum formalism

The Hilbert-space formulation of quantum mechanics has the following ele-
ments, which have associated postulates given in Appendix B.

(i) Every physical system is attributed a separable Hilbert space H.
(ii) Every physical property is associated with a self-adjoint, not necessarily

bounded, linear operator, O, called an observable, and vice versa.
(iii) Every state of a physical system is assigned a statistical operator ρ

that is a linear bounded self-adjoint positive trace-class operator, and vice
versa.

(See Appendix B for a statement of the quantum postulates, including its
extension to composite systems via the tensor product, and the time-evolution
of states.)

Wigner’s theorem is a fundamental theorem of the Hilbert-space formula-
tion of quantum mechanics: Let I : u → v be a length-preserving transforma-
tion (that is, an isometry) with respect to the Hilbert-space norm; I is either
unitary or anti-unitary.

The expectation value, 〈O〉ρ, of an operator O for a quantum state ρ is
given by

〈O〉ρ = tr(ρO) . (A.13)

The inner product, (u, v) on a finite-dimensional Hilbert space H induces
a natural geometry. Because global phases on the vectors have no effect on
the probability for finding a system in a given eigenstate upon measurement,
they are not a necessary part of the description of a state and all state vectors
related to each other by such a phase can be identified.1 Hence, projective
Hilbert space is appropriate for the description of finite-dimensional quan-
tum systems [431]. A natural metric for these projective Hilbert spaces is the
Fubini–Study metric, which for finite values corresponds to the distance

d(u, v) = 1−min
v

[
Re(u, eiφv)

]2
. (A.14)

A.5 The Dirac notation

The Hilbert-space structures described in the previous section can all be writ-
ten in Dirac notation, which we now introduce. The state of a physical system
1 Indeed, this phase naturally cancels out in the formation of the projector, Pu,

corresponding to a given vector u.
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described by a state-vector v is written as a ket, |v〉, and corresponds to a
pure statistical operator; the corresponding Hermitian adjoint is given by a
bra, 〈v|. The inner product (v, w) of two such vectors is written as the braket
〈v|w〉, and is a complex scalar (cf. Eq. A.16). Operators acting from the left
on a ket yield a ket and acting from the right on a bra yield a bra. A ketbra,
|v〉〈w|, is an operator (cf. Eq. A.17) that, when acting on a ket |u〉, yields

|v〉〈w|(|u〉) = 〈w|u〉|v〉 = (w, u)|v〉 . (A.15)

Every statistical operator ρ can be written as a linear combination of (pure)
projector ketbras, P (|ui〉) ≡ |ui〉〈ui|, having weights pi. The inner product of
vectors, 〈v|w〉 taking |v〉 =

∑
i αi|i〉 and |w〉 =

∑
i βi|i〉, is therefore

〈v|w〉 .= (α∗
1 α∗

2 · · · )

⎛
⎜⎝

β1
β2
...

⎞
⎟⎠ . (A.16)

The row vector (α∗
1α

∗
2 · · ·) represents 〈v| and the column vector (β1β2 · · ·)T

represents |w〉. The general ketbra |v〉〈w| can be written as the outer product

|v〉〈w| .=

⎛
⎜⎝

α1
α2
...

⎞
⎟⎠ (β∗

1 β∗
2 · · · ). (A.17)

Recalling that the projector P (|v〉) = |v〉〈v|, one thus has, for any |w〉,
P (|v〉)|w〉 = (〈v|w〉)|v〉; see Fig. 2.1. Note that P 2 = |v〉〈v|v〉〈v| = P because
|v〉 has norm 1, that is, projectors are idempotent.

The matrix for an operator O and basis states |i〉 and |j〉 has elements
〈j|O|i〉 ∈ C. The representation of an operator by a collection of matrix el-
ements is relative to the choice of eigenbasis; for example, see Section 1.4
for matrix representations of single-qubit gates. Hermitian operators (observ-
ables) correspond to physical properties and have matrices with real diagonal
elements Oii and complex off-diagonal elements such that Oij = O∗

ji. The
matrix representation of a statistical operator ρ, such as is necessary to de-
scribe mixed quantum states, is known as a density matrix and is designated
by the same symbol. When the state is pure, the density matrix is of rank
one. Recalling the spectral representation given in Eq. 2.15, one can define a
function of an operator O by

f(O) =
∑

n

f(on)P (|on〉) , (A.18)

under appropriate conditions, as discussed in Footnote 9 of Chapter 2. The
expectation value of an operator is given in Dirac notation by Eq. 2.16.
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The tensor product of two vectors |v〉 and |w〉 is written |v〉 ⊗ |w〉. The
tensor product space, written V ⊗ W , is the linear space formed by such
products of vectors: given bases |v1〉, . . . , |vk〉 and |w1〉, . . . , |wl〉 for two vector
spaces V and W , respectively, a corresponding basis for V ⊗W is given by

{|vi〉 ⊗ |wj〉 : 1 ≤ i ≤ k, 1 ≤ j ≤ l},

and dim(V ⊗W ) = kl. Any vector |Ψ〉 ∈ V ⊗W can be written in the form

|Ψ〉 =
∑
ij

αij |vi〉|wj〉 , (A.19)

where the αij are corresponding scalar components. Every linear operator O
in such a tensor product space V ⊗W , where

O(vi ⊗ wj) ≡ (O1vi)⊗ (O2wj) , (A.20)

is a linear combination of direct products of linear operators, namely,

O =
∑

i

O
(i)
1 ⊗O

(i)
2 . (A.21)

A.6 Groups of transformations

A set of elements G, together with a product map G×G → G, forms a group
if it satisfies the following conditions.

(i) Multiplication of elements is associative: a(bc) = (ab)c for all a, b, c ∈ G.
(ii) An identity element e ∈ G exists, for which eg = ge = g for all g ∈ G.
(iii) An inverse g−1 ∈ G exists for every g ∈ G, such that g−1g = gg−1 = e.
A map θ between two groups G and H is a group homomorphism if

θ(g1g2) = θ(g1)θ(g2) for all g1, g2 ∈ G. An action of a group G on another set
S is given by a map G×S → S such that g2(g1s) = (g1g2)s and es = s for any
s ∈ S, that is, a homomorphism from the group into the group of one-to-one
transformations of S.

A unitary representation of a group on a vector space assigns unitary oper-
ators U on the space such that U(gh) = U(g)U(h) for all g, h ∈ G; a mere pro-
jective representation is a representation for which U(gh) = ω(g, h)U(g)U(h),
where ω(g, h) is a phase term. A representation is irreducible if there is no
vector subspace that is mapped to itself by every element of the representa-
tion. Representations are equivalent if there is an isomorphism M between
them such that MU(g) = U(g)M .

The orbit G · S of an element m of a set S under the action of a group
G is the subset of S given by {gm|g ∈ G}, g ranging over all elements of G.
Orbits stratify the set of quantum states of a system. The orbit of a statisti-
cal operator ρ under the group U(n) of unitary operators of dimension n is
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determined by its spectrum. An orbit O can therefore be specified by a repre-
sentative diagonal matrix, the eigenvalues of which are ordered from greatest
to smallest. The unitary group U(n) partitions the set of density matrices
into an uncountably infinite family of orbits. Given two statistical operators
ρ1 and ρ2, the following statements are equivalent.

(i) ρ1 and ρ2 are unitarily equivalent: ρ2 = Uρ1U
†, for some unitarity U .

(ii) ρ1 and ρ2 have identical eigenvalue spectra.
(iii) trρr

1 = trρr
2 for all r = 1, 2, . . . , n, where n = dimρ1 = dimρ2.

Majorization can be used to provide a partial ordering of orbits, by taking
O1 ≺ O2 if ρ1 ≺ ρ2, where Oi = O[ρi] designates the orbit of ρi.

A.7 Probability, lattices, and posets

Here we review the basic elements of structures appearing in traditional quan-
tum logic and probability theory. Traditional quantum logic has a long history
stretching back to early work by Birkhoff and von Neumann [61]. More on the
quantum-logical approach to quantum mechanics can be found in Section A.9.

A σ-algebra is a nonempty collection S of subsets of a set X such that:
(i) The empty set ∅ is in S,
(ii) If A is in S, then the complement of A in X is in S,
(iii) If An is a sequence of elements of S, then the union of the elements

of the sequence is also in S.
A partially ordered set (poset) P is a set S together with a binary (partial

ordering) relation, ≤, that is
(i) Reflexive (a ≤ a),
(ii) Antisymmetric (a ≤ b and b ≤ a implies that a = b, for all a, b ∈ S),
(iii) Transitive (a ≤ b and b ≤ c implies that a ≤ c, for all a, b, c ∈ S).

The least upper bound (lub) of two elements, a and b, under ≤ is written
a ∨ b, and the greatest lower bound (glb) is written a ∧ b.
An orthomodular poset is a poset, with a unary operation ′, fulfilling:

(i) 0 ≤ a ≤ 1 for all a ∈ P , 0 being the zero element and 1 the unit,
(ii) For all a, b ∈ P , (a′)′ = a, a ≤ b ⇒ b′ ≤ a′, a ∨ a′ = 1,
(iii) If a ≤ b′ then a ∨ b ∈ P ,
(iv) If a ≤ b, then there is an element c ∈ P such that c ≤ a′ and b = a∨c.

Condition (ii) ensures that the operation ′ : P → P , corresponding to set-
theoretic complementation, is an orthocomplementation; (iv) is the ortho-
modular law. Two elements a and b of an orthomodular poset are orthogonal
(a ⊥ b) if a ≤ b′.

A lattice is a poset for which there exists both a lub and a glb for every
pair of elements. A lattice contains both a zero element, 0, and an identity
element, 1, if 0 ≤ a and a ≤ 1 for every one of its elements a. A lattice
is a complemented lattice if there exists a complement, a′, for every one of
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its elements, a—that is, if for every a there exists an element a′, such that
a∨ a′ = 1 and a∧ a′ = 0. A lattice is a distributive lattice if for all triplets of
elements a, b, c, a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c).
An orthomodular lattice is an orthomodular poset that is a lattice. A Hasse
diagram for a lattice is a figure in which elements are indicated by circles and
are joined by a line in such a way that the “lesser” element is located below
the “greater” element (cf., for example, [411]).

A Boolean lattice (or Boolean algebra, see Section A.1 above) is a lattice
that is both complemented and distributive. Every element of a Boolean lat-
tice has a unique complement that is an orthocomplement. An orthomodular
lattice is an orthomodular poset that is a lattice. Elements a and b of an
orthomodular poset are orthogonal (a ⊥ b) if a ≤ b. Given two orthomodular
posets P1 and P2, P1 is orthorepresentable in P2 if there exists a mapping,
the orthoembedding, h: P1 → P2, such that, for every a, b ∈ P1:

(i) h(0) = 0,
(ii) h(a′) = h(a)′,
(iii) a ≤ b if and only if h(a) ≤ h(b), and
(iv) h(a ∨ b) = h(a) ∨ h(b) whenever a ⊥ b.
An orthomodular poset P1 is representable in another orthomodular poset

P2 if there exists a mapping h : P1 → P2 such that h is an orthoembedding
for which h(a ∨ b) = h(a) ∨ h(b) for every a, b ∈ P1. The set h(P1) is then an
orthorepresentation of P1 in P2. A Boolean subalgebra of an orthomodular
poset is a suborthoposet that is a Boolean algebra.

A probability measure, p, over the Hilbert space describing a quantum
system is a mapping from the Hilbert-space projection operators onto the
interval [0, 1], that satisfies the Kolmogorov probability axioms, namely, given
events A, B, C, . . . and the sample space S (the unit event being identified in
quantum mechanics with the projector I) defined as their union, the following
conditions are satisfied by p.

(i) For any set of events {Ei}: 0 ≤ p(Ei) ≤ 1, p(Ei) ∈ R being the
probability of event Ei.

(ii) p(S) = 1.
(iii) For any countable sequence of mutually disjoint events E1, E2, . . .,

p(E1 ∪ E2 ∪ · · ·) =
∑

i p(Ei) (σ-additivity).
In the quantum context, one requires for any countable set of mutually

orthogonal projection operators P (Si) that p
(∑

i Pi

)
=

∑
i p

(
Pi

)
, p(O) = 0

and p(I) = 1. Writing the conditional probability of event B given event A as
p(B|A), one takes p(AB) = p(A)p(B|A). Defining Ā as the complement of A
in S, one has p(Ā) = 1− p(A).2

A generalized probability measure on a non-Boolean lattice is taken to
satisfy the Kolmogorov axioms on each Boolean sublattice of the lattice.
2 The projection operators Pi are not to be confused with the posets above.
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A.8 Projectors, correlations, and the Kochen–Specker
theorem

There exists a geometrical representation of the bounds of probabilities in
terms of correlation polytopes. Any classical probability distribution can be
represented as a convex sum over all binary measures. It can, therefore, be rep-
resented by an element of the face of the correlation polytope, C = conv(K),
namely, the convex hull

conv(K) =

{
2n∑
i=1

λixi

∣∣∣∣∣ λi ≥ 0,

2n∑
i=1

λi = 1

}
(A.22)

of set

K = {x1,x2, . . . ,x2n} =
{
(t1, t2, . . . , tn, ti1ti2 , . . .),

n ≥ k ≥ 2, i1 > . . . > ik
∣∣ ti ∈ {0, 1}, i = 1, . . . , n

}
,

where the terms ti1ti2 , . . . are products associated with joint propositions.
Every convex polytope has a equivalent description, as either

(i) the convex hull of extreme points, or
(ii) intersection of a finite number of half-spaces, each one given by a linear

inequality.
The inequalities of (ii) correspond to Bell-type inequalities for a given

physical situation [336, 424]. Consider an arbitrary number n of independent
classical events a1, a2, . . . , an. Probabilities p1, p2, . . . , pn and joint probabili-
ties p12, . . . can be taken together to form a vector, p = (p1, p2, . . . , pn, p12, . . .)
in Euclidean space. Because the probabilities pi, i = 1, . . . , n are assumed in-
dependent, each of them can in principle reach both 0 and 1. The combined
values of p1, p2, . . . , pn of these extreme cases pi = 0, 1, and the associated
joined probabilities pij = pipj , can be interpreted as truth values; they corre-
spond to a two-valued (or dispersionless) measure.

Consider the task of assigning real numbers to the operators of quantum
mechanics applicable to a given system interpretable as the values of the corre-
sponding properties of that system. Problems arise from placing conditions on
such an assignment. In particular, the Kochen–Specker paradox arises when
one attempts to assign values to all quantum properties, described by Hermi-
tian self-adjoint operators, in all quantum states of a quantum system with a
Hilbert space of dimension three or greater, under the natural constraint that
the algebraic relations of these operators be reflected in the values assigned
to them. The Kochen–Specker theorem provides a useful result for a finite
sublattice of quantum propositions, specifically, that such a valuation cannot
be found under this constraint by considering the associated coloring problem
[260].3

3 Because a detailed discussion of this theorem would be lengthy, requiring an
independent chapter of its own, the reader is advised to look elsewhere for a
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A.9 Traditional quantum logic

The original manner of associating logical states with quantum systems, in-
troduced by von Neumann and Birkhoff, differs from that now primarily as-
sociated with quantum information processing [61]. Rather than being based
on the computational basis and its relation to bit strings, it assigns binary
values to closed linear subspaces of the Hilbert space of a quantum system.
In this sense, it is a logic that is more quantum than the (standard) logic of
quantum information processing. The field that resulted from this pioneering
work is now known as that of quantum logic [168, 351, 408, 445].

This traditional quantum logic, L̄(H), sometimes simply called the “logic
of subspaces,” arises from the set of Hilbert subspaces of the complex Hilbert
space, H, describing the system. Each subspace, h̄, is naturally identified with
the projection operator Ph̄ onto it. The lattice of closed linear subspaces of
a Hilbert space H is equivalent to the lattice of projection operators on H.
One can thus define the two operations ∧ and ∨ acting pairwise on any two
projectors P1 and P2 by

P1 ∧ P2 = P1P2 , (A.23)
P1 ∨ P2 = P1 + P2 − P1P2 , (A.24)

and identify the zero as the projector O onto the zero vector 0 and the iden-
tity as the projector I onto all of H; ∨ corresponds to the linear span, ∧ to
set-theoretic intersection. The unit vectors of H, the rays, are considered to
be the atomic propositions of L̄(H).4 Compound propositions formed from
them correspond to higher-dimensional closed linear subspaces. The conjunc-
tion ∧ is essentially the same as the conjunction of classical logic. However,
the disjunction ∨ and negation ′ behave much differently, being dissimilar to
set-theoretic disjunction and negation (see Section A.7). The propositions of
quantum logic refer to the state of the system at a given time; their semantical
interpretation involves no reference to the preparation or measurement of the
corresponding physical system.

Projection operators have an inherent algebraic structure, that of a partial
Boolean algebra. A partial Boolean algebra is formed by a family of Boolean
algebras, B(i) if the following conditions are satisfied.

(i) The set-theoretical intersection, B(i) ∩ B(j) = B(k), of two members
B(i), B(j) is a member of the family.

(ii) If three elements of the partial Boolean algebra are such that two of
them belong to a given member of the family, then there exists a Boolean
algebra of which all three are members.

thorough treatment of this result, such as found in Ch. 3 of [90] and Ch. 5 of
[348]. Examples that simplify the Kochen–Specker theorem have been explored
by N. David Mermin in [297].

4 An excellent critical résumé of the quantum-logical approach to quantum theory
can be found in [399]. For up-to-date reviews of quantum logic, see [117, 411].
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The complement of any element of the partial Boolean algebra is its com-
plement with respect to any of the members of the family to which it belongs.
This complement is then unique and belongs to any member to which the ele-
ment belongs. The complement of the projector Pi is the operator P̃i = I−Pi

such that P̃i∧Pi = O and P̃i∨Pi = I. The above-described matching of truth
values with closed linear subspaces of Hilbert space does not require that the
corresponding propositions are necessarily either true or false; this mathe-
matical correspondence is compatible with the indefiniteness of truth values
of physical properties inherent in quantum mechanics discussed in Chapter 1.
Furthermore, the truth of an elementary quantum proposition is insufficient
to determine the value of all other propositions.



B

The quantum postulates

As mentioned in the introduction to the first chapter, quantum information
science has primarily been concerned with quantities having discrete eigen-
value spectra, or discretized version of those with continuous quantities. We
now consider a set of postulates for standard quantum mechanics, similar to
those set out by von Neumann, tailored to this context with occasional com-
ments relating to other situations.1 In the standard approach to quantum
mechanics, the pure states of systems are elements of complex Hilbert spaces.
They can also be viewed as statistical operators in these spaces, which are
necessary in the case of open quantum systems and which can be described
in the related construct of Liouville space that is sketched briefly here after a
presentation of the standard quantum postulates.

B.1 The standard postulates

The first postulate is often referred to as the superposition principle.

Postulate I:
Each physical system is represented by a Hilbert space and described by

physical quantities and a state represented by linear operators in that space.

The Hilbert space in question is usually taken to be complex Hilbert space,
described in Appendix A, which has proven adequate for all quantum mechan-
ical situations encountered so far; states are discussed in Chapter 1.2 This
1 It is valuable to compare this formulation, for example, with the related formula-

tion of Arno Bohm [64], where great care is taken to incorporate all situations in
quantum mechanics through the use of variants of some postulates, each focusing
on specific sorts of quantity, or with the classic textbook formulation of Albert
Messiah, Ch. VIII [299].

2 The quantum mechanics of particle motion in physical space requires the use of an
infinite-dimensional separable Hilbert space. Note also that quaternionic Hilbert
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postulate provides both quantum cryptography and quantum computation
their unique properties, as discussed in Chapter 1. The second postulate is
often referred to as the Born rule.

Postulate II:
Each physical quantity of a quantum system is represented by a positive

Hermitian operator O, the expectation value of which is given by tr(ρO),
where ρ is the bounded positive Hermitian trace-class operator representing
the state of the system.

This postulate and the following provide quantum mechanics with its es-
sentially statistical nature, described in Appendix A and discussed in Chapter
1. The third postulate is commonly referred to as the projection postulate.

Postulate III:
When a physical quantity of a system initially prepared in a state rep-

resented by the statistical operator ρ is measured, the state of the system
immediately after this measurement is represented by the statistical operator

ρ′ =
PkρPk

tr(ρPk

) , (B.1)

where Pk is the projection operator onto the subspace corresponding to mea-
surement outcome k, with a probability given by the expectation value of Pk

for ρ.

This postulate and alternative versions of the projection postulate for dif-
ferent situations are addressed in Chapter 2. This postulate is essential for
connecting the behavior of quantum systems with that of the classical systems
used to measure them. In the context of quantum cryptography, it describes
how random quantum-key material arises; in the context of quantum compu-
tation, it helps describe the readout process. The fourth postulate provides
a prescription for describing composite systems in relation to descriptions of
their parts.

Postulate IV:
Each physical system composed of two or more subsystems is represented

by the Hilbert space that is the tensor product of the Hilbert spaces repre-
senting its subsystems; the operators representing its physical quantities act
in this product space.

This postulate provides the basis for the ability of quantum computation
to provide exponential speedup through the parallelism that, together with
the first postulate, it enables. The tensor product is described in Appendix A.

space has yet to be ruled out as another possible vector space for formulating
quantum mechanics [172].
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The fifth postulate is commonly referred to as either the Schrödinger evolution
or the von-Neumann evolution.

Postulate V:
The time-evolution of the state of each closed physical system, that is,

each physical system not interacting with anything outside of itself, takes
place according to

ρ(t) = U(t)ρ(0)U†(t) , (B.2)

(in the “Schrödinger picture”) where t is the time parameter and U = e−itH/�

is a unitary operator, H being the generator of time-translations.

This postulate provides the natural time-evolution of closed quantum sys-
tems, which corresponds to a linear transformation of associated state-vectors.
The description of open quantum systems is treated in Section B.3, below.

B.2 The Heisenberg–Robertson uncertainty relation

The dispersion of an Hermitian operator A in a state ρ is given by

DispρA = 〈(A− 〈A〉I)2〉 (B.3)

= 〈A2〉 − 〈A〉2 , (B.4)

where the expectation values on the right-hand side (and below) are those for
the statistical operator ρ.

The square root of the dispersion is the uncertainty of A in state ρ:

∆A ≡
√

DispρA . (B.5)

An important implication of the postulates of quantum mechanics is the
Heisenberg–Robertson uncertainty relation between quantities, which can be
stated for two Hermitian operators A and B as

〈(∆A)2〉〈(∆B)2〉 ≥ 1
4
|〈[A, B]〉|2 . (B.6)

Werner Heisenberg introduced a thought experiment involving the measure-
ment of the position of a particle with a gamma-ray microscope as an illustra-
tion of the unusual nature of position and momentum and their interrelation
in quantum mechanics in light of this relation [210, 354].

The uncertainty relation has also been viewed as expressing how the use
of nonorthogonal qubit state-vectors in different encoding bases, such as those
of conjugate bases, in quantum key distribution protocols provides security
against potential eavesdroppers.3

3 In this regard, it is worthwhile to consider the treatment of this issue by Chris
Fuchs [175].
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B.3 Liouville space and open quantum systems

The statistics of open quantum systems, that is, quantum systems that are in
contact with an external environment the details of which are not well known,
are often studied through the behavior of states in Liouville space [171]. Liou-
ville space is the vector space formed by the set of all linear operators acting
on the Hilbert space H, with an inner product given by (A|B) = tr(A†B). Its
vectors, |A), are in correspondence with the Hilbert-space operators A on H.
Consider a set of basis vectors {|u1〉, |u2〉, . . .} spanning H. A basis in Liou-
ville space is represented by the set of all operators {|uu′)} obtained from the
elements of {|ui〉}, via

|u′u) .= |u′〉〈u| , (B.7)

where u, u′ ∈ {|ui〉} with the orthogonality relation expressed as

(u′u|v′v) = tr
[
|u〉〈u′|v′〉〈v|

]
= δu′v′δuv (B.8)

and the completeness relation expressed as∑
u′u

|u′u)(u′u| = 1 . (B.9)

One sees, then, that the inner product of any Liouville vector |A) with the
basis vectors |u′u) is the usual Hilbert-space matrix-element:

(u′u|A) = tr
[
|u′u〉〈u′u|A

]
= 〈u′|A|u〉. (B.10)

Superoperators, O, in Liouville space are linear operators taking Liouville-
space vectors |A) to Liouville-space vectors in accordance with O|A) = |OA).
These operators represent the similarity transformations, A −→ OAO−1, gen-
erated by operators O in Hilbert space. One has, in any basis {|uu′)},

(u′u|O|A) =
∑
v′v

(u′u|O|v′v)(v′v|A) =
∑
v′v

Ou′uv′vAv′v . (B.11)

The Liouville operator L, for a given Hamiltonian H on H is

L|A) =
1
�

∣∣[H, A]
)

, (B.12)

for the Hilbert-space operators A onH. The von Neumann equation describing
time evolution is

|ρ̇) = − i

�

∣∣[H, ρ]
)

= −iL|ρ) , (B.13)

having the solution∣∣ρ(t)
)

= exp(−iLt)
∣∣ρ(t0)

)
= U(t, t0)

∣∣ρ(t0)
)

, (B.14)

where U(t, t0) = e−iLt is the time-evolution superoperator.
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60. Beth, T., and M. Rötteler, in G. Alber, T. Beth, M. Horodečki, P. Horodečki,
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194. Grassl, M., M. Rötteler, and T. Beth, “Computing local invariants of quantum-
bit systems,” Phys. Rev. A 58, 1833 (1998).

195. Greenberger, D. M., M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s the-
orem without inequalities,” Am. J. Phys. 58, 1131 (1990).

196. Greenberger, D. M., M. A. Horne, and A. Zeilinger, “Going beyond Bell’s the-
orem,” in M. Kafatos (ed.), Bell’s theorem, quantum theory and conceptions
of the universe (Kluwer Academic; Dordrecht, 1989), p. 79.

197. Greenberger, D., M. A. Horne, and A. Zeilinger, “Multiparticle interferometry
and the superposition principle,” Physics Today, August 1993, p. 22.

198. Groisman, B., S. Popescu, and A. Winter, “On the quantum, classical and
total amount of correlations in a quantum state,” Phys Rev A 72, 032317
(2005).

199. Grover, L. K., “A fast quantum mechanical algorithm for database search,”
in Proceedings of 28th Annual ACM Symp. Theory Comp., p. 212 (1996).

200. Grover, L. K., “Quantum mechanics helps in searching for a needle in a
haystack,” Phys. Rev. Lett. 79, 325 (1997).

201. Gruska, J., Quantum computing (McGraw-Hill; London, 1999).
202. Gudder, S., “On hidden-variables theories,” J. Math. Phys. 11, 431 (1970).
203. Gühne, O., P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, and

A. Sanpera, “Detection of entanglement with few local measurements,” Phys.
Rev. A 66, 062305 (2002).

204. Hall, M. J. W., “Universal geometric approach to uncertainty, entropy, and
information,” Phys. Rev. A 59, 2602 (1999).

205. Hamming, R. W., “Error detecting and error correcting codes,” Bell Syst.
Tech. J. 29, 147 (1950).

206. Hanna, D. C., “Introduction to χ(2) processes,” Quantum Semiclass. Opt. 9,
131 (1997).

207. Hardy, L., and D. Song, “Universal manipulation of a single qubit,” Phys.
Rev. A 63, 032304 (2001).

208. Hayashi, M., Quantum information: An introduction (Springer; Berlin, 2006).
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401. Steane, A., “Multiple particle interference and quantum error correction,”

Proc. Roy. Soc. London A 452, 2551 (1996).
402. Steane, A., “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77,

793 (1996).
403. Steane, A., “Quantum computing,” Rep. Prog. Phys. 61, 117 (1998).
404. Stenholm, S., and K.-A. Suominen, Quantum approaches to informatics

(Wiley–Interscience; Hoboken, NJ, 2005).
405. Sternberg, S., Group theory and physics (Cambridge University Press; Cam-

bridge, 1994), Sect. 1.2.
406. Stokes, G. G., “On the composition and resolution of streams of polarized

light from different sources,” Trans. Camb. Philos. Soc. 9, 399 (1852).
407. Stolze, J., and Suter, D., Quantum computing: A short course from theory to

experiment (John Wiley and Sons; Hoboken NJ, 2004).
408. Strauss, M., “Zur Begründung der statistischen Transformationstheorie der

Quantenphysik,” Berliner Berichte 1936, 382 (1936). [English translation,
“The Logic of complementarity and the foundation of quantum theory,” in
Strauss, M., Modern physics and its philosophy, (Reidel; Dordrecht 1972), p.
186.]

409. Sun, Y., J. Bergou, and M. Hillery, “Optimal unambiguous discrimination
between subsets of nonorthogonal quantum states,” Phys. Rev. A 66, 032315
(2002).

410. Sun, X., S. Zhang, Y. Feng, and M. Ying, “Mathematical nature of and a
family of lower bounds for the success of unambiguous discrimination,” Phys.
Rev. A 65, 044306 (2002).

411. Svozil, K., Quantum logic (Springer-Verlag; Berlin, 1998).
412. Svozil, K., “Quantum logic. A brief outline,” http://xxx.lanl.gov quant-

ph/9902042 (1999).
413. Takeuchi, S. “Experimental demonstration of a three-qubit quantum compu-

tation algorithm using a single photon and linear optics,” Phys. Rev. A 62,
032301 (2000).

414. Teodorescu-Frumosu, M., and G. S. Jaeger, “Quantum Lorentz-group invari-
ants of n-qubit systems,” Phys. Rev. A 67, 032307 (2003).

415. Terhal, B. M., “Detecting quantum entanglement,” Theor. Comp. Sci. 287,
313 (2002).

416. Ter Haar, D., “Theory and applications of the density matrix,” Rep. Prog.
Phys. 24, 304 (1961).



268 References

417. Terhal, B. M., “A family of indecomposable positive linear maps based on
entangled quantum states,” Lin. Algebr. Appl. 323, 61 (2001).

418. Thapliyal, A. V., “Multipartite pure-state entanglement,” Phys. Rev. A 59,
3336 (1999).

419. Thapliyal, A. V., reported in [48].
420. Thew, R. T., K. Nemoto, A. G. White, W. J. White, and W. J. Munro, “Qudit

quantum-state tomography,” Phys. Rev. A 66, 012303 (2002).
421. Timpson, G. T., “Quantum information theory and the foundations of quan-

tum mechanics,” Ph.D. Thesis, Queen’s College, The University of Oxford,
2004; also http://xxx.lanl.gov quant-ph/0412063.

422. Tittel, W., J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type
tests using energy-time entangled photons,” Phys. Rev. A 59, 4150 (1999).

423. Toffoli, T., “Reversible computing,” in G. Goos and J. Hartmanis (eds.), Au-
tomata, languages and programming, Lecture Notes in Computer Science 85
(Springer-Verlag; Berlin, 1980) p. 632.

424. Tsirel’son, B. S., “Quantum generalizations of Bell’s inequalities,” Lett. Math.
Phys. 4, 93 (1980).

425. Tsirel’son, B. S., “Quantum analogues of the Bell inequalities,” J. of Sov.
Math. 36, 557 (1987).

426. Turing, A. M., “On computable numbers, with an application to the Entschei-
dungsproblem,” Proc. London Math. Soc. 42, 230 (1936); ibid., 43, 544 (1937).

427. Uffink, J., “Measures of uncertainty and the uncertainty principle,” Ph.D.
Dissertation, University of Utrecht, 1990.

428. Umegaki, H., “Conditional expectation in an operator algebra, IV (entropy
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Rényi, 88
Tsallis, 89
von Neumann, 82
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