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ON THE INTEGRABILITY OF SUBALGEBROIDS

I. MOERDIJK AND J. MRČUN

Abstract. Let G be a Lie groupoid with Lie algebroid g. It is known that,
unlike in the case of Lie groups, not every subalgebroid of g can be integrated
by a subgroupoid of G. In this paper we study conditions on the invariant
foliation defined by a given subalgebroid under which such an integration is
possible. We also consider the problem of integrability by closed subgroupoids,
and we give conditions under which the closure of a subgroupoid is again a
subgroupoid.

Introduction

The basic theory of Lie groups and Lie algebras, contained in any course on the
subject, establishes an almost perfect correspondence between finite-dimensional
Lie algebras and Lie groups. In particular, any abstract Lie algebra can be ‘inte-
grated’ to a Lie group, and this group is uniquely determined when one requires it
to be simply connected. Morphisms from a simply connected Lie group to another
one are in bijective correspondence with morphisms between their Lie algebras. If
g is the Lie algebra of a Lie group G, subalgebras of g correspond to immersed
subgroups of G. The closure of such an immersed Lie subgroup is again one, and
an immersed subgroup is embedded if and only if it is closed.

The basic Lie theory becomes much more involved (and interesting) in the wider
context where one allows local symmetries, i.e. in the context of so-called Lie group-
oids and their algebroids. These objects arise naturally in the theory of actions of
Lie groups or algebras on manifolds, in foliation theory, in Poisson geometry, in
areas related to mathematical physics such as the theory of (gerbes on) orbifolds
and quantization theory, and in many other situations [2, 3, 5, 7, 8, 13, 14, 21]. Like
for groups, any Lie groupoid G has an infinitesimal counterpart, its Lie algebroid
g = L(G). Again, morphisms of Lie groupoids correspond bijectively to morphisms
between their Lie algebroids under suitable connectivity assumptions [15, 16], but
this is about as far as the simple picture of groups extends to groupoids. The
main difference lies in the fact that not every Lie algebroid is integrable, i.e. arises
as the Lie algebroid of a Lie groupoid. This was first noticed by Almeida and
Molino [1, 20], who proved that the developability of a certain kind of foliation was
obstructed by the integrability of a naturally associated algebroid, a result which
immediately led to natural counterexamples to integrability. Since then, our un-
derstanding of integrability of algebroids has advanced considerably, and we refer
the reader to [8] and the references therein for a recent state of the art.

This note and its sequel [18] are concerned with the integrability problem for
subalgebroids. To explain our results, consider a Lie groupoid G with algebroid g.
It is known that any subalgebroid h ⊂ g of such an integrable algebroid g is again
integrable, by a Lie groupoid H which admits an immersion H → G. However,
unlike the simple case of groups and algebras, there may not exist a subgroupoid of
G integrating h, or more precisely, there may not exist an injective such immersion
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2 I. MOERDIJK AND J. MRČUN

H → G integrating h ⊂ g. And even if there is such an injective immersion, the
closure of its image may not be a Lie subgroupoid of G. In this paper, we will
use foliation theory to investigate under which conditions results like in the case of
groups hold in the context of groupoids. The starting point is that any subalgebroid
h ⊂ g gives rise to a right invariant foliation on G. We prove that h ⊂ g can be
integrated to an injective immersion H → G if and only if this foliation has trivial
holonomy (a condition automatically fulfilled if G is a group). We prove also that if
the invariant foliation associated to h is transversely complete (again, automatically
true in the group case), then h integrates to an injective submersion ι : H → G, with
the property that the closure of its image is a Lie subgroupoid H̄ ⊂ G. Moreover,
the image of ι itself is closed if and only if ι is an embedding.

These results will be used in a sequel [18] to this paper, where we will consider
the question when a given Lie subalgebroid h of g can be integrated to a closed sub-
groupoid of a possibly larger groupoid G̃ integrating g. Under some assumptions,
we will prove that this is the case if and only if a specific algebroid, naturally asso-
ciated to h and G, is integrable. This result extends the classical Almeida-Molino
theorem referred to above.

1. Preliminaries

For the convenience of the reader, and to fix the notation, we begin by sum-
marizing some basic definitions. For detailed exposition and many examples, the
reader might wish to consult one of the books [3, 14, 17, 20] and references cited
there.

1.1. Lie algebroids. Let M be a smooth manifold. We recall that a Lie algebroid
over M is a (real) vector bundle g over M , equipped with a vector bundle map
an: g → T (M) (called the anchor) and a Lie algebra structure on the vector space
Γ(g) of sections of g. This structure has to satisfy two axioms: On sections, the
map an : Γ(g) → X(M) should be a homomorphism of Lie algebras; furthermore,
the Leibniz rule

[X, fY ] = f [X, Y ] + an(X)(f)Y

should hold for any X, Y ∈ Γ(g) and any f ∈ C∞(M). A morphism g → h of
Lie algebroids over M is a map of vector bundles which preserves the structure.
(There is also a more involved notion of morphism between algebroids over different
manifolds, see [11].) Such Lie algebroids arise in many contexts: Any foliated
manifold (M,F) can be viewed as an algebroid, whose anchor is the inclusion
F → T (M). Any Poisson manifold P can be viewed as an algebroid, whose anchor
T ∗(P ) → T (P ) is defined in terms of the Poisson bracket on the functions by
an(df)(g) = −{f, g}. Any infinitesimal action of a finite dimensional Lie algebra g

on a manifold M defines a Lie algebroid g ⋉ M , which is the trivial vector bundle
g × M → M with the anchor given by the infinitesimal action.

1.2. Lie groupoids and integrability. A Lie groupoid G over a manifold M will
be denoted

G
s

//

t
// M

u
// G ,

where s and t are the source and target maps, and u maps each point x ∈ M to
the unit arrow 1x. The multiplication or composition of two arrows g : x → y
and h : y → z is denoted by hg : x → z. The maps s and t are required to be
submersions. We will generally assume that M and the fibers of s (and hence also
of t) are Hausdorff manifolds, but examples force us to allow for the possibility
that G is non-Hausdorff. However, we assume that the fibers of the source map are
Hausdorff.
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For such a groupoid G, the bundle T s(G) of source-vertical tangent vectors pulls
back along u: M → G to a vector bundle u∗(T s(G)) over M , which has the structure
of a Lie algebroid. This algebroid is called the Lie algebroid of the groupoid G, and
denoted by L(G), or sometimes simply by g. Lie algebroids which arise in this way
are called integrable.

A Lie groupoid G is called source-connected if s : G → M has connected fibers.
Every Lie groupoid G contains an open subgroupoid whose source-fibers are the
connected components of the source-fibers of G containing the units. This groupoid
has the same Lie algebroid as G. For this reason we can restrict to source-connected
Lie groupoids: All Lie groupoids considered in this paper will be assumed source-
connected.

For any (source-connected) Lie groupoid G there exists a unique (up to unique

isomorphism) cover p : G̃ → G by a source-connected Lie groupoid G̃ whose source-

fibers are simply connected (we say that G̃ is source-simply connected). The source-

fiber of G̃ is the universal cover of the corresponding source-fiber of G, and G̃ again
determines the same Lie algebroid as G, i.e. the induced morphism of Lie algebroids
L(p) : L(G̃) → L(G) is an isomorphism.

As an example, and for later reference, we mention that any foliation F of M ,
viewed as a Lie algebroid, is always integrable. It is the Lie algebroid of the holo-
nomy groupoid Hol(M,F) of the foliation, and also of its source-simply connected
cover, which is known as the monodromy groupoid Mon(M,F) of the foliation. The
source-fibers of the latter groupoid are the universal covers of the leaves of F . (For
details, see [17].)

2. Subalgebroids and invariant foliations

Throughout this section G denotes a fixed (source-connected) Lie groupoid over
M , and g denotes its Lie algebroid. Recall that all Lie groupoids considered are
assumed source-connected.

A subalgebroid of g is a vector subbundle h ⊂ g for which Γ(h) ⊂ Γ(g) is a Lie
subalgebra. This makes h into a Lie algebroid over M , and the inclusion h → g is
a morphism of Lie algebroids. (In this paper, we shall only consider subalgebroids
over the same base.) We recall from [16] that any subalgebroid of an integrable Lie
algebroid is itself integrable, and in particular h integrates to a Lie groupoid H ,
while the morphism h → g integrates to an immersion H → G of Lie groupoids.
Our first goal is to describe the range of immersed groupoids which arise as integrals
of the given subalgebroid h.

Let F(s) = T s(G) be the foliation of G by the fibers of the source map. There
is a canonical isomorphism

t∗(g)
∼=
−→ F(s)

of vector bundles over G, and h ⊂ g defines another foliation F(h) ∼= t∗(h) which
refines F(s), i.e. F(h) ⊂ F(s). The groupoid G acts on itself by right multiplication
along the source map, and F(h) is invariant under this action. Conversely, any such
right invariant foliation F ⊂ F(s) is of the form F(h) for a unique subalgebroid h,
defined in terms of F and the unit section u : M → G by h = u∗(F). For later
reference, we record this correspondence.

Lemma 2.1. Let G be a Lie groupoid with Lie algebroid g. Subalgebroids of g

correspond bijectively to the right invariant foliations F ⊂ F(s) of G.

By the invariance of such a foliation F(h), the groupoid G is expected to act
naturally on structures associated to F(h). In particular:
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Lemma 2.2. Let G be a Lie groupoid with Lie algebroid g, and let h be a subal-
gebroid of g. Then G naturally acts on the monodromy and holonomy groupoids of
the associated right invariant foliation F(h) of G.

Proof. The groupoids Hol(G,F(h)) and Mon(G,F(h)) are groupoids over the space
G, and this space carries and action of the groupoid G by right multiplication. An
arrow in Mon(G,F(h)) is the homotopy class [α] of a path α inside a leaf of F(h),
which is contained in a source-fiber s−1(x) of G. An arrow g : y → x of G acts
on [α] in the obvious way by [α]g = [αg], where (αg)(t) = α(t)g for any t ∈ [0, 1].
This is a path in a leaf of F(h) because F(h) is right invariant, and this action
is obviously well-defined on homotopy classes. This describes the action of G on
Mon(G,F(h)).

We only need to check that this action also descends to an action on Hol(G,F(h)).
To see this, choose a local bisection σ : U → G, defined on a neighbourhood U of
y, with σ(y) = g. Now the action by elements of σ(U) gives us a diffeomorphism
s−1(t(σ(U))) → s−1(U) which preserves the foliation F(h). This in particular
implies that if α is a loop with trivial holonomy, then so is αg, so the action of G on
Mon(G,F(h)) descends to an action on Hol(G,F(h)) for which the quotient map
Mon(G,F(h)) → Hol(G,F(h)) is G-equivariant. �

Since the G-action on itself is principal, so are the G-actions on Mon(G,F(h))
and Hol(G,F(h)). Therefore [16, 17] we can form the quotient Lie groupoids

Hmax = Mon(G,F(h))/G

and

Hmin = Hol(G,F(h))/G

over M .

Theorem 2.3. Let G be a Lie groupoid with source-simply connected cover G̃ and
with Lie algebroid g, and let h be a subalgebroid of g.

(i) The Lie groupoids Hmax and Hmin defined above both integrate the subalge-
broid h, and fit into a natural commutative square

Hmax

��

// Hmin

��

G̃ // G

where both vertical maps are immersions integrating the inclusion h → g.
(ii) Let ι : H → G be any immersion of Lie groupoids over M which integrates

the inclusion h → g. Then there are natural maps

Hmax −→ H −→ Hmin

of Lie groupoids over M which both integrate the identity on h, and ι factors through
H → Hmin as the canonical immersion Hmin → G.

Remark 2.4. Motivated by this theorem, the Lie groupoid Hmin will be referred as
the minimal integral of h over G. Analogously, the Lie groupoid Hmax will be called
the maximal integral of h. Note, however, that Hmax is in fact the source-simply
connected integral H̃ of h. In particular, it is independent of the choice of G (up
to isomorphism). Since we are assuming that H is source-connected, the maps in
(ii) are surjective submersions. Moreover, they restrict to covering projections on
source-fibers.

Proof of Theorem 2.3. (i) That Hmax integrates h follows easily from the observa-
tion [16, Remark on p. 573] that the quotient map Mon(G,F(h)) → Hmax induces
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an isomorphism of source-fibers. Exactly the same argument applies to the map
Hol(G,F(h)) → Hmin. Next, since F(h) refines the simple foliation F(s), there is
a natural square

Mon(G,F(h))

��

// Hol(G,F(h))

��

Mon(G,F(s)) // Hol(G,F(s))

of groupoids over G and G-equivariant morphisms between them. Factoring out the
principal G-action, we obtain the diagram of groupoids over M as in the statement.

(ii) Suppose that ι : H → G is an immersion which integrates h → g. Consider the

groupoid Ĥ over G whose arrows g → g′ are arrows h of H with ι(h)g = g′. Then

Ĥ integrates F(h) and carries an obvious principal G-action for which Ĥ/G = H .
By [9, Proposition 1] there are maps

Mon(G,F(h)) −→ Ĥ −→ Hol(G,F(h))

of foliation groupoids over G which all integrate the same foliation F(h). Factoring
out the G-action, we obtain the desired maps of Lie groupoids over M . �

Corollary 2.5. Let G be a Lie groupoid with Lie algebroid g, and let h be a subal-
gebroid of g with minimal integral Hmin over G. Then the following conditions are
equivalent:

(i) The foliation F(h) has trivial holonomy.
(ii) The canonical immersion Hmin → G is injective.
(iii) The inclusion h → g can be integrated to an injective immersion H → G.

Proof. Note first that F(h) has trivial holonomy if and only if the map

Hol(G,F(h)) −→ Hol(G,F(s))

is injective. Since the G-actions on Hol(G,F(h)) and on Hol(G,F(s)) are principal,
this is equivalent to injectivity of the map Hmin → G, which integrates the inclusion
h → g by Theorem 2.3 (i). This shows equivalence between (i) and (ii).

Since (ii) is clearly stronger than (iii), we only need to show that (iii) implies
(ii). Indeed, if H → G is any injective immersion integrating the inclusion h → g,
we can assume that H is source-connected, and we can use Theorem 2.3 (ii) to
obtain a map H → Hmin which integrates the identity on h. Furthermore, since
the composition

H −→ Hmin −→ G

is injective by assumption, and since H → Hol(G,F(h)) is a covering projection on
each source-fiber [9], the map Hmin → G is injective as well. �

Examples 2.6. (1) Let G be a connected Lie group and g its Lie algebra of right
invariant vector fields. Then any subalgebra h ⊂ g determines a right invariant
foliation F(h), whose tangent space at g ∈ G is F(h)g = dRg(h) ⊂ Tg(G). As is
well known, h is integrated by a connected Lie group H which occurs as the leaf
of F(h) through 1 ∈ G, so obviously H is injectively immersed in G. By Corollary
2.5 the foliation F(h) has trivial holonomy, a fact which is well-known in this case.

(2) Let F be a foliation of a manifold M . We can view F as a subalgebroid of
T (M), which is the algebroid of the pair groupoid M × M over M . The source-
simply connected cover of the pair groupoid is the fundamental groupoid Π(M)
of M . The foliation F can be integrated by an injectively immersed groupoid
H → M ×M if and only if it has trivial holonomy, and by an injectively immersed
groupoid H ′ → Π(M) if and only if the pull-back of F to the universal cover

M̃ → M has trivial holonomy.
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(3) Consider the torus T 2 = S1 × S1, which is a Lie group with commutative
Lie algebra R

2. Any θ ∈ RP 1 is a one-dimensional subspace of R
2 and hence a Lie

subalgebra, so by (i) it determines a foliation F(θ) of T 2 with trivial holonomy (it is
the Kronecker foliation of the torus with slope θ). There is a countable dense subset
A of RP 1 such that F(θ) has only compact leaves for θ ∈ A and only non-compact
dense leaves for θ 6∈ A.

These foliations together define a foliation F of the trivial bundle of Lie groups
T 2 × RP 1 over RP 1. If we view this bundle as a Lie groupoid over RP 1, then the
leaves of F are contained in the source fibers and F is right invariant. Therefore it
determines a subalgebroid h of the Lie algebroid g = R

2 × RP 1 associated to the
groupoid T 2 × RP 1. This subalgebroid is not integrable by a groupoid injectively
immersed in T 2 × RP 1. Indeed, the local Reeb stability theorem implies that the
holonomy of F is not trivial.

On the other hand, note that g is also integrable by the source-simply connected
groupoid R

2 × RP 1, and that the subalgebroid h is integrable by a groupoid injec-
tively immersed in R

2 × RP 1.

3. Subgroupoids of Lie groupoids

Let G be a fixed Lie groupoid over a connected manifold M , and write g for the
Lie algebroid of G. Recall that all Lie groupoids considered are assumed source-
connected.

A subgroupoid of G is another (source-connected) Lie groupoid H over M ,
equipped with an injective immersion ι : H → G, which is also a homomorphism
of Lie groupoids over M . We sometimes say for emphasis that H is an immersed
subgroupoid of G. In case ι : H → G is an embedding, we say that H is an embedded
subgroupoid of G. A closed subgroupoid is a subgroupoid H for which ι : H → G is
a closed embedding. (In this paper, we shall only consider subgroupoids over the
same base.)

An immersed (source-connected) subgroupoid H of G is completely determined
by its Lie algebroid h, which is a subalgebroid of g. By Corollary 2.5, the corre-
sponding foliation F(H) = F(h) of G has trivial holonomy. Conversely, we say that
a Lie subalgebroid h of g is integrable by a subgroupoid H of G if the associated
injective immersion ι : H → G integrates the inclusion h → g. If such an integrating
subgroupoid exists, it is unique. We can therefore rephrase Corollary 2.5 as follows.

Proposition 3.1. Let G be a Lie groupoid with Lie algebroid g. A subalgebroid
h ⊂ g can be integrated by a subgroupoid of G if and only if the foliation F(h) has
trivial holonomy.

For an immersed subgroupoid ι : H → G and an arrow g : x → y in G, the (right)
coset Hg is the immersed submanifold of G given by

H(y, - ) −→ G , h 7→ ι(h)g .

These cosets are exactly the leaves of the associated foliation F(H) given by the
Lie subalgebroid h ⊂ g corresponding to H . We will write G/H = G/F(H) for the
space of these right cosets, with the quotient topology. Thus, G/H is the quotient
of G obtained by identifying two arrows g and g′ if and only if s(g) = s(g′) and g′g−1

belongs to (the image of) H . The map s : G → M factors as a map G/H → M ,
and the right action of G on itself by multiplication induces a right action on G/H
along this map G/H → M .

Recall that a foliation F of a manifold M is simple if it is given by the components
of the fibers of a submersion into a Hausdorff manifold. It is called weakly simple
if there exists a smooth structure of a possibly non-Hausdorff manifold on M/F
such that the quotient map M → M/F is a submersion. A foliation F of M is
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strictly simple if it is weakly simple and the space of leaves M/F is Hausdorff. In
particular, any strictly simple foliation is simple, and any simple foliation is weakly
simple. If the group of diffeomorphisms of (M,F) acts transitively on M , then
these three notions coincide [17, Theorem 4.3 (vi)].

Proposition 3.2. Let H be a subgroupoid of a Lie groupoid G, and let F(H) be
the associated foliation of G.

(i) The subgroupoid H is embedded in G if and only if the foliation F(H) is
weakly simple.

(ii) The subgroupoid H is closed in G if and only if the foliation F(H) is strictly
simple.

Remark 3.3. In other words, the Lie subgroupoid H is embedded in G if and only
if there is a structure of a possibly non-Hausdorff manifold on the space of cosets
G/H such that the projection G → G/H is a submersion. If this is the case, then
H is closed if and only if G/H is Hausdorff.

Proof of Proposition 3.2. (i) Suppose that H is embedded, and consider the equiv-
alence relation R on G defining G/H . This relation is the image of the map
H ×M G → G × G sending a pair (h, g) with s(h) = t(g) to (hg, g). Since H
is embedded in G, H × G is also embedded in G × G. But H ×M G is a closed
submanifold of H ×G, therefore it follows that it is also embedded in G×G. Thus
R is an embedded submanifold of G × G. Both the projection H ×M G → G and
the composition H ×M G → G are submersions: the first because it is a pull-back
of the submersion s : H → M , the other because it is isomorphic to the first. By the
Godement criterion [22] it follows that G/H is a (possibly non-Hausdorff) manifold
such that G → G/H is a submersion.

Conversely, suppose that the foliation F(H) is weakly simple, so G/H has a
structure of a possibly non-Hausdorff manifold such that the quotient projection
f : G → G/H is a submersion. Since F(H) refines the foliation of G by the source-
fibers, the source map of G factors through f as a submersion s̄ : G/H → M . The
unit section u : M → G induces a section (hence an embedding) f ◦ u : M → G/H
of s̄. Since the groupoid H fits into the pull-back square

H

��

s
// M

f◦u

��

G
f

// G/H

it follows that H is embedded in G.
(ii) This follows directly from (i) and the fact that H is closed if and only if G/H

is Hausdorff. �

Recall that a vector field Y on a manifold M is called projectable with respect
to a foliation F of M if its local flow preserves the foliation, or equivalently, if
the Lie derivative of Y along any vector field tangent to F is again tangent to
F . Following Molino [19, 20], a foliation F of M is transversely complete if any
tangent vector on M can be extended to a complete projectable vector field on
M . By Molino’s structure theorem [19], the closures of the leaves of a transversely
complete foliation F of M are the fibers of a submersion M → W , which is in fact
a locally trivial fiber bundle of (Lie) foliations. We shall use (only) this property
of transversely complete foliations in this paper. For our purpose it is also relevant
to note that any transversely complete foliation has trivial holonomy. Examples
of transversely complete foliations include foliations given by the fibers of locally
trivial fiber bundles, transversely parallelizable foliations on compact manifolds
[6, 20] and Lie foliations on compact manifolds [10].
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An (immersed) subgroupoid H of a Hausdorff Lie groupoid G is said to be trans-
versely complete if the foliation F(H) of G by cosets of H is transversely complete.
Recall that any right invariant foliation F ⊂ F(s) of G, which is transversely
complete, has trivial holonomy; hence Lemma 2.1 and Proposition 3.1 imply that
any such foliation F is the foliation F(H) associated to a transversely complete
subgroupoid H of G.

Examples 3.4. (1) Suppose that G is a connected Lie group, thus a Lie group-
oid over a one-point space M = {pt}. Then any connected subgroup H ⊂ G is
transversely complete.

(2) Let M be a manifold equipped with a foliation F . Let G be the pair groupoid
M×M . Then F can be viewed as a subalgebroid h of the Lie algebroid g = T (M) of
M×M , and the corresponding foliation F(h) is F×0 ⊂ T (M)×T (M) = T (M×M).
If F has trivial holonomy, then Hol(M,F) is an immersed subgroupoid of M ×M ,
which is transversely complete whenever F is. Thus, our terminology extends the
usual one for foliations.

Recall that a Lie groupoid G over M is transitive if the map (t, s) : G → M ×M
is a surjective submersion [14, 17]. Any transitive Lie groupoid is automatically
Hausdorff.

Proposition 3.5. Any transitive subgroupoid of any Lie groupoid is transversely
complete.

Proof. Let H be a transitive subgroupoid of a Lie groupoid G over M . First we
show that in this case G is transitive as well. To see this, recall from [17, Proposition
5.14] that a Lie groupoid over M is transitive if and only if the restriction of the
target map to a source-fiber is a surjective submersion onto M . Take any arrow
g : x → y in G. Transitivity of H implies that there exists an arrow h : x → y in
H , and that the derivative (dt)h : Th(H(x, - )) → M is surjective. Since the right
translation

Rh−1g : H(x, - ) −→ G(x, - )

preserves the target and maps h to g, it follows that (dt)g : Th(G(x, - )) → M is
surjective as well. Thus we proved that G is transitive, and in particular Hausdorff.

We will now show that the foliation F(H) of G associated to H is transversely
complete. Transitivity of G implies that any x0 ∈ M has a neighbourhood U and a
section σ : U → G of the source map such that t(σ(x)) = x0 for any x ∈ U . The right
translation by this section provides a local trivialization s−1(x0)×U → s−1(U) of the
source map, which also respects the foliation F(H) because F(H) is right invariant.
From this it follows that it is enough to show that the restriction of F(H) to a
source-fiber is transversely complete. Thus, for any arrow g : x0 → y of G and any
u ∈ Tg(G(x0, - )) we need to find a complete source-vertical projectable vector field
on G(x0, - ) with value u at g. Because the right translation Rg : s−1(y) → s−1(x0)
preserves the foliation and sends 1y into g, we can assume without loss of generality
that g = 1x0

.
Since H is transitive, the restriction of the target map to s−1(x0) is a surjective

submersion onto M , and hence we can write

u = v + w

for a vector v tangent to H and a vector w with dt(w) = 0. We can extend v to a
section of the Lie algebroid h of H , and we can assume that this section has compact
support. This section can be uniquely extended to a right invariant source-vertical
vector field X on G, which is tangent to F(H) and has value v at 1x0

. The vector
field X is complete because its anchor is [12, p. 264]. Next, we can uniquely extend
w to a left invariant vector field Y on G(x0, - ). The flow of this vector field is
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given by the family of right translations Rexp(tw), t ∈ R, where exp(tw) is the one-
parameter subgroup of the Lie group Gx0

corresponding to w. In particular, this
flow is globally defined and preserves the right invariant foliation F(H), so Y is
complete and projectable. Furthermore, the vector field Y commute with the right
invariant vector field X . This means that X + Y is a complete projectable vector
field on G(x0, - ) and has value u at 1x0

. �

Example 3.6. Unlike the case where G is a Lie group, an embedded subgroupoid
of a Lie groupoid is not necessarily closed, and its closure may not be a subgroupoid.
Indeed, Proposition 3.2 implies that the holonomy groupoid of a simple, but not
strictly simple, foliation F of a manifold M is an embedded subgroupoid of the pair
groupoid M × M which is not closed. If we take M = R

2 \ ({0} × [0,∞)) and if F
is the simple foliation of M given by the second projection, the holonomy groupoid
of (M,F) is embedded in M × M , but its closure is not a Lie subgroupoid.

The following theorem shows that transversely complete subgroupoids behave
very much like subgroups of Lie groups.

Theorem 3.7. Let G be a Hausdorff Lie groupoid, and let H be a transversely
complete subgroupoid of G.

(i) The closure H̄ of H in G is an embedded subgroupoid of G.
(ii) If H itself is embedded in G, then it is closed, and G → G/H is a locally

trivial fiber bundle.

Proof. (i) By the Molino structure theorem referred to above, the closures of the
leaves of F(H) are the fibers of a locally trivial fiber bundle π : G → W . Let
s̄ : W → M be the submersion induced by s, with the section ū = π ◦ u. Consider
the following diagram:

P

j

��

// M

ū

��

H
ι

//

>>
}

}
}

}
}

}
}

}

G
π

//

s

��

W

s̄
}}||

|
|
|
|
|
|

M

Here P denotes the pull-back π−1(ū(M)), so j : P → G is again a closed embedding.
Note that a point g : x → y of G belongs to P precisely when g ∈ L̄1x

, the closure of
the leaf of F(H) through the unit 1x. It follows that P is a closed subgroupoid of
G. (If g ∈ L̄1x

and h : y → z belongs to L̄1y
, then also hg ∈ L̄g by right invariance

of the foliation. Hence hg ∈ L̄1x
because L̄g = L̄1x

.)
Also, the immersion ι : H → G evidently factors through P . Finally, H → P is

dense, because the restriction of H → P to the source-fiber over a point x ∈ M is
the inclusion L1x

→ L̄1x
, hence dense. In particular we have P = H̄ .

(ii) Note that the immersion of each leaf of F(H) into the corresponding fiber
of π is an embedding as well as dense. Thus the leaves of F(H) are equal to the
fibers of π, and H = P in the diagram above. It is clear that G → G/H is a locally
trivial bundle in this case. �

Example 3.8. Let G be a simply connected Lie group, and let g be the associated
Lie algebra of right invariant vector fields on G. Suppose that F is a Lie foliation
on a manifold M , given by the kernel of a Maurer-Cartan form

ω ∈ Ω1(M, g)

with values in a g [10, 20]. This means that ω is non-singular and has trivial formal
curvature, dω + 1

2 [ω, ω] = 0. The foliation F is transversely parallelizable [6, 20];
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in fact, a vector field Y on M is projectable with respect to F if and only if the
function ω(Y ) is basic, i.e. constant along the leaves of F .

The form −ω can be extended uniquely to a flat connection form η on the trivial
principal G-bundle M ×G over M . (Here we take −ω instead of ω because we use
the Lie algebra of right invariant vector fields on G instead the usual left invariant
ones.) The kernel of η therefore defines a foliation G of M × G,

(M × G,G) ,

which is G-invariant and has trivial holonomy. Any leaf of G is a covering space of
M with respect to the projection to M , and the lift of F to such a leaf is a strictly
simple foliation given by the fibers of the projection to G. Any vector tangent to
the foliation G can be extended to a vector field tangent to G of the form (X, ω(X)),
where X is a (projectable) vector field on M for which ω(X) is a constant function
(and its value viewed as a right invariant vector field on G).

Consider the Lie groupoid
M × G × M

over M , i.e. the groupoid induced by G along the map M → {pt}. The arrows
x → y in M × G × M are the triples (y, g, x), where g ∈ G. The foliation G × 0
of M × G × M is right invariant because G is right G-invariant. Thus G × 0 is the
foliation F(h) of a subalgebroid h of the Lie algebroid of M × G × M ,

G × 0 = F(h) .

Furthermore, this foliation has trivial holonomy because G has trivial holonomy,
therefore it defines a subgroupoid H of the Lie groupoid M×G×M which integrates
Lie subalgebroid h.

Denote by Π(M) the fundamental Lie groupoid of M , and define a homomor-
phism of Lie groupoids

φ : Π(M) −→ M × G × M

over M by path-lifting inside the leaves of G: For any homotopy class [σ] of a path
σ in M from x to y, let φ([σ]) be the unique lift of σ which starts at (x, 1, x) and
lies inside a leaf of G × 0. The image of φ is precisely the groupoid H . Using this
path-lifting construction, we see that an arrow (y, g, x) of M × G × M belongs to
H if and only if the points (y, g) and (x, 1) of M × G belong to the same leaf of
G. Notice that H is a transitive groupoid and therefore transversely complete by
Proposition 3.5. Its isotropy group Hx at x ∈ M is the holonomy group of the
Maurer-Cartan form ω.

By Theorem 3.7 (i) we know that the closure H̄ of H in M × G × M is an
embedded subgroupoid of M × G × M . It is possible to give the following explicit
description of H̄ in terms of the closures Kx of Hx inside G (such a description in
fact applies to any transitive subgroupoid): An arrow (y, g, x) : x → y in M×G×M
belongs to H̄ if and only if it can be factored as g = hk for some (y, h, x) ∈ H and
k ∈ Kx. In other words, the groupoid H acts by conjugation on the bundle K
of groups Kx over M , and H̄ is constructed as the twisted product of H and K.
This example relates to the Cartier construction of the groupoid closure [4] in the
context of Galois theory for differential equations.
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