
Lie symmetry groups of high dimensional non-integral 
nonlinear systems  

Hongcai Ma1*, Senyue Lou2,3, and Aiping Deng1 

1.Department of Mathematics, Donghua University, Shanghai, 200051, P. R. China  

2. Department of Physics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. 
China 

3. Center of Nonlinear Science, Ningbo University, Ningbo, 315211, P. R. China 

E-mail: hongcaima@hotmail.com 

Abstract. A modified direct method is developed to find finite symmetry groups of nonlinear 
mathematical physics systems. Applying the modified direct method to the well known (3+1)-
dimensional KP equation and the (2+1)-dimensional KdV equation. The Lie symmetry groups 
obtained via traditional Lie approaches are only special cases. Furthermore, the expressions of 
the exact finite transformations of the Lie groups are much simpler than those obtained via the 
standard approaches. 

1.  Introduction  
The symmetry study plays a very important role in almost every branch of natural science especially in 
integrable systems for the existence of infinitely many symmetries. Lie’s theory [1] gives us a standard 
method to find the Lie point symmetry group of a nonlinear system. From then on, the standard 
method had been widely used to find Lie point symmetry algebras and groups for almost all the known 
integrable systems. However, it is very difficult to find non-Lie point symmetry groups and there are 
few literatures for the topic. And the final known expressions of the Lie point symmetry groups 
obtained by using the standard method may be quite complicated and difficult to real applications 
especially for physicists and other non-mathematical scientists. 

Fortunately, the so called CK direct method which was first introduced by Clarkson and Kruskal 
(CK) [2] can be used to derive symmetry reductions of a nonlinear system without using any group 
theory. The CK’s method can be used for most types of nonlinear systems to find ALL the possible 
similarity reductions. The fact means that there is a simple method to find generalized symmetry 
groups for many types of nonlinear systems. 

In the reference [3], we have modified the CK’s direct method to find the generalized Lie and non-
Lie symmetry groups of the (2+1)-dimensional Kadomtsev-Petviashvili equation and the Davey-
Stewartson system. We believe that the method will be valid for other nonlinear systems. 

In the section 2 of this paper is an simple outline of the modified method. The section 3 is used to 
find generalized Lie symmetry groups of the known (3+1)-dimensional KP equation. The general 
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symmetry groups of the (2+1)-dimensional KdV equation are given in section 4. The last section is a 
short summary and discussion. 

2.   A direct method to derive symmetries of nonlinear system 
The main idea of the CK’s direct method is to seek a reduction of a given partial differential equation 
(PDE) in the form  

             (1) 

 
which is the most general form for a similarity reduction [4]. For a given PDE 

                                (2) 

substituting (1) into (2) and demanding that the result be a lower dimensional partial (or ordinary) 
differential equation for  imposes conditions upon  and their derivatives that 
enable one to solve for  and . 

In fact, for many real physical systems, it is enough to seek the symmetry reductions in a simple 
form  

            (3) 

instead of the general form (1). 
The CK’s direct symmetry reduction method implies that it is possible to find full symmetry groups 

of (3+1)-dimensional equation and (2+1)-dimensional KdV equation by a simple direct method 
without using any group theory. It is quite easy to realize this idea. The only thing one has to do is to 
substitute 

            (4) 

 
into a given PDE (2) and require U satisfies the same PDE under the transformation 

 
Generally, it is enough to suppose the group transformation has some simple forms, say, 

          (5) 

instead of (4) for various nonlinear systems. 

3.   Transformation group of the (3+1)-dimensional KP equation 
Firstly, we take the (3+1)-dimensional KP equation as a simple illustration model to show the validity 
of the method. The (3+1)-dimensional KP equation 

                                (6) 

which describes the dynamics of solitons and nonlinear waves in plasmas and superfluids is the 
generalization of (2+1)-dimensional KP equation. If u is z-independent, equation (6) is completely 
integrable and then many kinds of solutions can be obtained by different kinds of methods. 

At first, let 

                                                                           (7) 
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where  are the functions of . 
Substituting (7) into (6) and requiring  being also a solution of the (3+1)- dimensional 

KP equation (6) but with the independent variables (eliminating   by means of the (3+1)-
dimensional KP equation), we have 

 

                                      (8) 

where  and is the complexity function of  and 
independent of . (8) means 

 
after tedious calculation, we have 

                                                                    (10) 

                         (11) 

                                                                                                    (12) 

                                                                                                    (13) 

                                          (14) 

where  and  are constant  and  are all arbitrary functions 
of . Obviously we have the following theorem: 

Theorem 1. If  is a solution of (3+1)-dimensional KP equation (6), then 

                                                         (15) 

Where  are decided by (10)–(14) is also the solution of equation (6). If  the arbitrary 
functions and constants in (10)–(14) are selected as 

                                                 (16) 

                                         (17) 

where  are arbitrary constant and  are arbitrary functions of , 
the general Lie point symmetry of (3+1)-dimensional KP equation is obtained: 

 

 

 

4.  Transformation group of the (2+1)-dimensional potential KdV equation 
In this section, we will discuss (2+1)-dimensional potential KdV equation 
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                                               (18) 

where is a operator of indefinite integrate , it has a single dromion solution driven by not only 
two perpendicular line ghost solitons [5], but also one ghost straight line soliton and one ghost curved 
line soliton[6]. If we choose , then (18) have the following potential form, 

 
The general form 

                                        (19) 

has been studied by many authors [7]. Equation (19) is a generalization of the shallow water wave 
(SWW) equation. 

 
It was obtained in the classical shallow water theory by using Boussinesq approximation method 

[8]. There exits two special integrable cases  and . However, in [7], Clarkson and 
Mansfield found though SWW is integrable both for  and , yet (2+1)-dimensional 
equation (19) has the Painlev´e property only for . We just discuss the non-integral one, say, 
we choose  in equation (19). 

Assume 

                                                               (20) 

where  are all function of , and substitute (20) into (19)with restricting U 
satisfy the same equation with (19) : 

                                                   (21) 

Eliminating  by means of (21), we have,  

 

                                  (22) 

where  and  is the complex function of  
and derivative of , and independent of  and . Equation (22) 
means 

                                           (23) 

Substituting (23) into (19) and calculating step by step, we arrive, 

                                (24) 

 
and the following finite transport theorem: 
Theorem 2. If  is a solution of the (2+1)-dimensional potential KdV equation (19), 

then 
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With (24) is also a solution. If the arbitrary function and constant in theorem 2 have the following 
form: 

 
Where  is the infinitesimal parameter, we obtain the general Lie point symmetry: 

 

 

5.  Summary and discussions 
In summary, the Lie point symmetry group of many nonlinear systems can be generated by some types 
of simple direct ansatz. If all the symmetry reductions of a nonlinear system can be obtained by the 
CK’s direct method, then at least the full Lie point symmetry group of the model can be obtained by 
the simple ansatz (5). Furthermore, after some concrete analysis we find that for the single component 
models, such as the KP equation, the KdV equation, the Boussinesq equation etc., the ansatz (5) is also 
enough to find the general non-Lie symmetry groups. While for the multi-component nonlinear 
systems, some minor modifications are needed. For instance, for the (2+1)-dimensional NNV system, 
the basic ansatz (5) has to be modified in order to find its generalized non-Lie symmetry group. The 
similar property is valid for other types of known (2+1)-dimensional integrable models such as the 
Kadomtsev-Petviashvili equa-tion and the Davey-Stewartson system [3]. 

Though the generalized Lie point symmetry group of the nonlinear systems can be obtained from 
the standard Lie algebra theory, the final expressions obtained by means of the simple direct method 
proposed in this letter are much simpler than those obtained from the traditional approaches. 
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