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SUMMARY

After the initial seminal works of Sophus Lie on ordinary differential equations, several important results
on point symmetry group analysis of ordinary differential equations have been obtained. In this review, we
present the salient features of point symmetry group classification of scalar ordinary differential equations:
linear nth-order, second-order equations as well as related results. The main focus here is the contributions
of Peter Leach, in this area, in whose honour this paper is written on the occasion of his 65th birthday
celebrations. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ordinary differential equations are a fertile area of study. In particular, the Lie algebraic properties
of these equations have attracted considerable attention since the initial seminal works of Lie
[1–4]. One of Lie’s profound results was on the complete complex classification of all possible
continuous groups acting in the plane.

Lie [2] presented, among other things, a list of all continuous groups of transformations in the
complex plane. He further stressed that this be made the basis of a classification and integration
of scalar ordinary differential equations which he implicitly carried out (see also [5]).

The main focus of this review, apart from being devoted to point symmetry group classification
of scalar linear nth-order and second-order ordinary differential equations, revolves around Peter
Leach’s contributions in this fascinating and well-researched area. So my bias, besides this being
a personal account, is made obvious up front.
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We first state the main results on the point symmetry group properties of linear nth-order (n�1)
equations in Section 2 and then in Section 3 we review the point symmetry group classification
of scalar second-order ordinary differential equations both in the complex and real domains. In
the concluding remarks, we make further references to the works of Leach on well-researched
equations and related works on classification and integrability as well as mention some open
problems in this vast area.

2. SCALAR LINEAR nth-ORDER DIFFERENTIAL EQUATIONS

The general, homogeneous, form is

y(n)+
n−1∑
i=0

ai (x)y
(i) =0, n�1 (1)

Earlier studies of the transformation properties of (1) were in the works of Kummer [6],
Laguerre [7], Brioschi [8], Halphen [9], Lie [3] and Forsyth [10]. All transformations utilized in
the present paper are local. In particular, here we deal with local equivalence of Equations (1).
Global transformation properties of the linear equations (1) are important as well (see, e.g. [11]).

2.1. Equivalent differential equations

Two differential equations are (locally) equivalent via an invertible point transformation if one can
be transformed into the other by the transformation.

2.1.1. First-order differential equations. First-order equations, y′ = f (x, y), are equivalent to
each other. An equation of order 1 can be transformed into the simplest one y′ =0 via a point
transformation.

Example
The Ricatti equation y′+ y2=0 is transformable to Y ′ =0 by means of X = x , Y =1/y−x .

2.1.2. Linear second-order differential equations [3, 12–18]. Linear second-order equations are
equivalent to each other. Specifically, they can be transformed to the simplest equation y′′ =0 by
invertible maps.

Example
The simple harmonic oscillator equation y′′+ y=0 can be reduced to Y ′′ =0 via the invertible
transformation X = tan x, Y = y sec x .

Remark
The simple, time-dependent, repulsive and forced oscillators were investigated for SL(3, R)

symmetry group in various papers (see, e.g. [19–24]).
A linear equation of order n�3 need not be transformable into its simplest form. Therefore,

one needs to have knowledge of the transformation properties of (1) for n�3.
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2.2. Laguerre canonical forms [7]
The equivalence group of Equation (1) comprised the transformations

x �→ f (x), f ′(x) �=0 (2)

and

y �→ yg(x), g(x) �=0 (3)

One can invoke (3) to deduce that the transformation

y �→ y exp

(
1

n

∫ x

x0
an−1(s)ds

)

reduces Equation (1) for n�2 to

y(n)+
n−2∑
i=0

ai (x)y
(i) =0 (4)

One can further annull the an−2 coefficient in Equation (1) for n�2 via the mappings (2) and
(3) with f (x) and g(x) defined in terms of h as f ′ =h−2, g=h1−n , where h(x) satisfies the
second-order equation

(n+1)!
(n−2)!3!h

′′+an−2h=0

The corresponding differential equations y′′ =0 for n=2 and

y(n)+
n−3∑
i=0

ai (x)y
(i) =0, n�3 (5)

are the Laguerre canonical forms and are characterized by the vanishing of the coefficients an−1 and
an−2 in Equation (1). These are sometimes referred to as the Laguerre–Forsyth [10] canonical forms.
The transformations that reduce Equation (1) to Equation (5) are the Laguerre transformations. We
initially use Equation (4) as it is nomore difficult for group classification purposes than Equation (5).

2.3. Determining equation for n�3 [25]
Theorem 1
The Lie point symmetry generator

X =�(x)
�
�x

+
[(

n−1

2
�′+c0

)
y+�(x)

]
�
�y

(6)

is admitted by Equation (4) for n�3 and is the most general, where c0 is a constant, �(x) satisfies
Equation (4) and �(x) is determined by the relations

(n+1)!(i−1)

(n−i)!(i+1)!�
(i+1)+2i�′an−i +2�a′

n−i

+
i−1∑
j=2

an− j
(n− j)![n(i− j−1)+i+ j−1]

(n−i)!(i− j+1)! �(i− j+1) =0, i=1, . . . ,n (7)
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It is known from the works of Lie [3] that the maximal point symmetry Lie algebra of an nth-order
(n�3) ordinary differential equation has a dimension r�n+4. Hence, Equations (7) can have at
most three independent solutions.

2.4. Principal Lie algebra [25, 26]
For arbitrary coefficients ai (x), Equation (4) admits the Lie algebra spanned by the n+1 homo-
geneous and superposition operators

X1 = y
�
�y

(8)

Xi+1 = �i (x)
�
�y

, i=1, . . . ,n (9)

where �i (x) are n linearly independent solutions of Equation (4). This algebra is referred to as the
principal Lie algebra of Equation (4).

2.5. Example of extension of the principal algebra [2, 25–27]
Consider the simplest nth-order equation

y(n) =0, n�3 (10)

We have (n+1) symmetry generators given by (8) and (9) with

�i (x)=Ci x
i−1, i=1, . . . ,n

where the Ci ’s are n arbitrary constants. Moreover, the use of Equation (7), since ai =0, gives

�= A0+A1x+A2x
2, Ai are constants

The extension is maximum, i.e. three dimensional. Therefore, the maximum symmetry algebra of
Equation (10) is spanned by (8), (9) with �i given above and

Xn+2= �
�x

, Xn+3= x
�
�x

, Xn+4= x2
�
�x

+(n−1)xy
�
�y

(11)

2.6. Iterative linear equations [11, 25, 26, 28]
Suppose that y1 and y2 are two linearly independent solutions of a linear homogeneous second-order
equation and define the n functions

uk = yn−k
1 yk−1

2 , k=1, . . . ,n (12)

Then u1, . . . ,un are n linearly independent solutions of a linear nth-order equation of form (4).
This linear nth-order equation is referred to as the iterative linear equation and its solution set is
spanned by two solutions y1 and y2 of the linear homogeneous second-order equation.

Example
Suppose that

y′′+a0(x)y=0

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1995–2012
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has two independent solutions y1 and y2. Then, the iterative third-order linear equation is

u′′′+4a0u
′+2a′

0u=0 (13)

This is obtained by the use of Equation (12) as

u1= y21 , u2= y1y2, u3= y22

The next theorem gives Lie algebraic criteria for a linear nth-order equation to be iterative.

Theorem 2
A necessary and sufficient condition that a linear nth-order Equation (4), n�3, be iterative is that

(a) it has the maximum, n+4, dimension Lie symmetry algebra or
(b) it is reducible by the Laguerre transformations to the simplest equation y(n) =0.

Example
Equation (13) has n+4=7 point symmetries and is iterative.

2.7. Symmetry algebra of maximum order n+4 [25, 27]
We provide a list of three linear equations of orders n=3,4 and 5, that admit n+4 point symmetries:

y(3)+a1y
(1)+ 1

2a
(1)
1 y = 0

y(4)+a2y
(2)+a(1)

2 y(1)+
(

3
10a

(2)
2 + 9

100a
2
2

)
y = 0

y(5)+a3y
(3)+ 3

2a
(1)
3 y(2)+

(
9
10a

(2)
3 + 16

100a
2
3

)
y(1)+

(
1
5a

(3)
3 + 16

100a3a
(1)
3

)
y = 0

If ai are constants (a
( j)
i =0, for j =1,2, . . .), then the equations of odd order contain odd derivatives

of y and equations of even order even derivatives of y.
For n odd, n+4 point symmetries occur if and only if

d

dx

{
(n−1)/2∏
i=1

(
(n+1)!

(n−2)!3!
d2

dx2
+(2i)2an−2

)}
y=0 (14)

and for n even one has {
n/2∏
i=1

(
(n+1)!

(n−2)!3!
d2

dx2
+(2i−1)2an−2

)}
y=0 (15)

which has n+4 point symmetries.
Both are derivable from a second-order linear equation and are thus iterative.

2.8. Nonexistence of (n+3)-dimensional symmetry Lie algebra [25]
Theorem 3
A linear nth-order (n�3) Equation (4) does not possess a submaximal symmetry Lie algebra of
dimension n+3.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1995–2012
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Remark
A nonlinear nth-order (n�3) equation, however, can admit a submaximal algebra of dimension n+3.

2.9. The (n+2)-dimensional symmetry Lie algebra [25, 26]

Example
The linear equation

y(n)+
n−2∑
i=0

bi y
(i) =0, n�3 (16)

where the bi ’s are n independent constants, has n+2 Lie point symmetries. The principal Lie
algebra of this equation extends by one and its symmetry algebra is spanned by operators (8) and
(9), with �i (x) being n independent solutions of Equation (16), and by the translation generator

Xn+2= �
�x

Theorem 4
A necessary and sufficient condition that linear nth-order (n�3) Equation (4) admits a submaximal
symmetry algebra of dimension n+2 is that it is point transformable into a constant coefficient
linear equation which is neither of the form (14) nor (15).

2.10. Invariants of equivalence groups ([7, 9, 10, 29, 30], see also [31])
Differential invariants of equivalence groups or subgroups of linear nth-order equations were first
considered in the late 1870s (see Berkovich [32] for another approach on invariants of linear
equations).

It is well known that the linear second-order equation

L2(y)≡ y′′+2a1(x)y
′+a0(x)y=0

has one seminvariant

I (x)=a′
1+a21−a0

which remains invariant under the subgroup of the equivalence group which consists of linear
changes in the dependent variable.

Theorem 5
The equation L̄2(ȳ)≡ ȳ′′+2ā1(x)ȳ′+ ā0(x)ȳ=0 is equivalent to L2(y)=0 by means of the trans-
formations (3) if and only if Ī (x)= I (x), where Ī (x)= ā′

1+ ā21− ā0 is the seminvariant of the
equation L̄2(ȳ)=0.

Example
The variable coefficient equation

y′′+2xy′+(1+x2)y=0

has I =0 and can be reduced to ȳ′′ =0 (which has Ī =0) via ȳ= y exp(x2/2).

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1995–2012
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2.11. Symmetries associated with first integrals [28, 33–39]
Suppose that J is a first integral of a scalar nth-order ordinary differential equation y(n) =
f (x, y, . . . , y(n−1)). Then an operator X =��/�x+��/�y+∑

s�1 �s�/�y(s), where �s =Dx (W )+
�y(s+1) with W =�−�y′, is said to be a symmetry generator associated with the first integral J if
X (J )=0.
It is known that a symmetry algebra of a first integral is a subalgebra of the underlying equation

that gave rise to the first integral [38].
Symmetry Lie algebras of first integrals of second- and higher-order linear equations have been

investigated with a number of interesting properties. We look at one such property taken from
Moyo and Leach [39].
Theorem 6
If y is an integrating factor or characteristic of y(n) =0, n�3, then the first integral obtained via
this characteristic has sl(2, R) symmetry algebra.

Also, maximal symmetries associated with first integrals of maximally symmetric equations
have been explored.

Example
For y′′′ =0, if y is the integrating factor, then yy′′′ =0. Integration of this last equation results in
the first integral

J = yy′′− 1
2 y

′2

which has sl(3, R) symmetry algebra. As an equation this appears as an equivalence class for
second-order equations (see the next section).

2.12. Complete symmetry group [40–42]
Krause [40] introduced the notion of complete symmetry group of an equation. In simple words,
it is the group required to specify completely the equation up to inessential constants.

The economy of complete symmetry groups has been demonstrated in Andriopoulus and
Leach [42] amongst other results. We observe the following:

The Lie algebra spanned by the three operators

X1= x
�
�x

, X2= x
�
�y

, X3= x2
�
�x

+xy
�
�y

generates a complete symmetry group of the simplest second-order equation y′′ =0.
The representation of the complete symmetry group for an equation need not be unique, e.g.

y′′ =0 has other representations. Algebras of different dimensions can generate complete symmetry
groups of an equation. Hence, a minimum dimension criterion was introduced. Another result is
contained in the following theorem.

Theorem 7
The dimension of the complete symmetry group of an nth-order, n�2, linear ordinary differential
equation (4) is n+1.

We next survey group classification of scalar second-order equations.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1995–2012
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3. SCALAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

The normal form is

y′′ = f (x, y, y′) (17)

3.1. Lie’s point symmetry group classification in the complex plane [2, 3]
Lie presented a complete (explicit) classification of scalar second-order equations which admit
non-similar complex Lie algebras Lr of dimension r , where r =0, . . . ,8.

Lie showed that the complex Lie algebra of vector fields acting in the plane admitted by a given
second-order equation are of dimension 0,1,2,3 or 8. Lie proved that a second-order equation
cannot admit a maximal four-, five-, six- or seven-dimensional symmetry Lie algebra. He also
showed that if a second-order equation admits an eight-dimensional algebra, it is linearizable by
a point transformation (see also Theorem 8) and equivalent to the simplest equation y′′ =0.

3.2. Point symmetry group classification in the real domain [16, 43, 44]
One- and two-dimensional algebras have identical structures over the reals as well as over the
complex numbers. Consequently, symmetry algebra classification of second-order equations over
the reals is the same as that over the complex numbers for one- and two-dimensional Lie algebras.
However, the situation is not the same for three- or higher-dimensional Lie algebras as there are
fewer complex than real algebras of dimension 3 or more.

In the real plane, two of the complex Lie algebras, of dimension 3, each split up into two real
non-isomorphic Lie algebras (see Table I). Therefore, there are two more non-isomorphic real
three-dimensional Lie algebras, viz. L3;7 and L3;9, than complex algebras. As a result, there are
more three-dimensional algebra of vector fields acting on the real plane than in the complex plane.
These yield additional non-similar scalar second-order equations that admit real Lie algebras as
one can observe from Table IV.

Algebra labels: When one deals with more than one Lie algebra of the same dimension, one
usually distinguishes one from the other by means of two indices. The first here refers to the
dimension and the second to the number of the algebra. Hence, here L3;4 denotes the fourth Lie
algebra of dimension 3 and so on for the other algebras. In contemporary works, the notation Aa

r; j
is also used (see [46–48]).

Table I. Non-isomorphic real three-dimensional Lie Algebras [2, 45].
Algebra Non-zero commutation relations

L3;1
L3;2 [X2, X3]= X1
L3;3 [X1, X3]= X1, [X2, X3]= X1+X2
L3;4 [X1, X3]= X1
L3;5 [X1, X3]= X1, [X2, X3]= X2
L3;6 [X1, X3]= X1, [X2, X3]=aX2, a �=0,1
L3;7 [X1, X3]=bX1−X2, [X2, X3]= X1+bX2
L3;8 [X1, X2]= X1, [X2, X3]= X3, [X3, X1]=−2X2
L3;9 [X1, X2]= X3, [X2, X3]= X1, [X3, X1]= X2

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1995–2012
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Remark
If we change to the complex basis with X̄1= X2+ iX1, X̄2= X1+ iX2, X̄3=(i+b)X3, where
a=(b− i)/(b+ i), the Lie algebra L3;6 takes the form L3;7. In the complex basis with X̄1=
1
2 X1+ 1

2 X3, X̄2= iX2, X̄3=(i/2)X1−(i/2)X3, L3;8 becomes L3;9. Lie’s complex classification of
non-isomorphic Lie algebras is determined from Table I by excluding L3;7 and L3;9.

Remark
The Lie algebras L I

3;7, L
II
3;7, L

II
3;8 and L3;9 (see Table II) do not occur in Lie’s realizations (up to

similarity) in the complex plane. Lie obtained his three-dimensional algebra realizations according
to the dimensions of the derived algebra which can be 0,1,2 or 3. The realizations in the real plane
presented in Table II are fromMahomed and Leach [43]. These concur with the results of González-
Lopéz et al. [49] (see also [50]).

Table II. Realizations of one-, two- and three-dimensional
algebras in the real plane (p=�/�x and q=�/�y).

Algebra Realizations in the (x, y) plane

L1 X1= p

LI2;1 X1= p, X2=q

LII2;1 X1=q, X2= xq

LI2;2 X1=q, X2= xp+ yq

LII2;2 X1=q, X2= yq

L3;1 X1=q, X2= xq, X3=h(x)q

L3;2 X1=q, X2= p, X3= xq

LI3;3 X1=q, X2= p, X3= xp+(x+ y)q

LII3;3 X1=q, X2= xq, X3= p+ yq

LI3;4 X1= p, X2=q, X3= xp

LII3;4 X1=q, X2= xq, X3= xp+ yq

LI3;5 X1= p, X2=q, X3= xp+ yq

LII3;5 X1=q, X2= xq, X3= yq

LI3;6 X1= p, X2=q, X3= xp+ayq, a �=0,1

LII3;6 X1=q, X2= xq, X3=(1−a)xp+ yq, a �=0,1

LI3;7 X1= p, X2=q, X3=(bx+ y)p+(by−x)q

LII3;7 X1= xq, X2=q, X3=(1+x2)p+(x+b)yq

LI3;8 X1=q, X2= xp+ yq, X3=2xyp+ y2q

LII3;8 X1=q, X2= xp+ yq, X3=2xyp+(y2−x2)q

LIII3;8 X1=q, X2= xp+ yq, X3=2xyp+(y2+x2)q

LIV3;8 X1=q, X2= yq, X3= y2q

L3;9 X1=(1+x2)p+xyq, X2= xyp+(1+ y2)q
X3= yp−xq

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1995–2012
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Table III. Lie canonical forms for scalar second-order
equations (p=�/�x and q=�/�y).

Algebra Canonical forms of generators Representative equations

LI2;1 X1= p, X2=q y′′ = f (y′)
LII2;1 X1=q, X2= xq y′′ = f (x)

LI2;2 X1=q, X2= xp+ yq xy′′ = f (y′)
LII2;2 X1=q, X2= yq y′′ = y′ f (x)

If a second-order equation has a single generator of symmetry, then in general its order can
be reduced by 1 [2]. In addition, Lie [2] showed that the second-order equations possessing two
generators of symmetry have four canonical forms. These are presented in Table III together with
their representative equations.

Remark
Lie showed that the algebras L II

2;1 and L II
2;2 (of Table III) result in linearization (see Theorem 8)

of the underlying second-order equation.
A number of studies of second-order equations invariant under two symmetries have been

undertaken. For example, in Bouquet et al. [51], the invariance under time and self-similar trans-
formations are considered and solutions are obtained in parametric form. The Emden–Fowler type
equations have also been of special interest (see, e.g. [52, 53]).

In Table IV, g is an arbitrary function of its argument(s) and A an arbitrary constant.

Remark
There are algebra realizations that do not appear in Table IV. We comment on these. Neither
the Abelian Lie algebra L3;1 nor the algebra L IV

3;8 are admitted by a second-order equation. The
algebras L3;2, L3;4 or L3;5 are not maximal algebras of a second-order equation meaning that if
any one of these is admitted by such an equation then it has the eight-dimensional algebra L8. In
the real classification, the Lie algebra L3;8 has three non-similar realizations, viz. L I

3;8, L
II
3;8 and

L III
3;8 that result in three non-equivalent real equations. In the complex classification, L I

3;7, L
II
3;8

and L3;9, and their corresponding equations do not occur.
Scalar second-order equations, under general point transformations, have been investigated by

Tressé [54] according to the differential invariants of the equivalence group. He used the Lie
infinitesimal approach. Invoking Tressé’s invariants, a method to solve the equivalence problem
for the cases of zero and one symmetry was presented in Berth and Czichowski [55]. Classes of
second-order equations (in the complex plane) equivalent to second-order equations possessing
three-dimensional algebra of point symmetries are described in Ibragimov and Meleshko [56].

Second-order equations were also studied via fibre preserving point transformations [57] invoking
the Cartan equivalence method. This classification gives restricted classes of equations due to
the nature of the transformations. This approach was also employed for obtaining descriptions
of the equivalence classes to the first and second Painlevé transcendents [58]. In this context,
it is worth mentioning the works [59, 60] in which equivalence to Painlev’e equations are also
observed. Moreover, Leach and co-workers have also employed the Painlevé analysis (see, e.g.
[61]). Notwithstanding, the Janet bases have been used in the representation of the determining
equations of the symmetry (Schwarz [62]) for second-order equations as well.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1995–2012
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Table IV. Lie group classification of scalar second-order equations in the real plane
(p=�/�x and q=�/�y).

Algebra Canonical forms of generators Representative equations

L1 X1= p y′′ =g(y, y′)
LI2;1 X1= p, X2=q y′′ =g(y′)
LI2;2 X1=q , X2= xp+ yq xy′′ =g(y′)

LI3;3 X1= p, X2=q y′′ = Ae−y′

X3= xp+(x+ y)q

LI3;6 X1= p, X2=q y′′ = Ay′(a−2)/(a−1),a �=0, 12 ,2
X3= xp+ayq

LI3;7 X1= p, X2=q y′′ = A(1+ y′2)3/2ebarctan y′

X3=(bx+ y)p+(by−x)q

LI3;8 X1=q , X2= xp+ yq xy′′ = Ay′3 − 1
2 y

′
X3=2xyp+ y2q

LII3;8 X1=q , X2= xp+ yq xy′′ = y′+ y′3 +A(1+ y′2)3/2
X3=2xyp+(y2−x2)q

LIII3;8 X1=q , X2= xp+ yq xy′′ = y′− y′3 +A(1− y′2)3/2
X3=2xyp+(y2+x2)q

L3;9 X1=(1+x2)p+xyq y′′ = A

[
1+y′2+(y−xy′)2

1+x2 +y2

]3/2

X2= xyp+(1+ y2)q
X3= yp−xq

L8 X1= p, X2=q, X3= xq y′′ =0
X4= xp, X8= yp, X6= yq
X7= x2 p+xyq
X8= xyp+ y2q

3.3. Linearization [2, 3, 16, 30, 44, 54, 63–66]
Theorem 8
The following are equivalent statements:

1. A scalar second-order equation (17) is linearizable via a point transformation.
2. Equation (17) has the maximum eight-dimensional Lie algebra.
3. The Tressé relative invariants

I1 = fy′y′y′y′

I2 = d2

dx2
fy′y′ −4

d

dx
fy′y−3 fy fy′y′ +6 fyy+ fy′

(
4 fy′y− d

dx
fy′y′

) (18)

both vanish identically for Equation (17).
4. Equation (17) has the cubic in derivative form

y′′ = A(x, y)y′3+B(x, y)y′2+C(x, y)y′+D(x, y) (19)
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with the coefficients A to D satisfying the Lie conditions

wx = wW −AD+ 1
3Cy− 2

3 Bx

wy = −w2−Bw−AW −Ax −AC

Wx = W 2+Dw+CW −Dy+BD

Wy = −Ww+AD+ 1
3 Bx − 2

3Cy

(20)

where w and W are auxiliary functions.
5. Equation (17) has the cubic in derivative form (19) with the coefficients A to D satisfying

the two invariant conditions

3Axx +3AxC−3AyD+3ACx +Cyy−6ADy+BCy−2BBx −2Bxy = 0

6Ax D−3ByD+3ADx +Bxx −2Cxy−3BDy+3Dyy+2CCy−CBx = 0
(21)

6. Equation (17) has two commuting symmetries X1, X2, with X1=�(x, y)X2, for a non-
constant function �, such that a point transformation X = X (x, y), Y =Y (x, y) which brings
X1 and X2 to their canonical form

X1= �
�Y

, X2= X
�

�Y
reduces the equation to the linear form Y ′′ =F(X).

7. Equation (17) has two non-commuting symmetries X1, X2, in a suitable basis with [X1, X2]=
X1 and X1=�(x, y)X2 for a non-constant function �, such that a point change of variables
X = X (x, y), Y =Y (x, y) which brings X1 and X2 to their canonical form

X1= �
�Y

, X2=Y
�

�Y
reduces the equation to the linear form Y ′′ =Y ′F(X).

8. Equation (17) has two commuting symmetries X1, X2, with X1 �=�(x, y)X2, for any non-
constant function �, such that a transformation X = X (x, y), Y =Y (x, y) which brings X1
and X2 to their canonical form

X1= �
�X

, X2= �
�Y

reduces the equation to one which is at most cubic in the first derivative.
9. Equation (17) has two non-commuting symmetries X1, X2, in a suitable basis with [X1, X2]=

X1 and X1 �=�(x, y)X2 for any non-constant function �, such that a point change of variables
X = X (x, y), Y =Y (x, y) which brings X1 and X2 to their canonical form

X1= �
�Y

, X2= X
�

�X
+Y

�
�Y

reduces the equation to

XY ′′ =aY ′3+bY ′2+
(
1+ b2

3a

)
Y ′+ b

3a
+ b3

27a2
(22)

where a( �=0) and b are constants.
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Remark 1
The Tressé invariants (18) were derived by Tressé [54] using the Lie infinitesimal approach. He
also obtained the invariant conditions (21) for Equation (17) [30, Chapter III]. Conditions (21) were
re-derived in Mahomed and Leach [65] wherein it is shown that conditions (21) are equivalent to
the vanishing of the Tressé invariants (18). Notwithstanding, Grissom et al. [66] invoked the Cartan
equivalence method to deduce conditions (21). In a recent paper, Ibragimov and Magri [67] gave
a geometric proof to determine the Lie conditions (20). Conditions (21) are also the compatibility
conditions of the Lie conditions (20), i.e. wxy =wyx and Wxy =Wyx .

Remark 2
The invertible transformation

X̄ =Y + b

3a
X, Ȳ = 1

2
Y 2+ b

3a
XY + b2

18a2
X2+ 1

2a
X2 (23)

transforms Equation (22) of condition 9 to Ȳ ′′ =0. One can also obtain changes of variables
(see [64]) that reduce the cubic in first derivative equations of condition 8 to linear equations.

Example
The second-order equation

y′′+3yy′+ y3=0 (24)

is linearizable via a point transformation since invariant conditions (21) hold. One can easily obtain
the two non-commuting symmetry generators

X1= �
�x

, X2= x
�
�x

− y
�
�y

(25)

of Equation (24). One can note here that X1 �=�(x, y)X2. So we invoke condition 9 to find a
linearizing transformation. The point transformation that reduces the symmetries (25) to their
canonical form is

X = 1

y
, Y = x+ 1

y
(26)

Equation (24) reduces to

XY ′′ =−Y ′3+6Y ′2−11Y ′+6

by means of transformation (26). Equation (24) linearizes to Ȳ ′′ =0 via transformations (23) with
a=−1, b=6 and by using (26). That is

X̄ = x− 1

y
, Ȳ = x2

2
− x

y

Remark
Equation (24) was also looked at from a dynamical point of view in Leach et al. [68]. The fact that
this equation is linearizable does not play a critical role from a physical point of view. Furthermore,
Equation (24) arises in the study of first integrals for the modified Emden equation (see [69]).
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3.4. Symmetry breaking

An explanation of symmetry breaking for second-order equations is provided in the following
result (see [17]).
Theorem 9
A submaximal dimensional point symmetry algebra of a second-order equation is a subalgebra of
the eight-dimensional point symmetry algebra sl(3, R) of the free particle equation y′′ =0.

This result does not apply to third-order equations [70].
3.5. Equations with three symmetries as first integrals of third-order equations [71]
Equivalence classes of second-order equations possessing maximally three Lie point symmetries
were interpreted as first integrals of third-order equations. Two of the equivalence classes have the
same parent equation. This is given as follows.

The representative equation corresponding to L II
3;8 of Table IV after eliminating the A by

differentiation gives

y′′′(1+ y′2)−3y′y′′2=0

which has six point symmetries. This is also shown to be the parent equation of the representative
equation of L I

3;7 with b=0.

3.6. Complete symmetry groups of equations with three symmetries [41]
The complete symmetry group is realized in the standard three-dimensional algebra for each of
the equivalence classes of second-order equations.

4. CONCLUDING REMARKS

There have been several contributions on group analysis to differential equations such as the
Hénon–Heiles problem, Kepler problem, Ermakov systems and their variants as well as several
others by a number of researchers, including Leach and co-workers. A sample of results can be
found by referring at Leach [72], Leach and Gorringe [73], Govinder and Leach [74], Maharaj
et al. [75], and Moyo and Leach [76].

The (explicit) point symmetry group classification problem for third-order equations, including
linearization, has also been studied (see [25, 44, 77–81]. Linearization for such equations via other
than point transformations has been investigated by many authors (see, e.g. [59, 82–84]). Algebra
bounds for systems were considered by González-Gascón and González-Lopéz [14]. The point
symmetry group classification for linear systems of two second-order equations was first considered
by Gorringe and Leach [85] and later by Wafo and Mahomed [86]. The Abel–Forsyth formulas for
scalar equations have been extended to systems of linear equations using symmetry arguments [87].
There have also been works on the algebraic criteria for linearization via point transformations
for a system of second-order equations (see [88]). Invariant criteria for linearization via invertible
maps in the case of quadratic and cubic semi-linear systems of second-order equations have
been studied recently as well (see [89, 90]). Notwithstanding, the canonical forms for systems
of two second-order equations according to their symmetry properties were also examined [91].
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The equivalence problem for systems of second-order equations has been investigated by Fels
[92]. The complete symmetry group properties for systems have been explored in Andriopoulos
and Leach [42].

The investigation of symmetry breaking for systems of second-order linear equations in general
remains an open problem. The complete explicit group classification for arbitrary second-order
systems is also an open problem, even for the case of a system of two second-order equations.
The complete explicit group classification for scalar nth-order (n>3) equations too is an open
problem. Some inroads have been made for n=4 by Cerquetelli et al. [93]. Also of great interest
is the study of the classification problem of scalar third-order equations via differential invariants
of equivalence groups.

There are essentially two main approaches to integrability of systems of ordinary differential
equations invoking Lie point symmetries. One is reduction via differential invariants or integrals
and the other is the approach of integrating canonical forms. The interested reader is referred to
Lie [3], Bianchi [45], Eisenhart [94], Ovsiannikov [95], Stephani [96], Bluman and Anco [97],
Leach and Mahomed [98], Ibragimov and Nucci [99], Olver [5, 100], Ibragimov [31], Hydon [101],
and Wafo and Mahomed [91, 102], for details.
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