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ABsTrAacT. In [1], J.F. Pommaret constructed the so-called Spencer
P-complex for a differential operator. Applying this construction to
the Lie derivative associated with a general pseudogroup structure on
a smooth manifold, he defined the deformation cohomology of a pseu-
dogroup structure. The aim of this paper is to specify this complex
for a particular case of pseudogroup structure, namely, for a first-order
G-structure, and to express this complex in differential geometric form,
i.e., in terms of tensor fields and the covariant derivative. We show that
the Pommaret construction provides a powerful tool for associating a
differential complex to a G-structure. In a unified way one can obtain
the Dolbeaut complex for the complex structure, the Vaisman complex
for the foliation structure [2], and the Vaisman—Molino cohomology for
the structure of manifold over an algebra [3].

1. PRELIMINARIES

Let M be a smooth n-dimensional manifold, L(M) — M the frame bundle
of M, and X(M) the Lie algebra of vector fields on M.

For a Lie subgroup G C GL(n), consider the bundle Eq(M) = L(M)/G —
M. Let s: M — Eg(M) be a section. The Lie derivative of s with respect to
a vector field X € X(M) is defined in the following way. For each X € X(M),
the flow ¢; of X induces the flow d¢; on L(M) whose projection onto Eg(M)
gives a flow ¢, on Eg(M). The tangent vector field dg,/dt is the complete lift
X € X(Eg(M)) of X. We denote by V Eg the vertical subbundle of T Eg(M);
then the pullback bundle s*(V Eg) is a vector bundle over M, and for each
p € M there is defined an isomorphism IL,: (V Eg),;) — (s*(VEg)),. Then

(Lxs)p = (X (s(p)) — dsp(X(p))),
is the Lie derivative of s with respect to X at a point p € M.
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From the definition it immediately follows that Lxs = 0 if and only if X is
an infinitesimal automorphism of s, i.e., if the flow ¢, preserves s.

Now let @ C L(M) be an integrable G-structure on M. Then @) determines
a section s: M — Eg(M), and Lxs = 0 if and only if X € Xo(M), where
Xo(M) is the Lie algebra of infinitesimal automorphisms of (). We consider the
Lie derivative Lx s as a first-order differential operator Dg: TM — s*(VE).

In [1] for a differential operator D: ['(§) — &', where &, ' are vector bundles
and I'(¢) is the sheaf of sections of ¢, a differential complex was constructed
(the Spencer P-complex)

00 5T 2 FO— F .|

where © is the kernel of D. This construction, applied to a Lie derivative asso-
ciated with a general pseudogroup structure, gives the deformation complex of
this structure. We shall consider a particular case of pseudogroup structure, a
first-order G-structure, and express this complex in terms of tensor fields and
covariant derivative.

2. P-COMPLEX FOR THE LIE DERIVATIVE

Let us recall the definition of the P-complex [1] associated to an involutive
linear differential operator D = ® 0 j%: ¢ — &', where &, ¢’ are vector bundles
over M, and ®: J4¢ — ¢ is a morphism of vector bundles.

Let p*(®) be the first prolongation of ®, R' = im p'(®), ¢*(P) the first
prolongation of the symbol of &, G' = im ¢*(®), and 7': R' — im(®) the
canonical projection. Let us denote by Q*(M) the algebra of differential forms
on M. Then the groups of the P-complex are

QM) ® F°
§(Qa1(M) © G1)’

where 4 is induced by the Spencer algebraic operator. The differential D: F? —
Ftl i defined as D([w]) = [Dsw!], where w € Q4 ® Fy, w' € Q4 ® R! are such
that 7'(w') = w, Dg is the Spencer differential operator (for details we refer
the reader to [1]).

Now let us find the P-complex for the operator D,.

Let us denote by E, the subbundle of the affinor bundle T}(M) consisting
of affinors whose matrices with respect to the frames from () lie in the Lie

algebra g of G, and let Fy, = T{(M)/E,.

F'=im &, FI=

Theorem 1. The P-complex of the Lie derivative is isomorphic to the complex
(C4P),d), where
QM) TM
T ALG(QF (M) @ Ey)’
and the differential d: C1(P) — C9TY(P) is induced by the differential operator

D = Alt oV, where Alt is the alternation and V is the covariant derivative of
a torsion-free connection adapted to Q (i.e. (Dw) = V,wi,.} il with
q

ce(pP)

)
21 "'iq+1

respect to local coordinates adapted to Q).
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Proof. First we note that s*(VE) = F,. Since () is integrable, there exists
an atlas A = {(U,,z%)} adapted to ). Then the section s: M — E(M) has
the form s|; = [{9;}], where {J;} is the natural frame field of (U, ) and
brackets denote the frame equivalence class. For the Lie derivative, we have
Lxs|y = [0iX’dz’ ® 0;]. Therefore Dy = ® o j', where ®: JY(TM) — F,,
B(X7, X7) = [Xi].

Let 7: T1(M) — F, be the projection, and we denote by the same letter 7 all
the induced projections. From our calculation it follows that G* = n(S*(M)®
TM)C T*(M)® F,. Therefore one can easily see that the projection = induces
an isomorphism between the group C? = Qk(M) & TM/Alt(Qk_l(M) ® Ey)
and the group Qk_l(M) & Fg/5(Qk_2(M) ® G') of the P-complex.

Since () is integrable, there exists a torsion-free linear connection V adapted
to ). By simple calculation, one can verify that the differential of the P-
complex can be written in terms of V in the following way: d[w] = [Dw],
where (Dw) I V[ilwhmf . Note that this definition does not depend

gy a+1]
on the choice of V, because for two adapted connections V, V' the deformation

tensor T' = V' — V is a section of the bundle S*(M) @ T(M)NT*(M) ® E,.
Also using properties of the curvature tensor R and the fact that R is a section

of the bundle Q*(M) ® Eq, one can directly verify that D? = 0.

3. EXAMPLES

1. Let @) be a foliation structure on a smooth manifold M, and let A be the
corresponding integrable distribution. Then E, = {A € T1(M) | A(A) C A}
Therefore C? = QP(A) @ (TM/A). If (z,z*) are adapted local coordinates,
ie., if Ais given by the equations dz* = 0, then d can be written locally as
(dw) ¢ = a[alw@miqﬂ]. Thus we arrive at Vaisman’s foliated cohomology

QA1.ogyq
[2].

2. Let @ be a symplectic structure given by a symplectic form 6. Then the
subbundle E; consists of those affinors that are skew-symmetric with respect
to #, and using the isomorphism 7'7(M) — T?(M) determined by 6, we obtain

o (M) @ T"(M)
5T @ S2(M))’

where S?(M) is the bundle of symmetric tensors of type (2,0) and
(dw)

il ...iq_liqiq+1 - w[ll ...iq_liq]iq+1 .

The adapted connection V satisfies Vw = 0 (a symplectic connection), and
the differential d: C? — C*! is induced by the operator (Bw)il...iqqurlqu =
Vi, Wiy..igigsrligs.- In particular, C° = QY M), CH (M) = Q*(M), and d: C° —
C! is the exterior differential. Thus we find that the kernel of d is the Lie
algebra of (locally) Hamiltonian vector fields.

3. For a complex structure, the complex (C?, d) is the Dolbeaut complex
[1]. And it was shown in [4] that for the structure of manifold over algebra,
(C?,d) is the Vaisman-Molino complex constructed in [3].
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