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General Preface

“What can be said at all can be said clearly.”

L. Wittgenstein in Tractatus Logico-Philosophicus (Routledge, 1997), p. 3.

“Σοφόν το ί τό σαφές ο
,
υ τό μή σαφές.”

Ε
,
υριπ.,

,
Ορέστης

It is nowadays generally accepted that the theory of principal fiber bundles is the
appropriate mathematical framework for describing one of the most beautiful, as
well as important, physical theories, viz. the so-called gauge field theory, or gauge
theories, being in effect to quote M. F. Atiyah, “physical theories of a geometrical
character.”

Now, in this context, a principal fibration is defined by the (local) gauge group
(or internal symmetry group) of the physical system (particle field) under conside-
ration. Yet, the particular physical system at issue is carried by, or lives on, a “space”
(vacuum) that in the classical case is usually a smooth (viz. C∞-) manifold. Within
our abstract framework, instead, this is in general an arbitrary topological space,
being also the base space of all the fiber spaces involved.

Accordingly, we do not use any notion of calculus (smoothness) in the classical
sense, though we can apply, most of the powerful machinery of the standard differen-
tial geometry, in particular, the theory of connections, characteristic classes, and the
like. However, all this is done abstractly, which constitutes an axiomatic treatment of
differential geometry in terms of sheaf theory and sheaf cohomology (see A. Mallios
[VS: Vols I, II]), while, as already noted, no calculus is used at all! So the present
study can be construed as a further application of that abstract (i.e., axiomatic) point
of view in the realm of gauge theories, given, as mentioned before, the intimate
connection of the latter theories with (differential) geometry.

Thus, working within the aforementioned abstract set-up, we essentially replace
all the previous fiber spaces (viz. principal and/or vector bundles) by the correspond-
ing sheaves of sections, the former being, of course, just our model (motivation),
while our study is otherwise, as has already explained above, quite abstract(!), that
is, axiomatic. Of course, in the classical case the two perspectives are certainly
mathematically speaking (categorically!) equivalent; however, the sheaf-theoretic
language, to which we also stick throughout the present treatment, is even in the
standard case, in common usage in the recent physics literature (cf., for instance,
Yu. I. Manin [2] or even S. A. Selesnick [1]). Thus, it proves that the same language is
at least physically more transparent, while finally being more practical. In addition,
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wave functions are considered as sections (i.e., functions whose domain is varied
as well as their range, along with the point of application) of appropriate bundles
(this volume, Chapt. IV; Section 10). Furthermore, it is still very likely that the
kind of common base space of the sheaves involved herewith can also be thought
of as corresponding to recent aspects of the “vacuum,” for instance, “. . . the struc-
ture of such spaces is governed by topology, rather than geometry” (cf. P. J. Braam
[1: p. 279]).

On the other hand, a significant advantage of the present abstract formulation
of the classical gauge field theory (i.e., the smooth case) lies in the possibility
of employing the standard conceptual machinery of the usual (smooth) differen-
tial geometry, even for base spaces (of the fiber spaces, as above) that (i) are not
smooth enough, (ii) include a large amount of singularities in the classical sense,
and (iii) are not smooth at all (!), but provide the appropriate framework for the
exploitation of the axiomatic theory [VS], as this happens in certain important cases
(see concrete examples throughout the sequel). Of course, this potential generali-
zation of the classical theory might very likely be of a particular significance to
(mathematical) physicists, who long ago were already aware of, as well as tan-
talized by, the aforesaid type of spaces. Furthermore, the same abstract approach,
has certainly theoretical/pedagogical advantages, being namely, of greater perspec-
tive, clarity and unification. It is thus more akin to the nowadays generally accepted
aspect that “the basic ideas of modern physics are quite simple” (see, for instance,
H. Fritzcsh [1: p. 211]), or even that “. . . the problems of quantum gravity are
much more than purely technical ones; they touch upon very essential philosophical
issues” (cf. G. ’t Hooft [1: p. 2]). So it is quite natural to try to manufacture a simi-
lar situation pertaining to the mathematics involved; thus, something like this would
also be in concord with the apostrophes, as stated in the epigraph of this preface.

Further details about each of the two individual volumes are given by separate
prefaces.



Preface to Volume II

This second volume of the present treatise continues our study of gauge theories,
in the framework of abstract differential geometry, by referring now to Yang–Mills
fields in general, the particular case of Maxwell fields being covered already by the
relevant exposition in the first volume.

We start with Chapter I, pertaining to the general theory of Yang–Mills fields, in
what in particular concerns the corresponding (always, abstract) Yang–Mills equa-
tions, along with the material connected with the relevant Yang–Mills functional
and its variation. To this end, we develop systematically all the necessary abstract
differential-geometric machinery, as defined by a given A-metric, and the associ-
ated abstract Laplace–Beltrami operators and their consequences, such as the Dirac–
Kähler operator and Green’s formula. We use the latter in the sequel, when studying
the geometry of the moduli space of A-connections (cf. Chapt. III).

One of our main conclusions here, and in complete analogy with the classical
(smooth) case, is that (cf. Section 8 of the present chapter)

(∗)
the solution of the Yang–Mills equations, which correspond to a given
vector sheaf E , are exactly the critical points of the Yang–Mills func-
tional that can be associated with E .

Yet, by analogy with our study in Chapter IV of Volume I, we also give a corres-
ponding cohomological classification of Yang–Mills fields.

In Chapter II we deal with the space of Yang–Mills A-connections (viz., those
A-connections (in point of fact, their curvatures) that satisfy the Yang–Mills equa-
tions corresponding to our abstract setting). Furthermore, due to the physical
importance of considering gauge invariant A-connections, one finally considers the
quotient of the previous space, through the gauge group (viz., in our case the group
of (A-)automorphisms of the particular vector sheaf (locally free A-module of finite
rank) E under consideration)—in other words, the so-called moduli space (or orbit
space) of E . We thus begin in the first section the rudiments of the “geometry of
Yang–Mills A-connections,” which is further specialized in the subsequent Chapter.
The corresponding moduli space of self dual A-connections is also considered in
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Section 4. The chapter ends with two more sections that are mainly connected
with “second quantization” and its intrinsic commutative character; see e.g. “Morita
equivalence”, or even Finkelstein’s aphorism, pertaining to “non-commutativity”, in
connection with the quantum deep (see Section 5, (5.32)). Indeed, the former situa-
tion affects negatively, in effect, still the “relativistic aspect of quantization” (ibid.).
In this context, one can further remark that,

(∗∗) the innate character of Nature is really “bosonic” (: symmetric): every-
thing is light; see also, for instance, Chapter IV, Section 10, (10.21).

Within the same context, more recent developments, started from a topos-theoretic
perspective of ADG, can be found in E. Zafiris [1], A. Mallios [14], [16], [17],
A. Mallios – E. Zafiris [1], and A. Mallios – P.P. Ntumba [1], [2], [3], P.P. Ntumba
[1], the latter items referring, in effect, to a symplectic aspect of ADG (yet, to what
we may call, Abstract Symplectic Geometry). Yet, a topos-theoretic aspect of ADG
can also be found in I. Raptis [3], [5].

As already mentioned, we continue in Chapter III our study of the geometry
of the moduli space of a given vector sheaf, following, always within the advo-
cated abstract setup, the corresponding classical pattern, mainly as indicated by
I.M. Singer [1]. See, for instance, Section 7 of the chapter, referring to (the abstract
form of) Gribov’s ambiguity à la Singer. In particular, we consider the notion of the
tangent space at a point (A-connection) of the space of A-connections, appropriately
expressed according to Singer as those tangent vectors, at the point at issue, of suit-
ably defined curves through the same point in the space of A-connections; we have
thus here a classical analogue of a Newtonian description of the notion of a tangent
vector. The same aspect, suitably localized, is finally transferred to the orbit of the
point concerned (viz., to the corresponding moduli space). A brief account of this has
been presented in A. Mallios [6].

Finally, Chapter IV of the present volume is concerned with general relativity,
when this is considered as a gauge theory, thus, to recall A. Einstein himself (see,
for instance, the relevant apophthegm at the beginning of the chapter), as a field
theory—that is, according to the terminology of the present treatise, a theory, per-
taining to a Yang–Mills field; in particular, for the case at issue, to a Maxwell field
(viz., to the massless 2-spin graviton (boson), which might be called an Einstein field
to distinguish it from other bosons). One of our main results is the Einstein equa-
tions (in vacuo), which can be obtained within our abstract framework by following
the classical pattern of the “variation of the Lagrangian density,” alias that of the
so-called Einstein–Hilbert action (functional); all this, suitably formulated in terms
of the abstract differential-geometric setup, has been applied throughout this study.

What is of particular interest here, and is also very likely to have potential appli-
cations in problems related, for instance, with quantum gravity, is the possibility of
using as sheaf of coefficients (our generalized arithmetic) the sheaf of (differential)
algebras of generalized functions, à la E.E. Rosinger, functions that contain by defi-
nition a large number of singularities, in effect the largest one dealt with so far. So it
is a natural hunch that one can apply
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(∗ ∗ ∗) a gauge theory (field theory/graviton) to understand the “atomistic and
quantum structure” of reality

(cf. A. Einstein [1: p. 165]) as a result of the abstract differential-geometric machin-
ery developed so far, this being independent, as already pointed out, of any set of
singularities (cf., for instance, Rosinger’s algebras), in the classical sense. A more
detailed discussion is given in the Section 9 of this chapter. Moreover, for the sake
of completeness, a brief account concerning Rosinger’s algebra (as well as that of
multifoam algebra) sheaf is provided in Section 5 of the same chapter.

Finally, the fact that general relativity, although referred to a Maxwell field
(graviton/boson), is treated in this second volume is due just to technical reasons,
having to do with the way of describing it by analogy with the classical case.
So this description is still afforded by means of a Lorentzian A-metric (cf. Section 2
of Chapter IV, along with Section 2 of Chapter I); again, no “manifold” concept
is needed, this sort of A-metrics, together with necessary relevant notions, being
studied in the same volume of our treatise.
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my whole work of K. Iséki and the late T. Ishihara. So Elemér Rosinger, in that con-
text, post-anticipated me, in point of fact, while supporting me too, at the same time,
concerning the idea of Yang–Mills theory, when he asked for an analogous abstract
formulation of the Yang–Mills equations, yet this in his characteristic, for the whole
enterprise enthusiastic, stimulating, and always lively manner.

On the other hand, the continued moral and quite definitive support of Steve
Selesnick was certainly alive always and perceptible. What I call in this exposition
Selesnick’s correspondence (Vol. I; Chapter II) was the guiding principle, throughout
the text, pertaining to its connection with physics, in spite of his usual reservations,
referring to the usefulness of that otherwise extremely nice, very convenient, and
workable (!) idea; later I met an analogous point of view, related with the electro-
magnetic field, in Yu. Manin’s Springer book on Gauge Field Theory while quite
recently, by that same author, concerning now any other field, in his article in [3]



xvi Acknowledgments

(I owe this last quotation to Yannis Raptis). It was actually also Steve Selesnick who
was responsible for a delightful collaboration in the last few years with Raptis, some-
thing that has led to an especially fruitful and substantial result, referring in particular
to potential physical consequences of ADG for quantum relativity and the problem
of the so-called singularities in general.

The beautiful and very informative recent work of Stathis Vassiliou on the
Geometry of Principal Sheaves, to appear in the MIA series of Kluwer, came at
the right time to vindicate and further extend the scope as well as the applicabi-
lity of ADG. The ongoing work of Maria Papatriantafillou comes to cover the quite
natural formally categorical treatise of ADG, both of the aforesaid recent two aspects
of ADG being altogether definitive and necessary complements of the whole, thus
far, enterprise on the matter. Within an analogous vein of ideas the recent work
of Elias Zafiris comes already to test the ADG point of view in a topos-theoretic
environment for the subject, yet with possible applications to quantum gravity as
well.

During the time of several visits in the last few years to Rabat (Fès, included),
Morocco, I had the opportunity to talk about ADG and its potential physical con-
sequences mainly with Mohamed Oudadess and, in effect, with the whole “équipe
d’ analyse fonctionnelle” that thrives there, in particular, as it concerns topological
algebras theory, thus having always an eager and also critical audience, being a test,
of my own perceptions on the subject. Indeed, a very pleasant atmosphere, still inspir-
ing too, Mohamed Oudadess, at least, being steadily a prompt and critical listener (!)
providing me thus with a precious experience of having first reactions of a thoughtful
“amateur” (the last denomination is, of course, his own) to the matter that often led
me to greater elaborations of the ideas discussed and to increase understanding.

I have had in similar supporting and inspiring reactions in the past from contact
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editorial staff at Birkhäuser production. It is a particular pleasure to express at this
place my heartfelt thanks and deep appreciation as well to all of the above people for
their kindness and the warm attitude they showed toward my work.

[It is really amazing that the whole story began simply from
one source: the Math. Z. (146 (1976)) article of Stephen Allan
Selesnick (!); see also the Acknowledgments of the first two
volumes on ADG. Then the enterprise has been continued by
pointing out the quite instrumental role the notion of connec-
tion has had in the whole development of CDG, along with its
physical applications.]



Contents of Volume I

Chapter I. The Rudiments of Abstract Differential Geometry . . . . . . . . . . . . . . . . . . . . 3

Chapter II. Elementary Particles. Sheaf-Theoretic Classification by Spin-Structure,
According to Selesnick’s Correspondence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter III. Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Chapter IV. Cohomological Classification of Maxwell and of Hermitian Maxwell
Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Chapter V. Geometric Prequantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233



Part II

Yang–Mills Theory:
General Theory



1

Abstract Yang–Mills Theory

“Today there is an amazing confluence of the gauge theories in physics (for
the Yang–Mills equations) and the geometrical theory of connections on fiber
bundles.”

S. Mac Lane in Mathematics: Form and Function (Springer-Verlag, New York,
1986). p. 259.

“Gauge theories [have] a direct differential-geometric interpretation in terms of
fiber bundles with connection.”

M. F. Atiyah in Geometry of Yang–Mills Fields (Accademia Nazionale dei
Lincei, SNS, Pisa, 1979). p. 42.

The objects of our study in this chapter belong to what we may call the Yang–
Mills category (see Section 4.2 for concrete definitions), while the corresponding
morphisms are suitable connection-preserving sheaf morphisms (ibid. (4.16)). Now,
since the necessary background material for the subject matter at issue has not been
systematically developed so far, within the framework of abstract differential geo-
metry (see A. Mallios [VS: Vols. I and II]), which is employed by the present treatise,
we give below a detailed exposition of all the relevant issues that will be needed in
the sequel. In this context, see also, however, A. Mallios [6: p. 164, Appendix II] for
a brief account on the same material. Among the various standard presentations of
this subject, see, for instance, T. Petrie–J. Randall [1]. So we start with the ensuing
fundamental notions for all the subsequent discussion.

1 The Differential Setting

As was the case in Volume I of the present treatise, here too, the adjective “differen-
tial” has, of course, only a formal meaning, referring to a particular type of (“differ-
ential”) operator connected with the subject matter under consideration, given that
no “smooth structure” at all (!) is assumed on our base space X . Thus, the ensu-
ing discussion of this section aims, in effect, to collect together all the “differential
operators” that have been employed in the preceding (see [VS: Vols. I and II], yet,
Volume I of this treatise), to the extent that they provide the corresponding to our case
(generalized, alias abstract ) de Rham complex, along with the respective “connection
operators” (see below). All of this will be necessary for our subsequent considera-

differential setup.”
tions in Section 2, where we shall define the corresponding “dual (alias, adjoint )

A. Mallios, Modern Differential Geometry in Gauge Theories:
Yang–Mills Fields, Volume II, DOI: 10.1007/978-0-8176-4634-9_1,

3
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4 1 Abstract Yang–Mills Theory

So, as usual, we start with a C-algebraized space

(1.1) (X,A),

which is further assumed to be endowed with a given differential triad (see also
Chapt. I, Section 1),

(1.2) (A, ∂,Ω1).

Indeed, one can assume, depending on the particular case under consideration, the
existence of a sequence of exterior differentials (or also differential operators, or else
differentials of the first kind )

(1.3) (dn)n∈Z+ ,

where we still set

(1.3′) d0 ≡ ∂,

as in (1.2) (see also (1.4) and (1.7) below). In this context, see, for instance,
A. Mallios [5: pp. 17ff], or even [VS: Chapt. VIII, pp. 226ff] as it concerns the
above sequence of differentials. So one defines

(1.4) dn : Ωn −→Ωn+1, n ∈ Z+,

where we set

(1.5) Ωn :=
n∧

i=1

(Ω1)i ≡ Ω1 ∧ · · · ∧Ω1︸ ︷︷ ︸
n times

, n ∈ N,

and we also set

(1.5′) Ω0 := A,

as in (1.2). Here, each one of the d n’s, as above, is, by definition, a C-linear morphism
of the A-modules concerned, such that the following (defining) relation is further
assumed to be valid; namely one has

(1.6) d p+q(s ∧ t) = d p(s) ∧ t + (−1)ps ∧ dq(t),

for any s ∈ Ω p(U) and t ∈ Ωq(U), and any open U ⊆ X , with p and q in Z+.
On the other hand, supposing that the relations

(1.7) d1 ◦ d0 ≡ d1 ◦ ∂ = 0

as well as

(1.7′) d2 ◦ d1 = 0
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are valid, one further proves that

(1.8) d p+1 ◦ d p = 0, for any p � 2.

Yet, concerning the equations (1.7), (1.7 ′), and (1.8), we also set, for convenience, as
already done in [VS] and Volume I too, simply

(1.9) d ◦ d ≡ dd ≡ d 2 = 0.

Thus, one arrives at the following generalized (alias, abstract) de Rham complex—in
point of fact, a cochain complex of C-vector space sheaves on the space X (see (1.1)):

0 −→ C
ε−→ A ≡ Ω0 d0≡∂−−−→ Ω1 d1−→ Ω2

−→ · · ·Ωn dn−→ Ωn+1 −→ · · · .
(1.10)

Of course, in the previous sequence the complexes C stand, in effect, for the constant
(C-vector space) sheaf of the complexes, while one still obtains the relation

∂ ◦ ε = 0,(1.11)

according to our hypothesis for A and (1.6), along with (1.3 ′) (see also Chapt. I,
(1.16)). However, the above complex (1.10) is not, in general, exact! (In other words,
the “abstract Poincaré lemma” is lacking, in general, but on the other hand, see also,
for instance, Chapter IV, Section 5 in the sequel.)

So, to summarize, we have so far considered a C X -complex on X associated with
the given C-algebraized space, as in (1.1)—that is, the cochain complex of C-vector
space sheaves on X , of positive degree,

(Ω∗, d) ≡ {(Ωn, dn)
}

n∈Z+(1.12)

(see (1.5) and (1.5′), along with (1.3′) and (1.4), as well as (1.6)). Furthermore, we
also call (1.12) the abstract de Rham complex of X , yet, occasionally, apart from
(1.10), as the case may be. In this connection, we still note that in the particular
case that (1.10) is exact, while further suitable assumptions are imposed on the pair
(X,A), as in (1.1), it is, in point of fact, through (1.12) that one gets at the (abstract
de Rham) cohomology of X , with complex coefficients that can still be expressed by
means of our “structure sheaf” A, a fact that might be of fundamental importance
in the applications (loc. cit.). In this regard, see also [VS: Chapt. III] for a detailed
account of the relevant terminology employed herewith.

1.1 Vectorization of the Abstract de Rham Complex (Prolongations)

We come now to what one might call a “vectorization” of the preceding, with respect
to a given A-module E on X , by considering the following sequence of “differentials
of the second kind”:

(1.13) (Dn)n∈Z+ ,
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such that one has

(1.14) Dn : Ωn(E)−→Ωn+1(E), n ∈ Z+,

where we set

(1.15) Ω n(E) := Ωn ⊗A E ∼= E ⊗A Ωn

for any n ∈ Z+ (see also Vol. I: Chapt. I, (2.1), concerning the last A-isomorphism
in (1.15) of the A-module involved). On the other hand, the same “differential oper-
ators” as in (1.14) are actually given, through the following relation (definition):

(1.16) Dn := 1E ⊗ dn + (−1)nΩn ∧ D, n ∈ Z+,

where we have still set

(1.17) D0 ≡ D

(however, see also (1.22) in the sequel).
Thus, by looking at (1.16), in terms of (local) sections of the A-modules involved

therein, one obtains (see also (1.14) and (1.15))

(1.18) Dn(s ⊗ t) = s ⊗ dn(t)+ (−1)nt ∧ D(s), n ∈ Z+,

for any s ∈ E(U) and t ∈ Ω n(U), with U open in X . Yet, we also take into account
here that (viz., (1.15), for n = 0)

(1.19) Ω 0(E) ≡ Ω0 ⊗A E ≡ A⊗A E = E

(see (1.5′), along with [VS: Chapt. II, (5.15)]). In particular, by further applying
(1.18), for n = 0, one obtains, in view also of (1.3 ′), (1.17), (1.19), and (1.14), the
following C-linear morphism:

(1.20) D : E −→Ω 1(E),

such that one has (a result, in effect, of (1.18), in view of (1.19))

(1.21) D(α · s) = α · D(s)+ s ⊗ ∂(α)

for any α ∈ A(U), s ∈ E(U), and open U ⊆ X . Accordingly, one thus concludes
that

(1.22)

the above map, as in (1.20) (see also (1.17)),

(1.22.1) D ≡ D0,

is, in effect, an A-connection of E . Thus, by still extending the classical
terminology, we can consider the rest of the “differential operators”, as
in (1.13) (viz., for n � 1), as the prolongations of D(≡ D 0). (See also
(1.25) in the sequel.)
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Consequently, based on the preceding, we can say that the vectorization of (1.12),
with respect to a given A-module E on X , as above, is given now by the relation (see
(1.14) and (1.15))

(1.23) (Ω∗(E), D) ≡ {(Ωn(E), Dn)}n∈Z+ .

Yet, the relation of (1.12) with (1.23) is further explained by the subsequent discus-
sion; indeed, one can say that

(1.24)
(1.12) is obtained from (1.23), by simply putting E = A in the
latter;

namely, based on (1.18), in conjunction also with (1.15) and (1.19), one first obtains
that

(1.25) Dn
∣∣
Ωn (A)≡A⊗AΩn=Ωn = dn, n ∈ N.

On the other hand, by looking at (1.6), for p = 0 and q = 1, one has

(1.26) d1(α · s) = α · d1(s)− s ∧ ∂(α)
for any α ∈ A(U), s ∈ Ω 1(U), and open U ⊆ X , which thus, in view of (1.18),
when the latter is applied for n = 1, can be construed as yielding that

(1.27) d1 is the first prolongation of d 0 ≡ ∂ .

(In this concern, see also, for instance, [VS: Chapt. VIII, p. 192, Remark 2.1]).
So the above relation (1.25), along with (1.27), justifies our assertion in (1.24).
However, the same relations, as before, prove also that

(1.28)

the exterior differentials dn, with n ∈ Z+, as in (1.3) (see (1.3′)), or
else “differentials of the first kind” can be viewed simply as the succes-
sive prolongations of the given (see (1.2)) standard (flat) A-connection
∂ ≡ d0 on A.

In this regard, see also A. Mallios [5: p. 19, (1.19)].
So the preceding, as given by (1.3) and (1.13), constitute our abstract differential

setup, in terms of which one can recast, while at the same time extend, within the
present axiomatic framework, several fundamental notions and results of the classical
theory (e.g., differential geometry of smooth manifolds). We proceed in Section 2 to
the dual framework of the above under the only proviso that one is supplied with an
appropriateA-metric on a given A-module E on X , as before. Indeed, the problem is
actually reduced, for suitable (X,A), to a similar one for A! See, thus, for example,
(2.19) below.

2 The Dual Differential Setting

Our purpose in the present section is to define, within the abstract framework of
this treatise, the so-called dual differential operators of those already considered



8 1 Abstract Yang–Mills Theory

in Section 1, something that one can really achieve, provided we put up the necessary
setting there. So, what one actually needs here is the notion of an A-metric on a given
A-module E on X ; we continue to assume herewith that we are given the context,
as in (1.1) of Section 1. Thus, motivated by the standard situation, the latter notion
concerns, in effect, a sheaf morphism, say,

(2.1) ρ : E ⊕ E −→A,

such that the following conditions are fulfilled:
(i) ρ is an A-bilinear morphism between the A-modules concerned, as in (2.1).
(ii) ρ is symmetric; that is, one has

(2.2) ρ(s, t) = ρ(t, s)

for any s and t in E(U), with U open in X .

There is another condition that we impose on ρ (viz., its positive definiteness).
However, to formulate the latter notion, we need to have on our structure sheaf A, as
in (1.1), a richer structure; so we further suppose that

(2.3)

the underlying R-algebra sheaf A, as in (1.1), is a (partially) ordered
(R-)algebra sheaf on X ; that is, we assume the existence of a subsheaf

(2.3.1) P ⊆ A,

defining (sectionwise) the preorder in A.

For details on the terminology employed in (2.3), see [VS: Chapt. IV, pp. 316ff].
In this connection, whenever we have the situation described by (2.3), as above,

we then also speak of our previous pair, as in (1.1),

(2.4) (X,A),

as a (partially) ordered algebraized space. Thus, under the hypothesis that (2.3) holds
true, we further assume, concerning the conditions we impose on ρ, that

(iii) ρ is positive definite, in the sense that one has

ρ(s, s) ∈ P(U) (see (2.3.1)), such that(2.5)

ρ(s, s) = 0 (if, and) only if s = 0,(2.6)

where s ∈ E(U) (see (2.1)) and U is open in X .

Note 2.1 The relation ρ(s, s) ∈ P(U), as applied in (2.5), will also be denoted in
the sequel by

(2.5′) ρ(s, s) � 0

for any s and U , as in (2.5).



2 The Dual Differential Setting 9

Now, before we come to the next property of the map ρ that we are going to
employ, we first consider another map, say ρ̃, deduced from ρ by virtue of pro-
perty (i); indeed, one gets the existence of a map

(2.7) ρ̃ : E −→ E∗ := HomA(E,A)

in fact, an A-morphism of the A-modules in (2.7), such that one actually defines

(2.8) ρ̃(s) ≡ ρs : E −→A : t �−→ ρ̃(s)(t) ≡ ρs(t) := ρ(s, t)

for any s and t in E(U) and any open U ⊆ X .
Thus, assuming now that we are given the framework of (2.3), as above, we first

remark that

(2.8)

property (iii) of ρ (viz., the positive definiteness of ρ, see (2.5)) entails
that ρ̃, as defined by (2.7), becomes an A-isomorphism of the A-modules
involved in (2.7); namely, at the following (canonical) imbedding
(A-isomorphism into) one gets

(2.8.1) E ⊂−→
ρ̃

E∗.

Now, the previous imbedding is not, in general, onto, as is virtually the case in
the classical theory (i.e., when considering finite-dimensional C (or even R)-vector
spaces, hence, corresponding vector bundles, or their associated sheaves of sections).

Thus, whenever we have the relation

(2.9) E ∼=̃
ρ
E∗

within an A-isomorphism of the A-modules concerned, we say that ρ (see (2.1)) is
strongly nondegenerate.

Note 2.2 (Terminological) As already remarked (see (2.8)), the positive definite-
ness of ρ (see (2.5) or else (2.5′)) entails (2.8.1); yet, as explained above (see
the comments following (2.8.1)), when referring to the classical theory, (2.8.1) is
equivalent to (2.9). Thus, classically speaking, in the semi-Riemannian (or else
pseudo-Riemannian) case (see B. O’Neill [1: pp. 54f], or even A.L. Besse [1: p. 29,
Definition 1.33]), one generalizes, as it happens (e.g., in the General Theory of
Relativity), by considering the nondegeneracy of ρ [viz., (2.9), or, equivalently (for
the finite-dimensional case), (2.8.1), in place of (2.5) (“positive definiteness” of ρ)].

Now, in this treatise, we first consider the Riemannian case (see Definition 2.1),
while, later (see Chapt. IV, Section 2), we also employ the semi-Riemannian (in
particular, Lorentz) case, where ρ is not necessarily positive definite, as in (2.5)
above (see Chapt. IV, Definition 2.1, in particular, (2.7): Lorentz condition), but is
always (loc. cit. (2.6)) strongly nondegenerate. Thus, we define the notion of an
A-valued inner product ρ on a given A-module E by extending the classical situation
to our abstract framework, according to the following.
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Definition 2.1 Let (X,A) be a (partially) ordered algebraized space (see (2.3)) and
let E be an A-module on X . Now, an A-metric, or even a Riemannian A-metric, on
E is an A-bilinear symmetric positive definite and strongly nondegenerate map ρ, as
in (2.1). We also then speak of the pair

(2.10) (E, ρ)

as a metrized A-module, or even as a Riemannian A-module E on X .

Thus, given a (partially) ordered algebraized space (X,A), as in (2.3), and an
A-module E on X , an A-valued inner product on E is, by definition, an A-bilinear
symmetric and positive definite map (sheaf morphism), as in (2.1). Consequently,
in that sense, an A-metric ρ on E (see Definition 2.1) is a strongly nondegenerate
A-valued inner product on E .

Warning ! In this connection, and, in conjunction with our previous scholium in
Note 2.2, we still remark here that, in our case, an A-valued inner product on E , is
not necessarily an A-metric in the sense of Definition 2.1; only conversely, given
that (2.8.1) does not always imply (2.9), viz., the “strong nondegeneracy” of ρ, as
in (2.1) (see the comments following (2.8.1)), by contrast with what happens in the
classical theory (finite-dimensional case).

Now, further details pertaining to a local treatment in terms of local frames of
Riemannian vector sheaves, which will also be considered in the sequel, are given in
[VS: Chapt. IV, Section 8] (see, for instance, ibid., p. 322, Theorem 8.1).

Thus, after the preceding preliminary material, we come now to our main object.

2.1 Dual Differential Operators

We start by assuming that we have a differential triad

(2.11) (A, ∂,Ω 1),

which, as usual, is associated with a given C-algebraized space

(2.12) (X,A)

(see [VS: Vol. II], or Volume I, Chapter I, Section 1 of this treatise). Furthermore,
assume that we are given the sequence of differentials of the first kind (see Section 1),

(2.13) (dn)n∈Z+

(to the extent, of course, that (1.7) and (1.7 ′) are valid, the rest of d i ’s being entailed,
according to (1.6), while (1.8) holds always true). Hence, we can further consider the
concomitant abstract de Rham complex (see (1.10) and (1.12))

(2.14) {(Ω n, dn)}n∈Z+ .

On the other hand, we still consider a pair

(2.15) (E, D)



2 The Dual Differential Setting 11

consisting of an A-module E on X and an A-connection D of E . (We may call (2.15)
a generalized Yang–Mills field by extending the respective terminology for a Yang–
Mills field, referring actually to a similar pair, as in (2.15), with E being, in particular,
a vector sheaf on X ; see Section 4, (4.13)). Accordingly, we can finally consider
the corresponding “vectorization” of (2.14), with respect to E , that is, one gets at
the sequence (1.23), yet one obtains the following C-sequence, alias a sequence of
C-vector space sheaves on X ,

(2.16)
E D≡D0−−−−→ Ω1(E) D1−−→ Ω2(E)−→· · ·
−→Ωn(E) Dn−−→ Ωn+1(E)−→· · · ,

such that one still has (see also (1.19) above), concerning the first term of the previous
sequence,

(2.17) Ω 0(E) := Ω0 ⊗A E ≡ A⊗A E ≡ A(E) = E

(modulo an A-isomorphism of the A-modules concerned, regarding the last equality
above). Moreover, one also defines

(2.18) Dn ∈ HomC(Ω
n(E),Ωn+1(E)), n ∈ Z+,

as the differentials of the second kind, or yet prolongations of those in (2.13), being
still, by definition, C-morphisms of the C-vector space sheaves involved (see also
our discussion in Section 1).

Now, to proceed further, we make use of an A-metric on E , in the sense of Defi-
nition 2.1, so that one can then define what we call the “dual C-sequence of (2.16)
(see (2.31)). So our aim is to give, first, appropriate conditions on a pair (X,A), as
in (2.12), so that a generalized Yang–Mills field (see (2.15)) has E as a Riemannian
A-module on X (see Definition 2.1). In fact, we consider vector sheaves on X for
technical reasons. Thus, first we assume that

(2.19)

we are given a (partially) ordered algebraized space

(2.19.1) (X,A)

(see (2.3)), for which the underlying space X is paracompact
(Hausdorff), while we also suppose that A is a fine sheaf on X , endowed
with an A-metric ρ; namely,

(2.19.2) (A, ρ)

is a Riemannian A-module on X (see Definition 2.1).

Now, as an immediate consequence of our hypothesis in (2.19), one gets the conclu-
sion that
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(2.20)

for any given vector sheaf E on X , one defines “on it” (precisely
speaking, on E × E = E ⊕ E) a (A-valued) symmetric and A-bilinear
morphism

(2.20.1) ρ : E ⊕ E −→A.

For convenience, we still retain in (2.20.1), by an obvious abuse of nota-
tion, the same symbol ρ as in (2.19.2).

The assertion follows straightforwardly by applying a standard argument, in view of
our hypothesis in (2.19) that A is fine and X paracompact; hence, one is supplied
with an appropriate partition of unity of A, while E is still supposed to be (loc. cit.)
locally free (of finite rank).

For further details, see [VS: Chapt. IV, p. 324, (8.36), and p. 325, Theorem 8.2].
However, to proceed further and prove that the A-morphism ρ, as given by

(2.20.1), is an A-metric of E , we have to reinforce our assumption for A, in rela-
tion to (2.19). Thus, we further assume that

in addition to (2.19), our structure sheaf A is strictly positive: By defini-
tion, this means that

(2.21)
(2.21.1)

for every locally finite open covering of X , there exists a
strictly positive partition of unity of A, subordinate to the
given covering.

In this context, we also note that to formulate (2.21.1), we do not actually
need X to be a paracompact (Hausdorff) space.

Yet, for convenience, we recall that (see [VS: Chapt. IV, p. 326, Definition 8.4])

(2.22)

by a strictly positive partition of unity of A subordinate to a locally finite
open covering of X , say,

(2.22.1) U = (Uα)α∈I ,

with X being a (partially) ordered algebraized space (see (2.5)), one
means a family of A-endomorphisms of A,

(2.22.2) (φα) ⊆ EndA = (EndA)(X) = A(X),

such that the following conditions are satisfied:

(2.22.3)

(i) Supp(φα) ⊆ Uα, α ∈ I.
(ii)
∑
αφα = 1.

(iii) φα
∣∣
Uα

∈ P(Uα) ∩A.
(Uα) = P(Uα) ∩A(Uα)

.
, for any

α ∈ I ,

(see also (2.5)).
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In other words, one considers a partition of unity of A consisting, according to the
definitions (see (2.22.2)), of global (continuous) sections of A, which are also sub-
ordinate to the open coveringU of X of the particular type considered (conditions (i)
and (ii) ), while the same family provides a family of “strictly positive” (local con-
tinuous) sections of A, in the sense that condition (iii), as above, holds true.

Now, we still express the above property of A, as in (2.21.1), by simply saying
that A is a strictly positive fine sheaf on X ; indeed, due to conditions (i) and (ii) in
(2.22.3), it is clear that such a sheaf on X is a fortiori fine (see also [VS: Chapt. III,
p. 238, Definition 8.1]).

We come now to supplement our hypothesis for (X,A), as in (2.19), by just
assuming henceforth that

(2.23)

we are given a (partially) ordered algebraized space

(2.23.1) (X,A),

with X a paracompact (Hausdorff) space and A a strictly positive fine
sheaf on X . Moreover, we assume that A is endowed with an A-metric
ρ, so that

(2.23.2) (A, ρ)

is a Riemannian A-module on X .

The significance of the previous setup, as described by (2.23), lies exactly in the
following conclusion; that is, one obtains that

(2.24)

every vector sheaf E on X , the latter space being associated with data,
as in (2.23), admits an A-metric ρ (see also the comments following
(2.21.1). Therefore,

(2.24.1) (E, ρ)

is a Riemannian vector sheaf on X .
See also [VS: Chapt. IV, p. 328, Theorem 8.3].

This fundamental result will be standard throughout our discussion.
Thus, suppose now that we are given a differential triad

(2.25) (A, ∂,Ω 1)

on X , with (X,A) satisfying (2.23). Yet, we further suppose thatΩ 1 is a vector sheaf
on X . Accordingly,

(2.26)

the sequence

(2.26.1) (Ωn)n∈Z+

(see also (1.5) and (1.5′)) consists of vector sheaves on X .

See [VS: Chapt. IV, p. 311, Lemma 7.1].
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Now, assume finally that we are given a pair

(2.27) (E, D),

consisting of a vector sheaf E on X and an A-connection D on E , thus, a Yang–Mills
field on X (see (4.13)), within the context of (2.23) and (2.25), as above. Conse-
quently, by virtue of (2.24) and (2.26), with E as in (2.27), one concludes that

(2.28) all the A-modules appearing in the C-sequence (2.16) become, in effect,
Riemannian vector sheaves on X .

Thus, we are now in the position to write the dual C-sequence of (2.16), along with
the corresponding dual differential operators of (2.18); that is, one gets the following
sequence of (Riemannian) vector sheaves on X (see (1.15)):

· · · −→ Ωn+1(E) δn+1−−→ Ωn(E) δn−→ · · · ,(2.29)

· · · −→ Ω2(E) δ2−→ Ω1(E) δ1−→ Ω0(E) ∼= E(2.30)

(see also (2.17)), where we still have, by definition,

(2.31) ρ(Dn(s), t) = ρ(s, δn+1(t)), n ∈ Z+,

for any s ∈ Ωn(E)(U) and t ∈ Ωn+1(E)(U) and any given open U ⊆ X . Before
we explain the idea inherent in the previous defining relation (2.30), we briefly recall
certain technical issues implicit in the notation employed in the aforesaid relation.
So we illuminate them through the following.

Note 2.3 The open set U ⊆ X is a common local gauge of the vector sheaves E and
Ω1; hence, analogously, for E and Ω n as well, for all n ∈ Z+ (see also (2.26)), one
actually obtains

(2.31)
Ωn(E)(U) ≡ (E ⊗A Ωn)(U) = ((E ⊗A Ωn)|U )(U)

= (E |U ⊗A|U Ω
n|U )(U) = E(U)⊗A(U) Ωn(U).

In this connection, see also [VS: Chapt. I, p. 55, (11.40), and Chapt. II, p. 132,
Lemma 5.1] as well as [VS: Chapt. VII, p. 100, (1.9) and (1.10)].

Thus, we have employed in (2.31) the following two basic relations (see the last
of the previous quotations), valid for any vector sheaf E , with rkE = m, and any
A-moduleΩ on X ; that is, one has

(2.32) Ω(E)|U ≡ (Ω ⊗A E)|U = Ωm|U = (Ω |U )m
(modulo A|U -isomorphisms), where U is any local gauge of E , so that one then
obtains

(2.33)
Ω(E)(U) ≡ (Ω ⊗A E)(U) = Ω(U)⊗A(U) E(U)

= E(U)⊗A(U) Ω(U),

within A(U)-isomorphisms of the A(U)-modules concerned for the last relations.
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Consequently, as a result of (2.33), one concludes that

(2.34)
(2.31) is valid, simply, with respect to any local gauge U ⊆ X of either
one of the two given vector sheaves Ω n and E on X (not necessarily a
common one!).

The above also clarifies the type of local sections that appeared in (2.30). Now we
come to the justification of (2.30). Indeed, we prove right away that

(2.35)

(2.30) provides, in effect, the definition of the “differential operators”

(2.35.1) δn, n ∈ N,

“duals” of the Dn’s, n ∈ Z+ (see (2.18), or even (1.12) in the preceding
section). In fact,

(2.35.2)
the operators δn are actually defined as the “transpose” of
the given operators Dn ’s,

when based on the canonical identifications (2.9) associated with the cor-
responding A-metrics of the (Riemannian; see (2.28)) vector sheaves
involved in (2.29).

Thus, by virtue of (2.30), one obtains (making use of the symmetry of ρ)

(2.36) ρ(δn(t), s) ≡ ρδn(t)(s) ≡ ρ̃(δn(t))(s) := ρ(Dn−1(s), t), n ∈ N,

for any s ∈ Ωn−1(E)(U) and t ∈ Ωn(E)(U), with U open in X , in such a manner
that one finally gets (see also (2.9)) at the map (i.e., A(U)-linear morphism)

(2.37) ρ̃(δn(t)) ≡ ρδn(t) ∈ (Ωn−1(E)(U))∗ ∼=̃
ρ
Ωn−1(E)(U)

for any t ∈ Ω n(E)(U) and U ⊆ X , with n ∈ N. In other words, as already stated in
(2.35),

(2.38)
one may look at the operator δ n , n ∈ N, as the dual (alias, transpose via
ρ) of Dn , as the latter is given by (2.18).

Thus, to repeat it again, one obtains (locally, for any open U ⊆ X) the map, in point
of fact, C-linear morphism of the A(U)-modules (hence, of the C-vector spaces, too)
involved:

(2.39)
δn : Ωn(E)(U)−→Ωn−1(E)(U) : t �−→ δn(t)

⊂−→
ρ̃,1−1

ρδn(t) ∈ (Ωn−1(E)(U))∗ ∼=
ρ̃, onto

Ωn−1(E)(U).

(So we do make use of (2.9) in the above definition of δ n . Yet, we employed earlier an
obvious abuse of notation concerning the A-morphism ρ̃ [see (2.6) and (2.7), along
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with [VS: Chapt. I, p. 63 and p. 75, (13.18)]]). Thus, the preceding justifies now our
claim in (2.35), hence, in turn, definition (2.30), as well.

The previous “duality,” as expressed by (2.35.2), or even by (2.38), as above is
given by the following “correspondence”:

(2.40) Dn−→ δn+1, n ∈ Z+,

which is further depicted by the following diagram:

(2.41)

Ω0(E) ≡ A(E)

∼= E
D0≡D−−−→←−−−
δ1

Ω1(E)
D1−→←−
δ2
Ω2(E)· · · Dn−1−−→←−

δn
Ωn(E)

Dn−→←−
δn+1

Ωn+1(E)
Dn+1−−→←−
δn+2

· · · ,

a (double) C-sequence of C-linear morphisms (see also (2.17)), which is a combina-
tion of the previous two C-sequences (2.16) and (2.29).

Thus, one gets the sequence

(2.42) (δn)n∈N

as the dual of (2.18), consisting of C-linear morphisms between the A-modules
(in effect, vector sheaves see (2.26) and (2.27)) concerned. Its terms—as given by
(2.35.1); see also (2.39)—are still called adjoint exterior derivative operators, or
even contraction operators (see (2.39)), thus extending the classical terminology.

We come now to consider the necessary ingredients, in order to define, within
our abstract setting, the “Laplacian” of an A-connection. As we shall presently see,
we have actually elaborated all the relevant necessary material.

3 The Abstract Laplace–Beltrami Operators

Suppose we have the framework of (2.25), while for the A-metrics involved we
assume the validity of (2.29) (see also Definition 2.1). Moreover, the A-modules
considered are, by assumption (see (2.26) and (2.27)), vector sheaves on X , so
that all the vector sheaves now, appearing in (2.41), are thus, according to our
hypothesis (see also (2.28)), Riemannian vector sheaves on X , in the sense of
Definition 2.1.

Thus, based now on the A-sequence (2.41), one can further define a correspond-
ing sequence of Laplace–Beltrami operators,

(3.1) (	n)n∈N,

according to the following relation;

(3.2)
	n ≡ 	 := δn+1 ◦ Dn + Dn−1 ◦ δn ≡ δ ◦ D + D ◦ δ

≡ δD + Dδ : Ωn(E)−→Ωn(E), n ∈ N,
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each one of the preceding operators thus being a C-linear morphism of theA-modules
(actually, vector sheaves) concerned, as in (3.2). Yet, by extending to our case the
corresponding classical situation, we shall also refer to any one of the above “dif-
ferential” operators simply as the Laplacian (operator), its “order” (viz., the index
n ∈ N, as in (3.1)), being determined from the context.

Precisely speaking, by the latter term, one actually refers to the Laplacian (or
even, Laplace–Beltrami operator) 	, corresponding to a given A-connection D on
a vector sheaf E on X , the latter space being the carrier of the appropriate frame-
work, as, for example, in (2.25), within which the preceding have a meaning. Thus,
according to (3.2), one has, in particular for n = 1,

(3.3)
	 ≡ 	1 := δ2 ◦ D1 + D0 ◦ δ1 ≡ δ2 ◦ D1 + D ◦ δ1

≡ δD + Dδ : Ω1(E)−→Ω1(E),

so that, by the very definitions, one thus obtains that

(3.4) 	1 ≡ 	 ∈ EndC(Ω
1(E)),

while, quite generally, as already mentioned in the preceding (see (3.2)), one still has

(3.5) 	n ≡ 	 ∈ EndC(Ω
n(E)), n ∈ N.

In the last relation, hence in (3.4), one considers the A-modules (in effect, vector
sheaves) as being, due to our hypothesis for A (see Volume I: Chapt. I, (1.3) and
(1.5)), C-vector space sheaves on X , the last member of (3.5) or of (3.4) being a
C-algebra sheaf on X . (In this regard, see also [VS: Chapt. II, pp. 138f].)

The same Laplacian operators can still be viewed by definition (see (3.5)) as
global sections of the corresponding C-algebra sheaves. We shall also do this occa-
sionally throughout the ensuing discussion. Therefore, one still obtains that (by an
obvious abuse of notation, we retain the same symbol for 	, as in (3.5))

(3.6) 	n ≡ 	 ∈ (EndC(Ω
n(E)))(X) ≡ EndC(Ω

n(E)), n ∈ N,

the last member of (3.6) being thus a C-algebra. See also loc. cit., p. 139, (6.30) and
(6.31). Yet, ibid. Chapt. I, p. 73, (13.7), and p. 27, (6.2) and (6.3).

For simplicity, we shall also employ concerning the A-metric ρ considered, the
following notation:

(3.7) ρ(s, t) ≡ (s, t),

for any s and t in E(U), and any open U ⊆ X , as above. By employing the last
simplified notation, as in (3.7), it is still very convenient to write the previous defining
relation (2.30) in the form

(3.7′) (Ds, t) = (s, δt),

with s and t in Ω∗(E)(U) (see (3.15.2)) and U open in X .
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Now, concerning the C-sequence (2.16) (indeed, for the case at hand, this is, in
particular, an A-sequence of vector sheaves on X), one obtains the relation (see also
(2.33))

(3.8) (Dn ◦ Dn−1)(s ⊗ t) = t ∧ R(s), n ∈ N,

for any s and t in E(U) and U open in X , with

(3.9) R ≡ R(D)

denoting the curvature of the given A-connection D(≡ D 0) of the vector sheaf E on
X : See [VS: Chapt. VIII, p. 229, (8.22)]. Therefore, based on (3.8), one concludes
that

(3.10)

the C-sequence (2.16) is a complex (of C-vector space sheaves and
C-linear morphisms); that is, one has

(3.10.1) Dn ◦ Dn−1 = 0, n ∈ N

(with D0 ≡ D, see (1.15)), if, and only if, one has

(3.10.2) R(D) ≡ R = 0

(viz., whenever the given A-connection D on E is flat).

On the other hand, based on (2.36), one obtains (we apply the simplified notation
(3.7) concerning the A-metric ρ by also taking into account the symmetry of the
same)

(3.11) (δnδn+1t, s) = (δn+1t, Dn−1s) = (Dn Dn−1s, t)

for any s and t , as in (2.36) in the preceding section. Therefore, one thus concludes
that

(3.12)

(3.10.1) is equivalent to the relation

(3.12.1) δn ◦ δn+1 = 0, n ∈ N;
hence, in turn (see (3.10)), the latter relation is still equivalent with the
flatness of the A-connection D as well.

In this context, by extending the classical situation, we can look further at the
so-called Dirac–Kähler operator

(3.13) D + δ,
with D and δ being any one of the items (terms) of the two sequences (2.18) and
(2.42), respectively. Thus,
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(3.14)

for any given flat A-connection D on E , one obtains for the correspond-
ing Laplacian (see (3.2)) the relation

(3.14.1) 	 = (D + δ)2,
while we still set

(3.14.2)
√
	 ≡ D + δ.

The assertion follows from (3.10.1) and (3.2).
On the other hand,

(3.15)

the Dirak–Kähler operator is self-adjoint, with respect to the given
A-metric ρ (see (3.7), along with (2.39)); that is, one has:

(3.15.1) ((D + δ)s, t) = (s, (D + δ)t),
for any s, t ∈ Ω∗(E)(U), with U open in X , where we have set;

(3.15.2) Ω∗(E) :=
⊕

n∈Z+
Ωn(E).

Indeed, our assertion in (3.15.1) is an immediate consequence of (2.36), or even of
(3.7′), as above, along with the bi-additivity and symmetry of ρ (see (2.1) conditions
(i) and (ii)).

An analogous conclusion, as above, is also still valid for the Laplacian; see (3.16)
below.

3.1 Positivity of the Laplacian and the Green’s Formula

For the terminology in the heading of this subsection, we still refer to (2.7 ′). Thus,
our first task is to prove that

(3.16)

the Laplacian is a self-adjoint operator, with respect to the A-metric ρ;
that is, one obtains

(3.16.1) (	s, t) ≡ (	ns, t) = (s,	nt) ≡ (s,	t)

for any n ∈ N and s and t in Ω n(E)(U), with U open in X .

Indeed, by virtue of (3.2) and (2.36), along with the bi-additivity and symmetry of ρ,
one has

(3.17)

(	s, t) ≡ (	ns, t) = ((δn+1 Dn + Dn−1δn)s, t)

= (δn+1 Dns, t) + (Dn−1δns, t)

= (Dns, Dnt)+ (δns, δnt)

(3.17.1) ≡ (Ds, Dt) + (δs, δt) ≡ (D + δ)(s, t)

= (s, δn+1 Dnt)+ (s, Dn−1δnt)

= (s, (δn+1 Dn + Dn−1δn)t) = (s,	nt) ≡ (s,	t),

which thus proves (3.16).
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On the other hand, by omitting the precise indication of the order of the Laplacian
involved, along with operators D and δ, and by further applying the simplified
formula for 	 (see (3.2) as well as (3.7 ′)), one can carry out the previous calcu-
lations as follows:

(3.17′)
(	s, t) = ((δD + Dδ)s, t) = (δDs, t) + (Dδs, t)

= (Ds, Dt) + (δs, δt) = (s, δDt) + (s, Dδt)

= (s, (δD + Dδ)t) = (s,	t),

that is, (3.17), as before, while (3.18) is also implicit, within the previous relations.
Now, as a byproduct of the previous proof (see (3.17.1)), one obtains

(3.18) (	s, t) = (Ds, Dt) + (δs, δt),
or, more precisely, one has

(3.19) (	ns, t) = (s,	n t) = (Dns, Dnt)+ (δns, δn t)

for any s and t in Ω n(E)(U), as in (3.16.1). The last two equations constitute, by
definition, the Green’s formula. (Concerning the classical case, see, for instance,
W. Greub et al. [1: Vol. I, p. 172].)

Thus, by virtue of (3.18), or (3.19) and for s = t ∈ Ω n(E)(U) (see (3.16.1)), one
obtains

(3.20) (	s, s) = (s,	s) = (Ds, Ds) + (δs, δs) � 0

(see (2.7), along with (2.7 ′)); that is, equivalently,

(3.21) (	ns, s) = (s,	ns) = (Dns, Dns)+ (δns, δns) � 0.

In other words,

(3.21′) the Laplacian (operator) is also non-negative (“positive”).

Consequently, as a byproduct of (3.20) or of (3.21), one concludes that

(3.22) 	s = 0 if, and only if, Ds = 0 and δs = 0;
that is, equivalently, by definition,

(3.22′) 	ns = 0 if, and only if, Dns = 0 and δns = 0,

such that s ∈ Ωn(E)(U), U open in X , and n ∈ N.
A particular application of our previous conclusion in (3.22) is given below by

considering the Yang–Mills equations. Yet, in this regard and by still extending the
classical terminology,
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(3.23)

a (local) section

(3.23.1) s ∈ Ωn(E)(U),

with n ∈ N and U open in X , such that

(3.23.2) 	ns = 0 (or even	s = 0)

is called an (E-valued) harmonic (n-)form on U .

Thus, roughly speaking, elements of

(3.24) ker	 or ker	n ⊆ Ωn(E), n ∈ N

(see also (3.2)), characterize, by definition, the harmonic forms on X . As we shall
see (see Section 4), “instantons” may be viewed as such forms on X . On the other
hand, by still employing the above terminology, we can express our conclusion in
(3.22 ′) by just saying, in complete analogy with the classical case, that

(3.24′)
a given E-valued n-form, say s, on U [viz., s ∈ Ω n(E)(U)], is har-
monic (	s = 0) if and only if it is simultaneously closed (Ds = 0) and
co-closed (δs = 0).

Now, in anticipation of Section 4, consider the case of the 2-form on X , which is
defined by the curvature R(D) ≡ R of a given A-connection D on a vector sheaf E
on X . Thus, one has

(3.25) R ∈ Ω 2(EndE)(X),

where EndE is still a vector sheaf on X (see [VS: Chapt. II, p. 137, Lemma 6.1]).
Hence, in place of E , as above, one can consider the vector sheaf EndE on X .
On the other hand, according to Bianchi’s identity (see [VS: Chapt. VII, p. 224,
Theorem 7.1]), one has

(3.26) D2
EndE (R) = 0.

Thus, by combining Green’s formula, for n = 2 (see (3.19)), and Bianchi’s iden-
tity, as in (3.26), one obtains

(3.27) (	R, R) = (R,	R) = (δR, δR)

(we have set above, for convenience,	2
EndE ≡ 	 and δ2

EndE ≡ δ; see also Section 4).
Therefore, one concludes that

(3.28) 	R = 0 if and only if δR = 0,

a fact that will be used below. See Section 4 for applications of this material.
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In other words,

(3.29)

R, as in (3.25), is an EndE-valued harmonic 2-form on X (see (3.23)),
one has

(3.29.1) 	2
EndE (R) = 0 (or simply, 	(R) = 0)

if and only if one has

(3.29.2) δ2
EndE (R) = 0 (or δ(R) = 0).

Yet, by applying our previous terminology in (3.24 ′) on the vector sheaf EndE on
X , as in (3.29), we can still express our latter conclusion by saying that

(3.30)
the curvature R ≡ R(D) of a given A-connection D on E is a harmonic
(EndE-valued 2-form on X) if and only if it is co-closed [being, accord-
ing to Bianchi’s identity (see (3.26)), already closed].

Now, within this same vein of ideas, one can further conclude, quite generally, that

(3.31) there are no nontrivial harmonic forms on X that are also exact.

Indeed (arguing locally), suppose that ω ∈ Ω p(E)(U), with 	ω = 0, while we
also assume that ω = Dα, with α ∈ Ω p−1(E)(U). Now, since, by hypothesis (see
(3.24′)), one still obtains that δω = 0, one has δDα = 0, as well, so that one obtains

(3.32) (δDα, α) = (Dα, Dα) = 0;
that is (see (2.5)), ω = 0.

An equivalent formulation of (3.31) is the relation

(3.33) ker	 ∩Ω p(E)ex = {0}
for any p ∈ N. Therefore,

(3.34) two harmonic (p-)forms that differ by an exact form are actually equal.

As already stated, it is now the above (harmonic) 2-form, as in (3.29.1), that will be
important to us in the subsequent discussion.

4 The Abstract Yang–Mills Equations

The purpose of the ensuing discussion, as the title of this section indicates, is to
formulate the standard Yang–Mills equations within the framework of the “abstract
differential geometry,” as the latter is described by the language of vector sheaves.
Thus, to facilitate the reading and to fix the notation employed in the sequel, we
first give, according to the preceding, the precise setup within which we are going
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to formulate the equations under consideration. So we start with the assumption that
we are given the following data:

(4.1)

a partially ordered algebraized space (see (2.4)),

(4.1.1) (X,A),

such that X is a paracompact (Hausdorff) space and A is a strictly posi-
tive fine sheaf on X (see (2.21) and (2.22)). Moreover, we suppose that

(4.1.2) (A, ρ)

is a RiemannianA-module on X (Definition 2.1), so that, by assumption,

(4.1.3) ρ : A⊕A−→A

is an A-bilinear symmetric positive-definite and strongly nondegenerate
(sheaf) morphism of the A-modules concerned; that is, in other words,
ρ is a Riemannian A-metric on A (ibid.).

Yet, we assume that

(4.1.4) (A, ∂,Ω1)

is a given differential triad on X , with Ω 1 being a vector sheaf on X ,
while we still accept that we are given the whole sequence of “differen-
tials of the first kind” (exterior derivative operators in other words),

(4.1.5) (dn)n∈N+

(see (1.3)), such that (1.7) and (1.7 ′) are valid.
Now, for convenience, we shall also refer to the previous data as

an abstract Riemannian (differential) space, or, for short, simply as a
Riemannian space X .

Thus, as a consequence of our previous assumptions for X , or by just considering a
Riemannian space X , according to the latter terminology, as in (4.1), one first con-
cludes that

(4.2)

if E is a given vector sheaf on a Riemannian space X , as above, then E
is still endowed with an A-metric

(4.2.1) ρ : E ⊕ E −→A,

having analogous properties to those of (4.1.3), so that

(4.2.2) (E, ρ)

becomes a Riemannian vector sheaf on X (see Definition 2.1).
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See also (2.24) as well as (2.28). Furthermore, based on our hypothesis for X , as in
(4.1), one still obtains that

(4.3) every vector sheaf E on a Riemannian space X (see (4.1)) admits an
A-connection D.

In this regard, see also [VS: Chapt. VI, p. 85, Theorem 16.1], as well as [VS:
Chapt. III, p. 247, (8.56)].

On the other hand, based on the preceding, we also understand that, within the
context of a Riemannian space X , as above, one can still define, via a given vector
sheaf E on X , the “vectorization” of the sequence

(4.4) (Ωn)n∈Z+

(see (1.5) and (1.6)), that is, the sequence

(4.5) Ωn(E) ≡ Ωn ⊗A E ∼= E ⊗A Ωn, n ∈ Z+
(see (1.15) and (1.19)), in such a manner that all the terms in (4.4) and (4.5) become
vector sheaves on X (see also (4.1.4)). Yet, one further defines the sequences of the
“differentials of the second kind”

(4.6) (Dn)n∈Z+

(see (1.16) and (1.17)). Finally, one gets at the sequence of the “adjoint differentials”
(see (2.35) and (2.39))

(4.7) (δn)n∈N,

hence, in conjunction with (4.6) (see (3.1) and (3.2)), at that one of the Laplacians,

(4.8) (	n)n∈N.

One thus obtains the following framework, which will be of constant use throughout
the subsequent discussion: One concludes that

(4.9)

given a Riemannian space X , as above, every vector sheaf E on X admits
an A-connection, while one can still define the concomitant Laplacians
on the “vectorized,” via E , A-modules (in fact, vector sheaves) of “dif-
ferential forms” on X .

Indeed, as we shall see, the previous setup, as it is recapitulated, for instance, by
(4.9), is an appropriate one for ADG (abstract differential geometry), within which
we can deal with Yang–Mills fields in such a manner that one can still formulate
therein the corresponding to the latter Yang–Mills equations.

4.1 Yang–Mills Fields

Suppose we are given a differential triad

(4.10) (A, ∂,Ω1)
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on a C-algebraized space

(4.11) (X,A)

(see [VS: Vol. II] or Volume I, Chapt. I, (1.4) and (1.13)). Then, a pair

(4.12) (E, D)

consisting of a vector sheaf E on X , with

(4.13) rkAE ≡ rkE � 2

(see [VS: Vol. I] or Volume I, Chapt. I, (2.41.1)), and an A-connection D of E , is, in
general, called a Yang–Mills field on X .

Now, concerning the previous terminology, we first remark that

(4.14)
to formulate the above general notion of a Yang–Mills field, as in (4.12),
what we really need is the general framework of a “differential triad,” as
in (4.10) and (4.11); see also Chapter I, (2.1) and (2.3).

Indeed, the preceding terminology is still in agreement with a common usage of the
term in other more classical contexts; see, for instance, Yu.I. Manin [2: p. 72, §2.17].
Moreover, we insisted above on the rank of E , as in (4.13), in that the latter should
be, by definition, in the case of a Yang–Mills field (E, d), as before, greater than 1;
on the other hand, the particular case of rkE = 1 has been already considered in
the preceding (see Volume I, Chapt. III) for Maxwell fields (ibid. Definition 1.1).
This last term, as it has been already mentioned, still constitutes the extension to the
present abstract setting of analogous terminology, which has also been applied to
the present treatment of more classical frameworks; thus, see again, for instance, the
above quoted work of Manin [2: p. 71, §1.16].

On the other hand, the same term “Yang–Mills field” as above, concerning a
pair (E, D) like in (4.12), will be applied for the curvature R(D) ≡ R of an
A-connection D (ibid.), where the latter satisfies, through its curvature (always!),
the so-called Yang–Mills equations. Of course, this situation is the outcome of
the corresponding one in physics, where, by employing an obvious abuse of ter-
minology, we often identify the cause, or even causality (viz., in other words, the
A-connection/potential), with the result (i.e., curvature/field strength), whereas all
these are still with the carrier (vector sheaf E) that is always accompanied by the cor-
responding (A-)connection D, as in (4.12): See, for instance, the relevant situation in
the case of the electromagnetic field, as this has been annotated in Chapter III, (3.55)
and (3.56) of Volume I; see also (3.57.1) therein, as well as in Chapter IV, (6.8) of
Volume I. Anyhow, the aforesaid distinction of the relevant terminology will always
be made clear, throughout the subsequent discussion, from the context.

Now, before we proceed to the formulation of the fundamental equations, which
are, for that matter, our main objective in this section, we discuss the particular
objects, introduced above by (4.12) and (4.13), still within the quite general context
of (4.10) and (4.11), that will be also of use presently.
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4.2 The Yang–Mills Category

As already mentioned, the framework within which we continue to work in this and
also the following subsection is still the general one, as described by (4.10) and
(4.11). So the objects of the category, as in the heading of this subsection, are the
Yang–Mills fields, as they were defined above by (4.12) and (4.13).

On the other hand, a morphism of the category at issue is a map

(4.15) φ : (E, D)−→(E ′, D′),

which is (i) a sheaf morphism of the vector sheaves involved in (4.15)—that is, one
has

(4.16) φ ∈ H omA(E, E ′) ≡ Hom A(E, E ′)(X).

(by an obvious abuse of notation, we retain here the same symbol for the above two
maps)—while (ii) we still accept that the following diagram is commutative:

(4.17)

E ′ �D′
E ′ ⊗A Ω1 ≡ Ω1(E ′)

E ⊗A Ω1 ≡ Ω1(E)E

��

�

φ

D

φ⊗1
Ω1

that is, the two given A-connections D and D ′, as in (4.15), are φ-related; equiva-
lently (commutativity of the diagram (4.17)), one has

(4.18) D′ ◦ φ = (φ ⊗ 1Ω1) ◦ D ≡ (φ ⊗ 1) ◦ D

(see the relevant situation in the case of Maxwell fields in Volume I, Chapter III,
(1.8) and (1.9)).

We denote the above category by

(4.19) YMX

and call it the Yang–Mills category of the topological space X considered, as in
(4.11), the latter space being the carrier of the given differential triad (see (4.10)).

Now, the same category, as above, has tensor products; that is, for any two objects
of the category at issue, say (E, D) and (E ′, D′), one defines their tensor product by
the relation

(4.20) (E, D) ⊗ (E ′, D′) := (E ⊗A E ′, D ⊗ D′),
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where the second member of (4.20) is, of course, still a Yang–Mills field, as in (4.12)
and (4.13), according to the very definitions (see [VS: Chapt. II, p. 132, (5.27), along
with Chapt. VI, p. 18, Section 5.2]). In this context, one further sets, by definition
(loc. cit., p. 18, (5.10)),

(4.21) DE⊗AF ≡ D ⊗ D′ := D ⊗ 1F + 1E ⊗ D′ ≡ D ⊗ 1 + 1 ⊗ D′.

On the other hand, the category, under consideration, has also an internal Hom
functor in the sense that for any two objects of YM X , as above, one still defines a
new object of the same category according to the relation

(4.22) Hom((E, D), (E ′, D′)) := (HomA(E, E ′), DHomA(E,E ′)),

where one further sets, by definition,

(4.23) DHomA(E,E ′)(φ) := D′ ◦ φ − (φ ⊗ 1Ω1) ◦ D ≡ D′ ◦ φ − (φ ⊗ 1) ◦ D

for any (local) section

(4.24) φ ∈ HomA(E, E ′)(U) = H om A|U (E |U , E ′|U )
and any open U ⊆ X . In this regard, see also [VS: Chapt. VI, p. 19, (5.12) and (5.13),
along with Chapt. II, p. 135, (6.8)].

Now, for the particular case that one has just one Yang–Mills field (E, D) on X ,
as above, then one has

(4.25) HomA(E, E) ≡ EndE

(loc. cit., Chapt. II, p. 138, (6.28)), so that, in view of (4.23), one further obtains

(4.26) DEndE (φ) = D ◦ φ − (φ ⊗ 1) ◦ D

for any

(4.27) φ ∈ (EndE)(U) = H om A|U (E |U , E |U ) ≡ End(E |U )
and any open U ⊆ X . Yet, for convenience, we still write, in place of (4.26), the
formal relation

(4.28) DEndE (φ) = D ◦ φ − φ ◦ D ≡ Dφ − φD ≡ [D, φ],

with φ, as in (4.27), or even the formula

(4.29) DEndE = LD,

with an obvious meaning of the second member of (4.29) (Lie operator/derivation),
that will also be of use in the sequel.

Furthermore, concerning the morphisms, in general, of the previous category, as
these are defined by (4.16) and (4.18), it is still useful to remark, based on (4.23) and
in view of later applications, that
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(4.30)

the morphisms of the Yang–Mills category YM X , as above, when
referring to two given objects of it, say (E, DE ) and (F , DF ), are those
(global) sections (hence, sheaf morphisms; see (4.16))

(4.30.1) φ ∈ H omA(E,F) = HomA(E,F)(X),

which commute with the individual A-connections DE and DF
or, equivalently, are horizontal with respect to the A-connection
DHomA(E,F) (they annihilate it); that is, one has

(4.30.2)
DHomA(E,F)(φ) = DF ◦ φ − (φ ⊗ 1Ω1) ◦ DE

≡ DF ◦ φ − φ ◦ DE ≡ DFφ − φDE = 0.

Therefore, one has (see also (4.18)) the relation

(4.30.3) DF ◦ φ = φ ◦ DE

or just, for simplicity,

(4.30.4) DFφ = φDE

(commutativity of φ, with respect to DE and DF ), being thus the analo-
gon, herewith, of the required commutativity of the diagram (4.17).

Thus, by specializing now, as in the preceding (see (4.25)), to the case

(4.31) E = F ,

one has, in view of (4.30.2), the relation

(4.32) DEndE (φ) = 0

or, equivalently (see (4.30.4)),

(4.33) Dφ = φD,

yet, alias, the relation (see (4.28) and (4.29))

(4.34) [D, φ] ≡ LD(φ) = 0,

such that

(4.35) φ ∈ EndE = (EndE)(X) = HomA(E, E)(X),

characterizing thus, by anyone of them, along with (4.35), the endomorphisms of a
given Yang–Mills field (E, D), within the category YM X .

We recapitulate the preceding, through the following two relations, whose mean-
ing is thus clear from the context, according to the previous discussion. So we
have
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(4.36)

Mor((E, DE ), (F , DF ))
:= {φ ∈ H omA(E,F) = HomA(E,F)(X) :

DHomA(E,F)(φ) = 0 ⇐⇒ DFφ = φDE }
= ker DHomA(E,F).

In particular, for E = F , one has

(4.37)

End((E, D))

:= {φ ∈ EndE = (EndE)(X) :

DEndE (φ) = 0 ⇐⇒ Dφ = φD ⇐⇒ [D, φ] = 0}
= ker DEndE .

Indeed, to be more precise (!), a prefix “YM X -” should actually be put before the
first members of the above two formulas; however, it has been omitted for simpli-
city’s sake.

Note 4.1 The preceding relation

(4.38) [D, φ] ≡ LD(φ) = 0

(see (4.34)) enables one to look at φ, as the latter map is given by (4.35), acting,
as (or at least participating in) a “flow,” in the sense that φ thus appears to be as
“causally stationary” (where “causality” is meant with respect to the A-connection
D of E). In this connection, see also Scholium 4.1.

4.3 Gauge Equivalent Yang–Mills Fields

We further specialize in this subsection in the case that the morphisms of the category
YMX , as considered in the preceding, are, in particular, isomorphisms of the same
category. Thus, by definition,

(4.39)
gauge equivalences between Yang–Mills fields are isomorphisms of the
corresponding Yang–Mills category YM X .

Therefore, given two Yang–Mills fields (E, DE ) and (F , DF ) (see (4.12) and (4.13)),
a gauge equivalence between them is, by definition (see (4.39), as above), an iso-
morphism of them, when they are considered objects of the Yang–Mills category to
which they belong. In other words, according to (4.36), this refers to a map (in point
of fact, to a global section of the pertinent sheaf, herewith)—namely

(4.40) φ ∈ IsomA(E,F)(X) = I somA(E,F)

such that (cf. (4.30.4))

(4.41) DHomA(E,F)(φ) = 0 or, equivalently, DFφ = φDE .
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Now, in view of (4.40), the last relation in (4.41) can still be written in the form (see
also (4.30.2))

(4.42) DF = (φ ⊗ 1Ω1) ◦ DE ◦ φ−1

or simply, by a convenient abuse of notation,

(4.43) DF = φDEφ−1 ≡ Ad(φ)DE ≡ φ∗(DE ).

Therefore, one concludes that

(4.44)

a gauge equivalence, as above (see (4.39)), between two given Yang–
Mills fields (E, DE ) and (F , DF ) is, according to (4.41) and (4.43), (i)
an isomorphism between E and F (namely of their respective carriers)
that (ii) preserves (see (4.43)) the corresponding A-connections D E and
DF of the Yang–Mills fields at issue.

We then speak also of gauge equivalent Yang–Mills fields (E, DE ) and (F , DF ),
through the map φ, as above, and write

(4.45) (E, DE ) ∼
φ
(F , DF ).

Indeed, the previous relation is an equivalence between the objects of the category
YMX so that one can further consider, by analogy with the Maxwell group in the
preceding (see Volume I, Chapt. III, Theorem 2.1), the set

(4.46) Φn
A(X)

�

—namely, the set of equivalence classes of Yang–Mills fields on X , of rank n ∈ N
(with n � 2, see (4.13), that is, precisely speaking, all those, modulo (4.45), whose
carriers are vector sheaves of the said rank). Yet, an appropriate cohomological clas-
sification of the above set will be also given in the sequel (see Section 9 of the present
chapter) by extending the corresponding situation that we have already considered in
the particular case of Maxwell fields (n = 1, as above; see Volume I of this treatise,
Chapt. IV).

On the other hand, one can still consider the set

(4.47) YM(X) ≡
∑
n�2

Φn
A(X)

�,

called the Yang–Mills set of X . In point of fact, it is an (associative) semigroup, with
respect to the tensor product operation, as defined by (4.20) and (4.21). (Evidence
about our previous claim for the set (4.47) will be supplied by our considerations in
Section 9 in the sequel; see also [VS: Chapt. V, p. 353, Lemma 2.1], referring to a
local aspect of (4.36), as well as [Volume I, Chapt. III, (2.33), (2.34)).

In particular, by taking just one Yang–Mills field

(4.48) (E, D)
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on X (see (4.12) and (4.13)), and according to the very definitions (see (4.37) and
(4.42), or even (4.43), for F = E) one concludes that

(4.49)

the gauge equivalences of (E, D) (see (4.45)) are the connection-
preserving automorphisms of E (see also (4.44), for F = E); that is,
those maps

(4.49.1)
φ ∈ IsomA(E, E)(X) ≡ (AutAE)(X)

= AutAE ≡ AutE ≡ I somA(E, E)

(viz., the A-automorphisms of E) for which one still obtains

(4.49.2) φ∗(D) ≡ Ad(φ)D = D

(“A-connection preserving”; see also (4.43), for the particular case at
issue).

Yet, by still employing the previous notation, as in (4.37) (see also the comments
following it), the above maps, considered by (4.49), constitute the subgroup of AutE
(see also (4.49.2)) consisting of the “transfigurations” of (E, D) (automorphisms of
(E, D); see (4.39)) in the Yang–Mills category YM X (see (4.19)); that is, one sets

(4.50) YMX − AutA((E, D)) ≡ Aut (E, D) < AutE .

In this connection, see also Scholium 4.1 pertaining to a potential “physical tran-
scription” of the above.

Applications of (4.49.2), as well as further restrictions apart from the noted con-
dition on the maps involved in (4.49), that is, equivalently, in (4.50) will be also con-
sidered throughout the subsequent discussion when taking, for example, Riemannian
vector sheaves on X (see Definition 2.1 or even (4.2)), always within, of course, the
appropriate abstract setting of the present treatise.

Scholium 4.1 By commenting a bit more on the preceding relations (4.36), or equiv-
alently (4.37) for the case at issue, on the relation (4.38), or even on (4.49.2), one
could say here that the same relations might be construed as another formulation of
the principle that

(4.51) flow is causally stationary.

Now, by a “flow” one means, as already hinted at in Note 4.1, an A-isomorphism
between the fields, or, in particular, an A-automorphism of a given field, that remains
“stationary” (horizontal) with respect to the “causality” (viz., the A-connection
(gauge potential)), supported by the physical system, under consideration (i.e., by a
pair of fields, or a given field with itself)—in other words, (“stationary”) with respect
to the A-connections,

(4.52) DHomA(E,F) or, in particular (for F = E), DEndE ,
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as before (see (4.23) and (4.29)), this being expressed by the relations (equations)

(4.53) DHomA(E,F)(φ) = 0 and DEndE (φ) = 0,

respectively (see (4.36) and (4.37)).
Yet, within the same setup as above, one can still understand as

(4.54)

“flow, the various gauge equivalences” given by the sets

(4.54.1)

YMX − IsomA((E, DE ); (F , DF ))
≡ IsomA((E, DE ), (F , DF ))

or, in particular,

YMX − AutA(E, D) ≡ Aut (E, D)

(however, see also (4.50) concerning the last set—in effect, group—as
above).

On the other hand, this same “flow” as before (viz., the previous sets (4.54.1))
might also be conceived further as the carrier itself of the field(s) at issue.

Of course, one can still remark here that the previous “flow/carrier” may also be
construed as being generated by the A-connection (gauge potential) that defines the
field(s) according to a standard argument (thus, differential equations/solutions), that
is, again, the same sets (4.54.1) as above.

In this connection, we can still make the following remarks, according to the follow-
ing.

Scholium 4.2 (“Gel’fand duality”) By looking, just, for convenience, at the second
relation (equation) in (4.53)—namely at the relation,

(4.55) DEndE (φ) = 0 or simply D(φ) = 0

—we can still write it, as we did in the preceding, in the equivalent form

(4.56) Ad(φ)D = D or φ∗(D) = D

(see (4.37) and (4.49.2), as above); that is, the A-connection D (in point of fact,
DEndE ) now appears, according to (4.56), as a fixed point of φ ∗. Thus, one concludes
that

(4.57)

φ ∈ AutE is a solution of D; that is, one has

(4.57.1) D(φ) = 0 or, equivalently, φ ∈ YM X − AutA(E, D)

(see (4.54.1), along with (4.37)), if and only if, after the interchange
herewith of

(4.57.2) functions � � variable
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(what actually one might consider here, as a type of Gel’fand duality,
according to a standard argument), D is a fixed point of φ ∗ ≡ Ad(φ);
namely, one has

(4.57.3) φ∗(D) = D.

Yet, as an outcome of the preceding, one can still write the following relations (see
also (4.50)) pertaining to a given Yang–Mills field (E, D) on X , as before; that is,
one gets, the “flow” of (E, D) within YMX ,

(4.58)
{φ ∈ AutE : DEndE (φ) = 0} = ker (DEndE |AutE ) = YMX − Aut (E, D)

≡ Aut (E, D) < AutE .
Accordingly, to say it another way, one thus concludes that

(4.59)

given a Yang–Mills field (E, D) on X , by compelling an automorphism,
say φ, of E in the category (of vector sheaves on X) VectSh X to become
an automorphism of E in the (Yang–Mills) subcategory YM X is equiva-
lent with φ being a solution (zero-place) of DEndE—in other words (see
(4.51)), “causally stationary.”

On the other hand, within the same vein of ideas and still based on the foregoing
(see, e.g. (4.57.2)), one can equivalently express (4.51) by saying that

(4.60)
a flow is “self-dual,” hence “symmetric”(!) (viz., “commutative”) with
respect to the corresponding “Gel’fand duality.”

In that context, one can thus virtually construed the

(4.61)

“Gel’fand duality,” as another way of identifying a “generalized
symmetry” (cf. also (4.57.2)). So the “symmetries” (see (4.57.3)) of
an A-connection specify its “flow,” an equivalent, in effect, version of
(4.51).

Yet, in anticipation of our considerations in Chapter IV, Section 5, which are actually
found in a similar context to the above, by referring, in particular, to Riemannian
vector sheaves (see Definition 2.1), we also give the relations (see (2.9))

(4.62) DHomA(E,E∗)(ρ̃) = 0,

such that

(4.63) ρ̃ ∈ I somA(E, E∗).
Accordingly, based on (4.59), along with (4.50) and (4.36), for the case at issue, one
concludes that

(4.64)
the above two relations are (together) equivalent to the condition that

(4.64.1) ρ̃ ∈ YMX − I somA(E, E∗).

We are now ready to come properly to our main objective herewith—that is, to
the equations referred to in the heading of the present subsection.
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4.4 Yang–Mills Equations

The equations at issue refer to a Yang–Mills field

(4.65) (E, D),

as this was defined in the foregoing (see (4.12) and (4.13)), on a given (arbitrary, in
principle) topological space X , being, by definition, the carrier of the vector sheaf E ,
as above. However, the same space X is now supposed to be properly structured so
that when looking at the particular properties of X—in point of fact, strictly speaking,
at the particular framework carried by X—the equations under discussion acquire a
meaning. Thus, we assume henceforward that

(4.66)
we are given that framework on X , as defined by (4.1), at the beginning
of this section, so that the space X itself is, in particular, paracompact
(Hausdorff).

Now, our next step is to consider the sheaf

(4.67) EndE ≡ EndAE := HomA(E, E)

—in effect, another vector sheaf on X , as well, in view of our hypothesis for E , as
above (see also [VS: Chapt. II, p. 137, Lemma 6.1]); that is, by definition (loc. cit.,
p. 134, Definition 6.1), the sheaf of germs of A-endomorphisms of E . (Concerning
the vector sheaf (4.67), as above, we also remark that this is, in effect, an A-algebra
sheaf on X ; hence, in particular, a C-algebra sheaf on X , as well. We still recall
herewith that, in view of the hypothesis for A (see Volume I, Chapt. I, (1.3)), one has
(ibid. (1.5) and (1.6))

(4.68) C ⊂→ε

A.

In this regard, see also [VS: Chapt. II, p. 138, (6.29)].

Note 4.2 (Physical significance of (4.67)) By looking at the vector sheaf EndE on
X , as before, we further remark, in anticipation of what we shall see by the ensu-
ing discussion, that although we start with a given Yang–Mills field (E, D), as in
(4.65), below we are virtually dealing with the previous vector sheaf EndE , which,
by virtue of our hypothesis for X (see (4.6), along with (4.9)), is finally providing
the concomitant pair

(4.69) (EndE, DEndE ),

therefore (see also (4.71)) another Yang–Mills field on X . Now, this might certainly
be related to the matrix-theoretic framework, dominated the early stages of quantum
mechanics (Heisenberg). Indeed, by looking at the things locally (thus, in terms of a
local gauge, say U of E), one has

(4.70) (EndE)|U = Mn(A)|U = Mn(A|U ),
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where n = rkE (� 2; see (4.13)); see also [VS: Chapt. II, p. 137, (6.23), and
Chapt. IV, p. 294, (3.23)]. Accordingly,

(4.71)
by studying (E, D), one usually replaces the latter by its “transfigura-
tions” sheaf, still, a Yang–Mills field, (4.69), as above.

So it seems that the above is, at least, more convenient, if not more pragmatic! Yet,
in this connection, let us also recall that

(4.72) AutE < EndE,

so that one can restrict (pull back) on AutE the corresponding A-connection D EndE
of EndE , in effect getting an AutE-principal sheaf on X , in the sense, mainly, that
is recently advocated by the respective work of E. Vassiliou [3]. In this regard, see
also Volume I, Chapt. II, Section 9 of this treatise as well as [VS; Chapt. VI, p. 28,
Section 6.1]. Thus, EndE is actually the natural (canonical) “representation (vector)
sheaf” of AutE (identity endomorphisms; hence, isomorphisms of E).

On the other hand, by further looking at our previous comments in (4.71), we shall
still realize, presently below, that

(4.73)
it is the (vector) sheaf EndE (see (4.67)) that is virtually involved in our
calculations below pertaining to the Yang–Mills equations of E , as E is
given by (4.65).

Yet, the above should also be related with our preceding remarks in Scholium 4.1
(see, in particular, (4.54) therein).

Thus, based now on our hypothesis, as in (4.66), on the above comments in
(4.73), and on (4.5) in the foregoing, as a matter of fact, we actually consider through-
out the subsequent discussion

(4.74)

the Yang–Mills field

(4.74.1) (EndE, DEndE )

on X , that is naturally associated with (E, D), the one initially given on
X , as in (4.65).

Now, as already remarked in the foregoing (see (4.26) and (4.29), in conjunction with
(4.3)),

(4.75) DEndE

is the A-connection of the vector sheaf EndE on X , that is (canonically) entailed on
the latter (ibid.), by the initially given one DE ≡ D of E , as in (4.65).

Consequently (see also (4.9)), all the machinery of the (abstract) “Laplacians”
developed thus far, referring to a given Yang–Mills field (E, D) on X , as above,
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is still valid for the particular Yang–Mills field on X , as in (4.74.1). So we are
now in a position to look at the following fundamental relations, which is our main
objective in this section. However, for technical reasons connected with the same for-
mulation of the said relations, (see, e.g., (4.76)), we first give, for convenience, the
following.

Definition 4.1 By a Yang–Mills space X one means an enriched ordered algebraized
space (X, A) (see (5.1)), which is also Riemannian (see (4.1) and (5.2)) as well as a
curvature space (see Volume I, Chapt. I, (7.19) and (7.20)).

So, practically speaking, as we shall also realize by Definition 4.2, a Yang–Mills
space is a topological space X with respect to which Yang–Mills equations can be
defined; thus, the nomenclature employed through Definition 4.1. We come next
to define the fundamental equations under discussion according to the subsequent
definition.

Definition 4.2 Suppose we are given a Yang–Mills space X (see Definition 4.1) and
let (E, D) be a Yang–Mills field on X . Then, we call the Yang–Mills equation(s)
of (E, D) (or even, for brevity’s sake, simply of E), any one of the following two
equivalent relations (see below for the proof of the claimed herewith equivalence):

(4.76) δEndE (R) = 0

or

(4.77) 	EndE (R) = 0,

where, as usual, we set

(4.78) R ≡ R(DE ≡ D) ∈ Ω2(EndE)(X)

(see also Volume I, Chapt. I, (7.22)).
Concerning the notation employed in the above definition, we actually use the

following simplifications, as we also do later, by setting

(4.79) δEndE ≡ δ2
EndE : Ω2(EndE)−→Ω1(EndE)

as well as

(4.80) 	EndE ≡ 	2
EndE : Ω2(EndE)−→Ω1(EndE)

(see also (2.39), along with (3.2) in the foregoing). Therefore, by analogy, one
obtains (loc. cit.);

(4.81)
	EndE ≡ 	2

EndE := δ3
EndE ◦	2

EndE +	1
EndE ◦ δ2

EndE
≡ δEndE ◦ DEndE + DEndE ◦ δEndE ≡ δD + Dδ.

So we come now to the above-promised proof.
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Equivalence of (4.76) with (4.77): The asserted equivalence in Definition 4.2 of
the two equations at issue has been, in effect, already established by our previous
argument in (3.28) (or even (3.29)); thus, as it was explained therein, the noted equi-
valence is a straightforward combination of Green’s formula with Bianchi’s identity
(see (3.19) and (3.26)).

We continue by extending to the present abstract setting the classical terminology
connected with the previous equations. Thus, in this connection we set the following.

Definition 4.3 Suppose that an A-connection D (on a given vector sheaf E on X ,
as above) has curvature R ≡ R(D) (see (4.78)) which satisfies any one of the (two
equivalent) relations (4.76) or (4.77). Then, we call D a Yang–Mills A-connection,
or even a Yang–Mills potential.

Yet, it is also common, classically, to call the curvature (field strength) of a given
Yang–Mills potential, as above, a Yang–Mills field; so this, by contrast with the
terminology, which we have applied in the foregoing for a pair (E, D), as in (4.65),
is something that we shall continue to employ in the sequel as well.

Within the same setup as above, another issue of particular significance is
the application of the so-called Hodge operator, alias, ∗-operator (see Volume I,
Chapt. I, Section 10), when looking for solutions of the Yang–Mills equations by
employing the aforementioned classical terminology in the present framework when
studying Yang–Mills fields. Indeed, we are dealing with the corresponding situation,
that appears in the next Section 4.5, where, as we shall see, one still makes full use
of our hypothesis in (2.9) (however, see also (4.14)).

4.5 Self-Dual Gauge Fields

The term in the heading of this subsection is an abbreviation of the more complete
term a self-dual Yang–Mills field—that is, a pair

(4.82) (E, D)

as in (4.12) and (4.13) whose curvature R(D) ≡ R satisfies the relation

(4.83) ∗R = R.

Note 4.3 (Terminological) We employed above the term gauge field for a Yang–
Mills field (see (4.12) and (4.13)), a practice that will also be applied, occasionally, in
the sequel as well. On the other hand, this same practice will still be employed, as the
case may be, for a pair (L, D), with L a line sheaf on X , along with an A-connection
D on it (viz., for a Maxwell field), on the particular space X considered.

Now, concerning the relation (4.83), as above, we recall that the ∗-operator, or
Hodge operator, is, according to the general abstract theory (see [VS: Vols. I and
II; in particular, Chapt. IV, Section 12] and Volume I, Chapter I, Section 10), an
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A-automorphism of the A-module defined by the exterior algebra of E ∗ (see [VS:
Chapt. IV, p. 308, (7.9)])—namely, one has

(4.84) ∗ ∈ AutA(∧E∗) ≡ Aut (∧E∗)
(see also loc. cit., p. 344, (12.10)), where E stands for a Riemannian (free) A-module
(of finite rank) on X (see Definition 2.1). Thus, if

(4.85) rkE = n ∈ N,

then, in particular, one has the followingA-isomorphisms of the A-modules involved:

(4.86) ∗p ≡ ∗ : ∧pE∗−→∧n−p E∗

for any 0 � p � n (see also [VS: Chapt. IV, p. 311, Lemma 7.1, and p. 344, (12.3)]).
Furthermore, we still assume, concerning (4.84), that, along with the A-metric ρ on
E , one has

(4.87) E ∼=̃
ρ
E∗ := Hom A(E,A)

within an A-isomorphism of the A-modules concerned (see also (4.1) at the begin-
ning of this section); that is,

(4.88)

the A-metric ρ on the A-module E on X , as before, entails (see (4.2.1)) a

(4.88.1) strongly nondegenerate A-valued inner product on E .

See also Definition 2.1 together with the ensuing comments therein.

On the other hand, we also recall here that the A-automorphism ∗, as in (4.84),
is actually referred to as a (Riemannian) free A-module E , of finite rank, on X .
Therefore,

(4.89)

by considering now, more generally, a vector sheaf E on X , then, in view
of our hypothesis for E (see, e.g., Volume I, Chapt. II, (6.5); viz., E is,
by definition, “locally free”), one can look, yet, locally(!), at the corre-
sponding situation, as was described by (4.84) and (4.87).

Thus, as a consequence of (4.89), in conjunction with [VS: Chapt. I, p. 68, Theo-
rem 12.1, along with Chapt. II, p. 125, (4.6)], one finally concludes that

(4.90)

by assuming, for simplicity, (4.1) (however, see also (4.88.1), as well as
[VS: Chapt. IV, p. 328, Theorem 8.3]), one gets (4.87) for any vector
sheaf E on X . Therefore,

(4.90.1) (4.84) is in force, for every vector sheaf E on X .
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On the other hand, as a byproduct of the preceding argument, one also obtains that

(4.91)
an A-valued inner product on a given vector sheaf E that is locally,
strongly nondegenerate, becomes globally such as well, hence, finally,
an A-metric on E .

Of course, we assume above that (the base space) X provides the appropriate setup,
the previous assertion, as in (4.91) to acquire a meaning. (See (4.1), or even (2.3),
(2.5), and (2.9), along with Definition 2.1 and subsequent comments therein.)

Indeed, our last conclusion in (4.90.1), as well as the corresponding general setup
in (4.91), supplies an extension to the case of vector sheaves on X of our previous
relevant considerations in [VS: Chapt. IV, Section 12]; thus, in point of fact, a gener-
alization to the present abstract setting of the corresponding classical framework of
(Hodge) ∗-operator theory.

Thus, as a first application of the preceding, within the abstract setup of the
present treatise, we obtain, by analogy with the standard case, the ensuing relations,
connecting the above ∗-operator (see (4.84) and (4.86)) with the so-called “dual
differential operators,” as the latter were defined in Section 2—that is, given the
aforesaid operators

(4.92) (δn)n∈N

(see (2.35.1)), one obtains (see also (1.16) and (1.17), as well as (2.18))

(4.93) δ p = (−1)n(p+1)+1 ∗ Dn−p∗
for any 1 � p � n = rkAE , with E a given vector sheaf on X , of rank n ∈ N, as
indicated. Yet, in abbreviated form, one has

(4.94) δ = (−1)n(p+1)+1 ∗ D∗ ≡ ± ∗ D ∗ .
Concerning the classical counterpart of the preceding, see, for example, F. W. Warner
[1: p. 220] or even C. von Westenholz [1: p. 337, (7.4)] or M. Nakahara [1: p. 253,
(7.184a)]. Yet, one can depict (4.93), or its abbreviated form, as in (4.94), through
the following commutative diagram (see also (2.18), as well as (2.39)):

(4.95)

Ω p(E) δ p ≡ δ
Ω p−1(E)�

∗

�

∗

Ωn−p(E)
(−1)n(p+1)+1 Dn−p ≡±Dn−p

Ωn−p+1(E)�
�

�
�

�
�

�
�

��

such that 1 � p � n, as before, with E any vector sheaf on X having rk AE ≡ rkE =
n ∈ N.
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So, based on the preceding, we are now in a position to state the following.

Proposition 4.1 Suppose we have a Yang–Mills space X . Then, any self-dual Yang–
Mills field (E, D) on X (see (4.82) and (4.83)—in point of fact, strictly speaking, its
curvature R(D) ≡ R) is a solution of the corresponding Yang–Mills equation (see
(4.76) and (4.79)).

Before we come to the proof of the previous assertion, we have first to comment
a bit more on the notation connected, for the case at hand, with (4.94); in this context,
see also our previous remarks in (4.73): Thus, in view of (4.78), one has first to think
of an appropriate “vectorization of the ∗-operator,” as the latter is defined by (4.86)
(see also (4.84)), when referring, in particular, to vector sheaves on X of the form

(4.96) Ω1(F) = Ω1 ⊗A F = F ⊗A Ω1,

where F is a given vector sheaf on X , while we still assume herewith that Ω 1 is a
vector sheaf on X too (see, e.g., (4.1.4)). So one defines the A-isomorphism

(4.97) ∗p ⊗ 1F : ∧pΩ1(F) ≡ Ω p(F)−→Ωm−p(F) ≡ ∧m−pΩ1(F)

for any 1 � p � m = rkΩ 1 (see also (4.98) below) by a straightforward analogy
to (4.86), while it can be still based on (4.2), for the case at hand, as well as on the
corresponding relation to (4.87). Now, for technical reasons that will become clear
below, from the subsequent proof of Proposition 4.1, as above (see (4.99)), we further
assume that

(4.98) rkAΩ1 ≡ rkΩ1 ≡ m = 4.

We note here that the previous condition onΩ 1 is satisfied, of course, in the classical
case when considering a 4-dimensional (Riemannian or pseudo-Riemannian (e.g.,
Lorentzian)) manifold X (see, e.g., Volume I, Chapt. I, Section 2.1, in particular,
(2.22) of this treatise). So we come now to the following:

Proof of Proposition 4.1 Setting in (4.93) p = 2 and by also taking (4.97) for F ≡
EndE as well as (4.98) into account, one obtains

(4.99)

δ2
EndE (R) = ((−1)3m+1 ∗ Dm−2

EndE∗)(R)
= ((−1)3m+1 ∗ Dm−2

EndE )(∗R)

= −(∗)D2
EndE (R) = 0,

the last two equalities, as above, being the result of our hypothesis for R (see (4.83);
viz., of the self-duality of (E, D)) of the Bianchi’s identity (see Volume I, of the
present treatise, Chapt. I, (8.15.1) and (8.16), or even [VS: Chapt. VIII, p. 225,
(7.34)]) and of the A-linearity of the (Hodge) ∗-operator, as in (4.86), that, of course,
finishes the proof.
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On the other hand, it is now quite clear, on the basis of (4.99), that

(4.100)

Proposition 4.1 is still valid, for any anti-self-dual Yang–Mills field
(E, D) on X ; namely, for such a one, for which one has

(4.100.1) ∗R = −R,

where, as usual, we put R ≡ R(D).

Remark 4.1 Referring to Proposition 4.1, and hence, in turn, to our previous
conclusion in (4.100) as well, we should still notice that the aforesaid proposi-
tions are valid under the assumption (4.98); in this context, we further note that the
said condition refers, in principle, to the differential triad (A, ∂,Ω 1) concerned (see
(4.1.4), independently of the Yang–Mills field (E, D) involved.

Note 4.4 (Terminological, continued) By further commenting on the relevant termi-
nology of the standard theory (see Note 4.3), we also remark that the terms

(4.101)

self-dual connections (respectively, anti-self-dual connections) or even
instantons (respectively, anti-instantons) are still in use classically, per-
taining to the corresponding situations described by Proposition 4.1 and
(4.100).

So, by extension to the present case, one can still employ the previous termino-
logy when referring to Yang–Mills fields satisfying (4.83) and (4.100.1), respec-
tively, being thus, according to the preceding (Proposition 4.1, resp. (4.100); see also
(4.98)), solutions of the corresponding Yang–Mills equations. The same equations
are still called in the classical theory the Euler–Lagrange equations.

Now, our next objective is to prove that solutions of the Yang–Mills equations
can be construed, as we say, as “critical points of the Yang–Mills functional.” Thus,
we start by first explaining straightforwardly the relevant terminology, within the
present abstract setting, in Section 5.

5 Yang–Mills Functional

Before we come to the formal definition, within the present abstract setting, of the
classical notion in the title of this section, we have, as usual, to first clear up the
corresponding framework that is appropriate to that aim. Thus, by supplementing
now our previous hypothesis in (4.1), as it concerns the notions related to the “partial
order” in A, we further assume herewith that

(5.1)
(X,A) is an enriched ordered algebraized space, or else an ordered alge-
braized space with square root.
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The above terminology refers, in effect, to our requirement for the structure sheaf
A involved to supply the appropriate mechanism, so that one can formulate all
the necessary notions of “positivity” that one usually applies in the standard case.
So concepts like “positive square roots” or “absolute value” and the like are formu-
lated here in terms of sections of the (vector) sheaves involved, related, in particular,
according to their correspondence to the previous classical concepts sheaf mor-
phisms, while the latter are also A-valued (see, e.g., (2.1) or even (2.7)). For tech-
nical details, including the precise definition of the terms appearing in (5.1), we
refer to [VS: Chapt. IV, p. 336, Definition 10.1, see also p. 327, Examples 8.1].
Thus,

(5.2)
we assume henceforth that (4.1) holds true in the restricted sense of (5.1),
as above, concerning the “partial order-structure” of A.

So, in particular, we consider in the sequel a C-algebraized space

(5.3) (X,A),

for which the underlying R-algebraized space satisfies (5.2) (loc. cit.). Thus, accord-
ing to our hypothesis for X , as in (5.2) (see also (4.1)), one concludes that

(5.4)
any given vector sheaf E on X admits a (Riemannian) A-metric ρ (see
Definition 2.1) as well as an A-connection D (see (4.12)), in effect, com-
patible with ρ (see (4.61)).

Indeed, our extra hypothesis in (5.2), referring to the (partial) order structure of A in
comparison to our previous conditions in (4.1), has actually been made in favor of
the following result in (5.5): As a consequence of our hypothesis in (5.2) and of the
general abstract theory (loc. cit.), one now concludes that

(5.5)

for any vector sheaf E on X , one gets an A-valued norm, or simply an
A-norm on E , according to the map

(5.5.1) ‖ · ‖ : E −→A

—in effect, a sheaf morphism of the sheaves concerned, having the
analogous properties of a usual (C-vector space) norm, derived from an
inner product. Thus, based on (5.2) and the definition of the “square root”
(see [VS: Chapt. IV, p. 335, (10.5)]), one defines

(5.5.2) ‖ · ‖2 := ρ|	,
where	 stands for the “diagonal” of E ⊕ E (see (4.2.1)); hence, equiva-
lently (loc. cit.), one sets

(5.5.3) ‖ · ‖ := √ρ|	
(see also (5.11) in the sequel).
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See, for instance, L. Smith [1: pp. 249ff], along with (4.2.1) in the preceding sub-
section. Of course, (5.5.1) being, as it is, a sheaf morphism, it is actually expressed
through the corresponding sections of the sheaves involved; see, for instance, (5.11),
along with [VS: Chapt. I, p. 75, (13.19), and p. 27, (6.3)].

In particular, based on our hypothesis for the A-module Ω 1 (see (4.1)), we con-
clude that the preceding is valid for the vector sheaf

(5.6) Ω2(EndE)

on X ; the latter sheaf is of a special interest to us, since whenever we have a Yang–
Mills field on X (see 4.12)),

(5.7) (E, D),

such that X is also a curvature space (see Chapt. I, (7.19)), one gets

(5.8) R(D) ≡ R ∈ Ω2(EndE)(X).

Thus, we are now in the position to set the following.

Definition 5.1 Suppose we are given a Yang–Mills space X (see Definition 4.1) and
let

(5.9) (E, D)

be a given Yang–Mills field on X . Moreover, let

(5.10) ConnA(E)

be the (affine) space of A-connections of E (see Volume I: Chapt. I, (5.4), in con-
junction with (4.14) in the preceding subsection). Then, one defines the Yang–Mills
functional of E , denoted by YME , or simply by YM, according to the following
map (see also (5.5)):

(5.11)
YME : ConnA(E)−→A(X) : D �−→ YME (D)

≡ YM(D) := 1

2
‖R‖2 := 1

2
ρ(R, R).

Concerning the terminology employed in the above definition, the terms Yang–Mills
Lagrangian and even Yang–Mills action are also in use in the classical case for the
map (5.11); we shall also apply it, occasionally, in the sequel, within the present
abstract setting, by thus extending the standard terminology.

On the other hand, based on the fact that ConnA(E) is an affine space, modeled
on the A(X)-module

(5.12) Ω1(EndE)(X)
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(see Volume I, Chapt. I, (5.7) or even [VS: Chapt. VI, p. 32, Theorem 7.1]), one has

(5.13) ConnA(E)0 = Ω1(EndE)(X),

within a bijection, established by the map

(5.14) D �−→ D0 + u,

with D and D0 in ConnA(E) and u ≡ u(D) ∈ Ω1(EndE)(X). Thus, in (5.13) we
have set (see also Chapt. I, (5.8))

(5.15)
ConnA(E)0 = {D ∈ ConnA(E) : D = D0 + u,

with u ∈ Ω1(EndE)(X)} ∼= ConnA(E)

for some fixed element

(5.16) D0 ∈ ConnA(E).

Now, by virtue of (5.14), one may also refer to another form of (5.11) (viz., to the
following correspondence), applying, for convenience, an obvious abuse of notation,

(5.17)
YM : Ω1(EndE)(X)−→A(X) : u �−→ YM(u)

:= 1

2
‖u‖2 ≡ 1

2
ρ(u, u)

by taking into account (5.4) along with the ensuing comments therein. For a classical
account see also, for instance, J. Baez–J.P. Muniain [1: pp. 274ff]. Use of the above
correspondence, as in (5.17), will also be made in the sequel.

Now, another aspect of the same map, as in (5.11) or even in (5.17), that will be
considered in our subsequent discussion as well is its invariance with respect to a
gauge transformation, which we deal with presently below.

5.1 Group of Gauge Transformations

Suppose we are given a C-algebraized space (see Chapt. I, (1.4))

(5.18) (X,A)

and let E be a vector sheaf on X . Then, by definition, the group of gauge transforma-
tions of E , denoted by

(5.19) AutAE ≡ AutE,

is given, according to the relations, by

(5.20) AutE := (AutE)(X) = (EndE).(X) = (EndE)(X). ≡ (EndE).,
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the last group in (5.20) being the group of units (invertible elements) of the
A(X)-algebra of endomorphisms (in effect, A-endomorphisms) of E . In this con-
nection, see also Volume I of this treatise, Chapt. II, Section 9, as well as [VS:
Chapt. II, pp. 138 and 139, (6.28) and (6.31), along with Chapt. V, p. 391, (8.44)].
Yet, according to the preceding, we still speak of the same group (5.19) as the group
of A-automorphisms of E , alias, of A-isomorphisms of E onto itself, being thus, as
already said, the group of units of the A(X)-algebra of A-endomorphisms of E ,

(5.21) EndE ≡ (EndE)(X)

(loc. cit.). The same group as above has also been employed in the preceding, as
already mentioned (see Volume I, Chapt. I, Section 9), in Section 4 (4.49.1) and
(4.72), and it will still be of use several times in the sequel as well (see Chapt. 2,
Section 1). On the other hand, it is also useful to look at the above situation, as
described by (5.20) locally. (In point of fact, we have already considered this earlier.)
Thus,

(5.22)

by taking a vector sheaf E on X , as above, and looking further at a local
frame of E , say,

(5.22.1) U = (U)

(see Vol. I: Chapt. I, (2.29) and (2.53)), the previous group, as in (5.19),
is actually reduced locally to the analogous group of (the free A-module)
An (viz., of the “local model” of E), where we posit

(5.22.2) n = rkA(E) ≡ rkE ∈ N

(by definition, the finite rank of E); namely, one thus gets the group

(5.22.3) GL(n,A(U)) = GL(n,A)(U)

for any open U ∈ U , as in (5.22.1).

Indeed, one obtains (see also Volume I: Chapt. II, Section 9),

(5.23)

(EndE)(U) ≡ HomA(E, E)(U) = H omA|U (E |U , E |U )
= H omA|U (An |U ,An |U ) = HomA(An,An)(U) = (EndE)(U)
= Mn(A)(U) = Mn(A(U)) = End(A(U)n) = End(An(U))

for any (open) U ∈ U (viz., local gauge of E). Therefore, in particular, one has (see
also (5.20))

(5.24)

(AutE)(U) = (EndE).(U) = (EndE)(U). = Mn(A(U))
.

= GL(n,A(U)) = GL(n,A)(U) = Mn(A)(U)
.

= Mn(A)
.
(U) = (EndAn)

.
(U) = (AutAn)(U)

for any U , as before, which thus proves our assertion in (5.22).
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Yet, as a byproduct of (5.23) and (5.24), one still obtains the following useful
relations, for any local gauge U of E , as above. Thus, one has

(5.25) (AutE)(U) = Aut (E |U ) = Aut (An|U ) = (AutAn)(U).

Indeed (loc. cit.), one obtains

(5.26)

(AutE)(U) = (EndE).(U) = (EndE)(U). = HomA(E, E)(U)
.

= H omA|U (E |U , E |U )
. = (End(E |U )). = Aut (E |U )

= Aut (An|U ) = (EndAn)
.
(U) = (AutAn)(U),

that, of course, proves (5.25).
As a result of the preceding calculations, one thus concludes that

(5.27)
any local automorphism of a given vector sheaf E over a local gauge U
of E is virtually given by a similar one of An , where n = rkE (viz., by a
local automorphism of An over U ).

Indeed, a very convenient result (!), as we shall have the opportunity to realize several
times, in the sequel, being, in effect, a straightforward consequence of the same
definition of a vector sheaf, as a locally free A-module (of finite rank) over X , and
related outcomes thereof, as exhibited in the preceding discussion.

On the other hand, within the same vein of ideas, one still obtains the following
useful relations, vindicating further (5.27); that is, one has

(5.28) (AutE)|U = (AutAn)|U = GL(n,A)|U
within isomorphisms of the group sheaves involved, for any local gauge U of E , as
in (5.22.1): Thus, one actually gets (see also Volume I, Chapt. II, Lemma 9.2, as well
as [VS: Chapt. II, p. 137, (6.23)])

(5.29)

(AutE)|U = (EndE). |U = ((EndE)|U ).

= (HomA(E, E)|U ). = H omA|U (E |U , E |U )
. = (End(E |U )).

= Aut (E |U ) = Aut (An|U ) = (AutAn)|U ,
which, of course, proves (5.28).

Now, the preceding discussion justifies also the abuse of terminology, that, in
point of fact, is often employed when

(5.30)

we usually speak of the group sheaf

(5.30.1) GL(n,A)

as the gauge group of a given vector sheaf E on X , with rkE = n ∈ N,
in place virtually of

(5.30.2) AutE .
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Finally, as a byproduct of the preceding proof of (5.28), as given by (5.29), and also
in conjunction with (5.23), one further gets the following relations:

(5.31) (EndE)|U = End(E |U ) = End(An |U ) = (EndAn)|U ,
within A|U -isomorphisms of the A|U -algebra sheaves concerned (see [VS: Vol-
ume I, Chapt. II, p. 138, Definition 6.2]), for any (open) U , as above. (In this regard,
see also Chapter II of Volume I of the present treatise, proof of Lemma 9.2 therein).

We come now to our main objective—to the establishment of the gauge invariance
of the Yang–Mills functional that is naturally associated with any given Yang–
Mills field (E, D) on X , with respect to any one of the above local gauge trans-
formations of E , that are, however, (A-)metric preserving, as we are going to
explain below. Yet, in this connection, we also remark, for the sake of generality,
that we did not make use of any A-metric (see (5.2)) throughout our discus-
sion in this section, something that we shall do straightforwardly in the following
subsection.

5.2 Gauge Invariance of the Yang–Mills Functional

Suppose we are given a Yang–Mills space X (see Definition 4.1) and let

(5.32) (E, D)

be a given Yang–Mills field on X , while we further assume that the family of the
open subsets of X , as in (5.22.1), stands for a local frame of E . Thus, by looking at
the field strength of E (in effect, of (E, D); viz., of the “field” at issue), that is, by
definition, at the curvature of the given A-connection D of E , one has

(5.33)

R(D) ≡ R ∈ Ω2(EndE)(X) ≡ (Ω2 ⊗A EndE)(X)
= (EndE ⊗A Ω2)(X) = HomA(E,Ω2(E))(X)
= Z0(U,Ω2(EndE))

with U a local frame of E (see, e.g., (5.22.1)). Therefore, locally, one obtains, for any
local gauge U ∈ U of E ,

(5.34)
R|U ∈ Ω2(EndE)(U) = HomA(E,Ω2(E))(U)

= H omA|U (E |U ,Ω2(E)|U )
in such a manner that, for any open V ⊆ U (hence, in effect, still a local gauge of E
(see Volume I, Chapt. I, (2.29)) and for every

(5.35) s ∈ (E |U )(V ) = E(V )

(see also ibid., (2.31)), one gets, by virtue of (5.34),

(5.36) (R|V )(s) ≡ R(s) ∈ Ω2(E)(V ) = Ω2(V )⊗A(V ) E(V )
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(see also [VS: Chapt. I, p. 27, (6.3), and p. 28, Definition 6.1, along with Volume II,
Chapt. VII, p. 100, (1.8) and (1.10)]).

Thus, we come now to look at the interference of a givenA-metric ρ, in principle,
on A (see (5.2), along with (4.1)), hence (see (4.2)) on every vector sheaf E on X , as
well, in the preceding considerations. Therefore, taking a Yang–Mills field (E, D) on
X , as above, we can still look at it (see (4.2.2)) as a Riemannian vector sheaf on X :

(5.37) (E, ρ) ≡ {(E, D); ρ}
(in this regard, see also (4.61)). So we further set the following basic definition,
throughout the subsequent discussion:

(5.38)

A given element

(5.38.1) φ ∈ AutA(E) ≡ AutE

is said to be a metric-preserving gauge transformation of E if the follow-
ing relation holds true:

(5.38.2) ρ ◦ (φ, φ) ≡ φ∗(ρ) = ρ,

that is, whenever ρ is a “fixed point” of φ ∗. Yet, equivalently, one has
(5.38.2), in terms of (local) sections of E , in the form

(5.38.3) (ρ ◦ (φ, φ))(s, t) = ρ(φ(s), φ(t)) = ρ(s, t)

for any (continuous local) sections s and t in E(U), with U open in X .

Thus, we have explained so far the necessary background terminology to state the
following basic result.

Lemma 5.1 Suppose we have a Yang–Mills space X and let

(5.39) (E, D)

be a given Yang–Mills field on X . Then, the Yang–Mills functional associated with
E (see (5.11)) is invariant under the action of any metric-preserving gauge trans-
formation of E (see (5.38.2)); that is (by employing a convenient abuse of notation
that will be justified in the course of the ensuing proof), one has (see also (5.11))

(5.40) φ ◦ YME ◦ φ−1 ≡ Ad(φ)YME ≡ φ∗(YME ) = YME

for any

(5.41) φ ∈ AutE, with φ∗(ρ) = ρ

(see (5.38.2)).
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Proof Applying the defining relation of YME , the Yang–Mills functional of E , as in
(5.11), and taking into account also the form of the curvature of D, R(D) ≡ R, after
(the action on it of) a gauge transformation φ ∈ AutE (viz., the “2-form” on X),

(5.42) φRφ−1 ≡ Ad(φ)(R) ≡ φ∗(R)

(see Chapt. I, (7.37): “transformation law of curvature”), one obtains (see also
(5.38.3))

(5.43) ‖φRφ−1‖2 = ρ(φRφ−1, φRφ−1) = ρ(Rφ−1, Rφ−1) = ρ(R, R) = ‖R‖2

(modulo a multiple of 2), where at the end we also applied the fact that, in view of
φ ∈ Aut , one gets

(5.44) E = φ−1(E),

within an A-isomorphism, given, just by φ—namely, equivalently, one has

(5.45) s = φ−1(φ(s))

for any s ∈ E(U). The preceding also explain the sort of abusing notation in (5.40),
while the same argument as in (5.43) terminates the proof of the lemma.

Now, before we close the present section, we still comment, a bit more, on the
previous sort of gauge transformations, as in (5.41), in the form of the following
remark, which will be of use in the following discussion as well. So it is easy to see,
according to (5.38.2), that

(5.46)

given a vector sheaf E on X , with the space X satisfying (5.2), so that
(see (4.2.2)) E can be viewed as a Riemannian vector sheaf on X ,

(5.46.1) (E, ρ),

the set of metric-preserving gauge transformations of E (see (5.38))
provides a subgroup of AutE , denoted in the sequel by

(5.46.2) (AutE)ρ < AutE .

6 First Variational Formula

Our aim in this and Section 7 is actually to pave the way to the final statement of
the formula in the title of this section, which will be treated in Section 8 (see (8.8)).
So we start here with evaluating the corresponding variation of the field strength.
Now, as we shall presently see, the relevant framework that one would need can be
quite general. So we just assume that
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(6.1)

we are given a curvature space X—namely, the following triad of
objects:

(6.1.1) (A, ∂, d1)

(see Vol. I, Chapt. I, (7.19) and (7.20))—while, for simplicity’s sake, we
also assume that all the A-modules involved herewith are, in particular,
vector sheaves on X . Furthermore, let

(6.1.2) (E, D)

be a given Yang–Mills field on X , with

(6.1.3) rkE = n ∈ N (at least 2)

(see (4.12) and (4.13)), while we still consider a local frame of E , say,

(6.1.4) U = (Uα)α∈I .

Thus, according to the general theory, the corresponding field strength (= curvature)
of the given A-connection (gauge potential) D of E (see (6.1.2)) is given by the
relations

(6.2)

R(D) ≡ R = (Rα) ∈ Ω2(EndE)(X),

Z0(U,Ω2(EndE)) =
∏
α∈I

Ω2(EndE)(Uα),

so that, in particular, one has

(6.3)

Rα ∈ Ω2(EndE)(Uα) ≡ (Ω2 ⊗A EndE)(Uα)

= Ω2(Uα)⊗A(Uα) (EndE)(Uα) = Ω2(Uα)⊗A(Uα) Mn(A)(Uα)
= (Ω2 ⊗A Mn(A))(Uα) ≡ Mn(Ω

2)(Uα) = Mn(Ω
2(Uα))

for any α ∈ I , as in (6.1.4). See also, concerning the above calculations in (6.3),
Chapter I, (2.42) of Volume I of this treatise or even [VS: Chapt. VII; p. 100, (1.9) and
(1.10)]. Yet, for convenience, we further evaluate R α, as above, when appropriately
considered, as a (sheaf) morphism (see (6.5) below) at a particular (local) section,

(6.4)
s ∈ E(V ), for a given open V ⊆ Uα , with Uα, a local gauge of E , as in
(6.1.4).

Now, in this connection, we also remark that

(6.5)

an open V ⊆ X , with V ⊆ Uα , as above, is still a local gauge of E ;
therefore, by virtue of our hypothesis in (6.1), concerning the A-modules
on X , considered herewith, V may also be viewed as a common local
gauge of (the vector sheaves)Ω 1 and EndE ≡ HomA(E, E) as well.
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See also [VS: Chapt. II, p. 137, Lemma 6.1]. So, by further looking at (6.3), one first
obtains the following relations:

(6.6)

Rα ∈ Ω2(EndE)(Uα) = (EndE ⊗A Ω2)(Uα)

= (HomA(E, E)⊗A Ω2)(Uα)

= (HomA(E,Ω2(E))(Uα)
= H omA|Ual (E |Uα ,Ω2(E)|Uα )

(see also [VS: Chapt. IV, p. 304, Corollary 6.1, along with Chapt. II, p. 134, (6.4.1)].
Accordingly, we may look at

(6.7)
Rα , α ∈ I (see (6.2)), as a sheaf morphism, [precisely speaking, as
an A|Uα -morphism of the A|Uα -modules (in effect, vector sheaves over
Uα)] involved, as in the last term of (6.6).

Thus, by considering now any (local) section (see (6.4))

(6.8) s ∈ E(V ) = (E |Uα )(V ),
one gets, in view of (6.6) and of (6.5) as well as of our calculations in (6.3), the
relations

(6.9)

Rα(s) ∈ (Ω2(E)|Uα )(V ) = Ω2(E)(V )
≡ (Ω2 ⊗A E)(V )
= Ω2(V )⊗A(V ) E(V ) = Ω2(V )⊗A(V ) An(V )

= (Ω2 ⊗A An)(V ) = (Ω2)n(V ) = (Ω2(V ))n;
that is, one has

(6.10) Rα(s) = (ω1, . . . , ωn),

such that ωi ∈ Ω2(V ), 1 � i � n, with s ∈ E(V ). So, we come to our main
aim—namely, to identify the variation of R ≡ R(D) in Ω 2(EndE)(X) (see (6.2))
that is entailed by a corresponding variation of D in the set of A-connections of E .

6.1 Variation of the Field Strength, Caused by a Variation of the
Gauge Potential

What we are going to do is to

(6.11)

find the field strength curve (viz., the curvature curve) that corresponds
to a given gauge potential curve—in other words to an (A-)connection
curve in the (affine) space of A-connections on E ,

(6.11.1) ConnA(E);
see also (6.1.2), along with Volume I, Chapt. I, Section 5, concerning the
latter space, as in (6.11.1).
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Thus, by considering the given A-connection D of the Yang–Mills field (E, D),
under discussion (see (6.1.2)) as fixed, one gets for the space (6.11.1) the relation

(6.12) ConnA(E) = D +Ω1(EndE)(X) = D + H omA(E,Ω1(E)),

within a bijection of the sets appeared in the first relation of (6.12); see also Volume I,
Chapt. I, (5.4) and (5.7) or even [VS: Chapt. VI, p. 32, Theorem 7.1].

Now, a curve in the space ConnA(E), starting (viz., for t = 0) at D ∈ ConnA(E)
(see (6.1.2)), can be certainly supplied, by virtue of (6.12), by the relation

(6.13) αD(t) ≡ Dt := D + t · ω̃ ∈ ConnA(E), t ∈ R,

such that (Volume I, Chapt. I, (5.8.2))

(6.14) ω̃ ∈ Ω1(EndE)(X) = Z 0(U,Ω1(EndE))

(see also (6.1.4)), or, in common parlance, one has an “EndE-valued 1-form” on X ,
in the usual extended terminology of the classical theory, still applied for illustrative
reasons in the present abstract setting as well. (Let us recall here that our supporting
space X does not carry, up front, any “smooth structure” at all!) Thus, by definition,
the curve (6.13) in the affine space of A-connections of E is, in particular, just a (real)
1-dimensional “linear variety” (subspace) of the affine space Conn A(E), as above.

Accordingly, our relevant problem in (6.11) is now reduced to identifying the
corresponding curvature curve in the A(X)-module Ω 2(EndE)(X) (hence, in
particular, a C-vector space):

(6.15) R(Dt ) ≡ R(D + t · ω̃) ≡ Rt ∈ Ω2(EndE)(X), t ∈ R.

We depict the above through the following diagram:

(6.16)

R
αD(t)≡Dt ConnA(E) = D +Ω1(EndE)(X)�

R(Dt )≡Rt︸ ︷︷ ︸
|||
αR (t)

�
�

�
�

��

R(D)≡R

�
Ω2(EndE)(X)

Now, to calculate (6.11), we simply look at

(6.17)

the effect on the curvature R (see (6.2)) of a given translation in
ConnA(E) of the A-connection D of E (see (6.1.2)) by an element

(6.17.1) ω′ ∈ Ω1(EndE)(X) = Z 0(U,Ω1(EndE)).

In this connection, taking into account (6.17.1), we also recall, for convenience of
the subsequent discussion, the following relations from the general theory (see [VS:
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Chapt. II]); that is, concerning an EndE-valued 1-form ω on X , one obtains (see also
(6.1.4), as well as, e.g., (6.3))

(6.18)

ω ∈ Ω1(EndE)(X) = Z 0(U,Ω1(EndE))

⊆ C0(U,Ω1(EndE)) =
∏
α

Ω1(EndE)(Uα)

∼=
∏
α

Mn(Ω
1)(Uα) = C0(U,Mn(Ω

1))

=
∏
α

Mn(Ω
1(Uα)),

so that, in other words, one gets the one-to-one correspondence

(6.19) ω←→ (ω(α)) ∈ C0(U,Mn(Ω
1)) =

∏
α

Mn(Ω
1(Uα))

—namely, an identification of an EndE-valued 1-form on X with a 0-cochain of
n × n matrices of 1-forms, “locally defined on X” (n × n matrices of local sections
of Ω1, the latter being, by definition, the A-module, in point of fact (see (6.1)),
vector sheaf, of “1-forms” on X); in this concern, see also [VS: Chapt. VII, p. 119,
Theorem 3.2]. Therefore, in the case of an A-connection D of a vector sheaf E on
X , as, for example, in (6.1.2), as well as of a local frame U of E (see (6.1.4)),

(6.20)

the given A-connection D of E can be identified with the so-called
A-connection 0-cochain matrix form of D, as in (6.19), associated with
a given local frame U of E (see also Volume I, Chapt. I, (2.50), along
with (2.56) therein). Of course, the latter case is characterized by the
corresponding “transformation law of potentials.” See [VS]: Chapt. VII,
p. 119, Theorem 3.2 along with p. 112, (2.39) and p. 103, (1.24) and
(1.32), or even p. 104, (1.35).

On the other hand, the previous argument in (6.20) is actually connected with formula
(6.12), perse, defining an A-connection D ′ (uniquely), through an initially given one
D and an element ω′, as in (6.19), something that will be still of use presently below.
However, first, we deviate a bit from the main flux of this discussion, by the subse-
quent comments, indeed, a straightforward (notwithstanding, useful) by-product of
the type of argument, employed in (6.18), as above:

Note 6.1 In connection with our previous argument in (6.18), we remark that, more
generally,

(6.21)

given a vector sheaf E on (a topological space) X and a local frame

(6.21.1) U = (Uα)α∈I

of E , one gets

(6.21.2) C0(U, E) = C0(U,An),

where n = rkE .
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See also [VS: Chapt. I, p. 55, (11.40)]. In fact, the same argument as before holds
true:

for any two sheaves E and F on X , for which one has

(6.22.1) E = F |U ,

(6.22)

within an isomorphism of the sheaves concerned, for any element U of
a given open covering, say U , of X (common “local frame” of E and F ).
One then obtains

(6.22.2) C0(U, E) = C0(U,F).

Indeed, under the above circumstances, one actually gets

(6.22.3) C p(U, E) = C p(U,F)

for any p ∈ Z+. (See also [VS: Chapt. III, p. 175, (4.11)].)

We can proceed now, concerning the response to our problem in (6.11). Thus, let us
further consider another A-connection of E , say (see (6.12)),

(6.23) D̃ := D + ω′ ∈ ConnA(E),

which locally, in terms of the corresponding A-connection 0-cochain matrix forms
(see (6.19) and (6.20)), takes the form

(6.24)
D̃ ←→ ω̃ ≡ (ω̃(α)) = ω + ω′ ≡ (ω(α))+ (ω′(α))

= (ω(α) + ω′(α)) ∈ C0(U,Mn (Ω
1)) =

∏
α

Mn(Ω
1(Uα)).

Accordingly, by looking now at the corresponding local expression of the curvature
of the A-connection D̃,

(6.25) R̃ ≡ R(D̃) = (R(D̃)α) ≡ (R̃α)

(see also (6.2) and (6.3)), one obtains, in view of (6.24) and Cartan’s structural
equation (see Volume I, Chapt. I, (7.27) and (7.32)),

(6.26)

R̃α ≡ R(D̃)α := R(D̃)|Uα ≡ R(D̃α)

= d(ω(α) + ω′(α))+ (ω(α) + ω′(α)) ∧ (ω(α) + ω′(α))
= Rα + dω′(α) + [ω(α), ω′(α)] + ω′(α) ∧ ω′(α),

where, of course, we set (see (6.2) and (6.3))

(6.27) Rα ≡ R(D)α = dω(α) + ω(α) ∧ ω(α) ∈ Mn(Ω
2(Uα))
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(Cartan’s structural equations, loc. cit.), for any α ∈ I , as in (6.1.4), while we still
employ in (6.26) the familiar notation (Lie bracket)

(6.28) [ω(α), ω′(α)] ≡ ω(α) ∧ ω′(α) − ω′(α) ∧ ω(α)

for any α ∈ I , as before.
On the other hand, by further referring to (6.24), we also write, in view of (6.27),

the curvature of the A-connection (see (6.23))

(6.29) D̃ := D + ω′ ≡ ω + ω′

by still employing, for convenience, an obvious abuse of notation, concerning the
particular local gauge of E , say Uα , α ∈ I , as above, in the form

(6.30) R(ω + ω′) = R(ω)+ dω′ + [ω,ω′] + ω′ ∧ ω′

(see also (6.26)), which will be of use below.
Furthermore, the same relation (6.30) can still be distilled by using the

A-connection of the vector sheaf EndE , in particular, in view of (6.18), its “first pro-
longation” (viz., the C-linear morphism) (see also, e.g., Volume I, Chapt. I, (7.13)),

(6.31) D1
EndE : Ω1(EndE)−→Ω2(EndE).

So we look further at the relevant situation, even within a more general setting (see
(6.35.1) below).

6.2 Covariant Differential Operators (Prolongations) for End EEnd EEnd E
We assume, as in (6.1), that we are given a curvature space X (see (6.1.1)), along
with a Yang–Mills field on X ,

(6.32) (E, D),

such that rkE = n ∈ N.
Based now on the proof of the (“differential”) Bianchi’s identity, see [VS:

Chapt. VIII, p. 225], one concludes, concerning the “differential operator” (6.31),
the relation

(6.33) D1
EndE (ω

′) = d1(ω′)+ [ω,ω′]

for any

(6.34) ω ∈ C0(U,Ω1(EndE)) and ω′ ∈ C0(U,Ω1(EndE)),

with U a local frame of E (see (6.1.4)). In point of fact, one gets the following situa-
tion:
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(6.35)

more generally, one has the relation

(6.35.1) D p
EndE (ω

′) = d p(ω′)+ [ω,ω′]

for any p ∈ N, such that

(6.35.2) ω ∈ C0(U,Ω1(EndE)) and ω′ ∈ C0(U,Ω p(EndE)),

whenever, of course, the “differential operators” in (6.35.1) have a mean-
ing; namely, any time one has the corresponding to the aforesaid formula
“differential setup.”

Accordingly, combining now (6.33) with (6.30), one obtains

(6.36) R(D + ω′) ≡ R(ω + ω′) = R(ω)+ D1
EndE (ω

′)+ ω′ ∧ ω′

with ω and ω′ as in (6.33). Thus, by further considering the (curvature) curve (6.15),
one gets

(6.37)
R(Dt ) ≡ R(D + t · ω̃) ≡ R(ω + t · ω̃) ≡ Rt

= R(ω)+ D1
EndE (t · ω̃)+ (t · ω̃) ∧ (t · ω̃);

that is, one finally obtains

(6.38) Rt = R + D1
EndE (ω̃)+ t2 · (ω̃ ∧ ω̃)

for any t ∈ R, which is thus, in view of (6.15), the curve in Ω 2(EndE)(X) that
we were looking for, according to (6.11), corresponding to the given A-connection-
curve (6.13) in ConnA(E).

Now, for convenience, referring to the discussion in Section 8, we summarize the
preceding into the form of the following.

Lemma 6.1 Suppose we are given a curvature space X (see (6.1.1)) and let

(6.39) (E, D)

be a Yang–Mills field on X . Moreover, consider anA-connection-curve in the (affine)
space of A-connections of E ,

(6.40) ConnA(E),

of the form (“variation of D”)

(6.41) Dt := D + t · ω̃, t ∈ R

such that

(6.42) ω̃ ∈ Ω1(EndE)(X).
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Then, the corresponding (curvature) curve in

(6.43) Ω2(EndE)(X)

is given (in matrix form) by the relation (“first variation formula”)

(6.44) Rt ≡ R(Dt ) = R + t · D1
EndE (ω̃)+ t2 · (ω̃ ∧ ω̃)

with t ∈ R and R ≡ R(D).
We close the present section with the subsequent remarks in Scholium 6.1

pertaining to the nature of the preceding results, as summarized by Lemma 6.1 that
will still be of use in the sequel.

Scholium 6.1 The information one gets, through Lemma 6.1, concerning the varia-
tion (curve) of the field strength of a given Yang–Mills field (E, D) on a curvature
space X (see (6.39) and (6.1.1)), corresponding to a variation (curve) of the respec-
tive gauge potential (A-connection D, as above, is actually only local (!). In this
regard, we can still remark, however, along with R. Haag [1: p. 326], for instance, that

(6.45)
“. . . the central message of Quantum Field Theory [is] that all informa-
tion characterizing the theory is strictly local . . . ”

(the emphasis is ours). Yet, on the other hand, we also note, herewith, that

(6.45′) “In a field theory it is much simpler to use strictly local functions.”

(Emphasis ours). See J.M. Ziman [1: p. 18, footnote]. Thus, (6.44) is the outcome
of an exploitation of Cartan’s structural equation, the latter being given, in effect, in
terms of local data (see (6.27)), namely, by restricting ourselves to a local gauge, say
Uα, of E (see (6.1.4)). That is, equivalently,

(6.46)

the relation (6.44) (“first variational formula”) is a result that is valid on a
local gauge, say Uα, of E , hence, of a point-character too, yielding infor-
mation at each particular instant of time t ∈ R, along the corresponding
curve at issue, determined through the A-connection-curve α D(t), t ∈ R
(see (6.13)) and the local gauge Uα of E , as above.

The same result (local information) as in (6.44) is virtually needed (see Section 8),
in order to look at the “principle of least action” within the present abstract setting,
thus to evaluate

(6.47) δYME (R) ≡ ˙̂YME (Rt )(0) = d

dt

∣∣∣∣
t=0

YME (Rt )

(see also (5.11), as well as (8.24) below), hence, a matter eo ipso local! Therefore,
our information, already supplied via (6.44), is actually quite enough, to the extent,
of course, that one wants to know the relevant situation, for t → 0, in R (viz., in turn,
in a neighborhood of
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(6.48) R(D + tω̃)t=0 = R(D) ≡ R,

where now the latter quantity can be viewed, of course, within the context of (6.2)
and (6.3), or even of (6.10)).

Now, classically speaking, all the above local information can usually be put
together through an integration process (in terms of functions, thus, in point of fact,
within the present abstract (sheaf-theoretic) setup, via sections, with “compact sup-
port”). Yet, this actually amounts to the same thing, by also reducing the problem to
a finite number of local data (consider, e.g., the case of a compact (Hausdorff) space
X). We will address this matter again in Sections 7 and 8.

7 Volume Element

Our aim in the following discussion is to supply, within the present abstract setting,
the appropriate background material so that one can formulate the corresponding
classical notion, as in the title of this section. As an outcome, one can further obtain,
here too, an A-metric, in point of fact, an A-valued inner product, starting from any
given vector sheaf E on X , precisely speaking, from a suitable “structure sheaf” A
on (the pertinent topological space X , this latter point actually being a preponder-
ant issue, permeating the whole of the present treatise. Now, the aforesaid notions
are determined in effect via a suitably defined A(X)-valued “integral” of compactly
supported sections of E , as above, by extending the analogous situation of the stan-
dard theory. Yet, by analogy to the classical pattern, one employs here the “Hodge
∗-operator” that we already considered in Section 4.5; see also Volume I, Chapter I,
Section 10 of this treatise.

Now, for simplicity, we thus assume that we are given

(7.1)

an enriched ordered algebraized space

(7.1.1) (X,A)

(see (5.1)) in such a manner that

(7.1.2) (E, ρ)

is a Riemannian A-module on X (see, e.g., (4.1.2)). In this connection,
X is, thus far, simply an arbitrary topological space.

So, based on our hypothesis in (7.1.2), consider now the pair

(7.2) (A, ρ)

as a Riemanian A-module on X , the latter providing (see (7.1.1)) an ordered alge-
braized space

(7.3) (X,A),
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“with square root” (see [VS: Chapt. IV, p. 336, Definition 10.1]: “enriched ordered
algebraized space”). Thus, for convenience of reference concerning the subsequent
discussion, we recall that one can further define on X a

(7.4) volume element, say, ω,

given by the following global (continuous) section of our “structure sheaf” A; that
is, one sets

(7.5) ω := √|ρ| · ε1 ∧ · · · ∧ εn ∈ (∧nAn)(X) ≡ (detAn)(X) = A(X).

See Volume I, Chapter I, Section 10 of the present treatise, as well as [VS: Chapt. IV,
Section 11]. Here one still sets

(7.6) ε ≡ (εi )1�i�n ⊆ An(X) = A(X)n

for the canonical coordinate (global) sections of An , or even the Kronecker gauge of
An ; that is, one has

(7.7) εi := (δi j )1� j�n ∈ An(X) = A(X)n

for any 1 � i � n, while we also define

(7.8) δi j ∈ A(X), 1 � i, j � n,

as the (canonical) Kronecker sections of A over X , the whole picture being actually
depicted, in “matrix form,” by the relation

(7.9) ε ≡

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...
...

...
0 0 · · · 1

⎞
⎟⎟⎟⎠ ∈ Mn(A(X)) = Mn(A)(X),

which can be considered as the Kronecker (global section) matrix of A over X , of
order n ∈ N, or, for short, the n×n Kronecker (section) matrix of A over X . See also
[VS: Chapt. IV, p. 290, along with Chapt. II, p. 123, (3.22)]. Yet, by still referring to
(7.5), we also set

(7.10)
√|ρ| :=

√
| det(ρ(εi , ε j ))|,

where ρ denotes the (canonical) extension of the given A-metric ρ, as in (7.2), to
(the free A-module) An (see also loc. cit., Chapt. IV, p. 341, (11.4), as well as p. 324,
(8.37) and (8.37′), therein). Now, on the other hand, one further concludes that

(7.11)

the volume element ω on X , as defined by (7.5), can still be given by the
relation

(7.11.1) ω = s1 ∧ · · · ∧ sn,
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such that

(7.11.2) s ≡ (si )1�i�n ⊆ An(X) = A(X)n

is an orthonormal gauge of An . In this connection, we also remark
that such a gauge of An is always available as a simple application of
the Gram–Schmidt orthonormalization process; that is, here too, also in
force, by virtue of our hypothesis, as in (7.1); see also [VS: Chapt. IV,
p. 340, Theorem 10.1] as well as Volume I, Chapter I, Section 10, (10.7)
of the present treatise.

Note 7.1 The preceding argument is still valid for any free A-module E over X , of
rank n ∈ N; that is, in the case one has

(7.12) E = An,

modulo an A-isomorphism of the A-modules involved. Indeed, more generally,

(7.13) the previous argument is also in force for any vector sheaf E on X of
rank n ∈ N.

In this regard, see also Volume I, Chapter I of the present study, Scholium 10.1, as
well as the relevant comments therein pertaining to the ∗-operator; (loc. cit., Sec-
tion 10; (10.23)). However, according to that same discussion, one is then led to
consider a

(7.14) paracompact (Hausdorff) space X , while A is still a strictly positive fine
sheaf on X .

See also (4.1) in Section 4. Therefore, in other words, we actually

(7.15)
assume, henceforward, that we have the situation described by (5.2) in
the foregoing.

Thus, for convenience of reference, we assume henceforth that

(7.16)

we are given an enriched ordered algebraized space

(7.16.1) (X,A)

(see (5.1)) in such a manner that X is a paracompact (Hausdorff) space
and A is a strictly positive fine sheaf on X . Yet, we suppose that

(7.16.2) (A, ρ)

is a Riemannian A-module on X .

Now, as a result of our previous hypothesis in (7.16), concerning the space X con-
sidered, we can still apply the preceding argument in (4.84) as well as in (4.87), in
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principle, locally (!), while, at the very end, one gets, by virtue of the same hypothesis
for X as before, that

(7.17)
the relations (4.84) and (4.87) are still in force for every vector sheaf E
on X (see also (4.90.1)).

Furthermore, in view of (7.16), hence of (4.91) as well, one also obtains that

(7.18)

every vector sheaf E on X becomes a Riemannian vector sheaf; namely,
one gets a pair

(7.18.1) (E, ρ),

where ρ stands for a (Riemannian) A-metric on E . (Of course, we gene-
rically employed here the same symbol ρ by abusing notation in connec-
tion with (7.16.2)).

Accordingly, one concludes, here too, the relation

(7.19) E ∼=̃
ρ
E∗,

within an isomorphism of the A-modules (in fact, of the vector sheaves) involved.
Thus, taking into account (7.18), one can consider

(7.20) ∧pE∗, 1 � p � n = rkE,

an A-valued inner product, determined through the corresponding A-metric ρ on it,
so that, if we further set, for simplicity’s sake,

(7.21) (α, β) ≡ ρ(α, β)

with α, β in (∧pE∗)(U) and for any open U ⊆ X , one gets

(7.22) α ∧ ∗β := ρ(α, β) · ω ≡ (α, β) · ω = (β, α) · ω = β ∧ ∗α.
Therefore, one has

(7.23) (∗α, β) = α ∧ β
for any α, β in (∧ pE∗)(U) = (∧pE)(U), as above.

Now, in order to extend the previously defined inner product, as in (7.21) and
(7.22), to the so-called integration inner product in the classical case (see Y. Choquet-
Bruhat et al. [1: p. 296] or even W.A. Poor [1: p. 153]), it would be more appropri-
ate to assume, concerning our structure C-algebra sheaf A, certain complementary
topological-algebraic conditions that we explain below. This type of integration will
be considered in Scholium 7.1 below.
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7.1 A Topological (CCC-)Algebra (Structure) sheaf AAA
Henceforth, we posit that we are given

(7.24)

a topological space X , satisfying (7.16), while we still assume that our
structure (C-algebra) sheaf A is a topological algebra sheaf on X , in the
sense that

for every open U ⊆ X , the respective (local) section algebra
of A,

(7.24.1) Γ (U,A) ≡ A(U),

is a unital commutative complete topological (C-)algebra,
having continuous multiplication.

Furthermore, we also suppose that

the “spectrum” (see Note 7.2 below) of each one of the topo-
logical algebras A(U), as above, satisfies the relation

(7.24.2) M(A(U)) ⊂→ U

as a topological subspace, while we still assume that there is
defined on U a Radon-like measure (see Scholium 7.1).

Now, concerning the relevant terminology on topological algebra theory, we refer to
A. Mallios [TA]; yet, see also [VS: Chapt. XI, pp. 300ff] for details on topological
algebra (pre)sheaves.

Note 7.2 Given a topological algebra E (loc. cit.), its spectrum (i.e., Gel’fand space
of E), denoted by

(7.25) M(E),

is, by definition, the set of nonzero continuous algebra morphisms of E into C (in
effect, onto)—in short, continuous characters of E , topologized as a subspace of E ′

s
(viz., of the weak topological dual of E).

An important issue is the following homeomorphism:

(7.26) M(Cc(X)) = X.

Here, Cc(X) stands for the algebra of C-valued continuous functions on a completely
regular (Hausdorff) topological space X equipped with the compact-open topology
c (see [TA], p. 223, Theorem 1.2). A similar result also holds true; that is, one has

(7.27) M(C∞(X)) = X
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within a homeomorphism of the topological spaces concerned, referring to the
(C-) algebra

(7.28) C∞(X)
of C-valued C∞-functions on a “smooth” (viz., C∞-) manifold X , endowed with the
so-called (canonical) Schwartz topology; see [TA: p. 227, Theorem 2.1, along with
Scholium 2.1 therein].

Now, assuming in the relation (7.22) that either one of the “p-forms” α or β,
appearing therein, has compact support (viz., it vanishes in the complement of a
compact subset of its domain of definition), one obtains the relation

(7.29) (α, β) :=
∫
X

α ∧ ∗β =
∫
X

(α, β) · ω,

thus getting an A-valued inner product on the A-algebra sheaf (see also (4.87)),

(7.30) ∧E∗ :=
∞⊕

p=0

∧pE∗ ∼= ∧E,

for any given vector sheaf E on X . (In this connection, see also [VS: Chapt. IV,
p. 308, (7.9) and (7.10)]; yet, notice that since E is, by hypothesis, a vector sheaf on
X , the (direct) sum in (7.30) is actually finite, terminated at n = rkE ∈ N see also
[loc. cit., p. 312, (7.23)]. On the other hand, the inner product in (7.30) is taken, of
course, as in (7.22), among pairs in the same sum, as before).

Scholium 7.1 (Radon-like measures) The “measures,” in point of fact, “integrals,”
of the type alluded to in the title of the present scholium, were already mentioned in
connection with (7.24), while they were also considered in (7.29), in the sense that
we explain in subsequent discussion: Thus, based on our hypothesis in (7.24.2), one
concludes, in particular, the relation

(7.31) M(A(X)) ⊂→ X

(viz., the spectrum of (the topological algebra) A(X) carries the relative topology
from X (more generally, a continuous injection in (7.31), along with the analogous
condition for (7.24.2), would suffice, concerning the ensuing discussion)). Now, we
call

(7.32)

a “Radon-like measure on X” any element of

(7.32.1) Cc(X)
′,

—namely, any element of the topological dual of (the topological vector
space)

(7.32.1) Cc(X)

((7.26) for the notation applied) or any continuous (C-) linear form on
the latter space.
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Now, classically speaking, elements of (7.32.1) can be viewed as “integrals”
on C(X) (i.e., “Radon measures on X”), à la Riesz (or even, Markov–Riesz); see
N. Bourbaki [1: Chapters. 1–4], A. Mallios [TA: p. 474, Lemma 2.1], or even
R. I. Hadjigeorgiou [1: Chapt. II, Theorem 1.1]; here one has a really elaborated and
detailed proof of that classical result, as above, the so-called Riesz representation
theorem. Yet, M. Fragoulopoulou [1: p. 74]. Hence, the terminology applied.

On the other hand, by further suitably specializing on the type of the topological
algebras A(U) considered, as in (7.24.1), hence, according to the very definition,
on that one of the topological (C-)algebra sheaf A (see (7.24)) (e.g., continuity of
the relevant “Gel’fand maps,” or even, occasionally, as is usually the case in the
applications, (functional) “semi-simplicity” of the algebras involved, see A. Mallios
[TA] concerning the terminology applied herewith), then, a “Radon-like measure
on X” gives rise, à la Hahn–Banach, for instance (when suitable complementary
conditions are put on (7.31)), to a similar one on

(7.33) Cc(M(A(X))),

so that, finally, even to a “state” of (viz., a continuous linear form on) the (topolo-
gical) algebra A(X) itself. Analogous considerations to the above will be employed
in Section 8. The situation described by the previous argument can, of course, be
specified to the important particular case that one has

(7.34) A(X) = A,

within an isomorphism of topological algebras, such that our structure sheaf A is, in
effect, the Gel’fand sheaf of a given “geometric topological algebra” A, whose spec-
trum M(A) is thus, in particular, (homotopic to) X . See, for instance, A. Mallios [10].
The preceding have, of course, a special bearing on the classical case of differential
geometry on smooth (viz., C∞-) manifolds, concerning the corresponding in that case
structure sheaf C∞X (see Volume I, Chapt. I, (1.15) of this treatise) and the topological
algebra C∞(X) (see (7.28) in the foregoing, along with A. Mallios [10]). Yet, appli-
cations of the above considerations are also found in connection with the recently
employed algebra sheaf of Rosinger (“generalized functions”), within the abstract
framework of the present study, as well the one of I. Raptis (finitary algebra sheaves).
Both of the latter types of algebra sheaves very likely have potential applications in
problems connected with quantum gravity; see A. Mallios–E. E. Rosinger [1, 2],
along with A. Mallios–I. Raptis [1–4].

Now, as another potential application of the preceding, we further remark that,
according to the above general setup, a “Radon-like measure” on the “moduli space”

(7.35) ConnA(E)/(AutE)ρ

(see also (5.46.2), along with Chapt. II, (2.9) and (3.4)), of a given vector sheaf
E on X , the latter space being endowed with the pertinent structure, so that (7.35)
get a meaning (loc. cit.), while the same set (7.35) is considered, if appropriately
topologized (see Note 7.3 below), as the spectrum
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(7.36) M(A)

of a suitable topological algebra A, might be, in view of the preceding discussion, a
continuous linear form (“state”) on

(7.37) Cc(M(A)) or even on A;
that is, an element of the topological dual space of the latter spaces, namely, of

(7.38) Cc(M(A))′ or of A′, respectively.

Note 7.3 By further commenting on our previous remarks concerning (7.35), we
first note that the set

(7.39) ConnA(E),

being an affine space, in view of Chapter I, (5.4) and (5.7) (E is, by hypothesis, a
vector sheaf on X , as also Ω 1) can be naturally topologized via its model
Ω(EndE)(X), when the latter is appropriately construed as a topological vector
space (see, e.g., Chapt. III, Section 4), hence, a completely regular (topological)
space and thus the quotient space (7.35) as well; see also W. Roelcke–S. Dierolf [1]
concerning “quotient uniform structures” in general); see also E. Papatriantafillou
[1–3].

The rest of our argument, pertaining to (7.36), is now standard, connected with
topological algebra theory; see, for example, A. Mallios [TA: p. 223, Theorem 1.2].

The above are, indeed, akin also to recent considerations in the “theory of moduli
spaces,” within the framework of the classical differential geometry on smooth mani-
folds. See, for instance, J.C. Baez [1], A. Ashtekar–C.J. Isham [1], and A. Ashtekar–
J. Lewandowski [1]; yet, see also J.N. Tavares [1] for another connection of the above
with the theory of the so-called loop representations within the context of gauge field
theory.

8 Yang–Mills Functional (continued): The Variation Formula

Our aim here is to formulate, within the abstract setting that is advocated by the
present study, the formula which connects the Yang–Mills functional, as the latter
was defined by (5.11), with its variation (status) “at the limit” t → 0 (i.e., with the
“derivative at t = 0” of the respective “Yang–Mills curve”; (viz., of what we called
the “first variational formula”), as given by (6.44), that corresponds to an analogous
curve (variation in time) of the “dynamics” [viz., of the given A-connection D of the
Yang–Mills field

(8.1) (E, D)

under consideration (see (6.41), along with (6.46))].
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Of course, the above Yang–Mills field is taken over a suitable (topological) space
X , satisfying the pertinent conditions so that the terminology applied herewith has a
meaning; thus, take, for instance,

(8.2)

a curvature space X (see (6.1)) such that (6.44) is valid, while we still
assume that the same space X satisfies (5.2); hence, in effect, we consider
what we called in the preceding a Yang–Mills space (see Definition 4.1).
Therefore, (5.11) and (5.17) acquire a meaning; that is, in other words,
the corresponding Yang–Mills functional (or Yang–Mills Lagrangian,
yet Yang–Mills action) can be construed, along with the relevant Yang–
Mills equations (see Definition 4.2).

Thus, by assuming the above framework of (8.2), one concludes that the pair (E, D),
as in (8.1), can be viewed as a Riemannian Yang–Mills field

(8.3) (E, ρ).

Consequently, looking now at the Yang–Mills functional, as in (5.11) one gets the
respective Yang–Mills curve, strictly speaking (!) according to the relation

(8.4) γ (t) := YME (Dt ) ≡ YME (R(Dt )) ≡ YME (Rt ) := 1

2
ρ(Rt , Rt ), t ∈ R,

so that, based further on (6.44) and the A-bilinearity of ρ in (8.3) (see (4.1.3) and
(4.2.1)) (see also (7.21) for the notation applied below), one obtains

(8.5)

YME (Rt ) = t · (R, D1
EndE (ω̃))+ t2[(R, ω̃ ∧ ω̃)

+ (D1
EndE (ω̃), ω̃ ∧ ω̃)+ (ω̃ ∧ ω̃, ω̃ ∧ ω̃)

+ 1

2
(D1, . . . , D1, . . .)] + t3(D1, . . . , ω̃ ∧ ω̃)

+ 1

2
t4(ω̃ ∧ ω̃, ω̃ ∧ ω̃)+ 1

2
(R, R).

Therefore, one finally gets the relation

(8.6)

.
̂YME (Rt )(0) ≡ d

dt

∣∣∣
t=0

YME (Rt ) := lim
t→0

1

t
(YME (Rt )− YME (R0))

= ρ(R, D1
EndE (ω̃)) ≡ (R, D1

EndE (ω̃)).

Note 8.1 We comment below on the meaning of the term “lim” as it appeared in
relation (8.6). Thus, by looking at the curve

(8.7) γ (t) := 1

2
ρ(Rt , Rt ) ≡ 1

2
(Rt , Rt ),

t ∈ R, as in (8.4) above (see also (7.21) for the simplification of the notation applied),
such that (see (6.15))
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(8.8) Rt ≡ R(Dt ) ≡ R(D + t · ω̃) ∈ Ω2(EndE)(X)

for any t ∈ R, we conclude that

(8.9) γ (t) ∈ A(X), t ∈ R

(see also (4.2.1)); that is,

(8.10)
the Yang–Mills curve, as this is given by (8.4) and (8.7), is actually an

(8.10.1) A(X)-valued curve.

So, by assuming now that

(8.11)

our structure sheaf A is, in particular, a topological C-vector space sheaf
on X , in the sense that

(8.11.1) Γ (U,A) ≡ A(U)

is a topological C-vector space for any open U ⊆ X with the respec-
tive “connecting (restriction) maps” (see [VS: Chapt. I, p. 38, (9.4) and
(9.7)]) being continuous C-linear maps,

one can understand completely the “limit” in (8.6)—namely, the derivative at t = 0
of the (Yang–Mills) curve (8.4). Yet, we also note, in this case, that

(8.12) γ is a continuous A(X)-valued curve.

Thus, let us now look at the point

(8.13) γ (0) = 1

2
(R, R) ≡ z ∈ Ax

of the curve at issue (see also (6.38) for t = 0), such that

(8.14) x ≡ π(z) ≡ π

(
1

2
(R, R)

)
∈ X,

where, as usual, so far

(8.15) (A, π, X)

stands for the given structure sheaf A on X . Therefore, for any open neighborhood U
of x ∈ X , one can further consider an appropriate (open) neighborhood, say I ⊆ R,
of 0 ∈ R such that

(8.16) γ (t) ∈ π−1(U), t ∈ I.
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Of course, we have employed herewith the continuity of the map

(8.17) π ◦ γ : R−→ X

(see also (8.12), (8.15)). Consequently, one can still consider a corresponding restric-
tion of A on U , that is,

(8.18) A|U = π−1(U)

(see, e.g., [VS: Chapt. I, p. 5, (1.10)]), along with a relevant restriction of the curve
γ , as in (8.7), according to (8.9) and (8.16).

Therefore, one can further look at whatever restriction of our previous argument,
concerning (8.10) and (8.11), by referring to any open V ⊆ U ⊆ X , as well as to the
respective section (topological C-vector) space

(8.19) A(V ) = (A|U )(V ).
Yet, in this connection, see also, for instance, [VS: Chapt. I, p. 10, (2.10) and (2.12),
along with p. 55, (11.40)].

8.1 Lagrangian Density and Its Variation

For convenience, we still mention throughout the subsequent discussion that we
actually assume that

(8.20)
we are given a Yang–Mills space X (see Definition 4.1) that satisfies
(8.11).

Now, by extending within the present abstract setting the classical terminology, we
further define as the Yang–Mills action the following “integral form” of the Yang–
Mills functional, as the latter was defined by (5.11) (we retain the relevant notation
here, for simplicity); thus, we set

(8.21) YME (D) := 1

2

∫
X

(R(D), R(D))vol = 1

2

∫
X

tr(R ∧ ∗R)

(see also (7.22) in the foregoing). Yet, we still refer to (8.21), as the Lagrangian
density of E , relative to the given A-connection D of E .

Note 8.2 Concerning the notation employed in (8.21), the term

(8.22) vol

therein stands for the “volume element” ω on X , as defined by (7.5)—a global (con-
tinuous) section of A. On the other hand, the integral in (8.21) may be viewed in the
sense of our previous comments in Scholium 7.1. Thus, we assume that
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(8.23)

the integral in (7.21) is understood as a continuous linear form on the
topological vector space (algebra) A(X), while we also suppose that
the integrand therein, being actually an element of A(X), has compact
support.

Now, by looking again at the principle of least action (see (6.47)) and based on the
continuity of the linear form (integral), as in (8.21), as well as on (8.6) and (2.36) for
n = 2, one obtains (variation of the Lagrangian density)

(8.24)

δYME (D) = 1

2
δ

∫
X

(R, R)vol =
∫
X

δ
1

2
(R, R)vol

=
∫
X

(R, D1
EndE (ω̃))vol =

∫
X

(δ2
EndE (R), ω̃)vol.

Accordingly, we finally conclude that

(8.25) δYME (D) = 0 if and only if δ2
EndE (R) = 0.

Therefore, in other words, one obtains that

(8.26)

the critical points of the Yang–Mills functional—namely, those

(8.26.1) D ∈ ConnA(E),

for which one has

(8.26.2) δYME (D) = 0

—are exactly the solutions of the Yang–Mills equations. Yet, this actu-
ally amounts to the same thing:

(8.26.3)
the zeros of the variation of the Lagrangian density (see
(8.24) and (8.26.2)) are exactly the solutions of the Yang–
Mills equations.

We comment below, for clarity’s sake, concerning the notation we applied in the
preceding—in particular, in what refers to (8.21) and (8.24). So we now terminate
the present section.

Scholium 8.1 By looking at the “variation of the Lagrangian density” we further
remark that, by definition,

(8.27)

the relation (8.24) is valid for any “integral”

(8.27.1)
∫
X
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(viz., a continuous linear form on the topological vector space A(X)),
assuming that the latter space has a “separating topological dual,”A(X) ′.

As a consequence, one thus infers that the first relation in (8.25), true for any element
in A(X)′, entails that the integrand in (8.24) is zero. Therefore, based further on the
nondegeneracy of (the A-metric) ρ on A, one finally concludes the second relation in
(8.25), while the converse is, of course, true. So this proves (8.25) and equivalently,
(8.26) as well.

On the other hand, the preceding can still be related, of course, with our previous
comments in Scholium 7.1, pertaining to a potential meaning of the “integral” as in
(8.27.1).

9 Cohomological Classification of Yang–Mills Fields

Our purpose in this final section of the present chapter is to obtain, as the title
indicates, an analogous cohomological classification for Yang–Mills fields to that
already attained for Maxwell fields (see Volume I, Chapter IV of this study). Thus,
more specifically, we intend to prove, by analogy with Chapter IV, (5.51), the
following (set-theoretic) bijection:

(9.1) Φn
A(X)

∇ = Ȟ1(X,GL(n,A) ∂̃−→ Mn(Ω
1)),

the particular items of which, along with the corresponding notation involved, we
explain here.

Thus, the first members of (9.1) stands for the set of equivalence classes of Yang–
Mills fields on X of rank n ∈ N (see (4.46), along with (4.14) therein), X being, as
usual, an arbitrary, in principle, topological space, a common carrier space of the
vector sheaves concerned (ibid.). Now, the second member of (9.1) denotes the first
Čech hypercohomology set of X with respect to the 2-term Z-complex on X :

(9.2) 0 −→ GL(n,A) ∂̃−→ Mn(Ω
1) −→ 0 −→ · · · ,

the particular meaning of which we discuss below.
Thus, first we recall, concerning the logarithmic derivation ∂̃ as in (9.2) (see,

e.g., Volume I, Chapt. I), that one sets

(9.3) ∂̃ : GL(n,A)−→Mn(Ω
1),

such that

(9.4) ∂̃(α) := α−1 · ∂(α)
for any α ∈ GL(n,A)(U) = GL(n,A(U)), with U an open set in X . On the other
hand, one still obtains (see [VS: Chapt. VI, p. 7, (1.33))

(9.5) ∂̃(st) = Ad(t−1) · ∂̃(s)+ ∂̃(t)
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for any s ≡ (si j ) and t ≡ (ti j ) in GL(n,A(U)), as above, where we also set

(9.6) Ad(s)(∂̃(t)) ≡ Ad(s) · ∂̃(t) := s · ∂̃ · s−1,

with s and t , as before. In particular, based on (9.5), one has

(9.7) ∂̃(α−1) = −Ad(α) · ∂̃(α)
for any α ≡ (αi j ) ∈ GL(v,A)(U), given that

(9.8) ∂̃|GL(n,C)=G L(n,C) = 0

(see also Chapt. I, (1.33), along with [VS: Chapt. VI, p. 7, (1.30)]). [Of course, the
same relation (9.7) can still be obtained as a consequence of (9.4), in conjunction
with the “quotient rule”; [loc. cit. p. 3, Lemma 1.2, or even p. 4, (1.12)]].

Thus, based further on our previous terminology in Volume I of this treatise
(Chapt. IV, Section 1.2, as well as, on Sections 2–4 therein) pertaining to Čech hyper-
cohomology, we are going to establish our present notation concerning the “ Čech
hypercohomology of the Z-complex” (9.2), the latter being still non-abelian (!) due
to the presence of the non-abelian group sheaf on X ,

(9.9) GL(n,A), n � 2.

Now, taking into account Volume I: Chapter IV (3.11), and in view of (9.2) of this
section, one further defines, relative to a given open covering of X , or even with
respect to a local frame of any finite number of A-modules involved,

(9.10) U = (Uα)α∈I ,

the following Z-modules, here non-abelian, in general (see (9.9), as above), groups:

(9.11)

F0 = Č0(U,GL(n,A)),

F1 = Č1(U,GL(n,A)) ⊕ Č0(U,Mn(Ω
1)),

F2 = Č2(U,GL(n,A)) ⊕ Č1(U,Mn(Ω
1));

the corresponding “differentials” between the Z-modules (groups) concerned, as
above, are given by the following relations (see Volume I, Chapt. IV, (4.17)–
(4.19)):

(9.12) D0 = δ ⊕ ∂̃ : F0 −→F1

as well as

(9.13) D1 = δ ⊕ (δ − ∂̃) : F1 −→F2.

Thus, one can depict the above in the following diagram (see also Volume I,
Chapt. IV, (4.15))
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(9.14)

Č0(U,GL(n,A)) �δ Č1(U,GL(n,A)) �δ Č2(U,GL(n,A)) �δ . . .
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∂̃

	
	

	

⊕
	

	
	

�
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� � �
0

...
0

...
0

...

Now, our next goal is to prove that

(9.15)

the “solution space” of the operator D 1 (see (9.13) and (9.14)—namely,
the space (subgroup)

(9.15.1) ker D1

—characterizes the set

(9.15.2) Φn
A(X)

∇

(i.e., the (set of equivalence classes of) Yang–Mills fields on X).

Accordingly—what amounts to the same thing—a given pair

(9.16) (g, ω) ∈ F 1 ≡ Dom D1 := Č1(U,GL(n,A)) × Č0(U,Mn (Ω
1))

defines a Yang–Mills field on X if and only if one has

(9.17) (g, ω) ∈ ker D1,

and, equivalently, if and only if

(9.18) D1(g, ω) = 0.

In point of fact, as we are going to see,

(9.19)
relation (9.18) is “equivalence preserving” with respect to equivalent
Yang–Mills fields on X .

Yet, the above explains the true meaning of our initial assertion pertaining to the
bijection (9.1), the latter being the formal analogue of our previous conclusion for
Maxwell fields in Volume I of this treatise (Chapt. IV, Lemma 4.1).
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9.1 Local Characterization of Yang–Mills Fields

For terminological questions, related to the ensuing discussion, we shall occasionally
refer to Section 4. Thus, given a Yang–Mills field

(9.20) (E, D)

on X , or rank n � 2 ((4.12) and (4.13)), let

(9.21) [(E, D)] ∈ Φn
A(X)

∇

be its corresponding equivalence class, an element of the set (9.15.2), as indicated
(see also (4.45) and (4.46)). On the other hand, by looking at things locally (i.e., in
terms of a given local frame of E , as, e.g., in (9.10)), one gets the following:

(9.22)

local identification (characterization) of the pair (E, D), as above,
according to a fundamental principle (viz., the so-called transformation
law of potentials), so that one obtains the one-to-one correspondence,
locally (!),

(9.22.1)

(E, D)←→ (g, ω) ≡ ((gαβ), (ωα))

∈ Ž1(U,GL(n,A)) × Č0(U,Mn(Ω
1))

⊂−→Č1(U,GL(n,A)) × Č0(U,Mn(Ω
1))

if and only if the following holds true:

(9.22.2) ω(β) = Ad(g−1
αβ ) · ω(α) + ∂̃(gαβ).

Equivalently, we further set, for the last relation,

(9.23) δ(ω(α)) ≡ ω(β) − Ad(g−1
αβ ) · ω(α) = ∂̃(gαβ),

which we still write in the succinct form

(9.24) δ(ω) = ∂̃(g).

See also Volume I, Chapter I, (2.56) and (2.71) as well as [VS: Chapt. VI, p. 113,
Theorem 2.1, and p. 116, Theorem 3.1, or even p. 119, Theorem 3.2] for further
details.

Note 9.1 By referring to the preceding discussion, we further notice here the formal
resemblance of (9.24) to the analogous local characterization of Maxwell fields; see
Volume I, Chapter III, Lemma 2.1, along with the corresponding scholium therein,
as in (2.33), pertaining to a physical interpretation of the same relation, which has,
of course, an obvious analogous substance for the case considered herewith. Yet, see
the relevant comments therein, following (2.36). In toto, one thus concludes that, in
general,
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(9.25)

for any given Yang–Mills field

(9.25.1) (E, D)

of rank n ∈ N (Maxwell fields correspond here to n = 1),

(9.25.2)
the variance of the carrier agrees always with the one of the
field itself (viz., of the A-connection concerned).

Thus, we arrive herewith, through (9.25.2), at what may still be construed as a physi-
cal interpretation of (9.24) referring to a Yang–Mills field, in general (viz., including
Maxwell fields), as in (9.25.1).

Therefore, to recapitulate our conclusions in terms of (9.24), we can say, once
more, that

(9.26)

one gets a one-to-one correspondence,

(9.26.1) (E, D)←→ (g, ω),

in the sense of (9.22), hence when (E, D) is locally determined (!) (this,
of course, still reminds us of the “drastically local” character of quantum
field theory, see, e.g., R. Haag [1: p. 326]), if and only if one has

(9.26.2) δ(ω) = ∂̃(g)

(however, see also (9.23) concerning the notation employed herewith).

Now, as already said in the preceding, we turn next to verify that

(9.27)

equivalence of Yang–Mills fields amounts to an equivalence with respect
to (the group) imD0; that is, one gets

(9.27.1) (E, D) ∼ (E ′, D′)

if and only if one has (locally)

(9.27.2) (g ′, ω′)− (g, ω) = D0(η),

where η ∈ Č0(U,GL(n,A)); see also (9.11) as well as (9.36.5) and
(9.45).

In this context, we first recall that

(9.28) (E, D) ∼ (F , D′)

(viz., one has an equivalence of Yang–Mills fields (or even, “gauge equivalent” Yang–
Mills fields)), if and only if there exists (by definition) an A-isomorphism

(9.29) ϕ ∈ IsomA(E,F),
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such that

(9.30) D′ = (ϕ ⊗ 1) ◦ D ◦ ϕ−1 ≡ ϕDϕ−1 ≡ Ad(ϕ) · D ≡ ϕ∗(D)

(viz., D and D′ are ϕ-related A-connections of E and F , respectively); see
Section 4.3. Yet, we still have (see [VS: Chapt. V, p. 353, Lemma 2.1])

(9.31) g′g−1 = δ(ϕ),

where we set (see also (9.22.1)

(9.32) E ←→ g ≡ (gαβ) and E ′ ←→ g′ ≡ (g′αβ),

such that (9.31) is actually of the form (ibid. p. 354, (2.11))

(9.33) g′αβ = ϕαgαβϕ
−1
β ,

which we may write, for convenience, in the succinct form

(9.34) g′ = Ad(ϕ) · g ≡ ϕ∗(g),

such that

(9.35) ϕ ≡ (ϕα) ∈ Č0(U,GL(n,A)).

Accordingly, to sum up the preceding,

(9.36)

gauge equivalence of two given Yang–Mills fields,

(9.36.1) (E, D) ∼ (E ′, D′),

when locally considered—namely, when one has

(9.36.2) (g, ω) ∼ (g ′, ω′)

—is virtually referred to an A-isomorphism

(9.36.3) ϕ ∈ IsomA(E, E ′),

which is also A-connection preserving—that is, in the sense that one has

(9.36.4) D′ = ϕ∗(D) ≡ Ad(ϕ)D.

Thus, locally and taking E = E ′, one concludes that there exists a
0-cochain

(9.36.5) η ≡ (ηα) ∈ Ž0(U,GL(n,A))⊂−→Č0(U,GL(n,A)),

such that one gets

(9.36.6) g ′ = Ad(η) · g ≡ δ(g)
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as well as

(9.36.7) ω′ = Ad(η)ω+ ∂̃(g).
Yet, by setting

(9.36.8) δ(ω) ≡ ω′ − Ad(η)ω,

one gets, equivalently, concerning (9.36.6), the relation

(9.36.9) δ(ω) = ∂̃(g).

9.2 The Map (9.1)

Now, suppose we have a locally determined Yang–Mills field [viz., the (one-to-one)
correspondence (see also (9.22) and (9.24))]

(9.37) (E, D)←→ (g, ω) ∈ Č1(U,GL(n,A) × Č0(U,Mn(Ω
1)),

such that

(9.38) (g, ω) ∈ ker D1 [viz., D1(g, ω) = 0].

Hence, equivalently (see (9.13)), one has

(9.39) D1(g, ω) ≡ (δ ⊕ (δ − ∂̃))(g, ω) = (δg, δω− ∂̃(g)) = 0,

so that one finally obtains, equivalently, for (9.38),

(9.40) δ(g) = 0 and δ(ω) = ∂̃(g),

where we recall that (see (9.36.6) and (9.36.8))

(9.41) δ(g) ≡ Ad(η) · g as well as δ(ω) ≡ ω′ − Ad(η) · ω.
On the other hand, one obtains (see also (9.36.2), (9.36.6), and (9.41))

(9.42) (g′, ω′)− (g, ω) = (g′g−1, ω′ − ω) = (Ad(η), ∂̃(η)) ≡ (δη, ∂̃η);
hence,

(9.43) g′g−1 = δ(η), thus g′ = δ(η) · g,

and

(9.44) ω′ − ω ≡ ω′ − Ad(η)ω = ∂̃(g).

Therefore, in view of (9.12), one gets

(9.45) (g ′, ω′)− (g, ω) = D0(η) = (δ ⊕ ∂̃)(η) = (δ(η), ∂̃(η)).
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Thus, the last relation, in conjunction with (9.38) and (9.40), still entails that

(9.46) D1 D0 = 0,

hence, equivalently,

(9.47) imD0 ⊆ ker D1.

Now, we further set

(9.48) [(g, ω)] := (g, ω)+ imD0,

the first member of (9.48) standing for an equivalence class of Yang–Mills fields, of
order, say, n ∈ N—namely, for an element of the set

(9.49) Φn
A(X)

∇ .

The above also explains our notation in (9.1), the second member of the same relation
denoting, according to (9.48), the quotient set

(9.50) ker D1/im D0;
precisely speaking, the corresponding inductive limit set, relative to the (upward
directed) set of (proper) local frames of a given Yang–Mills field (E, D) on X .

This also terminates our discussion on the asserted (set-theoretic) bijection
(9.1), along with the notation that was actually employed therein, by extending the
analogous simpler case for Maxwell fields, due to the abelianess of the corresponding
groups involved there, as exposed in Volume I, Chapter IV of this treatise.
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Moduli Spaces of A-Connections of Yang–Mills Fields

“Gauge theories possess an infinite-dimensional symmetry group . . . and all
physical, or geometric properties are gauge invariant”

M. Atiyah in The Geometry and Physics of Knots (Cambridge University Press,
Cambridge, 1990). p. 3.

Our purpose in this chapter is to expose, in the abstract language that we employ
throughout this treatise, the fundamentals of the classical theory indicated by the
subject in the title. Roughly speaking, we want to put into perspective the classical
and physically, yet mathematically, important (!) theme of the so-called geometry
of Yang–Mills equations. This was first advocated by I.M. Singer [1] (see also, for
instance, M.F. Atiyah [1: p. 2]). Equivalently, one considers the corresponding space
of solutions of the said equations, thus, by definition (see Chapt. I, Definitions 4.1 and
4.2), the space of the Yang–Mills A-connections. However, in view of the physical
significance of the “gauge invariant (A-)connections” (see Atiyah’s phrasing in the
epigraph above), the same space is finally divided out by the corresponding “gauge
group,” so that it is, in effect, the resulting quotient space (“moduli space,” or even
“orbit space”) that is under consideration.

Our treatment of this material in this chapter is in accordance with our general
goal—to do physics in terms of the standard differential geometry of smooth mani-
folds by means of the “abstract (“modern”) differential geometry,” since the latter
aspect has been started and further exposed in A. Mallios [VS: Vols. I and II]. In this
connection, the standard work of Singer is still made in a differential geometric
manner, within the context of (smooth) fiber bundle theory.

On the other hand, in Section 7 of Chapter 3 we further consider, according to
the standard patterns, (global) gauge fixing (Gribov’s ambiguity) by still following
the classical account thereof of I.M. Singer (loc. cit.): Indeed, Singer’s pioneering
work was also the main motivation for all the subsequent discussion. Our primary
objective here is to put into an abstract perspective the relevant classical material.

1 Preliminaries: The Group of Gauge Transformations or Group
of Internal Symmetries

As the title of this section indicates, we consider here the group of transformations.
The same group has been discussed in Chapter I, Section 5.1, to consider (Chapt. I,
Section 5.2) the “gauge invariance” of the Yang–Mills functional, as well as in

A. Mallios, Modern Differential Geometry in Gauge Theories:
Yang–Mills Fields, Volume II, DOI: 10.1007/978-0-8176-4634-9_2,

79
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Chapter II, Section 9 of Volume I in connection with the concept of a “local gauge”
of a given vector sheaf (loc. cit. (9.8), (9.9) and (9.11)). In this context, see also [VS:
Chapt. VI, Section 17], where the same theme is examined.

So, to start with, and in accordance with our general point of view—that is,
impose the least possible preassumptions on the particular framework employed—
suppose that

(1.1)

we are given a C-algebraized space,

(1.1.1) (X,A),

while we also let E be a vector sheaf on X , such that

(1.1.2) rkAE ≡ rkE = n ∈ N.

Now, in this context, we first recall that, by definition (see Chapt. I, (5.19)),

(1.2)

the group of gauge transformations of E is given as follows:

(1.2.1)
AutA(E) ≡ AutE := (AutE)(X) := (EndE).(X)

= (EndE)(X). ≡ (EndE). .

In other words, and according to our previous convention, as in (1.2.1), the group
under discussion,

(1.3) AutA(E) ≡ AutE,

is that one of the A-automorphisms of E (A-isomorphisms of the given vector sheaf
E onto itself). So, by taking the very definition of a sheaf morphism into account
(see [VS: Chapt. I, p. 11, Proposition 2.1]), one gets an equivalent and, occasion-
ally, more convenient expression of the latter notion, through a (uniquely defined)
morphism of the corresponding (complete) presheaves of (continuous local) sections
of the sheaves concerned (loc. cit., Chapt. I, p. 75, (13.19)). Thus, by looking at a
particular element (e.g., “gauge transformation” of E), say,

(1.4) φ ∈ AutE = (AutE)(X),

that is, by definition (see (1.3)), an A-automorphism of the given vector sheaf E , one
obtains, equivalently, a map (i.e., a morphism of (complete) presheaves, as explained
above),

(1.5) φ = (φU ),

in such a manner that one defines

(1.6)
φU ≡φ|U ∈ IsomA(E, E)(U) = I somA|U (E |U , E |U )

≡ AutA|U (E |U ) ≡ Aut (E |U ) = (AutE)(U)
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for any open set U ⊆ X . Therefore, in other words, one concludes that

(1.7)

a local A-automorphism of E , that is, what we also call a “local gauge”
of E , is technically speaking just a

(1.7.1)

local (continuous) section (over an open U ⊆ X) of AutE ,
the latter group being still called, besides the one in (1.3), the
“group of gauge transformations of E .” (See also Volume I,
Chapter I, (6.12).)

The above rather strange terminology, when referring to the word gauge (the latter
being usually associated with “coordinates”), is, indeed, fully explained by the very
definition of E as a vector sheaf on X , of finite rank n ∈ N (see (1.10.1) below,
along with (1.14.2)). Yet, concerning the notation applied in (1.4), or even in (1.2.1),
see also Volume I, Chapter I of the present treatise—in particular, (6.10) and (6.12).
In this context, see also (6.38).

Note 1.1 (Terminological) The term

(1.8) local gauge of E,

with E a given vector sheaf on X (see (1.1.1)) will also be used below, and this was
similar to the case in the preceding, for an

(1.8′) open U ⊆ X , for which (1.10.1) in the sequel holds.

The distinction between these two notions (viz., domain of definition of a func-
tion and the function itself) becomes certainly clear from the context (!). See also
[VS: Chapt. II, p. 126, Definition 4.2, along with Chapt. V, p. 351, (1.15), or
even Chapt. VII, p. 99, (1.5)]). Yet, see also Volume I, Chapter II—in particular
(9.19)–(9.23).

Now, without loss of generality, and more importantly (yet, naturally), based on
our hypothesis for E (see for instance, Volume I, Chapt. I of this treatise, (6.24)), one
can instead, when looking at (1.5), a local frame of E (in place of the whole topology
of X), say,

(1.9) U = (U)

in the sense that

(1.10)

for any local gauge (see (1.8) and (1.8 ′)), U ∈ U , one obtains

(1.10.1) E |U = An |U
within an A|U -isomorphism of the A|U -modules concerned (see also
(1.1.2)).
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Of course, (1.9) still yields, by assumption, an open covering of X , for which (1.10.1)
holds true; thus, one has, by definition, what we call a “local frame” of E (see [VS:
Chapt. II, p. 126, Definition 4.2]). Accordingly, one thus concludes that

(1.11)

by considering an A-automorphism of E , that is, an element

(1.11.1) φ ∈ AutE ≡ (AutE)(X),

one can look at it locally, as in (1.5) and (1.6), by means of a local frame
of E , as in (1.9), such that (1.10.1) is valid.

Our conclusion in (1.11) exemplifies the special role that the local frames of a given
vector sheaf E , as above, can play in any argument pertaining to calculations in terms
of E . Yet, in this context, we have already noted in the preceding, based on our remark
in Volume I, Chapter I, (6.24), the basic fact that

(1.12)
any given local frame of a vector sheaf E on an (arbitrary) topological
space X may be converted into a basis of the topology of X .

On the other hand, in the particular case where one has a paracompact (Hausdorff)
space X , one further concludes that

(1.13)
the local frames of a given vector sheaf E on X provide a cofinal subset
of the set of locally finite open coverings of X .

The above is, indeed, a straightforward consequence of the very definitions (see also
[VS: Chapt. II, p. 127, (4.9)]).

On the other hand, it might also be useful in some other context, pertaining, for
example, to topologies defined through the open covering of the type considered in
(1.13) (Sorkin’s topology; see R.D. Sorkin [1]), in conjunction with applications of
ADG (abstract differential geometry, as it is advocated by the present study) in ques-
tions, related even with problems of quantum relativity (“finitary algebra sheaves”
and the like); see, for instance, I. Raptis [1, 2] as well as H.F. de Groote [1].

Consequently, when looking at

(1.14)

a local gauge of E , in the sense of (1.7)—namely, at an element,

(1.14.1) φ|U ≡ φU ∈ (AutE)(U) = Aut (E |U )
(see (1.6))—one finally concludes by virtue of (1.10.1) and (1.6) that

(1.14.2)
φ|U ∈ Aut (E |U ) = Aut (An|U ) = (AutAn)(U)

= GL(n,A)(U) = GL(n,A(U)),

for any open U ⊆ X for which (1.10.1) is valid—in other words, a “local
gauge” of E—in the sense of (1.8), while we still take into account (1.12).
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Therefore, one comes to the conclusion that

(1.15)

when looking at a “local gauge” of a given vector sheaf E on X , in either
the sense of (1.10.1) or even of (1.6), one is led, in effect, to deal with
(see also (1.1.2))

(1.15.1)
an n×n matrix of “generalized coordinates”—namely, local
(continuous) sections of the “structure sheaf” alias of our
(generalized) “arithmetics” A.

That is, one has, in view of (1.14.2),

(1.16)

φ|U ≡ φU ≡ (α
(U)
i j ) ∈ GL(n,A(U)),

such that
α
(U)
i j ∈ A(U), 1 ≤ i, j ≤ n = rkE,

for any open U ∈ U , as in (1.9), while (1.12) is taken into account as well. Yet, in
this context, see also Volume I, Chapter II, Section 9, where we considered a local
gauge of E in terms of a map, in point of fact, an A|U -isomorphism of A|U -modules,

(1.17) φ|U ≡ φU : E |U−→An |U ∼= (A|U )n,
that is an analogous situation to (1.10.1). However, (1.17) is actually referred now
to a “local instance” (section) of a corresponding local isomorphism of the group
sheaves of units AutE andGL(n,A) of (theA-algebra sheaves) EndE and EndA n =
Mn(A), respectively. On the other hand, one is still led, locally, to a similar conclu-
sion, as in (1.16); see Volume I Sect. 9, (9.19)–(9.22), along with (9.33), therein; see
also [VS: Chapt. V, (1.13) and (1.16)]. The preceding is thus an outcome of the basic
relations,

(1.18) (AutE)(U) = Aut (E |U ) = Aut (An|U ) = (AutAn)(U),

which is valid once (1.17) is in force ! (See also Volume I, Chapt. II, (9.33).)
Now, the above, in conjunction with our previous comments following (1.13),

points out still further the significance that finally has our structure sheaf A, con-
cerning our calculations (see Chapt. IV, Sections 6 and 8), a (C-algebra) sheaf that
we adopt each time! Therefore, to state it once again (!), one concludes that

(1.19)

locally, all our calculations are actually reduced—namely, they are
made, in effect, through (continuous) local sections of

(1.19.1) A ⊃
ε←

C

(see Volume I, Chapt. II, (9.40))—that is, via local sections of our “gen-
eralized arithmetics,” which, at the very end, we have chosen (it is impor-
tant now, by employing ADG, that the choice is actually ours (!)) each
time.
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Equation (1.19.1) certainly reminds us of the general principle that

(1.20)
“. . . classical observables . . . and quantum observables . . . are [always]
on the same structural footing.” (!)

See for instance, H.F. de Groote [1]. Yet, in this context, we can still refer to our
previous relevant remarks in Volume I, Chapter III, (1.22) and (1.23), in conjunction
with the corresponding description of photons, within the present abstract setting
(ibid. (1.19)).

Now, concerning the relevance of the foregoing to the classical theory (of differ-
ential geometry), referred to as smooth (viz., C∞-) manifolds (CDG), the previous
setup is expressed in terms of differentiable (C∞-, yet “smooth”) functions—in point
of fact, sections of the respective (classical) “structure sheaf” of the theory:

(1.21) A = C∞X .

See Volume I, Chapter II, (6.2 ′) and/or (6.25), along with (3.4) and (3.4 ′), therein.
Consequently, as we have already remarked, one usually employs—and this still

happens in the classical theory rather exclusively (!)—an abuse of terminology by
referring to the (non-abelian, in general, unless n = 1) group sheaf on X ,

(1.22)

(1.22.1) GL(n,A)

(see Volume I, Chapt. I, (1.31), (1.35)), as the “gauge group” of a given
vector sheaf E on X , of rank n ∈ C, in place, of course, of the group
sheaf on X ,

(1.22.2) AutE,

as the latter group was given by (1.3) or (1.2) in the foregoing. (In point
of fact, we considered therein the respective group of global sections of
the above; see also [VS: Chapt. I, p. 75, (13.19)]). However, the abuse
of language is certainly clear and occasionally, in practice, acceptable, in
the sense always of (1.14) and in also conjunction with (1.11) and (1.12).

Thus, on the basis of (1.22), we shall also employ the practice of abusing—namely,
the relevant terminology applied.

1.1 The Internal Symmetry Group, as the Group of Gauge Transformations

The group at issue in this section is actually connected with the “interpretation”
(description!) of elementary physical systems (particles) in terms of “principal
sheaves,” which was already considered in Volume I, Chapter II, Section 8. Indeed,
as we have mentioned,
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(1.23)

the (internal) symmetry group, or the group of (internal) symmetries of
the physical system under consideration, refers to the “structure group
(sheaf)”

(1.23.1) G

of the principal (G-)sheaf, say P , on X (the latter space being our stan-
dard arbitrary, in general, topological space, carrier of all the sheaves
involved, herewith), describing the physical system at issue. So, by defi-
nition (Chapt. II, Definition 8.1),

(1.23.2) P , as above, is a principal homogeneous G-space.

Now, the same group (sheaf) G (viz., sheaf of groups on X ; see [VS: Chapt. II,
p. 86, Definition 1.1]) as in (1.23.1) above is still called the gauge group (sheaf) of
P , or of the physical system concerned. The latter terminology is still supported in
view of the natural—according to the very definition of P—action of G on P (see
also Volume I, Chapter II of the present study, Section 8, in particular (8.9)).

However, we actually consider, and this is also the case in the classical theory, a
certain representation of G—that is, a group sheaf morphism,

(1.24) ρ : G−→AutE = (EndE). ⊆ EndE

(Chapt. II, (9.2)), where E is a vector sheaf on X “associated with P” via the given
representation ρ, as in (1.24) above (see also Chapt. II, (9.5)). Thus, henceforth, by
referring to the

(1.25)

group (in point of fact, sheaf of groups, or even group sheaf) of gauge
transformations of a physical system, we virtually mean, unless other-
wise stated, the one defined by (1.2.1), thus corresponding to a given
representation of the symmetry group of the system at issue, as in (1.24).

Yet, in this connection, we also recall the so-called “symmetry axiom” according to
which

(1.26)
the symmetry group (sheaf) is the same at the classical and the quantum
régime alike.

See also Volume I, Chapter II, the remarks following (3.13). The same might also be
related with our previous comments in (1.20).

Now, as already said in the introduction to this chapter, our main objective
throughout the present discussion is to put into perspective, within our abstract
setup, the classical material pertaining to the so-called “geometry of Yang–Mills
fields”—that is, to examine, in terms mainly of differential-geometric notions (clas-
sical or not), the space of A-connections of a given Yang–Mills field,

(1.27) (E, D)
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(see, for instance, Chapt. I, (2.15), or (4.12)–(4.13), therein) on a topological space
X—in other words, the “geometry” of what we have called in the preceding, space
of A-connections of E ,

(1.28) ConnA(E)

(see, e.g., Chapt. I, (5.10)). However, in view of the paramount importance of the
“gauge invariance” of the means (notions), through which one looks at a particular
system, we actually consider the quotient space

(1.29) ConnA(E)/AutE,

which will be, by definition (see also (2.9) and (2.14)), the “moduli space” of
E . We deal with this matter in the next section, while we continue this study in
Chapter III, as it particularly concerns “structural properties” (in effect, differential-
geometric ones) of the same space.

On the other hand, within the same vein of ideas, we can further remark, in
accordance with Klein’s point of view, that

(1.30)
the “geometry” of any substance (object, alias structure) is actually char-
acterized by an (abstract) group

such that for the case under consideration (viz., the “geometry of Yang–Mills fields”),
the respective situation is reduced to that of the moduli space of E , as given by (1.29).

Accordingly, by looking at the given vector sheaf E (substance/“space”) as
before, this is (can be) “identified,” in effect, through its group of automorphisms,

(1.31) AutA(E) ≡ AutE

(see also, e.g., (1.24)), to which the “type” of any particular (structural) quantity—
for instance, an A-connection D of E—should obey, being thus characterized, in the
case at issue, by means of the corresponding “transformation law” (of potentials),
when looking at D, equivalently, via a local frame of E (see, for instance, Volume I,
Chapt. I of this study, (2.54), (2.56.1), or even (2.71) therein). In this context, see
also A. Mallios [9: (3.26)] as well as, H. Weyl [1: p. 16].

On the other hand, concerning the “group action” of (1.31) on the set (1.28) (see
Section 2), being already indicated by (1.29), and in conjunction with our previous
comments in (1.23), we really have, in complete analogy with what actually happens
in the classical case, the next basic result, being also in accord with our assumption
in (1.25) (yet, see (2.5)). Thus, one concludes that

(1.32)

there does exist an “identification” (bijection) between the set of
A-connections of a given vector sheaf E on X and those of the principal
(GL(n,A)-)sheaf of the “local frames” (local gauges) of E , where

(1.32.1) n = rkE ∈ N.
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For details of the proof of (1.32) and the relevant terminology applied above, see
E. Vassiliou [1: p. 246, Theorem 5.5].

Yet, in this context, see also our previous discussion in Volume I, Chapter II,
Sections 8 and 9 of this treatise concerning “principal G-sheaves” and corresponding
physical interpretations.

2 Moduli Space of A-Connections

To start with, consider a vector sheaf E on X , for which one has

(2.1) ConnA(E) �= (0);
that is, we assume that E admits nontrivial A-connections, the first member of (2.1)
denoting, as usual, the affine space of A-connections of E modeled on the vector
sheaf (we still assume here that Ω 1 is a vector sheaf on X , too)

(2.2) (EndE)⊗A Ω1 ≡ Ω1(EndE)

(see Chapt. I, (5.6)). Of course, we already assumed that we were also given, as
always, a differential triad

(2.3) (A, ∂,Ω1)

on a topological space X—the base space of a given C-algebraized space

(2.4) (X,A)

—this same X being still the base space of any A-module (in particular, vector sheaf)
involved in our discussion. In this connection, see also Volume I, Chapter I for the
terminology. Yet, concerning our previous assertion in (2.1), see Volume I, Chapter I,
Sections 5 and 6.

On the other hand, “gauge theories” are not, by their very nature, sensible
against objects that differ by a gauge transformation (see (1.2.1), (1.4), (1.5), or
even (1.11)), or to put it, differently, they just seem to recognize objects that trans-
form exactly, according to an appropriate changing of local gauges. Yet, in other
words,

(2.5)

we shall have isolated a (physical) conservation law, hence, the eventual
substance of a physical object, whenever we have recognized a gauge
invariant physical process. (See, for instance, the standard isotopic spin
conservation (Yang–Mills).)

In this connection, see also S.A. Selesnick [2: p. 225] as well as the epigraph of
M.F. Atiyah at the start of the chapter. Yet, what seems probably to be of a particular
significance is the fact that
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(2.6)

such conservation laws appear to be inherent to the physical object
itself; namely, one also might say, they are dependent on the particu-
lar symmetry (gauge) group of the object under consideration, as, for
instance, on

(2.6.1) GL(n,A)|U = AutE |U
(see Volume I, Chapt. I, (6.26)), and not on the “surrounding space” (as,
e.g., “space–time manifold”).

Accordingly, what we call

(2.7)
“gauge invariance” refers to something that remains invariant with
respect to the group of automorphisms (see (2.6.1)) of the object (field)
itself at issue, and not relative to anything else outside of it (!).

The phenomenal entanglement of the “structure sheaf” A in (2.6.1) does not
essentially refer to the space X , but to our “arithmetics”—that is, to our own choice
of a mechanism to describe matters—while this (see also [VS: Vols. I and II]) does
not, have much to do (if anything at all (!), see, for instance, cohomology, loc. cit.)
with the space X itself! Instead, the same mechanism (as it concerns differential-
geometric concepts, at least) seems to depend just on A (!), along, of course, with
the “differential” paraphernalia that accompany it, as the case each time might
demand.

Thus, as a first consequence of the preceding, we identify

(2.8) A-connections that are gauge equivalent;

that is, for any given vector sheaf E on X (see (2.3) and (2.4)), for which (2.1) holds
true, we consider the space—namely, quotient set (see also (2.10) below)

(2.9) ConnA(E)/AutE = ConnA(E)/(EndE). .

Of course, we have set above, according to the very definitions,

(2.10) AutE = (EndE).;
that is, the group sheaf (of germs) of A-automorphisms of E is exactly the group
sheaf of units of the A-algebra EndE (see [VS: Chapt. II, p. 138, (6.29), along
with Chapt. I, p. 87, (17.3) and Chapt. V, p. 390, Scholium 8.2. Yet, see Volume I,
Chapter II, p. 138, Definition 6.2 of this treatise]. In particular, for E = A n , one
obtains (see also ibid., Chapt. I, (1.24) and (1.35)),

(2.11) (EndAn)
. ≡ Mn(A)

. = GL(n,A),

a fact that will also be of use below, as one still has, by applying in (2.11) the global
section functor,

(2.12) Mn(A)
.
(X) = Mn(A(X))

. = GL(n,A(X)) = GL(n,A)(X).
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On the other hand, as already explained in the foregoing (see our remarks in
(1.11) and (1.12)),

(2.13)
one still employs, in practice, the group sheaf

(2.13.1) GL(n,A), in place of AutE , with n = rkE .

See also (1.22), as above. Accordingly, one further applies a (conscious!) abuse of
notation (loc. cit.) by assuming, in place of (2.9), the relation (see also (2.11))

(2.14) ConnA(E)/GL(n,A) = ConnA(E)/Mn(A)
.

as a definition for the moduli space of E .
Of course, to say it, once more (!), by virtue of (2.6.1),

(2.15)
the above two definitions (2.9) and (2.14), referring to the moduli space
of E , are locally equivalent;

that is, for any local gauge U of E (see (1.10.1)), one has

(2.16) (ConnA(E)/AutE)|U = (ConnA(E)/GL(n,A))|U ,
within a bijection of the sets concerned. Indeed, our assertion in (2.16) is, in effect, an
immediate consequence of our previous considerations, as in (1.5), (1.6), and (1.14);
see also (2.20).

Thus, the above, in conjunction with our preceding remark in (1.13), justifies, in
practice, the

(2.17) use of either one of the two definitions (2.9) or (2.14) as the moduli space
of E .

Now, we still recall the rudiments of the relevant notation in (2.9) by remarking
that, as already said in the preceding (see also Volume I, Chapt. I, Section 6),

(2.18)
the group sheaf AutE acts on the set (affine space) of A-connections of
E , ConnA(E).

—that is, one has the map

(2.19) AutE × ConnA(E)−→ ConnA(E),

given by the relation (see also loc. cit. (6.45))

(2.20)
(φ, D) �→ φ · D := (φ ⊗ 1) ◦ D ◦ φ−1

≡ φDφ−1 ≡ Ad(φ) · D ≡ φ∗(D) (1 ≡ 1Ω1)

for any pair (φ, D) in the source of the map (2.19). Indeed, the map (2.19) yields
a group action, given that, by virtue of (2.20), it also satisfies the two following
relations: (i)

(2.21) 1E · D = D, with D ∈ ConnA(E)
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and (ii)

(2.22) (φ ◦ ψ) · D = φ · (ψD)

for any

(2.23) φ and ψ in AutE := IsomA(E, E)
and D ∈ ConnA(E), where 1E in (2.21) stands, of course, for the “identity
A-automorphism” of E . (Equations (2.21) and (2.22) are indeed immediate conse-
quences of the very definitions and (2.20).) Yet, we prove that (2.20) is well defined
in the sense that one really has

(2.24) φ · D := (φ ⊗ 1) ◦ D ◦ φ−1 ∈ ConnA(E)
for any (φ, D), as in (2.20). Thus, by the hypothesis for D and the very definition of
(2.24), one obtains

(2.25) φ · D ∈ HomC(E,Ω1(E)).
On the other hand, we further verify that

(2.26)

the C-linear morphism φ · D, as in (2.25), fulfills also the Leibniz
condition—namely, one has the relation (see Volume I: Chapt. I, (2.3))

(2.26.1) (φ · D)(α · s) = α · (φ · D)(s)+ s ⊗ ∂(α)

for any α ∈ A(U) and s ∈ E(U), with U open in X .

Indeed, one has, in view of (2.24),

(2.27)

(φ · D)(α · s) ≡ ((φ ⊗ 1)Dφ−1)(α · s) = ((φ ⊗ 1)D)(φ−1(α · s))

= ((φ ⊗ 1)D)(α · φ−1(s)) = (φ ⊗ 1)(D(α · φ−1(s)))

= (φ ⊗ 1)(α · D(φ−1(s)+ φ−1(s)⊗ ∂(α))

= α · (φ ⊗ 1)(D(φ−1(s)))+ (φ ⊗ 1)(φ−1(s)⊗ ∂(α))

= α · ((φ ⊗ 1)Dφ−1)(s)+ s ⊗ ∂(α),

which, of course, proves (2.26.1), and therefore, along with (2.25), the desired equa-
tion (2.24) as well. In our previous calculations in (2.27) we have employed the
obvious relation

(2.28) φ ⊗ 1 ∈ End(Ω 1(E)) ≡ HomA(Ω1(E),Ω1(E)),
according to the very definitions.

In point of fact, by further looking at the preceding relation (2.28), given that φ
and 1 ≡ 1Ω1 are, in effect, A-automorphisms of the vector sheaves concerned (see
(2.23) and (2.20) as well as (2.2)), one actually obtains, more precisely, concerning
(2.28), that

(2.29) φ ⊗ 1 ∈ Aut (Ω 1(E)) = (End(Ω1(E))). .
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In particular, φ ⊗ 1 is thus an A-endomorphism of the A-module (in fact, vector
sheaf)

(2.30) Ω1(E) ≡ Ω1 ⊗A E ∼= E ⊗A Ω1,

what we just used, for that matter, in (2.27), as it was, of course, already hinted at,
by (2.28).

Now, as an outcome of the above discussion (see (2.18)), we conclude that

(2.31)

given a vector sheaf E on X , the group (sheaf) of A-automorphisms of
E ,

(2.31.1) AutE,

acts on the set of A-connections of E ,

(2.31.2) ConnA(E).

Therefore, one can further consider, according to the general theory of
“transformation group sheaves,” the corresponding orbit space of the
action at issue, denoted by

(2.31.3) ConnA(E)/AutE .

Thus, we also say that

(2.32) the set ConnA(E) becomes an AutE-set, or even an AutE-space.

Now, the notation in (2.31.3) is justified by the fact that

(2.33)

the above established action (2.19) yields, in point of fact, an equiva-
lence relation on ConnA(E) (viz., on the corresponding “action space”);
yet, the same equivalence relation coincides, in effect, with the one
defined, by means of the “gauge equivalence” of A-connections of E
(see Volume I, Chapt. I, (6.2)).

The assertion is certainly an immediate consequence of the same definitions; see
(2.24), along with Volume I, Chapter I, (6.5), (6.7), or even (6.43) therein. Hence,
to repeat it again (loc. cit. (6.48)), one concludes that

(2.34)

“gauge equivalent” A-connections of a given vector sheaf E on X , alias
“φ-related” A-connections of E ,

(2.34.1) with φ ∈ AutE

(ibid. (6.2) and (6.4)), and, on the other hand, “equivalent” A-connec-
tions of E , through the action (2.19), are, in point of fact, synonymous
terms!
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Accordingly, the justification of the respective common notation, thus far, concerning
what we have called above the moduli space of E , as in (2.9) and (2.14), or even
(2.31.3). It is actually the latter aspect, as in (2.31.3), that we are going to consider
straightaway below, with an eye also to applications in Chapter 3.

2.1 The Orbit Space of A-Connections

Our purpose in the following discussion is to consider, as already mentioned above,
the moduli space of a given vector sheaf E on X (see (2.9)) as the “orbit space” of
the set of A-connections of E under the action on the latter set of the group (sheaf)

(2.35) AutE,

according to (2.19). Thus, given an A-connection of E ,

(2.36) D ∈ ConnA(E),

we denote by OD the so-called orbit of D in the (quotient) set (2.31.3) (alias, the
equivalence class of D, an element of the latter set) under the equivalence relation
on ConnA(E), defined on it by (2.24). Hence, one has, by definition,

(2.37) OD := {φ · D : φ ∈ AutE} ≡ [D]

such that (see (2.20)), one sets

(2.38) φ · D ≡ φDφ−1 := (φ ⊗ 1) ◦ D ◦ φ−1 ≡ Ad(φ) · D

for any φ ∈ AutE , while the last term in (2.37) stands for the equivalence class of
D, as explained above. Furthermore, in view of (2.34.1), one still obtains

(2.39) OD = {D′ ∈ ConnA(E) : D′ ∼
φ

D, for some φ ∈ AutE},

where we set (see Volume I, Chapt. I, (6.46) and (6.47))

(2.40) D′ ∼
φ

D :⇐⇒
def

D′ = φDφ−1 ≡ φ · D,

which also explains (2.34.1) as well. In other words,

(2.41)
the orbit of an A-connection D in (2.31.3) is the set of those
A-connections of E which are “gauge equivalent” (see (2.40)) to D,
modulo AutE viz., for φ varying in AutE).

In the subsequent discussion we shall use either one of the two (equivalent) defining
relations OD as the particular case in hand may demand. Yet, there is still another
equivalent expression for OD , which will be also of use below (see, e.g., Chapter III).
Thus, one obtains

(2.42) OD = {D − DEndE (φ)φ−1 : φ ∈ AutE}.
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Indeed, applying (4.26) of Chapter 1, one has

(2.43) DEndE (φ) = D ◦ φ − (φ ⊗ 1) ◦ D ≡ Dφ − φD ≡ [D, φ]

for any φ ∈ (EndE)(U) = End(E |U ) (see, e.g., (1.18) or even (1.6)) and open
U ⊆ X . Therefore, one further gets at the relation

(2.44) (DEndE (φ))φ−1 = D − φDφ−1 ≡ D − φ · D

for any

(2.45) φ ∈ AutE ≡ (AutE)(X) ⊆ EndE,

so that one finally obtains

(2.46) φ · D = D − DEndE (φ) · φ−1

for any φ, as in (2.45), which thus explains (2.42).

Note 2.1 Based on our discussion in Section 1 (see for instance, (1.2.1) therein), we
consider in (2.42), as a group of gauge transformations of E , the group (see (1.4))

(2.47) AutE := (AutE)(X).

Of course, in a manner similar to (2.18), one proves that

(2.48) AutE acts on ConnA(E)

as well, so that

(2.49) ConnA(E) can be viewed as an AutE-set too.

Consequently, one can further consider

(2.50) ConnA(E)/AutE

as the orbit space of the previous action. In point of fact, it is still the latter set that we
usually consider in calculations, and even more its further restriction, occasionally,
to any local gauge of E (see also, e.g., (2.16))—that is, to think, by analogy with
(2.47), in terms of the group (see also (1.18))

(2.51) (AutE)(U) = Aut (E |U )
—therefore, the entanglement finally of the group (sheaf),

(2.52) GL(n,A), with n = rkE,

as already explained in the foregoing (see also Volume I, Chapt. I, (6.33) therein; yet,
see (1.14) in Section 1).



94 2 Moduli Spaces of A-Connections of Yang–Mills Fields

On the other hand, as an application of the “geometric” point of view that is
provided by the notion of the orbit space, one has the relation

(2.53) ConnA(E)/AutE =
∑

D ∈ ConnA(E)
OD,

the second member of (2.53) denoting the partition of the orbit space in terms of the
individual orbits (equivalence classes) of the A-connections of E . In this context, see
also Volume I, Chapter I, Section 6. Finally, based on our previous remarks in (2.34),
we may further consider

(2.54)

the orbit space

(2.54.1) ConnA(E)/AutE =
∑

D ∈ ConnA(E)
OD

as the moduli space of E .

Yet, the appearance of the group

(2.55) AutE := (AutE)(X)

in (2.50), hence, in (2.53) too, in place of the group (sheaf) AutE is in accord, as
already hinted at several times in the preceding, with the

(2.56)
more convenient point of view especially in calculations, namely, of
looking at a given sheaf (along with J. Leray) in terms of its complete
presheaf of sections.

However, by employing (2.55), as above, the result is always the same; see [VS:
Chapt. I; p. 73, Theorem 13.1 as well as p. 75, (13.19)].

Yet, concerning the previous formulas for O D , as in (2.37) or (2.39), we shall
also employ the same practice as in (2.42).

As already said in the preceding, applications of the above—in particular, of the
notion of the orbit space (see (2.53)) or even of the individual orbit O D of a given
A-connection D of E in any one of the equivalent forms appearing in the foregoing—
will be made in Chapter III, pertaining to the “geometry of the Yang–Mills fields.”

As a preamble to that discussion, we further comment on the previous defining
relation OD , as in (2.42): Thus, as an immediate consequence of the very definitions
(see (2.43)), one concludes that

given an A-connection D of a vector sheaf E , there always exists the
A-connection

(2.57)

(2.57.1) DEndE

of the vector sheaf

(2.57.2) EndE := HomA(E, E).
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In this context, see also Chapter I, Section 4, concerning the meaning of the same
definition of DEndE , as well as Section 5 of the present chapter, pertaining to a
potential physical significance of the A-algebra sheaf EndE , as above.

On the other hand, we still look at a number of certain basic properties of the
same A-connection (2.57.1) that will also be of use in the ensuing discussion: Thus,
based on Chapter I, (4.23), in the preceding, one gets the relation

(2.58) DEndE (1) = D′ − D ∈ Ω1(EndE)(X)

for any two A-connections D and D ′ of the vector sheaf EndE on X , where

(2.59) 1 ≡ 1E ∈ AutE ≡ (EndE).(X) ⊆ (EndE)(X) ≡ EndE

stands for the identity A-automorphism of E .
Now, since EndE is an A-algebra sheaf (see [VS: Chapt. II, p. 138, Defini-

tion 6.2]), A being, by assumption, a unital C-algebra sheaf on X , one obtains

(2.60) C ⊂→ε

A ⊂→ j
EndE,

the previous isomorphisms being given by the obvious exploitation of the identity
A-automorphism 1E , as above; namely, we have

(2.61) ε(λ) := λ · 1A and j (α) := α · 1E
for any λ ∈ C and α ∈ A(U), U open in X . Thus, in particular, one gets

(2.62) C
. ⊂→ A. ⊂→ (EndE). = AutE

concerning the respective group (sheaf) of units of the C-algebra sheaves involved,
as in (2.60).

On the other hand, based on relation (2.60), one can look at the
“induced A-connections” of (2.57.1) on C and A, respectively (i.e., precisely speak-
ing, the pull-backs of the latter, via the maps ε and j , respectively, as in (2.60), on
the sheaves concerned (see also Volume I, Chapt. I, (3.48) and (8.32) in Chapter I of
this treatise). Thus, one first obtains

(2.63) DEndE |C = 0

(in fact, an immediate consequence of (2.58)), for D ′ = D; as a matter of fact, one
concludes that

(2.64)

(2.64.1) DEndE (1) = 0

if, and only if, D ′ = D in ConnA(E), where, of course, one has, con-
cerning (2.58), the relation

2.64.2) D(D′,D)
EndE (1) = D′ − D,

the previous notation referring just to the dependence of the respective
formula on the given A-connections D and D ′ of E .
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In point of fact, our previous assertion in (2.63) is a particular case of the more
general fact that

(2.65) DEndE |A = ∂.

Indeed, the preceding relation follows from the very definitions and (2.61), as
above.

Thus, one further obtains the following relation, which also explains our last
assertion above, in view of the respective behavior of ∂ on C; that is, one has

(2.66) C ⊂→ ker ∂ = ker(DEndE |A) ⊂→ ker(DEndE ) ⊆ EndE

(see also Chapt. I, (1.16)).
As an application of the previous discussion, we further consider the important

case of Riemannian vector sheaves on X , along with their corresponding moduli
spaces, the latter being now defined by taking into account the respective A-metrics
ρ of the (vector) sheaves concerned.

2.2 The Orbit Space of a Maxwell Field

Suppose we have a Maxwell field

(2.67) (L, D)

on X , a given topological space, as above. Therefore, by considering the given
A-connection D of L, as in (2.67), we can further look at the corresponding orbit
of D, in accordance with (2.37); namely, we have

(2.68) OD := {φ · D : φ ∈ AutL} ≡ [D].

On the other hand, since, by hypothesis, rkL = 1, one gets (see also Volume I,
Chapt. I, (5.10))

(2.69) AutL := (EndL). = A.
,

within an isomorphism of the group sheaves concerned. Thus, an element of the first
member of (2.68) may be identified through a 0-cochain of A .

; namely, one has

(2.70) AutL � φ ←→ (sα) ∈ C0(U,A.
),

with U a local frame of L. In this connection, see also Volume I, Chapter III, Lemma
2.2, in particular (2.44), (2.45), and (2.48) therein.

Therefore, by employing herewith our previous terminology (loc. cit. (3.11)), see
also (2.46) therein), one concludes that

(2.71)

the orbit of D, as above, may be construed as a light ray, alias a beam of
photons (see also ibid. (2.45)), so that one may still consider the follow-
ing identification:

(2.71.1) OD ≡ [D] ←→ [(L, D)] ∈ �1
A(X)

�
R , with R ≡ R(D).

In this connection, see also loc. cit. (3.16), (3.71), (3.109), as well as Chapter IV,
Theorem 5.1.



3 Moduli Space of A-Connections of a Yang–Mills Field 97

3 Moduli Space of A-Connections of a Yang–Mills Field

We come to examine our main theme in this chapter—namely, the moduli space of a
given Yang–Mills field

(3.1) (E, D),

as this has been already defined in Section 2 (see (2.9) or even (2.50)) for any vector
sheaf E in general, admitting A-connections; however, now, in the particular case
that such an A-module E , as before, is actually given within a setup, which can
be described, by virtue of our discussion in Chapter 1, as an abstract Yang–Mills
framework. Thus, in particular,

(3.2) we assume that the setup, as described in Chapter I, (4.1) is in force.

The above framework—by referring to the topological space X , in particular the
common base space of all the sheaves involved—has been called an abstract
Riemannian (differential) space, or, for convenience, just a “Riemannian space.”
However, we still recall that by complete contrast with what actually happens in
the classical theory, the previous attribute to the space X involved does not refer at
all (!) to the space X itself but simply to the type of sheaves that are considered on it.

Therefore, following the same vein of ideas as those that were stated, for instance,
in Section 2 (see, e.g., (2.7)) and since now, according to our hypothesis in (3.2),
we are given an A-metric ρ on A (see Chapt. I, (4.1.2)), which further, by virtue
of the same hypothesis, is inherited on every vector sheaf E on X (ibid. (4.2), for
convenience, we retain here the same symbol ρ for the A-metric, thus defined on E),
the important A-automorphisms of E are now, of course,

(3.3)

those φ ∈ AutE , which are “metric preserving”—that is, the ones for
which one has

(3.3.1) φ∗(ρ) ≡ ρ ◦ (φ, φ) = ρ

(see also Chapt. I, (5.38)). Accordingly, one now considers as an
appropriate group of gauge transformations the subgroup of AutE
defined by relation (3.3.1). We denote it by

(3.3.2) (AutE)ρ = (AutE)ρ(X),

within an obvious meaning of the second member of the last relation, in
view of (3.3.1).

Of course, it is easy to see, based on the very definitions and (3.3.1), that

(3.4) (AutE)ρ,

as is given by the same relation (3.3.1), is really a group, indeed, a subgroup of
AutE = (AutE)(X), hence, the relevant notation, as applied in (3.3.2). Therefore,
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by considering a given Yang–Mills field (E, D), in general, as in (3.1), within the
framework of (3.2), that is, as a triplet,

(3.5) {(E, D); ρ},
(alias, as a Riemannian vector sheaf on X , and as a Riemannian Yang–Mills field on
X) then, based on our previous remarks in (3.3), one thus defines, as a moduli space
of (3.5), the quotient set

(3.6) M(E)ρ ≡ ConnA(E)/(AutE)ρ.

To distinguish from previously employed relevant terminology, we may call the latter
set the moduli space of the Riemannian Yang–Mills field (3.5).

On the other hand, we are going to consider a further specialized instance of
(3.6), pertaining, in particular, to that associated with Yang–Mills equations (3.5), as
the latter have been considered in Chapter I, Section 4. In this context, we further
note, in anticipation (see (3.10) below), that the aforementioned specialization of
(3.6) now concerns the more particular sort of A-connections involved, and not the
gauge group AutE or even (AutE)ρ , as in (3.3.2), the latter remaining the same as
in (3.6). So, precisely speaking, the aforesaid restriction is referred, in effect, to the
domain of the definition of the Yang–Mills functional which can be associated with
(3.5) (see Chapt. I, (5.11)); yet, as is already known (loc. cit. Lemma 5.1), the latter
functional is invariant, relative to the gauge group (AutE) ρ , as above, and hence
is the final definition of the same functional on the respective quotient space, as in
(3.6). Accordingly, the specification of (3.6) is virtually referred to as the nominator
of the fraction, appearing in (3.6) (see (3.8.2), along with (3.10)), as we explain
straightforwardly in the following discussion.

3.1 Moduli Space of Yang–Mills A-Connections

First, to cope with the framework implicit in the various notions involved, we adopt
the following more restricted setup than that in (3.2). Thus,

(3.7) we accept that we have the framework of Chapter I, (5.1).

Now, suppose that

(3.8)

we are given a Yang–Mills field on X ,

(3.8.1) (E, D),

which, in effect, is a solution of the pertinent Yang–Mills equations (see
Chapt. I, Definition 4.2); that is, we assume that the corresponding field
strength (curvature) of (E, D) (thus, in point of fact, of D), R ≡ R(D),
satisfies the said equations (ibid. (4.76) and (4.77)). We denote the set of
A-connections of E as above by

(3.8.2) ConnA(E)YM,
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the elements of which are still called, to distinguish them from other
cases, the Yang–Mills A-connections of E .

Now, in this connection and being also in accord with our previous relevant com-
ments in Section 2 (see, e.g., (2.7)), our main conclusion herewith is that

(3.9)

a Yang–Mills field

(3.9.1) (E, D),

in the sense of (3.8) (viz., in effect, as an element of the set (3.8.2), in
other words, as a solution of the Yang–Mills equations (Chapt. I, Defi-
nition 4.2) is such when one moves across the orbit O D of the given
A-connection (solution) D of E (see also, e.g., (2.37) or even (2.42) in
the preceding). In this context, we also recall that OD is understood here,
with respect to the action of (AutE)ρ on ConnA(E), in point of fact, on
its subset ConnA(E)YM .

Accordingly, one can further consider the naturally entailed, in view of the preceding
argument, quotient space

(3.10) M(E)YM := ConnA(E)YM/(AutE)ρ,

which we call the moduli space of the Yang–Mills A-connections of E , in agreement
with the corresponding nomenclature as it applied for the set (3.8.2) or even, occa-
sionally, for convenience and when no confusion is risked, simply the moduli space
of E .

Yet, the same space (quotient set) is also named the “space of solutions” or
“solution-space” of the Yang–Mills equations that are associated with a given Yang–
Mills field (E, D), as in (3.9.1).

On the other hand, one can still refer to the preceding by also saying, equiva-
lently, that

(3.11)
the space of solutions of the Yang–Mills equations (viz., the set (3.8.2)),
as above, is (AutE)ρ-invariant.

Thus, as already noted, this is another equivalent expression of the same relation
(3.10). Yet, what amounts to the same thing, one thus infers the

(3.12)

invariance of the solutions of the Yang–Mills equations under the action
of (AutE)ρ . In other words,

if R(D) ≡ R is a solution of the Yang–Mills equations of
{(E, D); ρ} ≡ E (see (3.5)), then the same holds true for

(3.12.1) φ∗(R) ≡ Ad(φ)R ≡ φRφ−1

for any φ ∈ (AutE)ρ .
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Indeed, all the above equivalent assertions are, in effect, an immediate consequence
of the characterization of the aforesaid solutions, as “critical points” of the Yang–
Mills functional (see Chapt. I, (8.26)), along with the “gauge invariance” of the latter;
namely, of the fact that

(3.13) the Yang–Mills functional (ibid. (5.11)) is still (AutE)ρ-invariant

(see also loc. cit. Lemma 5.1).

Scholium 3.1 Looking at our main conclusions in the present section as well as in
Chapter I, Section 5, one infers the gauge invariance (i.e., equivalently, the (AutE) ρ -
invariance of two fundamental issues of our relevant argument, as they certainly are
(i) the Yang–Mills functional (Chapt. I, (5.11)) and (ii) the (space of) solutions of
the Yang–Mills equations for a given Yang–Mills field (see (3.8.2) as well as (3.12)).
Now, this is, as already noted, in accord with our previous comments in (2.7); yet,
one can look at these conclusions as a farther indication/corroboration of what may
construed as the

(3.14)

“functoriality” of Nature’s function (unfolding), to the extent, of course,
we can perceive it (i.e., relative to our own measurements, through which
we detect it); therefore, one comes here to another aspect of the classical
principle of general relativity.

On the other hand, strictly speaking, the above “functoriality of Nature” is more
general/intimate than the aforementioned classical principle, due to the full absence
from our relevant argument of any notion of “space” (manifold), in the classical
perspective of the term, according to the very nature of the abstract setting employed,
throughout the present treatise.

4 Moduli Space of Self-Dual A-Connections

We continue our reference to the “moduli space ofA-connections,” the subject matter
of this chapter, in the particular case of what we may call, within the present abstract
context, self-dual A-connections. We are actually concerned with the “moduli space
of Yang–Mills fields” for the case of the self-dual Yang–Mills fields. Thus, given a
Yang–Mills field

(4.1) (E, D)

on X , of order n ≥ 2, we further consider, according to what we have said in the
preceding (see (1.29)), the quotient space

(4.2) ConnA(E)/AutE

(we still refer to Sections 1 and 2 of this chapter concerning the relevant notation, as
well as the corresponding framework employed herewith).
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Now, to proceed further, we need to supplement our framework, thus far, with
that of Volume I, Chapter I, Section 10 of this treatise; namely, with the correspond-
ing context, pertaining to the relevant discussion in our case on the classical issue,
concerning the so-called Hodge ∗-operator (see also [VS: Vol. I]). So we set the
following.

Definition 4.1 Given a Yang–Mills field (E, D), as above, we say that we have a
self-dual Yang–Mills field or even (and this is also usually the practice, classically)
a self-dual A-connection D whenever the curvature of D, as in (4.1) above, satisfies
the relation

(4.3) ∗R = R,

where, as usual, we set R ≡ R(D) for the curvature of the given A-connection D.
In relation (4.3), “∗” denotes the Hodge ∗-operator, as has already been defined

in Volume I: Chapter I, (10.13) of the present treatise, where we refer the reader for
further details.

Now, in this context, we also note that this concept of a Hodge ∗-operator is, by
definition, connected with the one of an A-metric, say ρ, on the Yang–Mills field
(E, D) concerned, precisely on the corresponding “carrier” (vector sheaf) E of it,
loc. cit. Accordingly, the appropriate context for our abstract setting is one of a

(4.4)
“Riemannian space” X , in the sense of Chapter I, (4.1), which we thus
assume in the sequel, pertaining to the common base space of the vector
sheaves involved.

Thus, looking at the quotient space (4.2), as above, and, in particular, at the deno-
minator (action group)AutE , referring to a given vector sheaf E on X , as in (4.4), we
actually consider in the sequel its subgroups, consisting of the A-metric-preserving
A-automorphisms of E—namely, the group

(4.5) (AutE)ρ < AutE,

(see (3.3) in Section 3, as well as in Chapter I, (5.38) and (5.46)).
On the other hand, based on the very definitions concerning the Hodge

∗-operator (see Volume I, Chapt. I, Section 10), one concludes that

(4.6) φ ◦ ∗ = ∗ ◦ φ
for any φ ∈ (AutE)ρ . In other words,

(4.7)
the Hodge ∗-operator commutes with every element φ ∈ (AutE) ρ (viz.,
with any A-metric preserving A-automorphism of E).

As a consequence of the above, and by still referring to a self-dual A-connection D,
in the sense of Definition 4.1, as above, one obtains, by virtue of (4.3) and (4.6), the
relations

(4.8) ∗(φ(R)) = (∗ ◦ φ)(R) = (φ ◦ ∗)(R) = φ(∗R) = φ(R)
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for any φ ∈ (AutE)ρ , where we set

(4.9) φ(R) := φRφ−1 ≡ Ad(φ) · R

with R ≡ R(D), the curvature of the given sulf-dual A-connection D. Therefore, in
other words, in view of (4.8), one thus concludes that

(4.10)
self-duality is retained by A-metric-preserving gauge-transformations
(A-automorphisms) of E .

Accordingly, one can further consider the moduli space of self-dual A-connections
of a given Yang–Mills field (E, D) on X—namely, the quotient set

(4.11) ConnA(E)self-dual/(AutE)ρ,

a generic element of which is of the form

(4.12) [(E, D)] := {φ∗(D) ≡ φDφ−1 : φ ∈ (AutE)ρ}
(see also, for instance, (2.20)). Yet, self-dual A-connections are also known in the
classical literature as instantons, so that we may still write (4.11) in a self-explanatory
form as the quotient set

(4.13) ConnA(E)inst/(AutE)ρ

(viz., the moduli space of instantons associated with a given Yang–Mills field (E, D)
on X , as above (see also Chapt. I, Note 4.4)). The same (quotient) set (4.13) can be
expressed by just saying that

(4.14)
instantons are preserved, by any A-metric-respecting gauge transforma-
tion (A-automorphism) of E .

Of course, the previous quotient set (4.11) (or, equivalently, (4.13)) may still be
construed, according to the very definitions and our results in the preceding, as a
subspace of the quotient set

(4.15) ConnA(E)YM/(AutE)ρ;
namely, of the moduli space of the Yang–MillsA-connections of E , or just the moduli
space of E , or even “solution space” of the Yang–Mills equations, associated with a
given Yang–Mills field (E, D), as above (see (3.10) in the preceding, along with the
relevant comments after it). In this context, see also Chapter I, Proposition 4.1, along
with (4.100) and Note 4.4 therein.

5 Quantized Moduli Spaces

“Quantization is provided by the physical law itself.”

C. von Westenholz in Differential Forms in Mathematical Physics (North-
Holland, Amsterdam, 1981) p. 323.
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We can refer to the same author, as above, in that (again, the emphasis below is ours),

(5.1)
“. . . the structure underlying an intrinsic approach to physics is ‘essen-
tially’ de Rham-coholomogy . . . ”

(loc. cit. p. 321), or even

(5.2)
“The mathematical structure underlying field quantities . . . is essentially
de Rham cohomology”

(ibid. p. 323). Now, the “field quantities” à la von Westenholz, as above, are actually,
in our case, what we have called in the preceding Yang–Mills fields,

(5.3) (E, D),

so that the previous two phrases of the same author, as in (5.1) and (5.2), might still
relate to our “cohomological classification of Maxwell and/or Yang–Mills fields,”
which we have already considered in the foregoing (see Volume I, Chapt. IV, Section
5, and Chapt. I, Section 9 of this volume).

On the other hand, within the same vein of ideas advocated by von Westenholz,
one can still mention D. Finkelsten’s dictum that

(5.4) “All is quantum”

(our emphasis; see D.R. Finkelstein [2: p. 477]). Yet, within the present abstract
framework, we may also refer to our conclusion in the preceding work (see Volume I,
Chapt. V, (5.128)):

(5.5) Every (free) elementary particle is (pre)quantizable.

In this context, we further note that a “(free) elementary particle,” according to the
terminology applied by the present treatise, is, in general, a Yang–Mills field (E, D),
as in (5.3), where

(5.6) rkE = n ∈ N,

which may also be particularized to a Maxwell field

(5.7) (L, D)

in the case that rkL = 1. See the corresponding classification in Volume I, Chapter II.
Now, a moral of the relevant considerations is that one is actually dealing

(5.8)

not much with E , or even (E, D), that is, with the (free) “particle,” itself,
as, in effect, with its endomorphism A-algebra EndE , or, even more
precisely, with the “Yang–Mills field”

(5.8.1) (EndE, DEndE );
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that is, with what we may define as the

(5.8.2) “matrix” representation or even “matrix” disguise of E .

In this context, concerning the terminology used in (5.8.2), we further remark that,
“locally”—that is, with respect, say, to a local gauge U of E—when (5.6) is in force
one obtains the relations

(5.9) (EndE)|U = Mn(A)|U = Mn(A|U )
so that, for any open V ⊆ U , one also gets at the relations

(5.10) ((EndE)|U )(V ) = (EndE)(V ) = Mn(A)(V ) = Mn(A(V )),

which finally remind us of Heisenberg’s point of view (matrix-mechanics, following
the classical nomenclature). According to the foregoing, we may call the Yang–Mills
field (5.8.1) the “Heisenberg form” of the initially given Yang–Mills field (E, D).

Consequently, we are thus temped to say that

(5.11)

by considering the transition

(5.11.1) (E, D) � (EndE, DEndE ),

one virtually gets, so to speak, at a

(5.11.2) “second-quantization functor,”

which thus can further cope, directly, with the second-quantized
objects, as they actually are already physical objects of the form (5.3),
or even (5.7), as appeared in the disguised form (5.8.1); namely, a
“canonical,” so to say, “matrix representation” of the initial object ((free)
elementary particle)

(5.11.3) (E, D).

In this regard, we still notice that in the case of a Maxwell field (L, D),
one gets

(5.11.4) (EndL, DEndL) = (A, DA) = (A, ∂).

Furthermore, the same transition (5.11.1) is still already encoded in the moduli space
of E , as well, that is given by

(5.12) M(E) := ConnA(E)/AutE = ConnA(E)/(EndE). .

Yet, the inner structure of the latter space is examined again in terms of the aforesaid
matrix representation of E (viz., by means, in effect, of the pair (5.8.1), as above);
see Chapter III. On the other hand,
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(5.13)

the sheaf-theoretic character of the present account entails for the
objects under consideration a varying status by the very nature of the
sheaf theory employed. Thus, this is an indispensable issue concern-
ing a “quantum field theory” perspective of looking at things, by a
direct reference to the latter, without the intervention of any “coordi-
nate space”, in the classical sense of the term. By contrast, any resort to
coordinatization refers to the “arithmetics” (alias, “laboratory”), that is,
in any way implemented by us, of course!

Accordingly, all told,

(5.14)

the employed framework of abstract differential geometry (ADG), as
advocated by the present study, turns out to be virtually eo ipso a quan-
tized one, either by referring to pairs ((free) elementary particles) of the
form (5.3) or to those of (5.8.1); yet, in particular, as a spin-off of its
sheaf-theoretic flavor, the same framework is a “second-quantized” (viz.,
a relativistic) one.

The above, however, just, as it concerns, of course, the “vacuum” (!); notwithstand-
ing, this might still be instructive, for other more involved situations, as, at least, to
the real nature (role) of the particular issues, under consideration.

Thus, concerning the natural question (see I. Raptis [3]),

(5.15) “. . . whether . . . quantizing a classical theory is physically meaningful at
all . . . ”

one might respond, by remarking that

(5.16)
(it always depends on the theory we apply!), this is, of course, always
related with the type of the theory (device/mechanism) that one employs
in describing the physical laws, via the corresponding equations.

Now, the above can certainly be construed as being in accord with the spirit of the
epigraph to this section.

Thus, as an outcome of the foregoing, we can further remark that

(5.17)
the device has to be innate, alias, “fully covariant” (both terms are
actually due to I. Raptis, loc cit.), with the physical objects (for instance,
elementary particles) that the device tries to describe.

Thus, it is very likely that the “abstract differential geometry” developed so far
provides such a device, as in (5.17). Yet, another spin-off of the same technique
is the possibility of describing physical objects by an appropriate exploitation of
cohomological language, as was hinted at at the beginning of this section (see
the maxims quoted therein, along with the subsequent comments thereon), as, for
instance, characteristic classes and the like, a fact that one may still consider as
another “advanced arithmetics” pertaining to the theory of elementary particles.
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5.1 Morita Equivalence, as Applied to Second Quantization

Our purpose in the following discussion is to sustain the idea that

(5.18)
the nomenclature “matrix disguise” that was applied earlier (see (5.8.2))
appears to be susceptible to acquiring a real meaning concerning the
essential use of the second compound of that term.

Indeed, it seems that this can be attained by an appropriate exploitation of the (cate-
gory) equivalence hinted at in the title of this section. (My debt here is due actually
to I. Raptis for communicating to me a relevant allusion lately of M.B.P. Wright to
Morita equivalence, which further reminded me of some remarks in the past pertain-
ing to the “Morita equivalence,” within the context of topological algebras theory,
as appeared in A. Mallios [2]).

In this context, we further note that the “matrix framework” pointed out by the
preceding is still present “locally,” in the moduli space of A-connections of a given
A-module E on X , as will become clear in Chapter III; see, for instance, (3.17) and
(3.18).

Now, it is a basic inference of commutative algebra (thus, in effect, of algebraic
geometry) that there is a category equivalence

(5.19) E f
A(X) ∼ P(A)

between locally free A-modules of finite rank and projective finitely generated
A-modules, with A a unital commutative C-algebra whose (prime) spectrum (alias,
“spectrum space”) is

(5.20) X ≡ Spec(A),

and A, as above, is the associated (to X) “structure sheaf” (in effect, a C-algebra
sheaf on X) so that one has, in particular, according to the very definitions, the rela-
tion

(5.21) A(X) = A,

within an isomorphism of (unital commutative) C-algebras. (See, for instance,
A. Grothendieck–J.A. Diendonné. [1: p. 198, Definition 1.3.4, and p. 207, Coro-
llary 1.4.4]).

On the other hand, according to K. Morita, one has the following equivalence of
(module) categories (“Morita equivalence”):

(5.22) ModA ∼ ModMn(A)

for any n ∈ N (see, e.g., F.W. Anderson–K.R. Fuller [1: p. 265, Corollary 22.6]).
Furthermore, a category equivalence respects finitely generated projective modules
(see, e.g., P.M. Cohn [1: p. 1157]), so that one actually obtains

(5.23) P(A) ∼ P(Mn(A))

for any n ∈ N.
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We proceed by assuming, henceforth, that

(5.24) A is a unital topological Q-algebra (viz., A
.

is a neighborhood of 1).

(See A. Mallios [3: p. 43, Definition 6.2], along with A. Mallios [4: p. 419, Sec-
tion 5]). Then, the algebra

(5.25) Mn(A) is still a unital topological Q-algebra.

See the same last quotation. Therefore, one can further consider the following:

(5.26)

Mn(A)-vector bundles (of finite rank) over X , along with the correspond-
ing sheaves of global continuous sections, the latter being, in particular,
locally free A-modules of finite rank over X , such that

(5.26.1) A ≡ CMn(A)
X .

See, for instance, loc. cit., along with p. 403, therein, Lemma 1.1. Accordingly, by
employing the notation of (5.19), as above, one gets the following equivalence of the
categories concerned:

(5.27) E f
CA

X
(X) ∼ E f

CMn (A)
X

(X).

We apply here the Morita equivalence (see (5.23)) plus generalized Serre-Swan,
ibid., p. 420, or even A. Mallios [1: p. 481, Theorem 4.2], as well as L.N. Vaser-
stein [1].

Yet, setting

(5.28) A ≡ CA
X

in (5.27), one then obtains, by the very definitions,

(5.29) CMn(A)
X = Mn(CA

X ) ≡ Mn(A),

so that we can still write (5.27) in the form

(5.30) E f
A(X) ∼ E f

Mn (A)(X),

within a category equivalence, for any n ∈ N, with A given by (5.28). In other words,
speaking in terms of Morita equivalence, one concludes that

(5.31)
locally freeA-modules of finite rank (viz., vector sheaves, with respect to
A as well as those relative to Mn(A), with n ∈ N) are actually (modulo
Morita equivalence) the same.

The above might be very likely related to Finkelstein’s adage that (emphasis below
is ours, of course!)

(5.32) “noncommutativity does not necessarily imply [(!)] the quantum deep.”

(See, e.g., D.R. Finkelstein [2: p. 134, beginning of Section 4.4.3].)



3

Geometry of Yang–Mills A-Connections

“. . . to understand what’s what . . . is a vital aspect of Mathematics.”

S. Mac Lane in Mathematics: Form and Function (Springer-Verlag, New York,
1986). p. 288.

“. . . the emphasis is on generality and careful formulation rather than on the
technique of solving problems.”

G. W. Mackey in The Mathematical Foundations of Quantum Mechanics
(W.A. Benjamin, New York, 1963). p. vii.

The geometry referred to in the title concerns an application of classical differential-
geometric notions/methods in the study of structure properties (geometry) of the
space that interests us here, which is the space of solutions (again!) of the so-called
Yang–Mills equations; these solutions are, by definition, A-connections in the sense
of the present treatise, which thus appear on the stage through their correspond-
ing curvature (field strength), which is actually involved in the equations at issue.
(See also Chapter I, Section 4, for the precise terminology employed.) On the other
hand, since, by virtue of their own nature, the objects concerned (A-connections
solutions) are not distinguished insofar as they are “gauge equivalent;” one is led
to consider not the initial solution space, as above, but, in effect, an appropriate
“quotient” of it—the so-called “moduli space” of the solutions (A-connections)
under consideration.

Of course, the spaces involved herewith are not finite-dimensional (vector)
spaces. However, the things are finally not as bad see as they might look at first
sight! Indeed, as we shall see (see Sections 2 and 3 in the subsequent discussion),
this is essentially due to the important property of being, namely, the space of
A-connections an affine space. Thus, at the very end, one is led to consider C-vector
spaces (however, infinite-dimensional, anyway). Yet, with something making the
things more familiar, the same spaces can, for an appropriate structure sheaf A,
become suitable topological vector spaces, so that classical differential-geometric
notions pertaining, for instance, to the notion of a tangent vector or of a tangent
space and the like can be formulated, as they indeed are.

Thus, with all these actually being abstract, even within the classical framework,
we further point out that the same can still be treated in a more general context, show-
ing the effectiveness of the abstract methods applied thus far, even in the present,
more sophisticated case of the classical theory. Yet, this whole enterprise is not with-
out a profit: indeed, as a result, one further gains, among other things, the possibility

A. Mallios, Modern Differential Geometry in Gauge Theories:
Yang–Mills Fields, Volume II, DOI: 10.1007/978-0-8176-4634-9_3,

109

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010



110 3 Geometry of Yang–Mills A-Connections

of employing the same abstract methods as advocated by this treatise, in more
general situations that occur in the applications where the classical setup is no more
accessible!

1 Abstract Differential-Geometric Jargon in the Moduli Space of
A-Connections

To start with, and also to be general enough while specializing occasionally, as the
particular case at hand may demand,

(1.1) suppose that we are given the framework of Section 1 in Chapter II.

So we basically consider a vector sheaf

(1.2) E, with rkE = n ∈ N

on a topological space X , a carrier of a given differential triad

(1.3) (A, ∂,Ω1)

(see also Chapt. II, Section 2), while we still assume that

(1.4) Ω1

is a vector sheaf on X as well. On the other hand,we further suppose that the given
vector sheaf E admits an A-connections namely, equivalently (see Chapt. II, (2.1)),
we also assume that

(1.5) ConnA(E) �= {0}.
Therefore (see Volume I, Chapt. I, (5.7)), if D is an A-connection of E , one has

(1.6) ConnA(E) = D +Ω1(EndE)(X);
that is,

(1.7)

ConnA(E) is an affine space, modeled after the A(X)-module

(1.7.1) Ω1(EndE)(X).

In fact, in view of our hypothesis for E andΩ 1, the above A(X)-module
is another vector sheaf on X as well.

In this connection, see also [VS: Chapt. VI, p. 32, Theorem 7.1]. We are going to
make substantial use of the latter vector sheaf, as in (1.7.1), the “model” of the
affine space of the A-connections of E , strictly speaking, of its “local structure”
(see Section 2), when trying to identify, for instance, the “tangent space” at D of the
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various “slices” of the moduli space of E (see Chapt. II (2.9)), these slices being the
orbits, OD , of the given A-connection D of E , as D varies through the space (1.5)
(see also loc. cit. (2.50)).

Now, apart from OD , the orbit of the A-connection D of E , as above, defined
under the action of AutE (or even of AutE) on (1.5) (loc. cit. (2.19), along with
(2.48) therein), we shall also need in the sequel (see Section 2) the notion of the
isotropy group of D.

Thus, by considering the aforementioned action of AutE (group of gauge trans-
formations of E (Chapt. I, (5.19)) on ConnA(E) (Chapt. II, (2.48)), along with an
A-connection D of E—namely, an element

(1.8) D ∈ ConnA(E)

—one defines the isotropy, or stability group of D, denoted by O(D), according to
the relation

(1.9) O(D) := {φ ∈ AutE : φ · D = D},
hence, by the very definitions (ibid. (2.20) and (2.24)), a subgroup of AutE . On the
other hand, by taking into account our previous remarks in Chapter II that follow
(2.18), along with (2.31) as well as (2.32) therein, one can look at the isotropy group
of D as that subgroup of AutE that is given, by analogy with (1.9), by the relation

(1.9′) O(D) := {φ ∈ AutE : φ · D = D}.
In the sequel we shall follow, indifferently, either one of the two definitions (1.9) or
(1.9′), as the case may be.

Thus, by still working with definition (1.9), for example, we can say that

(1.10)

the isotropy group of D, as above (see (1.8) and (1.9)), O(D), consists
of those φ ∈ AutE whose “adjoint representations” leave D invariant;
that is, one has

(1.10.1)
O(D) = {φ ∈ AutE : Ad(φ) · D = D}

< AutE ≡ (AutE)(X).

Indeed, our assertion in (1.10) is just another way of writing the defining relation
φ · D = D, as in (1.9); that is, one has (see also Chapt. II, (2.20))

(1.11) φ · D := (φ ⊗ 1) ◦ D ◦ φ−1 ≡ Ad(φ) ≡ φ · D · φ−1,

which is exactly our notation in (1.10.1).
Of course, relation (1.11) still entails, by definition (loc. cit), the group action of

AutE (or even of AutE , as the case may be; see (1.9) or (1.9 ′), respectively) on (the
affine space; see (1.7)) ConnA(E).

On the other hand, by further looking at the defining relation of O(D),

(1.12) φ · D = D
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with φ ∈ AutE , or φ ∈ AutE , as above, while also taking (1.11) into account, one
obtains

(1.13) φ · D ≡ (φ ⊗ 1) ◦ D ◦ φ−1 = D,

so that one has

(1.14) (φ ⊗ 1) ◦ D = D ◦ φ.
Hence, by further setting

(1.15) (φ ⊗ 1) ◦ D ≡ φ · D and D ◦ φ ≡ D · φ,
one finally gets, in view of (1.14), the relation

(1.16) φD = Dφ.

(In this connection, we still note that, for convenience, we employed above an
obvious (and usual!) abuse of notation, pertaining to (1.11) and the first of (1.15),
as before.) Therefore, by virtue of (1.16), one still obtains

(1.17) [D, φ] ≡ Dφ − φD = 0,

which thus can now be viewed as the defining relation of O(D) as well. In other
words, one thus concludes that

(1.18)

O(D), the isotropy group of

(1.18.1) D ∈ ConnA(E),

are those φ ∈ AutE (see, e.g., (1.9)) for which one has

(1.18.2) [D, φ] ≡ Dφ − φD = 0

(viz., those φ ∈ AutE , that “commute” with D). Accordingly, one
obtains

(1.18.3)
O(D) = {φ ∈ AutE : [D, φ] ≡ Dφ − φD = 0}

= {φ ∈ AutE : Dφ = φD}.

Now, another expression of the same group O(D) as before that will also be of
use below, can still be obtained through the ”covariant differential”

(1.19) DEndE ;
that is, by means of the A-connection of the vector sheaf

(1.20) EndE := HomA(E, E)
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induced on it by the given A-connection D of E . (See also Chapter I, (4.28), along
with (1.18), as above.) That is, one has the following useful (as we shall see, by the
ensuing discussion) definition of the group, under consideration:

(1.21)
O(D) = {φ ∈ AutE : DEndE (φ) = 0}

= ker(DEndE |AutE ) = (ker DEndE ) ∩ AutE .

In this connection, we recall that, according to the very definition of (1.19), one has
the map

(1.22) DEndE : EndE −→Ω1(EndE)

as a C-linear (sheaf) morphism of the A-modules (in effect, vector sheaves; see (1.4))
involved in (1.22), which thus explains the notation employed in (1.21). So we come
now to the following:

Proof of (1.21) Based on the definition of the covariant differential, as in (1.22) (see
Chapt. I, (4.28), along with (1.15) and (1.17) in the preceding), one obtains

(1.23) DEndE (φ) = D ◦ φ − (φ ⊗ 1) ◦ D ≡ Dφ − φD ≡ [D, φ];
that is, one actually has the relation

(1.24) DEndE (φ) = [D, φ]

for any φ ∈ EndE (see also (1.22), along with our comments in the foregoing
concerning (1.9) and (1.9 ′)). Thus, our assertion in (1.21) in now an immediate
consequence of (1.24), together with the previous definition of O(D), through
(1.18.3).

Note 1.1 By looking at the second member of (1.24) as the Lie derivative of φ ∈
EndE , with respect to the given A-connection D of E denoted by

(1.25) LD,

one has, in view of (1.24), the relation

(1.26) DEndE = LD.

The latter provides, at least (!), an easy way to recall the form of the first member of
(1.26). In this regard, see also [VS: Chapt. VI, p. 21 (5.26)].

Thus, by applying the notation of (1.26) in (1.21), one further obtains

(1.27) O(D) = ker(LD|AutE )) ≡ {φ ∈ AutE : LD(φ) ≡ [D, φ]) = 0}.
We are going to apply the preceding notions throughout this chapter. On the other

hand, by further employing dual differentials (see Chapt. II, Section 2), one succeeds
in decomposing the “model” vector sheaf
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(1.28) Ω1(EndE),
in point of fact, locally, viz., the corresponding A(U)-modules,

(1.29) Ω1(EndE)(U),
for any given open U ⊆ X , in terms of the image of the operator

(1.30) DEndE |AutE : AutE −→Ω1(EndE)(X)
and its “orthogonal complement.” As we shall see, the above two subspaces of
Ω1(EndE)(X) (however, always locally; see (1.29)) may finally be construed as
the “tangent space” of OD , the orbit of D in (1.6) (see Chapt. II, (2.42)) at D, and
the corresponding “normal subspace” (orthogonal complement), relative to a given
A-metric on E , hence, on the space (1.28) as well, when assuming, as usual, the
appropriate pair

(1.31) (X,A).

Note 1.2 (Physical meaning of (1.26)) By further commenting on (1.26), while still
employing the terminology of Chapter I, Section 4, we can say that

(1.32)

given an element

(1.32.1) φ ∈ AutE,

the “flow” of φ relative to D (in point of fact, relative to the “Lie
operator” defined by D) is that one of φ relative to DEndE ; namely, one
has the relation

(1.32.2) LD(φ) = DEndE (φ), φ ∈ AutE .

Now, the above, in conjunction with the remarks in Chapter II, Section 5,
suggests that

(1.33)

the description of the shift

E � EndE,

as akin to a quantization process (ibid.), is further supported by relation
(1.26) through

DEndE = LD .

Thus, “differentiating with respect to EndE” is reduced, in effect, to a
quantization procedure (Lie derivative).

On the other hand, by using the terminology of Chapter I, (4.59), one concludes that

(1.34)

(1.32.2) is tantamount to converting φ, the same already being an
A-automorphism of E in the category

(1.34.1) VectSh X
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(vector sheaves on X), into an automorphism of E in the (Yang–Mills)
category

(1.34.2) YMX .

Thus, by the very definitions, this is (i.e., the previous transition of ϕ is)

(1.35) still equivalent to φ being in the isotropy (stability) group of D, O(D).

2 Tangent Spaces

For the sake of generality, hence, of simplicity, we suppose that we have the same
framework as in Section 1 (see also Chapt. II, Section 1), following the relevant
terminology therein.

So we start by first giving the definition of what one may consider as the

(2.1)

tangent space of ConnE (E) (see Chapt. II, Section 2) at

(2.1.1) D ∈ ConnA(E),

which we denote, following classical notation (finite-dimensional differ-
ential geometry), by

(2.1.2) T (ConnA(E), D).

Now, for all the technical difficulties that at first sight appear to be inherent in our
previous task, as presented by (2.1), note that the space of A-connections of E ; that
is, the set

(2.2) ConnA(E),

nontrivial by our hypothesis, is not, of course, a usual manifold (!). Things are
actually made much easier by just remarking that the space at issue is an affine space,
modeled after Ω 1(EndE)(X); that is, one has

(2.3) ConnA(E) = D +Ω1(EndE)(X)

for any given A-connection D of E ; the last equality above holds true, within a
bijection (see (1.6) in the preceding section), given by the map

(2.4) τD : ConnA(E)−→Ω1(EndE)(X),

such that one sets

(2.5) τD(D
′) := D′ − D ≡ u ∈ Ω1(EndE)(X)

for any D ′ ∈ ConnA(E). See also [VS: Chapt. VI, p. 30, (7.6)]. Yet, by still employ-
ing our previous notation in Chapter II, (2.31) and (2.47), one also obtains, concern-
ing the same map (2.4) as above,
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(2.6) τD(D
′) = D′ − D = D(D′,D)

EndE (1E ) ≡ DEndE (1)

for any D, D ′ in ConnA(E).
Therefore, based on (2.3), one way look at the space Conn A(E) is through the

bijection τD , as defined by (2.5), for any given fixed A-connection D of E . In other
words, one may always employ herewith the bijection

(2.7) ConnA(E) ∼=
τD
Ω1(EndE)(X),

the second member of (2.7) being an A(X)-module, hence, a fortiori, a C-vector
space (of course, infinite-dimensional, in general!).

Thus, based on the preceding, it is now quite natural, by following standard
patterns (see also Section 3), to come to the following definition by also meeting
the desired question set forth already by (2.1). So we set

(2.8) T (ConnA(E), D) := Ω1(EndE)(X).

Now, we proceed to Section 3, to provide a “geometrical” meaning to definition (2.8)
by suitably specializing on our structure sheaf A (also see Section 4).

Namely, the idea here is that one can consider an appropriate topological vector
space as a suitable model to develop differential-geometric notions within an infinite-
dimensional framework. Of course, this is already quite standard and old (!), being
also, in effect, the essential meaning of the above identification (2.8), as will become
clearer in Section 4.

3 Geometrical Meaning of TTT(ConnonnonnA(E), DDD)

As the title of this section indicates, we give a “geometrical meaning” to any partic-
ular element, say

(3.1) u ∈ Ω1(EndE)(X),

this being viewed, by virtue of (2.7) and (2.8) as a “tangent vector” of Conn A(E) at
D, the given fixed (loc. cit.) A-connection of E . Thus, our claim is that

(3.2)
the element u ∈ Ω 1(EndE)(X), as in (3.1), may be viewed as a suitable
tangent vector to a curve in ConnA(E), the latter space being further
identified, in view of (2.7) above, with Ω 1(EndE)(X).

Thus, the above framework, as presented by (3.2), is now exactly what one under-
stands, according to the standard usage of the term (classical differential geometry of
smooth manifolds), by a “geometric” (viz., “newtonian” (!)) description of the notion
of a tangent vector.

Now, according to standard patterns, the notion of a “tangent vector to a curve”
at some of its points is, in effect, locally determined. Therefore, one needs to have at
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one’s disposal the local behavior of the space in which the curve in question arrives
(see (3.2)). In other words, it is enough to look at the space of A-connections of E ,
ConnA(E), only locally; yet, it suffices just to consider the space (see also (2.7) in
the preceding section)

(3.3)
ConnA (E)|U ⊆ ConnA|U (E |U )

∼= (Ω1|U )(End(E |U ))(U) = Ω1(EndE)(U)

(everything gets localized !), where U is any open set in X , the last member in (3.3)
being a C-vector space. (It is essentially an A(U)-module; see also (3.8) below.)
Now, in this connection, what one really wants is to have the latter space as a topo-
logical (C-)vector space (see (3.24)), something that, as already mentioned, one can
actually achieve by a suitable supplementary hypothesis for our structure sheaf A
(see Section 4; we still note that this extra hypothesis for A is always satisfied in the
classical case of smooth (viz., C∞-)manifolds, where one has, as we know, A ≡ C∞

X ;
see Volume I, Chapt. I, (1.15)).

However, before we come to that matter, more comments on our previous rela-
tions in (3.3) are still in order. Thus, by referring to the first member of (3.3), one
actually considers the A-connections of E restricted to (the open set) U ⊆ X ; that is,
in effect,

(3.4)
A|U -connections of the vector sheaf E |U (thus, in fact, an A|U -module)
on U ,

hence, the first “inclusion” relation in (3.3). Thus, one gets, in effect, the restriction
of a given Yang–Mills field (E, D) on X to U ⊆ X ; that is, one has

(3.5) (E, D)|U := (E |U , D|U ) ≡ i∗U ((E, D)).

The last term in (3.5) denotes the pull-back of (E, D) under the canonical inclusion
map

(3.6) U ⊂−→
iU

X.

It is actually the last map which, by the pull-back map i ∗U associated with it, defines
a “differential triad” on U that corresponds to the given one on X , as in (1.3). Thus,
one sets

(3.7) i ∗U ((A, ∂,Ω1)) := (A|U , ∂|U ,Ω1|U ),
which also provides the “differential setting” for (3.3). So, concerning the second
relation (bijection) therein, this follows, of course, straightforwardly from (2.7) by
setting X = U and taking still (3.7) into account. In this connection, see also [VS:
Chapt. VI, p. 28, Section 6.1].

Finally, pertaining to the last relation in (3.3), one actually gets the following
calculations:
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(3.8)

Ω1(EndE)(U) ≡ (Ω1 ⊗A EndE)(U)
= HomA(E,Ω1(E))(U) = H omA|U (E |U ,Ω1(E)|U )
≡ H omA|U (E |U ,Ω1|U ⊗A|U E |U )
= HomA|U (E |U ,Ω1|U ⊗A|U E |U )(U)
= (Ω1|U )(End(E |U ))(U),

which, of course, along with the preceding, completely justifies (3.3).
(In this regard, see also [VS: Chapt. I, p. 55, (11.40), and Chapt. II, p. 132,

Lemma 5.1, along with p. 135, (6.8) and (6.9) as well as Chapt. IV, p. 304, Corollary
6.1].)

On the other hand, according to our hypothesis, E and Ω 1 are vector sheaves on
X , so let

(3.9) rkE = n and rkΩ 1 = m.

Thus, assuming further that the above open set U ⊆ X is, in particular, a common
local gauge of both E and Ω 1 (something that we may always do, according to the
very definitions), one obtains, by definition and (3.9), that

(3.10) E |U = An |U and Ω1|U = Am |U
within A|U -isomorphisms of the A|U -modules involved.

Accordingly, by looking at (3.8) and in view of (3.10), one has

(3.11)

Ω1(EndE)(U) = (Ω1|U )(End(E |U ))(U)
= (Ω1|U )(End(An |U ))(U) = Ω1(EndAn)(U)

= Ω1(Mn(A))(U) ≡ (Ω1 ⊗A Mn(A))(U)
≡ Mn(Ω

1)(U) = Mn(Ω
1(U)).

Therefore, by virtue of (3.3) and (3.11), one finally obtains

(3.12) ConnA(E)|U ⊆ ConnA|U (E |U ) = Mn(Ω
1(U)) = Mn(Ω

1)(U).

Consequently,

(3.13)

the space of A-connections of E ,

ConnA(E),

when fastened at a certain particular element (A-connection)

D ∈ ConnA(E)

has, according to (2.7) and by further restriction to a local gauge U of
E—namely, the space

(3.13.1) ConnA(E)|U ⊆ ConnA|U (E |U )
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—the form of the “sheaf of connection coefficients” of E ,

(3.13.2) Mn(Ω
1) := Ω1(Mn(A)),

the latter being also similarly localized; that is, the space (3.13.1) is of
the form

(3.13.2)
(Mn(Ω

1)|U )(U) = Mn(Ω
1|U )(U)

= Mn(Ω
1)(U) = Mn(Ω

1(U))

(see also (3.12)).

Concerning the applied terminology above, see Volume I, Chapt. I, (2.45), along with
[VS: Chapt. VI, p. 46, (9.10), and subsequent comments therein].

Yet, by still employing our previous argument in (3.11), one gets at the relation

(3.14) ConnA(E)|U ⊆ ConnA|U (E |U ) = An2·m(U) ≡ Ak(U),

where, of course, we set k ≡ n2 · m ∈ N, as in (3.10). Thus, by complementing
(3.13), as above, one finally concludes that

(3.15)

the space of A-connections of a given Yang–Mills field

(E, D)

(fastened at D, as in (3.13)), when taken locally on a given local gauge
U of E (in effect, U can be taken, as a common local gauge of E andΩ 1,
as well)—that is, the space (see (3.13.1)),

(3.15.1) ConnA(E)|U ⊆ ConnA|U (E |U )
—has the form

(3.15.2) Ak(U) = A(U)k ,

such that

(3.15.3) k = n2 · m ∈ N

with n and m in N as given by (3.10).

Now, our previous conclusion in (3.15), pertaining to the form of the space
(3.15.1), hints already, through (3.15.2), at the desired property of being, namely,

(3.16) Ω1(EndE)

a topological vector space sheaf on X , when our structured sheafA is further suitably
enriched. This matter, being also crucially related with our initial claim in (3.2), is
examined in Section 4.
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However, we still remark, for later use, that as a byproduct of the preceding
discussion, one can get at an analogous conclusion to (3.13), pertaining now, in
effect, to the moduli space of E itself (see Chapt. II, Section 2, yet, in particular,
(2.16) therein). Thus, one obtains that

(3.17)

the moduli space of E (ibid. (2.50)), when similarly restricted on a local
gauge of E , say U ⊆ X , as above (see (3.13))—that is, the space (see
also (3.15.1))

(3.17.1) (ConnA(E)/AutE)|U ⊆ ConnA|U (E |U )/Aut (E |U )
—is of the form

(3.17.2) Mn(Ω
1(U))/GL(n,A(U)) = Mn(Ω

1)(U)/GL(n,A)(U)

(see also (3.13.2), along with Chapt. II, (1.14.2)).

On the other hand, by performing on (3.17.2) analogous calculations to (3.14), or
even to (3.15), one finally concludes that

(3.18)

the moduli space of E is locally (viz., when restricted to a common local
gauge of E andΩ 1, say U ⊆ X ; see (3.17.1)) of the form

(3.18.1) Ak(U)/GL(n,A(U))

with k = m · n2 ∈ N, as in (3.10) (see also (3.15.3)), in such a manner
that one still sets, concerning the last relation, as above,

(3.18.2) Ak(U) ∼= Mn(Am(U)).

Yet, within the same vein of ideas, we explain our argument in (3.17), hence in
(3.18), by some of our relevant calculations in the foregoing. Indeed, by referring to
(3.17.1), one can first consider the restriction of AutE on U , taking then, according
to the comments in Chapter II, following (2.50) therein, its (global) sections over U ,
so that one thus obtains

(3.19) ((AutE)|U )(U) = (AutE)(U) = I somA|U (E |U , E |U ) ≡ Aut (E |U )
(see also [VS: Chapt. VI, p. 93, (17.23)]). Now, the last group can further be viewed
as acting on the space

(3.20) ConnA|U (E |U ),
according to (3.5) and (3.7) (see also Chapt. II, (2.55)), which thus explains the
assertion in (3.17.1). In particular, supposing now that U is a local gauge of E (see
(3.10)), one gets (see also (3.19))

(3.21)
Aut (E |U ) = Aut (An|U ) = (AutAn)(U)

= Mn(A
.
)(U) = GL(n,A)(U) = GL(n,A(U)),
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which, in turn, justifies (3.17.2). On the other hand, as already said, (3.18) is simply
an immediate consequence of our relevant argument in (3.15), as above.

Now, the preceding, in conjunction with our previous considerations in (3.13), or
even in (3.15), lead us also to the following general remarks:

Scholium 3.1 (α) Concerning our previous conclusion, for instance, in (3.12), the
fact that

(3.22)

when looking at the matter, locally, always (!),

(3.22.1)
the space of A-connections of a given vector sheaf E over X
is essentially a space of “matrices of 1-forms,”

a consequence, in effect, of the very nature of E (locally free A-module), comes short
of information for the space under consideration. In fact, the preceding result is more
direct, than that we already know, namely, that

(3.23)

an A-connection D of E is locally represented by a family of matrices of
1-forms, this family parametrized, for instance, by the local gauges of a
given local frame of E , say

(3.23.1) U = (Uα)α∈I ;
that is, one has an identification (bijective correspondence)

(3.23.2) D ←→ ω = (ω(α)) ∈ C0(U,Mn(Ω
1)),

so that one has

(3.23.3) ω(α) ≡ (ω
(α)
i j ) ∈ Mn(Ω

1(Uα)) = Mn(Ω
1(Uα))

for any α ∈ I , as in (3.23.1). Of course, the above provide already the
“inclusion” in (3.12), the range of (3.23.2) being otherwise specified
by the so-called transformation law of potentials. (Thus, inclusion, as
before, is actually proper (!)).

In this concern, see also Volume I, Chapter I, (2.50), (2.54), and (2.56.1); yet, see
[VS: Chapt. VII, p. 119, Theorem 3.2].

However, what is actually deduced from the previous discussion is the fact that

(3.24)

by fixing a particular A-connection of E , the space of all A-connections
of E , due to its affine nature, attains the structure of a (C-)vector space.
In particular, as already said in the foregoing,

(3.24.1)
the structure of a topological (C-)vector space, provided we
can dispose of the pertinent “structure sheaf” A, is something
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that one actually needs (see Sections 4 and 5), as we have explained at
the beginning of this Section. Yet, our remarks in (3.24.1) are especially
highlighted by the corresponding argument in (3.15) in the preceding;
see (3.15.2) therein, exhibiting the

(3.24.2)
type of space that is actually reduced to, locally (!), the space
of A-connections of E , when fixed at some of its points

(see also (3.18.2); yet, see (2.7) as well as (3.2) in the foregoing).

(β) On the other hand, the same correspondence (3.23.2), as above, suggests and
further justifies the (physical) aspect that

(3.25) a (gauge) field may be construed as an A-connection.

The previous assertion can be further supported, since (i) an A-connection can be
viewed as an “observable” by means of the respective curvature (=field strength), to
which property one can still attribute the “geometrical substance” of an
(A-)connection, which, occasionally, is usually associated with an A-connection,
the latter notion being, in effect, an analytic (algebraic) one when viewed as, as it
actually is, a (global C-) linear sheaf morphism, having further the Leibniz property,
alias a Leibniz (C-)linear sheaf morphism, or, briefly, just a Leibniz (sheaf) mor-
phism of the A-modules concerned (see Chapt. I, Definition 2.1). On the other hand,
(ii) by looking at an A-connection through correspondence (3.23.2), one understands
it (locally (!)) as

(3.26)

a set (family) of (functions) sections, defined (locally) on a topological
space X (which, otherwise, may stand here for the classical notion of
“space–time”), that are subject further to a certain particular transforma-
tion law (viz., to the so-called transformation law of potentials) under
the “structure group” of the theory. (Notice that the aforesaid family is
usually parametrized by a local frame of E ; see (3.23.1).)

In this context, we also remark that the aforementioned group in (3.26) may be iden-
tified with the (internal) symmetry group considered in the foregoing, which still
appears in disguised form (representation; see Chapt. II, Section 1.1) as the group
sheaf AutE , or its corresponding group of global sections,

(3.27) (AutE)(X) ≡ AutE,
which again is reduced, locally, to the group sheaf

(3.28) GL(n,A) ≡ Mn(A)
.

with n = rkE ∈ N. The latter still appears, through its various sets (in effect, groups)
of local sections, as

(3.29) GL(n,A)(U) = GL(n,A(U)),
with U varying over the local gauges (generalized coordinate systems) of E (see, for
instance, (3.17)).
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The preceding, in conjunction with our claim in (3.25), may also be viewed as
being still in accord with the ever-existing standard interpretation of a “field.” See,
for instance, R.F. Streater–A.S. Wightman [1: p. 96].

On the other hand, the previous discussion points out once more the instrumental
role of the structural sheaf (= our (generalized) “arithmetics”) A. Thus, in point of
fact, we have several times realized, so far, that

(3.30) all our calculations are virtually performed, locally (!), in terms of (local)
sections of A.

Of course, the same holds true in the classical theory as well, concerning the sheaf
of (germs of) smooth functions

(3.31) A ≡ C∞X .

However,

(3.32)

in complete contrast to the classical case, where (3.31) is supplied by the
type of particular smooth manifold X considered, here that is, within the
present abstract setup (ADG),

(3.32.1) all this is transferred to A itself,

in the sense that the “structure sheaf” A is assumed to have eo ipso
(viz., axiomatically, not due to the particular space, at issue!) the nec-
essary (abstract) differential-geometric mechanism that is appropriate to
our purposes, without the intervening of any space, supplying the afore-
mentioned mechanism (!) (viz., in other words, (3.31), as above, either in
the classical or in the “abstract” sense).

Yet, we may further look at the above attitude as the Leibniz’s point
of view. See, for instance, A. Mallios [9], along with N. Bourbaki [2:
Chapt. I, Note hist., p. 161, footnote 1].

We close this section by assembling our main conclusions concerning the “tangent
space”

(3.33) T (ConnA(E), D),

the “geometrical meaning” of which is still to be explained, as this was stated at the
beginning of the present section. (See Section 5.)

So, as an outcome of the foregoing, one gets the following relations when looking
at a fixed A-connection D of E (see (2.7), along with (3.3), (3.8), (3.11), (3.15.2),
and (3.18.2)):

(3.34)

ConnA(E)|U ⊂−→ Ω1(EndE)(U) = (Ω1|U )(End(E |U ))(U)
∼= T (ConnA(E)|U , D) = Mn(Ω

1(U))

= Mn(Am(U)) ≡ Ak(U),
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the A-connection D of E being actually understood as

(3.35) D ≡ D|U := i∗U (D),

in the sense of (3.6) and (3.7), while U stands here for a local gauge of both E and
Ω1. Now, as we shall see (Section 5), the above relations (3.34) will actually permit
us to look at the space (3.33) at its “localization” (restriction) on U , as in (3.34), as
a topological vector space for suitable sheaf A. Of course, our task here is obviously
completely facilitated, in view of the last part of (3.34), as above, and the relevant
remarks at the end of Section 2, concerning relation (2.8), therein (see Section 4).

4 ΩΩΩ1(Endndnd E), as a Topological (CCC-)Vector Space Sheaf

As already noted in the foregoing, we consider in this section

(4.1)
the case that our “structure sheaf” A supplies the local section
A(U)-modules, for the various open U ⊆ X , with the structure of a
topological C-vector space.

Thus, we assume henceforth, concerning the present section, that

(4.2)

A is a topological (C-)vector space sheaf on X (the latter being an arbi-
trary topological space, as usual, so far), in the sense that

(4.2.1)
for every open set U ⊆ X , the local section A(U) yields
a topological (C-)vector space such that the corresponding
transition map

ρU
V : A(U)−→ A(V )

for any open sets V ⊆ U ⊆ X is a continuous linear map. Yet, we
assume herewith (for convenience) that

(4.2.2)

the preceding spaces have nontrivial topological duals—
namely, we accept that

A(U)′ �= {0}
for any open U ⊆ X .

Examples (i) The classical case

(4.3) A ≡ C∞X
(see (3.31)) is an important particular instance of the previous situation, as in (4.2).
In point of fact, the respective sheaf

(4.4)
C∞X on a given smooth (C∞-)manifold X is an example of a locally
convex (C-)vector space sheaf on X , for which (4.2.2) is in force.
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The respective (locally convex) vector space topology on each (C-)vector space,

(4.5) C∞X (U) ∼= C∞(U)

for any open U ⊆ X , is the so-called Schwartz topology—namely, that one of
the “uniform convergence on compacta” of the (C∞-)functions in (4.5) (we con-
sider them here as C-valued) and of all of their partial derivatives (see, for instance,
A. Mallios [TA: p. 131]).

In point of fact, the same sheaf as in (4.3) is, in particular,

(4.6)

a topological (C-)algebra sheaf on X of the type locally m-convex (topo-
logical C-)algebra, in the sense that each one of the sets, as in (4.5), is a
C-algebra of the previous sort, while the same (topological) algebra still
has the important property that

(4.6.1) M(C∞(U)) = U

within a homeomorphism of the topological spaces involved (TA: p. 227,
Theorem 2.1, along with Scholium 2.1 therein). By the very definitions,
(4.6.1) is already stronger than (4.2.2).

Topological algebra sheaves, in general, of the previous type, even of a milder one,
concerning the above condition (4.6.1), have been considered already in the fore-
going; see Chapter I, Section 7.1, in particular, Scholium 7.1. Yet, in Section 8, in
particular, Note 8.1, where we looked at A, as a topological (C-)vector space sheaf
on X (see (4.2) as above).

(ii) Topological algebra sheaves of the same type as in (4.6) are also the sheaf of
(germs of) continuous (C-valued) maps

(4.7) CX

on a completely regular (Hausdorff) space X , where one has

(4.8) CX (U) ∼= Cc(U)

for any open U ⊆ X . In the second member of (4.8), one considers the “compact-
open topology” on U , such that one has

(4.9) M(Cc(U)) = U

within a homeomorphism of the spaces concerned (see also [TA: Chapt. VII, p. 223,
Theorem 1.2]).

On the other hand, another classical important topological algebra sheaf is

(4.10) OX

(viz., the sheaf of (germs of) holomorphic functions on a complex (analytic) manifold
X , in particular, when X is a Stein manifold (see loc. cit. pp. 228ff)). For such a
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manifold X (not necessarily Stein), one can choose a basis of its topology consisting
of (open) Stein submanifolds, so that one has

(4.11) M(O(U)) = U

within a homeomorphism of the spaces involved, with U running over the aforesaid
basis. (See TA: p. 230, Lemma 3.1 as well as L. Kaup-B. Kaup [1: p. 224, Coroll-
ary 51.5]).

4.1 Vector Sheaves, Locally Topological Modules

Suppose we are given a C-algebraized space

(4.12) (X,A),

as usual, on a topological space X , such that the “structure sheaf” A is, in particular,
a topological algebra sheaf on X (see Chapt. I, Section 7.1). On the other hand,
suppose that E is a given vector sheaf on X , with

(4.13) rkE = n ∈ N.

Then,

(4.14) E can be construed as a topological (C-)vector space sheaf on X ;

that is, one actually proves that

(4.15)

for any open U ⊆ X , the corresponding local section set E(U) is a
C-vector space, such that the various stalks of E ,

(4.15.1) Ex , x ∈ X,

are topological C-vector spaces.

For convenience, we recall that, by virtue of our hypothesis for E ,

(4.16)
every point x ∈ X has a fundamental system (basis) of given neighbor-
hoods, consisting of local gauges of E .

See [VS: Chapt. II, p. 125, (4.6)]. Thus, the assertion in (4.15) is now a consequence
of (4.16), the relation (see also (4.13))

(4.17) E(U) = An(U) = A(U)n,

valid, for any local gauge U of E , within A(U)-isomorphisms of the A(U)-modules
concerned, in conjunction with our argument in [VS: Chapt. XI, p. 301, Theo-
rem 1.1], applied, in particular, on the stalks of E ,
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(4.18) Ex = lim−→
U∈B(x)

An(U), x ∈ X,

with B(x) the basis mentioned in (4.16). Yet, the same argument (loc. cit.) justifies
our claim now in (4.14).

Note 4.1 By clarifying our previous argument in (4.15), as connected with (4.18)
in the preceding, we still note, in that context, that one considers on E x , x ∈ X
(loc. cit.), the so-called inductive limit vector space topology defined on it, accord-
ing to our hypothesis in (4.2.1). Now, in the case that the various A(U), with U
open in X (ibid.) are, in particular, topological algebras, then the same topology,
as before, makes Ex , as in (4.18), a topological algebra too. In this regard, see also
A. Mallios [TA: p. 115, Lemma 2.2, first part] or even A. Mallios [VS: Chapt. XI,
p. 301, Theorem 1.1.].

Thus, the preceding leads now to the general conclusion that

(4.19)

the topological-algebraic sheaf structure that may occasionally have our
structure sheaf A is inherited, at least (see also Note 4.1), concerning
the topological vector space structure, to every vector sheaf E on X (see
(4.14)).

Now, the above remarks in (4.19), together with those in Note 4.1, explain also the
precise meaning of the title of the present section.

On the other hand, by looking further, in particular, at the vector sheaf on X ,

(4.20) Ω1(EndE),

as in the preceding Section 3, one obtains

(4.21) Ω1(EndE)(U) = Ak(U) = A(U)k,

within A(U)-isomorphism of the A(U)-modules involved, for every local gauge U
of E , which might also be viewed as a local gauge of (4.20); see (3.8), (3.10), (3.11),
and (3.15.3). Therefore (see (4.19)),

(4.22) Ω1(EndE) is a topological (C)-vector space sheaf on X .

In this context, it should be remarked here that

(4.23)

although (4.21) is valid, in general, only for a local gauge of E that may
also be such for the vector sheaf (4.20) too, one concludes from (4.19),
in conjunction with [VS: Chapt. XI, p. 302, (1.7)], that

(4.23.1) E(U) ≡ Γ (U, E)

is, in effect, a topological (C-)vector space for every open U ⊆ X and
for any vector sheaf E on X and, therefore, in particular, for the vector
sheaf Ω1(EndE) on X , as well. (Thus, relation (4.21) is not necessarily
valid for any open U ⊆ X(!).)
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The above conclusion is, indeed, what one actually needs to look at the “tangent
space” T (ConnA(E), D) (see Section 3), as the totality of its “tangent vectors,” in
the classical sense of the latter notion. We consider this matter in Section 5.

5 Geometric Meaning of TTT (ConnonnonnA(E), DDD) (continued)

We prove here that, what we have called thus far, the “tangent space,”

(5.1) T (ConnA(E), D),

of the space of A-connections of E ,

(5.2) ConnA(E),
at a given A-connection D of E can be construed as the totality of its “tangent
vectors.”

Now, as already remarked in the preceding, this actually constitutes the descrip-
tion of (5.1) in the classical sense, or even the “geometric meaning” of the same space
(5.1) in the point of view of the classical differential geometry (CDG) of smooth (viz.,
C∞-)manifolds.

In other words, by employing herewith standard terminology, we virtually prove
that

(5.3)

for every element

(5.3.1) u ∈ T (ConnA(E), D),

one obtains

(5.3.2) u = α̇(0)

for some curve

(5.3.3) α : I −→ ConnA(E)

with I an open neighborhood of 0 ∈ R, such that

(5.3.4) α(0) = D.

Moreover, concerning the terminology applied in (5.3), one sets

(5.4) α̇(0) := lim
t→0

1

t
(α(t) − α(0)).

However, first, we have to comment a bit more on the previously applied notation.
Thus, first, as already remarked in Section 2, we consider henceforth the space of
A-connections of E , as pinched at the given A-connection D of E , so that one
actually obtains (see (2.3))

(5.5) ConnA(E) ∼= Ω1(EndE)(X);
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hence, one further defines (5.1) by the relation (see (2.8))

(5.6) T (ConnA(E), D) ≡ Ω1(EndE)(X).

Therefore, our previous considerations in (5.3) are actually transferred, by definition,
to the space

(5.7) Ω1(EndE)(X)

(see also the comments at the beginning of Section 3). However,

(5.8)

assuming, henceforth, the framework of Section 4, we know (ibid.) that

(5.8.1) Ω1(EndE)

is a topological (C-)vector space sheaf on X (see (4.22)).

Accordingly, for any element (see (3.1) and (3.6))

(5.9) u ∈ T (ConnA(E), D) ∼= Ω1(EndE)(X),

one can consider the curve

(5.10) α : R−→ ConnA(E) : t �−→ α(t) := D + t · u

such that one has

(5.11) α(0) = D ∈ ConnA(E) ∼= Ω1(EndE)(X).

On the other hand, the same curve as above can still be considered as a family

(5.12) (αU )U∈U ,

parametrized by the elements (local gauges) of a local frame of E , so that one has

(5.13) αU : IU −→ ConnA(E)|U ∼= Ω1(EndE)(U) ∼= Mn(Ω
1(U)) ∼= Ak(U),

where IU is an open neighborhood of 0 ∈ R, such that (5.13) have a meaning;
namely,

(5.14) αU (IU ) ⊆ Ω1(EndE)(U) ∼= Ak(U) ∼= A(U)k .

Thus, (5.4) and the desired condition (5.3.2) are now satisfied, according to the very
definitions and the particular structure of the range of αU , with U as in (5.12) (see
also (4.22) and (4.23)).

The above explains completely our argument in (5.3), as well as the claimed
structure of (5.1), through its various local expressions

(5.15) T (ConnA(E)|U , D),

(see also (3.34) in the preceding) as a “tangent space” of Conn A(E) at D in the
classical sense, which was exactly formulated by (5.3).
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6 Tangent Space of the Orbit of an A-Connection, TTT (ODDD, DDD)

Given a vector sheaf E on X and an A-connection of it, say

(6.1) D ∈ ConnA(E),

we further consider the orbit of D in the space of A-connections of E , as above, under
the action of the group sheaf of A-automorphisms of E , AutE , or of the respective
one of its global sections,

(6.2) AutE := (AutE)(X).

Thus, one has, as already defined in the preceding (see Chapt. II, (2.37) and (2.42)),
the set (orbit space of D)

(6.3)
OD := {φ · D : φ ∈ AutE} = {D − DEndE (φ)φ−1 : φ ∈ AutE}

⊆ ConnA(E) ∼= D +Ω1(EndE)(X)

(see also Note 2.1 therein as well as (2.3) in this chapter, or even Chapter I, (5.7) of
Volume I of this treatise, concerning the last bijection, as above).

Therefore, in view of (6.3), by looking at the relation

(6.4) OD ⊆ ConnA(E) ∼= D +Ω1(EndE)(X),

as well as at the identification (see (2.8)),

(6.5) T (ConnA(E), D) ≡ Ω1(EndE)(X),

one can further consider the relation

(6.6) T (OD, D) ⊂−→ T (ConnA(E), D),

which may still be justified by the previous relations and the (canonical) identifica-
tion (see (2.71)),

(6.7) ConnA(E) ∼=
τD
Ω1(EndE)(X).

The same (6.6) will also be justified right away in the sequel, through the relation

(6.8) T (ConnA(E), D) = T (OD, D) ⊕ T (OD, D)⊥,

where the direct command

(6.9) T (OD, D)⊥,

being, in effect, an “orthogonal complement” of the “tangent space” of O D at D,

(6.10) T (OD, D),
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along with the last space, as well, will suitably be defined through the subsequent
discussion:

Thus, based on the second relation in (6.3) (definition of O D), (6.4), and the
identifications (6.7) and (6.5), one can still define

(6.11) T (OD, D) := im(DEndE |AutE).

Now, to explain (6.8), we employ in our argument the notion of an A-metric, first, of
course, on our “structure sheaf” A; that is, assume, henceforth, that we are given

(6.12)

the framework of Chapter I, Section 4, supposing thus also that X is a
paracompact (Hausdorff) space. As a result (Chapt. I, (4.2)), every vector
sheaf E on X becomes a Riemannian vector sheaf

(6.12.1) (E, ρ),

while every vector sheaf on X admits an A-connection (loc. cit. (4.3)) as
well.

The above hypothesis implies, in effect, that

(6.13)

in the sequel, when we refer to the group AutE (see (6.2)), we actually
mean its subgroup,

(6.13.1) (AutE)ρ,

as the latter was defined in Chapter I, (5.46.2); see also Chapter II,
(3.3.2).

Now, based on (6.12), apart from the sheaf morphism (A-connection)

(6.14) DEndE : EndE −→Ω1(EndE),

one can further consider its “dual morphism”

(6.15) δ1
EndE : Ω1(EndE)−→ EndE

(see Chapt. I, (2.39), (2.29) and (2.30)). Thus, by virtue of the relation, defining
(6.15) (Chapt. I, (2.30)), one has

(6.16) ρ(DEndE (φ), t) = ρ(φ, δ1
EndE (t))

for any

(6.17)
φ ∈ (EndE)(X) = EndE and t ∈ Ω 1(EndE)(X).

Note that the A-metric ρ in (6.16) is actually referred to the vector
sheaves EndE and Ω 1(EndE) on X .
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Accordingly, by virtue of (6.16), one gets

(6.18) im DEndE ⊆ (ker δ1
EndE )

⊥,
the second member of the previous relation denoting the “orthogonal space” of

(6.19) ker δ1
EndE ⊆ Ω1(EndE),

in the obvious sense, with respect to the A-metric, that is still induced on the domain
of definition of (6.15) by the given one on A (see also the Note in (6.17)). Yet, due
to the A-bilinearity of ρ (see Chapt. I, (2.1); Condition i)), one easily concludes that

(6.20)

ker δ1
EndE is, in particular, an A-module too, not just a C-vector space

sheaf on X , hence its orthogonal space,

(6.20.1) (ker δ1
EndE )

⊥,

as well.

Of course,

(6.21)

the totality of the preceding relations are in force, locally, as well, relative
to a local gauge, say U ⊆ X , of E which (due to our hypothesis for
E and Ω1) may also be considered as such, even for the rest of the
vector sheaves involved in the preceding—namely, of EndE , Ω 1, and
Ω1(EndE).

On the other hand, as another consequence of (6.16), one obtains

(6.22) ker δ1
EndE = (im DEndE )⊥ ⊆ Ω1(EndE),

yielding thus, by analogy with (6.20), sub-A-modules of the last space in (6.22): The
assertion follows, indeed, from (6.16), in conjunction with (6.15), and the pertinent
properties of ρ (see, for instance, Chapt. I, (2.6)–(2.8)).

Accordingly, by now employing a “local argument” (viz., modulo a local gauge
U of E , as in (6.21)), one gets at the crucial relation

(6.23) Ω1(EndE)(U) = im DEndE ⊕ ker δ1
EndE ,

so that we further set (see also (6.11))

(6.24) T (OD, D) := im(DEndE |AutE ) = (ker(δ1
EndE|AutE ))

⊥.
Now, within the same vein of ideas, by setting

(6.25)
SD := D + ker δ1

EndE = {D + u ∈ ConnA(E) : δ1
EndE (u) = 0}

⊆ D +Ω1(EndE)(X) = ConnA(E)
(see also (6.22), along with the last relation in (6.23)), we still conclude, by virtue of
(6.24), that

(6.26)
SD can be construed locally (see (6.21)) as the “orthogonal comple-
ment”, with respect to Ω 1(EndE), of the tangent space of the orbit of
D at D.
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Thus, the essential point of view of the preceding discussion is, in effect, that

(6.27)
we look at the “geometry” of the space of A-connections of E , respec-
tively, of that one of the corresponding moduli space of E , by reducing it
to the “geometry” of the “model” of the aforesaid spaces.

(6.28)

Thus, together with the partition of the space of A-connections
of E , through the orbits of its elements, via the action of the group
(sheaf) AutE , there is (naturally) associated a similar partition of the
model through the corresponding tangent spaces to the orbits of the
A-connections of E ; yet, by employing suitable A-metrics on the various
vector sheaves involved, one still gets at a partition of the model that is
“normal” (“orthogonal”) to the former one.

We are going to apply the above, right away, to Section 7, looking still within the
present abstract setting, at the classical Gribov’s case (“ambiguity”).

Before we close the present section, we still look at certain consequences of the
preceding discussion. Thus, our first remark is that by using the notation applied in
Note 1.1 in the preceding, one concludes that

(6.29)

the Lie derivative-functor with respect to a given A-connection D of E ,

(6.29.1) LD ≡ DEndE

(loc. cit. (1.25)), preserves the “affine structure of the respective space of
A-connections of E .

That is, one has

(6.30) LD+u = LD + Lu

in the sense that

(6.31) (LD+u)(φ) = LD(φ)+ Lu(φ)

or even

(6.32) [D + u, φ] = [D, φ] + [u, φ]

for any φ ∈ EndE . Indeed, one has (operating formally)

(6.33)

[D + u, φ] = (D + u)φ − φ(D + u)

= Dφ − φD + uφ − φu

≡ [D, φ] + [u, φ]

for any φ, as in (6.33)—that is, our assertion.
Therefore (see (6.29.1)), we can still write (6.30) (in effect, by definition) in the

form

(6.34) (D + u)EndE = DEndE + u

for any u ∈ Ω 1(EndE)(X).
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Yet, by applying herewith our previous notation in (6.24), one obtains

(6.35)

T (OD+u, D + u) = im(D + u)EndE = im(DEndE + u)

= {(DEndE + u)φ : φ ∈ AutE}
= {DEndE (φ)+ u(φ) : φ ∈ AutE}
= im DEndE + im(u) = T (OD, D)+ im(u)

—in other words, what we may call

(6.36)
the “tangent-space functor”—still preserves the “affine structure” of the
space of A-connections of E .

Finally, by looking at the “operators” (C-linear (sheaf) morphisms) considered
in the foregoing, we can still make the following general remark:

(6.37)

for any given vector sheaf E on X , the operator

(6.37.1) δD(≡ δ1 D0) : E −→ E

is self-adjoint; that is, one has

(6.37.2) ρ((δD)(s), t) = ρ(s, (δD)(t))

for any s, t ∈ E(U).

Indeed, one obtains

(6.38)
ρ((δD)(s), t) = ρ(t, δDs) = ρ(Dt, Ds)

= ρ(Ds, Dt) = ρ(s, δDt),

our claim.
Yet, an analogous conclusion holds true for the operator Dδ; that is one has

(6.39) ρ((Dδ)(s), t) = ρ(s, (Dδ)(t))

for any s, t ∈ E(U). More generally, concerning the rank of the operators considered,
the previous conclusions are in force for any p ∈ Z+.

7 The Moduli Space of A-Connections as an Affine Space.
Gribov’s Ambiguity (à la Singer)

Assuming the framework of Section 6, consider the space

(7.1) ConnA(E)

of A-connections of a given vector sheaf E on X , along with the corresponding
moduli space of E (see also Chapt. II, (2.50))

(7.2) M(E) ≡ ConnA(E)/AutE .



7 The Moduli Space of A-Connections, as an Affine Space 135

Now, our first remark here is that

(7.3)
the action of AutE on the space of A-connections of E (Chapt. II,
Note 2.1) preserves further the “affine structure” of the latter space.

Indeed, it is an easy consequence of the very definitions—the relation

(7.4) φ · (D + u) ≡ (φ ⊗ 1)Dφ−1 = φD + φ · u,

for any φ ∈ AutE and u ∈ Ω 1(EndE)(X)—that actually proves the assertion (see
also, for instance, (6.4)).

In other words, one infers that

(7.5)

the group of A-automorphisms of E ,

(7.5.1) AutE := (AutE)(X),

acts, in effect, on the affine space of A-connections of E , not just on the
respective set. Yet, in what amounts to the same thing,

(7.5.2)
AutE can still be construed, in particular, as the affine group
of the affine space of A-connections of E .

In point of fact, what we are actually going to consider herewith is the “Yang–Mills
case,” that is, in effect, the group

(7.6) (AutE)ρ := (AutE)ρ(X)

(see Chapt. II, (3.3.2)) of metric-preserving A-automorphisms of E . Therefore, the
corresponding moduli space of E ,

(7.7) M(E)ρ ≡ ConnA(E)/(AutE)ρ

(loc. cit. (3.6)). Accordingly, by further specializing (7.5.2), one concludes that

(7.8) (AutE)ρ can also be considered as an affine group of the Yang–Mills
A-connections of E .

Thus, based on the preceding, we can look now at the model of the moduli space of
the Yang–Mills A-connections of E , the latter space still being viewed as an affine
space. Indeed, by restricting ourselves to the group (7.6) and also taking into account
the preceding relations (6.16), (6.22) and (6.25), one obtains that

(7.9)

the model of the affine space (7.7) is given by the relations

(7.9.1) Ω1(EndE)(X)/(AutE)ρ = (im(DEndE |(AutE)ρ ))
⊥ = SD

within bijections (in effect, C-vector space isomorphisms).
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Yet, by virtue of what has been said thus far concerning “tangent spaces” within the
present setting, we still conclude that

(7.10)

the “tangent space” of the moduli space M(E)ρ , as in (7.7), at one of its
elements, namely, at an orbit of a Yang–Mills A-connection D of E ,

(7.10.1) OD ≡ [D]ρ ∈ M(E)ρ,

is (isomorphic to) SD ; that is, one has

(7.10.2) T (M(E)ρ,OD) = SD,

within a bijection (see also (7.9.1)).

On the other hand,

(7.11)

whether the intersection

(7.11.1) SD ∩ T (OD, D)

within the space Ω1(EndE)(X) is just the A-connection D of E is
classically viewed, following I.M. Singer [1], as the so-called Gribov’s
ambiguity.

Yet, according to the same classical terminology (loc. cit.), we still call SD , as above
(see (6.22)), the abstract (generalized) Coulomb gauge, that is associated with the
given A-connection D of E (see also K.B. Marathe-G. Martucci [1: p. 161].

We terminate the present discussion by another aspect of Gribov’s ambiguity
within the above abstract setting, which, however, will require some extra conditions
on our structure sheaf A (always!), that, of course, are fulfilled in the classical case
of C∞-manifolds (see (3.31)).

Thus, looking at the same framework as above, let us consider again the “gauge
group” of a given vector sheaf E on X , AutE (viz., the group of A-automorphisms
of E (see (7.5.1))). On the other hand, given an element x ∈ X , consider the set

(7.12) (AutE)x := {φ ∈ AutE : φx = (idE)x} ≡ ker(δx) ⊆ AutE,

where we further set

(7.13) δx (φ) := φ(x) ≡ φx , x ∈ X,

where the last map in (7.13) stands for the corresponding fiber component of φ ∈
AutE at x ∈ X . Now, it is immediate, by the same definitions, that

(7.14) (7.14.1) (AutE)x ≤ AutE

for any x ∈ X ; namely, (7.12) defines an abelian subgroup of AutE .
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On the other hand, what one further realizes here, concerning the same group as
above, is that

(7.15)

for any x ∈ X the (abelian) group (AutE) x (see (7.12)) acts freely on
the set ConnA(E); that is, as we also say,

(7.15.1) ConnA(E) is a (AutE)x -principal set, for every x ∈ X .

Indeed, as already hinted at in the preceding, we verify the previous assertion, under
a suitable supplementary hypothesis for our “differential setup” considered thus far;
in point of fact, one proves, under the same extra hypothesis for the “differentials,”
a stronger result than (7.15). However, we have first to comment a bit more on the
relevant terminology.

Thus, given a vector sheaf E on X , we have already remarked in the foregoing
that

EndE is an A-algebra sheaf on X , having as the unit element the identity
A-automorphism of E ,

(7.16.1) idE ≡ 1E .

(7.16)

Furthermore, its group of units is given by the relation

(7.16.2) (EndE). = AutE,

being thus the group sheaf of A-automorphisms of E , such that one has

(7.16.3)
(EndE).(X) = ((EndE)(X)). ≡ (EndE).

= (AutE)(X) = AutE .

In this context, see also [VS: Chapt. II; p. 138, Definition 6.2, and p. 139, (6.30) and
(6.31) as well as Chapt. V, p. 390, Scholium 8.2]. Now, according to our hypothesis,
the “structure sheaf” A is a unital C-algebra sheaf on X . Therefore, in view also of
(7.16.1), one has

(7.17) C ≡ CX ⊂−→ A ⊂−→ EndE

within C-algebra sheaves isomorphisms (into), so that by further looking at the
corresponding group sheaves of units, one obtains (see (7.16.2))

(7.18) C
. ≡ C

.
X ⊂−→ A. ⊂−→ (EndE). = AutE,

within group sheaves isomorphisms (into), or even by taking global sections (apply-
ing the global section functor ΓX ≡ Γ on (7.18)), one gets

(7.19) C
. ⊂−→ A.

(X) = A(X). ⊂−→ (EndE).(X) = AutE

(see also (7.16.3)) within group isomorphisms (into), as indicated.
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Thus, taking now (6.14) and (7.19) into account, for the notation employed just
below, consider the condition

(7.20) ker(DEndE |AutE ) = C
. · 1E ≡ C

.
.

Indeed, since (see (1.21) in the preceding)

(7.21) ker(DEndE |AutE ) = O(D),

the second member of (7.21) standing for the isotropy (alias, stability) group of the
given A-connection D of E , one sees that (7.20) is equivalent to the condition

(7.22)
the isotropy group of D is trivial; namely, one has

(7.22.1) O(D) = C
. ≡ C

. · 1E ≤ AutE .

Thus, our assertion now is the following:

(7.23)

Suppose we are given a Yang–Mills field

(7.23.1) (E, D).

Moreover, assume that

(7.23.2) φ ∈ O(z) ∩O(D) ⊆ AutE

holds true, such that

(7.23.3)
0 �= z ∈ E and D has trivial isotropy group (viz., (7.22.1) is
valid).

Then, one obtains

(7.23.4) φ = 1E .

Indeed, our claim is an immediate consequence of (7.23.2) and (7.23.3) and the
previous relation (7.21). [Concerning the notation employed in (7.23.2), we set
O(z) = {φ ∈ AutE : φ(z) = z}, the isotropy group of z ∈ E , under the action
of AutE on E].

Of course, (7.15) is now a straightforward consequence of (7.23), according to
the very definitions.

Accordingly, as an outcome of the preceding discussion, one concludes that

(7.24)

supposing that condition (7.22.1) holds true for any given A-connection
D of E , one further employs a condition, like (7.23.2), namely,

(7.24.1) φ(z) = z,

for some z �= 0 in E (varying, in general, with φ(!), one thus effectuates
here a “continuous selection” of such an element z in E), so that (7.23.4)
be then in force.
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Condition (7.24.1) is fulfilled, for instance, in (7.12); hence, our conclusion in (7.15).
Thus, the latter guarantees the “local” (pointwise) freeness of the action of AutE
on the space (7.1), while the same choice being rendered ambiguous, in general,
“globally”! (Gribov’s phenomenon).

Concerning the classical counterpart of the previous account, apart from the
work of I.M. Singer [1] that also was as already mentioned our main motivation to
the above considerations in the present section, see also A.S. Schwarz [2: p. 274,
§15.9] as well as C. Nash [1: p. 219] and P.K. Mitter–C.M. Viallet [1], or even
K.B. Marathe–G. Martucci [1: p. 160, §6.5].



Part III

General Relativity



4

General Relativity, as a Gauge Theory. Singularities

“. . . the evolution of the relativity of space time does not end with the paradox
of the singularities.”

D. J. Raine and M. Heller in The Science of Space–Time (Pachart Publ. House,
1981). p. 230.

“. . . the description of our own measurements of a quantum system must use
classical, commutative c-numbers . . . ”

N. Bohr in Quantum Theory and Measurement (J.A. Wheeler–W.H. Zurek
(Eds.), Princeton University Press, Princeton, 1983).

“Sensible mathematics involves neglecting a quantity when it turns out to be
small—not neglecting it just because it is infinitely great and you do not want
it.”

P.A.M. Dirac in Directions in Physics (H. Hora–J.R. Shepanski (Eds.), J. Wiley,
London, 1978). p. 36.

“. . . the general theory of relativity can be conceived only as a field theory.”

A. Einstein in The Meaning of Relativity (5th edition) (Princeton University
Press, Princeton, NJ, 1956). p. 140.

Nowadays we understand that it is much more geometrical to lay the “geometry”
(and, in particular, the differential geometry) we apply on the functions rather, which
are employed in its description, than on an a priori existed “space.” Yet, the former
seems to be more akin to the physicists point of view, according to which “geometry,
mechanics, and physics form an inseparable theoretical whole”. (See, for instance,
S.Y. Auyang [1: p. 144]). Indeed, the functions we alluded to above are essentially
the fields, in the physics terminology, hence (see Volume I, Chapt. II), “sections” of
appropriate algebra sheaves and/or of their (sheaf) modules, in particular, of what we
called throughout the present abstract (sheaf-theoretic) framework the vector sheaves
(ibid. Definition 6.1).

Especially, our aim in this chapter, as the title indicates, is to treat the funda-
mentals of General Relativity, for instance, to obtain Einstein’s equation (in vacuo)
within the abstract framework, which has been advocated thus far, throughout the
preceding. So, by looking at general relativity as a physical theory of the gravitational
field, as it actually is, for that matter, we have here again a so-called “gauge (field)
theory”; in other words, a physical theory, pertaining to the study of a particular

A. Mallios, Modern Differential Geometry in Gauge Theories: 143
Yang–Mills Fields, Volume II, DOI: 10.1007/978-0-8176-4634-9_4,
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gauge field (= A-connection), indeed, of the whole space of such, or even of the
corresponding “moduli space” (see Chapter II in the foregoing), which is carried by
a “vector sheaf” that is here factuated by means (of the states (= sections) of the
previous sheaf; see Vol. I, Chapt. II) of some elementary particle, which, for the case
at hand, might be the so-called “graviton.” (In this connection, see also J. Baez–
J.P. Muniain [1: p. 402]).

Now, a nontrivial spin-off of such a treatment of general relativity, in terms,
namely, of the abstract (differential-geometric) technique employed herewith, is a
potential application in our calculations of functions (that is to say, of sections) that
may have a large amount of singularities (!) in the classical sense of the term, as they
actually are, for instance, the elements (sections) of the Rosinger’s algebra sheaf (see
Section 5 in the sequel); such a presence of singularities, at all, is, of course, so far,
the most awkward obstacles for the classical theory, as it mainly concerns, among
other things, the important issue of its relation to quantization. To quote A. Einstein
himself “. . . we cannot judge in what manner and how strongly the exclusion of sin-
gularities reduces the manifold of solutions” (see A. Einstein [1: p. 165]). We do
consider such a sort of results, along with further reflexions, in the last two sections
of this chapter.

On the other hand, within the same vein of ideas, by referring to general relativity
we still note that the gravitational interaction, which is, of course, the subject matter
of the same theory, can also be viewed as (the study-object of) a gauge theory, in
the previous sense, as well. See, for instance, T.W. Kibble [1], along with Volume I,
Chapter II, Section 9.2 in the forgoing. Yet, to quote Einstein himself, as in the fron-
tispiece of this chapter, “the general theory of relativity can be conceived only as a
field theory.” Now, “field theory” means, in effect, that physical–mathematical theory
that actually concerns a Yang–Mills field, in general,

(0.1) (E, D),

as this term has been employed in the preceding (see Chapt. I, (4.13)); this can also
be a Maxwell field

(0.2) (L, D)

(see also Volume I, Chapt. III, (1.3)), according to the particular case at issue, as is,
for instance, the case for the electromagnetic field (loc. cit. Definition 1.1), while
this latter situation, as in (0.2), refers to the gravitational field, as well (graviton; see
Section 9 in the sequel). Hence, according to what has been said in the foregoing,
one thus realizes that

(0.3) field theory means, in point of fact, a gauge theory;

therefore, our previous considerations, pertaining to general relativity, is viewed as a
gauge theory.

Thus, one has first to establish the appropriate differential-geometric framework,
in the sense of this treatise, within which one can further consider, according to the
preceding, the general theory of relativity as an abstract gauge theory, a task that we
take on straightforwardly in the next section.
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1 Abstract Differential-Geometric Setup

To start with, we assume that we are given our usual abstract setting—that is, a
differential triad

(1.1) (A, ∂,Ω1)

on an arbitrary topological space X ; on the other hand, these initial data will be
further specialized, as we proceed, in accordance with the particular case at hand.

So our first specialization is to suppose that we actually have a curvature space
X , or a curvature datum on X ,

(1.2) (A, ∂,Ω1, d1 ≡ d,Ω2)

(see, for instance, Volume I, Chapt. I, (7.19)), while we also assume that we are given
a vector sheaf E on X , such that

(1.3) rkA(E) ≡ rkE = n ∈ N.

Now, what is further special here is our assumption about the dual (vector) sheaf E ∗
of E ; that is, we still accept that

(1.4) E∗ := HomA(E,A) = Ω1,

which yields, of course, that the given (see (1.1)) A-module Ω 1 is, in particular, a
vector sheaf on X as well (see [VS: Chapt. IV, p. 301, (5.19)]), so that by virtue of
(1.3) and (1.4), along with the “reflexivity” of a given vector sheaf on X , as is E here
(loc. cit. p. 299, Theorem 5.1), one further obtains

(1.5) E = E∗∗ = (Ω1)∗,

within A-isomorphisms of the A-modules (in effect, of the vector sheaves) involved
(ibid.), a fact that will be of essential use presently below (see for instance, (1.51) in
the sequel). Yet, one has (loc. cit.)

(1.5′) rkΩ1 = rk(E∗) = rkE = n ∈ N.

Note 1.1 The conclusion from what has been said before is thus that in the particular
case of the general theory of relativity, as this can be formulated, within our abstract
setting, one considers the differential triad

(i) (A, ∂,Ω1),

as in (1.1), where the given A-moduleΩ 1 is now a vector sheaf with, say,

(ii) rkΩ1 = n ∈ N,
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while the “variant” vector sheaf E , that we consider on X , is still, by definition, the
dual (vector sheaf) of Ω 1; namely, we set (see (1.5))

(iii) E := (Ω1)∗.

The above obviously corresponds to the classical case, where the space–time is
a suitable (4-dimensional) C∞-manifold, whose tangent bundle T (X), along with
the respective cotangent bundle T ∗(X)—the two bundles being, virtually, identified,
through the Lorentz metric (see (1.13.2) in the sequel)—represent here, by means of
their corresponding sheaves of sections, the previous scheme, as described by (i) and
(iii).

On the other hand, for the sake of generality and without any extra cost for that
matter, we assumed by (ii) that the (finite) rank of Ω 1, hence of E = (Ω 1)∗ as well
(see (1.5′)), is, in general, n ∈ N, not necessarily n = 4 (classical case). Thus,
practically speaking, the framework adopted herewith contributes also to the presen-
tation, within the abstract setting, advocated by this study, of more general aspects
of general relativity, as are, for example, several unified field theories, as such the
Kaluza–Klein theory (see, e.g., C. von Westenholz [1: pp. 504 and 554]). Relevant to
this note is also Scholium 1.1 in the sequel.

Finally, and in anticipation, with respect to the subsequent discussion, concern-
ing the above differential framework, as given by (i) and (iii), what will diversify it
is, as we shall see, the particular metric that in each case will be associated with it.
So, in this regard, the preceding setup might also be characterized, as an Einstein
(differential) triad, a terminology that will further be justified by the ensuing discus-
sion (see for instance, Definition 3.1 in the sequel).

Now, suppose that our vector sheaf E on X , as before (see (1.5) or even Note 1.1
(iii)), is further endowed with an A-connection D; thus, by using the previously
employed terminology (see Chapt. I), we actually assume, according to the preced-
ing, that we are given a Yang–Mills field

(1.6) (E, D)

on X . In this connection, we still note that by virtue of the general theory (see, e.g.,
[VS: Chapt. VI, p. 85, Theorem 16.1]), the situation just described can be achieved
under suitable conditions for A and X , that, in practice, appear in several particular
important cases, apart, of course, from the classical one (smooth case) that virtually
fulfills the aforementioned conditions (loc. cit.).

Thus, by looking at the corresponding field strength of the field, at issue, that is,
by definition, at the curvature of the given A-connection D of E , as in (1.6) (see also
(1.2)), denoted, as usual, by

(1.7) R(D) ≡ R,
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one has (see Volume I, Chapt. I, (7.22))

(1.7′)
R(D) ≡ R ∈ Ω2(EndE)(X) = Z 0(U,Ω2(EndE))

⊆ C0(U,Ω2(EndE)) =
∏
α

Ω2(EndE)(Uα) =
∏
α

Mn(Ω
2(Uα)),

so that one finally obtains that

(1.7′′) R(D) ≡ R = (R(α)) ∈
∏
α

Mn(Ω
2(Uα)).

Here, as usual,

(1.8) U = (Uα)α∈I

stands for a given local frame of (the vector sheaf) E , such that on each local gauge
Uα, α ∈ I , of E , one has (see (1.3))

(1.9) E |Uα = An|Uα = (A|Uα )n

for any α ∈ I , within A|Uα -isomorphisms of the A|Uα -modules involved. Therefore,
in view of (1.7′) and by complete analogy with the classical case, one concludes that

(1.10)

the field strength R(D) ≡ R of the field (E, D), as in (1.6), is given by a
0-cocycle of (local) n × n matrices with entries (local sections) from

(1.10.1) Ω2 ≡ Ω1 ∧Ω1

(viz., (local) “2-forms” on X). Therefore, locally (see also (1.7 ′′)) one
obtains

(1.10.2) R(D)|Uα ≡ R(α) = (ω
(α)
i j ) ∈ Mn(Ω

2(Uα)) = Mn(Ω
2)(Uα)

for any α ∈ I , as in (1.8).

Now, in connection with the preceding and by making full use of our previous
considerations in (1.4), (1.7 ′), and (1.10), we further assume, in the next subsection,
that we are also given an appropriateA-metric on E , the source, in a nutshell, of what
we may call curvature operators on E , that will also be our main issues in all that
follows.

1.1 Curvature Operators

We continue working, within the above abstract setting: thus, to fix the terminology
applied, we recall that we have assumed thus far that

(1.11)
we are given a curvature datum

(i) (A, ∂,Ω1, d1,Ω2) ≡ (A, ∂,Ω1, d,Ω2) ≡ (∂, d)
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(viz., we set d0 ≡ ∂ and d1 ≡ d) on an arbitrary topological space X ,
where we still suppose that

(ii) E := (Ω1)∗

(i.e., the dual A-module of Ω 1) is a vector sheaf on X , such that

(iii) rkA(E) ≡ rkE = n ∈ N.

Therefore, the same, as for E , holds true forΩ 1 as well, the latter being thus a vector
sheaf on X too (see, for instance, (1.4), (1.5), along with (1.5 ′)).

Now, to proceed, we further suppose the existence of a “metric,” in our abstract
(sheaf-theoretic) sense (see below); this is, in effect, the most essential as well as
convenient assumption we make for all that follows: Indeed,

(1.12)
gravity is a metric, after all; mathematically, however, roughly speaking,
which is, also in the same jargon, the source, alias the cause, of every
thing, that refers to general relativity,

the latter being, of course, our subject matter in the present chapter, viewed, as an
(abstract) gauge theory. Thus, precisely speaking and within always our abstract
setting, we next assume that

(1.13)

we are given an A-metric on E (see (1.11) (ii)), namely, a sheaf mor-
phism, say

(1.13.1) ρ : E ⊕ E −→A,

being also, by definition (see also Chapt. I, Section 2), an A-valued
scalar product, in the sense that the following three conditions are further
satisfied:

(i) ρ is A-bilinear, with respect to the A-modules involved in (1.13.1).
(ii) ρ is symmetric (see Chapt. VI, (2.2)).

(iii) ρ is strongly nondegenerate; that is, we suppose that one has

(1.13.2) E ∼=̃
ρ
E∗,

within an A-isomorphism of the A-modules involved.

Yet, as a result of (1.13.2) and (1.4) (see also (1.5)), one still obtains that

(1.14) Ω1 = E∗ ∼=̃
ρ−1

E,

while, for convenience, we recall (see Chapt. I, (2.6) and (2.7)) that the A-morphism
(in effect, A-isomorphism, in view of our hypothesis in (1.13.2)) ρ̃ is defined by the
relation
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(1.15) ρ̃(s)(t) ≡ ρs(t) := ρ(s, t)

for any s, t in E(U) and any open U ⊆ X .
Based on (1.4) and (1.13.2), one can further define the subsequent curvature

operator, or curvature endomorphism, which is associated with the given Yang–Mills
field (E, D) as in (1.6) under conditions (1.4) and (1.13.2). So, by looking at the
corresponding curvature R(D) ≡ R of the given A-connection D of E locally (i.e.,
in terms of local sections of the A-modules (in effect, vector sheaves) involved in
(1.7′)), one obtains the following relation for any open U ⊆ X , being a local gauge
of (the vector sheaf) E as well (see (1.9)):

(1.16)

(R|U )(·, s)(t) ≡ R(·, s)(t) ≡ R(·, s)t

∈ (EndE)(U) ≡ HomA(E, E)(U)
= H omA|U (E |U , E |U )

with s, t in E(U), where we have also taken into account (1.14) in conjunction with
(1.7′) (in the particular case that Uα = U ).

Concerning (1.16), our argument is based, first, on the following general result:

Lemma 1.1 Given two A-modules E,F on X and an open U ⊆ X , local gauge of
any one of them (not necessarily of finite rank), one has

(1.17) (E ⊗A F)(U) = E(U)⊗A(U) F(U),

within an A(U)-isomorphism of the A(U)-modules concerned.

Proof See [VS: Chapt. VII, p. 100, (1.10)].

On the other hand, within the same vein of ideas, as in the previous lemma, and
assuming that E is a vector sheaf on X , one has, if E = E ∗ (see, e.g., (1.13.2)),

(1.18) E ⊗A F = E∗∗ ⊗A F = HomA(E∗,F) = HomA(E,F),

within A-isomorphisms (see, [VS: Chapt. IV; p. 302, Theorem 6.1]). Furthermore,
for any given A-module E on X , one obtains, by definition,

(1.19) ∧nE∗ = (∧nE)∗, n ∈ N,

up to an A-isomorphism of A-modules.
Furthermore, by virtue of (1.7 ′) and the preceding, a local constituent of the

curvature of R takes the form

(1.20)

R(D)|U ≡ R|U ∈ Ω2(EndE)(U) ≡ (Ω2 ⊗A EndE)(U)
= Ω2(U)⊗A(U) (EndE)(U) = HomA((Ω2)∗, EndE)(U)
= HomA(Ω2, EndE)(U) = HomA(∧2E, EndE)(U)
= H omA|U (∧2(E |U ), (EndE)|U ),
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so that the local sections s and t that appear in (1.16) are by virtue of (1.10.1), (1.19),
and (1.14), first of all elements of Ω 1(U), but finally of E(U), exactly as asserted in
(1.16), which thus completely justifies the relation.

On the other hand, a compilation of (1.16) with (1.9) yields the following:

(1.21)

(R|U )(·, s)(t) ≡ R(·, s)t ∈ H omA|U (E |U , E |U )
= H omA|U (A

n |U ,An |U ) = HomA(An,An)(U)

≡ Mn(A)(U) = Mn(A(U))

(see also [VS: Chapt. IV, p. 294, (3.24)], concerning the notation applied in (1.21)).
In conclusion, based on (1.21) and by applying an abbreviated notation, we get

the following relation, which justifies the term “curvature endomorphism” employed
at the beginning; that is, one has (see also (1.27.1))

(1.22) R(·, s)t ∈ (EndE)(U) = Mn(A(U)) = Mn(A)(U)

with s and t in E(U) and U open in X , as in (1.9).
To fix our terminology, we further single out the following basic notion for the

subsequent discussion.

Definition 1.1 Suppose we have a curvature space X (see (1.2)) endowed with an
A-valued scalar product (see (1.13)), and let (E, D) be a given Yang–Mills field on
X satisfying the relation

(1.23) E = (Ω1)∗.

Then, for any open U ⊆ X , a local gauge of E (see (1.9)), and for any s and t in
E(U), one defines the Ricci operator of E , denoted by

(1.24) Ri c(E) ≡ R(s, t),

according to the following relation:

(1.25) Ri c(E) ≡ R(s, t) := tr(R(·, s)t);
that is, as the trace of the matrix appearing in (1.22).

In other words, and by virtue of (1.22) and (1.25), one gets a map

(1.26) R : E(U)× E(U)−→A(U) : (s, t) �−→ R(s, t) := tr(R(·, s)t),

being thus identified, according to the preceding, as the Ricci operator of E , yield-
ing by definition a local map for any local gauge U ⊆ X of E , as in (1.9).
(Warning (notational)! An obvious abuse of notation has been applied in (1.26),
pertaining to the usual symbol for the curvature R, being easily spotted from the
context.)
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To summarize the preceding, we thus conclude that

(1.27)

working within the previous framework, for any two (local) sections,
say s and t of E (over a local gauge U of E), one obtains through the
curvature R of E a local endomorphism of E (over U ; viz., what we
called above the curvature endomorphism, or curvature operator of E),
via the map (see (1.21) and (1.22))

(1.27.1)

R(·, s)(t) ≡ R(·, s)t ∈ H omA|U (E |U , E |U )
= HomA(E, E)(U) ≡ (EndE)(U)
≡ End(E |U ) = Mn(A(U)).

Thus, by virtue of the last relation a consequence, of course, of our
hypothesis for E and U (see (1.9)), the trace of the corresponding matrix
from the last member of (1.27.1), being an element of A(U), yields now,
by definition (see (1.25)), the Ricci operator of E as noted by (1.26).

To fix the terminology employed, we still note that, as follows from (1.27.1),

(1.28)
R(·, s)t (viz., the curvature operator, or curvature endomorphism, of E),
is an A|U -morphism of E |U into itself, or an A|U -endomorphism of (the
A|U -module) E |U for any s, t , and U , as above.

The preceding naturally leads to the definition of the following map of a sheaf
morphism; namely, one has (applying, for convenience, an obvious abuse of notation,
again with respect to (1.24))

(1.29) Ri c(E) : E ⊕ E−→A,

so that locally (viz., for any local gauge U of E), one has

(1.30)
Ri c(E)U (s, t) ≡ Ri c(E)(s, t) := Ri c(E) ≡ R(s, t)

:= tr(R(·, s)t) ∈ A(U)

for any s and t in E(U).
Consequently, based on the preceding, one sets, by definition,

(1.31) Ri c(E) ≡ (Ri c(E)U ),

with U varying over a given local frame of E (see (1.8) and (1.9) in the foregoing),
the latter family being a basis of the topology of X ; therefore, (1.31), hence (1.29),
is well defined as a sheaf morphism, which was exactly our assertion concerning the
map (1.29) as defined by (1.30).

We call (1.29), or equivalently (1.31), the global, or even generalized, Ricci
operator of E . Yet, for brevity’s sake, we also name it simply the Ricci morphism
of E . In this connection, we also note in anticipation that we shall use the previous
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map, even in its local form, as given by (1.25), to formulate in our case Einstein’s
equation (in vacuo; see Definition 3.1 in the sequel).

On the other hand, the same map (1.29), as given by (1.31), is by definitions (see
(1.20))A-bilinear and also symmetric (see (1.44) in the sequel). By further extending
to our abstract case the classical situation, an Einstein (A-)metric on E is defined as
a “scalar multiple” of Ri c(E); namely, we set

(1.32) ρEin ≡ ρ := α ·Ri c(E),

such that

(1.32′) α ∈ A(X) = Z 0(U,A) ⊆ C0(U,A) =
∏
U

A(U),

while we still assume that the map ρ, as in (1.32), is strongly nondegenerate as well.
In other words, we thus conclude that

(1.33)
the map ρ, as in (1.32), is an A-valued scalar product on E (see (1.13)),
being, in particular, a “scalar multiple,” in the previous sense, of Ri c(E).

Now, specializing further on our structure sheaf A, we also consider in the next
subsection the abstract version in our case of the standard notion of the scalar
curvature for a given A-connection D of E , as in (1.6).

1.2 Scalar Curvature

As already stated, to deal with the notion in the title of this subsection, we need some
extra structure in A, providing us with the appropriate abstract framework, analogous
to that in the standard case. What we really need here is to have at our disposal an

(1.34)

enriched ordered algebraized space

(1.34.1) (X,A)

(see, for instance, Chapt. I, (7.1), along with (5.1) and (5.2)), which is
also a curvature space (see (1.2)). Furthermore, we also assume that X is
a paracompact (Hausdorff) space, while we still accept that our structure
sheaf A is a strictly positive fine sheaf on X (see [VS: Chapt. IV, p. 327,
Definition 8.5]).

Finally, we assume that we are given an A-metric ρ on A, so that

(1.34.2) (A, ρ)

is a Riemannian A-module on X in the sense that ρ is an A-valued
inner product on A (A-bilinear, symmetric, positive definite, and strictly
nondegenerate sheaf morphism; [loc. cit. p. 318, Definition 8.2]).
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Note 1.2 (i) Our hypothesis, as in (1.34), that the structure sheaf A is a fine sheaf
on a paracompact (Hausdorff) space X (see also [VS: Chapt. IV, p. 327; (8.47))
entails, among other things, the inheritance of the given “metric” structure of A,
as in (1.34.2), to any vector sheaf on X as well, according to a standard argument,
pertaining to the existence of “partitions of unity” for A: See, for example, [VS:
Chapt. IV, p. 327, Definition 8.5 as well as p. 328, Theorem 8.3].

As consequence of the preceding, one can consider here two notions pertaining
to “orthonormality” that refer to vector sheaves: Thus, we first remark that given a
vector sheaf E on X , one can consider it, by virtue of what has been said in Note 1.2,
still as a Riemannian vector sheaf

(1.35) (E, ρ).

Moreover, if U ⊆ X is a local gauge of E (see (1.9)), one can assume that this is an
orthonormal one. Indeed, one proves that

(1.36)

given a vector sheaf (E, ρ), as in (1.35), there exists a basis of the topo-
logy of X consisting of orthonormal local gauges of E . Otherwise stated,
there is a basis of the topology of X yielding an orthonormal local frame
of E .

In this connection, we recall, for convenience, that a local gauge of E ,

(1.37) eU ≡ (U ; e1, . . . , en),

is said to be orthonormal whenever one has the relation (see also (1.35))

(1.38) ρ(ei , e j ) = δi j , 1 � i, j � n = rkE .

Of course, the analogous property to (1.9) is still valid for U by definition, while

(1.39) (e1, . . . , en) ⊆ E(U)n = En(U)

is an (orthonormal) basis of the A(U)-module E(U), such that

(1.40) | ei |= 1, 1 � i � n

(see also (VS: Chapt. IV, p. 336, (10.8) and (10.9)).
The preceding argument in (1.36) is actually based on an extension to the case

of vector sheaves of the usual Gram–Schmidt orthogonalization procedure, valid
already, as we know, for free A-modules of finite rank (ibid. p. 340, Theorem 10.1).
This extension is accomplished on the basis of the defining property of a local gauge
of a given vector sheaf, as, for example, in (1.9), in conjunction with our previous
result. (In this connection, see also Scholium 1.2 in the sequel for a possible further
extension of the same result as above pertaining to “indefinite” or semi-Riemannian
metrics on vector sheaves, according to the standard argument.) By further referring
to (1.36), one can actually prove that
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(1.41)
for a vector sheaf E on X as above, the set of locally finite (in the obvious
sense) orthonormal local frames of E , as in (1.36), provides a cofinal
subset of the set of all (proper) open coverings of X .

Equivalently, one thus concludes, always within the previous setting, that

(1.42)

given a vector sheaf E on X as before, for any open covering of X , there
always exists an open (locally finite) refinement of it, consisting of local
orthonormal gauges of E (thus, providing an orthonormal local frame of
E as well).

Note 1.3 Thinking of the above results pertaining to “orthonormality,” we remark
that these are valid without any “differentiability” assumptions on X . Thus, they still
hold true with X being an

(1.43)

enriched ordered algebraized space that is also paracompact (Hausdorff),
while the corresponding structure sheaf A is assumed to be a strictly
positive fine sheaf on X that is further endowed with a Riemannian
A-metric.

Thus, the above constitute (see also Note 1.2) a very convenient framework to
formulate within our abstract (sheaf-theoretic) context the standard theory of “inner
product spaces.”

Finally, as another consequence of the above, we obtain the following result,
which has been used in the preceding (true in a generalized form; however, see
Scholium 1.1 in the sequel). Thus, one concludes that

(1.44)

the Ricci operator of E , as given by (1.25) (see also (1.30) and (1.31)), is
symmetric; that is, one has, as concerns the scalar curvature,

(1.44.1) R(s, t) = R(t, s)

for any s and t in E(U), as in (1.30). (Here the local gauge U of E
involved may be taken to be an orthonormal one; see (1.36). Yet, the
vector sheaf E as in (1.11) and (1.43) may be of the form (1.6) and (1.35)
(viz., a Riemannian Yang–Mills field).)

Our assertion in (1.44) is, as already said, an outcome of our previous considera-
tions on “orthonormality” concepts within our abstract setup in conjunction with the
relevant classical argument; see W.A. Poor [1: p. 130, Proposition 3.44].

Having the previous abstract (differential-geometric) context as given by (1.43)
above along with (1.2) and (1.4), suppose again that

(1.45) (E, D)

is a given Yang–Mills field on X . Let us further consider the sheaf morphism

(1.46) R : E −→A
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given (sectionwise) by the relation (see also (1.25))

(1.47) R(s) := R(s, s)/‖s‖2,

where s ∈ E(U), with s �= 0, while U is a local gauge of E , which according to the
preceding (see (1.36)) may still be considered as an orthonormal one. Concerning
the notation employed in (1.47), see also Chapter I, (5.5.2).

The map (1.46), as given by (1.47), is called the Ricci curvature of (E, D).

Note 1.4 By referring to our hypothesis on the given vector sheaf E on X , as in
(1.45), we further remark here that according to our assumptions on the C-algebraized
space (X,A) set forth in (1.2), (1.4), and (1.43), one concludes that

(1.48)

given a vector sheaf E on X , this may always be viewed as a Riemannian
Yang–Mills field on X ; namely, it is of the form

(1.48.1) (E, D; ρ),
with D and ρ as in (1.6) and (1.35), respectively. Moreover, D is an
A-connection on E compatible with the A-metric ρ, or a Riemannian
A-connection on E , emanating from the given A-metric ρ. Concerning
the given vector sheaf E on X , we may still think in terms of an ortho-
normal local frame of E , which can also be chosen to be a basis of the
topology of X (see (1.36)).

We come now to the definition of the sort of curvature that is indicated by the
title of the present subsection: having the above framework, as declared by Note 1.4,
and according also to the classical pattern (see, e.g., W.A. Poor [1: p. 131, Defini-
tion 3.45]), one now defines the

scalar curvature (of the Ricci operator; see (1.24) or (1.31)) of E (strictly
speaking, of (A, ρ), as in (1.34.2)) by the relation

(1.49)

(1.49.1) σ (E) :=
∑
i, j

ρ(R(ei , e j )e j , ei ),

with 1 � i, j � n = rkE . See also (1.22) concerning the previously
applied notation.

In other words, one considers

the trace (value) of the Ricci operator as defined by (1.21) (see also
(1.22)) with respect to the given A-metric ρ (see (1.34.2)) and an
orthonormal local gauge of E (see (1.37)–(1.40) as well as (1.36)).
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Scholium 1.1 Concerning the framework that has been employed so far, we remark
that

(1.50)

this was just the initially given differential triad

(1.50.1) (A, ∂,Ω1)

(see (1.1)), that is simply the basic differential

(1.50.2) ∂(≡ d0 : Ω0 ≡ A−→Ω1)

(see Chapter I, (1.3′), (1.4), and (1.5′) concerning the notation applied in
(1.50.2)), which has been further supplemented through the addition of
one more differential [viz., of d 1 (see (1.2), as well as Section 1)], while
we also assumed that

(1.50.3) Ω1 is a vector sheaf on X with rkΩ 1 = n ∈ N

(see also (1.4)–(1.5′)) such that

(1.50.4) (Ω1)∗ ≡ E .

The above particular vector sheaf E on X (i.e., the dual (vector sheaf) of Ω 1),
was the vector sheaf under consideration throughout the foregoing. Therefore, our
relevant framework was essentially that of (1.50.1) within the particular assumptions
as above, these being further appropriately supplemented, as we shall discuss in the
sequel. Thus, we can say that

(1.51)

equivalently (with respect to (1.50)) we are first given a C-algebraized
space

(1.51.1) (X,A),

while we further consider a vector sheaf E on X ; it is good to bear in
mind that we actually have, through E , pieces of some (finite) power of
A (see, e.g., (1.9)).

The next crucial assumption pertaining to our differential setting is
that we assume the existence of a differential triad of the form

(1.51.2) (A, ∂,Ω1),

where (by definition) we have set

(1.51.3) Ω1 := E∗ ≡ HomA(E,A).

In other words, we suppose the existence of a map like the one in (1.50.2)
having the appropriate properties (Leibniz map, or (flat) A-connection
of A) with Ω1 as in (1.51.3). [Thus, the situation here concerning the
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existence of the basic differential ∂ is reminiscent of the Kähler theory,
according to which, roughly speaking, “every (unital commutative)
algebra has its own differential” (with an appropriately constructed Ω 1,
module of Pfaffians, by means of the algebra concerned). For a relevant
account in the case of a suitable topological algebra sheaf, viewed as the
corresponding structure (algebra) sheaf, see [VS: Chapt. XI, Section 5],
along with Section 5 in the subsequent discussion.]

Consequently, one concludes through our previous discussion in (1.50) and
(1.51) that one is actually working within the framework of (1.50.1) or, equiva-
lently, (1.51.2), depending on what one starts with—that is, (1.50.4) or (1.51.3). This
framework is further specialized according to the following fundamental assumption
pertaining to the A-metric involved.

However, before we come to the matter of the A-metric, we first comment a
bit on our assumptions concerning the topological space X and the structure sheaf
A, which, as we shall presently see, fit well with our subsequent hypothesis for the
A-metric. Thus, we have supposed that X is a paracompact (Hausdorff) space, a
fact that has important cohomological implications, in conjunction with differential-
geometric ones, in the case that A is also a fine sheaf on X , which we assume as
well. (In this connection, see also [VS: Chapt. III, as well as Chapt. VI; existence of
A-connections and the like].) As a result, one concludes that every vector sheaf E on
X admits an A-connection, so that one may look at E as a Yang–Mills field on X ,

(1.52) (E, D)

(see also loc. cit. Chapt. VI, p. 85, Theorem 16.1). In particular, this holds for Ω 1

(a vector sheaf on X too, by virtue of our hypothesis, as in (1.50.3), hence for its
dual sheaf E on X (see (1.50.4)), as well as [VS: Chapt. VI, p. 22, Section 5.4]).
Consequently one can finally say that

(1.53)

the fundamental assumption here, by taking also into account those on
X and A, is our hypothesis that

(1.53.1) Ω1 is a locally free sheaf of finite rank (viz., a vector sheaf
on X).

In conclusion, the existence of an A-connection for Ω 1, hence for E too, was a
consequence of our particular hypothesis for X and A, along with the existence of
∂ , already an A-connection of A, the latter being guaranteed by the definition of
(1.51.2). (In this connection, see also [VS: Chapt. VII, p. 101, Theorem 1.1, or p. 103,
(1.24)].)

We come now to our final assumption in the preceding, which was concerned
with the

(1.54)

existence of the pair

(1.54.1) (A, ρ)

—in other words, with that of a (Riemannian) A-metric on A.
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See, for instance, (1.13) along with (1.34.2) and (1.48); thus, one has to distinguish
here between Riemannian A-metrics (or A-valued inner products) on A, which are
by definition positive definite (see, e.g., Chapt. I, (2.5), or Definition 2.1) and by an
extension of the classical terminology, semi-Riemannian A-metrics (alias, A-valued
scalar products) onA, which are thus by definition semidefinite (positive or negative)
or indefinite. We return to this latter case in Section 3 and also through Section 2
by considering an important particular type of the latter metrics (viz., the Lorentz
A-metrics on A).

Certain additional technical assumptions pertaining to an appropriate order struc-
ture on A are to be made here, as we did in the preceding discussion (see, for
example, (1.43)), this order structure on A being naturally involved according to
the general theory (see [VS: Chapt. IV, Section 8]) in the definition of the concept of
an A-metric. Thus, for convenience of reference, we recapitulate the corresponding
items of the framework we have employed so far; that is, one considers

(1.55)

an enriched ordered C-algebraized space

(1.55.1) (X,A)

with X a paracompact (Hausdorff) space and A a strictly positive fine
sheaf on X endowed with a Riemannian A-metric ρ (see (1.54.1)).
We assume that X is a curvature space; namely, we are given

(1.55.2) (A, ∂,Ω1, d1,Ω2)

as in (1.2), while Ω 1 is a vector sheaf on X .

Concerning the terminology applied above, see also [VS: Chapt. IV, p. 336, Defini-
tion 10.1, and p. 327, Definition 8.5, as well as (8.47)].

A crucial fact that results from (1.55) is that

(1.56)

every vector sheaf E on a topological space X , as in (1.55) (an abbrevia-
tion of saying that we assume that the framework of (1.55)) admits an
A-metric ρ as well, along with an A-connection D compatible with ρ
(see Chapt. I, Section 9 or [VS: Chapt. VII, p. 155, Definition 8.1, along
with p. 168, Definition 9.1, and the comments preceding the latter]).
Indeed, D is determined through the A-metric ρ itself and the differ-
ential structure of X (see (1.51.2) or (1.55.2)) in view of the Levi–Civita
identity (Volume I, Chapt. I, (9.7)).

The preceding is a consequence of what we may call in our case the fundamental
lemma of Riemannian vector sheaves, along with the Levi–Civita identity, the latter
classical relation being extended to the present abstract setting; see [VS: Chapt. VII,
p. 168, Theorem 9.1, as well as p. 166, (8.80) and p. 160, (8.46)].

The previous discussion pointed out our aim, the particular significance and con-
tribution throughout the foregoing of the structure sheaf A, especially of the differen-
tial triad (A, ∂,Ω1), under the additional assumption (1.53.1), as well as of the pair
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(A, ρ), with the special hypothesis, however, very useful (!), for many purposes, for
A and X (see (1.55)); in particular, we assumed that A was a (strictly positive) fine
sheaf on the paracompact (Hausdorff) space X .

The preceding have, of course, a special bearing on the classical case, pertaining
in particular to Riemannian manifolds; more specifically, the above abstract frame-
work can be employed, classically, in the study of Einstein (-Riemannian) manifolds,
[viz., according to the standard definition, Riemannian manifolds of constant Ricci
curvature (see for instance, A.L. Besse [1: p. 4, 0.14])]. By the term Ricci curva-
ture, one means here what we called in the preceding the Ricci operator of a given
vector sheaf E (see Definition 1.3). In the classical case, E stands for the sheaf of
germs of sections (viz., vector fields) of the tangent bundle T (X) of the Riemannian
(C∞-)manifold X under consideration; in this connection, see also Chapter I, Sec-
tion 2.1 for the terminology).

On the other hand, the preceding can also be applied in many abstract instances,
a fact that is of our concern here. Thus, the above framework is particularly in
force in the case that our structure sheaf A is the so-called Rosinger’s algebra
sheaf, which will be considered in the subsequent discussion (see Section 5 of this
chapter). The base space of the same sheaf is by definition a paracompact (Hausdorff)
space. Our interest here lies, as we shall see (see Sections 6 and 8 in the sequel),
in the fact that through an application of the previous sheaf, as a sheaf of coeffi-
cients, we are able to absorb “singularities,” in the classical sense of the latter term,
throughout our argument, as if these peculiarities as well as disadvantages of the
classical theory were not there at all (!), in the sense that their presence does not
entirely affect our argument, hence our reckoning as well, thanks to the abstract
form of the differential geometry employed. The same framework seems to acquire a
potential application as well pertaining to the problem of quantization of gravity (see
Section 9).

1.3 Semi-Riemannian A-Modules

We have already noted (see Scholium 1.1, comments following (1.54)) the chance of
considering, through the following discussion, more general A-metrics than those
employed so far (Riemannian A-metrics; see (1.34.2)). These are, by extending
the standard terminology, the so-called semi-Riemannian A-metrics, as the title of
this subsection indicates. We are going to employ such types of A-metrics through-
out Section 2 (Lorentz A-metrics). The crucial difference between the latter and
the Riemannian A-metrics considered in the foregoing is that the semi-Riemannian
A-metrics are A-metrics on a given A-module E on X—that is, sheaf morphisms

(1.57) ρ : E ⊕ E −→A

(see, for instance, (1.13.1)), which are A-bilinear, symmetric and strongly nondegen-
erate (see (1.13)), being otherwise not necessarily positive definite; see, for instance,
Chapter VI, (2.5). Based on these properties of ρ, as in (1.57), and by further
extending the relevant classical terminology (see for instance, B. O’Neill [1: p. 47,
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Definition 20]), we may call such a ρ an A-valued scalar product of the A-module
E , as above.

Thus, by applying the notation of Chapter I, (2.5), one concludes for an A-metric,
as before, that

(1.58)
ρ(s, s) ∈ A(U) is not necessarily an element of P(U) ⊆ A(U), as well
(viz., “positive”) for given s ∈ E(U) and open U ⊆ X .

Therefore, by defining the “norm” of (a local section) s ∈ E(U), one sets

(1.59) ‖s‖ := √|ρ(s, s)|.
Of course, we have to assume here, concerning (1.59), that

(1.60)

we are still given an enriched ordered C-algebraized space

(1.60.1) (X,A),

alias an ordered C-algebraized space with square root.

See Chapter I, (5.1) and subsequent comments therein or [VS: Chapt. IV, p. 336,
(10.8)] for more details on the above notion. As already mentioned, we are going to
consider A-metrics of the previous type in Section 2, with A satisfying (1.60); see,
for instance, Note 2.1 in.

On the other hand, semi-Riemannian A-metrics were already considered in
Section 9 of Chapter I, in Volume I of this treatise, through the so-called Einstein
A-metrics; see (9.61) and (9.62) therein.

2 Lorentz A-Metrics

In the ensuing discussion we specialize in a certain particular type of A-metric, as the
title of this section indicates, whose classical counterpart is of fundamental impor-
tance in relativity theory. Our aim here is to establish the appropriate abstract setup,
within which one can formulate in our case the analogous concept to the classical
notion, as suggested by the title of the present section.

To start with, suppose that we are given a C-algebraized space

(2.1) (X,A)

on a topological space X (see Volume I, Chapt. I, (1.4)) and let E be an A-module
on X , for which we further assume that one has a local gauge of the form

(2.2) eU ≡ {U ⊆ X, open : (ei )0�i�n ⊆ E(U)}.
By definition, this means that we are given the above (finite) family of local sections
of E over the open set U ⊆ X as in (2.2); namely, one has

(2.3) ei ∈ E(U), 0 � i � n,
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which also supplies a basis of the corresponding A(U)-module E(U), while we still
assume that

(2.4) E |U = An+1|U = (A|U )n+1,

within an A|U -isomorphism of the A|U -modules concerned. (Here our hypothesis
concerns only the first of the previous relations, while the rest is proved!)

The preceding is just the local aspect of the important notion of a vector sheaf,
in particular, of the type that will mainly concern us in the sequel. After the above
preliminary material, we come now to the following basic notion.

Definition 2.1 Given an A-module E on X as above, a Lorentz A-metric on E is a
sheaf morphism

(2.5) ρ : E ⊕ E −→A

such that the following conditions are in force:

(i) ρ is an A-bilinear morphism of the A-modules involved in (2.5).
(ii) ρ is symmetric (see (1.13), condition (ii)).
(iii) ρ is strongly nondegenerate; that is, one has the relation

(2.6) E ∼=̃
ρ
E∗,

within an A-isomorphism of the A-modules concerned (see also (1.4) for the
relevant notation).

(iv) ρ satisfies the following Lorentz condition; that is, one has (see also (2.2)–(2.4))

(2.7) ρ(ei , e j ) ≡ ηi j

⎧⎪⎨
⎪⎩

0, i �= j,

−1, i = j = 0, 0 � i, j ≤ n.

1, i = j �= 0,

(We still speak here of (2.2) as a Lorentz local gauge of E .)

On the other hand, concerning (2.7) and by analogy with the Riemannian case
with regard to the Kronecker δ, we also speak about the Lorentz η, pertaining,
according to (2.7), to the A(X)-valued matrix

(2.8) η ≡ (ηi j ) ∈ Mn+1(A(X)) = Mn+1(A)(X),

such that one has

(2.9) ηi j = 0,±1 ∈ A(X), with 0 � i, j � n.

In particular, by referring to (2.7), the same matrix is restricted to the given local
gauge U ⊆ X of E , so that by looking at (2.9), one actually has

(2.10) ηi j ∈ A(U), 0 � i, j � n.



162 4 General Relativity, as a Gauge Theory. Singularities

What amounts to the same thing, one has the (n + 1)× (n + 1) (Lorentz) matrix

(2.11) η ≡

⎛
⎜⎜⎜⎝
−1 0

+1
. . .n times

0 +1

⎞
⎟⎟⎟⎠ ∈ Mn+1(A(X)),

restricted to U ⊆ X , as above, or the respective (Lorentz) diagonal matrix, having
signature

(2.12) sign(η) = (−1,+1, . . . ,+1︸ ︷︷ ︸
n times

).

The above are certainly justified in view of our hypothesis for the A-metric ρ, as in
(2.5), along with our assumption for the structure sheaf A itself; indeed, one has the
following C-isomorphisms of (C-vector) sheaves:

(2.13) RX ≡ R ⊂→ C ≡ CX ⊂→ε

A,

with RX and CX denoting the respective constant (numbers, as indicated) sheaves on
X (see Volume I, Chapt. I, (1.5)). Hence, constant numbers are essentially considered
as constant sections of the relevant sheaves, as before.

Thus, having fixed the terminology that we are going to employ throughout the
subsequent discussion, we further consider in the next subsection the A-modules
endowed with Lorentz A-metrics (see Definition 2.1), in analogy with the similar
situation that one encounters in the Riemannian case (see [VS: Chapt. IV, Section 8]).

2.1 Lorentz A-Modules

Having the framework of (2.1), we call a Lorentz vector sheaf on X a pair

(2.14) (E, ρ)

consisting of a vector sheaf E on X and a Lorentz A-metric ρ on it (see Defini-
tion 2.1). So we assume that

(2.15)

we are given a local frame of E , say

(2.15.1) U = (U),

such that the Lorentz condition (see (2.7)) holds for every local gauge U
of E belonging to U , as in (2.15.1).

For convenience, we also assume that

(2.16) rkA(E) ≡ rkE = n + 1, n ∈ N.

(However, see also, e.g., (10.27).)
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On the other hand, by mimicking the corresponding situation, one has in the
Riemannian case (see [VS: Chapt. IV, p. 322, Theorem 8.1]) that a Lorentz A-metric
ρ on a given vector sheaf E on X is provided by means of a Lorentz local frame of
E ; that is, we assume that we are given a local frame, say

(2.17) U = (Uα)α∈I ,

of E along with a 0-cocycle

(2.18)

ρU = (ρα) ∈ Z0(U,GL(n + 1,A)) = GL(n + 1,A)(X)
= GL(n + 1,A(X)) = Mn+1(A(X))

. ⊆ Mn+1(A(X))

⊆
∏
α

Mn+1(A(Uα)),

in such a manner that one has, in view of (2.7) (see also (2.12)),

(2.19) sign(ρα) = (−1,+1, . . . ,+1︸ ︷︷ ︸
n times

), α ∈ I.

Thus, based now on (2.19), one further obtains that

(2.20) tρU = ρU

(symmetry of ρ ≡ ρU ) or, equivalently,

(2.21) tρα = ρα, α ∈ I

(see also [VS: Chapt. IV, p. 320ff]). In this connection, we can speak of a Lorentz
A-metric on a given vector sheaf E on X as a (global) section matrix

(2.22) η = (ηi j ) ∈ Mn+1(A(X)) = (Mn+1(A))(X),

as in (2.11) (see also (2.8)), which, according to (2.7), corresponds to a given local
frame U of E (see (2.2) for a particular local gauge of E in U).

To sum up, we can say that

(2.23)

we have a Lorentz vector sheaf

(2.23.1) (E, ρ)

on X whenever we are given a vector sheaf E on X along with a Lorentz
local frame of E

(2.23.1) {U = (Uα); ρ = (ρα)}
in such a manner that (2.18) and (2.19) hold. In this connection, we also
refer to ρ as a Lorentz A-metric associated with (or corresponding to) a
given local frame U of E .
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In particular, the preceding specializes to our structure sheaf A, or rather to any
(finite) power (direct sum) of it, An , n ∈ N. In this connection, we note that according
to (2.16), we consider here the (free) A-modules

(2.24) An, with n � 2.

(In this regard, see also Section 9 in the sequel.) Our next objective, in agreement
with our previous remarks in Scholium 1.1, is to conclude the above situation as in
(2.23) for any given vector sheaf E on X , from a similar assumption on A (viz., again,
reduce, in a sense, everything to A). Indeed, as we shall see, this can be achieved
under appropriate further assumptions for A and X (see (2.27) and/or (2.33) in the
sequel). To repeat, the extra assumptions alluded to before are fulfilled in certain
important particular instances that interest us, having to do with potential applica-
tions of the abstract differential-geometric setup in problems related to singularities
and relativistic quantization (see Sections 5 and 9 in the sequel along with Sections 6
and 8).

Taking the preceding comments into account, assume now that

(2.25) (An+1, ρ)

is a Lorentz (free) A-module. So our aim here is to conclude the assumption in (2.25)
for any locally free A-module E on X with

(2.26) rkE = n + 1

(i.e., for a vector sheaf E on X of the previous rank). Indeed, by analogy with the
Riemannian case (see [VS: Chapt. IV, Section 8]), we assume henceforth that

(2.27)

we are given, in particular, an ordered algebraized space

(2.27.1) (X,A),

where X is a (Hausdorff) paracompact space and A is a strictly positive
fine A-module on X .

We refer to the above cited work for the terminology applied in (2.27). The crucial
ingredient here is that as a consequence of our previous hypothesis, one can employ
a convenient partition of unity of A, say

(2.28) (ϕα)α∈I ⊆ EndA = A(X),

in fact, a strictly positive one (loc. cit., p. 326, Definition 8.4), in such a manner that
the relation

(2.29) ρ̄ :=
∑
α

ϕα · ρα

yields a Lorentz A-metric for the vector sheaf E as above (see also (2.26)). In this
connection, one defines

(2.30) ρα : (E ⊕ E)|Uα −→A|Uα
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as the Lorentz A-metric on

(2.31) E |Uα = An+1|Uα ,
which is supplied already in view of our hypothesis for E and (2.25). Furthermore,

(2.32) U = (Uα)α∈I

stands for a given local frame of E , which by virtue of the hypothesis for X can be
viewed as being locally finite ibid. [p. 325, (8.42)], the partition of unity (2.28) being
subordinated to it. (See also [loc. cit. p. 325, proof of Theorem 8.2].)

As a consequence, one now gets the following basic result:

(2.33)

suppose we are given an ordered algebraized space

(2.33.1) (X,A),

with X a paracompact (Hausdorff) space and A a strictly positive fine
A-module on X , such that

(2.33.2) (An+1, ρ)

is a Lorentz A-module (for some given (hence for any) n ∈ N). Then
every vector sheaf E on X (of rank n + 1) admits a Lorentz A-metric as
well; namely, E is a Lorentz vector sheaf too.

Note 2.1 Concerning the recursive procedure of defining a Lorentz A-metric
(viz., via Whitney sums and pull-back) as alluded to above, we further remark that
one can consider the analogue of the Gram–Schmidt orthogonalization process by
assuming that the pair

(2.34) (X,A),

as in (2.33.1), is still an enriched ordered algebraized space. (In this connection,
we refer to [VS: Chapt. IV, Section 10] for relevant motivating thoughts, which can
easily be adapted to the present framework as well.)

We consider next Lorentz A-modules that are further endowed with appropriate
A-connections (metric invariant ones), something that will be of particular signifi-
cance in the sequel.

2.2 Lorentz Yang–Mills Fields

To begin with, suppose that we are given the framework as in (2.33). Moreover,
suppose that we have a vector sheaf E on X with

(2.35) rkE = n + 1,
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so that by virtue of our hypothesis and of (2.33), one may look at a Lorentz vector
sheaf on X ,

(2.36) (E, ρ).

(For convenience, we applied here an obvious abuse of notation in connection with
(2.33.2).)

On the other hand, by further assuming that we are given a differential triad

(2.37) (A, ∂,Ω1),

one concludes, in view of our hypothesis for X and A as in (2.33), that the given
vector sheaf E admits an A-connection D as well (see [VS: Chapt. VI, p. 85,
Theorem 16.1, in conjunction with Chapt. III, p. 247, (8.56)]). Accordingly, one
obtains the Yang–Mills field

(2.38) (E, D)

on X too (see also Chapt. I, (4.12)).
In view of the preceding, we come now to the following basic notion, the main

issue of this particular subsection. As already stated in the preceding, we consider
here, for convenience, only vector sheaves of rank at least 2; see (2.26).

Definition 2.2 Suppose we have a differential triad, as in (2.37), on a topological
space X (no extra assumptions on X and A are to be assumed here a priori) and let
E be a given vector sheaf on X with

(2.39) rkA(E) ≡ rkE = n + 1.

We say that we have a Lorentz Yang–Mills field on X , denoted by

(2.40) (E, ρ; D),

whenever the pair

(2.41) (E, ρ)

provides a Lorentz vector sheaf on X (see (2.14) or (2.23)), while the corresponding
pair

(2.42) (E, D)

entails a Yang–Mills field on X (see Chapt. I, (4.12) of the present volume) and in
such a manner that the following relation holds:

(2.43) DHom(E,E∗)(ρ̃) = 0.

Concerning the notation applied in (2.43), see (2.6) as well as Scholium 2.1,
where the same relation is further commented on from a physical perspective.
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Scholium 2.1 (Terminological) Having the framework of Definition 2.2, the
A-isomorphism ρ̃ appearing in (2.43) is the one defined by (2.6), so that (2.43) means
by definition that

(2.44)

the A-isomorphism ρ̃ as in (2.6) is horizontal with respect to the
canonical A-connection

(2.44.1) DHomA(E,E∗)

defined on the vector sheaf

(2.44.2) HomA(E, E∗) = E∗ ⊗A E∗ = (E ⊗A E)∗

through (2.42). (See also [VS: Chapt. VI, (6.16)].)

If (2.43) is valid, we say that the given A-connection D, as in (2.42), is compatible
with the (Lorentz) A-metric ρ (see (2.40) or (2.41)). On the other hand, we can
express (2.43) by saying that

(2.45)
(2.43) entails a gauge equivalence of the A-connections of E and E ∗
(dual of E), which is provided by the A-isomorphism ρ̃ (see (2.6)).

Based on Chapt. II, (1.11) and Chapt. I, (4.23) as well as on [VS: Chapt. VII,
Section 8, in particular, p. 165, proof of Theorem 8.2], one sees that (2.43) is equiva-
lent to the following relation (see also Chapt. I, (4.42) and (4.43)):

(2.46) D∗ ≡ (ρ̃ ⊗ 1) ◦ D ◦ ρ̃−1 ≡ ρ̃ ◦ D ◦ ρ̃−1 ≡ Ad(ρ̃) · D ≡ ρ̃∗(D),

where we put

(2.46′) D∗ ≡ DE∗ .

The dual A-connection of D (viz., the A-connection of E ∗) induced on the latter
vector sheaf (dual of E) by the given A-connection of E , D ≡ D E (see (2.42). See
also [VS: Chapt. VI, p. 22, Section 5.4]).

On the other hand, by employing a usual (and obvious as well) abuse of notation,
we can further put (2.46) into the form

(2.47) D∗ ◦ ρ̃ ≡ D∗ · ρ̃ = ρ̃ · D ≡ ρ̃ ◦ D

(see Scholium 2.2 for the physical significance of the middle equality in the above
relation) or in the form

(2.48) D∗ ∼̃
ρ

D,

which by definition entails an equivalent expression for (2.45); namely, one has that

(2.48′) D∗ (the A-connection of E ∗) is gauge equivalent to D (the A-connection
of E) via ρ̃ the A-isomorphism as given by (2.6).
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Accordingly, (2.6), which has been assumed for the (Lorentz; see also Chapt. I, (2.9))
A-metric ρ, according to Definition 2.1, is further transferred, through (2.48), to a
similar relation for the corresponding A-connections of the vector sheaves involved
in (2.6), a condition that is still required by Definition 2.2 (compatibility of D, with
respect to ρ; see (2.43)). So

(2.49)

the required identification (A-isomorphism ρ̃) of the carriers of the fields
involved in (2.6) is further decreed to be in force as a similar identifi-
cation (gauge equivalence) of the corresponding A-connections of the
fields concerned.

In other words, one has, through Definition 2.2,

(2.50)

an equivalence in the Yang–Mills category, YM X (see Chapt. I, (4.19))
of the fields under consideration (viz., of (E, D) and its dual (E ∗, D∗)),
and not simply in the category of vector sheaves on X , VectSh X . One
has by definition the relation

(2.50.1) YMX ⊆ VectSh X

concerning the categories at issue. (In this connection, see also Volume I,
Chapter II, (6.29) and (9.40) and Chapter I, Sections 4.2 and 4.3.)

On the other hand, (2.43) is the abstract version, in our case, of the familiar
condition in general relativity, that

(2.51)
the Lorentz metric satisfies the relation

(2.51.1) ∇ρ = 0.

(See also Scholium 2.2 for a physical interpretation of the above relation.) So it
is now a consequence of the general theory that (2.51), hence equivalently, in the
abstract case considered, (2.43), implies that

(2.52)
the (Levi–Civita) A-connection D of E (see (2.42)) induced on it by the
Lorentz A-metric ρ as in (2.41) is torsion free.

In this regard, see also [VS: Chapt. VIII, (10.9)], pertaining to the notion of the
torsion of a given A-connection; see, for example, Volume I, Chapter I, Section 8.2
of the present treatise. On the other hand, we further note that by analogy with the
classical case, one proves that

(2.53)
the Levi–Civita A-connection D of E (see (2.42)) is characterized by
(2.51.1) (viz., (2.43) (metric compatibility)) and the vanishing of the
corresponding torsion.

See also [VS: Chapt. VIII, Section 10, along with Chapt. VII, p. 128; (5.34) and
(5.35) and p. 131, (5.52)]; concerning the classical counterpart of the previous asser-
tion, see M. Nakahara [1: p. 247, §7.8.4].
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To facilitate further the terminology applied, we set the following definition.

Definition 2.3 We call a topological space X for which the hypothesis of (2.33) is
in force a Lorentz space of order n + 1 (n ∈ N).

As a consequence of the above definition and our conclusion in (2.33), one now
obtains the following, certainly more succinct, restatement of that result; that is, one
has (see also Scholium 2.2)

(2.54)
Given a Lorentz space X of order n+1 (n ∈ N), every vector sheaf E on
X of rank n+1 becomes a Lorentz Yang–Mills field (see Definition 2.2).

However, what one is really confronted with in the applications (see Section 3) is the
framework that is depicted in the following result:

(2.55)

Suppose we have the hypothesis of (2.33), apart from (2.33.2), and let

(2.55.1) (E, ρ)

be a Lorentz vector sheaf on X of rank n+ 1 (see (2.14)). Then E admits
an A-connection D as well, compatible with ρ (see (2.43), along with the
comments following (2.44)); that is, E becomes a Lorentz Yang–Mills
field on X ,

(2.55.2) (E, ρ; D)

(see Definition 2.2).

Indeed, except for (2.43), the assertion in (2.55) follows from our previous discus-
sion, before Definition 2.2, based on the pertinent part of our hypothesis in (2.33).
On the other hand, one obtains (2.43) by applying a similar argument to that used in
the Riemannian case (see [VS: Chapt. VII, p. 168, Theorem 9.1]).

As a matter of fact, the preceding describes the framework that one has in the
case of Einstein’s equations (in vacuo), always within the present abstract setting,
which will be our objective in Section 3.

Scholium 2.2 (Physical significance) Referring to (2.43),

(2.56) DHomA(E,E∗)(ρ̃) = 0

(Levi–Civita identity), we remark that one may still look at it as an algebraic expres-
sion of the fact that (the given Lorentz A-metric) ρ, hence ρ̃ (see (2.6)) as well, is a
tensor (i.e., geometric objects), so that they are characterized by a flow. However, the
latter is causally stationary (see Chapter I, Scholium 4.1) with respect (concerning
the causality at issue) to DE ≡ D and DE∗ ≡ D∗ (see (2.50)); that is, relative to the
A-connection

(2.57) DHomA(E,E∗).
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Thus, one finally obtains (2.56). Accordingly, to recapitulate, one concludes that

(2.58)
ρ̃ is “stationary” or even “constant” relative to the (covariant) derivative
defined by D and D∗—in other words, with respect to the A-connection
(2.57).

Furthermore, according to (2.47), the physical–geometric significance of (2.56) can
be expressed through the

(2.59)

commutativity of the flow (viz., of ρ̃) relative to the causality (as deter-
mined by D and D∗). Taking into account the terminology of Chapter I,
(4.30), we can also say that (2.56) is equivalent to the relation

(2.59.1) ρ̃ ∈ YMX − I somA((E, D), (E∗, D∗))

(see loc. cit. (4.54.1)), which also recalls the aforesaid commutativity,
according to the definitions.

On the other hand, within the same vein of ideas, one can say that

(2.60)
the Levi–Civita identity as in (2.43) provides another form of the
principle of equivalence, or the principle of least action (alias principle
of Maupertuis or Fermat’s principle).

In this connection, see M. Nakahara [1: p. 28, along with pp. 257ff].

3 Einstein Field Equations

Our aim in the following discussion is to present Einstein’s field equations in
vacuo—that is, to quote R. Penrose [1: p. 23], “. . . in the absence of all physical fields
except gravity . . . ” [emphasis here is ours], in other words, except for the gravita-
tional field (graviton)—within our abstract framework that is advocated in the present
treatise. As we shall see in conjunction with the last few sections of this chapter, that
this gives us the possibility, concerning the classical aspect of the subject, to consider
solutions of the equations at issue, including singularities, something unattainable,
thus far by referring to the standard theory. This newly existing situation, as alluded
to above, may have (see also Section 9) significant consequences pertaining to the
quantum theory of gravity.

So to start with, we first have to fix the terminology we are going to employ in
the subsequent discussion. Generally speaking, the framework within which we shall
work is that of a Lorentz space of order n + 1, in the sense of Section 2 (see (2.53),
along with (2.33)).

Suppose that

(3.1) (E, ρ)
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is a Lorentz vector sheaf of order n + 1 (see (2.23), along with Definition 2.2).
Furthermore, concerning the given differential triad

(3.2) (A, ∂,Ω1)

on X (we also remark here that no extra hypothesis is imposed on X so far), we
assume that we have

(3.3) Ω1 = E∗,

so that one obtains (see [VS: Chapt. IV, p. 299, Theorem 5.1])

(3.4) E = (Ω1)∗.

Equivalently, we can say that

(3.5)

we are given a differential triad

(3.5.1) (A, ∂,Ω1)

on a topological space X such that

Ω1

is a Lorentz vector sheaf on X of rank n + 1.

In this connection, see also (3.3), along with (2.6) and (2.23).
On the other hand, we also remark that

(3.6) (3.5) is in force whenever we assume that X is a Lorentz space of order
n + 1 while Ω1 is a vector sheaf on X of rank n + 1.

The previous assertion in (3.6) is a straightforward consequence of (2.33).
One concludes that

(3.7)

by assuming that X is a Lorentz space (of order n + 1), along with the
same hypothesis for Ω 1 as in (3.6), one obtains that (see also (2.55))

(3.7.1) (Ω1, ρ; D)

is a Lorentz Yang–Mills field on X (see Definition 2.2), so that the same
holds for

(3.7.2) E = (Ω1)∗.

See (3.4) along with (2.54).
We are now in a position to formulate, within the present abstract setting, hence

availing ourselves of the merits of this formulation (e.g., incorporation of singulari-
ties, as already mentioned), the equations in the heading of this section. In fact, the
same equations are contained in the following basic definition.
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Definition 3.1 Suppose we are given a differential triad

(3.8) (A, ∂,Ω1)

on a topological space X , along with a Lorentz vector sheaf on X of rank n + 1, say

(3.9) (E, ρ).

Moreover, we assume that (see also (3.3) and (3.4))

(3.10) E = (Ω1)∗.

In this context, we then speak of X as an abstract Einstein space. In particular, we
shall say that (the Lorentz vector sheaf) E satisfies the Einstein equation in vacuo
whenever one has

(3.11) Ri c(E) = 0.

(See also (1.24) along with Scholium 3.1.) To make the contribution of E in (3.11)
more explicit, we can rewrite the same relation in the form

(3.11′) Ri c(E) = tr(R(·, s)t) ≡ tr(R(DE )(·, s)t) = 0

for any s and t in E(U), with U a local gauge of E . (See also (1.16), (122), (1.25),
and (1.27.1).) Indeed, as we shall see (see Section 4), one concludes, implicitly, that

(3.11′′) the Einstein equations can be construed as Yang–Mills equations for the
curvature tensor.

The claim is based on what we can consider within the present abstract setting as the
Einstein–Yang–Mills action principle (Section 4, (4.20.1)).

In this context, see also W. Drechsler–M.E. Mayer [1: p. 2], as well as D.
Bleecker [1: p. 134, Theorem 9.3.3].

Scholium 3.1 (Terminological) According to the previous definition, an (abstract)
Einstein space X (precisely speaking, we should say of order n+1) is the underlying
space of a differential triad, as in (3.8), on which there is given a Lorentz vector sheaf
of order n + 1,

(3.12) (E, ρ),

such that (3.10) holds.
In particular, the above are in force whenever one has the framework of (3.7);

in that case we also speak of X as an (abstract) Lorentz–Einstein space (of order
n + 1). It is actually this particular case that usually occurrs in the classical theory,
as indicated by (3.17).

On the other hand, concerning Einstein’s (vacuum) equation (3.11), we further
remark that (3.11) represents the global (generalized) aspect of Einstein’s equation
within the present abstract setting; namely, let

(3.13) U = (U)
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be a local frame of E as in (2.15)—in other words, a Lorentz local frame of E (see
(2.23)). Therefore, one has, concerning the first part of (3.11), the relation

(3.14) Ri c(E) = (Ri c(E)U )U∈U ,

such that one sets

(3.15) Ri c(E)U ≡ R : E(U)× E(U)−→A(U),

as given by (1.21), for any given U ∈ U , as in (3.13). Thus, one obtains

(3.16) Ri c(E) ∈ MorSh X (E ⊕ E,A).

See also (1.24) as well as [VS: Chapt. I, p. 75, (13.19), along with App., p. 405,
(1.1)].

Finally, one further remark should be made here in connection with (3.11):
As already said, the equation at issue refers, as is also the case classically (see
Section 3.1), to an empty space (vacuum). Thus, for the more general case that
some other forces (i.e., fields), apart from the gravitational field, are present (as,
for instance, the so-called in the classical theory stress-energy tensor), (3.11) can be
appropriately supplemented by some tensor—that is, by a suitable A-morphism of
the A-modules involved, as the particular case at hand may demand. (Of course, one
always takes here into account (3.10) and (2.6).) The resulting equation (3.11), being
supplemented as alluded to above, is called the extended Einstein equation.

3.1 The Classical Counterpart

Equation (3.11) stands here, of course, for Einstein’s vacuum field equations of the
classical theory of general relativity. Thus, within that standard setup, one takes as
the structure sheaf (viz., our arithmetics in the terminology applied so far)

(3.17) A ≡ RC∞X ;
that is, one considers the R-algebra sheaf of germs of R-valued smooth (viz., C∞)
functions on X , the latter space being a 4-dimensional space–time manifold—thus,
by definition, a Lorentz manifold (space) of order 4 (= 3 + 1, in the previous ter-
minology). See also Volume I, Chapter I or [VS: Chapt. X, §1, and Chapt. VI, §2],
pertaining to the rest of the standard terminology, with regard to the present abstract
setting; to put the above into perspective with the classical theory, in particular as
it concerns equation (3.11), see also (3.15), in conjunction with (1.22), (1.25), and
(1.27.1).

In this connection, let us remark once more concerning the above setting of
the classical theory as presented in (3.17) and the abstract framework adopted here
((3.11)), that the impact here of the previous discussion lies exactly in the possibility
of choosing for A, hence for what we may also call Einstein vector sheaves, viz.,
solutions of Einstein’s equation (3.11), an algebra sheaf that can now contain a large
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number of singularities, in point of fact, the largest so far! (see also Sections 6 and
8), a situation that certainly was infeasible thus far, according to the standard theory.
However, this now is possible, simply as a result of the present abstract setting, in
conjunction with the appropriate choice of A (viz., of a new arithmetic, instead, in
comparison with (3.17)). See Section 5.

3.2 Einstein Algebra Sheaves

Suppose we are given the framework of (3.5), while we also assume that (3.4) is still
in force (see, for instance, (3.6)). Suppose, moreover, that the vector sheaf

(3.18) E = (Ω1)∗

also satisfies Einstein’s equation (in vacuo) (3.11); that is, one has in addition the
relation

(3.19) Ri c(E) = 0.

Then one speaks (succinctly, pertaining in particular to our structure sheaf A, of
an Einstein algebra sheaf, or a differential Einstein algebra sheaf) simply to point
out the intervention here of the differential triad (3.8) (see also (3.20)).

In this connection, by further extending the classical terminology on the subject,
one can say that

(3.20)

an Einstein algebra sheaf (viz., a given differential triad

(3.20.1) (A, ∂,Ω1)

on a topological space X having the above properties) determines a
(generalized) space–time vacuum geometry, the topological space X , as
before, being the solution space of Einstein’s equation (3.11), or a (gene-
ralized) Einstein universe, by extending the standard terminology.

Note 3.1 Taking into account that our general treatise is to appropriately associate
any property we want with the structure sheaf A itself, not with the carrier space X
involved, the common base space of the sheaves concerned, we have thus to explain
the phrase

(3.20′) “solution space of Einstein’s equation.”

According to the aforementioned perspective, one means here the A-modules
(Yang–Mills fields of the pertinent type, Lorentz vector sheaves as above) that might
be solutions of Einstein’s equation. Under suitable hypotheses for A, the (topolo-
gical) space X itself might be supplied by the same (C-algebra) sheaf A; see topo-
logical algebra theory and/or (topological) algebraic geometry. Notice that this is the
case in the classical framework as well.
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Furthermore, as we shall presently see (see Section 4), the same equation (3.11)
can be provided by a variation of the analogous Lagrangian (density), the latter being
suitably formulated, within the present abstract setting or, as we also say, by that of
the Einstein–Hilbert action.

On the other hand, Einstein algebras have been considered in the past, either as
appropriate abstract algebras (linear associative unital commutative algebras over the
reals)—R. Geroch [1] in the early 1970s—or, more recently, in the early 1990s in a
sheaf-theoretic context in terms of differential spaces by suitably functionalizing (via
a Gel’fand transform) abstract algebras: See M. Heller [1, 2] as well as M. Heller–
W. Sasin [1]; in this context, see also A. Mallios [10], along with D.G. Northcott
[1: pp. 17ff].

It is worth mentioning at this point that in the latter sheaf-theoretic perspective
of Einstein algebras, its connection and potential application in problems related to
the so-called singularities in the quantum régime that concern general relativity have
been pointed out. In that context see also our relevant comments, within the present
abstract framework (ADG), in Chapter IV, Section 5 in the sequel.

3.3 Einstein–Riemannian Algebra Sheaves

As the title of this subsection indicates, we are concerned here with the abstract
analogue within the present framework of the standard counterpart pertaining to
the classically so-called Einstein manifolds—namely, Riemannian manifolds (C∞-
manifolds endowed with a positive definite symmetric bilinear smooth form, alias
(0, 2)-tensor field, which is also positive definite and symmetric) such that the Ricci
(curvature) tensor (see (1.24) above for the abstract counterpart of this notion) is a
constant multiple of the given metric (see Volume I, Chapter I, (9.62) for the abstract
analogue of this notion).

Note 3.2 (Terminological) Referring to the previously applied terminology, for the
classical case see A.L. Besse [1: p. 3]; we further remark that by the same term
“Einstein manifold,” one also refers, classically, to a “semi-Riemannian manifold”
(see, for instance, B. O’Neil [1: p. 54, Definition 2 as well as p. 96, Ex. 21]), the rest
of the conditions remaining the same as before. So one assumes that the (A-)metric
concerned is (strongly) nondegenerate, in place of positive definite, as one assumes
in the Riemannian case. It is this latter case that we suppose here (see Volume I,
Chapter I, Section 9.4). In this connection, see also Sections 1.2 and 1.3.

By analogy with Section 3.1, we assume in the sequel that

(3.21)

we are given a differential triad

(3.21.1) (A, ∂,Ω1)

on a topological space X such that

(3.21.2) Ω1



176 4 General Relativity, as a Gauge Theory. Singularities

is a vector sheaf on X of rank n ∈ N, while

(3.21.3) (Ω1)∗ = E,

where

(3.21.4) (E, ρ)

is a semi-Riemannian (or even pseudo-Riemannian) vector sheaf on X
(of rank n ∈ N as well, in view of (3.21.3)), in an obvious sense of
the latter term, by virtue of what has been stated in Note 3.2 (see also
Volume I, Chapt. I, Section 9.4).

In other words,

(3.22)
ρ in (3.21.4) is by definition an A-metric on E that is also symmetric and
strongly nondegenerate.

By employing analogous terminology to that of the previous subsection, one can
speak of the structure sheaf A involved in (3.21.1) as an Einstein–Riemannian
algebra sheaf on X or a differential Einstein–Riemannian algebra sheaf by referring
in particular to the differential triad (3.21.1) whenever the pair (E, ρ) as in (3.21.4)
satisfies Einstein’s equation in vacuo; that is,

(3.23) Ri c(E) = 0.

Of course, the vector sheaf E , as in (3.21.4) and (3.23), is here supposed to be a
pseudo-Riemannian Yang–Mills field

(3.24) (E, D),

in the obvious sense, pertaining to the compatibility of D with ρ (see Chapt. I, (9.7));
therefore, one understands the presense of E in (3.23) via its curvature R(D) ≡ R
(see (1.22) and (1.25)). In other words,

(3.25)
the relevant exposition in Section 1 holds for the pseudo-Riemannian
case as well (by analogy with what has been said, the A-metric is thus
of importance in that context).

In this connection, we remark that the preceding can be formulated in terms of an
appropriate pair

(3.26) (A, ρ)

(see (1.34.2)) in conjunction with a suitable topological space X , the base space of
the sheaves considered. See (1.43) as well as Note 3.1.
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4 Einstein–Hilbert Functional and Its First Variation

Our purpose now is to derive Einstein’s equation (in vacuo) as in (3.11) from a varia-
tion of the Lagrangian density or from that of an Einstein–Hilbert action, alias func-
tional, all this within our abstract framework of Section 3. Following the analogous
classical argument (see J. Baez–J.P. Muniain [1: pp. 397ff]), we start with first fixing
the relevant notions and terminology that will be of use in the sequel.

Assume that we have the framework of Definition 3.1 and let

(4.1) (E, ρ)

be a given Lorentz vector sheaf on X of rank n+ 1. In others words, we suppose that
we are given an Einstein space X of order n + 1. For convenience, we recall that one
has the previous framework whenever one is given an (abstract) Lorentz–Einstein
space of order n+ 1, a situation that has a direct bearing on the classical case as well
(for n = 3 [loc. cit. (3.17)]).

By considering the previous (Lorentz) vector sheaf E on X , as in (4.1), the
corresponding Einstein–Hilbert functional is by definition the map

(4.2) EH : ConnA(E)−→A(X) : D �−→ EH(D) := tr R ≡ Ri c(E)

(see also (3.11)), whose domain of definition is thus the (affine) space of
A-connections of E , its values being taken from A(X) (see (1.29) and (1.30) in the
preceding).

By following the classical counterpart, our next objective is to show the follow-
ing.

Theorem 4.1 The critical points of the Einstein–Hilbert functional, as in (4.2), that
corresponds to a given Lorentz vector sheaf E on X are exactly the solutions of the
Einstein field equations (in vacuo; see (3.11)).

That is, one has to find, within the present abstract setting, the analogous first
variational formula of EH (viz., of the previous map EH), as in (4.2).

4.1 First Variational Formula of the Einstein–Hilbert Functional

Applying a similar argument to that in the case of the Yang–Mills functional (see
Chapt. I, Sections 6 and 8), the functional considered here being a spin-off of the
latter one (see Chapt. I), one first considers an A-connection curve in the (affine)
space of A-connections of E ,

(4.3) ConnA(E),

along with the corresponding curvature curve. Thus, if

(4.4) Dt ≡ D + tω̃ ∈ ConnA(E), t ∈ R,

is an A-connection curve of E in the space (4.3), where

(4.5) ω̃ ∈ Ω1(EndE)(X) = Z 0(U,Ω1(EndE)),
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then (see Chapt. VI, Lemma 6.1) the curvature curve of E associated with (4.4) is
given by the relation

(4.6) Rt ≡ R(Dt ) = R + t · D1
EndE (ω̃)+ t2(ω̃ ∧ ω̃),

with t ∈ R and R ≡ R(Dt ), so that one has (see also (6.2))

(4.7) Rt ≡ R(Dt ) ∈ Ω2(EndE)(X) = Z 0(U,Ω2(EndE)),

where

(4.8) U = (Uα)

is a given local frame of E ((6.1.4)). Hence, in particular one obtains, pertaining to
(4.5) and (4.6),

(4.9) ω̃ ≡ (ω̃(α)) ∈ Z0(U,Ω1(EndE)) ⊆ C0(U,Ω1(EndE)) = C0(U,Mk (Ω
1)),

where we have set

(4.10) k ≡ n + 1 = rkA(E) ≡ rkE

(see (3.1) along with (2.39)), taking also into account (3.4).
To proceed, we adopt that

(4.11)
in addition to our previous assumptions concerning the present frame-
work (see Definition 3.1), we are also given the pertinent setup to for-
mulate the notion of a volume element, as in Chapter I, Section 7.

Therefore, still following the classical pattern, one can further define

(4.12)

the Einstein–Hilbert action according to the relation

(4.12.1) S(E) =
∫
X

Ri c(E) · vol.

On the other hand, by virtue of Chapter I, Section 7, one has the following relation
pertaining to the volume element associated with the (Lorentz) metric ρ, as in (4.1):

(4.13) vol ≡ ω = √| ρ | · ε1 ∧ · · · ∧ εk ∈ A(X)

(see also (4.10)) as well as [VS: Chapt. IV, (11.3) and (11.4)]), such that

(4.14) | ρ | := | det(ρ(εi , ε j )) |
with 1 � i, j � k and

(4.15) ε ≡ (εi )1�i�k ⊆ Ak(X) = A(X)k,
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the Kronecker gauge of Ak (Chapt. I, (7.4); see also (7.3) and (7.5)). In connection
with (4.14), one further obtains, by virtue of the Lorentzian character of ρ (see (2.7)),

(4.16) | detρ(εi , ε j ) | ≡ | detρ | = − detρ.

Scholium 4.1 (The integral in (4.12.1)) The integral sign that appears in (4.12.1)
corresponds to an A(X)-valued integral (see [VS: Chapt. IV, (11.4)], along with
(3.14) or (3.15)). Moreover,

(4.17)
we assume that the sections involved in (4.12.1) have compact support
(they vanish outside a compact subset of their domain of definition).

The latter hypothesis enables one to apply the usual integration procedure associated
with Radon-like measures, provided some suitable topological algebra structure is
given on the local section algebras of our structure sheaf A. In this connection, see
also the relevant comments in Chapter I, (7.24), as well as Section 5 below.

On the other hand, concerning the same matter as above, see also the rele-
vant comments in Chapter I, Scholium 6.1, which we also employ presently below.
In other words, the need to integrate, in the previous sense, is actually circumvented,
as we shall see presently; that is integration is needed only fiberwise (ibid., (6.38)),
which is usually much easier, without resorting to the whole framework of Scholium
4.1.

Based on the preceding, we next define the first variational formula of the
Einstein–Hilbert functional (see (4.2)), or of the Einstein–Hilbert action, by the rela-
tion

(4.18)

δS(E) ≡ d

dt

∣∣∣
t=0

S(E) ≡ d

dt

∣∣∣
t=0

⎛
⎝∫

X

R(E) · vol

⎞
⎠

=
∫
X

d

dt

∣∣∣
t=0
(Ri c(E) · vol).

Here, the previously applied commutation

(4.19)

(
d

dt

∣∣∣
t=0

)
◦
∫
X

=
∫
X

◦
(

d

dt

∣∣∣
t=0

)

is based on a standard appropriate use of the topological duals of the topological-
algebraic structures involved in (4.18) (see also Scholium 4.1) in conjunction with
the limit operation denoted therein, yet fiberwise. Now,

(4.20)

by definition, the critical points of the Einstein–Hilbert functional, or the
Einstein–Hilbert action, are those (Lorentz) vector sheaves E , as in (4.1),
for which one has

(4.20.1) δS(E) = 0;
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hence, equivalently, by virtue of our previous comments concerning the
meaning of the integral in (4.12.1), hence in (4.18) too, fiberwise (see
the remarks following (4.19)), one gets

(4.20.2)
d

dt

∣∣∣
t=0
(Ri c(E) · vol) = 0.

Consequently, in view of (1.29) and (4.13), one obtains (see also (4.6) in con-
junction with (1.18) and (1.20), modulo the easily spotted abuse of notation)

(4.21)
d

dt

∣∣∣
t=0
(Ri c(E) · vol) ≡

.︷ ︸︸ ︷
Ri c(E) · vol(0) ∈ A(X).

Thus, by further following, within the present abstract setting, the relevant classical
argument, one finally obtains

(4.22) δS(E) = Ri c(E)δρ,

where

(4.23) ρ−→ ρ + δρ
stands for the variation of the metric employed here. (In this connection, concern-
ing the classical counterpart see M. Nakahara [1: pp. 258ff]; cf. also N. Bourbaki
[1: Chap. 3, p. 70, Corollaire and p. 50, Section 4]. Yet, see also A. Mallios [13] [15:
Section 4, Applications]). So, the foregoing provides the proof of Theorem 4.1.

Stating the preceding result otherwise, we have thus arrived, within the present
abstract setting, at the classical conclusion that (see also D. Bleecker [1: p. 120])

(4.24)

the Einstein field equation in vacuo—namely,

(4.24.1) Ri c(E) = 0

(see (3.19)), arises from setting the first variation of the integral of the
scalar curvature equal to zero.

5 Rosinger’s Algebra Sheaf

“It does not seem reasonable . . . to introduce into a continuum theory [field
theory] points (or lines etc.) for which the field equations do not hold.”

A. Einstein in The Meaning of Relativity (Princeton University Press, Princeton
NJ, 1989). p. 164.

Our ambitious aim in the subsequent discussion is to show that the (algebra) sheaf,
as in the title of this section, can actually be employed, as our sheaf of coefficients
(alias our arithmetics within the present framework of abstract differential geometry
(ADG)), so that one could finally formulate, according to what has been already said
in the preceding chapters of this treatise, such types of differential equations as, for
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instance, Einstein’s equation (in vacuum; see this chapter, Section 3) or Yang–Mills
equations (see Chapt. I, Section 4.4, Definition 4.2). The profit thereof lies in the fact
that the aforesaid equations might then engulf, or, what virtually amounts to the same
thing, could coexist with, so many singularities, in the classical sense of this term,
as the functions (in point of fact, sections) of the same sheaf, as above, can actually
contain, by virtue, as we shall see, of its very definition. Thus, the final outgrowth
of it might be, as we shall explain in the sequel, a type of a unified field theory,
expressing by means of such equations the classical part of reality as it was the case,
so far, nevertheless simultaneously, the “singular”, viz., the “discrete” (!) part of it,
as well, that, exactly, might be construed, in that context, as a new potential issue (!)
of the present study, as a whole.

5.1 Basic Definitions

We start with fixing the relevant terminology, thus giving fundamental definitions
and also explaining necessary rudimentary concepts. For further details we refer to
the work of E.E. Rosinger [1] as well as to A. Mallios–E.E. Rosinger [1].

We first describe what we may call a Rosinger presheaf on a topological space
X . For convenience, we take the space X , the base of the (pre)sheaves involved, as a
(nonvoid) open subset of Rk ; in fact, what we are going to say is valid any time this
happens just locally; that is, in place of Rk , one might also consider a (smooth; viz.,
C∞-)manifold (see M. Kunzinger [1]). On the other hand, the aforesaid presheaf con-
sists, as we shall see, of commutative unital quotients of complex(-valued) function
algebras (although real-valued functions can still be considered).

Taking the space

(5.1) X as an open subset of Rk

along with an

(5.2) open U ⊆ X,

we further set

(5.3) A(U) ≡ C∞(U)N,

thus getting a commutative unital C-algebra whose elements are by definition
sequences of C-valued smooth (C∞-)functions on U ⊆ X . Hence, as U varies over
the open subsets of X , one gets, through (5.3) and the obvious restriction maps, a
presheaf of C-algebras on X ; that is,

(5.4) A ≡ {(A(U); ρU
V }.

The above is a complete presheaf (Leray), i.e., a sheaf (Lazard); in other words, the
Cartesian product sheaf,

(5.5) (CC∞X )N ≡ (C∞X )N,
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(see also, e.g., R. Godement [1: p. 117, no 1.10]) or the sheaf of germs of sequences
of (C-valued) C∞-functions on X , with X , as in (5.1). In fact, Rosinger’s (algebra)
sheaf is a pertinent quotient of the above sheaf (5.5). We define this through the
corresponding presheaf that generates it.

The crux of the definition is what we may call here Rosinger’s ideal, by definition
a (2-sided) ideal of each of the algebras appearing in (5.3) which for convenience
we define below for the global section algebra of the sheaf (5.5)—namely, for the
commutative unital C-algebra,

(5.6) C∞
C
(X) ≡ C∞(X) ∼= Γ (X, (C∞X )N) ≡ (C∞X )N(X).

Definition 5.1 Take X an open subset of Rk and the algebra C∞(X) (see (5.6)).
Then we define the Rosinger ideal I (X) of C∞(X) as those sequences of (C-valued)
C∞-functions on X ,

(5.7) t ≡ (tn) ∈ (C∞(X))N,
for which the following asymptotic vanishing condition is satisfied:

(5.8)

there exists a closed, nowhere dense set Γ ⊆ X ,

(5.8.1) namely, we assume that
◦
Γ = ∅, hence, �Γ = X,

such that for every relatively compact K ⊆ �Γ , there exists m(K ) ≡
m ∈ N such that

(5.8.2) tn |K ≡ 0

for any n � m.

It is clear by definition that

(5.9) the subset of C∞(X)N defined by (5.8) is a (2-sided) ideal of the afore-
said algebra.

We call (5.8), Rosinger’s asymptotic vanishing condition. We further define Rosinger’s
(algebra) presheaf

(5.10) A/I ≡ {A(U)/I (U); σU
V },

so that, by definition,

(5.11)
Rosinger’s algebra sheaf And ≡ A is the C-algebra sheaf on X generated
by the presheaf (5.10).

Now one proves that

(5.12)
Rosinger’s presheaf, as given by (5.10), is, in effect, a complete presheaf,
in the sense of J. Leray.
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See [VS: Chapt. I, p. 46, Section 11] concerning the terminology applied in (5.12).
Thus, what we actually prove is that

(5.13) Rosinger’s presheaf is a monopresheaf, while the same is already local-
ized as well.

See also [loc. cit. p. 51, Proposition 11.1] along with A. Mallios [10], concerning, in
particular, the term localized, which we shall explain in the sequel. We first remark
that (5.4) is a monopresheaf on X , being, by definition, a functional one (see also
[VS: p. 50, (11.14), and p. 54, (11.36 ′)]), while

(5.14)
Rosinger’s (algebra) presheaf is a monopresheaf according to the defini-
tions, as follows (5.10).

See also [VS: p. 32, (7.22)]. Now, the point is that

(5.15)

Rosinger’s (algebra) presheaf is already a localized one, as well; that is,
any (local) function

(5.15.1)
α : U → A that locally belongs to (5.10) is of the same
type.

In this context, the meaning of (5.15.1), concerning the given function a, is that

(5.16)

for any point x ∈ U , there exists an open neighborhood V of x with

(5.16.1) x ∈ V ⊆ U

and an element
t ∈ A(V )/I (V )

such that
α|V = t .

The verification of our assertion in (5.13) and (5.15) is a consequence of the argument
used in the second part of the proof of Lemma 2 in A. Mallios–R. Rosinger [1: p. 246;
Section 5, Appendix]. In this connection, see also A. Mallios [10: (2.16)].

Furthermore, referring to the inner structure of Rosinger’s algebra sheaf

(5.17) And ≡ A,

as given by (5.11), one has the fundamental property

(5.18) D′
X ⊆ A,

where the first member of (5.18) denotes the sheaf of germs of the (Schwartz)
distributions on X , considered as a (C-)vector space sheaf on X . See E.E. Rosinger
[1: p. IX]. Indeed, one has the fuller relation

(5.19) C∞X � D′
X ⊆ A,

the first member denoting the sheaf of (germs of) C-valued C∞-functions on X .
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Note 5.1 (Historical) By referring to (5.18), it is to be noticed that the same rela-
tion was in fact the instrumental motivating impulse both for J.F. Colombeau [1]
and E.E. Rosinger [1] concerning their innovation in defining an appropriate alge-
bra containing (Schwartz) distributions, after the remark of L. Schwartz himself [1]
that the space of distributions is not always an algebra, an annoying fact referring
to important applications of the theory—for instance, to PDEs (linear or not)! For
further remarks on this, along with comments pertaining to the relation among the
various aspects on the matter of the so-called generalized functions in relation to
(5.18), we refer to the pertinent remarks of E.E. Rosinger [1], the same author being
actually among the founders of one of the major classes of this type of (sheaves of)
functions, which we also consider here.

5.2 The Differential Triad, Based on Rosinger’s Algebra Sheaf

As the title of this subsection indicates, our aim is to show that

(5.20)

Rosinger’s algebra sheaf

(5.20.1) And ≡ A,

as defined by (5.11), can be employed as the sheaf of coefficients, or
what amounts to the same thing, as our (generalized) arithmetics in the
instrumental sense that these terms have been applied throughout the
present treatise.

Our first objective in the following discussion is to show the existence of the funda-
mental

(5.21)

basic differential operator

(5.21.1) ∂ : A−→Ω1,

according to the general principles of abstract differential geometry; see
Volume I, Chapter I, Section 1 or [VS: Chapt. VI, Section 1].

The subsequent discussion is essentially based on A. Mallios–E.E. Rosinger [1]:
Indeed, the idea of defining the sequence of differential operators needed in the
abstract differential geometric mechanism that is employed throughout the present
treatise (see, for instance, Chapter I, Section 1) is rooted in the classical counterpart
of the notion, due to the presence of the sheaf C∞

X in (5.19) as well as to the invari-
ance of the latter (standard) operators, by taking (Rosinger) quotients as in (5.10).
Thus, taking coordinatewise the aforementioned classical differential operators, in
view of (5.5) or (5.6), and then passing to the corresponding quotients, one defines

(5.22) d p([x]) := [d p(x)] := [(d pxn)n∈N]

for every

(5.23) x ≡ (xn)n∈N ∈ (C∞(U))N
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and U open in X (see (5.2)); that is, denoting by

(5.24) And ≡ {And(U) ≡ A(U)/I (U); σU
V }

the Rosinger’s (algebra) presheaf, as given by (5.10), and in view of (5.12), we
actually defined through (5.22) the C-linear operators, indeed sheaf morphisms
(derivations),

(5.25) d p
U ≡ d p : And (U)−→Ω p(U)

(see also (5.32) in the sequel) for any open U ⊆ X and p ∈ Z+ such that

(5.26) d0
U ≡ d0 ≡ ∂ : And (U)−→Ω1(U),

where by definition, following classical patterns, we assume that

(5.27)

Ω1 is the free A-module of rank k ∈ N (see also (5.1), along with (5.11)
or (5.17)), (freely) generated by

(5.27.1) dx1, . . . , dxk .

Therefore, a generic element of Ω 1(U), with U open in X , is of the form

(5.28) t ≡
k∑

i=1

∂i ([t])dxi

(see also (5.7)), such that one sets, according to (5.22) (see also (5.24)), for p = 0,

(5.29) ∂i ([t]) := [(∂i (tn))n], 1 � i � k,

where we further set, following standard notation,

(5.30) ∂i (tn) :=
(
∂

∂xi

)
(tn), with tn ∈ C∞(U) and n ∈ N,

while 1 � i � k. Occasionally, we also define

(5.31) ψ(t) := (t, t, . . . , t, . . .) ∈ C∞(U)N

for any t ∈ C∞(U) (viz., when taking in particular the diagonal of the Cartesian
product, as in (5.7); especially, this is actually the case, by effectuating, otherwise,
according to classical patterns, the “free generators” dx i , as in (5.27.1)).

Applying the standard procedure of exterior algebra in terms of sheaf theory
(see [VS: Chapt. IV, Section 7]), we can further define the corresponding exterior
algebra in terms of Rosinger’s generalized functions—that is, by means of the sheaf
And ≡ A; that is, as usual, one defines

(5.32) Ω p :=
p∧
Ω1, p ∈ Z+,
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where we set

(5.33) Ω0 := And ≡ A.

We also define the corresponding (Leibniz) differentials (i.e., is, sheaf morphisms),

(5.34) (d p)p∈Z+,

proving that

(5.35) d p+1 ◦ d p = 0, p ∈ Z+

(see also (5.26). See A. Mallios-Rosinger [1], along with Chapter I, Section 1 of the
present treatise). What is of importance here is the fact that

(5.36)

the differential triad

(5.36.1) (And ≡ A, ∂,Ω1),

as defined in the preceding discussion, can be used as such to develop
the classical differential geometry on smooth (C∞-) manifolds, within
the abstract (spaceless) setup, as given by [VS] and subsequent rele-
vant work, this being subsumed in the present treatise. However, see also
A. Mallios [9, 11], as well as Section 7 in the sequel concerning poten-
tial physical applications in terms of a differential triad, like (5.36.1), and
the concomitant differential-geometric machinery, which can be defined
according to the point of view that has been elaborated thus far.

In this context, a major issue is the exactness of the corresponding de Rham
complex (see also Chapter I, (1.10) in the preceding)—namely, of the complex

(5.37) 0 −−−−→ C
ε−−−−→ And ≡ A ∂−−−−→ Ω1 d1−−−−→ Ω2 d2−−−−→ · · · ,

which reduces to the validity of the relation

(5.38) ker d p+1 = imd p, p ∈ Z+

—that is, to the validity in our case of the famous Poincar é lemma, a result of an
extremely special character, yet, local, notwithstanding. Thus, within the present
context, the proof of (5.38) is reduced to that of its classical counterpart, due to the
definition of And and (5.22), along with the fact that exactness is checked fiberwise
(hence locally) and to the force of (5.38) as well. (See also A. Mallios–E.E. Rosinger
[1: p. 243, Theorem 1].)

Scholium 5.1 The fiberwise checking of the exactness of a given sequence of
A-modules, thus for the case considered here of the validity of (5.38), is a clas-
sical matter concerning the more general situation pertaining to sheaf morphisms
in general; so we refer, for instance, to [VS: Chapt. I, Section 12] for pertinent
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comments and further details. In this context, we still refer to [loc. cit. p. 10, (2.10)–
(2.13) as well as p. 12, Section 3] concerning the local character of the above, as
applied in the preceding, this being the result of the general motto “a sheaf is its sec-
tions” or even that “a sheaf is [made out of] the germs of its sections” [loc. cit., p. 10].

The above is also in accord with the local character of the definition of Rosinger’s
generalized functions—that is, of the respective presheaf as in (5.10), a fact that is
also at the basis of the completeness of the same presheaf, as already mentioned (see
also A. Mallios [10: (1.21)]).

The previous situation will also be of a particular significance for applications of
the aforesaid (complete pre-)sheaf in the sequel.

Another very useful spin-off of the preceding is the validity of the so-called short
exact exponential (sheaf-)sequence

(5.39) 0 −−−−→ Z ε−−−−→ And ≡ A exp−−−−→ A. −−−−→ 1,

where Z stands for the constant sheaf of integers over X and

(5.40) A. ≡ A.
nd

denotes the group sheaf of units (invertible elements) of the algebra sheaf on X ,
And ≡ A, as before (see (5.11)). Concerning our notation in (5.39), we also define

(5.41) exp([t]) := [(exp tn)n∈N]

for any

(5.42) t ≡ (tn) ∈ C∞(U)N,

with U open in X .
On the other hand, the group sheaf of units A .

appearing in (5.40) can be defined
as follows (see also A. Mallios–E.E. Rosinger [1: p. 237, Lemma 3], to which we
refer for further details). By considering an open set U in X , the persheaf of groups
of units of Rosinger’s algebra presheaf, as defined by (5.10)—namely, that whose
individual members (groups) are given by

(5.43)
A

.
(U) = A.

nd (U) ≡ A.
(U) = A(U).

= And(U)
. ≡ A(U)

. ≡ (A(U)/I (U))
.

(see also (5.12), along with [VS: Chapt. IV, p. 282, Lemma 1.1, in particular, (1.15),
p. 283])—is identified according to the following relation:

(5.44)
A

.
nd (U) = {[t] ∈ And (U) : ∃ Γ ⊆ U , closed nowhere dense, such that

for any relatively compact K ⊆ (�Γ ) ∩ U , ∃ m ∈ N, with tn �= 0|K , for
any n � m}

(see also (5.42)), while the identity element of the latter algebra is given based on
(5.31). Our assertion concerning the exactness of (5.39) is supplied by the relevant
argument in A. Mallios–E.E. Rosinger [1: p. 241, in particular Lemma 5].
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Note 5.2 Both of the preceding two fundamental conditions, which for the general
theory of abstract differential geometry, are the exactness of the sequences (5.37) and
(5.39), the first being the corresponding Poincaré lemma, have been often employed
in the previous chapters of this study. See, for instance, Volume I of the present trea-
tise, Chapter III, Section 3: Weil scheme or Weil space, used in the formulation/proof
of Weil’s integrality theorem.

In this context, we note that

(5.45)
the base space X of Rosinger’s algebra sheaf, being by definition (see
(5.1)) an (open) subset of Rk , hence metrizable, is a paracompact
(Hausdorff) space.

Furthermore, it has been already remarked, see A. Mallios–E.E. Rosinger [1:
p. 237, Lemma 2, along with pp. 248f] that

(5.46)

Rosinger’s algebra sheaf

(5.46.1) And ≡ A

is a fine and flabby sheaf on X .

The fineness of the structure sheaf A on a paracompact (Hausdorff) space X , as
is the case for the sheaf And , is of a particular significance for at least cohomological
issues, another fundamental item within the present abstract treatment. Flabbiness
of the same sheaf (see (5.46)) will also be of use and importance too, as we shall
presently see (see Section 7).

5.3 Andndnd -Metrics

Another important issue throughout the preceding account has been the notion of
an A-metric on a given A-module E , hence on A as well, A being the sheaf of
coefficients in the particular case under consideration—here, specifically, Rosinger’s
algebra sheaf: Concerning the relevant abstract theory, we refer for details to Volume I
of this treatise, Chapter I, Section 9 as well as to [VS: Chapt. V, Section 8] for a fuller
account; see Chapter I in the preceding, Section 2.

Thus, based on what has been said above pertaining to the latter sheaf, which
concerns us in this section, we simply want to point out here that

(5.47)

Rosinger’s algebra sheaf can now be construed as a Riemannian vector
sheaf on X (of rank 1, in effect, a free such sheaf), which can further
be employed in all the corresponding particular cases that this notion
(A-metric) has been used in the preceding sections within the general
framework of the abstract theory.

In this connection, see also, in particular, Chapter I, (9.37) and (9.40), in Vol-
ume I of the present study, which can be related to the definition of an A nd -metric
on And ≡ A, as before. Similar remarks to (5.47) are still in force pertaining, in
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particular, to Einstein and/or Lorentz A-metrics (Volume I, Chapt. I, Sections 9.4
and 9.5, as well as Chapt. I, Section 7; in this regard, see also our previous com-
ments in (5.45) and (5.46) of this section).

5.4 Andndnd as a Topological Algebra Sheaf. Radon-Like Measures

By treating the so-called Yang–Mills equations, within the present abstract setting,
(see Chapt. I), one is naturally led to consider, following classical patterns, the cor-
responding Yang–Mills functional (Section 5), as well as the associated variation
formulas (Sections 6 and 8). Thus, what one actually needs here (see Chapt. I,
Scholium 7.1) is an appropriate topological vector space structure on the fibers of
the structural sheaf (alias generalized arithmetic) under consideration providing a
nontrivial (topological) dual space.

So our main objective in this subsection is to show that

(5.48)
by employing Rosinger’s algebra sheaf (see (5.46)) as our generalized
arithmetic, one secures the previously described situation, depicted, by
Scholium 7.1 of Chapter I.

Thus, following standard reasoning in topological algebra theory (see, for instance,
A. Mallios [TA]), we first remark that

(5.49)

each of the algebras
A(U) ≡ C∞(U)N,

with U open in X (see (5.1)), yields a Fréchet locally m-convex algebra,
hence, in particular, a Fréchet locally convex (topological vector) space.

See [TA: p. 130, (4.12), along with p. 82, Lemma 1.1 and subsequent comments
therein; see also p. 9, Definition 1.5].

On the other hand, by considering the corresponding Rosinger’s quotient algebras

(5.50) (A/I ))U) ≡ A(U)/I (U)

(see (5.10)), one gets again locally m-convex algebras [TA: p. 71, (7.9)]; the latter are
still Fréchet, provided I (U) is a closed (2-sided) ideal of A(U), which, however, may
not be always the case (E.E. Rosinger: oral communication). Accordingly, we con-
sider the so-called Hausdorff completion of (5.50), thus being again a Fréchet locally
m-convex algebra; see, for instance, N. Bourbaki [3: Chapt. II, p. 23, Définition 4],
along with [TA: p. 22, Lemma 4.1]. We denote it by

(5.51) ̂A(U)/I (U), with U open in X.

Consequently, employing the notation of (5.10), one gets by definition a presheaf
morphism

(5.52) A/I
i−−−−→ Â/I ,
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with the obvious meaning of the target of i according to (5.50) and (5.51), so that by
taking further (topological) duals, one thus obtains the precosheaf morphism

(5.53) t i : ( Â/I )′ −−−−→ (A/I )′

(see also G.E. Bredon [1: p. 281]—namely, a natural transformation of the respective
covariant functors (from the (category of) open sets of X to the category of locally
convex spaces) defining the domain and range of t i , as above (see also [loc. cit.,
p. 8, Section 2]). This also sustains, for the case at hand, a argument similar to that
in Chapter I, Section 7.1.

6 Rosinger’s Algebra Sheaf (continued): Multifoam Algebra
Sheaves

“We do not possess any method at all to derive systematically solutions that are
free of singularities.”

A. Einstein in The Meaning of Relativity (Princeton University Press, Princeton,
NJ, 1989). p. 165.

We continue in the present section the preceding discussion, referring to Rosinger’s
algebra sheaf, by extending the corresponding framework, as was exhibited in Sec-
tion 5, to a much more general situation, pertaining now to a replacement of the struc-
tural sheaf A ≡ And considered thus far (see (5.11)) by what we are going to define
below as a multifoam algebra sheaf (see definition (6.20.2)). Thus, the aforesaid
generalization concerns a particularly significant enlargement of the size of the sets
of singularities that can be considered, this being the largest one, so far, in the lite-
rature (see A. Mallios–E.E. Rosinger [2]). Indeed, as we shall presently see, the

(6.1)
“singularities” might be arbitrary sets, under the only proviso that their
complements are dense in X (residual sets; see J. Dugundji [1: p. 92]).

Thus, in the case that one takes for the space X the real line R, then the singularities
can be all the irrational points, while the nonsingular points can be reduced to the
rational ones (see [loc. cit., p. 61]).

6.1 Basic Definitions

As in Section 5, we take (for convenience) as

(6.2) base space of the sheaves involved, an open subset X of R k .

Of course, a (smooth) manifold X could also be considered, as already hinted
earlier.

The so-called singularity sets that have been considered in Section 5, being by
definition closed nowhere dense sets (see Definition 5.1; in particular, (5.8.1)), hence,
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the notation nd, are here replaced by arbitrary sets under the only restriction that their
complements are dense subsets of X , with X as in (6.2). In the sequel, we follow, in
principle, the terminology of A. Mallios and E.E. Rosinger [2], to which we refer for
further details.

We start with the definition of the family of singularity sets, the largest one
thus far. Indeed, as already mentioned, consider the following family of subsets of
X—namely, we define

(6.3) SD(X) := {� ⊆ X : �� = X}.
The point is that each of the previous sets might be the set of singularities of a given
generalized function. It is clear that the family, say

(6.4) Snd (X),

of closed nowhere dense subsets of X is contained in (6.3) (see (5.8.1)); that is, one
has the relation

(6.5) Snd (X) ⊆ SD(X).

In this context, we refer to the aforementioned work concerning the term “general-
ized function” in the sense of E.E. Rosinger; thus, one considers an element of the
algebra

(6.6) And (X) ≡ A(X)

(see (5.17), along with (5.12)) when the said function is globally defined, or of the
algebra

(6.7) And (U) ≡ A(U), with U open in X,

for locally defined such functions.
On the other hand, by analogy with the concept of Rosinger’s ideal, as given by

Definition 5.1, we further define the analogous pertinent notion within the present,
more general, framework. Thus, consider an (upward) directed set � (see, for
instance, J.L. Kelley [1: p. 65]), along with the (Cartesian product) algebra

(6.8) C∞(X)�

(see also (5.3)), as well as an element

(6.9) � ∈ SD(X).

Then, one defines the following ideal of the algebra (6.8), denoted by

(6.10) J�,�(X),

consisting precisely of those elements

(6.11) t ≡ (tλ) ∈ C∞(X)�
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that satisfy the following (Rosinger’s) asymptotic vanishing condition:

(6.12)

for every x ∈ ��, there exists λ ∈ � such that

(D ptμ)(x) = 0

for any μ � λ and p ∈ Nk .

See also (5.22) along with A. Mallios-E.E. Rosinger [2: p. 64, Section 2.2].
One now defines the next quotient algebra,

(6.13) B�,�(X) := (C∞(X)�)/J�,�(X),

which we call a foam algebra over X , that is associated with the (residual) singularity
set �, as in (6.9).

On the other hand, based on the definitions, one further concludes that, apart
from (6.10), the set

(6.14) J�,S (X) :=
⋃
�∈S

J�,�(X)

is an ideal of the algebra (6.8) as well, where we also set

(6.15) S ⊆ SD(X);
by definition, S is a family of residual subsets of X (see (6.1)), in such a manner that
we assume that

(6.16)
for any �, � ′ in S, there exists � ′′ ∈ S with

(6.16.1) � ∪� ′ ⊆ �′′.

Thus, equivalently, by looking at the family S as a partially ordered set (poset), by
means of set inclusion we assume that

(6.17)
S is an (upward) directed family, through set-inclusion, of residual sub-
sets of X ; the same are considered, as singularity sets in X .

Accordingly, by analogy now with (6.13), we can further define the next (quotient)
algebra

(6.18) B�,S(X) := (C∞(X)�)/S�,S (X),

which we call the multifoam algebra of X associated with the given set of singular-
ities S, as in (6.17)—equivalently, a subset of the power set of X , satisfying (6.15)
and (6.16).

In this regard, and in conjunction with (6.5), we also note that

(6.19)
the family Snd (X), which already satisfies by definition (see (5.8.1)),
(6.15) it does (6.16) as well.

In this context, see also J. Dugundji [1: p. 92; Problem 21.(3)].
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On the other hand, by looking at (6.13) and/or (6.18), locally (i.e., in terms of
the open sets of X), one obtains a corresponding presheaf of foam, respectively of
multifoam, algebras on X . In fact, one proves here that

(6.20)

the presheaf of foam, or of multifoam, algebras on X is a complete one,
hence (J. Leray) a sheaf on X . Furthermore, the same is a fine, as well as
a flabby, sheaf on X . We denote the aforesaid (complete pre)sheaves by

(6.20.1) B�,�,

respectively by

(6.20.2) B�,S .

As a consequence of (6.20) and our previous notation in (6.13) and (6.18), one
obtains, within an isomorphism of algebras, the following relations:

(6.21) B�,�(X) = B�,�(X),

respectively

(6.22) B�,S(X) = B�,S (X).

Concerning the proof of (6.20), we refer to the treatise of A. Mallios and
E.E. Rosinger [2].

Note 6.1 Referring to the proof of the assertion in (6.20) that the presheaves
appeared therein are complete—that is (J. Leray), sheaves on X , one can employ
an analogous argument to that used in (5.13), (5.14), and (5.15) of Section 5, appro-
priately adjusted, of course, to the present (more general) setting.

6.2 A Differential Triad Related to Rosinger’s Multifoam Algebra Sheaf

By analogy with our previous conclusion in (5.20) of Section 5, here we want to
point out that one can obtain a differential triad of the form

(6.23) (B�,S , ∂,Ω1),

by taking as corresponding sheaf of coefficients, alias generalized arithmetic, the
previously defined (Rosinger’s) multifoam algebra sheaf on X (see (6.20.2)). The
procedure is entirely parallel to that one, pertaining to the nowhere dense algebra
sheaf, as has been exhibited in Section 5 (see (5.17), (5.22), along with (5.27) and
(5.28)); thus, we refer to that section for further technical details, as well as to the
above cited work. In toto, one thus concludes that

(6.24)

the whole theory pertaining to potential applications of standard differ-
ential geometric techniques within the framework of abstract differential
geometry, using now as sheaf of coefficients the multifoam algebra sheaf
(see (6.20.2)), remains in force, as exhibited in Section 5, for the parti-
cular case of the sheaf (5.17).
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On the other hand, we further remark that

(6.25)

an analogous argument to that in (6.24) is also in effect, referring in
particular to the corresponding behavior of the sheaf (6.20.2) as concerns
our considerations in Sections 5.3 and 5.4. Indeed, the assertion here can
straightforwardly be rooted on easily detected formal analogies, as well
as on the pertinent definitions pertaining to the preceding discussions.

Scholium 6.1 It is a general outcome of the entire perspective of abstract differential
geometry, as has been employed throughout the present treatise, that

(6.26)

by applying in each particular case an appropriate algebra (sheaf)
of coefficients, one can succeed in overcoming standard problems of
the classical theory, mainly due to the entanglement of the notion of
a (space–time) smooth manifold, a characteristic example being the
so-called singularities that deplore the traditional differential geometric
treatment of relativistic physics and also of quantum field theory.

In this connection, see also the discussion in the sections below. On the other hand,
an extremely important example in conjunction with our previous comments in
(6.26) appears now to be the so-called generalized functions—in particular, those
presented above that were initially invented by the relevant work of E.E. Rosinger
(see E.E. Rosinger [1]), being devised in order to cope with the classical problem of
multiplication of (Schwartz) distributions. Thus, as already explained by the preced-
ing discussion as well as by that in Section 5, one realizes that the corresponding

(6.27)

Rosinger’s algebra sheaves viz., what we may describe, briefly, as the
nowhere dense (see (5.17)) along with the much more general multi-
foam algebra sheaves) can be used for the aforementioned purpose, as in
(6.26), being, as we have seen, very well suited to the (algebraic, in fact
character of the) machinery of abstract differential geometry. (Of course,
no space–time manifold is needed.)

There is a special interest concerning the previous situation in the sense that the
above perspective, hinted at by (6.26) and (6.27), seems very likely to be applicable
in problems connected with the important theme of the quantization of the gravi-
tational field, pertaining in particular to the pathologies (singularities) that already
traditionally plague the subject. In this regard, see also the ensuing few sections.

7 Singularities

“ . . . Laestrygonians and Cyclopes, angry Poseidon,
Such obstacles you will never encounter in your way,
As long as you do not carry them in your soul,
As long as your soul does not raise them before you . . . ”

Constantinos Cavafis [1]
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Our main objective here is to support the idea that the so-called

(7.1) singularities

that appear when we try to apply techniques of classical differential geometry
(CDG)—that is, differential geometry on smooth (C∞-)manifolds, in problems per-
taining to theoretical physics such as in general relativity or in quantum field
theory—

(7.2)
are simply due to the way we understand the techniques (i.e., as a spin-
off of the underlying C∞-manifold).

—hence, the epigraph of this section with the verses of Cavafis.
Thus, it is the instrumental outcome of the whole point of view of abstract differ-

ential geometry (ADG), as this technique has been employed throughout the present
study (see also [VS]), that

(7.3)

the mechanism of CDG is an inherent (innate) algebraic (relational, or
functorial) technique that can be referred directly to the (geometrical)
objects at issue, irrespective of any underlying smooth (or otherwise)
manifold.

In this connection, we can further remark that the above are in complete accord with
what Leibniz, already in his time, was asking for—namely,

(7.4)
to concoct a geometrical calculus (mechanism) acting directly on the
geometrical objects without any intervention of coordinates.

See also N. Bourbaki [2: Chapt. 1; Note historique, p. 161, footnote 1], as well as
A. Mallios [9: (8.9) and (8.10)].

On the other hand, it is the crucial conclusion of our previous discussion in Sec-
tions 5 and 6 that the new perspective that is advocated here is that one can actually

(7.5)

reduce the singularities that were attributed thus far to an ill (peculiar)
behavior of space, although they were simply the result of using an
insufficient class of functions on that space, in the sense of the latter
class being very restrictive, to a better (viz., more efficient (larger)),
class of functions (see, for instance, (5.19) or (6.5)). Now, this new class
could, at the very best, contain many, if not all, types of singularities.
Furthermore (and this is the important issue!), the standard differential
geometric apparatus could still be in force within the new larger class
of functions, as well, something, of course, that it was thus far at least
in the simple way, that ADG provides, unattainable (!), due, simply, to
the type of functions and the associated (differential) geometry that was
employed before.

In this regard, see also A. Mallios [6: p. 174, concluding remarks] or A. Mallios
[8: p. 96, Section 6, and p. 98, Scholium].
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Thus, the following standard association, which has been advocated so far, espe-
cially by general relativity—that is,

(7.6)

(7.6.1)
space–time ←→ carrier of the physical fields (a substratum
of the physical world),

where the source of the above association is modeled on an appropriate
type of a smooth (C∞) manifold—appears nowadays to be of a dis-
putable substance.

In fact, this disagreement has been present from the early days of general relativ-
ity. Thus, even A. Einstein himself, as early as 1916, led by problems pertaining to
the quantum world (hence with a unified field theory), seems to strongly doubt the
naturalness of the previous correspondence as in (7.6.1), yet confessing, on the other
hand, the lack, at his time, of any relevant replacement for the same correspondence.
Indeed, we can quote from J. Stachel [1: p. 280] the following passage from a letter
of A. Einstein, written in 1916:

(7.7)

. . . continuum space–time . . . should be banned from the theory as a sup-
plementary construction not justified by the essence of the problem,
. . . which corresponds to nothing “real.” But we still lack the mathemati-
cal structure . . . How much have I already plagued myself in this way [of
the manifold] !

The emphasis above is ours, as well as the adjunction of “[. . . ]” to increase compre-
hension.

On the other hand, as already noticed several times in the foregoing, it is just at
this point that the central message of ADG comes to the fore, indeed, in an instru-
mental manner, in the sense that

(7.8)
the drawback (or even pathogeny) of the space–time model as a (smooth)
manifold (continuum) is the only culprit of the so-called singularities
(see also (7.10)).

Indeed, what we actually conclude from the whole perspective of ADG is that

(7.9)

there is no notion of manifold in the classical sense of this term that
intrudes itself into our calculations as concerns the whole setup of ADG,
this being in complete accord with Einstein’s inquiry/suggestion as in
(7.6).

Of course, concerning the previous considerations, one understands the essential
identification

(7.10) X ←→ C∞(X) ∼= C∞X (X) ≡ Γ (X, C∞X ),

the first association, hinted at above, being effectuated by means of the spectrum
(Gel’fand space) of the (topological) algebra C∞(X) and the latter being identified
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with the global section algebra of the sheaf C∞
X , with X a given smooth (C∞-) mani-

fold whose appropriate particular case models, as usual, space–time. In this regard,
see also A. Mallios [TA: p. 227, Theorem 2.1] or [VS: Chapt. XI, p. 313, Theo-
rem 3.1, along with p. 315, (3.11)].

Yet, within the same vein of ideas, we further remark that the preceding identi-
fication, as in (7.10), is essentially what in practice we do, since we usually prefer
to deal with functions that come from (or live on) a given space, rather than with
the space itself. On the other hand, when we speak of geometry, we usually under-
stand, or even confound, it with our own model that we devise for what one can
conceive as physical (natural) geometry, a notion that might be identified with what
we understand as space. However, the latter (i.e.,

(7.11)
the “physical space”) is in fact what fills it up; that is, the physical objects
(viz., the constituents of it), or just the geometrical elements à la Leibniz
(see (7.4)).

Thus, in view of the preceding,

(7.12)
the space model is equivalently expressed through the functions, the
smooth (C∞) ones, that live on it, to which the so-called singularities
actually refer as well. See also (7.5) as well as (7.3).

Thus, to paraphrase P.G. Bergmann [1], the problem now arises as to whether one
expresses oneself in terms of physical geometry or within the context of geometrical
physics, something that is directly connected with the technical identification

(7.13) Euclidean ←→ Cartesian.

Here the left-hand member of (7.13) refers by definition to the physical
geometry—that is, to the relational one, in the sense of the ancient Greeks, for
example, in drawing conclusions by comparison (of the geometric (physical) objects).
This same point of view might also be conceived as akin to the Leibnizian perspec-
tive (see, for instance, (7.4) and (7.11) above) or even the Machian one, yet in a more
technical language, to the Kleinian, or Kählerian point of view.

On the other hand, the Cartesian (one might call it the Cartesian–Newtonian)
perspective hints at the classical differential-geometric point of view—that is, at that
of differential geometry on smooth (C∞-) manifolds (CDG), which, according to
what has been said, leads us directly to the core of the problem of the so-called
singularities. Now, this same issue is erroneously presented (physically associated)
thus far, due essentially to the previous (implicitly made) identification, as in (7.13),
of two drastically different perspectives of what we usually understand as geometry.

Thus, according to what has been stated in the preceding,

(7.14)

ADG seems to correspond to what has been described, in the previous
discussion, as physical geometry (viz., not a priori given space, direct
study/description of what we understand as “geometrical” (physical)
objects/structures), while this latter aspect (of geometry) appears to be,
in fact, the only real one.
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On the other hand, since gauge theories of current physics are considered as physical
theories of a geometrical character (M.F. Atiyah), therefore (J.A. Wheeler) as
dynamical (viz., relational ones), it naturally follows that to look at the aforesaid
theories from the point of view of ADG (which is also the title of the whole treatise)
might be of a significantly particular interest, at least, as well as something of a new
applicability pertaining to potential physical interpretations. In this connection, see
also (9.3) in the subsequent discussion, along with relevant comments.

8 Eddington–Finkelstein Coordinates

As another consequence of the preceding discussion, we can say that

(8.1)

we have to find a mechanism through which we could interpret the sin-
gularities of the classical theory (CDG) simply as another aspect of the
reality incorporating them within the usual laws of nature. Thus, quan-
tum (field) theory, for instance, was once of the same character.

Accordingly, one is led to the conclusion that we should find

(8.2)
equations that can incorporate singularities as if the latter did not exist at
all, something that is in complete accord with the point of view that

(8.3) nature has no singularities.

In this regard, see also A. Mallios [9: remarks following (0.6) and (4.4)]. Now, such a
program would also be in agreement with our own looking at the physis (participation
in it) in a unified way, a fact still in accordance with (8.3).

Thus, a characteristic example of the above line of ideas is certainly the case
of the so-called, in the standard literature, Eddington–Finkelstein coordinates, as in
the title of the present section; see also C.W. Misner et al. [1: p. 828, Box 31.2].
For technical details related to the ensuing discussion, we refer to the aforementioned
work, as well as to the original article of D.R. Finkelstein [1]. Thus, as already stated,
the case under consideration shows exactly that to

(8.4)

change from a given structure sheaf A, in the sense of the terminology
applied here, to another similar more appropriate one A ′, pertaining to
the particular problem at issue—here to the classical Schwarzschild sin-
gularity [loc. cit.]—enables one to resolve, indeed, to engulf the “sin-
gularity” appeared, yet, without this to affect the differential-geometric
“calculus” employed, which, for that matter, was, in effect, independent
of the particular “spatial anomaly” (singularity) occurred.

On the other hand, the special interest here is exactly Finkelstein’s own interpreta-
tion of this phenomenal singularity (ibid.), which actually corresponds to (being, in
fact, a forerunner and a convincing vindication of) what we actually demand by our
statement in (9.3) below.
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In this connection, we also refer to A. Mallios [9], as well as to a forthcom-
ing article by A. Mallios–I. Raptis [4] concerning another similar perspective of the
above, still from the point of view of ADG. Thus, to say it once again,

(8.5) smooth singularities in no way indicate a breakdown of differentiability;

in complete contrast to what CDG has maintained thus far (see also [ibid. Sec-
tion 5]). Of course, by differentiability here, as in (8.5), one understands the innate
(Leibnizian) mechanism, which is entailed as an upshot of the way classical differen-
tial geometry works—that is, as derived from a given smooth (C∞-) manifold, thus
from the local structure of classical Euclidean space.

9 Singularities (continued)

Paraphrasing A. Einstein [1: p. 165], referring to his well-known remarks on the
characteristics of a field theory, we can further state, in conjunction with what has
been said in the preceding, that

(9.1)
any time we have a method to derive systematically solutions that are
free of singularities, we might then have a field theory permitting us to
understand the atomistic and quantum structure of reality.

On the other hand, it is the central message of ADG, according to our previous dis-
cussion, that an analogous situation to that as hinted at by (9.1) arrives within the
pertinent framework of ADG (see, for instance, Sections 5 and 6).

Furthermore, having our arithmetic (structure sheaf A throughout the present
treatise) capable of coping simultaneously with regular and singular points is the
analogue, we can say, in terms of ADG of currently well-known supermathematics.
Consequently, we have, in a sense, here too a means of confronting with the desire
of understanding the “atomistic and quantum structure of reality” in accordance with
A. Einstein, as quoted above, and this, at the same time, together with the rest func-
tion of our field theory pertaining to the regular (viz., standard, alias smooth) situation
(hence, again, a type of a unified field theory).

On the other hand, as already noticed occasionally in the foregoing, we are not
compelled here, as usual (concerning the classical theory), to avoid singularities,
looking for solutions free of singularities because such

(9.2)

singularities (viz., in point of fact, inconveniences of the standard
(smooth) theory) can now be incorporated within our arithmetic (i.e.,
into our structure sheaf A), while this does not affect the effectiveness of
the corresponding (abstract) differential mechanism.

Therefore, the task now arises to find

(9.3)
the appropriate physical interpretation of this, newly (concerning the
present abstract setting) appearing potential eventuality.
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Within the same context, it is important to make it clear once more that

(9.4)

by excluding singularities from our calculations, we actually lose in
information, in view, at least, of (8.3), while still quoting A. Einstein
[loc. cit.],

(9.4.1)
“. . . we cannot judge in what manner and how strongly the
exclusion of singularities reduces the manifold of solutions.”

On the other hand, by looking at the relevant phrase “manifold of solutions” as in
(9.4.1) and also taking into account (3.11) (Einstein’s equation, in vacuum), along
with Note 3.1, we can further remark that very likely,

(9.5)
Einstein did not, presumably, come to the eventuality that his equation,
for instance, might have the same form (hold true) over singularities.

In connection with our comments in (9.3), we can refer, for example, to the preced-
ing account in Section 8 concerning the Eddington–Finkelstein coordinates. Further-
more, within the same vein of ideas, we also mention the work of M. Heller [3], who
makes analogous remarks pertaining to a potential production of particles, due to a
similar situation, connected with (9.3), while he refers [(ibid.)] to a relevant work of
T. Dray et al. [1].

9.1 “Singularities” of the Metric

According to the classical point of view, we consider gravity (the gravitational field)
as a gauge theory—namely,

(9.6) (the behavior of) a field whose quantum is the metric.

The particular “is” above hints at the fact that the metric cannot, by definition, be
a physical issue, being thus only our model of the corresponding physical notion
(quantum of the gravitational field).

Note 9.1 The previous comments, related to (2.6), standing in complete accord with
the general viewpoint of the present treatise (ADG), correspond to a relevant criti-
cism of R.P. Feynman [1: p. xxxii, or even p. 113, §8.4] pertaining to the nature of
the guilty object of gravitation (its quantum) in connection with our usual attitude
toward the metric (geometrical interpretation of gravity). In this regard, see also our
previous remarks with respect to (7.4).

On the other hand, we have to bear in mind here that for the case in point,

(9.7) this quantum (metric) extends over all the underlying space, the carrier
of the field.
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Indeed, the metric ρ refers to our arithmetics (viz., to the structure sheaf A) not to
the base space X (see for instance, Chapt. I, (4.1.3), along with (4.2)). Otherwise, we
would have a flat space, which is not, of course, the case; as a matter of fact, we do
not virtually think through the space, but via the (geometric) objects that live on that
space. The same do not actually curve the space (there is no space at all in the usual
sense of the term), but they just curve (their paths) according to the laws of nature!
This recalls A. Machado’s verse (see A. Machado [1: The Road]),

(9.8) “Traveller there are no paths; paths are made by walking.”

Thus, the role of our space X , base space of the sheaves (A-modules) involved, is
only a catalytic one in the sense that it is simply the carrier space of the objects
(sheaves, alias les éléments géométriques à la Leibniz; see N. Bourbaki [2]), not
having any other particular geometric structure than the topological one, hence not
contributing to any specific geometric substance of the whole stage, the latter being
thus exclusively rendered to A and the relevant A-modules involved.

On the other hand, technically speaking, we know that the A-metric ρ on a given
vector sheaf E on X is just a 0-cocycle of GL(n,A), with n = rkE (what we may
call the Gram cocycle of ρ; see [VS: Chapt. IV; p. 324]); namely one has

(9.9) ρ ≡ (ρα) ∈ Z0(U,GL(n,A)) ∼= GL(n,A)(X) ∼= GL(n,A(X)),

such that

(9.10) U = (Uα)α∈I

is a local frame of E (see Volume I, Chapter I, (9.40) or [VS: Chapt. IV; p. 322,
Theorem 8.1]). Hence, occasional singularities of ρ actually refer to similar ones
of the elements (viz., in effect, of sections) of A, therefore appropriately reducible,
(i.e., suitably absorbable, indeed, into a new “A”) by virtue of our considerations in
Section 5 and 6.

Thus, the preceding provides a potential application of the present abstract tech-
nique in problems connected with occasional singularities of the metric, appearing
thus far within the framework of the classical theory (CDG) such as those hinted at
already in the preceding, while one should look at the present new situation in the
perspective of our comments connected with (9.3).

10 Quantum Gravity

“reality cannot at all be represented by a continuous field.”

A. Einstein in The Meaning of Relativity (Princeton Science Library, Princeton,
NJ, 1988). p. 160.

As already hinted at in the preceding, our aim in this section is to discuss certain
reflections pertaining to the theme in the title of the present section that are connected
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with a potential application of our previous considerations, in what, in particular,
concerns an appropriate entanglement of an algebra sheaf containing singularities in
the classical sense of the term, referred here, hence, of a not “continuous” object,
yet, in the standard point of view, as a “structure sheaf”, or else “sheaf of coeffi-
cients”, for a differential-geometric framework, that one is willing to employ in
confronting with the problem at issue (quantization of gravity). Of course, one is
justified in the aforementioned trial through the generalized structure sheaf, in view
of our experience thus far, emanating from a similar, very successful application of
the relevant standard differential-geometric machinery in the classical smooth regime
(continuum). In that manner, one hopes to have at one’s disposal a semicontinuous,
or quasi-continuous, so to speak, field (theory), by means of which one might be
able to “understand the atomistic and quantum structure of reality” as well, a fact
that A. Einstein himself seemed also to demand from a field theory (see A. Einstein
[1: p. 165]). In this connection, he also emphasized, clearly, the fact that the difficulty
here lies in that “we cannot judge in what manner and how strongly the exclusion
of singularities reduces the manifold of solutions” [loc. cit.]; that is, by employ-
ing, technically speaking now, an algebra sheaf, as a sheaf of coefficients that cannot
cope with singularities, in the classical sense of the term, we simply reduce the infor-
mation we can get out of the field equations; thus, it would be very desirable if we
could see beyond the singularities, although always, of course, the same (system of)
field equations, since otherwise (see for instance, A. Einstein [loc. cit. p. 164]), “it
does not seem reasonable . . . to introduce into a continuum theory points (or lines
etc.) for which the field equations do not hold.”

Note 10.1 By taking into account Einstein’s phrase in the epigraph of this section,
combined with his above remarks, we see that “continuum” here might be rather
construed as the world (“cosmos,” reality) we try to describe, so that it would fit
rather well when looking at it in the generalized sense of a semicontinuum as alluded
to above; thus, what amounts, by definition, to the same, one has to consider here an
extended (or even generalized) continuum—that is, a continuum that can contain
singularities in the classical sense (viz., relative to a given class of functions). Yet,
the field equations, being extended, are, as we shall presently see, still in force on the
whole of the previous continuum.

Note 9.1 hints at the possibility of treating at the same time a generalized continuum,
in the preceding sense, even an ordinary one, by employing extended field equations,
a situation we further explain in the sequel. This possibility has exactly to be pointed
out at this place, as opposed to further relevant remarks of A. Einstein [1: p. 165],
who thus was noting, at the time, wishing presumably to have a kind of extended
field as before, that “We do not possess any method at all to derive systematically
solutions that are free of singularities.”

However, it appears that the point here is simply that

(10.1)
we do now possess methods that render us able to derive solutions of the
field equations that are (may, indeed, be viewed as) free of singularities;
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that is,

(10.2)

by incorporating the singularities in the classical sense (viz., with
respect to the functions concerned) into the solutions themselves, while
not affecting at all the (abstract) differential-geometric mechanism
employed—that is, equivalently (incorporating the singularities), while
the field equations concerned being still in force.

Thus, by considering, for instance, Einstein’s equation (in vacuo), as in (3.11), we
have an example of a field equation (the gravitational field) whose solutions (those
vector sheaves satisfying (3.11)) are free of singularities, at least from those that can
be encapsulated in our structure sheaf A (see (3.2)); now, the latter might be, for
example, Rosinger’s algebra sheaf (see Section 5), a sheaf that contains, as already
mentioned, the largest number of singularities possible thus far (Rosinger’s theory,
space–time foam algebras). So (see Section 3) the abstract differential-geometric
setup that is essentially needed to formulate the respective part of general relativity
(see also Sections 1 and 2 above) is here in force concerning the previous sort of
algebra sheaves.

Accordingly, to summarize the situation, we can single out the following lines of
thought:

(10.3)

by looking at the field equation of a given field, we first distinguish
the corresponding algebra (sheaf) coefficients, with respect to which the
field equation at issue is formulated. Then, one must try to incorporate
into the initial algebra sheaf, as before, any singularities that may occur,
getting thus at a new (larger ) algebra (sheaf ) of coefficients.

Now, in the case that this new algebra (sheaf) can be construed
as the structure (algebra ) sheaf, in the sense of the preceding discus-
sion, providing thus a differential triad—having also reasonable proper-
ties for an abstract differential-geometric treatment of the situation then
according to the preceding—one arrives at a field equation of the field
concerned, having now solutions that are free of singularities (the latter
being thus viewed now as ordinary solutions with respect to the enlarged
(algebra) sheaf of coefficients).

In this connection, and this is certainly of importance here, one must

(10.4)

find the appropriate physical meaning of the above new solu-
tions/singularities (the last term being understood in the standard sense),
behaving now as usual ones within the preceding extended context.
This, indeed, deserves special attention, in view of the fact that such
an appropriate physical interpretation might lead to entirely new infor-
mation, vis-à-vis our knowledge (see Section 9).

Referring, for instance, to Einstein himself, we can assert that

(10.5) “the general theory of relativity can be conceived only as a field theory.”

See A. Einstein [1: p. 140].
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On the other hand,

(10.6)

a field theory is a gauge theory—that is, one referred to a particular
Yang–Mills field

(10.6.1) (E, D),

according to the terminology employed so far (see the relevant comments in the
introduction to this chapter, (0.3)). By applying (10.5), in conjunction with (10.6),
we can say that

(10.7)
the general theory of relativity is the gauge theory of the gravitational
field, hence, as already mentioned, one of a pair, as in (10.6.1).

However, in the case of the gravity, that is, equivalently, of the gravitational field,
one has the gauge that corresponds to a boson, namely, to the 2-spin (massless )
graviton; hence, according to our terminology (see Volume I, Chapt. I, (6.22), along
with Chapt. II, Definition 1.1 therein),

(10.8)
the gravitational field can be associated with a Maxwell field

(10.8.1) (L, D).

In this connection, see also J. Baez–J.P. Muniain [1: p. 402], as well as R.P. Feynman
[1: pp. 11 and 28].

Now, for obvious historical reasons and to distinguish (10.8.1) from other Maxwell
fields, in the previously applied terminology,

(10.9)

the Maxwell field

(10.9.1) (L, D)

that represents the gravitational field in (10.8.1) will be named hence-
forward the Einstein field.

Thus, otherwise formulated

(10.10)

the Einstein field is, by definition, the gravitational field that, being a
boson (elementary particle of integral spin; see Chapt. I, (2.2)), can be
expressed through a Maxwell field

(10.10.1) (L, D).

See also Volume I, Chapt. II, (1.4). Here, as usual, L stands for the carrier of the
field at issue (i.e., for the (hypothesized) graviton), while the A-connection D as
in (10.10.1) represents the field itself, or “the guilty object” (see R.P. Feynman et
al. [1: p. 91]) of the situation concerned. The same is not, of course, a geometric
object in the technical sense of the term, but a dynamical/algebraic one—that is,
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the source/cause of the whole matter, as exhibited by the pair in (10.10.1) (Einstein
field). It certainly entails its geometry/flow, or what amounts to the same thing, it is
further realized/conceived by means of its strength, that is, by the corresponding

(10.11)

curvature R(D) ≡ R of the A-connection D, as in (10.10.1), or the field
strength of D, in effect of (L, D) equivalently, by the

(10.11.1)
gravity ≡ R(D) ≡ R of the Einstein field (L, D), as before,
namely, by definition (see (10.10)), by the gravity (result) of
the gravitational field.

Scholium 10.1 It is a crucial matter to point out at this point that by virtue of our
axiomatic thus far (see thus, Volume I, Chapter I in this treatise), one considers here
as carrier of the field at issue not, as usual, the underlying space, that is, the topo-
logical space X , but the vector sheaf itself (here, of course, the line sheaf L, as in
(10.10.1)), whose sections (a sheaf is its sections, for that matter, see [VS: Chapt. I;
Section 3]) represent, by our hypothesis (see Volume I, Chapt. II, (6.29)), the states
of the field under consideration. We thus deliberately turn here our attention con-
cerning the carrier of the field from the underlying topological space X to the field
itself, the latter being, for that matter,

(10.12) “. . . an independent, not further reducible fundamental concept,”

according also to the current point of view; see A. Einstein [1: p. 140] for the previous
quotation.

The same argument as before contributes to the contemporary aspect that there is
no absolute space that is virtually akin to the (general-)relativistic perspective of the
issue: Indeed, see A. Einstein [1: p. 140]:

(10.13)

“. . . space as such is assigned a role in the system of physics that dis-
tinguishes it from all other elements of physical description. It plays a
determining role in all processes, without in its turn being influenced by
them. Though such a theory is logically possible, it is on the other hand
rather unsatisfactory.”

In that sense too, a sheaf-theoretic description of matters in terms of vector sheaves
and the like, as in the preceding, seems thus to be more contiguous to the point of
view of the general theory of relativity, while, at the same time, offers us the possibi-
lity of treating the (ever existing; see (10.19)) quantal aspect of gravity. Accordingly,
one can say here, in a sense, that

(10.14) space is carried (determined) by matter (the field itself), not conversely.

Scholium 10.2 (Ubiquity of A) The previous perspective, as expressed within the
present sheaf-theoretic framework, focuses finally our attention on the structure
(algebra) sheaf A again, which is also natural, given that any vector sheaf is, after all,
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locally finite many replicas of A (see (1.9)). So we are getting nearer to the aspect
that

(10.15)
anything we try to describe should be made as it actually happens
entirely in terms of our domain of coefficients A

[viz., of our arithmetic, or structure sheaf, or sheaf of coefficients, or whatever other
suggestive name might be assigned to the above algebra sheaf A (see (1.1))]. Yet,
and this is of particular significance, even

(10.16)
the space itself (viz., in our case the topological space X) is to be
described by means of A.

The above point of view seems to be more natural, pertaining to our approach in
describing reality, hence more economical. The same is also in accordance with the
plethora of efforts in recent times to find an algebra-theoretic manner of describing
the real world, hence, too, with Einstein’s relevant suggestion that we should

(10.17) “. . . find a purely algebraic theory for the description of reality.”

See A. Einstein [1: p. 166]. In this connection, we further note that by employing,
for instance, suitable topological algebra sheaves A, one can get (10.16); see [VS:
Chapt. XI].

Scholium 10.3 Still referring to the advantages that one can obtain when apply-
ing the above abstract aspect of differential geometry to the general theory of
relativity, we have already noticed that one can eventually cope, in that manner,
with the atomistic and quantum structure of reality (see the relevant comments at the
beginning of this section), in view of the possibility of incorporating, within the struc-
ture sheaf A itself, a large number of singularities (à la Rosinger; see A. Mallios–
E.E. Rosinger [2])—indeed, the largest thus far!

On the other hand, coming now to our hypothesis that the structure sheaf A
employed hitherto is a commutative algebra sheaf, we can further remark that this is
certainly in agreement with the fact that A is essentially our arithmetic—that is, that
domain within which we actually perform all our calculations, hence, in accord with
Bohr’s correspondence principle, in that

(10.18) “. . . the description of our own measurements of a quantum system must
use classical commutative c-numbers . . . ”

(see the epigraphs of the present chapter). Thus (commutative) c-numbers for the
so-called first quantization, while appropriate (unital ) commutative algebras (viz.,
extended numbers), in our case, in sheaf form, for the second quantization (field
quantization; see also Volume I, Chapter V, Section 5).

Consequently, the moral here is that it would be extremely useful, for obvious
reasons, to have a mechanism supplying the above commutative framework, even
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in noncommutative situations (e.g., quantum effects), while still working classi-
cally (i.e., as in the commutative case); yet we desire to have the same mechanism,
effective even in the presence of singularities (e.g., quantum), in the classical sense
of the term. In that sense, we are thus not compelled to have to change our struc-
ture sheaf A to a noncommutative one, as is traditionally usual, in order to be able
to cope with the quantum. Such a program would still be in accordance with the
point of view of Einstein, for instance, who, as already discussed, was asking at
the time whether one could conceive the “atomistic and quantum structure of real-
ity” by means of a field theory (viz., in principle (see the previous discussion), by a
continuum or a commutative theory), ascribing thus the obstacles appearing here to
the presence of singularities—a fact, however, that can now be overcome, through
the above abstract perspective of (the classical) differential geometry, when, in the
particular case considered, the structure sheaf A contains the largest thus far possible
number of singularities (“foam algebra sheaf” à la Rosinger; see E.E. Rosinger [3],
along with A. Mallios–E.E. Rosinger [2]; see also Section 5 in the preceding).

On the other hand, by finally referring to the quantum of gravity (i.e., by defi-
nition, to the quantum (causality) of the relevant field; viz., for the case at hand, of
the gravitational field (see (10.11.1) above)), one concludes, by virtue of Volume I,
Chapter IV, (5.37) and/or (5.127), in conjunction with (10.8) and (10.10), that the

(10.19) graviton is (pre)quantizable!

The above certainly contributes to Finkelstein’s apostrophe that

(10.20) “. . . all is quantum.”

(I am indebted to I. Raptis for letting me know the previous utterance of
D. Finkelstein, an excerpt of a private communication. See D.R. Finkelstein
[2: p. 477]). In this connection, one is rather tempted to say that

(10.21) everything is light,

a point of view that certainly needs further elaboration; see also A. Mallios [13:
(6.21)–(6.24)]. However, to this we hope to return on some other occasion.

General remarks The following remarks are in perspective with the present abstract
(algebraic) setting of differential geometry, in sharp contrast to the classical (spatial)
aspect of the subject, while they also clarify several arguments in the preceding
discussion.

Thus, we are of the (wrong) impression, as usual, that the applicable differen-
tial geometry we use depends each time on the underlying manifold (viz., on the
surrounding space, a fact eo ipso illusory), given that

(10.22)

all our information about it is a consequence of what we call (algebra
of) differentiable functions, which in our case corresponds to the algebra
sheaf A—that is, the structure sheaf of the (abstract ) differential geome-
try at issue.



208 4 General Relativity, as a Gauge Theory. Singularities

Accordingly,

(10.23)
the differential-geometric mechanism we employ proves to be of a more
innate (relational) character (viz., of a more algebraic one than we
thought).

Thus, speaking mathematically/physically, we can say that

(10.24)
geometry (flow) is the result of a subsisting algebra (causality), au fond,
not conversely.

Now, from this standpoint, we can further assert that

(10.25) a field theory is a continuum theory.

Indeed, by looking at a field theory from a differential-geometric point of view, we
simply consider the respective flow (geometry; see (10.24) above) or the curvature
of the field. In other words, one looks at the result, not at the “guilty object” as
one should, to quote Feynman—that is, from the standpoint of this treatise, at the cor-
responding (A-)connection (causality), the substance of the field itself. So, precisely
speaking, by employing our previous terminology, one has to look here at the pair

(10.26) (E, D)

(viz., at the corresponding Yang–Mills field), or in particular, for the case in point, at
the Einstein field, or gravitational field,

(10.27) (L, D),

as above (see (10.10)). In that sense, the essence of the matter is that

(10.28)
the quantum is the pair (10.27) that is in our case the graviton, and
not whatever particular way one may use to describe it, as happens, for
instance, in the case of the (Lorentz A-)metric; see also Scholium 10.4.

Consequently, we thus arrive at a more algebraic perception of the matter, hence
(Einstein) preferable to our classical (geometric) point of view. Yet, within the
same vein of ideas, we can refer to a recent account on the subject by I. Raptis,
where he considers, for instance, a quantum causal set in place of a quantum space-
time (see I. Raptis [1, 2]).

Referring to (10.25), our compensation in the preceding to confront reality alge-
braically (Einstein), while still employing a continuum theory—that is, (our structure
sheaf) A—is that now

(10.29) A contains holes, that is, singularities, as many as we want (thus far).

(See our previous comments in Scholium 10.3.) As already mentioned, we employ an
extended (or generalized) continuum, to be able to cope with reality, quantal and/or
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not, simultaneously! From a physical standpoint this seems to be of particular signi-
ficance, however, mathematically speaking as well.

Scholium 10.4 (“Physical geometry”) By considering a Yang–Mills field

(10.30) (E, D),

or, in particular, an Einstein field

(10.31) (L, D),

as is the case here (see (10.10.1)) one remarks that

(10.32)
even if the curvature R(D) ≡ R of the given A-connection D, as
above, is zero, the cause that entails the curvature, in other words, the
A-connection D itself, is not necessarily zero.

A fundamental example is our basic differential triad

(10.33) (A, ∂,Ω1),

for which one has, by definition (see Volume I, Chapt. I, (7.16)),

(10.34) R(∂) ≡ d1 ◦ ∂ = 0,

while, as already said (see also (1.50.2)),

(10.35) ∂ (≡ d0, the “basic differential”) is the starting point of all(!),

as concerns the terminology employed here. Therefore,

(10.36) the field (A-connection) itself may exist even if its strength (curvature)
is zero.

On the other hand, physically speaking, we thus remark that

(10.36′) causality (A-connection) may exist even if we cannot detect it!

Consequently, the preceding remarks show that within the framework that is advoca-
ted by the present treatise,

(10.37)
the fundamental issue is the field (E, D) itself, or, as the case may be,
(L, D), and not the underlying space X .

Of course, the physical laws are actually concerned with Yang–Mills fields in
general (viz., with pairs (E, D), as above (the Maxwell fields being comprised herein,
for E ≡ L)). Therefore, physical geometry is referred not to the geometry of the
underlying space X , but to that of the fields themselves with which we are concerned.
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Now, the previous argument, pertaining to the geometry of (E, D)’s, might also
be construed as another expression of the principle of minimal coupling, or of the
(strong) principle of equivalence. Accordingly, one can assert that

(10.38)
physical geometry is the geometry of (A-)connections, or the geometry
of Yang–Mills fields (see Chapt. II); see also A. Mallios [12].

Equivalently, we can say that

(10.39)

physical geometry is a (nonlinear partial) differential equation, whose
the corresponding “solution set” expresses the (domain of) validity of
a physical law, under consideration; cf., for instance, Einstein’s equa-
tion (11.1) below. (At this point, we note that the latter set may contain,
according to the present abstract setup, as many singularities in the
classical sense of the term as we want; see (10.29).)

In this connection, we can say, therefore, that one employs here an algebraic point of
view when taking the present perspective into account, in the sense that we focus our
attention on the fields (equations, or laws of nature, physically speaking), hence on
the A-connections, or the “guilty objects” (à la Feynman) themselves, by referring,
as before, to the pairs (E, D) (see (10.30)) or the relevant equations.

Scholium 10.5 (A-Metric, again) In referring to the above objects (E, D) (see
(10.30)), it is quite natural to consider among them those in particular that behave
well with respect to the fundamental structural issue, that is, relative to the pair

(10.40) (An+1, ρ), n ∈ N,

in other words, with respect to a Lorentz structure sheaf A (see Section 2); that is,
technically speaking, one considers

(10.41)

gauge invariant A-connections—namely, those D in (10.30) that obey
the relation

(10.41.1) DHomA(E, E
∗)(ρ̃) = 0

(see Definition 2.2 for the notation applied above, along with (the termi-
nological) Scholium 2.1 in the same Section 2).

Accordingly, such types of A-connections are compatible with the particular struc-
ture imposed on A by ρ (viz., with the so-called (Lorentz) A-metric on A (loc. cit.),
in point of fact, on the (free A-module) An+1, n ∈ N (see also (2.25) above)).
In this connection, we also recall that by further assuming that X , as in (10.33),
is a paracompact (Hausdorff) space, while A is a strictly positive fine A-module on
X (see (2.27) in the preceding), one concludes that the (Lorentz)A-metric is actually
inherited on any vector sheaf E on X (of the appropriate rank; see (10.40), along with
(2.33)), which is virtually also the content of (10.41.1).
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As a result of the preceding, we further note that, again, the emphasis here is on
the notion of a field and not on the space X! Indeed,

(10.42)

the A-metric ρ refers to our arithmetic (viz., to the structure sheaf A
itself (see also, however, (10.40)), not to the base space X(!)), on which
it is not necessarily inherited, as usually happens in the classical case
(inheritance of the metric on the underlying manifold).

In other words,

(10.43)
the (A-)metric comes from (or else, one “feels” the metric through) A,
not through the space X!

Even in the classical case (see Gauss–Riemann (!)), the metric is actually inherited
on the underlying manifold X , through the tangent (vector) bundle, or, by employing
our terminology, through the tangent (vector) sheaf on which it is defined, therefore,
by means again of the differentiable functions involved, [i.e., in terms of A ≡ C ∞

X
(see (3.17))]. Thus, as a further consequence of the present abstraction of the classical
case, we can say that things are put in this manner even more within the pertinent
perspective.

On the other hand, it is still crucial to note at this place that

(10.44)
what one essentially employs here is A-connections D that are
ρ-invariant in the sense of (10.41.1). (See also (1.56).)

The above might also be viewed as a compensation of the classical way of look-
ing at gravitation, namely, through the so-called (differential-) geometric point of
view, in terms of the A-metric involved, and that through field theory
(R.P. Feynman [1] for instance). On the basis of our comments in (10.42), we further
notice at this point that

(10.45)
the topological space X does not (in point of fact, it is not necessary to)
have any other geometric structure than the topological one!

The above is in accord, as already mentioned, with recent tendencies pertaining to
the notion of vacuum as pure space; see P.J. Braam [1: p. 279].

On the other hand, as a further consequence of (10.45), in conjunction with the
abstract differential-geometric setup that is advocated here and as concerns its appli-
cations in gauge theories of current physics, we remark that

(10.46)

even a discrete (topological) space might be considered within the
present (abstract) framework, provided, of course, that one has secured
the appropriate differential triad, the particular topological space itself
being always paracompact (Hausdorff).

11 Final Remark

We wish to close with some final remarks pertaining to the meaning of the frame-
work that can be established through the previous treatise (see Sections 5 and 6) and
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the corresponding type of equations afforded, as, for example, by Einstein’s equation
(in vacuo; see (3.11))

(11.1) Ri c(E) = 0.

According to what has been already said (see (8.5), along with (9.2), (9.3), or
(10.29)),

(11.2)
(11.1) might be full of singularities in the classical sense of the latter
term, while still being in force (!),

to the extent, of course, that this is afforded by our structure sheaf A (see Sections 5
and 6). In this connection, it is remarkable to recall here what A.S. Eddington [1]
said in 1920, in that (emphasis below is ours)

(11.3)
“. . . the laws of motion of the singularities must be contained in the field-
equations.”

He remarks that [ibid.]

(11.4) “a particle of matter is a singularity of the gravitational field [(!)],”

postanticipating, albeit, more accurately, M. Faraday, as the latter is quoted by
H. Weyl [1: p. 169]; in this regard, see also A. Mallios [12: (1.2)].

In employing the usual parlance of the present treatise, one can say, following
Eddington, that

(11.5)
the dynamics of the singularities must be implemented by those of the
field itself (see also (11.6), along with (11.8) below).

By and large, based on what has been said, we can assert that

(11.6)

to the extent that differential analysis, in the classical sense of this
notion, is concerned, one can employ any algebra (sheaf) of general-
ized functions containing, as the case might be, the standard smooth
functions; take, for instance, Rosinger’s algebra sheaf (see (5.11) and
(5.19), along with (6.18) and (6.27)). If, moreover, classical differen-
tial geometry is needed, then we can further employ, instead, abstract
differential geometry (ADG), by having suitably chosen our (sheaf of)
algebras (sheaf of coefficients).

In toto, the preceding perigram of thinking represents the central flavor (quintessence)
of the whole rationale, that has been advocated throughout all of the previous discus-
sion, while affording at the same time a variously potential applicability to relevant
pestilential problems of the classical theory!

On the other hand, to paraphrase D.R. Finkelstein [2] in that context, one can
look at the situation we meet in the quantum régime by considering a

(11.7)
relativistic (viz., covariant) dynamicalization, pertaining here to the
quantum.
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Therefore, what one actually concludes, based on the foregoing, is that in order to
describe the preceding, one then has to concoct

(11.8) a “differential” equation, within the context of ADG!

Accordingly, we thus arrive again at a point of view, analogous to that which is
already advocated by (11.6)!

11.1 On Einstein’s Equation (continued)

By further looking at Einstein’s equation in vacuo, as in (11.1),

(11.9) Ri c(E) = 0

(see also (3.11)), we note that the description (“interpretation”) of the graviton (i.e.,
of the quantum of the gravitational field) involved is accomplished

(11.10)

on the basis of the classical theory (CDG), that is, by means of an

(11.10.1) (n + 1)× (n + 1) (Lorentz–Einstein) matrix,

with entries local sections of A when the whole matter is locally consi-
dered.

Therefore, one further concludes that following the classical pattern, we have thus
concocted, within the context of ADG, an appropriate environment in order to
catch/encircle the graviton, the latter particle being, as we have already assumed (this
chapter), a boson (!), hence, the terminology applied in the sequel, in that context, by
referring to it as an Einstein (–Maxwell) field: see (10.9), in conjunction with (10.28)
in the ensuing discussion, pertaining to that particular (massless 2-)boson (i.e., to a
Maxwell field), according to our terminology employed throughout the present trea-
tise (see Volume I, Chapt. III, (1.4)). Consequently, the

(11.11)

(n + 1) × (n + 1) Lorentz–Einstein matrix as in (11.10.1), see also
Chapt. IV; (2.11), as well as the corresponding Yang–Mills field

(11.11.1) (E, D),

as it appeared in (3.9) in the form of a solution space of Einstein’s equa-
tion (see also Chapt. IV, (3.20′)), is but our own

(11.11.2)
experimental cell within which the graviton (boson) lives, or,
what amounts to the same thing, within which we can detect
it through its field strength (curvature).
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In this context, it is to be noticed here that

(11.12)

the metric we use is defined in terms of A [in accordance with the
general perspective of ADG, which is advocated throughout the present
treatise, see (10.15) or (10.22)], thus without being at all of any spatial-
temporal provenance, as is exactly the case in the classical theory (GR
via CDG), hence along with all the concomitant inconveniences! (See
also A. Mallios [11: (1.8), in conjunction with (1.9)], as well as (10.29)
above.)

On the other hand, by considering Einstein’s equation (in vacuo), as in (11.9), that
is, within the framework of ADG, we also point out that

(11.13)

we still retain the classical form of the said equation, however, con-
cerning this aspect only (!), and not actually the (innate) structure of
the equation, since we occasionally (this depending on the presence of
singularities) have changed A, the latter sheaf being now not the initially
chosen one (see also (3.17)).

Nevertheless, we do not know so far, or at least not always (see Section 8), the phys-
ical content of the latter issue, along with the implemented consequences! (See also,
for example, Sections 8 and 9.) Yet, in this connection, the quite recent tendency
in the literature of quantum physics to consider the so-called background indepen-
dent quantum gravity (see, for instance, A. Ashtekar–J. Lewandowski [2] and refer-
ences therein) falls, in point of fact, half of the way in postanticipating ADG (see
also, for example, (10.45), along with A. Mallios–I. Raptis [4: in particular, Sec-
tions 3 and 6]). Thus, one employs in that context the notion of manifold, but with-
out any metric (!); therefore, one may say that we actually realize here what we may
call the (ancient) Greek manner of doing geometry (no metric at all (!), just com-
parison, hence relational, thus physical geometry). On the other hand, as already
mentioned, the manifold concept is kept throughout the aforesaid framework (within
the so-called semiclassical theory) just to provide at least the differential-geometric
environment, according to the standard pattern (CDG) a fundamental issue, in any
case, to the extent, of course, that we intend to apply CDG in the whole story, a fact
that, exactly at this point, and in a glaring contradistinction to the classical theory,

(11.14)
ADG assures us that one can have the (classical) differential-geometric
mechanism without any space at all !

See also, for instance, in that context, A. Mallios [12: (2.9), (2.14), as well as (3.1)].
Thus, in one word,

(11.15)

modern/abstract differential geometry means to perform (differential)
geometry without any underlying space at all by simply basing/employ-
ing a suitable algebra (of functions, true, of sections of an appropriate
sheaf of algebras).
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In other words, it is a fundamental upshot of the whole theory so far that

(11.16)

the only reason to resort, classically speaking, to space–time is to afford
calculus, hence the framework of classical differential geometry (CDG)
too, something that is not necessarily the case, in order to have avail-
able the same inner mechanism of the latter theory, provided we dispose
the appropriate (differential/ADG) algebra (see (11.15)) that can do the
(same) job!

Thus, we can conclude here, by pointing out once more the utmost moral by far of
ADG (abstract (≡modern) differential geometry), that

(11.17)
it is quite irrelevant to the manner a Newtonian spark (see A. Mallios
[12: (4.3) or (5.3)] for the terminology applied) comes from, provided it
supplies an efficient differential-geometric mechanism (dgm)!

Furthermore, something that is not less important, this

(11.18)
differential-geometric mechanism, hence, the entailed dynamics thereby,
is quite indifferent (therefore, functorial) relative to any such choice as
above, consequently natural(!) too.

What amounts to the same thing,

(11.19)
our differential equations are thus functorial (hence natural) as well with
respect to the dynamics (dgm) we choose!

In this context, we also remark that

(11.20)
differential equation= (physically speaking) a relation describing a field
←→ physical law,

as this (field ↔ law) arrives to us through its (field) strength, in fact, the only con-
stituent of the field,

(11.21) (E, D),

that is functorial (covariant, natural, geometrical). So in that respect, we have always
to bear in mind that

(11.22)

what we call space–time is just the description/result of our arithmetic
(viz., of A, in the terminology of ADG) since the time of Descartes, and
even that was also the case with Newton, who, through the same descrip-
tion, was actually led to the discovery of calculus as a means to be able
to write down the (expression/description of the) physical law he was
concerned with! Furthermore, the same was also the case with Einstein
himself, modulo, in his turn, the fact that the arithmetic (CDG) he applied
was not the appropriate one(!), having now to do (to the extent, of course,
we want it) with the quantum domain as well!
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2. Gauge Field Theory and Complex Geometry. Springer-Verlag, Berlin, 1988.

3. Strings. Math. Intelligencer 11 (1989), no. 2, 59–65.

K.B. Marathe – G. Martucci

1. The Mathematical Foundations of Gauge Theories. North-Holland, Amster-

dam, 1992.

C.W. Misner, K.S. Thorne, J.A. Wheeler

1. Gravitation. W.H. Freeman, San Francisco, 1973.

P.K. Mitter – C.M. Viallet

1. On the bundle of connections and the gauge orbit manifold in Yang-Mills

theory. Commun. Math. Phys. 79 (1981), 455–472.

M. Nakahara

1. Geometry, Topology and Physics. Adam Hilger, Bristol, 1990.



References 223

C. Nash

1. Differential Topology and Quantum Field Theory. Academic Press, New York,

1991.

B. O’Neill

1. Semi-Riemannian Geometry with Applications to Relativity. Academic Press,

New York, 1983.

D.G. Northcott

1. Affine Sets and Affine Groups. Cambridge University Press, Cambridge, 1980.

P.P. Ntumba
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2. Théorie des distributions (Nouvelle éd.). Hermann, Paris, 1973.
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