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Integral invariant signatures

Abstract

For shapes represented as closed planar contours, we introduce a class of
functionals that are invariant with respect to the Euclidean and similarity group,
obtained by performing integral operations. While such integral invariants enjoy
some of the desirable properties of their differential cousins, such as locality
of computation (which allows matching under occlusions) and uniqueness of
representation (in the limit), they are not as sensitive to noise in the data.
We exploit the integral invariants to define a unique signature, from which
the original shape can be reconstructed uniquely up to the symmetry group,
and a notion of scale-space that allows analysis at multiple levels of resolution.
The invariant signature can be used as a basis to define various notions of
distance between shapes, and we illustrate the potential of the integral invariant
representation for shape matching on real and synthetic data.
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Abstract. For shapes represented as closed planar contours, we intro-
duce a class of functionals that are invariant with respect to the Eu-
clidean and similarity group, obtained by performing integral operations.
While such integral invariants enjoy some of the desirable properties
of their differential cousins, such as locality of computation (which al-
lows matching under occlusions) and uniqueness of representation (in
the limit), they are not as sensitive to noise in the data. We exploit the
integral invariants to define a unique signature, from which the original
shape can be reconstructed uniquely up to the symmetry group, and a
notion of scale-space that allows analysis at multiple levels of resolution.
The invariant signature can be used as a basis to define various notions
of distance between shapes, and we illustrate the potential of the integral
invariant representation for shape matching on real and synthetic data.

1 Introduction

Geometric invariance is an important issue in computer vision that has received
considerable attention in the past. The idea that one could compute functions
of geometric primitives of the image that do not change under the various nui-
sances of image formation and viewing geometry was appealing; it held potential
for application to recognition, correspondence, 3-D reconstruction, and visual-
ization. The discovery that there exist no generic viewpoint invariants was only
a minor roadblock, as image deformations can be approximated with homo-
graphies; hence the study of invariants to projective transformations and their
subgroups (affine, similarity, Euclidean) flourished. Toward the end of the last
millennium, the decrease in popularity of research on geometric invariance was
sanctioned mostly by two factors: the progress on multiple view geometry (one
way to achieve viewpoint invariance is to estimate the viewing geometry) and
noise. Ultimately, algorithms based on invariants did not meet expectations be-
cause most entailed computing various derivatives of measured functions of the
image (hence the name “differential invariants”). As soon as noise was present
and affected the geometric primitives computed from the images, the invariants
were dominated by the small scale perturbations. Various palliative measures
were taken, such as the introduction of scale-space smoothing, but a more prin-
cipled approach has so far been elusive. Nowadays, the field is instead engaged
in searching for invariant (or insensitive) measures of photometric (rather than
geometric) nuisances in the image formation process. Nevertheless, the idea of
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computing functions that are invariant with respect to group transformations of
the image domain remains important, because it holds the promise to extract
compact, efficient representations for shape matching, indexing, and ultimately
recognition.

In this paper, we introduce a general class of invariants that are integral
functionals of the data, as opposed to differential ones. We argue that such
functionals are far less sensitive to noise, while retaining the nice features of dif-
ferential invariants such as locality, which allow for matching under occlusions.
They can be exploited to define invariant signature curves that can be used as
a representation to define various notions of distances between shapes. We re-
strict our analysis to Euclidean and similarity invariants, although extensions to
the affine group are straightforward. The integration kernel allows us to define
intrinsic scale-spaces of invariant signatures, so that we can represent shapes
at different levels of resolution and under various levels of measurement noise.
We also show that our invariants can be computed very efficiently without per-
forming explicit sums (in the discretized domain). Finally, we show that in the
limit where the kernel measure goes to zero, one class of integral invariant is in
one-to-one correspondence with the prince of differential invariants, curvature.
This allows the establishment of a completeness property of the representation,
in the limit, in that a given shape can be reconstructed uniquely, up to the in-
variance group, from its invariant signature. This relationship allows us to tap
into the rich literature on differential invariants for theoretical results, while in
our experiments we can avoid computing higher-order derivatives. We illustrate
our results with several experiments, showed as space allows.

2 Relation to existing work, and our contribution
The role of invariants in computer vision has been advocated for various applica-
tions ranging from shape representation [34, 4] to shape matching [3, 29], quality
control [48, 11], and general object recognition [39, 1]. Consequently a number
of features that are invariant under specific transformations have been investi-
gated [14, 25, 15, 21, 33, 46]. In particular, one can construct primitive invariants
of algebraic entities such as lines, conics and polynomial curves, based on a
global descriptor of shape [36, 18]. In addition to invariants to transformation
groups, considerable attention has been devoted to invariants with respect to
the geometric relationship between 3D objects and their 2D views; while generic
viewpoint invariants do not exist, invariant features can be computed from a
collection of coplanar points or lines [40, 41, 20, 6, 17, 52, 1, 45, 26]. An invariant
descriptor of a collection of points that relates to our approach is the shape
context introduced by Belongie et al. [3], which consists in a radial histogram of
the relative coordinates of the rest of the shape at each point.

Differential invariants to actions of various Lie groups have been addressed
thoroughly [28, 24, 13, 35]. An invariant is defined by an unchanged subset of the
manifold which the group transformation is acting on. In particular, an invariant
signature which pairs curvature and its first derivative avoids parameterization
in terms of arc length [10, 37]. Calabi and coworkers suggested numerical expres-
sions for curvature and first derivative of curvature in terms of joint invariants.
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However, it is shown that the expression for the first derivative of curvature is
not convergent and modified formulas are presented in [5].

In order to reduce noise-induced fluctuations of the signature, semi-differential
invariants methods are introduced by using first derivatives and one reference
point instead of curvature, thus avoiding the computation of high-order deriva-
tives [38, 19, 27]. Another semi-invariant is given by transforming the given co-
ordinate system to a canonical one [49].

A useful property of differential and (some) semi-differential invariants is that
they can be applied to match shapes despite occlusions, due to the locality of the
signature [8, 7]. However, the fundamental problem of differential invariants is
that high-order derivatives have to be computed, amplifying the effect of noise.
There have been several approaches to decrease sensitivity to noise by employing
scale-space via linear filtering [50]. The combination of invariant theory with
geometric multiscale analysis is investigated by applying an invariant diffusion
equation for curve evolution [42, 43, 12]. A scale-space can be determined by
varying the size of the differencing interval used to approximate derivatives using
finite differences [9]. In [32], a curvature scale-space was developed for a shape
matching problem. A set of Gaussian kernels was applied to build a scale-space
of curvature whose extrema were observed across scales.

To overcome the limitations of differential invariants, there have been at-
tempts to derive invariants based on integral computations. A statistical ap-
proach to describe invariants was introduced using moments in [23]. Moment
invariants under affine transformations were derived from the classical moment
invariants in [16]. They have a limitation in that high-order moments are sen-
sitive to noise which results in high variances. The error analysis and analytic
characterization of moment descriptors were studied in [30]. The Fourier trans-
form was also applied to obtain integral invariants [51, 31, 2]. A closed curve
was represented by a set of Fourier coefficients and normalized Fourier descrip-
tors were used to compute affine invariants. In this method, high-order Fourier
coefficients are involved and they are not stable with respect to noise. Several
techniques have been developed to restrict the computation to local neighbor-
hoods: the Wavelet transform was used for affine invariants using the dyadic
wavelet in [47] and potentials were also proposed to preserve locality [22]. Alter-
natively, semi-local integral invariants are presented by integrating object curves
with respect to arc length [44].

In this manuscript, we introduce two general classes of integral invariants;
for one of them, we show its relationship to differential invariants (in the limit),
which allows us to conclude that the invariant signature curve obtained from
the integral invariant is in one-to-one correspondence with the original shape,
up to the action of the nuisance group. We use the invariant signature to define
various notions of distance between shapes, and we illustrate the potential of
our representation on several experiments with real and simulated images.

3 Integral invariants
Throughout this section we indicate with γ : S

1 → R
2 a closed planar contour

with arclength ds, and G a group acting on R
2, with dx the area form on R

2. We
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also use the formal notation γ̄ to indicate either the interior of the region bounded
by γ (a two-dimensional object), or the curve γ itself (a one-dimensional object),
and dµ(x) the corresponding measure, i.e. the area form dx or the arclength ds(x)
respectively. With this notation, we can define a fairly general notion of integral
invariant.

Definition 1 A function Iγ(p) : R
2 → R is an integral G-invariant if there

exists a kernel h : R
2 × R

2 → R such that

Iγ(p) =

∫

γ̄

h(p, x)dµ(x) (1)

where h(·, ·) satisfies
∫

γ̄

h(p, x)dµ(x) =

∫

gγ̄

h(gp, x)dµ(x) ∀ g ∈ G. (2)

where gγ
.
= {gx | g ∈ G, x ∈ γ}, and similarly for gγ̄.

The definition can be extended to vector signatures, or to multiple integrals.
Note that the point p does not necessarily lie on the contour γ, as long as there
is an unequivocal way of associating p ∈ R

2 to γ (e.g. the centroid of the curve).

Example 1 (Integral distance invariant) Consider G = SE(2) and the fol-
lowing function, computed at every point p ∈ γ:

Iγ(p)
.
=

∫

γ

d(p, x)ds(x) (3)

where d(x, y)
.
= |y − x| is the Euclidean distance in R

2. This is illustrated in
Fig. 1-a.

d(p, x)

x

p(s)
γ γ

r

R

θ

p(s)
r

Ir
γ (p) ' r2θ

a b

Fig. 1. (Left) Integral distance invariant defined in eq. (3), made local by means of a
kernel as described in eq. (5). (Right) Integral area invariant defined by eq. (6).

It is immediate to show that this is an integral Euclidean invariant. The
function Iγ associates to each point on the contour a number that is the average
distance from that point to every other point on the contour. In particular, if the
point p ∈ γ is parameterized by arclength, the invariant can be interpreted as a
function from [0, L], where L is the length of the curve, to the positive reals:

{γ : S
1 → R

2} 7→ {Iγ(p(s)) : [0, L] → R+.} (4)

This invariant is computed for a few representative shapes in Fig. 2 and Fig. 3.
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A more “local” version of the invariant signature Iγ can be obtained by weighting
the integral in eq. (3) with a kernel q(p, x), so that Iγ(p)

.
=

∫

γ
h(p, x)ds(x) where

h(p, x)
.
= q(p, x)d(p, x). (5)

The kernel q(·, ·) is free for the designer to choose depending on the final goal.
This local integral invariant can be thought of as a continuous version of the
“shape context,” which was designed for a finite collection of points [3]. The
difference is that the shape context signature is a local radial histogram of neigh-
boring points, whereas in our case we only store the mean of their distance.

Example 2 (Integral area invariant) Consider now the kernel
h(p, x) = χ(Br(p) ∩ γ̄)(x), which represents the indicator function of the inter-
section of a small circle of radius r centered at the point p with the interior of
the curve γ. For any given radius r, the corresponding integral invariant

Ir
γ(p)

.
=

∫

Br(p)∩γ̄

dx (6)

can be thought of as a function from the interval [0, L] to the positive reals,
bounded above by the area of the region bounded by the curve γ. This is illustrated
in Fig. 1-b and examples are shown in Fig. 2 and Fig. 3.

Naturally, if we plot the value of Ir
γ(p(s)) for all values of s and r ranging

from zero to a maximum radius so that the local kernel encloses the entire curve
Br(p) ⊃ γ, we can generate a graph of a function that can be interpreted as a
scale-space of integral invariants. Furthermore, χ(Br(p)) can be substituted by
a more general kernel, for instance a Gaussian centered at p with σ = r.

Example 3 (Differential invariant) Note that a regularized version of cur-
vature, or in general a curvature scale space, can be interpreted as an integral
invariant, since regularized curvature is an algebraic function of the first- and
second-regularized derivatives [32]. Therefore, integral invariants are more gen-
eral, but we will not exploit this added generality, since it contrary to the spirit of
this manuscript, that is of avoiding the computation of derivatives of the image
data, even if regularized.

4 Relationship with curvature and local differential

invariants

In this section we study the relationship between the local area invariant (6) and
curvature. This is motivated by the fact that curvature is a complete invariant,
in the sense that it allows the recovery of the original curve up to the action of
the symmetry group. Furthermore, all differential invariants of any order on the
plane are functions of curvature [49], and therefore linking our integral invariant
to curvature would allow us to tap onto the rich body of results on differen-
tial invariants without suffering from the shortcomings of computing high-order
derivatives of the data.
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Fig. 2. For a set of representative shapes (left column), we compute the distance inte-
gral invariant of eq. (3) (middle left column), the local area invariant of eq. (6) with
a kernel size σ = 2 (middle right column). Compare the results with curvature, shown
in the rightmost column.
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Noisy Shape Distance invariant Local area invariant Curvature

Fig. 3. For a noisy shape (left column), the distance invariant of eq. (3) with a kernel
size of σ = 30 (middle left column), the local area invariant of eq. (6) with kernel size
r = 10 (middle right column) and the differential invariant, curvature (right column).
As one can see, noise is amplified in the computation of derivatives necessary to extract
curvature.

We first assume that γ is smooth, so that a notion of curvature is well-defined,
and the curve can be approximated locally by the osculating circle4 BR(p) (Fig.
1-b). The invariant Ir

γ(p) denotes the area of the intersection of a circle Br(p)
with the interior of γ, and it can be approximated to first-order by the area
of the shaded sector in Fig. 1-b, i.e. Ir

γ(p) ' r2θ(p). Now, the angle θ can be
computed as a function of r and R using the cosine law: cos θ = r/2R, and since
curvature κ is the inverse of R we have

Ir
γ(p) ' r2 arccos

(

1

2
rκ(p)

)

. (7)

Now, since arc-cosine is an invertible function, to the extent in which the ap-
proximation above is valid (which depends on r), we can recover curvature from
the integral invariant.

4 Notice that our invariant does not require that the shape be smooth, and this as-
sumption is made only to relate our results to the literature on differential invariants.
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Fig. 4. For a noisy shape (left), the local area invariant of eq. (6) as a function of kernel
size induces a scale-space of responses.

The approximation above is valid in the limit when r → 0; as r increases,
Br(p) encloses the entire curve γ (which is closed), and consequently Ir

γ becomes
a constant beyond a certain radius r = rmax. Therefore, for values of r that range
from 0 to rmax we obtain an intrinsic scale-space of invariants, in contrast to the
extrinsic scale-space of curvature. We compare these two descriptors in Fig. 3
and Fig. 4.

Note also that the integral invariant can be normalized via Ir
γ/πr2 so as to

provide a scale-invariant description of the curve, which is therefore invariant
with respect to the similarity group. The corresponding integral invariant is then
bounded between 0 and 1.

5 Invariant signature curves

The invariant Ir
γ(p(s)) can be represented by a function of s for any fixed value

of r. This means, however, that in order to register two shapes, an “initial point”
s = 0 must be chosen. There is nothing intrinsic to the geometry of the curve
in the choice of this initial point, and indeed it would be desirable to devise a
description that, in addition to being invariant to the group, is invariant with
respect to the choice of initial point.

In order to do so, we follow the classic literature on differential invariants (see

[10] and references therein) and plot a signature, that is the graph of
∂Ir

γ(p(s))

∂s

versus Ir
γ . We indicate such a signature concisely by

(İr
γ , Ir

γ) (8)

which of course can be plotted for all values of r ∈ [0, rmax], yielding a
scale-space of signatures. Naturally, we want to avoid direct computation of
the derivative of the invariant, so the signature can be computed more sim-
ply as follows: Consider the binary image χ(γ̄) and convolve it with the kernel
h(p, x)

.
= Br(p−x), where p ∈ R

2, not just the curve γ. Evaluating the result of
this convolution on p ∈ γ yields Ir

γ , without the need to parameterize the curve.

For İr
γ , compute the gradient of the filter response and inner-multiply the result

with the tangent vector field of the image χ(γ̄), formed by filtering again by a
kernel different than Br(p−x) and rotating its normalized gradient by 90o. The
result, when evaluated at p ∈ γ, yields İr

γ .
Notice that from the integral invariant signature we can reconstruct all dif-

ferential invariants in the limit when r → 0. In fact, from Ir
γ we can compute κ,

and therefore from the signature we can compute κ̇.
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Fig. 5. Example of signature curves for a set of representative shapes (left column);
local area invariant with small kernel (middle left column) and large kernel (middle
right column), differential invariant (right column).

6 Distance between shapes
In this section we outline methods for computing the distance between two
shapes based on their invariants and invariant signatures curves.

A straightforward distance between two shapes γ1 and γ2 is to compute a
measure of the error between their invariants. One choice is the squared error.

DE(γi, γj , r) =

∫ 1

0

(Ir
γi

(p(s)) − Ir
γj

(p(s)))2ds. (9)

While this squared error can be computed for any invariant functional, we focus
on invariants that preserve locality, such as the local area invariant, so that these
distances will be valid for application to shape recognition despite occlusion.

However, as discussed in Sec. 5 this computation is sensitive to the parame-
terization of the shapes, specifically the assignment of the initial point. To avoid
this dependence, the distance in eq. (9) must be optimized with respect to the
choice of s = 0. We demonstrate the application of distance computed in this
way in the Sec.(7), where we also define a distance based on curvature in the
same way.

As an alternative to optimizing DE , we can define a distance on a parameter-
independent representation, such as the signature. The symmetric Hausdorff
distance between signature curves (represented as point sets),

DH(γi, γj , r) = H(( ˙Ir
γi

, Ir
γi

), ( ˙Ir
γj

, Ir
γj

)) (10)

is one such distance. Hausdorff distance does not rely on correspondence between
points, which is advantageous because it provides the parameter-independent
distance we desire, but problematic when non-corresponding segments of the
signatures are perturbed so that they overlap.

However, other measures that characterize the signature, such as winding
number, can be integrated in into the distance measure to better discriminate
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these signatures. Additionally, a richer multiscale description of the curve can be
created by computing the above distances for a set of kernel sizes. The integration
of multiscale information, along with other measures such as winding number,
is the subject of ongoing investigation.

7 Experiments

In this section we apply the invariant shape descriptions to the problem of
Euclidean-invariant matching of shapes in noise. In Fig. 6, we demonstrate shape
matching in a collection of 23 shapes, and summarize the results in Fig. 7. The
collection contains several groups of shapes; shapes within a group are similar
(i.e. different breeds of fish), but the groups are quite different (intuitively, hands
are not like fish).

The figure shows the distance between the shapes (shown on the left side)
and noisy versions of the shapes (shown across the top). Within each block are
two distances; on top, the integral invariant distance DE defined in the previous
section, and on the bottom the differential invariant distance defined similarly.

In each column, the lowest distance for the shape shown at the top of the
column is shown in italics. The distance based on the integral invariant finds
the correct match (i.e. the distance between a noisy shape and the correct pair
is lowest) in all but one case. The exception is the noisy, rotated hand (fourth
column from the right), which has equal distance to itself and its unrotated
neighbor, demonstrating the invariance to rotation of this model. Moreover, dis-
tances between similar shapes are lower than distances between members of
different groups.

Matching results based on the differential invariant are not as consistent as
those based on the integral invariant. There are eight mismatches among the
23 noisy images; most frequently, when a shape cannot be matched it is paired
with the triangle (fifth from the right). This may be because the curvature of
the triangle is zero almost everywhere, and best approximates the mean of many
of the noisy curvature functions. More generally, and more problematically, for
some groups distances between similar shapes are higher than distances between
shapes belonging to other groups, violating the required properties of a distance.
For instance, the average inter-group distance is 452.8, while the average intra-
group distance is 316.6! Compare this to an inter-group distance of 11.0, which
is lower than the intra-group distance of 17.4 for the integral invariant distance.

8 Conclusion

In this paper we have introduced a general class of integral Euclidean- and
similarity-invariant functionals of shape data. We argue that these functionals
are less sensitive to noise than differential ones, but can be exploited in similar
ways, for instance, to define invariant signature curves that can be used as a
representation to define various notions of shape distance. In addition, the inte-
gration kernel includes an intrinsic scale-space parameter. We presented efficient
numerical implementations of these invariants, and, in the limit, established a
completeness property for the representation by showing a one-to-one correspon-
dence with curvature. We demonstrated our results with several experiments,
including an application to shape matching using synthetic and real data.
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2 8 18 18 8 15 17 14 11 10 10 12 10 9 9 6 17 14 29 31 29 27 28

40 78 78 77 70 359 466 428 322 337 333 378 369 373 386 383 361 393 541 526 557 484 484

9 1 18 20 8 11 14 11 12 10 10 12 7 11 9 7 17 12 22 23 21 22 22

67 53 77 80 72 377 482 441 330 349 386 386 389 383 400 399 373 406 548 535 567 489 496

19 17 2 28 16 26 28 27 24 26 21 27 22 25 24 20 32 27 37 34 33 33 35

70 84 46 84 72 378 487 443 333 356 401 393 388 389 401 406 382 413 557 540 580 498 500

19 18 32 2 14 16 20 18 19 18 20 19 17 19 19 19 20 18 36 34 33 33 33

75 89 90 57 80 381 511 468 356 371 417 409 402 408 420 419 400 429 567 546 589 503 513

8 5 15 14 1 10 12 8 9 6 11 11 9 9 9 7 10 9 24 26 23 23 24

56 69 67 71 40 332 439 392 279 311 346 343 343 341 358 352 328 360 507 493 530 454 458

16 13 28 18 11 0 23 14 17 11 17 15 16 16 6 7 20 10 34 36 34 35 34

197 212 226 224 197 317 668 596 493 508 556 535 546 541 540 363 521 572 763 732 789 689 681

22 15 35 25 16 23 1 18 15 20 10 20 14 20 20 16 19 20 28 27 22 27 26

244 247 246 264 240 567 435 663 522 548 613 588 579 588 578 579 595 622 815 775 826 751 732

14 11 30 19 10 15 19 0 8 12 17 11 13 5 14 11 11 13 25 25 24 26 24

208 223 231 240 210 539 678 397 486 521 557 534 547 358 564 558 547 551 769 749 801 708 721

13 12 27 21 11 16 14 8 0 14 14 8 11 12 14 11 12 9 24 24 24 27 23

197 216 215 217 186 519 662 570 270 474 545 526 543 523 542 544 521 559 748 736 785 685 701

12 10 28 21 9 11 19 12 13 1 14 15 14 13 10 9 19 13 31 33 28 29 31

221 231 236 237 212 507 686 601 469 300 557 566 560 547 567 560 498 577 771 750 794 717 716

14 13 25 22 13 17 9 16 14 14 1 14 13 13 16 12 20 15 28 27 24 28 26

205 229 251 248 218 546 688 608 513 535 350 557 544 566 593 545 549 595 789 774 803 727 713

14 14 29 21 13 15 19 11 8 14 14 1 13 12 14 9 21 12 25 27 28 28 26

224 240 240 251 226 555 683 643 520 529 575 357 563 571 582 568 558 599 794 762 800 729 725

13 9 23 19 11 16 14 12 10 14 12 13 1 10 14 9 16 7 26 27 25 24 25

222 239 232 244 225 559 680 631 501 510 581 557 337 534 580 576 541 374 773 740 798 720 698

12 11 25 20 11 15 20 5 12 13 15 13 11 0 14 9 19 9 33 34 32 30 32

194 208 214 223 180 520 646 394 456 496 526 536 532 311 553 548 519 542 738 710 765 663 675

13 11 25 19 11 6 19 14 13 10 16 15 14 13 1 10 16 10 36 37 34 33 35

223 245 248 249 218 550 675 629 506 501 584 561 571 553 328 582 548 602 789 767 810 724 736

8 8 20 21 10 7 15 11 10 9 12 8 9 8 9 1 17 12 27 28 26 28 26

213 224 231 232 207 345 676 613 471 514 541 544 556 545 564 355 532 573 783 743 807 712 708

18 16 35 22 12 19 21 12 13 20 23 22 18 20 17 18 0 13 39 39 36 37 37

191 198 211 218 184 529 659 607 467 492 536 526 540 528 538 519 310 538 751 723 775 688 689

16 12 30 18 11 11 20 13 9 14 16 12 7 10 11 12 13 0 28 30 29 29 28

180 200 210 216 178 515 642 598 470 502 542 528 344 480 539 518 506 353 740 707 765 668 675

36 27 44 40 29 37 29 24 26 33 29 28 27 34 37 29 36 29 1 5 10 13 4

314 332 338 334 325 696 831 811 666 689 726 727 734 715 693 722 699 751 522 910 972 864 868

36 27 46 38 30 38 26 25 25 33 27 28 27 34 37 29 36 29 4 1 6 10 1

248 262 259 262 258 607 753 703 569 607 662 634 640 644 642 619 628 646 824 514 843 767 448

34 24 44 36 28 34 22 23 24 28 24 28 24 32 33 25 33 28 10 6 1 11 6

290 310 311 319 303 682 798 796 631 675 737 677 707 708 714 720 687 719 902 873 559 802 825

33 26 38 36 29 35 26 25 26 29 28 27 25 30 32 28 35 29 13 10 10 1 10

296 298 308 304 303 671 789 751 622 635 697 698 677 660 700 689 650 705 861 847 910 477 836

36 27 46 37 30 38 26 25 25 33 27 28 27 35 37 29 36 30 4 1 5 10 1

246 259 259 262 259 596 773 713 586 593 650 653 643 644 661 619 612 637 830 514 852 765 448

Fig. 6. Noisy shape recognition from a database of 23 shapes. The upper number in
each cell is the distance computed via the local-area integral invariant; the lower number
is the distance computed via curvature invariant. The number in italics represents the
best match for a noisy shape. See the text for more details
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