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Integral Equations occur, in a natural way, in the course of obtaining 
mathematical solutions to mixed boundary value problems of mathematical 
physics. Of the many possible approaches to the reduction of a given 
mixed boundary value problem to an integral equation, Green’s function 
technique appears to be the most useful one and, such Green’s functions 
involving elliptic operators (Laplace’s equation being an example) in two 
variables, are known to possess logarithmic singularities. The existence 
of singularities in the Green’s function associated with a given boundary 
value problem, thus, brings in singularities in the kernels of the resulting 
integral equations to be analyzed in order to obtain useful solutions of the 
boundary value problems under consideration. 

The book covers a variety of linear singular integral equations, with 
special emphasis on their methods of solution. After describing the various 
forms of integral equations in the introductory chapter (chapter 1), we have 
broken up, the whole material presented in the book, into nine chapters. 
In chapter 2, simple elementary methods of solution of the famous and 
most important Abel integral equation and its generalizations have been 
discussed fi rst, and, then the singular integral equations of the fi rst kind 
which involve both logarithmic as well as Cauchy type singularities in 
their kernels have been taken up for their complete solutions. The theory of 
Riemann-Hilbert problems and their applications to solutions of singular 
integral equations involving Cauchy type kernels has been described in a 
rather simplifi ed manner, in chapter 3, avoiding the detailed analysis, as 
described in the books of Gakhov and Muskhelishvilli (see the references 
at the end). Particular simple examples are examined in detail to explain 
the underlying major mathematical ideas. Some very special methods of 
solution of singular integral equations have been described in chapter 4, 
wherein simple problems of various types are examined in detail. The 
chapter 5 deals with a special type of singular integral equation, known as 
hypersingular integral equations, along with their occurrence and utility 
in solutions of mixed boundary value problems arising in the study of 
scattering of surface water waves by barriers and in fracture mechanics. 

Preface



vi Applied Singular Integral Equations

Hypersingular integral equations of both fi rst as well as second kinds have 
been examined with special emphasis on problems of application to physical 
phenomena. Both analytical as well as approximate methods of solution of 
such integral equations have been described in this chapter. Some special 
approximate methods of solution of singular integro-differential equations 
have been explained in detail, in connection with simple problems, in 
chapter 6. This particular chapter, like a major portion of the material 
described in chapter 5, is the result of some recent research having been 
carried out by the authors and other workers. The chapter 7 deals with 
the Galerkin method and its application. In chapter 8, numerical methods 
of solution of singular integral equations of various types have been 
explained and some simple problems have been discussed whose numerical 
solutions are also obtained. The error analysis in the approximate as well 
as numerical methods of solution of singular integral equations studied 
in the chapters 5 and 6, of the book has been carried out to strengthen the 
analysis used. The fi nal chapter 9 involves approximate analytical solution 
of a pair of coupled Carleman singular integral equations in semi-infi nite 
range arising in problems of water wave scattering by surface strips in the 
form of inertial surface and in the form of elastic plate, which have been 
studied by the authors and coworkers recently.

It is hoped that the book will help in picking up the principal 
mathematical ideas to solve singular integral equations of various types 
that arise in problems of application. It is further hoped that even though 
all the ideas are explained in the light of specifi c simple problems of 
application, there is no lack of rigor in the analysis for readers and users 
looking for these aspects of singular integral equations. It should therefore 
serve as a book, which helps in introducing the subject of singular integral 
equations and their applications to researchers as well as graduate students 
of this fascinating and growing branch of applied mathematics. 
B. N. Mandal
A. Chakrabarti

February 2011
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In this introductory chapter we describe briefl y basic defi nitions concerning 
integral equations in general, and singular integral equations in particular.  
Integral equations arise in a natural way in various branches of mathematics 
and mathematical physics. Many initial and boundary value problems 
associated with linear ordinary and partial differential equations can be 
cast into problems of solving integral equations. Here we present some 
basic defi nitions and concepts involving singular integral equations and 
their occurrences in problems of mathematical physics such as mechanics, 
elasticity and linearised theory of water waves

1.1 BASIC DEFINITIONS

An equation involving an unknown function ( )xϕ  with a  ≤  x  ≤  b (a,b  
being real constants), is said to be an integral equation for ( )xϕ , if ( )xϕ  
appears under the sign of integration.  A few examples of integral equation 
is given below:

Example 1.1.1 

1 1 1( , ) ( ) ( ),  
b

a

K x t t dt f x a x bϕ = ≤ ≤∫
where  1 1( , ) and ( )K x t f x  are known functions and  1( )xϕ  is the unknown 
function to be determined.

Example 1.1.2     

2 2 2 2( ) ( , ) ( ) ( ),  
b

a

x K x t t dt f x a x bϕ ϕ+ = ≤ ≤∫
where 2 2 2( , ) and  ( ) are known functions and ( )K x t f x xϕ  is unknown.

Chapter 1        
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2 Applied Singular Integral Equations

Example 1.1.3      

 [ ]2
3 3 3 3( ) ( , ) ( ) ( ),  

b

a

x K x t t dt f x a x bϕ ϕ+ = ≤ ≤∫

where 3 3 3( , ) and  ( )  are known functions and ( )K x t f x xϕ  is unknown.
The known functions 1 2 3( , ), ( , ), ( , ),K x t K x t K x t  appearing in the 

above equations, are called the kernels of the integral equations involved, 
and the other known functions 1 2 3( ), ( ), ( ),f x f x f x  are called the forcing 
terms of the corresponding integral equations.  We emphasize that integral 
equations whose forcing terms are zero, are called homogeneous integral 
equations, whereas for nonhomogeneous integral equations, the forcing 
terms are non-zero. The function ( , ), ( ), ( ) ( 1, 2,3)i i iK x t f x x iϕ =  
appearing in the above examples are, in general, complex-valued functions 
of the real variable x.

The integral equations in the Examples 1.1.1 and 1.1.2 above are 
examples of linear integral equations, since the unknown functions 1 2,ϕ ϕ  
there, appear linearly, whereas the integral equation in the Example 1.1.3, 
in which the unknown function appears nonlinearly, is an example of 
nonlinear integral equation. In the present book we will consider, only 
linear integral equations.

Some further examples of integral equations involving either functions 
of several real variables or several unknown functions are now given.

Example 1.1.4

4 4( ) (Kϕ
Ω

+ ∫x x,t) 4 (ϕ t) 4t (d f= x), x ,  2,3...n n∈Ω ⊂ =� .

Here φ4(x) is the unknown function of several variables x1,x2...,xn(n�����2)  
and the Kernel 4K  as well as the forcing term 4f  are known functions. 
This is an example of a linear integral equation in an n-dimensional space 
( 2n ≥ ).

Example 1.1.5

1
( )   ( , ) ( ) ( ),  ,  1, 2,

bN

i ij j i
j a

x K x t t dt f x a x b iϕ ϕ
=

+ = ≤ ≤ =∑ ∫ ...,N.

 
Here the set of functions ( ) ( 1, 2,i x iϕ = ...,N) is an unknown set, and 
the kernel functions ( )ijK x  as well as the forcing functions ( )if x  are 
known.
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This is an example of a system of N one-dimensional linear integral 
equations.

In the present book we will be concerned with only those classes of 
integral equations, which are known as singular integral equations, and for 
such equations, the kernel function ( , )K x t  has some sort of singularity at 
t x= . A singularity of ( , )K x t  at ,t x=  when it exists, may be weak or 
may be strong. For a weak singularity of  K(x,t) at t = x, the integral

( , ) ( ) 
b

a

K x t t dtϕ∫
for a x b< <  exists in the sense of Riemann while for a strong singularity 
of K(x,t) at t = x, the integral

( , ) ( ) 
b

a

K x t t dtϕ∫
for a x b< <  has to be defi ned suitably.

Linear integral equations may be of fi rst or second kind. A fi rst kind 
integral equation has the form

 
( , ) ( ) ( ),  

b

a

K x t t dt f x a x bϕ = ≤ ≤∫
 

(1.1.1)

while a second kind integral equation has the form

 
( ) ( , ) ( ) ( ),   

b

a

x K x t t dt f x a x bϕ λ ϕ+ = ≤ ≤∫  (1.1.2)

where λ  is a constant.

If both limits of integration  and a b  in (1.1.1) and (1.1.2) are 
constants, then these equations are called integral equations of Fredholm 
type, whereas, if any one of  and a b  is a known function of x  (or simply 
equal to x ), then the corresponding integral equations are said to be of 
Volterra type.

If the kernel ( , )K x t  is continuous in the region [ ] [ ], ,a b a b×  and the 
double integral

2 | ( , ) |  
b b

a a

K x t dx dt∫ ∫  

is fi nite, then the integral equations (1.1.1) and (1.1.2) are called regular 
integral equations.
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Although the equation (1.1.2) is the standard representation of 
Fredholm integral equation of second kind, there exists another form of 
equation given by

 

( ) ( , ) ( ) ( ),  
b

a

x K x t t dt f x a x bμϕ ϕ+ = ≤ ≤∫
 

(1.1.3)

where it is evident that 
λ

μ 1
=  and is absorbed in the forcing term. One

advantage of this representation is that, on setting 0,μ =  one gets the fi rst 
kind Fredholm integral equation.

Example 1.1.6
1

0

( )    ( ) ( ),  0 1,x tx e t dt f x xϕ λ ϕ−− = ≤ ≤∫
where  λ is a known constant. This is an example of a nonhomogeneous 
Fredholm integral equation of the second kind.

Example 1.1.7

0

( )   ( ) ( ),  0 1.
x

x xt t dt f x xϕ ϕ− = ≤ ≤∫
This is an example of a nonhomogeneous Volterra integral equation 

of second kind.
As mentioned above, singular integral equations are those in which the 

kernel ( , )K x t  is unbounded within the given range of integration. Based 
on the nature of unboundedness of the kernel, one can have weakly singular 
integral equation, strongly singular integral equation and hypersingular 
integral equation.

If ( , )K x t  is of the form
( , )( , )

| |
L x tK x t
x t α=
−

where  [ ] [ ]( , ) is bounded in ,   ,  with ( , ) 0,L x t a b a b L x x× ≠  and  α  is

a   constant   such that 
b

0 1,  then the integral ( , )  ( ) 
a

K x t dt a x bα< < < <∫
exists in the sense of Riemann, and the kernel is weakly singular, and the 
corresponding integral equation (fi rst or second kind) is called a weakly 
singular integral equation. Also the logarithmically singular kernel 
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( , ) ( , )  | |K x t L x t ln x t= −

where  ( , )   is bounded with ( , ) 0,L x t L x x ≠   is also regarded as a 
weakly  singular kernel.

Example 1.1.8

1/ 2
0

( )  ( ),  0
( )

x t dt f x x
x t
ϕ

= >
−∫

where (0) 0f = . This is an example of a nonhomogeneous Volterra 
equation of fi rst kind with weak singularity. This is in fact the Abel integral 
equation attributed to the famous mathematician Niels Henrik Abel (1802–
1829) who obtained this equation while studying the motion of particle on 
smooth curve lying on a vertical plane.

Example 1.1.9

 ( )   ( ),  .
-

b

a

t xt ln dt f x a x b
t x

ϕ +
= < <∫

This is a fi rst kind Fredholm integral equation with logarithmically 
singular kernel. This integral equation occurs in the linearised theory of 
water waves in connection with study of water wave scattering problems 
involving thin vertical barriers.

If the kernel ( , )K x t  is of the form

( ),
( , )  , 

L x t
K x t a x b

x t
= < <

− 
where   ( , ) is a differentiable function with ( , ) 0L x t L x x ≠  (the function  
L can still be weaker!), then the kernel  ( , )K x t  has a strong singularity 
at  t x= , or rather it has a singularity of Cauchy type at ,t x=  and the

integral  ( , )
b

a

K x t dt∫  is to be understood in the sense of Cauchy principal

value (CPV), as denoted and defi ned by
-

0
 ( , ) ( ) lim   ( , ) ( ) ( , ) ( ) 

x b
b
a

a x

K x t t dt K x t t dt K x t t dt
ε

ε
ε

ϕ ϕ ϕ
→+

+

⎡ ⎤
∫ = +⎢ ⎥

⎣ ⎦
∫ ∫

 
where the cut indicates that the integral is defi ned as CPV only. The 
corresponding integral equation is called a Cauchy-type singular integral 
equation.
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Example 1.1.10

( )  ( ),  b
a

t dt f x a x b
t x
ϕ

∫ = < <
− 

where the integral is in the sense of CPV.  This is called a nonhomogeneous 
Cauchy type singular integral equation fi rst kind. This integral equation 
occurs in various types of physical problems. It can be solved only when 
the behaviour of ( )tϕ , dictated by the physics of the problem in which it 
occurs, at the end points is known.

If the kernel ( , )K x t  is of the form

2

( , )( , )  , 
( )
L x tK x t a x b
t x

= < <
−

where ( , ) is continuous and ( , ) 0,  then ( , )L x t L x x K x t≠  has a very 
strong singularity at t = x.

2

1For simpilicity, we choose ( , )  1,  then ( , )  
( )

L x t K x t
t x

≡ =
−

, and the

integral 2

( )  ( )
( )

b

a

t dt a x b
t x
ϕ

< <
−∫  cannot be defi ned in Riemann sense.

However, it can be defi ned in the sense of Hadamard fi nite part of order 2, 
as denoted and defi ned by
 -

2 2 20
+

( ) ( ) ( ) ( ) ( )lim   +  
( ) ( ) ( )

x b
b

a
a x

t t t x xdt dt dt
t x t x t x→+

⎡ ⎤+ + −
× = −⎢ ⎥− − −⎣ ⎦
∫ ∫ ∫

ε

ε
ε

ϕ ϕ ϕ ϕ ε ϕ ε
ε

 
where the cross before the integral indicates that the integral is defi ned in 
the sense of Hadamard fi nite part.

Example 1.1.11

 
1

2
1

( )  ( )  1 1
( )

t dt f x x
t x
ϕ

−

× = − < <
−∫

where ( 1) 0ϕ ± =  and the integral is defi ned in the sense of Hadamard fi nite 
part. This is an example of a fi rst kind hypersingular integral equation.
Note: The cut in the integral sign to denote a Cauchy principal value 
integral and the cross before the integral sign to denote a hypersingular 
integral will not be used further. 
Remark: There exists in the literature a huge amount of work related to 
second kind integral equations of Fredholm type for regular kernels since 
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the solution is unique. However there exists no such work for fi rst kind 
integral equations of Fredholm type for regular kernels since the solution 
need not be unique. This is illustrated by considering the fi rst kind integral 
equation

 
1

0

 ( ) ( ) 1,  0 1x t t dt xϕ+ = ≤ ≤∫
Here the kernel ( , )K x t x t= +  is obviously a regular kernel. Solution of 
this integral equation is not unique. It is easy to see that it has solutions

 2( ) 6 12 ,  ( ) 24 36 .t t t t tϕ ϕ= − + = − +

In fact any number of solutions can be obtained if one follows the 
method used in Chakrabarti and Martha (2009) for fi nding approximate 
solutions of Fredholm integral equations of the second kind. Thus there 
is no point to consider fi nding solutions of fi rst kind Fredholm integral 
equations with regular kernels. However, this is not the case with fi rst kind 
integral equations with singular kernels. A considerable part of this book 
is devoted to solving  fi rst kind singular integral equations analytically as 
well as approximately.

We now demonstrate the occurrence of singular integral equations 
(weakly singular, Cauchy singular and hypersingular) in varieties of 
problems of mathematical physics, like classical mechanics, elasticity and 
fl uid mechanics.

1.2   OCCURRENCE OF SINGULAR INTEGRAL EQUATIONS

1.2.1   Weakly singular integral equation (Abel’s problem)

We consider, fi rst, the problem in classical mechanics, which is that of 
determining the time a particle takes to slide freely down a smooth fi xed 
curve in a vertical xy-plane (see Figure 1.2.1), from any fi xed point ( , )X Y  
on the curve to its lowest point (the origin 0).

Fig. 1.2.1 Abel’s problem0

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10883-2&iName=master.img-000.jpg&w=131&h=103
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If m denotes the mass of the particle and ( )x yψ=  denotes the equation 
of the smooth curve where ψ  is a differentiable function of y, then we 
obtain the energy conservation equation as given by

 

21  
2

mv mgy mgY+ =

 

(1.2.1)

where  v is the speed of the particle at the position (x, y) at time t, assuming 
that the particle falls from rest at time t = 0 from the point (x, y), and g   
represents acceleration due to gravity.

We can express the relation (1.2.1) as

 

[ ]1/22 ( )ds g Y y
dt

= − −

 

(1.2.2)

by using the arc-length s(t), measured from the origin to the point (x, y),  
where a minus sign has been used in the square root since s decreases with 
time t  during the fall of the particle.

Using the formula

 

1/221 { '( )}ds y
dy

ψ⎡ ⎤= +⎣ ⎦
 

(1.2.3)

where  '( )  ,  we can express (1.2.2) in the formdy
dy
ψψ =

 

1/2

2

2 ( )
1 { '( )}

dy dy ds g Y y
dt ds dt yψ

⎡ ⎤−
= = − ⎢ ⎥+⎣ ⎦

 

(1.2.4)

and, this on integration, gives

 

1/20 2

0

1 { '( )}  
2 ( - )

T

Y

y dy dt T
g Y y
ψ⎡ ⎤+

= − = −⎢ ⎥
⎣ ⎦

∫ ∫
 

(1.2.5)

where T is the total time of fall of the particle, from the point (x, y) to the 
origin (0,0).
        Writing

 

 

1/221 { '( )}( ) = 
2

yy
g

ψϕ
⎧ ⎫+
⎨ ⎬
⎩ ⎭

 

(1.2.6)
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the relation (1.2.5) can be written as

 
1/ 2

0

( )  ( ),  say, 0 .
( )

Y y dy T f Y Y a
Y y
ϕ

= = < <
−∫

 

(1.2.7)

Note that (0) 0.f =  We thus fi nd that the time of descent of the particle, 
T , can be determined completely by using the formula (1.2.7), if the shape 
of the curve ( ),x yψ=  and hence the function ( )yϕ  is known.

If we consider, alternatively, the problem of determination of the shape 
of the curve, when the time of fall ( ( ))T f Y=  is known, which is the 
historic Abel’s problem, then the relation (1.2.7) is an integral equation for 
the unknown function ( ),yϕ  which is known as Abel’s integral equation 
or simply Abel integral equation.
        The most general form of Abel integral equation is given by

 

( )
0

( )  ( ),  0 (0) 0
{ ( ) - ( )}

x t dt f x x f
h x h t α

ϕ
= > =∫

 

(1.2.8)

where ( )h x  is a monotonically increasing function and  α is a real constant 
such that  0 1.α< <

We note that the equations (1.2.7) and (1.2.8) are linear Volterra integral 
equations of the fi rst kind. These are weakly singular integral equations.

In the equation (1.2.8) if we put  
2( ) ,  ( ) sin  (0 / 2),  ( ) 1 cos  (0 / 2),h x x h x x x h x x xπ π= = < < = − < <

then we obtain some special Abel integral equations.
Abel discovered the equation (1.2.7) in 1826, and thus the year 1826 

may be regarded as the year of birth of the topic integral equation.

1.2.2   Cauchy type singular integral equation
A.  A crack problem in the theory of elasticity

The mathematical problem to determine the distribution of stresses, in 
two dimensions, around a Griffi th crack, can be shown to be reducible to 
a singular integral equation involving a Cauchy-type singular kernel, as 
described below.

Using Cartesian xy  co-ordinates, with | | 1,  0x y< =  representing 
the crack in an infi nitely elastic plate, this basic mixed boundary value 
problem of the theory of plane elasticity can be posed as follows. To solve 
the equations of equilibrium, as given by
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0
  for   0

0

xyxx

xy yy

x y
y

x y

σσ

σ σ

∂ ⎫∂
+ = ⎪∂ ∂ ⎪ >⎬∂ ∂ ⎪+ = ⎪∂ ∂ ⎭

 

(1.2.9)

under the conditions

 

0  on  0,  

( )  on  0,  | |  1,

  = 0  on  0,  | |  1

xy

yy

y

y x
p x y x

u y x

σ

σ

⎫= = −∞ < < ∞
⎪

= − = < ⎬
⎪= > ⎭  

(1.2.10)

where ,  represent the displacement components, and  , ,x y xx xy yyu u σ σ σ  
represent the stress components at the point ( , )x y , it being assumed that 
there are no body forces.
We also force that the derivatives of ,x yu u tend to zero as 

2 2 1/2( ) .x y+ → ∞
Then, as shown by Sneddon (1994), we can utilize the following 

representations of the displacement and stress components at point (x, y): 

 

0

0

1 ( )   (1-2 - ) sin  
2

1 ( )    {2(1- ) } cos  
2

y
x

y
y

Pu y e x d

Pu y e x d

ξ

ξ

ξ η ξ ξ ξ
ξπ μ

ξ η ξ ξ ξ
ξπ μ

∞
−

∞
−

⎫
= ⎪

⎪
⎬
⎪= + ⎪⎭

∫

∫
 

(1.2.11)

and

 

0

0

0

2     ( ) sin  

2   (1- ) ( ) cos  

2   (1+ ) ( ) cos  

y
xy

y
xx

y
yy

y P e x d

y P e x d

y P e x d

ξ

ξ

ξ

σ ξ ξ ξ ξ
π

σ ξ ξ ξ ξ
π

σ ξ ξ ξ ξ
π

∞
−

∞
−

∞
−

⎫
= − ⎪

⎪
⎪⎪= − ⎬
⎪
⎪
⎪= −
⎪⎭

∫

∫

∫

 

(1.2.12)
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where ( )P ξ  is an unknown function to be determined. The constants 
 and μ η  are the rigidity modulus and the Poisson ratio, respectively, of 

the material of the elastic plate under consideration.
We fi nd that the boundary conditions (1.2.11) give rise to the following 

relations for the determination of the unknown function ( )P ξ :  

 

( )
0

0

2    P( ) cos  ,  0 1

2 P( )    cos  0,  >1.

x d p x x

x d x

ξ ξ ξ
π

ξ ξ ξ
π ξ

∞

∞

⎫
= < < ⎪

⎪
⎬
⎪= ⎪⎭

∫

∫  

(1.2.13)

It may be noted that the condition 0  on  0xy yσ = =  is automatically 
satisfi ed and that

 0

2 P( ) ( ,0)    cos  
1 yu x x dμ ξ ξ ξ

η π ξ

∞

=
− ∫

 

(1.2.14)

with the requirements that

 
( )2 1/2

0(1)  as  0,
 ( ,0) = 

0 (1 )   as  1.y

x
u x

x x

→⎧⎪
⎨ − →⎪⎩  

(1.2.15)

If we integrate the fi rst equation in (1.2.13), we obtain

 0 0

2 P( )   sin   ( ) ( ),  0 1.
x

x d p t dt q x xξ ξ ξ
π ξ

∞

= ≡ < <∫ ∫
 

(1.2.16)

Setting

 0

2 P( )   cos  ( ),  0 1x d x xξ ξ ξ ϕ
π ξ

∞

= < <∫ ’
 

(1.2.17)

and using the Fourier cosine inversion formula, after utilizing the second 
relation of (1.2.13), we get

 

1

0

( ) 2   ( ) cos  .P t t dtξ ϕ ξ
ξ π

= ∫
 

(1.2.18)
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Then the relations (1.2.16) and (1.2.18) give rise to the equation (see 
Chakrabarti (2008), p 113, for details)

 

1

2 2
0

( ) ( )   ,  0 1
2

t q xdt x
t x x
ϕ π

= − < <
−∫

 

(1.2.19)

where the integral is in the sense of CPV and  ( )tϕ  satisfi es the end 
conditions

       
( )1/2

0(1)  as  0,
 (t) = 

0 (1 )   as  1.

t

t t
ϕ

→⎧⎪
⎨ − →⎪⎩  

 (1.2.20)

Setting

 

( ) ( )( ),  ( )s q uf s g u
s u

ϕ π
= − =

 

(1.2.21)

along with

 

2 2,  .t s x u= =

 

(1.2.22)

the equation (1.2.19) can be cast into the form

 

1

0

( )   = ( ),  0 1f s ds g x u
s u

< <
−∫

 

(1.2.23)

which is a singular integral equation with Cauchy-type kernel, and has to 
be solved under the conditions that

  

(1.2.24)

B. A mixed boundary value problem in the linearized theory of water 
waves

The problem of surface water wave scattering by a thin vertical barrier 
in the linearised theory of water waves is shown below to reduce to a 
homogeneous singular integral equation with Cauchy kernel. The 
mathematical formulation of the problem in this case is the following:

( )
1/ 2

1/ 2

0( )  as  0,
( ) = 

0 (1 )   as  1.

s s
f s

s s

−⎧ →⎪
⎨

− →⎪⎩
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To solve the Laplace equation

 

2 2

2 2 0,  0,  y x
x y
ϕ ϕ∂ ∂

+ = > −∞ < < ∞
∂ ∂

 

(1.2.25)

with the boundary conditions

 

0  on  0,  K y x
y
ϕϕ ∂

+ = = −∞ < < ∞
∂

 

(1.2.26)

where  K   is a positive real constant,

 

0  on  0,  0x y a
x
ϕ∂

= = < <
∂

 

(1.2.27)

along with the following conditions, across x = 0:

 

  is continuous on  0,  0

  is continuous on  0,  ;

x y
x

x a y

ϕ

ϕ

∂ ⎫= < < ∞⎪
∂ ⎬

⎪= < < ∞ ⎭
 

(1.2.28)

and the infi nity conditions

 

( )e   as  
( , )

   as  ,

Ky iKx iKx

Ky iKx

e e R x
x y

T e x
ϕ

− −

− +

⎧ + → −∞⎪→ ⎨
→ ∞⎪⎩  

(1.2.29)

 

, 0  as  yϕ ϕ∇ → → ∞

 

(1.2.30)

where   and R T  are unknown physical constants called the refl ection and 
transmission coeffi cients and Ky iKxe− +  represents the incident fi eld. The 
function ( , )x yϕ  also satisfi es the edge condition

 

1/2 (0, ) 0 (| | )  as  .y y a y a
x
ϕ −∂

= − →
∂

 

(1.2.31)

Setting

 
0( , ) ( , ) ( , )x y x y x yϕ ϕ ψ= +

 

(1.2.32)

where

 

( )
0

e   as  0
( , )

 ,  0,

Ky iKx iKx

Ky iKx

e e R x
x y

T e x
ϕ

− −

− +

⎧ + <⎪= ⎨
>⎪⎩

φ
 

(1.2.33)     

     



14 Applied Singular Integral Equations

and observing , because of the conditions at infi nity, namely (1.2.29) and 
(1.2.30), that   ( , ) 0x yψ →  as  | |  x → ∞  and also as ,y → ∞  we 
can have the representation of the unknown harmonic function ( , )x yψ  
satisfying the boundary condition (1.2.26), as given by the following 
expressions:

 

2 2
0

2 2
0

2 ( )    ( , ) ,  0
( , )

2 ( )    ( , ) ,  0

kx

kx

A k e L k y dk x
k K

x y
B k e L k y dk x
k K

π
ψ

π

∞ −

∞

⎧
>⎪ +⎪= ⎨

⎪ <⎪ +⎩

∫

∫  

(1.2.34)

where ( ) and ( )A k B k  are two unknown functions to be determined, and

 

( , )  cos  sin .L k y k ky K ky= −

 

(1.2.35)

Using the Fourier analysis, we obtain the pair of formulae, as given by

 
0

2 2
0 0

( )   ( ) ( , ) ,

2 ( )( ) 2    ( )    ( , ) ,  0Ky Kt

F k f y L k y dy

F kf y K e f t e dt L k y dk y
k Kπ

∞

∞ ∞
− −

=

= + >
+

∫

∫ ∫ . 

(1.2.36)

Now, using the representations (1.2.34) for the function ( , )x yψ  along 
with (1.2.32) and (1.2.33), we fi nd that the continuity conditions (1.2.25) 
give rise to the following important relations: 

 
-

2 2
0

2 ( ) ( )   ( , )  =  (1+ - ) ,  ,KyA k B k L k y dk R T e a y
k Kπ

∞ −
< < ∞

+∫
 

(1.2.37) 

 
-

2 2
0

2 { ( ) ( )}   ( , )  =  (1- - ) ,  ,Kyk A k B k L k y dk iK R T e a y
k K

∞ +
− < < ∞

+∫π  
(1.2.38) 

 
-

2 2
0

2 ( )   ( , )    ,  0 ,KykA k L k y dk iKT e y a
k Kπ

∞

= − < <
+∫  

(1.2.39)                         

 
-

2 2
0

2 ( )   ( , )    (1- ) ,  0 ,KykB k L k y dk iK R e y a
k Kπ

∞

= − < <
+∫ . (1.2.40)

Adding both sides of the relations (1.2.39) and (1.2.40) we fi nd that
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-
2 2

0

2 { ( ) ( )}   ( , )    (1 - ) ,  ,Kyk A k B k L k y dk iK R T e a y
k Kπ

∞ +
= − − < < ∞

+∫ .
 

(1.2.41)

Using the relations (1.2.35) and (1.2.41) along with the pair (1.2.36), we 
fi nd that we must have

 

( ) ( ),A k B k= −

 

(1.2.42)

 

1.R T+ =

 

(1.2.43)

We thus obtain from (1.2.39) and (1.2.37)

 

-
2 2

0

2 ( )   ( , )   (1- ) ,  0 ,KykA k L k y dk K R e y a
k Kπ

∞

= < <
+∫  (1.2.44)

 

-
2 2

0

2 ( )   ( , )  = 2  ,  ,KyA k L k y dk R e a y
k Kπ

∞

< < ∞
+∫ .

 

(1.2.45)

Setting

 
2 2

0

2 ( )   ( , )  = ( ),  ,kA k L k y dk h y a y
k Kπ

∞

< < ∞
+∫

 

 (1.2.46)   

where  ( ) ( )h y y a>  is an unknown function to be determined, we fi nd 
with the aid of (1.2.36)

 
( ) (1 ) sin  ( ) ( , ) Ka

a

kA k iK R e ka h t L k t dt
∞

−= − + ∫  (1.2.47)

with

 

2 ( )  (1 ) (1 ).
2

Kt Ka

a

ih t e dt R e
∞

− −= − − −∫
 

(1.2.48)

Substituting  ( )A k  from (1.2.47) into the relation (1.2.45) we fi nd that the 
function ( )h t  must satisfy the equation   

                                            

2 2
0

2 2
0

2 ( , )                 ( ) ( , ) 
( )

2 sin  ( , )               (1 )    2  ,   
( )

a

Ka Ky

L k y h t L k t dt dk
k k K

i ka L k yK R e dk R e y a
k k K

π

π

∞ ∞

∞
− −

⎧ ⎫
⎨ ⎬+ ⎩ ⎭

+ − = >
+

∫ ∫

∫ .
 

(1.2.49)   
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Operating on both sides of the equation (1.2.49) by d K
dy

+  along with the 
results

 

0

2 20
0

sin  sin 1     ,  , 0,
2

lim    sin  sin   ,  , 0,K

ky kt y tdk ln t y
k y t

ye ky kt dk t y
y t

ε

ε

∞

∞
−

→+

−
= >

+

= >
−

∫

∫  

we obtain the equation

1 1 ( ) +  ln    =   (1 )   ,   .Ka

a

y t y ah t K dt iK e R ln y a
y t y t y t y a

∞
−⎛ ⎞− −

+ − >⎜ ⎟+ − + +⎝ ⎠
∫

 
(1.2.50)

If we use the result

 

1 1   +     =    ,   .Kt Ka

a

y t y ae K ln dt e ln y a
y t y t y t y a

∞
− −⎛ ⎞− −

+ >⎜ ⎟+ − + +⎝ ⎠
∫ ,

 
(1.2.51)

we fi nd that the equation (1.2.50) becomes

 

1 1  ( )  +     =  0,   
a

y tg t K ln dt y a
y t y t y t

∞ ⎛ ⎞−
+ >⎜ ⎟+ − +⎝ ⎠

∫ ,

 

(1.2.52)

where

 

( ) = ( ) (1 ) ,  .Ktg t h t iK R e t a−− − >

 

(1.2.53)

Now, from the relations (1.2.32) and (1.2.33) we fi nd that

 
2 2

0

 ( 0, )  =    (+0, )

2 ( )                   =  (1 )    ( , ) 

                   =  (1 ) ( ),  . 

Ky

Ky

Ky

y iKT e y
x x

kA kiK R e L k y dk
k K

iK R e h y y a

−

∞
−

−

∂ ∂
+ +

∂ ∂

− −
+

− − >

∫

ϕ ψ

π
 

(1.2.54)

Thus by (1.2.54) and (1.2.53) along with the edge condition (1.2.31), 
we observe that the physical problem under consideration reduces to that 
of solving a homogeneous singular integral equation (1.2.52), for the 
unknown function ( )g y  which must satisfy the condition at the end point 
y a=  given by

 

1/2  ( )  0( |  | )     .g y y a as y a−= − →

 

(1.2.55)
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We also note that

 
lim  ( ) 0.
y

g y
→∞

=

 

(1.2.56)

After determining the function ( ),  i.e., ( )g y h y  completely, we will be 
in a position to determine the unknown physical constant R  (the refl ection 
coeffi cient), by using the relation (1.2.48). The details of these calculations 
constitute a different study altogether, and will not be considered here.

For the present moment, we will reduce the singular integral equation 
(1.2.53) to a Cauchy singular integral equation. For this we set

 
( ) =  ( ) 

t

a

G t g s ds∫
 

(1.2.57)

so that

 '( )  =  ( )G t g t

 

(1.2.58)

and

 ( ) = 0.G a

 

(1.2.59)

We now observe that

 

1 1 ( )     =  ( )  .
a a

y tg t ln dt G t dt
y t y t y t

∞ ∞ ⎛ ⎞−
+⎜ ⎟+ + −⎝ ⎠

∫ ∫
 
Thus the equation (1.2.52) can be reduced to the form

 

1 1 ( )  0,   
a

p t dt y a
y t y t

∞ ⎛ ⎞
+ = >⎜ ⎟+ −⎝ ⎠

∫
which is equivalent to

 
2 2

( )  0,   
a

p t dt y a
t y

∞

= >
−∫

 

(1.2.60)

where
p(t) = g(t)  +  K G(t)

and the integral is in the sense of CPV. The equation (1.2.60) is equivalent 
to the homogeneous singular integral equation

 

1

0

( )  0,  0 1q u du v
u v

= < <
−∫

 

(1.2.61)
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where

 

-1/2

1/ 2

( )( ) = .p auq u
u

 

(1.2.62)

The equation (1.2.61) has to be solved under the end conditions

 
( )

1/2

1/2

0( )  as  0,
( ) = 

0 (1 )   as  1.

u u
q u

u u

−

−

⎧ →⎪
⎨

− →⎪⎩  

(1.2.63)

1.2.3 Hypersingular integral equation

Many two-dimensional boundary value problems involving thin obstacles 
can be reduced to hypersingular integral equations. Martin (1991) gave 
a number of examples from potential theory, acoustics, hydrodynamics 
and elastostatics. A simple example involving two-dimensional fl ow past 
a rigid plate in an infi nite fl uid.

Let   0 ( , )x yϕ  be the known potential describing the two-dimensional 
fl ow in an infi nite fl uid in the absence of a rigid plate occupying the position 

0,  0 .  Let  ( , )y x a x yϕ= < <  be the potential due to the presence of the 
rigid plate so that the total potential is

 
0( , ) ( , ) ( , ).tot x y x y x yϕ ϕ ϕ= +

 

(1.2.64)

The function ( , )x yϕ  satisfi es the Laplace equation

 

2 0  in the fluid region,ϕ∇ =

 

(1.2.65)

the condition on the plate

 

0   on  0,  0 ,y x a
y y

ϕϕ ∂∂
= − = < <

∂ ∂
 

(1.2.66)

the edge conditions

 

0(1)  near  (0,0)  and  (0, )aϕ =

 

(1.2.67)

and the infi nity condition

 

( )1/22 20  as  .r x yϕ → = + → ∞

 

(1.2.68)
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Let  

 
{ }2 21( , ; , )   ( ) ( )  

2
G x y ln x yξ η ξ η= − + − .

 

(1.2.69)

We apply Green’s theorem to ( , ) and ( , ; , ) x y G x yϕ ξ η in the region 
bounded externally by a circle of large radius R  with centre at the origin, 
and internally by a circle of small radius ε  with centre at ( , )ξ η  and a 
contour enclosing the plate, and ultimately make ,  0R ε→ ∞ →  and the 
contour around the plate to shrink into it. We then obtain

 
( ) 2 2

0

( ),    
2 ( ) ( )

a f x dx
x y

ηϕ ξ η
π ξ η

= −
− + −∫

 

(1.2.70)

where

 ( ) ( , 0) ( , 0),  0f x x x x aϕ ϕ= + − − < <

 

(1.2.71)

and is unknown. ( )f x satisfi es the end conditions

 (0) 0,   ( ) 0.f f a= =

 

(1.2.72)

( )f x can be found by using the condition (1.2.66) on the plate written in 
terms of ,ξ η  i.e.

 

0 1( ,0) ( , ) ( ),  0
2

v aϕϕ ξ ξ η ξ ξ
η η π

∂∂
= − ≡ − < <

∂ ∂
 

(1.2.73)

where  ( )v ξ  is a known function. Using the representation (1.2.70) we 
obtain

 
2

0

( )  ( ),  0 .
( )

a f x dx v a
x

ξ ξ
ξ

× = < <
−∫ ,

 

(1.2.74)

where the integral is in the sense of Hadamard fi nite part of order 2. The 
equation (1.2.74) is the simplest hypersingular integral equation.



In this chapter we present some elementary methods to solve certain singular 
integral equations of some special types and classes. As applications of 
such elementary methods of solutions we take up the integral equations 
arising in some problems of in the theory of elasticity and surface water 
wave scattering.

2.1 ABEL INTEGRAL EQUATION AND ITS GENERALIZATION

In this section we present some Abel type integral equations and their 
solutions
(a)   We fi rst consider the Abel integral equation as given by

1/ 2
0

1 ( )( ) =     .
( )

xd f tx dt
dx x t

⎡ ⎤
⎢ ⎥−⎣ ⎦
∫ϕ

π
 (2.1.1)

with  (0) 0,f =   where the operator A ~ may be regarded as the Abel 
integral operator. As mentioned in Chapter 1, this integral equation was 
discovered by Abel in 1826 and is the fi rst equation in the theory of integral 
equation.

We can solve the integral equation (2.1.1) for the class of functions 
whose Laplace transforms exist. The Laplace transform of the functions 

( )  and  ( )x f xϕ  are defi ned by (cf.  Doetsch (1955), Sneddon (1974))

( ) ( ) -

0

( ), ( )  =  ( ), ( )  e  ,    0pxp F p x f x dx Re pϕ δ
∞

Φ > >∫  (2.1.2)

where  δ   is some positive number. The inverse formulae for the Laplace 
transforms are

(A 
~
 φ)

Chapter 2        

Some Elementary Methods of Solution of 
Singular Integral Equations
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( ) ( )
+i

-i

1( ), ( )  =  ( ),  ( )   ,  0
2 i

pxx f x p F p e dp x
γ

γ

ϕ
π

∞

∞

Φ >∫  (2.1.3)

where  γ   is greater than the real part of the singularities  of Φ(p) and F(p).   
It may be noted that γ  may be different for  ( )  and  ( ).p F pΦ

The convolution theorem involving Laplace transforms  
( )  and  ( )F p K p  of   ( )f x  and  ( )k x  respectively is 

 
0 0

  ( ) ( )     ( ) ( )
x

pxf t k x t dt e dx F p K p
∞

−⎧ ⎫
− =⎨ ⎬

⎩ ⎭
∫ ∫    (2.1.4)

for 1 1 0  where  Re p δ δ> >  is some positive number, and for some 
special classes of functions  ( )  and  ( )f x k x .  The details are available 
in the treatise by Doetsch (1955) and Sneddon (1974). Then using Laplace 
transform to the both sides of equation (2.1.1), along with the convolution 
theorem (2.1.4), we fi nd that

 ( ) ( ) = ( )p K p F pΦ      (2.1.5)

where

 
( )-1/2

0

( ) =  ( )     ( ) = 

          =   for   0.

pxK p k x e dx k x x

Re p
p
π

∞
−

>

∫
 (2.1.6)

The relation (2.1.5) can thus be expressed as

 ( ) =   ( )pp F p
p
π

π
Φ  (2.1.7)

which is assumed to hold good for   0Re p δ> >  where  δ   is some 
positive number and depends on the class of functions  ϕ   and  f .

If we next use the well-known result involving Laplace transforms, as 
given by,

 
0

 '( )   =  ( ) (0)pxh x e dx p H p h
∞

− −∫  (2.1.8)

where '( )  denotes the derivative of  ( ),  ( )  is h x h x H p the Laplace 
transform of  ( ),h x  and also the convolution theorem (2.1.4), we fi nd 
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from the relation (2.1.7) that the solution function  ( )xϕ  can be expressed 
in either of the two forms:

 1/ 2
0

1 '( )( ) =    
( )

x f tx dt
x t

ϕ
π −∫  (2.1.9a)

where '( )  denotes the derivative of  ( ),  since  (0) 0,f t f t f =  after 
utilizing the result (2.1.6),

 1/ 2
0

1 ( )( ) =     .
( )

xd f tx dt
dx x t

⎡ ⎤
⎢ ⎥−⎣ ⎦
∫ϕ

π
 (2.1.9b)

Remarks
 1. The formulae (2.1.9a) and  (2.1.9b) represent two different forms of 

the solution of   the Abel integral equation (2.1.1).
 2. The formula (2.1.9b) is known as the general inversion formula for 

the Abel operator A 
~, defi ned in the equation (2.1.1), and the formula 

(2.1.9a) is a special case of the formula (2.1.9b), in the circumstances 
when ( )f x  is a differentiable function with (0) 0.f =  In fact, 
the formula (2.1.9a) can be derived from formula (2.1.9b), by an 
integration by parts whenever ( )f x  is differentiable and (0) 0f = .

 3. Another very elementary method to solve the integral equation (2.1.1) 
is to multiply both sides by 1/ 2( )y x −−  and integrate w.r.to x  between 
0  to  .y  This produces

y x

1/ 2 1/ 2 1/ 2
0 0 0

y

1/ 2 1/ 2
0

0

( ) ( )   =    
( ) ( ) ( )

                           =   ( ) 
( ) ( )

                           =   ( ) .

y

y

t

y

f x t dxdx dt
y x x t y x

dx t dt
x t y x

t dt

⎧ ⎫
⎨ ⎬− − −⎩ ⎭
⎧ ⎫⎪ ⎪
⎨ ⎬− −⎪ ⎪⎩ ⎭

∫ ∫ ∫

∫ ∫

∫

ϕ

ϕ

π ϕ

 

  

Then by differentiation w.r.to y , we obtain

 
y

1/ 2
0

1 ( )( ) =     
( )

d f xy dx
dy y x

ϕ
π

⎡ ⎤
⎢ ⎥−⎣ ⎦
∫

               
which is the same as (2.1.9b).
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(b) The integral equation (2.1.1) is sometimes called Abel integral equation 
of the fi rst type. The second type Abel integral equation is  

 1/ 2

( )   = ( ),  0
( )

b

x

t dt f x x b
t x
ϕ

< <
−∫  (2.1.10)

where  ( ) = 0.f b  Its solution can easily be obtained as

 1/ 2

1 ( )( ) =     .
( )

b

x

d f tx dt
dx t x

ϕ
π

−
−∫  (2.1.11)

(c) A slight generalization of fi rst type Abel integral equation is  

  
0

( )   = ( ),  0,
( )

x t dt f x x
x t α

ϕ
>

−∫  (2.1.12)

where  (0) 0  and  0 1.f α= < <   Its solution can be obtained, using the 
Laplace transform method or an obvious very elementary method, as

 
1

0

sin ( )( ) =   ,  0.
( )

xd f tx dt x
dx x t −

⎡ ⎤
>⎢ ⎥−⎣ ⎦

∫ α

παϕ
π

 (2.1.13)

(d) The solution of the second type Abel integral equation

 
( )   = ( ),  0 ,

( )

b

x

t dt f x x b
t x α

ϕ
< <

−∫
 

where  ( ) 0,  0 1,f b α= < <  is

 
1  

sin ( )( )      ,  0 .
( )

b

x

d f tx dt x b
dx t x α

παϕ
π −

⎡ ⎤
= − < <⎢ ⎥−⎣ ⎦

∫  (2.1.14)

(e) The most general form of  fi rst type Abel integral equation is 

 
{ }

( )   = ( ),  ,
( ) ( )

x

a

t dt f x a x b
h x h t α

ϕ
< <

−∫  (2.1.15)

where ( ) 0,  0 1  and  ( )f a h xα= < <  is a strictly monotonically increasing 
and differentiable function of    on  [ , ]  and  '( ) 0  on  [ , ].x a b h x a b≠  
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Its solution is 

 { }1
sin ( ) '( )( ) =     ,  .

( ) ( )

x

a

d f t h tx dt a x b
dx h x h t α

παϕ
π −

⎡ ⎤
< <⎢ ⎥

−⎢ ⎥⎣ ⎦
∫  (2.1.16)

(f) The most general form of second type Abel integral equation is 

 { }1/ 2
( )   = ( ),  ,

( ) ( )

b

x

t dt f x a x b
h t h x

ϕ
< <

−∫  (2.1.17)

where  ( ) 0,  0 1  and  ( )  isf b h xα= < <  as in (e) above.

Its solution is    

          { }1
sin ( ) '( )( ) =     ,  .

( ) ( )

b

x

d f t h tx dt a x b
dx h t h x −

⎡ ⎤
− < <⎢ ⎥

−⎢ ⎥⎣ ⎦
∫ α

παϕ
π

 (2.1.18)

(g)  A special case

For the special case  2 1( ) ,  0,  1  and  ,
2

h x x a b α= = = =    the Abel  
integral equation of fi rst kind (2.1.15) has the form

 

(A
( )

( )1/ 22 2
0

( ))( )    ( ),  0 1 (0) 0
x tx dt f x x f

x t

ϕϕ ≡ = < < =
−

∫  (2.1.19)

having the solution

 ( )xϕ = (A
( )

-1
1/ 22 2

0

2  ( ))( ) =     ,  0 1
xd t f tf x dt x

dx x t

⎡ ⎤
⎢ ⎥ < <
⎢ ⎥−⎣ ⎦
∫π

 (2.1.20)                                  

while the Abel integral equation of the second kind (2.1.17) has the form

 
( )

1

2 2 1/ 2

( )    ( ),  0 1   (1) 0
( )x

t dt f x x f
t x

= < < =
−∫
ϕ  (2.1.21)

having the solution

                                        
 

( )
1

1/22 2

2  ( )( )      ,  0 1
x

d t f tx dt x
dx t x

ϕ
π

⎡ ⎤
⎢ ⎥= − < <
⎢ ⎥−⎣ ⎦
∫ . (2.1.22)
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(h)  More general Abel type integral equation                         
If we now introduce the operators  B  and  D , as defi ned by
 

 (B
1)( ) =   ( )df x f x

dxπ
 

(2.1.23)
(D )( ) = 2  ( )f x x f x

we fi nd that the inverse operator A 1− , as given by the relation (2.1.20), 
can be expressed as

 (A ( )1 )  = f x− [(BAD) f ] ( )x . (2.1.24)     

This way of expressing the inverse operator A 1− , has been mentioned by 
Knill (1994), who has demonstrated a method, known as the diagonalization 
method for solving the Abel type integral equation (2.1.19), Chakrabarti 
and George (1997) have generalized the idea of Knill (1994) further and 
have explained the diagonalization method for more general Abel type 
integral equations as given by

 
( )0

( , )  ( )  = ( ),  0
x k x t t dt f x x

x t
αβ β
ϕ >

−
∫  (2.1.25)

where  0 1,  0α β< < >   and

 - 1

1
( , )   ,

m
j j

j
j

k x t a x tαβ −

=

= ∑  (2.1.26)

 ( 1, 2,... )ja j m=   being known constants.

It has been shown by Chakrabarti and George (1997) that, the solution 
of the integral equation (2.1.25) can be expressed in the form

 
0

( )       0 ,nn

n n

fx x for x rϕ
μ

∞

=

= ≤ ≤∑  (2.1.27)

for  all  ( )f x   such that

 
n=0

( ) =    for  0n
nf x f x x r

∞

≤ ≤∑  (2.1.28)



26 Applied Singular Integral Equations

and

 
m

j=1

(1 ) =    .
1

n j

n j

a
n j

⎛ ⎞+
Γ⎜ ⎟Γ − ⎝ ⎠

⎛ ⎞+
Γ + −⎜ ⎟

⎝ ⎠

∑ βαμ
β α

β

 (2.1.29)

Details are omitted here and the reader is referred to the work of Chakrabarti 
and George (1997) for details.

(i)    An important result

Let

 
{ } { }

1 2
1/2 1/2

1 1 2 2

( ) ( ) ( ) ( )   =   ,  0
( ) ( ) ( ) ( )

b b

x x

h t t h t tdt dt x b
h t h x h t h x

ϕ ψ′ ′
< <

− −∫ ∫  (2.1.30)

where  
φ(b) = 0,ψ(b) = 0; h1(t), h2(t) are monotonically increasing functions in 
(0,b); h1(0) = 0; h2(0) = 0; h1(t) and h2(t) are even functions of t. Then

  
{ } { }

'
1 2

1/2 1/2
0 01 1 2 2

( ) ( ) ( ) ( )   =    ,   0
( ) ( ) ( ) ( )

x xh t t h t tdt dt x b
h x h t h x h t

ϕ ψ′
< <

− −∫ ∫ .     (2.1.31)

This result has been proved in the paper of De, Mandal and Chakrabarti 
(2009). It has been successfully utilized in the study of water wave 
scattering problems involving two submerged plane vertical barriers and 
two surface piercing barriers (De et al. (2009, 2010)). This result is also 
true for a < x < b, and in that case the lower limit of the integrals in both 
sides of (2.1.31) is a.

2.2 INTEGRAL EQUATIONS WITH LOGARITHMIC TYPE 
SINGULARITIES

In this section we present some elementary methods of solution of weakly 
singular equations with logarithmic type singularities.

(a) Reduction to a singular integral equation of Cauchy type

The integral equation with logarithmic type singularity, as given by
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   ( )  = ( ),  ,

b

a

ln x t t dt f x a x bϕ− < <∫  (2.2.1)

can be solved, for some specifi c class of functions ( ), ( ),x f xϕ  by 
differentiating the integral equation (2.2.1) with respect to  x   and solving 
the resulting singular integral equation of the Cauchy type, as given by

 
( )  '( ),  

b

a

t dt f x a x b
x t
ϕ

= < <
−∫  (2.2.2)

where the integral is in the sense of Cauchy principle value. The domain  
( , )a b  of the integral equation (2.2.2) can be transformed into the interval 
(0,1) by using the transformations

  = ,   = u a v at x
b a b a

− −
− −

with  ,u v   being the new variables, and then the solution of the transformed 
integral equation

 

1

0

( )   = ( ),  0 1u du h v v
v u
ψ

< <
−∫  (2.2.3)

where

 

1( ) =  ,  ( ) = ' ,u a v au h v f
b a b a b a

ψ ϕ − −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

 (2.2.4)

will fi nally solve the integral equation (2.2.2) completely.

In section 2.3 of Chapter 2, we will present a simple method of solution 
of the integral equation (2.2.2).

(b) Reduction to a Riemann-Hilbert problem

Here a method of solution of the singular integral equation, with a 
logarithmic singularity, as given by

 
1

0

1   ( )    = ( ),  0 1x tt ln dt f x x
x t

ϕ
π

+
< <

−∫  (2.2.5)

is explained briefl y. In the equation (2.2.5),   and  fϕ  are assumed to be 
differentiable in (0,1).
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We fi rst extend the integral equation (2.2.5) into the extended interval 
(-1,1), by using it as

 
1

0

1   ( )    = ( ),  1 1x tt ln dt F x x
x t

ϕ
π

+
− < <

−∫  (2.2.6)

where

 
( ),  0 1,   

( ) = 
( ),  1 0.

f x x
F x

f x x
< <⎧

⎨− − − < <⎩
 (2.2.7)

Then if we set

 

1

0

( )   ( )   ,d t zz t ln dt
dz t z

+⎛ ⎞Φ = ⎜ ⎟−⎝ ⎠∫ ϕ
 (2.2.8)

we obtain  a sectionally   analaytic function  ( ),zΦ  which  is analytic  in 
the   complex  z -plane  ( 2,  1)z x iy i= + = −  cut along the real axis from 

1  to  1,z z= − =  along with the following properties

 (i)       
        

{ }

{ }

0

1

( ) =  ( )  ( )   ( )  

         +  ( )  ( )   ( )  

x

x

dz t ln t z ln t z dt
dz

t ln t z ln t z dt

ϕ

ϕ

⎡
Φ + − −⎢

⎣
⎤

+ − − ⎥
⎦

∫

∫
 

                                            

 (ii) 
1

0
0

lim  ( ) ( )   ( )     ( )
z x i

d t xz x t ln dt i x
dx t x

±

→ ±

⎡ ⎤+
Φ ≡ Φ = ⎢ ⎥−⎣ ⎦

∫ ∓ϕ πϕ

and

 (iii) 2

1( ) 0   for large  so that  lim  ( ) 0
z

z z z
z →∞

⎛ ⎞Φ = Φ =⎜ ⎟
⎝ ⎠

 

Using the limiting relations (ii), the integral equation (2.2.6) can be 
expressed as a functional relation as given by

 ( ) ( ) ( ),  1 1x x g x x+ −Φ + Φ = − < <  (2.2.9)

where

 
2  '( ),  0 1,

( )
2  '( ),  1 0

f x x
g x

f x x
π
π

< <⎧
= ⎨ − − < <⎩

 (2.2.10)

with dash denoting differentiation with respect to the argument.
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The functional relation (2.2.9) is one of the types that arises in a more 
general problem, called the Riemann-Hilbert Problem (RHP), which will 
be described in some detail in Chapter 3.

The general solution of the RHP (2.2.9) can be expressed as 

 
1

2 1/2
01

1 1 ( )( )     
( 1) 2 ( )

g t dtz D
z z i t t zπ +

−

⎡ ⎤
Φ = +⎢ ⎥− Φ −⎣ ⎦

∫  (2.2.11)

with

 
( )0 1/ 22

1( )
1

z
z z

Φ =
−

 (2.2.12)

being the solution of the homogeneous RHP (2.2.4), giving 

 0 2 1/ 2( ) ,  ( 1 1),
(1 )

it t
t t

±Φ = − < <
−

∓  (2.2.13)

and  D  being an arbitrary constant. Solution of the integral equation (2.2.5) 
is obtained by using the relation (ii), in the form

 
( )

( )1/ 22 21
+

01/ 2 2 22
0

1 '( )1 2( )  ( ) ( )  
2 1

t t f t
x x x dt D

i x tx x
−

⎡ ⎤−
⎢ ⎥⎡ ⎤= Φ − Φ = +⎣ ⎦ ⎢ ⎥−− ⎣ ⎦
∫ϕ

π π
 (2.2.14)

where  0D   is an arbitrary constant.

2.3   INTEGRAL EQUATIONS WITH CAUCHY TYPE KERNELS

In this section we consider the problem of determining solutions of Cauchy 
type singular integral equations using elementary methods.

(a) First kind singular integral equation with Cauchy kernel    

We consider the simple fi rst kind Cauchy type singular integral equation

 
a

1 ( )   ( ),  
b t dt f x a x b

x t
ϕ

π
= < <

−∫  (2.3.1)

where the integral is in the sense of Cauchy principal value, ( )f x  is a 
known continuous function in ( , )a b . Its solution depends on the behaviour 
of ( )tϕ  at the end points dictated by the physics of the problem in which 
the integral equation arises. The solutions can be obtained for the following 
three forms of end behaviours:
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 (i)   1/ 2 1/ 2( ) 0(| | ) as  and ( ) 0(| | ) as ;t t a t a t t b t bϕ ϕ− −= − → = − →

 (ii) 
1/2 1/2

1/2 1/2

( ) 0(| | ) as  and ( ) 0(| | ) as ,
or, ( ) = 0(| | ) as  and ( ) 0(| | ) as ;

t t a t a t t b t b
t t a t a t t b t b

ϕ ϕ
φ φ

−

−

= − → = − →

− → = − →

 (iii) 1/2 1/2( ) 0(| | ) as  and ( ) 0(| | ) as ;t t a t a t t b t bϕ ϕ= − → = − →

For the form (i), the solution involves an arbitrary constant while for the 
form (ii), the solution does not involve any arbitrary constant. For the third 
form the solution exists if and only if ( )f x satisfi es a certain condition 
known as the solvability criterion in the literature.  

Here we use an elementary method to solve the integral equation 
(2.3.1).  As in section 2.2(a), the domain ( , )a b  of the integral equation 
(2.3.1) can be transformed into the interval (0,1). Thus, without any loss 
of generality, we consider the solution of 

 
1

0

1 ( )   ( ),  0 1t dt f x x
x t
ϕ

π
= < <

−∫  (2.3.2)

where the integral is in the sense of CPV.  

We now put 2 2,   ( 0, 0)t xξ η ξ η= = > >  in the equation (2.3.2) to 
obtain

 
1

1
0

1 1 1  ( ) ( ),  0 1
-

d fψ ξ ξ η η
π η ξ η ξ

⎛ ⎞
− = < <⎜ ⎟+⎝ ⎠

∫  (2.3.3)

where

 2 2
1( ) ( ),  ( ) ( ).f fψ ξ ϕ ξ η η= =  (2.3.4)

Integrating both sides of (2.3.3) with respect to η  between 0  to  η  we 
obtain

 
1

0

1   ( )   ( ),  0 1
+

ln d gη ξψ ξ ξ η η
π η ξ

−
= < <∫  (2.3.5)

where

 ( )1
0

( )   .g f s ds
η

η = ∫  (2.3.6)                                                                                                     
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We use the integral identity

( ) ( )
min( , )

1/2 1/22 2 2 2
0

2  uln du
u u

ξ ηξ η
ξ η η ξ

−
= −

+ − −
∫

to obtain from (2.3.5), after interchange of order of integration,

 
( ) ( )

1

1/ 2 1/ 22 2 2 2
0

( )     ( ),  0 1.
2u

ud du g
u u

η ψ ξ πξ η η
ξ η

⎛ ⎞
⎜ ⎟ = − < <
⎜ ⎟− −⎝ ⎠

∫ ∫  (2.3.7)

This is equivalent to the pair of Abel integral equations

 
( )

1

1/ 22 2

( )  = ( ),  0 1,  
u

d F u u
u

ψ ξ ξ
ξ

< <
−

∫  (2.3.8a)

 
( )1/22 2

0

 ( )  =  ( ),  0 1,
2

u F u du g
u

η π η η
η

− < <
−

∫ . (2.3.8b)

Solution of the Abel integral equation (2.3.8b) follows from (2.1.20) and 
is given by

 
( )

( )

1/22 2
0

1
1/22 2

0

 ( )( ) =     

( )           =     

u

u

d guF u d
du u

fu d
u

η η η
η

η η
η

⎡ ⎤
⎢ ⎥−
⎢ ⎥−⎣ ⎦

−

∫

∫so that

 
( )

1
1/ 22 2

0

( )( )    .
u fF u d

u

η η
η

=
−

∫  (2.3.9)

Again, solution of the Abel integral equation (2.3.8a) follows from (2.1.22) 
and is given by 

 

 
( )

( )
( )

( )

1

1/22 2

2 1/21
1

1/2 2 22
0

2  ( )( ) =       

(1 )  2         =       
1

u

d Fu d
du u

t f tu dt
u tu

η ηψ η
π η

π

⎡ ⎤
⎢ ⎥−
⎢ ⎥−⎣ ⎦

−
−

−−

∫

∫
 

(2.3.10)
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where the integral is in the sense of CPV. Back substitution of 
1/ 2 1/ 2,  u y t x= =  produces

 
1/ 21/ 2 1

0

1 1 ( )( )      .
1

y x f xy dx
y x y x

ϕ
π

⎛ ⎞ −⎛ ⎞= − ⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
∫  (2.3.11)

The form (2.3.11) of the solution satisfi es the end conditions

  
( )
( )

1/2

1/2

0   as  0
( )   

0 1   as  1.

x x
x

x x
ϕ

−

⎧ →⎪= ⎨
− →⎪

⎩
From this solution we can derive in a non-rigorous manner, the solution 
for the case when  

( ) ( )1/2 1/2( ) 0   as  0  and  ( ) 0 1   as  1.x x x x x xϕ ϕ− −= → = − →

Using (2.3.11) we fi nd that

1/2 1/ 21 1 1

0 0 0

1 1 ( )  =   ( )    .
1-y

x y dyy dy f x dx
x y x

ϕ
π

⎡ ⎤⎛ ⎞−⎛ ⎞− ⎢ ⎥⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫

The integral in the square bracket has the value π  so that 

 
1/ 21 1

0 0

1 ( )  =  ( ) .tx dx f t dt
t

ϕ −⎛ ⎞− ⎜ ⎟
⎝ ⎠∫ ∫

From the form (2.3.11) we fi nd that

 
{ }

{ }
1 1

1/2
1/2

0 0

1 1 ( )( )    ( )  +  (1 )   .
(1- )

f ty x dx t t dt
y ty y

ϕ ϕ
π

⎡ ⎤
= − − −⎢ ⎥−⎣ ⎦

∫ ∫

Writing  
1

0

( ) C x dxϕ= −∫  we fi nd that 

 
{ }

( ){ }
1

1/ 2

1/ 2
0

1 1 ( )( )      1       .
(1- )

f ty C t t dt
y ty y

⎡ ⎤
= − + −⎢ ⎥−⎣ ⎦

∫ϕ
π

 (2.3.12)
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In view of the result that

  
( ){ }

1

1/ 2
0

1  0  for  0 1
1

dt y
y ty y

= < <
−−

∫

we can regard  C   in (2.3.12) as an arbitrary constant and thus (2.3.12) is 
the required solution satisfying the end conditions

 
( )
( )

1/ 2

1/ 2

0   as  0
( )   

0 1   as  1.

x x
x

x x
ϕ

−

−

⎧ →⎪= ⎨
− →⎪

⎩ 
To derive the solution for the case when

 
( )
( )

1/ 2

1/ 2

0   as  0
( )

0 1   as  1

x x
x

x x
ϕ

⎧ →⎪= ⎨
− →⎪

⎩
, 

we write ( )yϕ  from (2.3.11) as

 

{ }
{ }

{ }

1
1/ 2

1/ 2
0

1/ 2 1

1/ 2
0

1 ( )( )  (1 )    
(1 )

1 ( )         +    .
1 (1 )

f x dxy y y
y xx x

y f x dt
y x x

ϕ
π

π

= − −
−−

⎛ ⎞
⎜ ⎟− −⎝ ⎠

∫

∫
 (2.3.13)

Thus ( )yϕ  has the required behaviour iff the second term in (2.3.13) 
vanishes, i.e., ( )f x  satisfi es

 
( ){ }

1

1/ 2
0

( )  0
1
f x dx

x x
=

−
∫  (2.3.14)

and in this case the solution is given by

 { }
{ }

1
1/ 2

1/ 2
0

1 ( )( )  (1 )    .
(1 )

f xy y y dx
x x

ϕ
π

= − −
−∫  (2.3.15)
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Thus the solution of the integral equation (2.3.1) can be obtained. The 
results are follows:

Case (i) If ( ) ( )1/2 1/2( ) 0   as    and  ( ) 0 | |   as  ,x x a x a x b x x bϕ ϕ− −= − → = − →  

then the solution of (2.3.1) is 

{ }
{ }1/2

1/2
1 1 ( )( )    ( )( )   ,  

( )( )

b

a

f tx C t a b t dt a x b
x tx a b x

ϕ
π

⎡ ⎤
= − + − − < <⎢ ⎥−− − ⎣ ⎦

∫  (2.3.16)

whereC is an arbitrary constant.

Case (ii) (a) If  ( ) ( )1/2 1/2( ) 0   as    and  ( ) 0   as  ,  x x a x a x b x x bϕ ϕ −= − → = − →

then

 
1/ 21/ 2

a

1 ( )( )      ,  
bx a b t f tx dt a x b

b x t a x t
ϕ

π
− −⎛ ⎞ ⎛ ⎞= − < <⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠∫ . (2.3.17)

(b) If  ( ) ( )1/2 1/2( ) 0   as    and  ( ) 0   as  ,  x x a x a x x b x bϕ ϕ−= − → = − →

then

 
1/ 21/ 2

a

1 ( )( )      ,  
bb x t a f tx dt a x b

x a b t x t
ϕ

π
− −⎛ ⎞ ⎛ ⎞= − < <⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠∫ . (2.3.18)

Case (iii) If   ( ) ( )1/2 1/2( ) 0   as    and  ( ) 0   as  ,  x x a x a x x b x bϕ ϕ= − → = − →

Then the solution exists if and only if ( )f x  satisfi es

 
{ }1/ 2

( )  0
( )( )

b

a

f t dt
t a b t

=
− −∫  (2.3.19)

(known as the solvability criterion) and the solution is then given by

 { }
{ }

1/2
1/2

a

1 ( )( ) ( )( )    ,  .
( )( )

b f t dtx x a b x a x b
x tt a b t

ϕ
π

= − − − < <
−− −∫  (2.3.20)

Note: 1 The integrals appearing in (2.3.16) to (2.3.18) and (2.3.20) are in 
the sense of CPV. This method was employed by Mandal and Goswami 
(1983), and is also given in the book by Estrada and Kanwal (2000).
 2.  The method of solution presented above is obviously not rigorous. 

There exists rigorous method of solution based on complex variable 
theory and can be found in the books by Muskhelishvili (1953) and 
Gakhov (1966). This will also be discussed in Chapter 3.
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(b) Second kind integral equations with Cauchy kernel

We consider the simple Cauchy type singular integral equation, as given 
by

 
1

0

( ) ( )    ( ),  0 1tx dt f x x
t x
ϕρ ϕ = + < <

−∫  (2.3.21)

where, the integral is in the sense of CPV, and for simplicity, we assume 
that  ρ   is a known constant, and  ( )  and  ( )x f xϕ are complex valued 
functions of the variable  (0,1),x ∈  ( )xϕ  being the unknown function  of 
the integral equation and f(x) being a known function.

It may be noted that the case  ρ  = 0 , of the integral equation (2.3.21), 
corresponds to the integral equation of the fi rst kind already considered 
above, whilst if   0ρ ≠ , then the equation (2.3.21) represents a special 
singular integral equation of the second kind, with constant coeffi cient. 
There exist various complex variable methods of solutions of the integral 
equations of the form (2.3.21) in the literature (see Muskhelishvili (1953) 
and Gakhov (1966)), some aspects of which will be taken up in Chapter 3 
of the book.

Here we employ the following quick and elementary method of 
solution of the integral equation (2.3.21), which depends on the solution 
of Abel type singular integral equations, described in the previous section 
2.1.

We start with the following standard result

 
( )

1

1 1
0

1  cot   = ,  0 1,
(1 ) 1

dt x
t t t x x x αα α α

π πα
− −

− < <
− − −∫  (2.3.22)

where  α   is  a fi xed constant such that 0 1,α< <  and the singular integral 
is understood in the sense of CPV.

The result (2.3.22) clearly shows that there exists a class of differentiable 
functions, in the open interval (0,1), which represents the solutions of the 
homogeneous part of the integral equation (2.3.21), in the circumstances 
when cotρ π πα= − , and this is provided by the functions

 0
0 1( ) ,   0 1,

(1 )
Cx x

x xα αϕ −= < <
−

 (2.3.23)

where 0C  is an arbitrary constant. It may be noted that 
1   when  0.
2

α ρ= =
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Guided by this observation on the homogeneous part of the integral 
equation (2.3.21), we now expect that the general solution of the integral 
equation (2.3.21) can be expressed in the form, as given by

 
( ) ( )1

0

1 ( )( )     
1

xd tx dt
dxx x tα α

ψϕ −=
− −∫  (2.3.24)

with α satisfying the relation cotρ π πα= − , where  ( )tψ is a 
differentiable function with (0) 0.ψ ≠  From (2.3.24), we fi nd an 
alternative form for  ( )xϕ   as

 
( )11

0

(0) 1 '( )( )   
(1 ) (1 )

x

aa a a

tx dt
x x x x t

ψ ψϕ −−= +
− − −∫  (2.3.25)

where  ' .d
dt
ψψ =   The form (2.3.25) clearly shows that the function  ( )xϕ   

possesses the same weak singularities at the end points of the interval 
(0,1), under consideration,  as is possessed by such solutions (cf.(2.3.23)) 
of the corresponding homogeneous equation (2.3.21).
Using the form (2.3.25) of ( )xϕ  we fi rst fi nd that

( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1

11
0 0 0 0

1 1

11
0 0

1

(t) 1 '( )   = (0)    +  
(1 ) 1-

1 1          = (0)    + '( )   
1 1

1          + '( )   
1

t

x

u

t dt u dtdt du
t x t t t x t xt t u

dt dtu du
t x t xt t t t u

dtu
tt t u

α αα α

α α αα

α α

ϕ ψψ

ψ ψ

ψ

−−

−−

−

⎧ ⎫⎪ ⎪
⎨ ⎬− − − −−⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪
⎨ ⎬− −− − −⎪ ⎪⎩ ⎭

−− −

∫ ∫ ∫ ∫

∫ ∫ ∫
1 1

 
x u

du
x

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫

 (2.3.26)

obtained by interchanging the orders of integration in the second  term,
after splitting it into two terms like  

1

0 x

  +  .
x

dt dt⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫  By  using the

following standard integrals (cf. Gakhov (1966))

( ) ( )
( ) ( )

( ) ( )

11

1
0

1

cos   for 0 1,
11   

 cot1  for  0 1
1

ec x u
x u xdt

t xt t u u x
x x u

α α

α α

α α

π πα

π πα

−

−

−

⎧ < < <⎪ − −⎪= ⎨−− − ⎪− < < <
⎪ − −⎩

∫  (2.3.27)
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in the relation (2.3.26), we can express the integral equation (2.3.21) as
 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1
0

x 1

1 1
0

(0) '( )  (0)cot   =
1 1 1

cot '( ) cos  '( )           ( ),
1 1

x

x

t dt
x x x x t x x

t ec tdt dt f x
x x t x t x

−− −

− −

+ −
− − − −

− + +
− − − −

∫

∫ ∫

α α α αα α

α α α α

ρψ ρ ψ π ψ πα

π πα ψ π πα ψ

and this, on using the relation cot ,ρ π πα= −  gives rise to the following 
Abel type integral equation

 
( )

( )
1

1
'( ) sin  1  ( ),  0 1.

x

t dt x f x x
t x

α
α

ψ πα
π− = − − < <

−∫  (2.3.28)

The solution of the equation (2.3.28) can be determined easily by employing 
the techniques described in section 2.1, and, we fi nd that

 
( )

( )

12

2
x

1 ( )sin( )    
y f y

x dy C
y x

α

α

παψ
π

−
= +

−∫  (2.3.29)

whereC  is an arbitrary constant of integration.

Using the representation (2.3.29) into the right side of  (2.3.24), we thus 
determine the general solution of the singular integral equation (2.3.21), in 
the class of functions described earlier  (cf.(2.3.23)), as given by

( ) ( )

12

1 121
0

sin 1 (1 ) ( )( )   .
(1 ) ( )1

x

t

C d y f yx dy dt
x dx y tx x x t

α

α αα αα

παϕ
π− −−

⎡ ⎤⎧ ⎫−
= + ⎢ ⎥⎨ ⎬− −− −⎢ ⎥⎩ ⎭⎣ ⎦

∫ ∫  (2.3.30)

By interchanging the order of integration on the right side of  (2.3.30), 
and using the following results

 (i)  
( ) ( )

1min( , )
0

1
0

2
0

1 ( , )  for   ( 1 )

1 ( , )  for  ,

j

x y
j

j

j

y G x y x y
j xdt

x t y t x G x y x y
j y

μ

α α α

μ α
μ

α

+∞

=

− +∞

=

⎧ ⎛ ⎞ ≡ > = −⎪ ⎜ ⎟+ ⎝ ⎠⎪= ⎨
− − ⎛ ⎞⎪ ≡ <⎜ ⎟⎪ + ⎝ ⎠⎩

∑
∫

∑

 (ii)  1 21 ,G Gy
x x y x x

μ∂ ∂⎛ ⎞= =⎜ ⎟∂ − ∂⎝ ⎠

(iii)  
2

2
2 2sin  (since  cot ).ππα ρ π πα

ρ π
= = −

+
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We can easily rewrite the general solution (2.3.30) of the integral 
equation (2.3.21), in the following well-known form (cf. Gakhov (1966))

( )
( )

11

2 2 2 2 1 1
0

11 1( )  ( )   ( ) 
(1 ) 1

y y Cx f x f y dy
x x y x x x

αα

αα α α

ρϕ
ρ π ρ π

−

− −

−
= + +

+ + − − −∫ . (2.3.31)

We observe that for the particular case 0,ρ =  corresponding to the 
equation of the fi rst kind, whose solution is obtained in section 2.3, the 
general solution can also be obtained from the relation (2.3.31), and is 
given by (since  1/ 2)α =

( )
( )1/ 21/ 21

1/ 2 21/ 2
0

11 1( )     ( ) 
1

y y
x C f y dy

y xx x
ϕ

π

⎡ ⎤−
= +⎢ ⎥

−− ⎢ ⎥⎣ ⎦
∫  (2.3.32)

where  C   is an arbitrary constant. This coincides with (2.3.12) if 
1  ( )f y
π

 
is replaced by ( ).f y
(c) A related singular integral equation
A related singular integral equation of the fi rst kind with Cauchy type 
kernel, as given by

 
1

2 2
0

( )  ( ),  0 1,t dt f x x
t x
ϕ

= < <
−∫  (2.3.33)

which occurs in the study of the problem of surface water waves by a 
vertical barrier (see Mandal and Chakrabarti (1999)), can also be handled 
by employing the technique developed above.

We fi nd that the substitution

 
( )

1

1/ 22 2

1  ( )( )      ,  0 1
x

d t s tx dt x
x dx t x

= < <
−

∫ϕ  (2.3.34)

where ( )s t is a differentiable function, with (1) 0,s ≠  helps in solving the 
integral equation (2.3.33) with a differentiable forcing term ( ),f x  in the 
form

                          

( ) ( )
( )2 1/ 2

21

1/ 2 1/ 22 2 22 2
0

14 1( )     ( ) 
1 1

t tDx f t dt
t xx x

ϕ
π

−
= −

−− −
∫  (2.3.35)

where  D   is an arbitrary constant.
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(d) A special singular integral equation

Next   we describe   a quick and   elementary   method of   solution   of the 
following special singular integral equation, as given by

 ( )( )( )( ) + ( ) ( ) ( ),  1 1a x T x T b x f x x= − < <ϕ ϕ  (2.3.36)

where the singular integral operator  T  is defi ned as

 

1

1

1 ( )( )( )    ,  1 1tT x dt x
t x
ϕϕ

π −

= − < <
−∫  (2.3.37)

with ( ),  ( ) and ( ) being known differentiable functions of  ( 1,1)a x b x f x x ∈ − , 
under the circumstances when

 
2 2( ) ( ) (1 ),a x b x xλ= −  (2.3.38)

λ  being a known constant. The above special singular integral equation 
arises in the study of problems in the theory of dislocations as well as in 
the theory of waveguides (cf. Williams (1975), Chakrabarti and Williams 
(1980) and Lewin (1975)). We present below the method of Chakrabarti 
and Williams (1980) to determine the general solution of the integral 
equation (2.3.36).

We fi rst observe that the general solution of the integral equation

 ( )( ) ( ),   -1 1T T x g x xϕ ϕ≡ = < <  (2.3.39)

can be expressed in the form (cf. equation (2.3.32))

( ) ( )
( )1 2 1/2

1/2 1/22 2

1( ) ( )( )  (1 ) ( )
1 1

Cx T g x T x g x
x x

ϕ −= ≡ − −
− −

 (2.3.40)

for differentiable function  ,  where   g C  is an arbitrary constant.
We notice that the operators 1  and  T T − , as defi ned by the relations 
(2.3.37) and (2.3.40) respectively, have the following three important 
properties:
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(i)

 
1( ) ,T T ϕ ϕ− =

 (ii) 
( )

1
1/ 22

( )
1

CT T
x

ϕ ϕ− = +
−

and

 (iii) T
( )1/ 22

1 0
1 x

⎛ ⎞
⎜ ⎟ =
⎜ ⎟−⎝ ⎠

. (2.3.41)

Thus, we have that

 
( ) ( )

1
1/ 2 1/ 22 1/ 2 2 2

1  ( ),
(1 ) 1 1

b CT T b
x x x

ϕ ϕ− ⎛ ⎞
= −⎜ ⎟−⎝ ⎠ − −

 (2.3.42)

and, then, the given integral equation (2.3.36) can be cast as

 
( ) ( ) ( ) ( )

1
1/2 1/2 1/2 1/22 2 2 2

 .
1 1- 1 1

a b f CT T
x x x x

ϕ ϕ−
⎛ ⎞
⎜ ⎟− = −
⎜ ⎟− − −⎝ ⎠

 (2.3.43)

Applying the operator T  on both sides of the above equation (2.3.43) and 
using the results (2.3.41), we obtain

 
( ) ( ) ( )1/ 2 1/ 2 1/ 22 2 2

   
1 1 1

a b fT T T
x x x

ϕ ϕ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− =
⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

 (2.3.44)

from which it follows that

( ) ( ) ( ) ( )1/2 1/2 1/2 1/222 2 2 2
    .

11 1- 1 1

a a ab a fT T T
xx x x x

ϕ ϕ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− =
⎜ ⎟ ⎜ ⎟−− − −⎝ ⎠ ⎝ ⎠

       (2.3.45)

If we now defi ne a new operator L , as given by

 ( )1/ 22

( ) ,
1

a xL T
x

≡
−

 (2.3.46)

and utilize the relation (2.3.39), we fi nd that the equation (2.3.45) can be 
expressed as
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 ( )2 2   L hλ ϕ− =
 

(2.3.47)

where

 
( ) ( )1/ 2 1/ 22 2

( )( ) =  .
1 1

a x fh x T
x x

⎛ ⎞
⎜ ⎟
⎜ ⎟− −⎝ ⎠

 (2.3.48)

The equation (2.3.47) can now be cast into either of the following two 
forms:

 ( )1( ) ( ) ( ),L x h xλ ψ− =  (2.3.49)

or, ( )2( ) ( ) ( )L x h xλ ψ+ =  (2.3.50)

where

 ( )1( ) ( ) ( )x L xψ λ ϕ= +  (2.3.51)

and

 ( )2 ( ) ( ) ( )x L xψ λ ϕ= −  (2.3.52)

so that the unknown function  ( ),xϕ  of our concern, can be expressed as

 ( )1 2
1( )  ( ) ( ) .

2
x x xϕ ψ ψ

λ
= −  (2.3.53)

Utilizing the operator L , as defi ned by the relation (2.3.46), the 
integral equation (2.3.49) can be expressed as

 
( )

( )

1/ 22

1 1 1/ 22

1
 = 

1

x fT T
a x

ψ λ ψ
⎛ ⎞− ⎜ ⎟−
⎜ ⎟−⎝ ⎠ 

which, on applying the operator  1T −   to both sides, produces (see equations 
(2.3.41))

 
( ) ( ) ( )

2

1 11/ 2 1/ 2 1/ 22 2 2

1 
1 1 1

x f AT
ax x x

λψ ψ
⎛ ⎞−

+ = +⎜ ⎟
⎝ ⎠− − −

 (2.3.54)

where A  is an arbitrary constant.

Now, if we defi ne
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( ) ( )
1/ 22

2
1 1

1
( )   and  ( ) 1 ( ),

( )
x

x x x x
a x

μ ψ
−

= Ψ = −
 

(2.3.55)

then the equation (2.3.54) takes up the form

 1 1( ) ( )( ) ( ) ,   1 1.x T x f x A xλ μΨ + Ψ = + − < <  (2.3.56)

A similar analysis, applied to the equation (2.3.50), produces the 
equation 

 2 2( ) ( )( ) ( ) ,   1 1x T x f x B xλ μΨ − Ψ = + − < <  (2.3.57)

where

 ( )1/ 22
2 2( ) 1 ( )x x xψΨ = −  (2.3.58)

and  B   is an arbitrary constant, different from A.
We thus observe that the original singular integral equation (2.3.36) can 

be solved by way of solving two independent singular integral equations 
(2.3.56) and (2.3.57), and utilizing the algebraic relation (2.3.53). We 
consider below a special case of the above general problem of singular 
integral equation.

A special case

In the special case when

 ( ) ( )1/ 2 1/ 22 2 2( ) 1   and  ( ) 1 ,a x x b x xλ= − = −  (2.3.59)

the function  ( )xμ   in the relation (2.3.55) becomes

 2

1( )xμ
λ

=  (2.3.60)

which is a constant, and then the two integral equations (2.3.56) and 
(2.3.57) take up the following simple forms:

 
1 1

1( ) ( ) ( ) ,   1 1x T f x A x
λ

Ψ + Ψ = + − < <  (2.3.61)

and

 2 2
1( ) ( ) ( ) ,   1 1.x T f x B x
λ

Ψ − Ψ = + − < <  (2.3.62)
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The solutions of the above two singular integral equations (2.3.61) 
and (2.3.62) can be easily obtained, in the case when 0λ > , by using a 
variation of the result (2.3.31), and we fi nd that

( )

( ) ( )

11
12 22

1 2 2
-1

1
1 1
2 2

1 1 1 ( )( ) ( )    
1 1 1 1

           + .
1 1

x t f t Ax f x A dt
x t t x

K

x x

ββ

β β

λ λ
λ λ π

−−

+ −

+ − +⎛ ⎞ ⎛ ⎞Ψ = + − ⎜ ⎟ ⎜ ⎟+ + − + −⎝ ⎠ ⎝ ⎠

+ −

∫  (2.3.63)

and

  ( )

( ) ( )

11
12 22

2 2 2
-1

2
1 1
2 2

1 1 1 ( )( ) ( )    
1 1 1 1

           + ,
1 1

x t f t Bx f x B dt
x t t x

K

x x

−−

− +

− + +⎛ ⎞ ⎛ ⎞Ψ = + + ⎜ ⎟ ⎜ ⎟+ + + − −⎝ ⎠ ⎝ ⎠

+ −

∫
ββ

β β

λ λ
λ λ π  (2.3.64)

where

 tan  ( 0)λ πβ λ= >  (2.3.65)

and,  1 2  and  K K   are arbitrary constants.

We note that in the most special case of the above problem, where 
the constants 1, ,   and A B K  K2 are all zeros, the solution of the singular 
integral equation (2.3.36) can be fi nally expressed as

 

1
2

2

11
2

1 1 1 1( )  
2(1 ) 1 1 1

1 1            + .
1 1

x xx T f
x x x

x xT f
x x

− −

− −

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟+ − − −⎝ ⎠ ⎝ ⎠
⎝ ⎠

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠
⎝ ⎠

β β

β β

ϕ
λ

 (2.3.66)

Remark

In solving the singular integral equations (2.3.2) and (2.2.21) with Cauchy 
kernels, solutions of Abel integral equations have been utilized. This idea of 
use of Abel integral equations in solving Cauchy singular integral equations 
of fi rst kind was in fact originally described by Peters (1963).  The function 

( )xϕ  is assumed to satisfy a uniform Hölder condition in the closed 
interval [0,1] and at the end points  0,1,x =  it may have a singularity 
like   l | |   or  ( )  (0 1)  where    n x x γα α γ α−− − < < denotes any one 
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of the end points. The forcing function ( )f x  is also assumed to be a 
member of the class of functions to which ( )xϕ  belongs.

Peters (1963) used the following important idea, which is useful for 
any integral equation of the fi rst kind, as given by

 
1

0

( , ) ( ) ( ),  0 1K x t t dt f x xϕ = < <∫  (2.3.67)

for which the kernel  ( , )K x t  possesses the representation

 
1 2

0

1 2
0

 ( , ) ( , ) ,   ,
( , )

 ( , ) ( , ) ,   .

t

x

K x K t d t x
K x t

K x K t d x t

σ σ σ

σ σ σ

⎧
<⎪

⎪= ⎨
⎪ <⎪⎩

∫

∫
 (2.3.68)

Then, using the representation (2.3.68), the integral equation (2.3.67) 
can be reduced to

 
1

1 2
0

( , ) ( , ) (t)  ( ),   0 1
x

K x K t dt d f x x
σ

σ σ ϕ σ
⎛ ⎞

= < <⎜ ⎟
⎝ ⎠

∫ ∫  (2.3.69)

which essentially represents two independent integral equations of Volterra 
type, as given by

 1
0

( , ) ( ) ( ),   0 1
x

K x d f x xσ ψ σ σ = < <∫  (2.3.70)

and

 
1

2 ( , ) ( ) ( ),   0 1.K t t dt
σ

σ ϕ ψ σ σ= < <∫  (2.3.71)

We note that the most important relation (1) 0ψ =  must be satisfi ed. 
Thus, the original problem of determining the unknown function ( )xϕ  
satisfying the integral equation (2.3.67) can be successfully resolved by 
solving the two integral equations (2.3.70) and (2.3.71) on section 2.3(a) 
to solve the Cauchy singular integral equation (2.3.1).
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2.4 APPLICATION TO BOUNDARY VALUE PROBLEMS IN 
ELASTICITY AND FLUID MECHANICS

As applications of the solutions of singular integral equations to boundary 
value problems in elasticity and fl uid mechanics, we take up in this section 
two problems formulated in Chapter 1.

(a)  A crack problem in the theory of elasticity

It has already been shown in section 1.2.2 that the problem of determination 
of the distribution of stress in the vicinity of a Griffi th crack |x| < 1, y = 0 
(in Cartesian xy-co-ordinates) in an infi nite isotropic elastic plate, can be 
solved completely, by using the solution of the singular integral equation 
of the Cauchy type given by (1.2.23) which is required to be solved 
under the end conditions given by (1.2.24). Using the form (2.3.18) (with

( )0,  1  and  ( )  replaced by  )f xa b f x
π

= =  we fi nd that

the appropriate solution of the integral equation (1.2.23) satisfying the 
requirements (1.2.24), is given by

 
1/2 1/21

2
0

1 1 ( )( )     
1

s t g tf s dt
s t t sπ
−⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠∫ . (2.4.1)

It is a matter of some routine manipulations to determine the 
distribution of stress , ,xx xy yyσ σ σ  as given by the relations (1.2.12), for 
the special boundary value problem of elasticity considered here, when 
use is made of the relations (1.2.21), (1.2.18) along with the knowledge of 
the functions ( ),  as given by f s (2.4.1).

(b)  A surface wave scattering problem
As has been shown in section 1.2.3, the problem of determination of the 
scattered potential, in the linearised theory of water waves, when a train of 
surface water waves is normal incident on a thin vertical barrier partially 
immersed in infi nitely deep water, can be solved completely by reducing 
it to the homogeneous singular integral equation (1.2.61) under the end 
conditions (1.2.62). Its appropriate solution is now obtained by using the 
solution (2.3.16) (with 0,  1,   ( ) 0)a b f x= = =  and is given by

  1/ 2 1/ 2( )
(1 )

Cq u
u u

=
−

 (2.4.2)

where  C   is an arbitrary constant. Thus the function ( )p t  defi ned by 
(1.2.60) is found to be 
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( )1/ 22 2

( ) Ctp t
t a

=
−

 (2.4.3)

and thus the function ( )g y satisfying the integral equation (1.2.52) is 
obtained as 

 
( )1/22 2

 ( )   ,  .
y Ku

Ky

a

d u eg y C e du u a
dy u a

−
⎧ ⎫⎪ ⎪= >⎨ ⎬

−⎪ ⎪⎩ ⎭
∫  (2.4.4)

The unknown constant C , the complex refl ection and transmission 
coeffi cients R  and  T , and the scattered potential can then be determined 
by utilizing the various connecting relations given in section 1.2.3, which  
however is not presented here. Details can be found in the book of Mandal 
and Chakrabarti (2000).



In this chapter we describe the analysis as well as the methods of 
solution of a special type of problems of complex variable theory, called 
Riemann-Hilbert problems (RHP). It will be shown here that converting 
the equations to RHPs and fi nally solving them can, successfully solve 
the singular integral equations involving the Cauchy type singularities in 
their kernels. This method has already been introduced in Chapter 2 in 
an ad hoc manner to solve a singular integral equation of some special 
type involving logarithmic type kernel. This method is also known in the 
literature as function-theoretic method.

Examples of singular integral equations occurring in Elasticity, Fluid 
Mechanics and related areas, will be considered and the detailed analysis 
to solve some of the singular integral equations arising in these areas will 
be explained. The Cauchy type singular integral equations have already 
been introduced in chapter 1 briefl y and solutions of some of them have 
been obtained by some elementary methods. We have tried to present 
all the basic ideas needed to implement the analysis involving RHPs 
in as simple a manner as has been possible, so that even beginners can 
understand easily.

3.1 CAUCHY PRINCIPAL VALUE INTEGRALS

In this section we explain the ideas involving a special class of integrals, 
which are singular and are of the Cauchy type. These have already been 
introduced in section 1.1 while defi ning integral equation with Cauchy 
type singular kernel. As an example of a Cauchy type singular integral, we 
consider the integral

1   ,    with  , .b
aI dx a c b a b

x c
= ∫ < < ∈

−
�  (3.1.1)

Chapter 3        

Riemann-Hilbert Problems and Their 
Uses in Singular Integral Equations
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The integral (3.1.1) does not exist in the usual sense, but if we interpret 
I as

 
b

0
c+

1 1lim   +   ,
c

a

I dx dx
x c x c

ε

ε
ε

−

→+

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

∫ ∫  (3.1.2)

then we fi nd that 

  I =  b cln
c a
−
−

 (3.1.3)

which is an well defi ned quantity. This is taken to be the Cauchy principal 
value of the integral under consideration, to be denoted with a cut across 
the sign of integration, as in the relation (3.1.1).  All such singular integrals 
appearing in this book will be understood to have similar meaning and we 
simply write

 
1  ,

b

a

I dx
x c

=
−∫

where the cut across the sign of integration is withdrawn.
The most general singular integral of the Cauchy type is the one given 

by the relation

 
0

( ) ( )ˆ   lim   f z f zI dz dz
z z

ε
εζ ς→+

Γ Γ−Γ

= =
− −∫ ∫  (3.1.4)

where  Γ   is a smooth contour in the complex z-plane and ζ is a point on 
the  contour  Γ  (see Figure 3.1.1)

Гε 

Г 

ζ 

Fig. 3.1.1 ContourΓ

and  εΓ   is the portion of the contour  Γ   which lies inside a circle of 
radius    centred at  zε = ζ.
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We emphasize here that many boundary value problems of 
mathematical physics can be transformed into singular integral equations 
where the kernels are of Cauchy type (cf. Sneddon (1974), Gakhov (1966), 
Muskhelishvilli (1953), Ursell (1947), Mandal and Chakrabarti (2000) and 
others).

3.2 SOME BASIC RESULTS IN COMPLEX VARIABLE THEORY

We now state some important theorems and results in the theory of 
functions of complex variables, without their detailed proofs, which can 
be found in Muskhelishvilli (1953), Gakhov (1966).

Theorem 3.2.1 

For the integral

1 ( )( )    ,   ,
2

z d z
i z

ϕ τ τ
π τΓ

Φ = ∉Γ
−∫  (3.2.1)

if the density function  ( )ϕ τ   satisfi es the Hölder condition

1 2 1 2( ) ( ) ,   0 1A− < − < <αϕ τ ϕ τ τ τ α  (3.2.2)

with  A   being a positive constant, for all pairs of points  1 2,τ τ   on a simple 
closed positively oriented contour Γ  of the complex -plane ( ),z z x iy= +
then ( )zΦ  represents a sectionally analytic (analytic except for points  

  lying on  z Γ  ) function of the complex variable  .z

Theorem 3.2.2   (The Basic Lemma)

The function

1 ( ) ( )( )    
2

tz d
i z

ϕ τ ϕψ τ
π τΓ

−
=

−∫  (3.2.3)

on passing through the point  ,z t=  of the simple closed contour  Γ , 
behaves as a continuous function of  ,z   i.e.

1 ( ) ( )lim  ( )   
2z t

tz d
i t

ϕ τ ϕψ τ
π τΓ→

−
= ∫

−
 (3.2.4)
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exists and is equal to ψ(t), whenever φ satisfi es a Hölder condition on Г.  
Note: The theorem 3.2.2 also holds at every point on Г, except at the end 
points, when Г is an open arc in the complex z-plane.

Theorem 3.2.3  (Plemelj-Sokhotski formulae)

If   
1 ( )( )    ,   ,

2
z d z

i z
ϕ τ τ

π τΓ

Φ = ∉Γ
−∫

with  ϕ satisfying a Hölder condition on  Γ , then

 lim  ( ) ( )  and  lim  ( ) ( )
z t z t

z t z t+ −

→ + → −
Φ = Φ Φ = Φ

exist, and the following formulae hold good:

 ( ) ( ) ( ),   ,t t t tϕ+ −Φ −Φ = ∈Γ  (3.2.5a)

 

1 ( )( ) ( )    ,   t t d t
i t

ϕ τ τ
π τ

+ −

Γ

Φ +Φ = ∈Γ
−∫  (3.2.5b)

where
0 0

lim   and  lim
z t z t→ + → −

mean that the point z approaches the point 

  on  t Γ  from the left side and from the right side respectively of the 
positively oriented contour  Γ , with the  singular integral appearing above 
being in the sense of CPV.

The formulae (3.2.5) are known as the Plemelj formulae (also referred 
to as the Sokhotski formulae) involving the Cauchy type integral ( ),   zΦ
which can also be expressed as

 
1 1 ( )( )  ( )    ,   
2 2

t t d t
i t

ϕ τϕ τ
π τ

±

Γ

Φ = ± + ∈Γ
−∫ . (3.2.6)

Note:  The Plemelj formulae also hold good even if Γ  is an arc (or a fi nite 
union of arcs) provided that t  does not coincide with an end point of .Γ
Proof:  We can easily prove the Plemelj formulae in the case when Γ  is a 
closed smooth contour, by using the following results:
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1,   
1 1     0,   

2 -z
1 ,  ,
2

z D
d z D

i
z

τ
π τ

+

−

Γ

⎧
∈⎪

⎪
= ∈⎨

⎪
⎪ ∈Γ
⎩

∫
 

(3.2.7)

where  D+   is the region lying inside the simple closed contour    and  D−Γ   
is the region lying outside  F  (see Figure 3.2.1).

Г 

D 
D 

Fig. 3.2.1 Regions  and D D+ −

Writing

 
1 ( ) - ( )( )    

2 -
tz d

i z
ϕ τ ϕψ τ

π τΓ

= ∫
we fi nd that

 
1 ( ) 1 1lim ( ) lim     ( ) lim      

2 2z t z t z t
z d t d

i z i z
ϕ τψ τ ϕ τ

π τ π τ→ + → + → +
Γ Γ

= −
− −∫ ∫

giving, on use of the results (3.2.7),

 ( ) ( ) ( ),   .t t t tψ ϕ+ += Φ − ∈Γ  (3.2.8)

Also,

 
1 ( ) 1 1lim  ( )  lim       ( ) lim      

2 2z t z t z t
z d t d

i z i z
ϕ τψ τ ϕ τ

π τ π τ→ − → − → −
Γ Γ

= −
− −∫ ∫

giving

 ( ) ( ) 0 = ( ),   .t t t tψ − − −= Φ − Φ ∈Γ  (3.2.9)
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Now, we have
1 ( ) 1 1( )      ( )    ,   

2 2
tt d t d t

i t i t
ϕψ τ ϕ τ

π τ π τΓ Γ

= − ∈Γ
− −∫ ∫

which gives

 
1 1 ( )( )  ( )    ,   ,
2 2

t t d t
i t

ϕ τψ ϕ τ
π τΓ

= − + ∈Γ
−∫  (3.2.10)

when the result (3.2.7) is utilized.  Now the Theorem 3.2.2 suggests that 
all the results (3.2.8), (3.2.9) and (3.2.10) are identical and we thus derive 
the results (3.2.6).

The following theorem can be easily established (we omit the proof 
here).

Theorem 3.2.4  

The Cauchy type singular integral 1 ( )   
2

d
i zΓ −∫

ϕ τ τ
π τ

 satisfi es a Hölder

condition for points   on    if  ( )z ϕ τΓ  satisfi es a Hölder condition for 
points   on  .τ Γ

We next establish an important formula, known as Poincare’-Bertrand 
Formula, involving singular integrals, as explained below in the form of 
a theorem.

Theorem 3.2.5  (Poincare’-Bertrand Formula (PBF))

If  Γ  is a simple closed contour, and if ϕ  satisfi es a Hölder condition on 
Γ , then the PBF

 21 ( )     ( ),   ,s ds d t t
t s

ϕ τ π ϕ
τ τΓ Γ

⎧ ⎫
= − ∈Γ⎨ ⎬− −⎩ ⎭

∫ ∫  (3.2.11)

holds good.
Proof:  We set

 1
1 ( )( )    ,   ,

2
t d t

i t
ϕ τϕ τ

π τΓ

= ∈Γ
−∫  (3.2.12)

 1
2

( )1( )    ,   ,
2

t d t
i t

ϕ τϕ τ
π τΓ

= ∈Γ
−∫  (3.2.13)



Riemann-Hilbert Problems and Their Uses in Singular Integral Equations 53

and also

 
( )1( )    ,   ,

2
z d z

i z
ϕ τ τ

π τΓ

Φ = ∉Γ
−∫  (3.2.14)

 1
1

( )1( )    ,   ,
2

z d z
i z

ϕ τ τ
π τΓ

Φ = ∉Γ
−∫  (3.2.15)

Then using the Plemelj formulae (3.2.6), we obtain

 1
1( ) ( )  ( ),   ,
2

t t t tϕ ϕ+= Φ − ∈Γ  (3.2.16)

 2 1 1
1( ) ( )  ( ),   ,
2

t t t tϕ ϕ+= Φ − ∈Γ . (3.2.17)

Then, using (3.2.16) in (3.2.15) we obtain

1
1 ( ) 1 ( )( )       

2 4
1           ( )  ( ),   ,
2

z d d
i z i z

z z z D

+

Γ Γ

+

Φ
Φ = −

− −

= Φ − Φ ∈

∫ ∫
τ ϕ ττ τ

π τ π τ

giving

 1
1( ) ( ),    .
2

z z z D+Φ = Φ ∈  (3.2.18)

Thus we derive that

 1
1( ) ( ),   .
2

t t t+ +Φ = Φ ∈Γ  (3.2.19)

Using (3.2.19) in the relations (3.2.16) and (3.2.17), we deduce that

 2
1( ) ( ),   .
4

t t tϕ ϕ= ∈Γ  (3.2.20)

The relations (3.2.12), (3.2.13) and (3.2.20) prove the Poincar e′ -Bertrand 
Formula (3.2.11), fi nally.
Note: 1. The Poincar e′ -Bertrand Formula is useful whenever the orders of 
repeated singular integrals are interchanged.
2.  Another form of this theorem is given later in chapter 4.
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3.3 SOLUTION OF SINGULAR INTEGRAL EQUATIONS 
INVOLVING CLOSED CONTOURS

In this section we explain the procedure to solve a singular integral 
equation involving simple closed contour by means of a simple example 
only. Another example is given as an exercise.

Example 3.3.1      

       Solve the singular integral equation

 
2 6 8 ( ) 1( 2) ( )      ,   ,t tt t t d t

i t t
ϕ τϕ τ

π τΓ

− +
− + = ∈Γ

−∫  (3.3.1)

where  Γ   is a simple closed contour enclosing the origin but the point  z 
= 2  lies outside  Γ  as shown in the Figure 3.3.1.

Fig. 3.3.1 The curve Γ
We set

 
1 ( )( )    ,    

2 -
z d z

i z
ϕ τ τ

π τΓ

Φ = ∈Γ∫  (3.3.2)

Using the Plemelj formulae (3.2.6), we can express the given equation 
(3.3.1) as  

 
1( 2) ( ) 2 ( ) ,   .

2 ( 2)
t t t t

t t
+ −− Φ − Φ = ∈Γ

−
 (3.3.3)

2 

Г 

O 
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Multiplying both sides of (3.3.3) by 
1 1 

2 i t zπ −  and integrating with 

respect to t  over the contour ,Γ  we easily fi nd that

 
2

1 ,   
4( 2)( ) = 
1            ,  .
8

z D
zz

z D
z

+

−

⎧ ∈⎪ −⎪Φ ⎨
⎪ ∈⎪⎩

 (3.3.4)

Hence we obtain the solution ( )tϕ  of the integral equation (3.3.1) as

 2

2 2

( ) ( ) ( )
1 1 6 4        =   .

4( 2) 8 8 ( 2)

t t t
t t

t t t t

ϕ + −= Φ −Φ

− −
− =

− −

 (3.3.5)

Note: The above example is taken from Chakrabarti (2008, p 130).  
Further examples may be found in the books of Muskhelishvilli (1953) 
and Gakhov (1966).

Exercise 3.3.2   Solve the singular integral equation

 
2 5 6 ( ) 4( 1)( 2) ( )      = ,   

-t t
t tt t t d t

i
ϕ τϕ τ

π τΓ

− +
+ − − ∈Γ∫

 
where  Γ   is the same as in Figure 3.3.1. This is left as an exercise.

3.4 RIEMANN-HILBERT PROBLEMS

Singular integral equations involving open arcs
The theory of a single linear singular integral equation of the second kind 
and of the type

 
( )( ) ( )    = ( ),   ,c t t d f t t

tΓ

+ ∈Γ
−∫

ϕ τϕ τ
τ

 (3.4.1)

where ( ),  ( ) and ( )c t f t tϕ   are Hölder continuous functions on    with  Γ Γ   
being a fi nite union of open arcs, can be developed as explained below (cf. 
Muskhelishvilli (1953), Gakhov (1966)).
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We defi ne the sectionally analytic function

 
1 ( )( ) =    ,   .

2
z d z

i z
ϕ τ τ

π τΓ

Φ ∉Γ
−∫  (3.4.2)

Using the Plemelj formulae (3.2.6) (it can be proved that the formulae 
(3.2.6) are true if Γ  is a fi nite union of open arcs), we express the integral 
equation (3.4.1) as a linear combination of   and  ,+ −Φ Φ  as given by the 
relation

 ( ) ( ) ( ) ( ) ( ) ( ),   ,c t t t i t t f t tπ+ − + −⎡ ⎤ ⎡ ⎤Φ −Φ + Φ +Φ = ∈Γ⎣ ⎦ ⎣ ⎦
i.e.,

 
( ) ( )( ) =  ( ) ,   ,
( ) ( )

c t i f tt t t
c t i c t i

π
π π

+ −−
Φ Φ + ∈Γ

+ +
 (3.4.3)

provided  ( ) .c t iπ≠ −

We observe that the relation (3.4.3) is of the form

 ( ) ( ) ( ) ( ),   ,t G t t g t t+ −Φ = Φ + ∈Γ  (3.4.4)

where ( )  and  ( )G t g t  are Hölder continuous functions on Γ . The 
problem (3.4.4) involving the sectionally analytic function ( )zΦ  is called 
the RHP.  We now describe some salient features of RHP.

Statement of Riemann-Hilbert problem

The Riemann-Hilbert problem is to determine a sectionally analytic 
function ( ),zΦ  defi ned in the whole of the complex z-plane 
( ,  ,  ),  cut along  z x iy x y= + ∈ Γ�   (a union of fi nite number of 
simple, smooth, non-intersecting positively oriented (anticlockwise) arcs 
(contours), the ends of the arcs being called end points), with prescribed 
behaviour at ,z = ∞  satisfying either of the following boundary conditions 
on Γ :

 (i)     ( ) ( ) ( ),   ,t G t t t+ −Φ = Φ ∈Γ   

or

 (ii)     ( ) ( ) ( ) ( ),   ,t G t t g t t+ −Φ = Φ + ∈Γ
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where ( )  and  ( )G t g t  satisfy Hölder condition on Г and G(t) ��0 for all 
t �  Г.  

The solutions of the problems, as posed by the equations (i) (the 
homogeneous RHP) and (ii) (the nonhomogeneous RHP), under suffi ciently 
general conditions, are beyond the scope of the present book. However, 
under special circumstances giving rise to specially simple values of the 
two functions ( )  and  ( ),G t g t  the following simplifi ed idea seems to be 
suffi cient for the purpose of fi nding the solutions of the RHPs described 
by (i) and (ii).

Method of solution of the RHP

Let us denote by 0 ( )zΦ  as a solution of the RHP (i) so that 0 ( )zΦ  
satisfi es

 0 0( ) ( ) ( ),   .t G t t t+ −Φ = Φ ∈Γ

Taking logarithms of both sides of the homogeneous equation, we obtain

 0 0  ( )  ( ) =  ( ),   .ln t ln t ln G t t+ −Φ − Φ ∈Γ  (3.4.5)

We now observe that there may exist a particular solution 0 ( )zΦ  of the 
equation (3.4.5) such that

 [ ] [ ]0 0 ( )  ( ) =  ( ),   ,ln t ln t ln G t t+ −Φ − Φ ∈Γ  (3.4.6)

giving a possible solution of (3.4.6), after noting the relation (3.2.5a), as

 0
1  ( )  ( ) =    .

2 i
ln G tln z dt

t zπ Γ

Φ
−∫  (3.4.7)

It must be emphasized that the function 0 ( )zΦ  obtained from the 
relation (3.4.7) is a very special solution of the homogeneous RHP (I), 
for which the two relations (3.4.5) and (3.4.6) are equivalent, and that we 
can always add any entire function of z  to the expression for 0  ( ),ln zΦ  
derived by using the relation (3.4.7), and still obtain a solution of the 
homogeneous RHP (i).

Let us assume that we are using the function 0 ( ),zΦ  as obtained in 
the relation (3.4.7).  Then using the fact that
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+
0

0

( )( ) = ,   ,
( )
tG t t
t−

Φ
∈Γ

Φ  
(3.4.8)

we can rewrite the nonhomogeneous RHP (ii) as

 0 0 0

( ) ( ) ( ) = ,   
( ) ( ) ( )
t t g t t
t t t

+ −

+ − +

Φ Φ
− ∈Γ

Φ Φ Φ  
(3.4.9)

using the fact that  0 ( ) 0  for  .t t+Φ ≠ ∈Γ
The relation (3.4.9) again represents a Riemann-Hilbert problem of a 

very special type, and its solution can be obtained by noting the Plemelj 
formula (3.2.5a), in the form given by

 0
0

1 ( )( ) ( )    ( )
2 ( )( )

g tz z dt E z
i t t zπ +

Γ

⎡ ⎤
Φ = Φ +⎢ ⎥Φ −⎣ ⎦

∫  (3.4.10)

where  ( )E z   is an entire function of  ,z   in the whole of the complex 
z-plane, including  Γ .

In sections 3.5, 3.6 and 3.7 we will discuss certain singular integral 
equations with weak singularities such as Abel and logarithmic, and show 
that such equations can be solved by reducing them to RHPs.

We now go back to obtaining the solution of RHP (3.4.3), which 
is equivalent to the singular integral equation (3.4.1). We consider, for 
simplicity, the case of the singular integral equation (3.4.1) in which 

( )c t ρ= , a real positive constant, and Γ  is the open interval (0,1) of 
the real axis of the complex z-plane, where z x iy= + . The homogeneous 
Riemann-Hilbert problem in this case, has the form

 
0 0( )  ( ),   (0,1)ix x x

i
ρ π
ρ π

+ −−
Φ = Φ ∈

+
. (3.4.11)

Now, with the aid of any suitable solution 0 ( ),zΦ  of the homogeneous 
problem (3.4.11), the original Riemann-Hilbert problem can be expressed as    

 
0 0

( ) ( ) ( ) = ,   (0,1)
( ) ( ) ( ) ( )
x x f x x
x x i xρ π

+ −

+ − +

Φ Φ
− ∈

Φ Φ + Φ
. (3.4.12)

We observe that the relation (3.4.12) represents a very special 
Riemann-Hilbert problem for the determination of the sectionally analytic 
function 0( ) / ( ),z zΦ Φ  and for a particular class of functions ( )f x  
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involved in the forcing term of the original integral equation (3.4.1) under 
our consideration, for (0,1).x∈Γ =

The general solution of the Riemann-Hilbert problem (3.4.12) can be 
written as

 
1

0
00

1 1 ( )( ) ( )     ( )
2 ( )( )

f tz z dt E z
i i t t zπ ρ π +

⎡ ⎤
Φ = Φ +⎢ ⎥+ Φ −⎣ ⎦

∫ , (3.4.13)

where  ( )E z   is an arbitrary entire function of  z .  Then, the solution of 
the integral equation  (3.4.1) can be derived from the relation

 ( ) ( ) ( ),   0 1x x x xϕ + −= Φ −Φ < < . (3.4.14)

We thus fi nd that the general solution of the integral equation (3.4.1) 
depends on an arbitrary entire function ( )E z  appearing in the relation 
(3.4.13).

We illustrate the above procedure, for the special case of the function 
( )  andxϕ  ( )f x , which are such that ( )  and  ( )x f xϕ  are bounded at 

0x =  but have integrable singularities at 1x = .
Now, if we choose

 0
1( )   (0 )

1 2
zz

z

α

α⎛ ⎞Φ = < <⎜ ⎟−⎝ ⎠
 (3.4.15)

where

 2  ii e
i

π αρ π
ρ π

−−
=

+
 (3.4.16)

so that  =  cot  ρ π πα,                               (3.4.17)

then, by fi xing the idea that  0 arg 2z π< ≤ , we fi nd

 3
0 0( ) = ,  ( ) = .

1 1
i ix xx e x e

x x

α α
πα πα+ −⎛ ⎞ ⎛ ⎞Φ Φ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (3.4.18)

Also,
 0lim  ( ) = 1

z
z

→∞
Φ  (3.4.19)

and
 lim  ( ) = 0

z
z

→∞
Φ  (3.4.20)
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as suggested by the relation (3.4.2). Using these in (3.4.13) we fi nd that 
we must have

 ( )  0E z ≡ , (3.4.21)

giving

 
1

0

00

( ) 1 ( )( )     ,   (0,1).
2 ( )( )

z f tz dt z
i i t t zπ ρ π +

Φ
Φ = ∉

+ Φ −∫  (3.4.22)

Then utilizing the Plemelj formulae on the relation (3.4.22), together with 
the results (3.4.18), we fi nd that

 1+
0 0 0 0

0 00

( ) = ( ) ( )

( ) ( ) ( ) ( )( )         =     +   ( )
2 ( ) ( )( ) 2 ( )( )

x x x

x x x xf t dt f x
i i t t x x i

ϕ

π ρ π ρ π

+ −

− + −

+ +

Φ −Φ

Φ −Φ Φ +Φ
+ Φ − Φ +∫

 

which simplifi es to
1

2 2
0

1 1 ( )( ) = ( )     ,   0 1.
1

x t f tx f x dt x
x t t x

α α

ϕ ρ
ρ π

⎡ ⎤−⎛ ⎞ ⎛ ⎞− < <⎢ ⎥⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  (3.4.23)

Notes: 1. The limiting case 0 (i.e. 1/ 2)ρ α= =  of the integral equation 
(3.4.1) with (0,1)Γ =  is the integral equation of fi rst kind as given by

 
1

0

( )    ( ),   0 1,
-
t dt f x x

t x
ϕ

= < <∫  (3.4.24)

whose solution is obtained as

 
1/ 21/ 2 1

2
0

1 1 ( )( )     ,   0 1.
1

x t f tx dt x
x t t x

ϕ
π

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − < <⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫  (3.4.25)

We thus observe that the integral equation (3.4.24) possesses the unique 
solution as given by (3.4.25) in the special circumstances when both 

  and  fϕ  are bounded at one end ( )0x =  and they can be unbounded 
(with an integrable singularity) at the other end ( 1)x = . The solution 
(3.4.25) of the Cauchy type singular integral equation (3.4.24) has already 
been obtained in section 2.3 by using an elementary method.
2. There are two other important cases of the integral equation (3.4.1) in 
the special situation when (0,1),Γ =  which are as follows:
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Case  (i): ( )  and  ( )f x xϕ  are unbounded at both the ends  
0  and  1.x x= =         

Case  (ii): ( )  and  ( )f x xϕ  are bounded at both the ends  
0  and  1.x x= =         

These two special cases (i) and (ii) can be handled by choosing special 
functions 0 ( )zΦ  of the homogeneous Riemann-Hilbert problem (3.4.11), 
and we fi nd that the two possible choices are as follows:

For case (i)
 (1) 1

0 0( ) ( )  ( 1) ,z z z zα α− −Φ = Φ ≡ −
and for case (ii)

 
(2) 1

0 0( ) ( )  ( 1) ,z z z zα α−Φ = Φ = −  (3.4.26)

where  α   is as given by the relation  (3.4.16).  We fi nd that in case (i) 
we must select 0,( )  a constant = E z c=  say, and in case (ii) we must not 
only select ( )E z  but also we must  have the fact that the forcing function 

( )f t  satisfi es the condition

 
1

(2)
00

( ) 0,
( )

f t dt
t+ =

Φ∫
which is equivalent to

 
1

1
0

( ) 0
(1 )

f t dt
t tα α− =

−∫ . (3.4.27)

This condition (3.4.27) is called the solvability condition for the given 
integral equation in the case (ii)

The particular limiting case 0ρ =  giving rise to the fi rst kind singular 
integral equation (3.4.24) then produces the following solutions in the 
above two cases (i) and (ii): 

In case (i) the solution of the integral equation (3.4.24) is given by

( ){ }
{ }1/ 21

01/ 2 2
0

(1 ) ( )1 1( )   ,   0 1
1

t t f t
x c dt x

t xx x

⎡ ⎤−
= − < <⎢ ⎥

−− ⎢ ⎥⎣ ⎦
∫ϕ

π   
(3.4.28)

where  0c   is an arbitrary constant.



62 Applied Singular Integral Equations

        In case (ii) the solution of (3.4.24) is given by

 
{ }

{ }

1/2 1

1/22
0

(1 ) ( )( )   ,   0 1,
(1 )

x x f tx dt x
t t

ϕ
π
−

= − < <
−∫  (3.4.29)

provided the forcing function ( )f x   satisfi es the solvability condition (see 
(3.4.27))

 
( ){ }

1

1/ 2
0

( ) 0.
1
f t dt

t t
=

−
∫  (3.4.30)

These results have already been obtained in section 2.3 by using an 
elementary method.

We emphasize that the singular integral equations arising in the crack 
problem and the surface water wave problem considered in Chapter 1 can 
now be tackled completely.

3.5 GENERALISED ABEL INTEGRAL EQUATIONS

The generalized Abel integral equation 

[ ]( ) ( )( )  ( )  ( ),   0 1,    , ,
( ) ( )

x

x

t ta x dt b x f x x
x t t x

β

μ μ
α

ϕ ϕ μ α β+ = < < ∈
− −∫ ∫  (3.5.1)

was solved by Gakhov (1966, p 531)  assuming that  ( ), ( )a x b x   satisfy 
Hölder condition on  [ ],   and  ( ),   f xα β ϕ(x)  are such that 

{ }
( ){ }1

( )( ) ( )( ( ),  ( )
( )

xf x x x f x x
x x

∗
∗

− −= − − =
− −

ε
μ ε

ϕα β ϕ
α β

 (3.5.2)

where   0,   ( )f xε ∗>    possesses  Hölder continuous  derivative in   
[ ],    and   ( )xα β ϕ∗  satisfi es Hölder condition on  [ ],α β . The solution 
method involved solving a Riemann-Hilbert problem for the determination 
of a function ( ) ( )z z x iyψ = +  defi ned by

 1 ( )( )    
( ) ( )

tz dt
R z t z

=
−∫

β

μ
α

ϕψ  (3.5.3)

where

 { }
1

2( ) ( )( ) .R z z z
μ

α β
−

= − −  (3.5.4)
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The function ( )zψ  is sectionally analytic in the complex z-plane cut 
along the segment [ ],α β  on the real axis. It may be noted that

 
1( )  = 0   as  z z
z

ψ
⎛ ⎞

→∞⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.5.5)

The RHP was solved by utilizing the Plemelj formulae involving Cauchy 
singular integrals.

As a particular example of the equation (3.5.1), the solution of the 
integral equation

 [ ]( ) ( ),   0 1,   ,t dt f x x
x t

β

μ
α

ϕ μ α β= < < ∈
−∫  (3.5.6)

was obtained as

 1

sin ( )( )     
( )

xd g tx dt
dx x t μ

α

πμϕ
π −

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

∫  (3.5.7)

where

[ ]
1cot

1 ( )2( ) ( )  ( )  ,   , ,
2 2 ( )( )

f tg x f x R x dt x
R t t x

β

α

μπ
α β

π

⎛ ⎞
⎜ ⎟
⎝ ⎠= − ∈

−∫  (3.5.8)

where the integral is in the sense of CPV. 

Remark 

The kernel of the integral equation (3.5.6) is weakly singular. However 
the solution, as given by the expressions (3.5.7) and (3.5.8), requires the 
evaluation of a strongly singular integral. Thus the above method has the 
disadvantage that the solution of a weakly singular integral (Abel type 
singularity) equation is obtained in terms of strongly singular integral 
(Cauchy type singularity).

A straightforward and direct method to solve the integral equation 
(3.5.1) resulting in solution involving only weakly singular integrals of 
the Abel type has been given by Chakrabarti (2008). This method is now 
described below.
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The method

Let

 
( )( )   ,   0 1,   ( )

( )
tz dt z x iy

t z

β

μ
α

ϕ μΦ = < < = +
−∫ . (3.5.9)

Then  ( )zΦ  is sectionally analytic in the complex z-plane cut along the 
segment [ ],α β  on the real axis.  It is easy to see that, for [ ],x α β∈ ,

 i
1 2z 0

( ) lim  ( ) = e  ( )( ) + ( )( )x z A x A xπμ ϕ ϕ± ±

→±
Φ ≡ Φ  (3.5.10)

where the operators   1 2,A A   are defi ned by

 
x

1 2
( ) ( )( )( ) =   ,   ( )( ) =   .

( ) ( )x

t tA x dt A x dt
x t t x

β

μ μ
α

ϕ ϕϕ ϕ
− −∫ ∫  (3.5.11)

Using the relations (3.5.10), we fi nd

[ ]1 2
( ) ( ) ( ) ( )( )( ) = ,   ( )( ) = ,   , .
2  sin 2  sin

i ix x e x e xA x A x x
i i

πμ πμ

ϕ ϕ α β
πμ πμ

+ − − + −Φ −Φ Φ − Φ
∈  (3.5.12)

Using these in the given integral equation (3.5.1) we obtain

{ } { } [ ]( ) ( ) ( ) ( ) ( ) ( ) 2  sin  ( ),   , .i ia x e b x x a x e b x x i f x xπμ πμ πμ α β− + −− Φ − − Φ = ∈  (3.5.13)

The relation (3.5.13) represents the special Riemann-Hilbert type 
problem given by

 [ ]( ) ( ) ( ) ( ),   ,x G x x g x x α β+ −Φ + Φ = ∈  (3.5.14)

where

1( ) ( ) ( ) sin( ) exp 2  tan
( ) ( ) ( ) ( ) cos

i

i

a x e b x b xG x i
a x e b x a x b x

πμ

πμ

πμ
πμ

−
−

⎡ ⎤⎧ ⎫−
= − = − − ⎨ ⎬⎢ ⎥− −⎩ ⎭⎣ ⎦

 (3.5.15)

and

 
2  sin( )  ( )

( ) ( )i

ig x f x
a x e b xπμ

πμ
−=

−
. (3.5.16)
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To solve the special Riemann-Hilbert type problem (3.5.14), we note 
that

 
1( ) 0   as  .z z
z μ

⎛ ⎞
Φ = ⎜ ⎟ →∞

⎜ ⎟
⎝ ⎠

 (3.5.17)

Let us assume that the homogeneous problem

 [ ]0 0( ) ( ) ( ) 0,   ,x G x x x α β+ −Φ + Φ = ∈  (3.5.18)

has the solution

 0 ( )
0 ( ) zz eΨΦ =

where

 0 0 0( ) ( ) ( )x x G x+ −Ψ −Ψ =  (3.5.19)

with

 0 ( ) ( ).G xe G x= −  (3.5.20)

To fi nd 0 ( ),zΨ  we utilize the fi rst relation of (3.5.12) in (3.5.19). 
Thus we can express 0 ( )zΨ  as

 0
0

( )( )   
( )

tz dt
t z

β

μ
α

ψ
Ψ =

−∫  (3.5.21)

where

 1
0 1 0

1( )  ( )( )
2  sin

x A G x
i

ψ
πμ

−=  (3.5.22)

with

 ( )
x

1 0
1 0 1

( )sin( )     .
( )

G tdA G x dt
n dx x t μ

α

πμ−
−=

−∫  (3.5.23)

Using (3.5.15) in (3.5.14) we obtain

 [ ]
0 0 0

( ) ( ) ( )    ,   ,
( ) ( ) ( )
x x g x x
x x x

+ −

+ − +

Φ Φ
− = ∈

Φ Φ Φ
α β  (3.5.24)

where

 0 0( ) exp ( ) .x x± ±⎡ ⎤Φ = Ψ⎣ ⎦  (3.5.25)
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We note that 0 ( )x±Ψ  can be obtained by using the results in (3.5.10) 
for the function 

0 ( )zΨ  defi ned by (3.5.21).
Utilizing the fi rst of the formulae (3.5.10), we determine the solution 

of the Riemann-Hilbert type problem (3.5.24), as given by

 
0

( ) ( )   
( ) ( )
z t dt
z t z

β

μ
α

λΦ
=

Φ −∫  (3.5.26)

where

 1
0

1 ( )( )     .
2 ( )( )

xd g tx dt
i dx t x t μ

α

λ
π + −

⎡ ⎤
= ⎢ ⎥Φ −⎣ ⎦

∫  (3.5.27)

Writing

 
0

( )( )
( )

g tp t
t+=

Φ
 (3.5.28)

we see that  ( )xλ   in (3.5.27) can be written as

 1 1

1 ( ) '( )( )      
2 ( ) ( )

xp p tx dt
i x x tμ μ

α

αλ
π α − −

⎡ ⎤
= +⎢ ⎥− −⎣ ⎦

∫  (3.5.29)

assuming that the derivative '( )p t  of the function p(t) exists for  
[ ], .t α β∈  

Now from (3.5.26), we fi nd that

[ ]0 1 2( ) ( ) ( )( ) ( )( ) ,   ,ix x e A x A x xπμ λ λ α β± ± ±⎡ ⎤Φ = Φ + ∈⎣ ⎦  (3.5.30)

giving

 [ ]( ) ( ) ( ),   say,  ,x x h x x α β+ −Φ −Φ = ∈  (3.5.31)

where

 
{ }
{ } [ ]

0 0 1

0 0 2

( ) ( ) ( ) ( )( )

        + ( ) ( ) ( )( ),   , .

i ih x e x e x A x

x x A x x

πμ πμ λ

λ α β

+ − −

+ −

= Φ − Φ

Φ −Φ ∈
 (3.5.32)

By using the fi rst formula in (3.5.12), we obtain from (3.5.31), the 
solution of the integral equation (3.5.1) as 
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 [ ]1

1 ( )( )    ,   , .
2 ( )

xd h tx dt x
i dx x t μ

α

ϕ α β
π −

⎡ ⎤
= ∈⎢ ⎥−⎣ ⎦

∫  (3.5.33)

This can also be expressed in the equivalent form

[ ]
x

1 1

1 ( ) '( )( )   +   ,   , ,
2 ( ) ( )

h h tx dt x
i x x t− −

⎡ ⎤
= ∈⎢ ⎥− −⎣ ⎦

∫μ μ
α

αϕ α β
π α

 (3.5.34)

assuming that the derivative  [ ]'( )  of  ( )  exists for  , .h t h t t α β∈
An alternative form of the solution of the integral equation (3.5.1) can 

be derived. This is explained below:
To solve the Riemann-Hilbert type problem (3.5.14), we consider the 

homogeneous problem

 [ ]2
0 0( )   ( ) = 0,   ,ix e x xπμ α β+ − −Ω + Ω ∈  (3.5.35)

instead of the homogeneous problem (3.5.18), we fi nd the alternative 
representation for  ( )zΦ  as  

 0
( )( )  ( )   

( )
tz z dt

t z

β

μ
α

ω
Φ = Ω

−∫  (3.5.36)

where

 1
0

( )( )    .
2 ( )( )

i

x

e d g tx
i dx t t x

βπμ

μω
π

−

+ −=
Ω −∫  (3.5.37)

Writing

 
0

( )( )
( )

g tq t
t+=

Ω
 (3.5.38)

we see that  ( )xω   in (3.5.37) can be written as

 1 1

( ) '( )( )      
2 ( ) ( )

i

x

e q q tx dt
i x t x

βπμ

μ μ

βω
π β

−

− −

⎡ ⎤
= −⎢ ⎥− −⎣ ⎦

∫  (3.5.39)

assuming that the derivative of the function [ ]( )  exists for  , .q t t α β∈

Then, using the limiting values ( )x±Φ  of the function ( )zΦ  given in 
(3.5.36), along with the second formula in (3.5.12), we obtain an alternative 
representation of ( )xϕ  as given by
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[ ]1

1 ( )( )     ,   ,
2 ( )x

d k tx dt x
i dx t x

β

μϕ α β
π −

⎡ ⎤
= ∈⎢ ⎥−⎣ ⎦

∫
 

(3.5.40)

where

{ } { }
i

+
0 0 1 0 0 2

( )  ( )  e  ( )

        = ( )  ( ) ( )( ) +  ( )   ( )( ).

i

i i

k x e x x

x x A x e x e A x

πμ πμ

πμ πμω ω

− + −

− − + −

= Φ − Φ

Ω − Ω Ω − Ω
 (3.5.41)

It may be noted that, the formula

[ ]1
2 1

sin ( )( )( ) =     ,   ,
( )x

d k tA k x dt x
dx t x

−
−

⎡ ⎤
− ∈⎢ ⎥−⎣ ⎦

∫
β

μ

πμ α β
π

 
 (3.5.42)

has been used in obtaining the form (3.5.40). The result (3.5.40) can also 
be expressed in the equivalent form

[ ]1 1

1 ( ) '( )( )      ,   , ,
2 ( ) ( )x

k k tx dt x
i x t x− −

⎡ ⎤
= − − ∈⎢ ⎥− −⎣ ⎦

∫
β

μ μ

βϕ α β
π β

 (3.5.43)

whenever the derivative   [ ]'( )  of  ( )  exists for  , .k t k t t α β∈

Note: 1. The solution of the integral equation (3.5.1) has been obtained 
in terms of two forms given by (3.5.33)  (or (3.5.34)) and (3.5.40) (or 
(3.5.43)). These two forms are equivalent although it is not easy to show 
their equivalence directly.
2. When either 0, 1  or  1, 0,a b a b= = = =  we get back the known 
solutions of Abel integral equations, using the formula (3.5.33) or 
(3.5.40).
3. No Cauchy type singular integral equation occurs in the analysis 
employed here.                                                                                                               

3.6 SINGULAR INTEGRAL EQUATIONS WITH LOGARITHMIC 
KERNEL

Many boundary value problems of mathematical physics give rise to fi rst kind 
integral equations possessing logarithmically singular kernels of the types
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 ( ) ln       ( ),    t t x dt f x x
β

α

ϕ α β− = < <∫  (3.6.1)

and
    

 ( )     ( ),    t xt ln dt f x x
t x

β

α

ϕ α β−
= < <

+∫  (3.6.2)

where  ( )  and  ( )x f xϕ  appearing in (3.6.1) and (3.6.2) are assumed to be 
differentiable in ( , )α β . 

There exists a number of methods to solve the integral equations 
(3.6.1) and (3.6.2) which ultimately cast the solution  involving Cauchy 
principal value integrals of the form

 
( ) ,  t dt x

t x
< <

−∫
β

α

ψ α β  (3.6.3)

which are strongly singular integrals compared to the weakly singular 
integrals occurring in (3.6.1) and (3.6.2). For example, the integral equation 
(3.6.1) has a solution of the form (cf. Porter (1972), Chakrabarti (1997))

 

 

{ }
{ }

{ }

1/ 2

1/ 22

1/ 2

( )( ) ( )1( )     
( )( )

1 ( )          +  
( )( )

4

t t f t
x dt

t xx x

f t dt
t tln

⎡ ′− −
= ⎢

−− − ⎢⎣
⎤
⎥
⎥

−⎛ ⎞ − − ⎥
⎜ ⎟ ⎥⎝ ⎠ ⎦

∫

∫

β

α

β

α

α β
ϕ

π α β

β α α β

 (3.6.4)

in the case when  4β α− ≠ , and 

{ }
{ }1/2

1/22

( )( ) ( )1( )   
( )( )

t t f t
x dt C

t xx x

β

α

α β
ϕ

π α β

⎡ ⎤′− −
= +⎢ ⎥

−− − ⎢ ⎥⎣ ⎦
∫  (3.6.5)

  
where  C   is an arbitrary constant, in the case when  4β α− = , provided 
that ( )f x  satisfi es the solvability condition

 

 ( ){ }1/ 2
( )  0.

( )
f t dt

t t
=

− −
∫
β

α α β  (3.6.6)
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The solutions (3.6.4) and (3.6.5) involve singular integrals of the type 
(3.6.3).

Chakrabarti (2006) developed direct methods based on complex 
variable theory to solve the two weakly singular integral equations (3.6.1) 
and (3.6.2) and obtained solutions which do not involve integrals having 
stronger singularities of Cauchy type. These methods are described 
below

The method of solution for the integral equation (3.6.1):

Let

 ( ) = (t)    ,   ( )t z zz ln A ln z x iy
z z

⎛ ⎞− −⎛ ⎞Φ − = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∫
β

α

αϕ
α β

 
(3.6.7)

 
where  A   is an arbitrary complex constant. Then the complex valued 
function is analytic in the complex z-plane cut along the segment [ ],α β  
on the real axis.  It is easy to observe that

( )1( ) =  ( )          ( )

                       for  ( , )

x

x t ln t x dt i t dt B ln x

xi B A ln i A x
x

β

α α

ϕ π ϕ α

απ π α β
β

±Φ − − −

⎛ ⎞−
± − ± ∈⎜ ⎟−⎝ ⎠

∫ ∫∓
 (3.6.8)

where 

  (t) .B dt
β

α

ϕ= ∫  (3.6.9)

To derive the result (3.6.8), uses of the following limiting values of the 
logarithmic functions have been made. 

 For  ( , )x α β∈

 
  ( )  ( )  i  as  0,
  ( )  ( )  as  0.
ln z ln x y
ln z ln x y

α α π
β β
− → − → ± ⎫

⎬− → − → ± ⎭

∓
 (3.6.10)

The pair of formulae (3.6.8) can be expressed as the following equivalent 
pair

±

±



Riemann-Hilbert Problems and Their Uses in Singular Integral Equations 71

 ( ) ( ) 2  +  (t) ,   ( , ),
x

x x i A dt x
β

π ϕ α β+ − ⎧ ⎫⎪ ⎪Φ −Φ = ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∫  (3.6.11a)

and

( ) ( ) 2 ( )    2    

                         2   ( ),   ( , ).

xx x t ln x t dt A ln
x

B ln x x

β

α

αϕ
β

α α β

+ − ⎛ ⎞−
Φ +Φ = − − ⎜ ⎟−⎝ ⎠

− − ∈

∫
 

(3.6.11b)

We note that by writing

 ( ) 2   +  ( ) ,   ( , ),
x

r x i A t dt x
β

π ϕ α β
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

∫  (3.6.12)

we obtain

 
1( )  ( )

2
x r x

i
ϕ

π
′= −  (3.6.13)

with

 ( ) 2 ( ), ( ) 2r i A B r iAα π β π= + =  (3.6.14)

so that the formula (3.6.11a) is expressed as

 ( ) ( ) ( ),   ( , ).x x r x x α β+ −Φ −Φ = ∈  (3.6.15)

Using the integral equation (3.6.1), we fi nd that the formula (3.6.11b) 
gives 

 1( ) ( ) ( ),   ( , ).x x f x x α β+ −Φ +Φ = ∈  (3.6.16)

where

1( ) 2 ( )      ( ) ,   ( , ).x af x f x A ln B ln x a x
x

α β
β

⎡ ⎤⎛ ⎞−
= − − − ∈⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

 (3.6.17)

The relation (3.6.16) can be regarded as a special case of the more general 
Riemann-Hilbert problem

 ( ) ( ) ( ) ( ),   ( , )x g x x f x x α β+ −Φ + Φ = ∈  (3.6.18)

involving a sectionally analytic function cut along the segment [ ],α β   on 
the real axis.
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By using the formulae (3.6.11)–(3.6.14), we can easily obtain the 
solution of the Riemann-Hilbert problem (3.6.16). This is given by

0
1( ) ( )  ( )  ( )   ( )    + ( )

2
zz z t ln t z dt C ln z D ln E z

i z
⎡ ⎤⎛ ⎞−′Φ = Φ − − − − −⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

∫
β

α

αλ α
π β

 (3.6.19)

where  0 ( )zΦ   represents a solution of the homogeneous problem (3.6.16) 
satisfying

 0 0( ) ( ) 0,   ( , ),x x x α β+ −Φ +Φ = ∈  (3.6.20)

 
0

( ) ( ) ( ) ( )( ) ,   ,   
( ) 2 2

f xx C D
x i i

λ α λ β λ βλ
π π+

−
= = =
Φ

 (3.6.21)

and  ( )E z  represents an entire function in the complex z-plane.

Using the formula (3.6.11a), we then obtain     
 

 

{ }
0 0

0

2  (t)  = ( ) ( ),   

             = ( ) Q ( )  ( ) ( ),   

             = ( ) ( ) ( ) ,   ,

x

i dt A x x x

x x x Q x x

x Q x Q x x

β

π ϕ α β

α β

α β

+ −

+ + − −

+ + −

⎡ ⎤
+ Φ −Φ < <⎢ ⎥

⎣ ⎦
Φ − Φ < <

Φ + < <

∫
 (3.6.22)

where ( )Q z  represents the term in the square bracket of the expression in 
the right side of (3.6.19).

Again, using the formula (3.6.11b), applicable to the function ( ),Q z  
we obtain

0
12  ( )  + ( )   (t)      

                                - 2   ( ) 2   2 ( ) ,   .

x

i t dt A x ln t x dt
i

xC ln x D ln E x x
x

β β

α

π ϕ λ
π

αα α β
β

+⎡ ⎤ ⎡
′= Φ − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
⎤⎛ ⎞−

− − + < <⎥⎜ ⎟−⎝ ⎠ ⎦

∫ ∫  (3.6.23)

We can choose the solution of the homogeneous problem (3.6.20) to 
be written in the form

 
{ }0 1/2

1( )
( )( )

z
z zα β

Φ =
− −

 (3.6.24)
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so that 

 
{ }0 1/ 2( ) .
( )( )

ix
x xα β

+Φ =
− −

 (3.2.25)

From the defi nition of ( )zΦ  given by (3.6.7), we fi nd that

1( )  = 0   as  | |  
| |

z z
z

⎛ ⎞
Φ →∞⎜ ⎟

⎝ ⎠
and since, from (3.6.24), 

 0
1( )  = 0   as  | |  

| |
z z

z
⎛ ⎞

Φ →∞⎜ ⎟
⎝ ⎠

,

 
the entire function  ( )E z   appearing in the right side of (3.6.19) must be a 
constant. Thus choosing  ( )

2
DE z = , where  D   is an arbitrary complex

constant, we fi nd from (3.6.23),

{ }1/2
12  ( )  +  =   ( )    + .

( )( )x

ii t dt A t ln t x dt D
ix x

β β

α

π ϕ λ
πα β

⎡ ⎤ ⎡ ⎤
′− −⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦
∫ ∫  (3.6.26)

where now

( ){ }1/ 21

0

( )( ) 2 ( ) ( )   ( )   .
( )

f x xx i x x f x B ln x A ln
x x+

⎡ ⎤⎛ ⎞−
= = − − − − − −⎢ ⎥⎜ ⎟Φ −⎝ ⎠⎣ ⎦

αλ α β α
β

 (3.6.27)

The relation (3.6.26) eventually determines the solution function 
( )xϕ , for the equation (3.6.1), by differentiating it with respect to x , and 

for the purpose of existence of the derivative, which makes the integral in 
(3.6.1) to converge, we fi nd that we must have

 

1   ( )  ( ) 0,

1   ( )  ( ) 0.

D t ln t dt
i

D t ln t dt
i

β

α

β

α

λ α
π

λ β
π

⎫
′− − = ⎪

⎪
⎬
⎪′− − = ⎪
⎭

∫

∫
 (3.6.28)

 
The two equations in (3.6.28) determine the arbitrary constants 

  and  D A  in terms of the constant B , which will have to be determined 
by using the relation (3.6.9), and the process of differentiation applied to 
(3.6.26), fi nally produces the solution of the equation (3.6.1) in the form
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( ){ }1/ 22

1 1( )  {   | | }
2( )

d dx D ln x t dt
dx dtx x

⎡ ⎤
⎢ ⎥= − + −
⎢ ⎥− −⎣ ⎦

∫
β

α

π ψϕ
π α β  

(3.6.29)

where

{ }1/ 2( ) ( )( ) ( )   ( )   .tt t t f t B ln t A ln
t
αψ α β α

β
⎡ ⎤⎛ ⎞−

= − − − − −⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦
 (3.6.30)

The right side of (3.6.29) can be simplifi ed. It may be noted that 

{ }1/2
1
2

( )( ) ln  
 [{( )( )} ln ]ln | |   

                                                               ( ),   

tt t
d t tt t x t dt dt
dt t t x

x

β β

α α

αα β
α βα β

β
π β α α β

−
− −

− −− − − = −
− −

= − − < <

∫ ∫
 (3.6.31)

and
 

( ){ } ( )

{ }

( ){ }

1/ 2

/ 2

1/ 2
1/ 2 1

  ( )   | |  

( )( )  ( )
  

= ( 2 ) ( ) 2 ( ) tan
2 4 2

d t t ln t ln x t dt
dt

t t ln t
dt

t x

x ax ln x x
b x

−

⎡ ⎤− − − −
⎣ ⎦

− − −
= −

−

− −⎛ ⎞ ⎛ ⎞− + − + − + − −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∫

∫

β

α

β

α

α β α

α β α

π β α πα β β α π α β

  (3.6.32)

where  CPV integrals have been evaluated.

A particular case        

Let ( ) a constant  f x C= (say) for the integral equation (3.6.1). Then the 
solution (3.6.29) reduces to

 { }
1
2( )  ( )( )

 ln
4

Cx x xϕ α β
β απ

−= − −
−⎛ ⎞

⎜ ⎟
⎝ ⎠

. (3.6.33)

It is easy to verify that (3.6.33) is indeed the solution of the integral 
equation 

   ( ) | |  ,   t ln t x dt C x
β

α

ϕ α β− = < <∫  (3.6.34)
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by using the results

 
{ }1/ 2

  | |    ,
2( )( )

ln t x dx ln
x x

β

α

β απ
α β

− −⎛ ⎞= ⎜ ⎟
⎝ ⎠− −∫  (3.6.35)

 

 
{ }1/ 2

  | |  a constant,  .
( )( )

ln t x dt a x b
t t

β

α α β
−

= < <
− −∫  (3.6.36)

The method of solution for the integral equation (3.6.2):

Let

      ( )  ( )       t z z zz t ln dt A ln B ln
t z z z

β

α

α αϕ
β β

− − +
Φ = + +

+ − +∫  (3.6.37)

where  ,  and  ,z x iy A B= +  are complex constants. Then ( )zΦ  
is sectionally analytic in the complex z-plane cut along segments 
( , )  and  ( , )β α α β− −  on the real axis.

Using the results

 
0

    for  0.
lim   

  ( )  for  0y

ln x x
ln z

i ln x xπ→±

>⎧
= ⎨± + − <⎩

 (3.6.38)

we fi nd that

0

   ( )   ( )     

       for  ,
( ) lim ( )

  ( ) ( )     

       for  .

x

xy

t xi t dt t ln dt i A
t x

x xA ln B ln x
x x

x z
t xi t dt t ln dt i B
t x

x xA ln B ln x
x x

β

α α

β

α α

π ϕ ϕ π

α α α β
β β

π ϕ ϕ π

α α β α
β β

±

−→±

⎧ −
+⎪ +⎪

⎪ ⎛ ⎞− +⎪+ + < <⎜ ⎟− +⎪ ⎝ ⎠Φ ≡ Φ = ⎨
−⎪± +⎪ +

⎪
− +

+ + − < < −
− +⎩

∫ ∫

∫ ∫

∓ ∓

∓
 

⎪
⎪

 (3.6.39)
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The equations in (3.6.39) give rise to the following Plemelj-type alternative 
formulae:

2   ( ) 2    for  ,
( ) ( )

2   ( ) 2    for  

x

x

i t dt i A x
x x

i t dt i B x

α

α

π ϕ π α β

π ϕ π β α

+ −

−

⎧
− − < <⎪

⎪Φ −Φ = ⎨
⎪ − − < < −⎪⎩

∫

∫
 (3.6.40)

and

( ) ( ) 2  ( )   2   2   

                                                             for  ( , ) ( , ).

t x x xx x t ln dt A ln B ln
t x x x

x

β

α

α αϕ
β β
β α α β

+ − − − +
Φ +Φ = + +

+ − +

∈ − −

∫
∪

 (3.6.41)

By using the relation (3.6.41), we fi nd that the singular integral equation 
(3.6.2) can be reduced to a Riemann-Hilbert problem, as given by

( ) ( ) 2 ( )     

                        =  2 ( ),   say, for  ( , ) ( , )

x xx x f x A ln B ln
x x

g x x L

α α
β β

β α α β

+ − ⎡ ⎤− +
Φ +Φ = + +⎢ ⎥− +⎣ ⎦

∈ ≡ − − ∪

 (3.6.42)

where

 
( )  for  ,

( )
( )  for  

f x x
g x

f x x
α β

β α
< <⎧

= ⎨− − − < < −⎩
 (3.6.43)

for the determination of the sectionally analytic function ( )zΦ  defi ned in 
(3.6.37).

Also by using the right sides of the relation (3.6.40), denoted by ( ),r x  
we fi nd that

 ( ) ( ) ( )  for  x x r x x L+ −Φ −Φ = ∈  (3.6.44)

with

 
( )  for  ,

( ) 2
( )  for  .
x x

r x i
x x

ϕ α β
π

ϕ β α
< <⎧′ = − ⎨− − − < < −⎩

 (3.6.45)

Now we observe the following, which will help to solve the Riemann-
Hilbert problem (3.6.42).
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If we select in (3.6.47)
1( ) 0,   ,
2

x A Bϕ = = − =

then the function Φ(z), as given by (3.6.37) with φ = 0, A = –B = 1/2) i.e.,   

 
1 1( )     
2 2

z zz ln ln
z z

α α
β β

− +
Ψ = −

− +
 (3.6.46)

solves the special RHP as given by (putting φ = 0, A = –B = 1/2 in 
(3.6.39))    

 

  for  ( , ),
( ) ( )

    for  ( , ). 
i x

x x
i x
π α β
π β α

+ − − ∈⎧
Ψ −Ψ = ⎨ ∈ − −⎩

 (3.6.47)                                      

 
Also if we select in (3.6.37)  

 

1  ( )  for  ( , )
20,  ( )
1   ( )  for  ( , )   

2

r x x
iA B x

r x x
i

α β
πϕ

β α
π

⎧ ′− ∈⎪⎪= = = ⎨
⎪ ′ − ∈ − −
⎪⎩

 

with  ( )  ( ) 0,r rα α= − =   then the RHP as given by (see the relation 
(3.6.40))

 ( ) ( ) ( ),   ( , ) ( , )x x r x x Lχ χ β α α β+ −− = ∈ ≡ − − ∪  (3.6.48)

has the solution

 
1( )   ( )   .

2
t zz r t ln dt

i t z

β

α

χ
π

−′= −
+∫  (3.6.49)

We may add arbitrary entire function to each of the solutions (3.6.46) 
and (3.6.49) of the two special Riemann-Hilbert problems (3.6.47) and 
(3.6.48) respectively.

Using these ideas, the Riemann-Hilbert problem described by (3.6.41) 
can be solved and its solution is given by

0
0

( )     
1( ) ( )      ( )

( )

t tf t A ln B ln
d z tt tz z ln dt E z

i dt t z t

β

α

α α
β β

π +

⎡ − + ⎤⎧ ⎫+ +⎢ ⎥⎪ ⎪ −⎪ + + ⎪⎢ ⎥Φ = Φ − +⎨ ⎬Φ +⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∫  (3.6.50)
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where  0 ( )zΦ  represents the solution of the homogeneous problem

 0 0( ) 0,   ( , ) ( , )x x L β α α β+ −Φ +Φ = ∈ ≡ − − ∪  (3.6.51)

and  ( )E z   is an entire function of  .z   By considering the order of  ( )zΦ  
defi ned by (3.6.37) for large z , we fi nd that ( )E z  is a polynomial of 
degree  2. Now solution of (3.6.51) can be taken as

 { }1/ 22 2 2 2
0 ( ) ( )( )z z zα β

−
Φ = − −  (3.6.52)

so that

 { }
0

1/22 2 2 2( )  ( )( ) ,   .x i x x x Lα β
−±Φ = ± − − ∈  (3.6.53)

The solution of the integral equation (3.6.2), thus, can be fi nally 
determined by using the relations (3.1.50), (3.6.52) and (3.6.53) along 
with (3.6.44), and we fi nd that the solution ( )xϕ  can be expressed as 

{ }

{ }1/22 2 2 2 2

1( )   ( ) ( )
2

1 ( )         =   ,   ( , )
( )( )

dx x x
i dx

d x x
dx x a x

ϕ
π

ψ α β
π β

+ −= − Φ −Φ

⎡ ⎤
⎢ ⎥− ∈
⎢ ⎥− −⎣ ⎦

 (3.6.54)

where

{ }1/22 2 2 2

2
1 2

( ) ( )( ) ( )       

         +  ( )

d t t t xx t t f t A ln B ln ln dt
dt t t t x

C C x Dx

β

α

α αψ α β
β β

π

⎡ ⎤⎧ ⎫− + −
= − − + +⎨ ⎬⎢ ⎥− + +⎩ ⎭⎣ ⎦

+ +

∫  (3.6.55)

where  1 2,  CC   are two arbitrary constants, and

  ( ) .D i x dx
β

α

π ϕ= ∫  (3.6.56)

It may be observed that the form (3.6.54) of the function ( )xϕ  
can solve the integral equation (3.6.2), if and only if the following four 
conditions are satisfi ed

(i)  ( ) 0,   (ii)  ( ) 0,   (iii)  ( ) 0,   (iv)  ( ) 0.ψ β ψ α ψ α ψ β− = − = = =  (3.6.57)

The fi ve conditions, one in (3.6.56) and four in (3.6.57), will determine 
the fi ve constants 1 2, , ,  and D A B C C  and the fi nal form of the solution 
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( )xϕ  can then be determined completely which does not depend on any 
arbitrary constant.

It may be noted that the conditions (i) and (ii) of (3.6.57) can be 
avoided if we choose 0 .A B= =

This completes the method of solution of the integral equation (3.6.2).  
Examples for particular forms of the forcing function can be considered 
although no such example has been undertaken here.

Remark

The form of the solution (3.6.54) of the integral equation (3.6.2) possesses 
terms which are unbounded at   and  .x xα β= =  Hence, in order that the 
solution is bounded at   and  x xα β= = , we must have two solvability 
conditions to be satisfi ed by the forcing term, as given by the equation

 (i)  ( ) 0  and  (ii)  ( ) 0.ψ α ψ β′ ′= =  (3.6.58)

Chakrabarti et al (2003) demonstrated the utility of bounded solution 
of the integral equation (3.6.2) in connection with the study of surface 
water wave scattering by a vertical barrier with a gap.

3.7 SINGULAR INTEGRAL EQUATION WITH LOGARITHMIC 
KERNEL IN DISJOINT INTERVALS

In the previous section two fi rst kind weakly singular integral equations with 
logarithmic kernel in a single interval have been solved by reducing them 
to appropriate Riemann-Hilbert problems. In this section a logarithmically 
singular integral equation in a fi nite number of disjoint intervals have been 
considered for solution. The integral equation is solved after reducing it 
to a Riemann-Hilbert problem. The method as developed by Banerjea and 
Rakshit (2007) is described below.

We consider the integrral equation

 ( )
n

j
1 j=1

  ( )    = ( ),     ,
j

j

n

j
j

t ln t x dt f x x L
β

α

ϕ α β
=

− ∈ ≡∑ ∫ ∪ . (3.7.1)

Let

( ) j
j

1 j=1 1
( )   ( )  ( )       ,   ( )

j

j

n n n

j
j j j

z
z t ln t z dt A ln z B ln z x iy

z

β

α

α
ϕ α

β= =

−
Φ = − − − − = +

−∑ ∑ ∑∫  (3.7.2)
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where

 
j

j
1

1   ( ) 
n

j
A t dt

n

β

α

ϕ
=

= ∑ ∫  (3.7.3)

and   's ( 1, 2,...jB j = ,n are arbitrary. Then   ( )zΦ  is sectionally analytic 
in the complex z-plane cut along the segments 1 1 2 2( , ),  ( , ),...α β α β , 
(�n, �n) on the real axis.

By using the results in (3.6.48), we fi nd that for ,x L∈

 1

1

j

j

1 1 1

x

1 1 1

j

1 1 1

  ( )        

  ( )    ( ),   for  ( , ),

( )
  ( )     A      

  ( )    

j

j

j

j

n n n

j j
j j j j
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n n n

j j
j j j j

x
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x

t dt i A B x

x
x

t ln t x dt ln x B ln
x

i t dt i

= = =

±

= = =

−
− − − −

−

± + ∈

Φ =
−

− − − −
−

∑ ∑ ∑∫

∫

∑ ∑ ∑∫

∫

∓

∓ ∓

β

α

β

α

β

α

α
ϕ α

β

ϕ π α β

α
ϕ α

β

π ϕ π
j

x1

k ( )   ( ),   for  ( , ), 2,3,... .
j

k

k kt dt i kA B x k n
−

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪ ± + ∈ =
⎪⎩

∑ ∫
α α

ϕ π α β

 (3.7.4)

The equations (3.7.4) give rise to the following Plemelj-type formula 
for the sectionally analytic function ( )zΦ :

 ( ) ( ) ( ),   for  ,x x h x x L+ −Φ +Φ = ∈  (3.7.5)

 ( ) ( ) ( ),   for  ,x x r x x L+ −Φ −Φ = ∈  (3.7.6)

where

 j
1 1

( ) 2 ( )       
n n

j
j

j j j

x
h x f x A ln x B ln

x
α

α
β= =

⎧ ⎫−⎪ ⎪= − − −⎨ ⎬−⎪ ⎪⎩ ⎭
∑ ∑  (3.7.7)

and

1

1

1 1 1

1

1

2   ( ) 2 ( )    ( , ),

( )
2    ( ) 2   ( )  2  ( ) 

                                                                  for  ( , ),   2.
j k

x

xk

k
j

k k

i t dt i A B for x

r x
i t dt i t dt i kA B

x k

α

β

α α

π ϕ π α β

π ϕ π ϕ π

α β

−

=

⎧
− + + ∈⎪

⎪
= ⎨
⎪− − + +⎪
⎩

∈ =

∫
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3...,n. 

(3.7.8)
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Thus from (3.7.8) we fi nd that

 
1( )  ( ),   ( , ),   1, 2,...

2 k kx r x x k
i

ϕ α β
π

′= − ∈ = ,n. (3.7.9)

and in the expression for ( )r x given by (3.7.8), the constants   
  and   ( 1, 2,... )jA B j n=  are to be determined such that

 

{ }
1

1 1

1

1 1

1   ( ) ( ) ,
2

1  ( ),
2

1   ( )  ( ) ,   =2,3,... .
2

n

j j
j
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k j j
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A r r
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B A r
i

B kA r r k n
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=

−

= =

= −

= − +

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦

∑

∑ ∑

α β
π

α
π

α β
π

 (3.7.10)

A solution of the homogeneous problem

 0 0( ) ( ) 0,   ( , ),   1, 2,...j jx x x j nα β+ −Φ +Φ = ∈ =  (3.7.11)

is given by

 ( )( ){ }
1
2

0
1

( ) ( )  ,
n

j j
j

z R z z zα β
−

=

Φ = ≡ − −∏  (3.7.12)

then

 

1 1

1

2 2
0

( 1) ,   ( , ),
( )

( 1) ,   ( , )
( ) ( )

. . . . . . . . . . . . . . . . . . . .

 ,   ( , ).
( )

n

n

n n

i x
R x

i x
x R x

i x
R x

α β

α β

α β

−

±

⎧ −
± ∈⎪

⎪
⎪ −
± ∈⎪

Φ = ⎨
⎪
⎪
⎪ −
± ∈⎪

⎩

, (3.7.13)

Thus, following a somewhat similar argument in section 3.6, we fi nd that 
the Riemann-Hilbert problem described by (3.7.5) has the solution
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0
1 1
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⎡
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( )

1  =  ( ) ( ) ,
2

1 =  +  ( ),
2

1 =  +   ( )  ( ) ,   2,3... ,
2

n

j j

k k

k
j j

h xg x
x

C g g
in

D C g
i

D kC g g k n
i

β α
π

α
π

α β
π

+

−

= =

Φ

− −

−

⎡ ⎤
− − =⎢ ⎥

⎣ ⎦

∑

∑ ∑

 (3.7.15)

and ( )E z   is an entire function of   z   in the form of a polynomial of 
degree ( 1).n −

It may be noted here that after substituting 0 ( )x+Φ  from (3.7.13) and  
(3.7.12) into ( )g x  in (3.7.15), one gets

( ) ( ) 0,   1, 2... .i jg g j nα β= = =

Hence

 10,   0,   0,   2,3... .kC D D k n= = = =  (3.7.16)

Thus from (3.7.14) we get

 0
1

1( ) ( )  ( )  ( ) ( ) .
2

j

j

n

j
z z g t ln t z dt E z

i

β

απ =

⎡ ⎤
′⎢ ⎥Φ = Φ − − +

⎢ ⎥⎣ ⎦
∑ ∫  (3.7.17)

Using (3.7.17) in (3.7.6) we obtain for ( , ),j jx α β∈

1

1

( 1) 1( )    ( )    + 2 ( ) .
( )

j

j

n j n

j

ir x g t ln t x dt E x
R x i

β

απ

− +

=

⎡ ⎤− ′⎢ ⎥= − −
⎢ ⎥⎣ ⎦

∑ ∫  (3.7.18)
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Substituting   ( )h x  from  (3.7.7) and 0
+Φ ( )x  from (3.7.13) into ( )g x  

in (3.7.15) we get 
2( ) 2 ( 1) ( ),   ( , ),   1n j

j jg x i x x jψ α β− += − ∈ ≥

where

1 1
( ) ( )  ( )       .

n n
j

j j
j j j

x
x R x f x A ln x B ln

x
α

ψ α
β= =

⎡ ⎤−
= − − −⎢ ⎥

−⎢ ⎥⎣ ⎦
∑ ∑  (3.7.19)

Finally substituting ( )r x  from (3.7.18), (3.7.19) into (3.7.9) we obtain 
( )  for  xϕ ( , )j jx α β∈  as

j

2
1

1 1( )      ( 1) ( ) ,
( )

j

n
j

j

d dx ln t x dt E x
dx R x dt

β

α

ψϕ π
π =

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= − − + −⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∑ ∫  (3.7.20)

where   ( )E xπ   is a polynomial of degree  1n −   given by

 1
1 2( ) .n

nE x d d x d xπ −= + + +�  (3.7.21)

Now the original integral equation (3.7.1) can be solved if the following 
2n  consistency conditions are satisfi ed.

  ( ( ))   ( 1)  ( ) 0,

  ( ( ))   ( 1)  ( ) 0,   1, 2... .

j

j

j

j

j
j j

j
j j

d t ln t dt E
dt

d t ln t dt E j n
dt

β

α

β

α

ψ α π α

ψ β π β

− + − =

− + − = =

∫

∫
 (3.7.22)

These  2n  conditions determine the  2n  constants  'kd s   in (3.7.21) and   
'   in (3.7.19), kB s 1,2,...,k n= .



In this chapter we describe certain special methods of solution of 
singular integral equations involving logarithmic type and Cauchy type 
singularities in the kernels. These methods avoid the detailed uses of the 
complex variable methods described in Chapter 3.  The special methods of 
solution of singular integral equations discussed in this chapter, have been 
the subject of studies of various researchers such as Estrada and Kanwal 
(1985a, 1985b, 1987, 2000), Boersma (1978), Brown (1977), Chakrabarti 
(1995), Chakrabarti and Williams (1980) and others.

4.1  INTEGRAL EQUATIONS WITH LOGARITHMICALLY 
SINGULAR KERNELS

(a) We fi rst consider the problem of solving the singular integral equation

( )
1

1/ 22
1

  ( )
   = ( ),   1 1

1

ln x t t
dt f x x

t−

−
− < <

−
∫

ϕ
 (4.1.1)

where  ( )  and  ( )f x xϕ   are differentiable functions in the interval  
( 1,1)−  so that the mathematical analysis,  as described below, to obtain 
the solution of the equation (4.1.1), is applicable. It may be noted that 
the method is also applicable to less restricted class of functions, e.g. 

  and  f ϕ  are integrable in ( 1,1)− .
By a straightforward transformation of the variables and the functions 

involved, the integral equation (4.1.1) can be viewed as an equation 
holding in the general interval ( , )a b  where   and  a b  are real numbers 
and .b a>

Chapter 4        

Special Methods of Solution of Singular 
Integral Equations
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Before explaining a special method of solution of the equation 
(4.1.1), which will require the knowledge of the Chebyshev polynomials   

-1( ) cos  (  cos ),  1 1nT x n x x= − < < ( 0,1,...)n = , we mention below a 
few results which will be needed in the analysis.

(i) The Chebyshev polynomials ( ) ( 0,1,...)nT x n =  possess the 
orthogonality property

 
( )

1

1/ 22
1

0,   for  ,
( ) ( )  ,  for  0,

21
,    for  0.

n m

n m
T x T x dx n m

x
n m

π

π
−

≠⎧ ⎫
⎪ ⎪⎪ ⎪= = ≠⎨ ⎬

− ⎪ ⎪
= =⎪ ⎪⎩ ⎭

∫  (4.1.2)

(ii) Any function  ( )f x   defi ned in  [ ]1,1−   and satisfying the condition

 
( )

21

1/ 22
1

( )
  

1

f x
dx

x−

< ∞
−

∫  (4.1.3)

can be expanded in a Chebyshev series as given by

 
0

( )   ( )n n
n

f x c T x
∞

=

=∑  (4.1.4)

where

( ) ( )
1 1

0 1/ 2 1/ 22 2
-1 -1

( ) ( )1 ( ) 2   ,        ( 1),
1 1

n
n

f x T xf xc dx c dx n
x xπ π

= = ≥
− −

∫ ∫  (4.1.5)

with the series (4.1.4) being convergent in mean square sense, with respect 
to the weight function 2 1/ 2(1 ) .x−

As a special case of the expansion (4.1.4), we fi nd that, for 
1 ,   1,x t− ≤ ≤ we have

 n

1

T ( ) ( )   2 2   ,n

n

x T tln x t ln
n

∞

=

− = − − ∑
 which can be verifi ed easily with the aid of the following results:

 
( )

1

1/ 22
1

 
    2,   1 1

1

ln x t
dt ln x

t
π

−

−
= − − < <

−
∫  (4.1.6)
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and

 
( )

1
n

1/ 22
1

  T ( )
   ( ),   1 1,   1.

1
n

ln x t t
dt T x x n

nt−

−
= − − < < ≥

−
∫

π
 (4.1.7)

Observation:  It is interesting to observe from the relation (4.1.6) that the 
integral equation

 
( )

1

1/ 22
1

  ( )
   1,   1 1,   

1

ln x t t
dt x

t

ϕ

−

−
= − < <

−
∫  (4.1.8)

possesses the solution, as given by

 
1( ) ,   1 1.

  2
t t

ln
ϕ

π
= − − < <  (4.1.9)

Let us now explain a special method of solution of the integral equation 
(4.1.1).

Let us assume that the function ( )  and  ( )f x tϕ  appearing in equation 
(4.1.1) can be expanded in Chebyshev series as given by

 
0

( )   ( )n n
n

f x c T x
∞

=

=∑  (4.1.10)

and

 
0

( )   ( )n n
n

x d T xϕ
∞

=

=∑  (4.1.11)

where  'snc   are known constants, as given by the formulae (4.1.5), and  
'snd   are unknown constants to be determined.
By using the expressions (4.1.10) and (4.1.11) into the equation (4.1.1) 

and utilizing the results (4.1.6) and (4.1.7), we obtain

 0 n
1 0

(   2)   ( )    ( ),   1 1.n
n n

n n

dln d T x c T x x
n

π π
∞ ∞

= =

− − = − < <∑ ∑  (4.1.12)

We thus fi nd that the unknown constants 'nd s  are given by the 
following relations:
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( )
1

0
0 1/ 22 2

-1

1 ( ) =  =    ,
  2   2 1

c f xd dx
ln ln xπ π

−
−

∫

 
and

 
( )

1

1/ 22 2
1

( ) ( )2 =   =    ,   1.
1

n
n n

f x T xn nd c dx n
xπ π −

− − ≥
−

∫  (4.1.13)

The relation (4.1.11), along with the relations (4.1.13), solve the integral 
equation (4.1.1) completely, for the class of functions ( )f x  for which the 
constants nd , as given by the relations (4.1.13), help the series (4.1.11) to 
converge in the mean square sense described before.

It is easily verifi ed that the solution of the integral equation (4.1.1), 
in the special case when ( ) 1f x =   (i.e. the integral equation (4.1.8)), is 
given by

 0 0
1( ) =  ( ) ,

  2
t d T x

ln
ϕ

π
= −  (4.1.14)

which was already observed earlier in the relations (4.1.8) and (4.1.9).
Now, denoting by 0L  the operator as defi ned by

 ( )
( )

1

0 0 1/ 22
-1

  ( )
( )( )  ( );  =   ,

1

ln x t t
L x L t x dt

t

ϕ
ϕ ϕ

−
≡

−
∫  (4.1.15)

we observe that, the eigenvalues of the operator  0L   are

 
  2,   for  0,

 = 
          for  1n

ln n

n
n

− =⎧ ⎫
⎪ ⎪
⎨ ⎬
− ≥⎪ ⎪⎩ ⎭

π
λ π  (4.1.16)

with the associated eigenfunctions  ( ) ( 0).nT x n ≥

We then consider the integral equation of the second kind as given by

 0( ) ( ) ( ) = ( ),  1 1.x L x f x xϕ λ ϕ− − < <  (4.1.17)
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We fi nd that if we expand the functions   and  f ϕ  in terms of Chebyshev 
series (4.1.10) and (4.1.11), then the solution of the integral equation 
(4.1.17) can be expressed in the form

 
1

-1

( ) = ( , ; )  ( ) x R x y f y dyϕ λ∫  (4.1.18)

where the resolvent  R   is given by the formula

 ( )1/ 22

=1

( ) ( )1 21  ( , ; ) =  +   
(1   2) 1

n n

n

T x T yy R x y
ln

n

λ λππ λπ π

∞

−
+ +

∑  (4.1.19)

whenever  1,  with  '   ( 0)n n s n≠ − ≥λλ λ   being given by the relations 
(4.1.16).

It is also observed from above that if nλλ = –1, then the solution of 
the integral equation (4.1.17) exists if an only if 

 

 
( )

1

1/ 22
1

( )  ( )  0
1
nT x f x dx

x−

=
−

∫ . (4.1.20)

(b) We next consider the singular integral equation 

 
1

1

   ( )  = ( ),   1 1.ln x t t dt f x xϕ
−

− − < <∫  (4.1.21)

By formally differentiating both sides of the equation (4.1.21) with 
respect to x , we obtain the singular integral equation with Cauchy type 
kernel

 
1

1

( )   = ( ),   1 1.t dt f x x
t x
ϕ

−

′− − < <
−∫  (4.1.22)

Using the results of Chapter 3, we can express the general solution of the 
singular integral equation (4.1.21) in the form

( )
( )1/ 221

1/ 2 22
-1

1 ( )1 1( )    ,    1 1,
1

t f t
x C dt x

t xx
ϕ

π

⎡ ⎤′−
⎢ ⎥= + − < <
⎢ ⎥−− ⎣ ⎦

∫  (4.1.23)

whereC is an arbitrary constant.
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We easily observe, from equation (4.1.23), that

 
( ) ( ) ( )

1 1 1 1
2 1/ 2

1/ 2 1/ 222 2
1 1 1 1

1 1( )      (1 ) ( )   
1 1

dxx dx C dx t f t dt
x x t x− − − −

⎧ ⎫⎪ ⎪′= + − ⎨ ⎬
− − −⎪ ⎪⎩ ⎭

∫ ∫ ∫ ∫ϕ
π

producing

 
1

-1

1   ( ) ,C x dxϕ
π

= ∫  (4.1.24)

after noting that

 
( ) ( )

1

1/ 22
1

  = 0  for  1 1.
1

dx t
x t x−

− < <
− −

∫
 

Now from the equation (4.1.21) we derive that

 
( ) ( )

1 1 1

1/ 2 1/ 22 2
1 1 1

1 ( )    ( )   =   ,
1 1

f xln x t t dt dx dx
x x

ϕ
− − −

⎧ ⎫
−⎨ ⎬

− −⎩ ⎭
∫ ∫ ∫

giving  

 
( ) ( )

1 1 1

1/ 2 1/ 22 2
1 1 1

 ( ) ( )     =   .
1 1

ln x t f xt dx dt dx
x x

ϕ
− − −

⎧ ⎫−⎪ ⎪
⎨ ⎬

− −⎪ ⎪⎩ ⎭
∫ ∫ ∫  

By using the results (4.1.8) and (4.1.9), this produces 

 
( )

1 1

1/ 22
1 1

( )  2 ( )  =   .
1

f xln t dt dx
x

π ϕ
− −

−
−

∫ ∫  (4.1.25)

The use of the two results (4.1.24) and (4.1.25) suggests, therefore, that if 
the function ( ),xϕ  as given by the relation (4.1.23), has to be the solution 
of the integral equation (4.1.21), the constant C  must be given by the 
relation

 
( )

1

1/ 22 2
-1

1 ( )   ,
  2 1

f xC dx
ln xπ

= −
−

∫  (4.1.26)

and, then, the solution of the singular integral equation (4.1.21) is obtained 
in the form
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( )
( )

( )

1/ 221 1

1/ 2 1/ 22 2 2
1 -1

1 ( )1 1 ( )( )       , 1 1.
 21 1

t f t f tx dx dt x
t x lnx t

ϕ
π −

⎡ ⎤′−
⎢ ⎥= − − < <
⎢ ⎥−− −⎣ ⎦
∫ ∫

 
(4.1.27)

Remarks

1. The same equation (4.1.22) results even if (4.1.21) is replaced by     

 
1

1

   ( )  = ( ) ,   1 1ln x t t dt f x D xϕ
−

− + − < <∫  (4.1.21' )

where D  is an  arbitrary constant.  Thus, (4.1.23) will represent the 
solution of (4.1.21' ) also (!) with

 
1

-1

1   ( ) .C t dtϕ
π

= ∫
But (4.1.25) changes, as in also the case with (4.1.26), giving

( )

( )

1

1/ 22 2
1

1

1/ 22 2
1

2

1 ( )   
  2 1

   =  (old )    
  2 1

   =  (old ) .
  2

f t DC dt
ln t

D dtC
ln t

DC
ln

−

−

+
= −

−

−
−

−

∫

∫

π

π

π 
Thus, an extra solution of (4.1.21), of the form  

 
1/ 2

2

1 
  2 1
D
ln xπ

⎛ ⎞− ⎜ ⎟−⎝ ⎠
is possible.

2. The solution of ( ),xϕ  as given by the relation (4.1.27), is unbounded at 
both end points 1  and  1.x x= − =  We must mention here that if ( )xϕ  
has to be bounded at both the end points 1  and  1x x= − = , then for 
bounded solution of the equation (4.1.22), we must have that
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 ( )
1

1/22
1

( )    = 0
1

f t dt
t−

′

−
∫

 
(4.1.28)

giving the solution of  ( )tϕ   as

 

( )
( ) ( )

1/ 22 1

1/ 22 2
1

1- ( )( ) =     
1

x f tx dt
t t x

ϕ
π −

′

− −
∫ , –1< x<1. (4.1.29)

We remark, at this stage, that the result (4.1.27) can be rewritten as 

( )
( ) ( ) ( )

( ) ( )

1 1
1/ 22

1/ 2 1/ 2 1/ 22 2 2 2
1 1

1

1/ 2 1/ 22 2 2
1

1 ( ) 1 ( ) ( )( ) 1         
1 ( ) 1 1

1 1 ( )              .
  2 1 1

f t t x f tx x dt dt
t t x x t

f t dt
ln x t

ϕ
π

π

− −

−

⎡ ⎤′ ′+⎢ ⎥= − −
⎢ ⎥− − − −⎣ ⎦

−
− −

∫ ∫

∫

 (4.1.30)

Thus, we notice that, the solutions (4.1.29) and (4.1.30) will agree with 
each other and produce the bounded solution (4.1.29), at the two ends 

1  and  1,x x= − =  if and only if the following two conditions hold 
good:

  (i) 
( )

1

1/ 22
1

( )   = 0
1

f t dt
t−

′

−
∫  (4.1.31)    

which  is the condition (4.1.28) and

  (ii)  
( ) ( )

1 1

1/ 2 1/ 22 2
1 1

 ( ) 1 ( )   =    
 21 1

t f t f tdt dt
lnt t− −

′
−

− −
∫ ∫ . (4.1.32)

(c) We now consider the singular integral equation

 
1

0

1   ( )   = ( ),   0 1.t xt ln dt f x x
t x
+

< <
−∫ ϕπ

 (4.1.33)

where  (0) 0f =   for consistency. This integral equation arises in the study 
of problems on water wave scattering by vertical barriers in the linearised 
theory of water waves (cf. Chakrabarti et al (2003)).
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By differentiating the equation (4.1.33) formally, with respect to ,x  
as was done for the problem in (b), we obtain the Cauchy type singular 
integral equation 

 
1

2 2
0

1 2  ( )    = ( ),   0 1.t t dt f x x
t x

ϕ
π

′ < <
−∫  (4.1.34)

This integral equation can be cast into the new form

 
1

1
1

0

 ( )1     = ( ),   0 1u du f y y
u y
ϕ

π
< <

−∫  (4.1.35)

by using the following transformations

 2 2 1/2 1/2
1 1,  ,  ( ) ( ),   ( ) ( ).t u x y u u f y f yϕ ϕ ′= = = =  (4.1.36)

The general solution of the singular integral equation (4.1.35), which 
is of the Cauchy type, can be easily written down as (see section 3)

{ }
{ }1/21

1 1/2
0

(1 ) ( )1 1( ) =      ,  0 1,
(1 )

y y f y
u c dy u

y uu u
ϕ

π

⎡ ⎤−
− < <⎢ ⎥

−− ⎢ ⎥⎣ ⎦
∫  (4.1.37)

where  c  is an arbitrary constant. Transforming back to the old variables, 
we rewrite the relation (4.1.37) as 

 
1 2 2 1/ 2

2 1/ 2 2 2
0

1 1 (1 )( ) =    2   ( ) ,  0 1.
(1 )

x xt c f x dx t
t t x t

⎡ ⎤− ′− < <⎢ ⎥− −⎣ ⎦
∫ϕ

π  (4.1.38)

We then notice, by standard integrations, that

 
1

0

  2   ( ) .c t t dtϕ= ∫  (4.1.39)

We observe from the original integral equation (4.1.33) that

( ) ( )
1 1 1

1/ 2 1/ 22 2
0 0 0

1

0

 ( ) 1   =   ( )       
1 1

                           =    ( )  

x f x x x tdx t ln dx dt
x tx x

t t dt

ϕ
π

ϕ

⎧ ⎫+⎪ ⎪
⎨ ⎬−− −⎪ ⎪⎩ ⎭

∫ ∫ ∫

∫

 (4.1.40)
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obtained by using the result

 
( )

1

1/ 22
0

     = ,   0 1.
1

x x tln dx t t
x tx

π+
< <

−−
∫  (4.1.41)

We then fi nd by using the two relations (4.1.39) and (4.1.40), that we must 
choose the constant c  as given by

 
( )

1

1/ 22
0

 ( ) = 2   .
1

x f xc dx
x−

∫  (4.1.42)

Thus, with c  being chosen to be given by the relation (4.1.42), the relation 
(4.1.38) produces the general solution of the singular integral equation 
(4.1.33), which does not involve any arbitrary constant, and this general 
solution has the property that it is unbounded at both the end points 

0  and  1.t t= =

Now, we can formally rewrite the solution (4.1.38) as  

( ) ( ) ( )
1 1

2 2
1/ 2 1/ 2 1/ 22 2 2 2 2

0 0

1 2

2 1/ 2
0

1 1 ( ) ( )( )  2(1 )      
1 1 1 ( )

( )       +  2   ,  0 1
(1 )

f x f xt c t dx t dx
t t x x x t

x f x dx t
x

⎡ ⎧ ⎫′ ′⎪ ⎪⎢= − − +⎨ ⎬⎢− − − −⎪ ⎪⎩ ⎭⎣
⎤′⎛ ⎞

< <⎥⎜ ⎟−⎝ ⎠⎦

∫ ∫

∫

ϕ
π  (4.1.43)

after using the identity 

 
( ) ( )

2 2 2 2 2 2 2 2
2 2 1/ 2

1/ 2 1/ 22 2

(1 ) ( )(1 )(1 )
1 1

x x x t t t t xx x
x x

− − + − + −
− = =

− −
 (4.1.44)

From the result (4.1.43), we thus observe that the singular integral equation 
(4.1.33) can have the solution, which is bounded at both the end points 

0  and  1t t= = , if and only if  the following two conditions are satisfi ed 
by the forcing term ( ) :f x

 (i) 
( )

1

1/ 22
0

( )  0
1

f x dx
x

′
=

−
∫  (4.1.45)
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and

 (ii) 
( )

1

1/ 22
0

 ( )2   0
1

x f xc dx
x

′
+ =

−
∫            

which, after using the relation (4.1.42), becomes

 
( )

1 2

1/ 22
0

 ( ) ( )     0.
1

x f x x f x dx
x

′+
=

−
∫  (4.1.46)

Thus, this bounded solution is given by

( ) ( )
1

2 1/ 2
1/ 22 2 2

0

2 ( ) (t) =  (1 )    ,   0 1.
1

f xt t dx t
x x t

′
− − < <

− −
∫ϕ

π  (4.1.47)

It is easily verifi ed by using the given integral equation (4.1.33) and 
the equation (4.1.34) that the second condition (4.1.46) is satisfi ed 
automatically.

We can determine the two other forms of the solution ( )tϕ  of the 
singular integral equation (4.1.33), which are (i) bounded at the end point 

0,t =  but unbounded at 1,t =  (ii) bounded at the end pointy t = 1, but 
unbounded at t = 0, by formally rewriting the general solution (4.1.38) in 
two other different forms, as was done in the relation (4.1.43), by using 
the identities

2 2 1/ 2 2 2 2 2 1/ 2      (i)      (1 ) ( ) (1 )x x x t t x− = − + −

( )
2 2 2 2

2 2 1/ 2
1/ 22

(1 )      (ii)      (1 )
1

x t t xx x
x

− + −
− =

−
 (4.1.48)

respectively. We fi nd by using the identity (i), that the solution (4.1.38) can 
be rewritten as

                                       
 

( )
( )
( )

1/221
2

1/2 2 22
0

1
2 1/2

0

1 ( )1 1( )  2    
1

       -  2 (1 ) ( ) ,  0 1.   

x f x
t c t dx

x tt t

x f x dx t

ϕ
π

⎡ ′−
⎢= −
⎢ −− ⎣

⎤
′− < <⎥

⎦

∫

∫   (4.1.49)

whereas, by using the identity  (ii), the solution (4.1.38) can also be 
rewritten as
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  (4.1.50)  
 

( ) ( ) ( )
1 2

2
1/2 1/22 2 2 2

0

1 2

2 1/2
0

1 1 ( )( )  2(1 )   
1 1

( )       +  2   ,  0 1.   
(1 )

x f xt c t dx
t t x x t

x f x dx t
x

ϕ
π

⎡ ′⎢= − −
⎢− − −⎣

⎤′
< <⎥− ⎦

∫

∫  

Thus, the two appropriate forms of the solutions for the particular cases (i) 
and (ii), mentioned above, are given by

 (i) 
( )

( )1/ 221

1/ 2 2 22
0

1 ( )2( )   ,   0 1,
1  

x f xtt dx t
x tt

ϕ
π

′−
= − < <

−−
∫  (4.1.51)

provided that

 ( )
1

1/22

0

2  1  ( )  = 0,c x f x dx′− −∫
 

which produces, by using (4.1.42),

 
( )

1 2

1/ 22
0

(1 ) ( )  ( )  0
1

x f x x f x dx
x

′− −
=

−
∫  (4.1.52)

which can be shown to be satisfi ed identically, if use is made of the given 
integral equation (4.1.33) and the equation (4.1.34),

 (ii) ( )
( ) ( )

1/ 22 1 2

1/ 22 2 2
0

2 1 ( )( )  ,   0 1,
 1

t x f xt dx t
t x x t

ϕ
π
− ′

= − < <
− −

∫  (4.1.53)    

provided that

 ( )
1 2

1/ 22
0

( )2     0,
1

x f xc dx
x

′
+ =

−
∫

which produces, again by using (4.1.42),

 
( )

1 2

1/ 22
0

( )  ( )   = 0,
1

x f x x f x dx
x

′ +

−
∫  (4.1.54)

which can again be shown to be identically satisfi ed by using (4.1.33) and 
(4.1.34).
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Remark

It is emphasized that the conditions (4.1.46), (4.1.52) and (4.1.54) are just 
three identities associated with the given integral equation (4.1.33), under 
the circumstances considered and thus, these are not any extra conditions 
to be satisfi ed by the forcing function ( ).f x  The major conclusion that 
can be drawn out of the above discussion, concerning the singular integral 
equation (4.1.33), is that the corresponding homogeneous integral equation 
does not possess any non-trivial solution at all, and that the solution of 
the non-homogeneous integral equation, therefore, does not contain any 
arbitrary constant, like what happens in the case of singular integral 
equation of the Cauchy type.  

4.2  INTEGRAL EQUATIONS WITH CAUCHY TYPE KERNELS

A special elementary method
A special elementary method to solve the fi rst kind singular integral 
equation with Cauchy type kernel is explained here. Let us consider the 
problem of solving the singular integral equation

 
1

0

( )   = ( ),   0 1t dt f x x
t x
ϕ

< <
−∫  (4.2.1)

where { }1/ 2(1 ) ( )x x xϕ− remains bounded near the end points  
0  and  1.x x= =
We use the following transformations:

2 2 2 2cos ,  cos ,  ( ) 2  (cos ) sin  cos , ( ) (cos )t x fθ α μ θ ϕ θ θ θ λ θ θ= = = =  (4.2.2)

so that  0 / 2,  0 /2θ π α π≤ ≤ ≤ ≤ .  Then the equation (4.2.1) transform 
to 

 
/ 2

2 2
0

( )  ( ),   0 / 2.
cos cos

d
π μ θ θ λ α α π

θ α
= − < <

−∫  (4.2.3)

Now, because of the requirements that the function ( )μ θ   is bounded at     
0  and  θ =  / 2θ π=  , we assume that   ( )μ θ   can be expanded into the 

uniformly convergent trigonometric series as given by

 0 2
1

1( )   +   cos 2 ,   0 / 2,
2 n

n
a a nμ θ θ θ π

∞

=

= < <∑  (4.2.4)
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where  2  ( 0,1,...)na n =   are unknown constants.
Substituting the expression (4.2.4) into the left side of the equation (4.2.3), 
interchanging the orders of integration and summation, we obtain

/2 /2

0 22 2 2 2
10 0

1 cos 2( )        ,  0 / 2.
2 cos cos cos cosn

n

d na a d
π πθ θλ α θ θ π

θ α θ α

∞

=

− = + < <
− −∑∫ ∫  (4.2.5)

We now evaluate the integrals in the relation (4.2.5) by re-expressing the 
integrals in terms of contour integrals, to give

/ 2 /2

2 2
0 0

2

C

cos 2 cos 2  = 2  
cos cos cos 2 cos 2

1 cos 1    =      
2 cos  cos 2 ( )( )

n

n

n i i

n nI d d

n i z dz
z z e z e

π π

π

β β
π

θ θθ θ
θ α θ α

ϕ
ϕ β −

−

≡
− −

+
= −

− −

∫ ∫

∫ ∫
 (4.2.6)

where ,  2 ,  and    iz e Cϕ β α= =  is the unit circle in the complex z-plane, 
with indentations at the points    and  .i iz e z eβ β−= =  We then use the 
Cauchy’s residue theorem and derive that

 
 sin 2 =     0,1, 2,...  .
sin 2n

nI nπ α
α

=  (4.2.7)

We thus obtain, by using the results (4.2.7) in (4.2.5), that

 2
n=1

( )    sin 2 ,  0 / 2.
sin 2 na nπλ α α α π

α

∞

− = < <∑  (4.2.8)

The coeffi cients 2  ( =1,2,...)na n  in the series (4.2.8), are obtained, by 
utilizing the orthogonality of the functions sin 2   ( 1, 2,...),n nα =  as 

 
/2

2 2
0

8   ( ) sin2  sin 2  ,   1, 2,....na n d n
π

λ α α α α
π

= − =∫  (4.2.9)

Next, utilizing the relations (4.2.9) into (4.2.4), we obtain

 
/ 2

0 2
0

1 8( )   ( ) sin 2  ( , ) 
2

a T d
π

μ θ λ α α α θ θ
π

= − ∫  (4.2.10)
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where

 

2

1 0 1

2 2

( , ) lim    sin 2  cos2

sin2             = 
8(cos cos )

n

x n
T x n nα θ α θ

α
θ α

∞

→ −
=

=

−

∑
 (4.2.11)

obtained by writing

 { }1sin 2  cos 2  = sin 2 ( ) sin 2 ( )
2

n n n nα θ α θ α θ+ + −

and summing up the series by standard tricks.  We thus determine ( )μ θ  
as given by

/ 2 2 2 2

0 2 2 2
0

1 4 (cos ) cos  (1 cos )( )     ,   0 / 2.
2 cos cos

fa d
π α α αμ θ α θ π

π θ α
−

= − < <
−∫  (4.2.12)

Reverting back to the old variables (see the relations (4.2.2)), we obtain 
the complete solution of the given integral equation (4.2.1) as

{ }
{ }1/ 21

01/ 2 2
0

(1 ) ( )1 1( )    ,   0 1,
(1 )

t t f t
x C dt x

t xx x
ϕ

π

⎡ ⎤−
= − < <⎢ ⎥

−− ⎢ ⎥⎣ ⎦
∫  (4.2.13)

where  0C   is an arbitrary constant, which can be identifi ed  as

 
1

0
0

1   ( ) .C x dxϕ
π

= ∫  (4.2.14)

This result agrees with the results obtained in earlier chapters.
We mention here that there has been a Lemma, proved by Ursell 

(1947), which is as follows:

Lemma   The singular integral equation

 2 2

( )  = ( ),   ,
a

u du y a y
y u
μ λ

∞

< < ∞
−∫  (4.2.15)

has, for suitable   ( )1/ 22 2( ),  a solution  ( )  such that  ( )y u u a uλ μ μ−   
is bounded near ,u a=  this solution being given by

( )
( )
( )

1/ 22 22

1/ 2 2 2 22 2

( )4( )    ,   ,
a

y a yu uu C dy a u
y y uu a

λ
μ

π

∞⎡ ⎤−
⎢ ⎥= + < < ∞
⎢ ⎥−− ⎣ ⎦

∫  (4.2.16)
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where C   is an arbitrary constant.

It may be verifi ed that the transformations

  sec ,    sec ,   0 ,  / 2u a y aθ α θ α π= = ≤ ≤  (4.2.17)

cast the integral equation (4.2.15) into the one which is similar to the 
equation (4.2.3) and hence the above Lemma can be proved easily.

4.3  USE OF POINCARE'-BERTRAND FORMULA

Here we explain the use of the well-known Poincare'-Bertrand formula, 
involving repeated singular integrals of the Cauchy type, to derive the 
solutions of some important singular integral equations with Cauchy 
type singularities. This has already been introduced in the last chapter.  A 
slightly different but equivalent form is given here.

Let L  be a smooth arc or contour, 1( , )t tϕ  a function of two points 
1  and   t t on  L satisfying the Hölder condition with respect to  1  and  ,t t   

and let   0t   be a fi xed point on L  not coinciding with one of the end 
points of L . Then the following formula, known as the Poincare'-Bertrand 
formula (PBF) holds good:

21 1
1 0 0 1

0 1 0 1

( , ) ( , )1       ( , )     .
( )( )L L L L

t t t tdt dt t t dt dt
t t t t t t t t

ϕ ϕπ ϕ
⎧ ⎫ ⎧ ⎫

= − +⎨ ⎬ ⎨ ⎬− − − −⎩ ⎭ ⎩ ⎭
∫ ∫ ∫ ∫  (4.3.1)

As a fi rst use of the PBE, we consider the problem of solving the 
following singular integral equation of the Cauchy type (cf. Chakrabarti 
(1980)).

Problem 1 Solve the singular integral equation

 

1

1

( )( ) ( )    = ( ),   1 1,tT x dt f x x
t x
ϕϕ

−

≡ − < <
−∫  (4.3.2)

where the functions  ( )  and  ( )x f xϕ  are assumed to satisfy the Hölder 
conditions in (–1,1).

Solution

We rewrite both sides of the equation (4.3.2) as

 ( ) ( )1/ 22 1/ 2 2(1 )  ( ) ( ) = 1 ,   1 1,x T x x f x xϕ− − − < <  (4.3.3)
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and then multiply both sides of the equation (4.3.3) by
1
21 1   

1
x
x x

β

ξ

−−⎛ ⎞
⎜ ⎟+ −⎝ ⎠

for  1 1ξ− < < , and  integrate with respect to 

   between  1  to  1,   where  x x x β= − =   is an unknown constant to be
determined, as described below, such that 0 1.Reβ< <  Then interchanging 
the order of the repeated integrals, in the above procedure, by using the 
PBF (4.3.1), with ( 1,1),L = −  we arrive at the following result:

( )

1 1
2

1 1

1 1/221 2

1

1 ( ) 1 1 1(1 ) ( )   (1 )  +
1 1

1 ( )1         ,  1 1.
1

t xx dx dt
t x t x x

x f xx dx
x x

β β

β

ξ ϕξ π ϕ ξ
ξ ξ ξ

ξ
ξ

− −

−

−

⎧ ⎫⎛ ⎞ ⎛ ⎞+ +⎪ ⎪⎛ ⎞− − + −⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

−−⎛ ⎞= − < <⎜ ⎟+ −⎝ ⎠

∫ ∫

∫
 (4.3.4)

If we now use the following result (cf. Gakhov (1966))

( )
1

1

1 11  = (1 ) cot ( ),   1 1
1 sin 1

x dxx C
x x

β βπ λλ π πβ β λ
λ πβ λ−

⎡ ⎤+ +⎛ ⎞ ⎛ ⎞− − − − − < <⎢ ⎥⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  (4.3.5)

where 

 
1

1

1( )  ,
1

xC dx
x

β

β
−

+⎛ ⎞= ⎜ ⎟−⎝ ⎠∫  (4.3.6)

the relation (4.3.4) takes up the form

( )

1 1
2

1 -1
1 1/221 2

1

1 ( ) 1(1 ) ( )   ( ) cot   (1 )
1 sin 1

1 ( )1 1              (1 )  =   ,   1 1.
1 1

}

t tt dt t
t t

x f xxdt dx
x x

ββ

ββ

ξ π ϕξ π ϕ ξ ϕ π πβ
ξ πβ ξ

ξξ ξ
ξ ξ

−

−

−

⎛ ⎞+ ⎧ +⎛ ⎞− − + + −⎨ ⎜ ⎟⎜ ⎟− − −⎝ ⎠⎩⎝ ⎠

−⎛ ⎞+ −⎛ ⎞− − − < <⎜ ⎟⎜ ⎟− + −⎝ ⎠⎝ ⎠

∫ ∫

∫

 (4.3.7)

We thus fi nd that the relation (4.3.7) is satisfi ed by the function 
( )xϕ  of the given integral equation (4.3.2) for all constants 
  such that  0 1.Reβ β< <  It is this important relation (4.3.7), which 

will produce solution of the integral equation (4.3.2) by choosing the 
unknown constant β  appropriately. We observe that the only choice for

1  is  ,
2

β β =  and then (4.3.7) produces

 
( )

( )1/ 221

1/ 22
1

1 ( )1 1( )   ,   1 1,
1

x f x
A dx

x
ϕ ξ ξ

π ξπ ξ −

⎡ ⎤−
⎢ ⎥= − − < <
⎢ ⎥−− ⎣ ⎦

∫  (4.3.8)
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where

 
1

1

 ( ) A t dtϕ
−

= ∫  (4.3.9)

and can be regarded as an arbitrary constant since

 
( )

1

1/22
1

  = 0 for  1 1.
1 ( )  

d x
x

ξ

ξ ξ−

− < <
− −

∫

It may be noted that if ( )tϕ  is an odd function, then 0.A =
As a second use of the PBF, we consider the following problem, 

occurring in the theory of dislocations (cf. Williams (1978)).

Problem 2 Solve the singular integral equation 

  
1

0

1  ( ) ( ),   0 1p d hψ η η σ σ
η σ η σ
⎛ ⎞

+ = < <⎜ ⎟− +⎝ ⎠
∫  (4.3.10)

where  ( 1)p > −   is a known constant, and   ψ   and h  satisfy Hölder 
conditions in (0,1).

Solution

We fi rst use the following transformations:

  ( ) ( ) ( ) ( )

( )

1/ 2 1/ 2 1/ 22 2 2 2 1/ 2

2 1/ 2

1 ,   1   and  ( ) 1 (1 ) ,

( ) (1 ) ,   ( ) ( ),   ( ) ( ),   0.

t x t t t

g x h x t t g t g t t

η σ ϕ ψ

ϕ ϕ

= − = − = − −

= − − = − − = − >
 

(4.3.11)

Then the given equation (4.3.10) gets transformed into the new singular 
integral equation, as given by

( ) ( )1/221 1
1/22 2

1 1

1 ( )( ) 21           ( ),   1 1,
- 1

t tta x dt dt g x x
t x t x p

ϕϕ

− −

−
− + = − < <

− +∫ ∫  (4.3.12)

where

 2 1  .
1

pa
p

−
=
+

 (4.3.13)
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We next multiply both sides of equation (4.3.12) by 
1
21 1

1
x
x x

β

ξ

−−⎛ ⎞
⎜ ⎟+ −⎝ ⎠

  for 1 1,ξ− < < and integrate with respect  to x

between 1  to  1, where  x x β= − =  is an  unknown constant to be 
determined, as explained below, with 0 1,Reβ< <  so that the solution of 
the integral equation (4.3.12) is determined. We obtain, then, by using the 
above procedure and by applying  the PBF (4.3.1)  with   ( 1,1),L = −

 

( ) ( )
1 1

2 2 2

1 1

1 ( ) 1 1 11 1 ( )  (1 )
1 1

t xa a x dx d
t x t x x

β βξ ϕξ π ϕ ξ
ξ ξ ξ− −

⎧ ⎫⎛ ⎞ ⎛ ⎞+ +⎪ ⎪⎛ ⎞− − + + − +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫

 

( ) 11/ 221 1 2

1
1 1

1 ( ) 1 1 1  = g ( ),   1 1
1

t t x dx dt
t x t x x

βϕ
ξ ξ

ξ ξ

−

− −

⎧ ⎫− ⎛ ⎞−⎪ ⎪⎛ ⎞+ + − < <⎨ ⎬⎜ ⎟ ⎜ ⎟− + − −⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫  (4.3.14)

where

  

1
1 2

1
-1

2 1 ( )( )    .
1 1

x g xg dx
p x x

β

ξ
ξ

−
−⎛ ⎞= ⎜ ⎟+ + −⎝ ⎠∫   (4.3.15)

Changing   to  1β β−  in the relation (4.3.14), we get 
 

( ) ( )
1 11 1

2 2 2

1 1

1 ( ) 1 1 11 1 ( )  (1 )
1 1

t xa a x dx dt
t x t x x

β βξ ϕξ π ϕ ξ
ξ ξ ξ

− −

− −

⎧ ⎫⎛ ⎞ ⎛ ⎞+ +⎪ ⎪⎛ ⎞− − + + − +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫

 

( ) 11/ 221 1 2

2
1 1

1 ( ) 1 1 1    = ( ),   1 1,
1

t t x dx dt g
t x t x x

βϕ
ξ ξ

ξ ξ

−

− −

⎧ ⎫− ⎛ ⎞−⎪ ⎪⎛ ⎞+ + − < <⎨ ⎬⎜ ⎟ ⎜ ⎟− + − −⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫

 (4.3.16)

where

 

1
1 2

2
1

2 1 ( )( )     .
1 1

x g xg dx
p x x

β

ξ
ξ

−

−

−⎛ ⎞= ⎜ ⎟+ + −⎝ ⎠∫  (4..3.17)

We now evaluate the inner integrals in the relations (4.3.14) and 
(4.3.16).  By using the result (4.3.5), we obtain
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( )

12
2 2

1

1
2

-1

1 11/221 2 2

1

1(1 ) (1 ) ( )   ( ) 
1 sin

( ) 1 1 cot   (1 ) (1 )
1 1

1 ( ) 1 1 tan  
1 1

 g

aa t dt

t ta t dt
t t

t t t dt
t t

β

β β

β β

ξ πξ π ϕ ξ ϕ
ξ πβ

ϕ ξπ πβ ξ
ξ ξ

ϕ ξπ πβ
ξ ξ

−

− −

−

⎛ ⎞+
− − + +⎜ ⎟−⎝ ⎠

⎧ ⎫⎛ ⎞+ +⎪ ⎪⎛ ⎞− − − −⎨ ⎬⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫− ⎛ ⎞+ +⎪ ⎪⎛ ⎞+ −⎨ ⎬⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

=

∫

∫

∫

1( ),   1 1,ξ ξ− < <        

(4.3.18)

and

( )

1 12
2 2

1

1 11
2

-1

1 11/221 2 2

1

1(1 ) (1 ) ( )   ( ) 
1 sin

( ) 1 1 cot   (1 ) (1 )
1 1

1 ( ) 1 1 tan  
1 1

aa t dt

t ta t dt
t t

t t t
t t

β

β β

β β

ξ πξ π ϕ ξ ϕ
ξ πβ

ϕ ξπ πβ ξ
ξ ξ

ϕ ξπ πβ
ξ ξ

−

−

− −

− −

−

⎛ ⎞+
− − + +⎜ ⎟−⎝ ⎠

⎧ ⎫⎛ ⎞+ +⎪ ⎪⎛ ⎞+ − − −⎨ ⎬⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫− ⎛ ⎞+ +⎪ ⎪⎛ ⎞− −⎨ ⎬⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎪⎩

∫

∫

∫

2 g ( ),   1 1,

dt

ξ ξ

⎪⎭
= − < <

             (4.3.19) 

  

Multiplying the relation (4.3.18) by  1
1

β
ξ
ξ

⎛ ⎞−
⎜ ⎟+⎝ ⎠

 and the relation (4.3.19) by  1
1
1

β
ξ
ξ

−
⎛ ⎞−
⎜ ⎟+⎝ ⎠

,
and adding, we obtain  

   

1
2 2

1 2

1 12
2

1

1

1 12 (1 )(1 ) ( ) =  g ( ) + ( )
1 1

1 1 ( ) 1 1cot   (1 )  
sin 1 1 1 1

1 1 tan  
1 1

a g

a C t ta t
t t

t dt
t

β

ββ β

β

ξ ξπ ξ ϕ ξ ξ ξ
ξ ξ

π ξ ξ ϕ ξπ πβ
πβ ξ ξ ξ ξ

ξ π πβ
ξ

−

−

−

−

⎛ ⎞ ⎛ ⎞− −
− + − ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − +⎪ ⎪− + + −⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + − + −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩⎪ ⎪⎩ ⎭

⎫⎛ ⎞− + ⎪− −⎬⎜ ⎟+ −⎝ ⎠ ⎪⎭

∫

( )
1
21

1/22

1

11
2

( ) 1 1 1
1 1

1 1 ,   1 1,
1 1

t tt
t t

t dt
t

ββ

β β

ϕ ξ
ξ ξ

ξ ξ
ξ

−

−

− −

⎧⎛ ⎞− +⎪ ⎛ ⎞− ⎨ ⎜ ⎟⎜ ⎟− + −⎝ ⎠⎝ ⎠⎪⎩
⎫⎛ ⎞− + ⎪⎛ ⎞− − < <⎬⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠ ⎪⎭

∫

     (4.3.20)                                                                                                                      

where

 
1

1

 ( ) .C t dtϕ
−

= ∫  (4.3.21)
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Now, noting that

 ( )
1/ 2

1/ 22 11 (1 ) ,
1

tt t
t
+⎛ ⎞− = − ⎜ ⎟−⎝ ⎠

 
we observe from the relation (4.3.20) that the solution   ϕ    of the integral 
equation (4.3.12) will be possible to be determined from the relation 
(4.3.20)  itself, if we choose the constant   β    such that

 2 cot tana πβ πβ=
which is equivalent to

 tan ,aπβ =  (4.3.22)

and, in that event, the solution to the equation (4.3.12) is  

 

1

1 22 2

12

1 1 1( ) ( ) ( )
2 (1 )(1 ) 1 1

1 1          ,   1 1.
sin 1 1

t tt g t g t
a t t t

a C t t t
t t

−

−

⎡ − −⎛ ⎞ ⎛ ⎞= − +⎢⎜ ⎟ ⎜ ⎟+ − + +⎝ ⎠ ⎝ ⎠⎢⎣
⎤⎧ ⎫− −⎪ ⎪⎛ ⎞ ⎛ ⎞− + − < <⎥⎨ ⎬⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎥⎪ ⎪⎩ ⎭⎦

β β

β β

ϕ
π

π
πβ

 (4.3.23)

Now, in our given integral equation (4.3.12), ϕ   is an odd function (cf. the 
transformation (4.3.11), and hence we have  0C = , so that the solution 
(4.3.23) fi nally takes up the form

1

1 22 2

1 1 1( ) ( ) ( ) ,   1 1
2 (1 )(1 ) 1 1

t tt g t g t t
a t t t

β β

ϕ
π

−⎡ ⎤− −⎛ ⎞ ⎛ ⎞= − + − < <⎢ ⎥⎜ ⎟ ⎜ ⎟+ − + +⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (4.3.24)

where the functions   1 2  and  g g   are defi ned by the relations (4.3.15) and 
(4.3.17) respectively.

The form (4.3.24) of the solution of the integral equation (4.3.12) agrees 
with that obtained by Lewin (1961) by employing a different method.

4.4 SOLUTION OF SINGULAR INTEGRAL EQUATION 
INVOLVING TWO INTERVALS

Using the well known inverse of the Cauchy singular operator on a single 
interval, derived in section 3, along with certain standard results associated 
with singular integrals, the general solution of a singular integral equation 
in a double interval, whose kernel involves a combination of logarithmic 
and Cauchy type singularities, is obtained here.
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We consider the singular integral equation

1 1( )     = ( ),   ,
L

t xt K ln dt f x x L
t x x t x t

ϕ ⎧ − ⎫
+ + ∈⎨ ⎬+ + −⎩ ⎭

∫  (4.4.1)        

where   0,   ( )K f x>    is a prescribed   function,  L   is the union  of two 
intervals  (0, )a  and  ( , ) ( ),b a b∞ <   and

 ( )1/ 2
( ) 0   as    where  , .t t c t c c a bϕ = − → =  (4.4.2)

This integral equation arises in the study of surface water wave scattering 
by a fully immersed thin vertical plate of fi nite width (see Chakrabarti 
(1989) for similar studies).  Banerjea and Mandal (1993) used a method to 
solve this integral equation which is somewhat involved.

Here we employ a method of some special type that avoids many details 
involving complex variable theory and the Riemann-Hilbert problem used 
in Chapter 3 for tackling such singular integral equations.

To solve the integral equation (4.4.1), we rewrite it in the following 
form

 1 2
0

1 1 1 1( )    +  ( )   

( ),   

a

b

t x t xt K ln dt t K ln dt
t x x t x t t x x t x t

f x x L

∞⎧ − ⎫ ⎧ − ⎫
+ + + +⎨ ⎬ ⎨ ⎬+ + − + + −⎩ ⎭ ⎩ ⎭

= ∈

∫ ∫ϕ ϕ

 

(4.4.3) 

where

 1

2

( )  for  0 ,
( )

( )  for  ,
t t a

t
t b t

ϕ
ϕ

ϕ
< <⎧

= ⎨ < < ∞⎩
 (4.4.4)

and

 1

2

( )  for  0 ,
( )

( )  for  .
f x x a

f x
f x b x

< <⎧
= ⎨ < < ∞⎩

 (4.4.5)

After making the substitutions

 1 1 1( )   ( ) ( ),   0 ,
a

t

t K s ds t t aψ ϕ ϕ= − + < <∫  (4.4.6)

and

 2 2 2( )   ( )  + ( ),  ,
t

b

t K s ds t b tψ ϕ ϕ= < < ∞∫  (4.4.7)
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the equation (4.4.3) can be expressed as

 1 2
2 2 2 2

0

( ) ( ) ( )    ,   .
2

a

b

t t f xdt dt x L
x t x t x
ψ ψ∞

+ = ∈
− −∫ ∫  (4.4.8)

Letting

 

2 2 2 2

1 2
1 2

,   ,   ,   ,
( ) ( ) ( )( ),   ( ),   and  ( ),

x t a b
t t f x g

t t x

ξ η α β
ψ ψλ η λ η ξ

= = = =

− = − = =
 (4.4.9)

the equation (4.4.8) can be rewritten as 

 1 2

0

( ) ( )    ( ),   d d g L
α

β

λ η λ ηη η ξ ξ
η ξ η ξ

∞

′+ = ∈
− −∫ ∫  (4.4.10)

where L′  is the union of the intervals   (0, )  and  ( , ).α β ∞  To solve the 
equation (4.4.10) we require the following defi nitions and results.

Defi nitions  

Operators:       

We defi ne the operators 1 1 2 2, ,   and  T T T T� �  as follows:

   (i) 1
0

( )( )( )     for  (0, ),fT f d
α ηξ η ξ α
η ξ

= ∈
−∫

 (ii) 
0

( )( )     for  (0, ),f d
α ηξ η ξ α
η ξ

= ∉
−∫     

 (iii) 2
( )( )( )     for  ( , ),fT f d

β

ηξ η ξ β
η ξ

∞

= ∈ ∞
−∫  

 (iv) 
( )( )     for  ( , ),f d

β

ηξ η ξ β
η ξ

∞

= ∉ ∞
−∫

(T  
~

1  f ) 

(T  
~

2  f ) 
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For simplicity, we use the following notations

 (i) 
1/ 2 1/ 2

1 1( )   for  0 ,   ( )   for  >ξ ξξ ξ α ξ ξ β
α ξ ξ α
⎛ ⎞ ⎛ ⎞

Δ = < < Δ =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
�

 (ii) ( ) ( )1/ 2 1/ 2
2 2( )   for  ,   ( )   for  0< < ,ξ ξ β ξ β ξ β ξ ξ βΔ = − > Δ = −�

 (iii) { } { }1/ 2 1/ 2
3 3( ) ( )   for  0 ,   ( ) ( )   for  > .ξ ξ α ξ ξ α ξ ξ ξ α ξ βΔ = − < < Δ = −�

The inverse operators:
The inverse operator 1

1T −  is obtained as (see equation (3.4.28))

 ( )1
1 0 1 32

3

1 1( )  ( )( ) ,   (0, )
( )

T h C T hξ ξ ξ α
ξ π

− ⎧ ⎫= − Δ ∈⎨ ⎬Δ ⎩ ⎭

where  0C   is an arbitrary constant.  Since

 ( ){ }1 1 1 3
1 3

1 1( )( ) )( constant
( ) ( )

T h T hξ ξ
ξ ξ

Δ = Δ +
Δ Δ

we can write 

 ( )1 1
1 1 12

3 1

1( ) ( )( ),   (0, )
( ) ( )

CT h T hξ ξ ξ α
ξ π ξ

− = − Δ ∈
Δ Δ

 (4.4.11)

where  1C   is also an arbitrary constant.  We can use (4.4.11) as the 
defi nition of the inverse operator 1

1T − . The inverse operator 1
2T −  can 

similarly be defi ned as

 ( )1
2 2 2 22

2

1 1( ) ( )( ) ,   ( , ),
( )

T h C T hξ ξ ξ β
ξ π

− ⎧ ⎫= − Δ ∈ ∞⎨ ⎬Δ ⎩ ⎭
 (4.4.12)

where   2C   is an arbitrary constant.

Results The following results can be proved easily (left as simple 
exercises):

 1.      ( )1 1
1 1

3

( ) ( )
( )

CT T f fξ ξ
ξ

−⎡ ⎤ = +⎣ ⎦ Δ

Δ ~
1

Δ ~
2

Δ ~
3
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 2.      ( )1 2
2 2

2

( ) ( ).
( )

CT T f fξ ξ
ξ

−⎡ ⎤ = +⎣ ⎦ Δ

 3.      ( ) ( )1 1
1 2 2 1

3 1

1( ) ( ).
( ) ( )

CT T f T fξ ξ
ξ π ξ

−⎡ ⎤ ⎡ ⎤= − Δ⎣ ⎦ ⎣ ⎦Δ Δ
� � �      

 4.      ( ) ( )1 2
2 1 1 2

2 2

1( ) ( ).
( ) ( )

CT T f T fξ ξ
ξ π ξ

−⎡ ⎤ ⎡ ⎤= − Δ⎣ ⎦ ⎣ ⎦Δ Δ
� � �

 5.      ( ) ( ) ( )1 ( ) ( ) ( ),
( )

where  ,  1, 2  and  1, 2.

j k j k j k
j j

T T f T f T f

j k j k

πξ ξ π ξ
ξ

⎡ ⎤⎧ ⎫⎪ ⎪ ⎡ ⎤Δ = Δ −⎢ ⎥⎨ ⎬ ⎣ ⎦Δ Δ⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
≠ = =

� � � �
�

  6.      ( ) ( )1 ( ) ( ),   1, 2.
( )j j j j j

j j

T T f T f jπξ ξ
ξ

⎡ ⎤⎧ ⎫⎪ ⎪ ⎡ ⎤Δ = Δ =⎢ ⎥⎨ ⎬ ⎣ ⎦Δ Δ⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
� �

�

  7.      1
1

1 ( ) .T ξ π
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟Δ⎝ ⎠⎣ ⎦

  8.      1
1 1

1 1( ) 1 .
( )

T ξ π
ξ

⎡ ⎤⎛ ⎞ ⎧ ⎫
= −⎨ ⎬⎢ ⎥⎜ ⎟Δ Δ⎝ ⎠ ⎩ ⎭⎣ ⎦

�
�

  9.      1
3 3

1 ( ) .
( )

T πξ
ξ

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟Δ Δ⎝ ⎠⎣ ⎦

�
�

 10.     2
2 2

1 ( ) .
( )

T
⎡ ⎤⎛ ⎞

=⎢ ⎥⎜ ⎟Δ Δ⎝ ⎠⎣ ⎦
�

�
πξ
ξ

 

1 2  and  CC   are arbitrary constants in all the above results.

The equation (4.4.10) can be written as a system of equations as given 
by

 ( ) ( )1 1 2 2 1( ) ( ) ( ),   0T T hλ ξ λ ξ ξ ξ α+ = < <�  (4.4.13)

and
  ( ) ( )1 1 2 2 2( ) ( ) ( ),   T T hλ ξ λ ξ ξ ξ β+ = >�  (4.4.14)
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where

 
1/ 2 1/ 2

1 2
1 21/ 2 1/ 2

( ) ( )( ) ,   ( ) .g gh hξ ξξ ξ
ξ ξ

= =  (4.4.15)

Applying the operator 1
2T − , as defi ned by the relation (4.4.12), on both 

sides of the equation (4.4.14) and using the results 2 and 4 above, we get

 ( ){ } ( ){ }2 1 2 1 2 2 2 22
2

1 1 1( ) ( ) ( ) .
( )

T T h Cλ ξ λ ξ ξ
ξ π π
⎡ ⎤= Δ − Δ −⎢ ⎥Δ ⎣ ⎦
� �  (4.4.16)

Using the expression (4.4.16) in the equation (4.4.13) along with the 
results 5, 6 and 10 above, we get

 ( ) ( ){ }1 2 1 2 2 2 2 2 1
1( ) ( ) ( ) ( ).T T h C hλ ξ ξ π ξ ξ
π

⎡ ⎤Δ = Δ + + Δ⎣ ⎦
� � �  (4.4.17)

Again, applying the operator 1
1 ,T −  on both sides of the equation 

(4.4.17), along with the results 1, 3 and 11 above, we get

( ) 1
1 2 2 1 1 2 1 2 2 1 22

3 1

1 1 1( ) ( ) [ ( )]( ) [ ( )]( )
 ( ) ( )

C
C T h T h

π
λ ξ ξ ξ ξ

π ξ ξ π
+ ⎡ ⎤Δ = − + Δ Δ + Δ Δ⎢ ⎥Δ Δ ⎣ ⎦

� � � � . (4.4.18)

After a little simplifi cation, the equation (4.4.18) can be expressed as

{ }

1/2 1/2 1/2
1 1

1 1 11/2 2 1/2 1/2

1/2 1/2

2 21/2

1 ( )( ) ( ) ( )
( )( )( )

( )         +  ( ) ( ) ,   0 ,
( )

A B T h

T h

ξ α ξ η β ηλ ξ η ξ
π ξ β ξ α ηπ ξ α ξ β ξ

η η β η ξ ξ α
η α

⎡⎡ ⎤⎛ ⎞⎛ ⎞+ − −
= − − ⎢⎢ ⎥⎜ ⎟⎜ ⎟− −− − ⎝ ⎠ ⎢ ⎝ ⎠⎣ ⎦⎣
⎡ ⎤⎤⎛ ⎞−

< <⎢ ⎥⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎦⎣ ⎦
�

 (4.4.19)

 
where

 1 2 1 2 1,   (1 ) .A C B C Cπ πα π= − = − +  (4.4.20)

and these represent two arbitrary constants.  Using the expression on the 
right side of the equation (4.4.18), in the equation (4.3.16) and utilizing the 
results 5, 6, 8 and 9, we arrive at the expression for the unknown function 

2 ( )λ ξ  as given by

{ }

1/2 1/2 1/2
1 1

2 1 11/2 2 1/2 1/2

1/2 1/2

2 21/2

1 ( )( ) ( ) ( )
( )( )( )

( )            +  ( ) ( ) ,   > .
( )

A B T h

T h

ξ ξ α η β ηλ ξ η ξ
π ξ ξ β α ηπ ξ ξ α ξ β

η η β η ξ ξ β
η α

⎡⎡ ⎤⎛ ⎞⎛ ⎞+ − −
= − − ⎢⎢ ⎥⎜ ⎟⎜ ⎟− −− − ⎝ ⎠ ⎢ ⎝ ⎠⎣ ⎦⎣

⎡ ⎤⎤⎛ ⎞−
⎢ ⎥⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎦⎣ ⎦

�

 (4.4.21)
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Thus, the solution of the equation (4.4.10) is given by the expressions 
in the relations (4.4.19) and (4.4.21) for 0   and  ξ α ξ β< < > , 
respectively. Using the transformations as given by the relations (4.4.4) 
and (4.4.15) in the solutions (4.4.19) and (4.4.21), we fi nally obtain the 
solutions corresponding to the equation (4.4.8) as given by

( )( ){ }
1/ 22 2 2

1 1
1 1/ 2 2 2 22 2 2 2

 2( )  ( ),   0 ,A x B a xx P x x a
b xa x b x

ψ
ππ

⎛ ⎞+ −
= + < <⎜ ⎟−⎝ ⎠− −

 (4.4.22)

and

( )( ){ }
1/22 2 2

1 1
2 1/2 2 2 22 2 2 2

 2( )  ( ),   ,A x B x ax P x x b
x bx a x b

ψ
ππ

⎛ ⎞+ −
= − + >⎜ ⎟−⎝ ⎠− −

 (4.4.23)

where
1/ 2 1/ 22 2 2 2

1 2
2 2 2 2 2 2 2 2

0

 ( )  ( )( )      .
a

b

t f t t f tb t t bP x dt dt
a t t x t a t x

∞⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠
∫ ∫  (4.4.24)

Using the expressions (4.4.6) and (4.4.7) along with the solutions (4.4.22) 
and (4.4.23), we obtain the explicit solution of the integral equation (4.4.1) 
as given by the formulae

 
1 1

2 2

( )    ( ) ,   0

( )

( )    ( ) ,   .

x
Kx Ku

a

x
Kx Ku

a

dx e e u du x a
dx

x
dx e e u du x b
dx

ϕ ψ

ϕ

ϕ ψ

−

−

⎧ ⎡ ⎤
= < <⎪ ⎢ ⎥

⎪ ⎣ ⎦= ⎨
⎡ ⎤⎪ = >⎢ ⎥⎪
⎣ ⎦⎩

∫

∫
 (4.4.25)

This method of solution is given by Chakrabarti and George (1994). The 
results (4.4.25) fully agree with those obtained by Banerjea and Mandal 
(1993). In the case of nonhomogeneous equation (4.4.1), for which 

( ) 0,f x ≡  the solutions are obvious from the results (4.4.22) and (4.4.23), 
and are in full agreement with the results obtained by Estrada and Kanwal 
(1987,1989).



In this chapter we explain the occurrence and usefulness of hypersingular
integral equations in various branches of applied mathematics. Starting 
with the basic defi nition of hypersingular integrals, we will build the 
subject matter of this topic in order to apply it to certain specifi c problems 
involving cracks in an elastic medium and scattering of surface water 
waves by obstacles in the form of thin barriers.

5.1  DEFINITIONS 

Starting with the singular integral of the Cauchy type, for a Hölder 
continuous function ( ),   for ( , ),t t a bϕ ∈  as defi ned by the relation

0

( ) ( ) ( )  lim        ,   ,
( )

b x b

a a x

t t tdt dt dt a x b
t x t x t x

ε

ε
ε

ϕ ϕ ϕ−

→+
+

⎡ ⎤
= + < <⎢ ⎥− − −⎣ ⎦

∫ ∫ ∫  (5.1.1)

we defi ne the hypersingular integral of order 2 for the same function  
( ),tϕ   as

2 2 20

( ) ( ) ( ) ( ) ( ) lim      ,   .
( ) ( ) ( )

b x b

a a x

t t t x xdt dt a x b
t x t x t x

ε

ε
ε

ϕ ϕ ϕ ϕ ε ϕ ε
ε

−

→+
+

⎡ ⎤− + +
= + + < <⎢ ⎥− − −⎣ ⎦

∫ ∫ ∫  (5.1.2)

In the circumstances when ( )tϕ  is also differentiable in  (a, b), we can 
relate the two integrals in (5.1.1) and  (5.1.2) as

    
2

( ) ( )     ,   .
( )

b b

a a

t d tdt dt a x b
t x dx t x
ϕ ϕ⎡ ⎤

= < <⎢ ⎥− −⎣ ⎦
∫ ∫  (5.1.3)

As an example, we fi nd that for ( ) 1,  1  and  1t a bϕ = = − =  we obtain 
that

Chapter 5        

Hypersingular Integral Equations
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11

2 0
11

2

1 1 1 2  lim  
( )

2                      = ,  1 1.
1

t x t

t t x

dt
t x t x t x

x
x

ε

ε
ε ε

= − =

→+
=− = +−

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤= − − −⎨ ⎬⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

− − < <
−

∫
 (5.1.4)

We then observe that, as a special case, we have

 
1

2
1

1  2dt
t−

= −∫  (5.1.5)

showing that the value of the hypersingular integral 
1

2
1

1  ,dt
t−

∫
involving the positive function  2

1
t   is a negative number (!), which is 

not an absurd result in this area of mathematics involving hypersingular 
integrals, the reason for which is attributed to the fi nite part of the otherwise 
divergent integral, as introduced by Hadamard (1952).

The general hypersingular integral of order ( 1) ( 1)n n+ ≥  can be 
defi ned by means of the relation (cf. Fox (1957)).

1 1 10

( ) ( ) ( )  lim        ( , ) ,  ,
( ) ( ) ( )

b x b

nn n n
a a x

t t tdt dt dt H x a x b
t x t x t x

ε

ε
ε

ϕ ϕ ϕ ε
−

+ + +→+
+

⎡ ⎤
= + − < <⎢ ⎥− − −⎣ ⎦

∫ ∫ ∫  (5.1.6)

where

 
( ) ( )1

0

1 ( ) ( 1) ( )( , )   
! ( ) 

k n k kn

n n k
k

x xH x
k n k

ϕ ε ϕ εε
ε

−−

−
=

− − − +
=

−∑  (5.1.7)

whenever the ( )th derivative  ( )  of  ( )  is kk x xϕ ϕ  Hölder continuous in 
( , )  fora b  0,1,... 1.k n= −  

The following theorem is extremely useful in dealing with 
hypersingular integrals (cf. Fox (1957)).

Theorem 5.1: If , ( , ),  i.e.  ( )nC a b tμϕ ϕ∈  possesses a  Hölder continuous 
derivative of order n  with

 ( ) ( )
1 2 1 2 ( ) ( )      n nt t A t t μϕ ϕ− < −
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whenever  t1, t2 ��(a,b), A  is a positive constant and   0 < μ < 1,  then 
the limit defi ned in the relation (5.1.6) exists, and we say that the

hypersingular integral  1

( )  
( )

b

n
a

t dt
t x
ϕ

+−∫  of order  ( 1)n +  exists.

Proof: Using the property that ( ) ( )  exists for  ( , ),n t t a bϕ ∈  we write by 
utilizing the Taylor’s theorem, that for ( , )x a b∈ ,

)(
2 1

1(1) (2) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1! 2! ( 1)! !

n n
n nt x t x t x t xt x x x x

n n

−
−− − − −

= + + + + +
−

�ϕ ϕ ϕ ϕ ϕ ϕ θ  (5.1.8)

whenever    lies between    and  .t xθ   The substitution of the relation 
(5.1.8), along with the relation (5.1.7) into the expression inside the square 
bracket in (5.1.6), is legitimate as it is clearly observed that the limit exists. 
This completes the proof of the theorem.

Remark

It is obvious that the defi nition (5.1.6) of hypersingular integrals of order 
( 1)n +  can be extended to the case when the integration is taken along 
the arc of a plane curve and the variables involved are all complex, with 

  and  a b  representing end points of the arc of integration, x  being any 
fi xed part on the arc.

Followings are some important properties of hypersingular integrals:

Property 1: If  ����Cn.k (a,b) (a,b being real numbers and a<b���and if 
0 < m ��n (n�� 1), then

 

(k) ( )1

1
0

( )

1

( ) ( 1)! ( ) ( )    
( ) ! ( ) ( )

( )! ( )                        +    ,   .
! ( )

b kn

n n k n k
ka

b m

n m
a

t n k a bdt
t x n a x b x

n m t dt a x b
n t x

ϕ ϕ ϕ

ϕ

−

+ − −
=

− +

⎡ ⎤− −
= −⎢ ⎥− − −⎣ ⎦

−
< <

−

∑∫

∫
 (5.1.9)

The extensions of the above property 1, to the case of general complex 
integration are the followings.
Property 1A: If φ (z) is single valued and analytic in a domain which 
includes a simple closed Jordan curve C and its interior, then

 1 1

( ) ( )! ( )     ,   
( ) ! ( )

m

n n m
C C

z n m zdz dz m n
z u n z u
ϕ ϕ

+ − +

−
= ≤

− −∫ ∫  (5.1.10)

where  the integrals are taken once round C and u is a fi xed point on C.
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Property 1B:     
If (i) , ( , )  for some      such that   0 1,   (ii) for largenC μϕ μ μ∈ −∞ ∞ < <  

( )( ) ( ),  ( ) 0 ,  ( 0,  ),   and   (iii) ( ) / 0m n m p k n kt t t p m n t tϕ ϕ− − −= > ≤ →       
(k = 0,1..., m – 1) as  ,t → ±∞  then

 
( )

1 1
-

( ) ( )! ( )     ,   .
( ) ! ( )

m

n n m

t n m tdt dt m n
t x n t x
ϕ ϕ∞ ∞

+ − +
−∞ ∞

−
= ≤

− −∫ ∫  (5.1.11)

Property 2: If the conditions, involving the property 1B , on the function 
( )tϕ  are valid, and if for large ,t  ( ) 1/ 2( ) 0( )  for  0,n pt t pϕ − −= >  then 

the following results, extending the Hilbert transform, hold good.

1
-

1 ( )If  ( )    ,   ,  then
( )n

tg x dt x
t x
ϕ

π

∞

+
∞

= −∞ < < ∞
−∫

  i) 2( ) ( , )g x L∈ −∞ ∞ ,

 ii) ( ) ! ( )( )    n n g tx dt
t x

ϕ
π

∞

−∞

= −
−∫

and

  iii) { } { }22 ( )
2

1( )   ( ) .
( !)

ng x dx x dx
n

ϕ
∞ ∞

−∞ −∞

=∫ ∫

The extensions of the Plemelj’s formulae for Cauchy integrals to 
hypersingular integrals are given by the following general property.

Property 3: If  (i) for all points of a positively oriented arc C  in the 
complex z-plane except possibly at the end points of ,  ( )C zϕ  possesses 
derivatives upto order ,n  (ii) ( )zϕ  satisfi es Hölder condition on C  and t  
is a point on C , other than the end points of C, then

 
( )

+1
C

( ) 1 ( )( )     
2( !) 2 ( - )

n

n

tt d
n i t

ϕ ϕ τ τ
π τ

±Φ = ± + ∫  (5.1.12)

where  ( )t±Φ   are the limiting values of the function

 1

1 ( )( )    ,   
2 ( )n

C

z dt z C
i z

ϕ τ
π τ +Φ = ∉

−∫ ,

as  z   approaches  C  from the left or from the right of  C.
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5.2  OCCURRENCES OF HYPERSINGULAR INTEGRAL 
EQUATIONS

Many two-dimensional boundary value problems in mathematical physics 
can be formulated as hypersingular integral equations. In Chapter 1, how 
the problem of two-dimensional fl ow post a rigid plate in an infi nite fl uid 
gives rise to a simple hypersingular integral equation is demonstrated.  
Some further examples involving acoustic scattering by a hard plate, 
water wave interaction with thin impermeable barriers, stress fi elds around 
cracks, in which hypersingular integral equations occur, are now given

Problem 1: Potential fl ow past a fl at plate
We consider the problem of an irrotational two-dimensional fl ow in an 
ideal fl uid past a rigid fl at plate ,L  say.  Assuming that the total velocity 
potential can be expressed as

 0( , ) ( , ) ( , )tot x y x y x yϕ ϕ ϕ= +  (5.2.1)

where  0 ( , )x yϕ   is the known velocity potential of the fl ow in the absence 
of the plate    and  ( , )L x yϕ   is the perturbed potential due to the presence 
of the plate, we can determine the potential function ( , ),x yϕ by using 
Green’s identity, as described below.

We use rectangular  co-ordinates  ( , )  where    is t n t along the plate  
  and  L n   is normal to the plate, and let

 
2

2( , )   ( , )x y x y
n
ψϕ ∂

=
∂

 (5.2.2)

where n
∂
∂  denotes outward  normal derivative  on , then   is the L ψ

reduced potential, and satisfi es the two-dimensional Laplace equation

 
2 2

2 2    0
x y
ψ ψ∂ ∂

+ =
∂ ∂

 (5.2.3)

in the fl uid region. Note that ϕ  also satisfi es the Laplace equation. Thus

n
ψ∂
∂

 also satisfi es the Laplace equation in the fl uid region. Hence the
harmonic function 

n
ψ∂
∂

 at a point ( , )p x y=  in the fl uid region can be
represented by using Green’s integral theorem, in the form

 
2

2
L

1 ( ) ( , )   ( , ) 
2 q

qx y G p q ds
n n
ψ ψ

π
⎡ ⎤∂ ∂

= − ⎢ ⎥∂ ∂⎣ ⎦
∫  (5.2.4)
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where ( , )  is a point on the plate, andq ξ η≡

 { }1/ 22 21( ; )   ( ) ( )
2

G p q ln x yξ η= − + −  (5.2.5)

is the Green’s function satisfying the Laplace equation everywhere

except at the point q , 2

2

( )q
n
ψ⎡ ⎤∂

⎢ ⎥∂⎣ ⎦

 denoting the jump across  

  at the point  .L q

Differentiating (5.2.4) along the direction of   at  ( , )n x y  and using 
(5.2.2), we obtain

 
[ ]

L

1( , )    ( )  ( , ) .
2 qx y q G p q ds

n
ϕ ϕ

π
∂

= −
∂ ∫  (5.2.6)

Using the condition of vanishing of the normal derivative of ( , )tot x yϕ  on 
the rigid plate ,L  we obtain from (5.2.6) that

 [ ]
2

0
2

L

1    ( )  ( , )  ( ),   .
2 qq G p q ds p p L

n n
ϕϕ

π
∂∂

= ∈
∂ ∂∫  (5.2.7)

Now the derivative operation 
2

2n
∂
∂  can be interchanged with the integration 

operation provided the integral is interpreted as a hypersingular integral, and 
thus the equation (5.2.7) produces the hypersingular integral equation

 [ ]
2

0
2

L

1    ( )   ( , )  ( ),   .
2 q

Gq p q ds p p L
n n

ϕϕ
π

∂∂
= ∈

∂ ∂∫  (5.2.8)

which  is to be solved subject to the requirement that the potential difference  
[ ]( )qϕ   across  L   vanishes at the two end points of  .L

Remark

Since  [ ] ( )  ( , ) q
L

q G p q dsϕ∫  satisfi es the Laplace equation

2 2

2 2 ( ) 0,
t n

⎛ ⎞∂ ∂
+ ⋅ =⎜ ⎟∂ ∂⎝ ⎠

  
the equation (5.2.7) can also be written as

 [ ]
2

0
2

L

1    ( )  ( , )  ( ),   .
2 qq G p q ds p p L

t n
ϕϕ

π
∂∂

= − ∈
∂ ∂∫  (5.2.9)
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where  
t
∂
∂

  denotes the tangential derivative.  We note that the equation
(5.2.9), which is equivalent to the equation (5.2.7) giving rise to the 
hypersingular integral equation (5.2.8), can be integrated out along the 
line L , and thus we can derive a weakly singular integral equation, as 
given by

 [ ]
L

1    ( )  ( , )  ( ),   .
2 qq G p q ds f p p Lϕ
π

= ∈∫  (5.2.10)

where  ( )f p   involves two arbitrary constants of integration,  1 2  and  A A   
say. Thus, one can avoid bringing into picture hypersingular integral 
equation altogether provided that we can determine these two arbitrary 
constants completely.  This approach, however, will not be pursued here.

Problem 2: Acoustic scattering by a hard plate

Let a plate occupying the position 0,   0 ,y x a= < <  be immersed in 
an infi nite compressible fl uid. A time-harmonic incident sound wave 
described by the velocity potential { }0Re ( , ) i tx y e σϕ −  be scattered 
by the plate. Henceforth the factor i te σ−  will be dropped throughout.  
Let  ( , )x yϕ  denote the scattered potential. Then ( , )x yϕ  satisfi es the 
differential equation,

2 2
2

2 2 0  in the fluid regionk
x y

ϕ
⎛ ⎞∂ ∂

+ + =⎜ ⎟∂ ∂⎝ ⎠
,

the plate condition

0   on  0,   0 ,y x a
y y

ϕϕ ∂∂
= − = < <

∂ ∂

the radiation condition,

 0  as  .ik r
r
ϕ ϕ∂

− = → ∞
∂

 

Let  { }1/ 2(1) 2 2
0

1( , ; , )   ( )  with  ( ) ( ) .
2

G x y i H kR R x yξ η π ξ η= − = − + − Then

lnG R→  as 0R →  and satisfi es the radiation condition at infi nity.
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By an appropriate use of Green’s integral theorem to 
( , )  and  ( , ; , )x y G x yϕ ξ η  we obtain

0

1( , )   ( )  ( ,0; , ) 
2

a Gx x dx
y

ϕ ξ η ψ ξ η
π

∂
= −

∂∫
where

( ) ( , 0) ( , 0),   0x x xψ ϕ ϕ= + − − < x < a,

and is unknown, and satisfi es

(0) 0,  ( ) 0aψ ψ= = .

We now use the condition on the plate

0( ,0) ( ,0),   0 a
y
ϕϕ ξ ξ ξ

η
∂∂

= − < <
∂ ∂

in which the right side is a known function.

Now

 

(1)
1

0

2
0

( )1( ,0)   ( )   
2 2

1 1               =   ( ) ( , )  
2 ( )

a

a

H k xi kx dx
x

x L x dx
x

−∂
=

∂ −

⎡ ⎤
+⎢ ⎥−⎣ ⎦

∫

∫

ξϕ πξ ψ
η π ξ

ψ ξ
π ξ

where

( )(1)
1

2

2

1( , )  
2 ( )

1                  ln      0.
2

H k xi kL x
x x

k x as x

ξπξ
ξ ξ

ξ ξ

−
= −

− −

∼ − − − →

Thus the equation for ( )xψ  is

 2
0

1( ) ( , )  ( ),   0
( )

a

x L x dx v a
x

ψ ξ ξ ξ
ξ

⎡ ⎤
+ = < <⎢ ⎥−⎣ ⎦

∫  

where  0( ) 2  ( ,0)v ϕξ π ξ
η

∂
= −

∂
  is a known function.
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Problem 3: Surface water wave scattering by a thin vertical barrier

We consider here the two-dimensional problem of scattering of surface 
water waves described in Chapter 1. For the sake of completeness, the 
corresponding mathematical problem is described fully.

To solve the partial differential equation

 
2 2

2
2 2 0,   ,   0x y

x y
ϕ ϕϕ ∂ ∂

∇ ≡ + = −∞ < < ∞ >
∂ ∂

 (5.2.11)

along with

 i)  the free surface condition:

  0  on  0,   K y x
y
ϕϕ ∂

+ = = −∞ < < ∞
∂

,

 ii) the condition on the barrier:

  0  on  0,   x y L
x
ϕ∂

= = ± ∈
∂

  where  L   is the portion of the y-axis, representing the barrier 
lying on the plane 0x = ,

 iii)  the condition on the gap:

    and  
x
ϕϕ ∂
∂

  are continuous across the gap ( 0,  x y L= ∈   
where  

  (0, ) )L L= ∞ − ,

 iv) the surface wave conditions:   
               
  

 
( , )

   as  

Ky iKx Ky iKx

Ky iKx

e R e
x y

T e x

− + − −

− +

⎧ +⎪→ ⎨
→ ∞⎪⎩

ϕ
                    
           where    and  R T  are unknown constants, known as the complex 

refl ection and transmission coeffi cients respectively,
 v) the condition at infi nite depth:
  ,  0  as  yϕ ϕ∇ → → ∞
and
 vi) the edge condition(s):
  1/ 2  0(1)  as  0r rϕ∇ = →
  where  r   is the distance from a submerged edge of the barrier.
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An appropriate solution of the problem satisfying the conditions (iv)
and (v) and the continuity of   across  0,  0,x y

x
ϕ∂

= >
∂

 is represented as 

2

2 2
0

2

2 2
0

( )(1 )    ( , ) ,   0
( , )

( )    ( , ) ,   0

Ky iKx kx

Ky iKx Ky iKx kx

A kR e e M k y dk x
y k

x y
A ke R e e M k y dk x

y k

ϕ

∞
− + −

∞
− + − −

⎧ ∂
− + >⎪ ∂⎪= ⎨

∂⎪ + − <⎪ ∂⎩

∫

∫

 (5.2.12)

where  ( )A k   is an unknown function, to be determined, and

 ( , ) cos sin .M k y k ky K ky= −  (5.2.13)

It may be noted that the continuity of 
x
ϕ∂
∂

 across 0,  0,x y= >  produces 
the equality

 1R T+ =  (5.2.14)

relating the unknown constant    and  ,R T  by using Havelock’s inversion 
theorem (cf. Mandal and Chakrabarti (2000)).

If we now set

 ( ) ( 0, ) ( 0, ),   0,y y y yψ ϕ ϕ= + − − >  (5.2.15)

then the condition (iii) concerning the continuity of  ϕ   across the gap 
produces
 ( ) 0  for  .y y Lψ = ∈  (5.2.16)

Using the relation (5.2.15) in the representation (5.2.12), we fi nd that 
( )A k  must satisfy

 
2

2 2
0

2 ( )   ( , ) 2 e ( ),   0Kyd A k M k y dk R y y
dy k

ψ
∞

−= + >∫
which is equivalent to

 
0

1e ( ) ( , )  ( ),   0.
2

KyR A k M k y dk y yψ
∞

− + = − >∫  (5.2.17)

By Havelock’s inversion we obtain that

 2 2

1( )   ( ) ( , ) ,
( ) L

A k u M k u du
k K

ψ
π

= −
+ ∫  (5.2.18)

   ( )  .Ku

L

R K u e duψ −= − ∫  (5.2.19)
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Again, using the condition (iii) in the representations (5.2.12), we obtain

 
2

2
0

( )  ( , ) (1 ) ,   .Kyd A k M k y dk iK R e y L
dy k

∞
−= − ∈∫  (5.2.20)

By using the relation (5.2.18) in the left side of (5.2.20), we obtain, after 
interchanging the orders of integration,

2

2 2 2
0

( , ) ( , ) ( )   (1 ) ,   .
( )

Ky

L

d M k y M k uu dk du i K R e y L
dy k k K

ψ π
∞

−⎧ ⎫
= − − ∈⎨ ⎬+⎩ ⎭

∫ ∫  (5.2.21)

The inner integral can be evaluated (cf. Ursell (1947)), and thus we 
obtain  

 
2

2  
L

d
dy ∫K ( , ) ( ) 2  ,   ,Kyu y u du i K e y Lψ π −= − ∈  (5.2.22)

after using the relation (5.2.19) for  ,R  where

K
( )

( ) ( )

-

( , ) ln  2   2  ,   , .
K y u v

K y u K y uy u eu y e dv i e y u L
y u v

π
+

− + − +

∞

+
= − + ∈

− ∫  (5.2.23)

If we now interchange the order differentiation and integration in (5.2.22), 
we obtain formally

                        
L
∫L ( , ) ( ) 2  ,   ,Kyu y u du i K e y Lψ π −= − ∈  (5.2.24)

where

 L
( )

( ) 2 ( )
2 2

-

1 2 1( , ) 2    2  .
( ) ( )

K y u v
K y u K y uK eu y K e dv i K e

y u y u y u v
π

+
− + − +

∞

= + + − +
− + + ∫   (5.2.25)

Because of the presence of the hypersingular term 2( )y u −−  in the kernel 
L ( , )u y , the integral in the left side of (5.2.24) is not an ordinary one, and 
is to be interpreted in the sense of Hadamard fi nite part. Thus we arrive at 
the hypersingular integral equation of the form

 

2

1 
( )L y u

⎡
+⎢ −⎣

∫  L ]1( , )  ( ) ( ),   y u u du f y y Lψ = ∈

for the determination of  ( ),yψ   L 1( , )y u  being regular and  ( )f y   
being known.



122 Applied Singular Integral Equations

Remark
As in the Problem 1, here also we again remark that, instead of the hypersingular 
integral equation (5.2.24), we can derive a weakly singular integral equation 
for ( ),yψ  involving two arbitrary constants in the right side, as follows:

If we integrate both sides of the equation (5.2.22) twice, we obtain the 
integral equation

L
∫ K 0 1

2( , ) ( )  ,   Kyiu y g u du e C C y y L
K
π −= − + + ∈    (5.2.26)

in which  0 1  and  C C   are two arbitrary constants, and   K ( , ),y u  given 
by the expression  (5.2.23) is a kernel involving logarithmic singularity 
at  ,u y=  so that the integral equation (5.2.26) is weakly singular. The 
two arbitrary constants 0 1 and  C C  can be determined for particular 
confi gurations of the barrier. For example, if the barrier extends infi nitely 
downwards from a fi xed depth below the free surface, then 1 0C ≡  for the 
boundedness of the right side as .y → ∞
Problem 4: A straight pressurized crack in an unbounded solid (the Griffi th 
crack problem) 

We consider the problem of a simple straight crack along the x-axis 
( 0,  y = )a x b< <  in a plane isotropic elastic medium under a pressure 
distribution ( )p x  along both its edges.  The problem is described as 
follows in the usual notations 

 

( )1/ 22 2

0  on  0,   ,

( )  on  0,   ,

    = 0  on  0,   ,   ,

0,   0,   0  as  .

xy

yy

xx xy yy

y x
p x y a x b

v y x a b x

x y

= = −∞ < < ∞

= − = < <

= −∞ < < < < ∞

→ → → + → ∞

σ

σ

σ σ σ

 (5.2.27)

For  two-dimensional elasticity problems, the displacement 
components ,   and u v the stress components , ,xx xy yyσ σ σ  can be 
expressed by Muskhelishvili’s formulae given by

 

2 ( ) ( )  ( ) ( ),

Re ( ) ( )  ( ) ( ) ,

 = Re ( ) ( ) ( ) ( ) ,

 = Im  ( )  ( )

xx

yy

xy

u iv K z z z z

z z z z z

z z z z z

z z z

μ

σ

σ

σ

′+ = Φ − Φ −Ψ

⎡ ⎤′ ′ ′′ ′= Φ +Φ − Φ −Ψ⎣ ⎦
⎡ ⎤′ ′ ′′ ′Φ +Φ + Φ +Ψ⎣ ⎦
⎡ ⎤′′ ′Φ + Ψ⎣ ⎦

 (5.2.28)
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where

 ,   3 4 ,
2(1 )

E Kμ γ
γ

= = −
+

 (5.2.29)

E  being the Young’s modulus, γ  being the Poisson’s ratio, μ  being 
the shear modulus, ,  (z), ( )z x iy z= + Φ Ψ  being two arbitrary analytic 
functions.
Let

 ( )  ( ) ( )z z z zρ ′= Φ +Ψ , (5.2.30)

then the formulae (5.2.28) take the forms

 

2 ( ) ( ) ( ) + ( ) ( ),

 Re ( ) 2 ( ) ( ) ( ) ( ) ,

 =  Re ( ) ( ) ( ) ( ) ,

 =  -Im ( ) ( ) ( ) ( )

xx

yy

xy

u iv K z z z z z

z z z z z z

z z z z z

z z z z z

μ ρ

σ ρ

σ ρ

σ ρ

′+ = Φ − − Φ

⎡ ⎤′ ′ ′ ′′= Φ + Φ − + − Φ⎣ ⎦
⎡ ⎤′ ′ ′′Φ + − − Φ⎣ ⎦
⎡ ⎤′ ′ ′′Φ − − − Φ⎣ ⎦

 (5.2.31)

where  now  ( )  and  (z)z ρΦ   are also two arbitrary analytic functions.

For the Griffi th crack problem, we note that, if we assume 
( ) ( ),z zρΦ =  then it is ascertained from the very beginning that

 0  on  0.xy yσ = =

In this case, the displacement components ,u v  and the stress components 
, ,xx yy xyσ σ σ  can be expressed as 

 

2 ( ) ( ) ( ) ( ) ( )

Re ( ) ( ) ( ) ( ) ,

 = Re ( ) ( ) ( ) ( ) ,

 = -Im ( ) ( )

xx

yy

xy

u iv K z z z z z

z z z z z

z z z z z

z z z

μ

σ

σ

σ

′+ = Φ −Φ + − +Φ

⎡ ⎤′ ′ ′′= Φ +Φ + − Φ⎣ ⎦
⎡ ⎤′ ′ ′′Φ +Φ − − Φ⎣ ⎦
⎡ ⎤′′− Φ⎣ ⎦

 (5.2.32)

where now  ( )zΦ  is an analytic function in the complex z-plane cut along 
the x-axis from    to  a b   (the crack).
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Let ( )xϕ  denote the displacement (unknown) of the points of the upper 
edge of the Griffi th crack, then –φ(x)  is the corresponding displacement of 
the points of the lower edge of the crack. Thus

 
  ( ),   

( , 0)
 0        ,  otherwise

x a x b
v x

ϕ± < <⎧
± = ⎨

⎩
 (5.2.33)

where  ( )xϕ   is unknown, but  ( ) 0 ( ).a bϕ ϕ= =

Now from the fi rst equation of (5.2.32), we fi nd

0

1( , 0)  Im ( ) ( )
2

1             =  Im  (z).
2

y
v x K z z

K
μ

μ

=±
⎡ ⎤± = Φ −Φ⎣ ⎦

+
Φ

Let

( ) ( , ) ( , ).z x y i x yα βΦ = +
Then

 
1( , 0)  ( , 0).

2
Kv x xβ
μ
+

± = ±  (5.2.34)

However (5.2.33) is satisfi ed if ( , ) ( , )v x y v x y= − −  so that ( , )x yβ  can 
be chosen to satisfy ( . ) ( , ).  Hence  ( , )x y x y x yβ β β= − −   is odd in y.
But as 

x y
α β∂ ∂

=
∂ ∂

, we see that ( , )x yα  is even in y. Thus

( , ) ( , )  and  ( , ) ( , ).x y x y x y x yα α β β= − = − −  Hence we must have 
that

 ( ) ( ).z zΦ = Φ  (5.2.35)

Since  ( )zΦ  is sectionally analytic in the complex z-plane cut along the 
x-axis between   to  a b , let us represent it as 

 
( )( )   .

b

a

q tz dt
t z

Φ =
−∫  (5.2.36)

Then by Plemelj formulae,

 
( )( 0)  ( )   ,   ,

b

a

q tx i iq x dt a x b
t x

πΦ ± = ± + < <
−∫  (5.2.37)



Hypersingular Integral Equations 125

so that
 ( 0) ( 0) 2 ( ),   .x i x i iq x a x bΦ + −Φ − = < <π
This gives

( , 0) ( , 0) ( , 0) ( , 0) 2 ( ),   .x i x x i x iq x a x bα β α β π+ + + − − − − = < <

Since ( , )x yα  is even in   and  ( , )y x yβ  is odd in ,y  this is equivalent to

 2 ( , 0) 2 ( ),   .i x iq x a x bβ π+ = < <

Using  (5.2.34), we fi nd from this

 

1( )  ( , 0)

2          ( , 0)
( 1)

2           ( ).
( 1)

q x x

v x
K

x
K

β
π

μ
π

μ ϕ
π

= +

= +
+

=
+

Thus  ( )zΦ  is determined in terms of the unknown function ( )xϕ  in the 
form

 

2 ( )( )    .
( 1)

b

a

tz dt
K t z
μ ϕ

π
Φ =

+ −∫  (5.2.38)

To obtain an integral equation for ( ),tϕ  we use the condition

 ( )  on  0,   .yy p x y a x bσ = − = < <

Now from the third equation of (5.2.33), we have on 0y =

 
0

2

Re ( ) ( )

4 ( )          .
( 1) ( )

yy y

b

a

z z

t dt
K t x

σ

μ ϕ
π

=
⎡ ⎤′ ′= Φ +Φ⎣ ⎦

=
+ −∫

 

Thus we see that ( )tϕ  satisfi es the simple hypersingular integral 
equation

 2

( ) ( 1)  ( ),   
( ) 4

b

a

t Kdt p x a x b
t x
ϕ π

μ
+

= − < <
−∫  (5.2.39)

with the requirement that  ( ) ( ) 0.a bϕ ϕ= =
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We shall obtain the exact solution of a simple hypersingular integral 
equation in the next section.

5.3   SOLUTION OF SIMPLE HYPERSINGULAR INTEGRAL 
EQUATION

We consider the simple hypersingular integral equation

 ( )( )
1

2
1

1 ( )   ( ),   1 1
( )

tH x dt f x x
t x
ϕϕ

π −

= = − < <
−∫  (5.3.1)

with the end conditions (1) ( 1) 0,   where  ( )f xϕ ϕ= − =  
is a known function and ϕ  is required to be such that  

1, 1,( 1,1)  where  ( 1,1)C Cα αϕ∈ − −   denotes the class of functions 
having  Hölder continuous derivatives with exponent  (0 1)α α< <   in 
the open interval  ( 1,1)−  (cf. Martin (1992)).

(A)   Some elementary methods

Let  ( )( )T xϕ  denote the Cauchy singular operator

 ( )( )
1

1

1 ( )   ,   1 1.tT x dt x
t x
ϕϕ

π −

= − < <
−∫  (5.3.2)

The hypersingular operator ( )( )H xϕ  can be interpreted as

 ( ).dH T
dx

ϕ ϕ=  (5.3.3)

Also, it is easy to show that

 H Tϕ ϕ′=  (5.3.4)

where ϕ′ denotes the derivative of ϕ . Thus the simple hypersingular 
integral equation (5.3.1) can be recast into the following two equivalent 
but basically different forms

 ( ) ( ),   1 1,d T f x x
dx

ϕ = − < <  (5.3.5)

 ( ),   1 1.T f x xϕ′ = − < <  (5.3.6)



Hypersingular Integral Equations 127

It then becomes clear that the solution of the HSIE (5.3.1) can be 
determined successfully, by solving any one of the Cauchy type singular 
integral equations (5.3.5) and (5.3.6). It may be noted that the problems of 
solving the SIEs (5.3.5) and (5.3.6) are basically different in the sense that 
the function ϕ  in (5.3.5) has the end behaviour that ( 1) 0ϕ ± =  (in fact

( )1/ 2( ) 0 1   as  1t t tϕ = → ±∓  while the function ϕ′  in (5.3.6) has 
the behaviour that ( )1/2( ) 0 1   as  1.t t tϕ −′ = → ±∓

We now describe three basically independent methods of solution of 
the HSIE (5.3.1) (cf. Chakrabarti and Mandal (1998)).

Method 1

Let  ( ) ( )f x g x′=  (5.3.7)                                          

And using the equivalent representation (5.3.5) of the equation (5.3.1), we get

 ( )( ) ( ),   1 1T x B g x xϕ = + − < <  (5.3.8)

where  B   is an arbitrary constant.  The equation (5.3.8) is a Cauchy type 
SIE satisfying the end conditions ( 1) 0.ϕ ± =  Its solution is given by

 ( )
( ) ( )

1/ 22 1

1/ 22
1

1 ( )( )    ,   1 1,
1

x B g tx dt x
t t x

ϕ
π −

− +
= − − < <

− −
∫  (5.3.9)

provided

 
( )

1

1/ 22
1

( )  0
1

B g t dt
t−

+
=

−
∫  (5.3.10)

which is the solvlability condition for SIE (5.3.8).  Thus the arbitrary 
constant in (5.3.8) is given by

  
( )

1

1/ 22
1

1 ( )   
1

g tB dt
tπ −

= −
−

∫ . (5.3.11)

Since  

 
( )

1

2 1/ 2
1

1  0  for  1 1
(1 )

dt x
t t x−

= − < <
− −∫
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we fi nd from (5.3.9) that

 
12 1/2

2 1/2
1

(1 ) ( )( )    ,   1 1.
(1 ) ( )

x g tx dt x
t t x

ϕ
π −

−
= − − < <

− −∫  (5.3.12)

Although (5.3.12) gives the required solution, it is expressed in terms 
of g . However, we would like to obtain the solution in terms of f .  For 
this, we use the following algebraic identity

 
( ) ( ) ( ) ( )

( )1/ 22

1/ 2 1/ 222 2

11 1 .
11 1

tt x
t xxt t x t

⎡ ⎤−+⎢ ⎥= +
⎢ ⎥−−− − −⎣ ⎦

 (5.3.13)

Now using the result for the indefi nite integral

 ( ) ( ) ( )
1/ 22

1/ 22 1 2
1

  1 sin 1 ( , ) ( )
t

dt t x t x K x t D x
t x

−
−

= − − + − − +
−∫  (5.3.14)

where

 
{ }1/22 2

( , )  ln ,
1 (1 )(1 )

t xK x t
tx t x

−
=

− + − −
 (5.3.14)

and  ( )D x   is an arbitrary function of   x , we fi nd that

 
( ) ( ) ( )

{ }1/ 2 1/ 22 2

1 1  ( , ) ( )
1 1

dt K x t E x
t t x x

= +
− − −

∫  (5.3.15)

where  ( )E x   is an arbitrary function of x.

Integrating the right side of the relation (5.3.12) by parts and using the 
result (5.3.15), we fi nd that  ( )xϕ   is given by

{ }
1 1

1/ 22 2
-1 -1

1 1( )   ( ) ( , )   ( )   .
1 (1 )(1 )

t xx g t K x t dt f t ln dt
tx t x

ϕ
π π

−′= =
− + − −

∫ ∫  (5.3.16)

Method 2

In this method we utilize the equivalent representation (5.3.6) of 
the hypersingular integral equation (5.3.1). Then, the solution of 
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the Cauchy type integral equation (5.3.6) with the requirement that 

( )1/ 2( ) 0 1   as  1,t t tϕ −′ = → ±∓   is given by

( )
( )1/ 221

1/ 22
1

1 ( )1 1( )    ,   1 1,
1

t f t
x C dt x

t xx
ϕ

π −

⎡ ⎤−
⎢ ⎥′ = − − < <
⎢ ⎥−− ⎣ ⎦

∫  (5.3.17)

where  C   is an arbitrary constant.  Integrating both sides of (5.3.17) we 
obtain

( )
( ) ( )

1
1/ 2-1 2

1/ 22
-1

1( )  sin   1 ( )   
1

dxx D C x t f t dt
x x t

ϕ
π

⎡ ⎤
⎢ ⎥= + + −
⎢ ⎥− −⎣ ⎦

∫ ∫
 

where  D   is another constant.  The inner integral in (cf.(5.3.15) 

 
( )

{ }1/ 22

1  ( ) ( , )
1

E t K t x
t

+
−

so that

1 1
1

-1 1
1

1
0

1

1 1( )  sin    ( ) ( )    ( ) ( , ) 

1        =   sin   ( ) ( , ) 

x D C x f t E t dt f t K t x dt

D C x f t K x t dt

ϕ
π π

π

−

−

−

−

= + + +

+ +

∫ ∫

∫

 (5.3.18)

where  0D   is another constant.

Finally we observe that if ( )xϕ  has to satisfy the end conditions 
( 1) 0,ϕ ± =  we must choose 0,  0oC D= =  and in that case the solution 

(5.3.18) reduces to (5.3.16), i.e.

 { }
1

1/22 2
1

1( )   ( )    , 1 1.
1 (1 )(1 )

t xx f t ln dt x
tx t x

ϕ
π −

−
= − < <

− + − −
∫

Method 3

In the third method of solution of the hypersingular integral equation 
(5.3.1), along with the end conditions ( 1) 0,ϕ ± =  we employ a direct 
approach, which leads to the problem of solving a simple Abel type 
integral equation.
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By using the transformations

2 1,   2 1,   ( ) (2 1) ( ),   ( ) (2 1) ( ),t s x y t s s f x f y g yϕ ϕ ψ= − = − = − = = − =  (5.3.19)

the hypersingular integral equation (5.3.1) reduces to

 
1

2
0

1 ( )  2 ( ),   0 1
( )

s ds g y y
s y
ψ

π
= < <

−∫  (5.3.20)

with the end conditions  ( )(0) 1 0.= =ψ ψ

We set

 
1

1/ 2
1/ 2

( )( )    ,   0 1
( )s

Ss s d s
s
ξψ ξ

ξ
= < <

−∫  (5.3.21)

where ( )S ξ is a differentiable function in (0,1), with (1) 0.S ≠ We then 
fi nd, by integrating  by  parts, that

 { }
1

1/2 1/2 1/2( ) 2 (1 ) (1) 2   ( )  ( ) ,  0 1.
s

s s s S s s S d sψ ξ ξ ξ′= − − − < <∫  (5.3.22)

Clearly,  ( )sψ   belongs to the desired class of functions in which we 
seek the solution of the equation (5.3.20).

Substituting the relation (5.3.22) into the left side of the equation 
(5.3.20)  and interchanging the order of integration in the repeated integral 
we obtain

{ } { }1/ 2 1/ 21 1

2 2
0 0 0

(1 ( )2 (1) 2     S ( )   2 ( ),  0 1.
( ) ( )
s s s sS ds ds d g y y

s y s y

ξ ξ
ξ ξ

π π

⎧ ⎫− −⎪ ⎪′− = < <⎨ ⎬− −⎪ ⎪⎩ ⎭
∫ ∫ ∫  (5.3.23)

We now use the following results, which can be easily derived, by using 
elementary integrations

 { }

{ }

1/ 21

1/ 20

  for  0 ,
s( ) 2

   
( )   for  ,

2

y y
s

ds
s y

y y y y

ξπ ξ
ξ

ξπ ξ ξ

⎧ ⎛ ⎞− − < <⎜ ⎟⎪− ⎪ ⎝ ⎠= ⎨− ⎡ ⎤⎪ − + − >⎢ ⎥⎪ ⎣ ⎦⎩

∫
 (5.3.24)

where for  0 ,y ξ< <   the integral is in the sense of CPV.  From (5.3.24), 
it follows after putting  1ξ =   that

{ }1/ 21

0

(1 ) 1   for  0 1.
2

s s
ds y y

s y
π

− ⎛ ⎞= − − < <⎜ ⎟− ⎝ ⎠∫
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Hence the hypersingular integrals in (5.5.23) are evaluated. Thus the 
equation (5.3.23) fi nally produces

{ }

1

1/ 2
0 0

22 (1) 2  ( )  ( ) 2 ( ),   0 1.
( )

y yS S d S d g y y
y y

ξξ ξ ξ ξ
ξ
−′ ′− + − = < <

−∫ ∫  (5.3.25)

Using the symbol

 1/ 2

0

( )  ( )  ( ) 
y

A y y S dξ ξ ξ′= −∫  (5.3.26)

the equation (5.3.25) can be expressed as

 1/ 2
1/ 2

1( ) ( ) (0) ( ),   0 1
2

y A y A y S g y y
y

′ + = − − < <  (5.2.27)

where  ( ) .dAA y
dy

′ =

The equation (5.3.27) is a fi rst-order differential equation for the 
function ( )A y and solving it with the initial condition (0) 0,A =  as is 
obvious from the defi nition (5.3.26),  we easily determine  ( ),A y   from 
which we derive that

 1/ 2
0

( )2 ( )   ( ),   0 1
( )

y SA y d G y y
y

ξ ξ
ξ
′

′ ≡ = < <
−∫  (5.3.28)

where

 3/2

0
( ) [ (0) ( ) 2 ( )]

y
G y y S y g d yg yη η−= − + −∫  (5.3.29)

We have thus arrived at the simple Abel type integral equation (5.3.28) for 
the determination of the unknown function ( ),S ξ′  and from the solution 
(2.1.9b) in Chapter 2, we fi nd that

1/ 2
0

1 ( )( )    ,   0 1,
( )

d G yS dy
d y

ξ

ξ ξ
π ξ ξ

′ = < <
−∫

giving on integration,

 1/ 2
0

1 ( )( ) (0)   ,   0 1.
( )

G yS S dy
y

ξ

ξ ξ
π ξ

= + < <
−∫  (5.3.30)
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Substituting for ( )G y  giving in (5.3.29) and interchanging the orders of 
the repeated integrals, we obtain

 
{ } { }1/ 2 1/ 2

0 0

3/ 2 1/ 2
0

(0) 2 ( )( ) (0)     
( ) ( )

1        +    ( ) ,   0 1.
( )y

S dy g yS S dy
y y y y

dg y dy
s

ξ ξ

ξ ξ

ξ
π πξ ξ

η ξ
π η ξ

= − −
− −

⎧ ⎫⎪ ⎪ < <⎨ ⎬−⎪ ⎪⎩ ⎭

∫ ∫

∫ ∫
 (5.3.31)

Using the results, obtained by elementary means,

 
{ }1/ 2

0

 
( )

dy
y y

ξ

π
ξ

=
−∫

and  

 
1/2

3/2 1/2

2  
( )y

d y
y

ξ η ξ
η ξ η ξ

⎛ ⎞−
= ⎜ ⎟− ⎝ ⎠

∫ ,

we obtain, from the relation (5.3.31), that

 
1/2

1/2
0

2 ( )( )   ,   0 1.
( )
y g yS dy

y

ξ

ξ ξ
πξ ξ

= − < <
−∫  (5.3.32)

Substituting the fi nal form (5.3.32) of the function ( )S ξ  into the relation 
(5.3.21), we fi nd that

                                           

 

{ }

{ }

1 1/2
1/2

1/2 1/2
0

1
1/2 1/2

1/2
0

1 1
1/2

1/2
s

2 1 ( )( )     
( ) ( )

2        =  ( )  
( )( )

            +   ( )  
( )( )

s

s

s

y

y g ys s dy d
s y

ds y g y dy
s y

dy g y dy
s y

ξ

ψ ξ
π ξ ξ ξ

ξ
π ξ ξ ξ

ξ
ξ ξ ξ

⎧ ⎫⎪ ⎪= − ⎨ ⎬− −⎪ ⎪⎩ ⎭
⎡ ⎧ ⎫⎪ ⎪⎢− ⎨ ⎬

− −⎢ ⎪ ⎪⎩ ⎭⎣
⎤⎧ ⎫⎪ ⎪ ⎥⎨ ⎬

− − ⎥⎪ ⎪⎩ ⎭ ⎦

∫ ∫

∫ ∫

∫ ∫

 (5.3.33)

after interchanging the order of integration. The inner integrals in the two 
terms of the right side of the relation (5.3.33) can be evaluated by using 
elementary methods, and we fi nd that

{ }
{ }1/21

1/2 1/2
max( , )

2 2 (1 )(1 )1  .
( )( )( )y s

s y sy sy s yd ln
sy s ys y

ξ
ξ ξ ξ

+ − + − −
=

−− −∫  (5.3.34)
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Using  (5.3.34) in (5.3.33) we fi nd fi nally

{ }

1

1/2
0

2( )  ( )  ,   0 1
2 2 (1 )(1 )

s ys g y ln s
s y sy sy s y

ψ
π

−
= < <

+ − + − −∫  (5.3.35)

Substituting back in terms of the original variables from (5.3.19), i.e.
1 1,  

2 2
t xs y+ +

= = , 1 1( ),  ( ),
2 2

t xt g f xψ ϕ+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  we obtain

 
{ }

1

1/22 2
1

1( )  ( )    ,   -1 1.
1 (1 )(1 )

x tt f x ln dt t
xt x t

ϕ
π −

−
= < <

− + − −
∫  (5.3.36)

(B)  Function-theoretic method

It is observed that even though the original integral equation (5.3.1) 
involves hypersingular kernel, its solution as given by the formula (5.3.36) 
involves a singular integral possessing Cauchy type singularity. This is 
in fact weaker compared to the strong singularity of the given integral 
equation. Because of the fact that once hypersingular integrals have been 
accepted, there is no special need to deviate and bring in integrals with 
weaken singularities in the picture.

Chakrabarti (2007) developed a direct function-theoretic method 
to solve the hypersingular integral equation (5.3.1) by reducing it to a 
Riemann-Hilbert type boundary value problem of an unknown sectionally 
analytic function of a complex variable ( ),z x iy= +  in the complex 
z-plane, cut along the segment ( 1,1)−  of the real axis.  This method is 
now presented here.

Let us defi ne ( )zΦ  as

 
1

2
1

( )( )  ,   ( 1,1).
( )

tz dt z
t z
ϕ

−

Φ = ∉ −
−∫  (5.3.37)

Then  ( )zΦ  is a sectionally analytic function of z  in the complex z-plane 
cut along ( 1,1)−  of the real axis.

We have the result (cf. Jones (1982), p 104)

 
0

1 1lim   ( ) ,   
y

i x x
x iy x

πδ
→±

= + −∞ < < ∞
+

∓  (5.3.38)
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where ( )xδ  denotes Dirac delta function. Differentiation of both sides 
with respect to x  produces formally

 2 20

1 1lim   ( )
( )y

i x
x iy x

πδ
→±

′= ± +
+

 (5.3.39)

where  ( )xδ ′   denote the derivative of   ( ).xδ

Utilizing  (5.3.39) in (5.3.37) we obtain the following Plemelj-type formulae 
for the limiting values of the function, as z  approaches a point on the cut 
( 1,1)−  from above ( 0)y → +  and below ( 0)y → −  respectively:

 1 1

2
1 -1

( 0) ( )

( )                =  ( ) ( )   ,   1 1.
( )

x i x

ti t t x dt dt x
t x
ϕπ ϕ δ

±

−

Φ ± ≡ Φ

′ − + − < <
−∫ ∫∓

 

so that

 
1

2
1

( )( )  ( )  ,   1 1
( )

tx i x dt x
t x
ϕπϕ±

−

′Φ = ± + − < <
−∫ . (5.3.40)

It may be noted that the limiting values (5.3.40) can also be derived 
by standard Plemelj formulae involving the limiting values of the Cauchy 
type integral

 
1

1

( )( )  ,   ( 1,1)tz dt z
t z
ϕ

−

Ψ = ∉ −
−∫  (5.3.41)

giving

 1

1

( 0) ( )

( )               =    ( )  ,   1 1

x i x

ti x dt x
t x
ϕπ ϕ

±

−

Ψ ± ≡ Ψ

± + − < <
−∫

 (5.3.42)

where the integral is in the sense of CPV, and noting

 ( )  ( )dz z
dz
Ψ

Φ =  (5.3.43)

along with

 
1 1

2
1 1

( ) ( )   ,   1 1.
( )

t d tdt dt x
t x dx t x
ϕ ϕ

− −

= − < <
− −∫ ∫  (5.3.44)
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Now, the two relations in (5.3.40) can be viewed as the following two 
equivalent relations

 
1

2
-1

( )( ) ( ) 2  ,   1 1,
( )

tx x dt x
t x
ϕ+ −Φ +Φ = − < <
−∫  (5.3.45a)

 ( ) ( ) 2  ( ),   1 1.x x i x xπ ϕ+ − ′Φ −Φ = − < <  (5.3.45b)

Using the relation (5.3.45a), the hypersingular integral equation (5.3.1) 
reduces to

 ( ) ( ) 2 ( ),   1 1x x f x xπ+ −Φ +Φ = − < <  (5.3.46)

which represents a special Riemann-Hilbert type  boundary value problem 
for the determination of the unknown function  ( ).zΦ  Its solution can be 
found directly as explained below.

If  0 ( )zΦ  represents a nontrivial solution of the homogeneous problem 
(5.3.46), satisfying

 0 0( ) ( ) 0,   -1 1x x x+ −Φ +Φ = < <  (5.3.47)

then we may rewrite the nonhomogeneous problem (5.3.46) as 

 
0

2 ( )( ) ( ) ,   1 1
( )
f xx x x

x
π+ −

+Ω −Ω = − < <
Φ

 (5.3.48)

where

 
0

( )( ) .
( )
zz
z

Φ
Ω =

Φ
 (5.3.49)

Thus, the relation (5.3.45b) suggests that we can determine the function 
( )zΩ  as

 
1

2
-1

1 ( )( )   ( )
2 ( )

g tz dt E z
i t zπ

Ω = +
−∫  (5.3.50)

where

 
0

2 ( )( ) ,
( )
f xg x

x
π

+
′ =

Φ
 (5.3.51)
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and  ( )E z   is an entire function of .z
 Using the form (5.3.50) of the function ( ),zΩ  along with the relation 

(5.3.49) and the Plemelj-type formula (5.3.45b). we obtain

 
1

02 2
1

1 ( )( )  ( )  2  ( ) ,   1 1.
2 ( )

g tx x dt i E x x
t x

ϕ π
π

+

−

⎡ ⎤
′ = − Φ + − < <⎢ ⎥−⎣ ⎦

∫  (5.3.52)

Thus we have been able to determine the fi rst derivative of the unknown 
function ( ),xϕ  in terms of an unknown ( ),   ( )E x E z being an entire 
function in the complex z-plane.

If we select 0 ( )zΦ  as

 
1/ 2

0
1( ) ,
1

zz
z
+⎛ ⎞Φ = ⎜ ⎟−⎝ ⎠

 (5.3.53)

then

 
1/ 2

0
1( )    for  1 1.
1

xx i x
x

± +⎛ ⎞Φ = − < <⎜ ⎟−⎝ ⎠
∓  (5.3.54)

Now, by defi nition, ( )zΦ = 0
2

1   as  z
z

⎛ ⎞
⎜ ⎟ → ∞
⎜ ⎟
⎝ ⎠

, so that

0

( )( )
( )
zz
z

Φ
Ω = =

Φ
 

0 2
1
z

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 as ,z → ∞  and hence we must select  

( ) 0.E z ≡
Thus from (5.3.51) and (5.3.54) we fi nd

 
1/ 2 1

2
1

1 1 ( )( )    ,   1 1
1 ( )

x h tx dt x
x t x

ϕ
π −

+⎛ ⎞′ = − − < <⎜ ⎟− −⎝ ⎠ ∫  (5.3.55)

where

 
1/ 21( ) ( ).

1
th t f t
t

−⎛ ⎞′ = ⎜ ⎟+⎝ ⎠
 (5.3.56)

Finally, integrating the relation (5.3.55), the solution of the given integral 
equation (5.3.1) is obtained as

 ( ) ( ) ,   1 1x p x C xϕ = + − < <  (5.3.57)
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where

 
1/ 2 1

2
1

1 1+ ( )( )    
1 ( )

x h tp x dt
x t xπ −

⎛ ⎞′ = − ⎜ ⎟− −⎝ ⎠ ∫  (5.3.58)

and  C   is an arbitrary constant. We note that the expression for ( )h t  
will involve an arbitrary constant of integration, arising out of the relation 
(5.3.56), and thus the form of the solution (5.3.57) involves two arbitrary 
constants altogether.

This completes the function-theoretic method of solution of the 
hypersingular integral equation (5.3.1) in which the conditions ( 1) 0ϕ ± =  
have not been used. When these conditions are used, the form of the solution 
(5.3.57) will reduce to the form (5.3.36). This is now shown below.

Integration of (5.3.58) by parts produces

 
( ) ( )( )

1/2 1

1/2 1/22 2
1

1 1 ( ) 1 ( 1) (1) 2 (1)( )    .
1- 1 1 1

x h t h h hp x dt
x t x x x xπ π−

⎡ ⎤′+ − −⎛ ⎞ ⎢ ⎥′ = − + +⎜ ⎟ ⎢ ⎥−⎝ ⎠ − − −⎣ ⎦
∫

Another integration gives, because of the relation (5.3.56),

{ }
1

1/ 22 2
-1

1/ 212 1/ 2
-1

2 1/ 2
1

1( )  ( )   
1 (1 )(1 )

1+(1 ) 1 1         + 4  (1)  ( 1) (1) ( )  sin
1 (1 ) 1

x tp x f t ln dt
xt x t

x th h h f t dt x
x x t

π

π
π −

−
=

− + − −

⎡ ⎤− −⎛ ⎞+ − − +⎢ ⎥⎜ ⎟− + − +⎝ ⎠⎢ ⎥⎣ ⎦

∫

∫

 (5.3.59)

ignoring an arbitrary constant and using the following results

 
( )1/221/2 11 1 1 1 

1 1 1
tt

t t x x t x t
−−⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟+ − + − +⎝ ⎠ ⎝ ⎠

 (5.3.60)

and

{ }

1/ 22

1/ 2 22 2

1 1   
11 (1 )(1 )

x t tln
x x x txt x t

⎛ ⎞∂ − −
= ⎜ ⎟∂ − −⎝ ⎠− + − −

. (5.3.61)

When  ( 1) 0,ϕ ± =  we must have (1) 0 ,h C= =  and

 
1/ 21

1

1( 1) ( ) 
1

th f t dt
t−

−⎛ ⎞− = − ⎜ ⎟+⎝ ⎠∫  (5.3.62)
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and thus we obtain

 
{ }

1

1/ 22 2
1

1( ) =  ( ) In  ,   1 1,
1 (1 )(1 )

x tx f t dt x
xt x t−

−
− < <

− + − −
∫ϕ

π

which agrees with (5.3.36).

5.4 SOLUTION OF HYPERSINGULAR INTEGRAL EQUATION 
OF THE SECOND KIND

In this section we present a straightforward analysis involving the complex 
function theoretic method to determine the closed form solution of a special 
hypersingular integral equation of the second kind. This analysis is given 
by Chakrabarti, Mandal, Basu and Banerjea (1997).  The hypersingular 
integral equation of the second kind is given by

 ( )
( )

1
1/ 22

2
1

( )( )  1   ( ),   1 1tx x dt f x x
t x

α ϕϕ
π −

− − = − < <
−∫  (5.4.1)

with ( 1)  0,ϕ ± =  and it is known as the elliptic wing case of  Prandtl’s 
equation (cf. Dragos  (1994a, 1994b), for which ( 0)α >  is a known

constant, and ( )
1

2 22( ) 1kf x xπ
β

= − ; ,k β  also being known constants

with 0β > . The equation (5.4.1) is examined here for its closed form 
solution for the class of forcing functions ( )f x   which are summable 
in  ( 1,1)− , by using a complex function theoretic method in a straight 
forward manner.

The present method converts the equation (5.4.1) into a differential 
Riemann-Hilbert Problem on the cut ( 1,1)−  which is amenable to its 
closed form solution, and, by this, it is demonstrated that in the considered 
special case the elaborate reduction method as presented in the treatise of 
Muskhelishvilli (1953, formulae (122.13)-(122.15) and (122.17)) can be 
avoided to solve the given integral equation.

Assuming that 1, ( 1,1),   i.e.  ( )C xγϕ ϕ∈ −  possesses a Hölder 
continuous fi rst derivative, with exponent γ , such that 0 1,γ< <  so that 

( )xϕ  is summable in ( 1,1),   and  ( 1) 0,ϕ− ± =  we set

 
1

-1

1 ( )( )   ,   ( 1,1),
2

tz dt z
i t z

ϕ
π

Φ = ∉ −
−∫  (5.4.2)
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and observe that  ( )zΦ   represents a sectionally analytic function of the  
complex variable  ( )z x iy= +   in the z-plane, cut along the segment

( 1,1)−   on the real axis, and that  
1( ) 0   as  z .z
z

ϕ
⎛ ⎞

= → ∞⎜ ⎟⎜ ⎟
⎝ ⎠The Plemelj formulae give that  

 
1

-1

1 1 ( )( )  ( )   ,   1 1
2 2

tx x dt x
i t x

ϕϕ
π

±Φ = ± + − < <
−∫  (5.4.3)

where  ( )x±Φ   are the limiting values of   ( )zΦ   on the upper and lower 
sides of the cut  ( 1,1)−  and the integral is in the sense of CPV.

Using the formulae (5.4.3), we can easily cast the integral equation 
(5.4.1) into the functional relation as given by

 2 1/ 2 2 1/ 21 (1 )  ( ) 1 (1 )  ( ) ( ),   1 1.d di x x i x x f x x
dx dx

α α+ −⎛ ⎞ ⎛ ⎞− − Φ − + − Φ = − < <⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.4.4)

The relation (5.4.4) represents a differential Riemann-Hilbert problem on 
the cut (cf. Gakhov (1966)) for the determination of the function ( ),zΦ  and 
once the function ( )zΦ  is determined, the solution ( )xϕ  of the equation 
(5.4.1) can be completed by using the formulae (5.4.3) once again, giving

 ( ) ( ) ( ),   1 1.x x x x+ −= Φ −Φ − < <ϕ  (5.4.5)

Now we determine the function ( ),zΦ  satisfying the relation (5.4.4), 
by using the analysis as described below.
We observe that the following limiting values hold for the sectionally
analytic function ( )1/ 22 1z −  in the complex z-plane, cut along ( 1,1)−  on 
the real axis:

 
2 1/ 2 2

0
lim  ( 1)  (1 )
y

z i x
→±

− = ± −  (5.4.6)

with that branch of the square root for which 1/ 2x  is  positive whenever  x   
is positive. Then the relation (5.4.4) can be cast into the simplifi ed form 
given by

 ( ) ( ) ( ),   1 1,x x f x x+ −Ψ −Ψ = − < <  (5.4.7)

where

 ( )1/ 22 ( )( ) ( ) 1  .d zz z z
dz
Φ

Ψ = Φ − −α  (5.4.8)
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The solution of the simple Riemann-Hilbert problem (5.4.7) is obtained, 
immediately, in the form

 
1

1

1 ( )( )    ,
2

f tz dt
i t z

ψ
π −

=
−∫  (5.4.9)

since    
1 1( ) 0( )  as    because  ( ) 0( )

| | | |
z z z

z z
ψ = → ∞ Φ =     as

z → ∞  (cf. the representation  (5.4.6)).

Then, solving the ordinary differential equation (5.4.8) by a standard 
method, we obtain that (since 0),α >

 { }
( )

( ){ }
1

2 1/ 2 1
1/ 22

1/ 22

( 1)1( )   ( ) 1
1

z

z d z z
−

∞

⎡ ⎤
+ −⎢ ⎥Φ = − Ψ + + −⎢ ⎥

−⎢ ⎥⎣ ⎦
∫

α
α

ς ς
ς ς λ

α ς
 (5.4.10)

whereλ is an arbitrary constant.

We note that we must choose 0λ = , in order to meet with the

requirement that 
1( ) = 0( )

| |
z

z
Φ   as  .z → ∞  We also note that,

since analytic functions of analytic functions are themselves analytic in 
the same cut plane, there is no diffi culty in checking that the function as 
given by (5.4.10) represents an analytic function in the complex z-plane, 
cut along the segment  ( 1,1)−   of the real axis. In particular, by Cahchy’s 
integral theorem applied in the outer region of the cut ( 1,1),  ( )z− Φ  is a 
single-valued function there.

We thus fi nally determine the function ( )zΦ , related to the integral 
equation (5.4.1), in the form

 ( ){ } ( ){ }
( )

1/1/22
1/1/22

1/22

11( )  1   ( ) 
1

z

z z z d

α

α ς ς
ς ς

α ς

−

∞

+ −
Φ = − + − Ψ

−
∫  (5.4.11)

where   ( )zΨ   is as given by the formulae (5.4.9).  As  1,z → ±  we have 
( 1) ( 1)+ −Φ ± = Φ ±  so that ( 1) 0,ϕ ± =  as required.
The result (5.4.11), along with the relation (5.4.5), thus completely 

solves the integral equation (5.4.1).
In the case of Prandlt’s equation, we have

 2 1/ 2.2 2 ( 0),   and  ( )  (1 ) .kf x xπ πα β
β β

= > = −  (5.4.12)

{ς
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The integral in the relation (5.4.9) can be evaluated by standard 
contour integral equation procedure (cf. Gakhov (1966) for example), and 
we fi nd that

{ }12 1/2( ) ( 1) .kz z z
i
π
β

−
Ψ = − + −  (5.4.13)

Using the result (5.4.13), along with the value of α  as 
2 ,πα
β

=  we

determine the function ( ),zΦ  by using the formula (5.4.11), after some 
easy manipulations, in the form

( ){ }1/ 222( )  1 .21

ikz z z
β

π

Φ = − −
+

. (5.4.14)

The relation (5.4.5) fi nally determines the solution ( )xϕ  of the integral 
equation of Prandtl, and obtains that

( )1/ 224( )  1 ,21  

kx xπϕ
β

π

= −
+

 (5.4.15)

and this completely agrees with the one as quoted in the Dragos’s papers.
The second kind hypersingular integral equation (5.4.1) will be 

considered later for its numerical solution.

}}}



In this chapter we consider some singular integro-differential  equations 
for their solution by employing a simplifi ed analysis. These equations arise 
in a natural way while solving a class of mixed boundary value problems 
of mathematical physics (cf. Holford (1964), Spence (1960), Stewartson 
(1960)).

6.1 A CLASS OF SINGULAR INTEGRO-DIFFERENTIAL 
EQUATIONS

We consider the singular integro-differential equation as given by

                  
0

1 ( )( )   ( ),   0v tu x dt f x x
t xπ

∞

− = < < ∞
−∫        (6.1.1)

where  ( )u x   and  ( )v x   represent  two linear differential expressions of 
the forms

( )

0
( )  ( )

n
k

k
k

u x a xϕ
=

=∑  (6.1.2) 

and

( )

0
( )  ( )

n
k

k
k

v x b xϕ
=

=∑  (6.1.3) 
                                                                                    

in which  ka ’s  and  kb ’s  are in general complex constants,  ( ) ( )k xϕ
denotes the  thk  derivative of the unknown function  ( )xϕ   with 

Chapter 6        
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prescribed initial values  ( ) (0),kϕ  along with the conditions that   
( ) ( ) 0,  for  0,1, 2,...k k nϕ ∞ = = ,n, and f(x) represents a known 

differentiable function.
Varley and Walker (1989) have discussed a general method of solving 

the integro-differential equation (6.1.1) by converting it to a singular 
integral equation, which avoids the complication of calculating various 
singular integrals appearing in the fi nal form of the solution. Chakrabarti 
and Sahoo (1996) employed a straightforward analysis simplifying the 
work of Verley and Walker (1989). This is explained here.

We seek solution of (6.1.1) under the assumptions that

 ( ) 0( )  as  0v x x xα= →  (6..1.4)

where  Re  1,   andα > −   

 ( )  0( )  as  v x x xβ= →∞  (6..1.5)

where  1 Re 0.β− < <

Method of solution

Using the Laplace transform ( )V p  of the function ( )v x  defi ned by

 
0

( ) ( )  ,   0,pxV p v x e dx p
∞

−= >∫  (6.1.6)

the equation (6.1.1) can be shown to be equivalent to the following singular 
integral equation

 
0

1 ( )( )   ( )V qU p dq F p
q pπ

∞

+ =
−∫  (6.1.7)

                                                       
where  ( ),  V( )  and  ( )U p p F p   are the Laplace transforms  of the 
functions  ( ),  ( ) u x v x  and  ( )f x respectively. The expressions  for U(p) 
and V(p)  are given by

1 1( ) ( ) ( ) ( ),   ( ) ( ) ( ) (p) U p A p p A p V p B p p B= Φ − = Φ −  (6.1.8)
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where  

 

k

0

1 2
1 0 1 1

1 2

0

1 2
1 0 1 1

1 2

( )  

( )   ,

( )  ,

( )   

n

k
k

n n
k k

k k n n
k k

n
k

k
k

n n
k k

k k n n
k k

A p a p

A p a p a p a

B p b p

B p b p b p b

ϕ ϕ ϕ

ϕ ϕ ϕ

=

− −
−

= =

=

− −
−

= =

=

⎛ ⎞ ⎛ ⎞= + + ⋅⋅⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

⎛ ⎞ ⎛ ⎞= + + ⋅⋅⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑

∑

∑ ∑

  
(6.1.9)

with  
( ) (0),   0,1, 2,... .k

k k n= =ϕ ϕ

Using the relations (6.1.8), the equation (6.1.7) can be cast into the 
form

 
0

( ) ( )( ) ( )   ( ),   0B p V qA p V p dq C p p
q pπ

∞

+ = >
−∫  (6.1.10) 

where 

 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ).C p A p B p B p A p F p B p= − +  (6.1.11)

By the Abelian theorem on Laplace transforms (cf. Doetsch (1974)) and 
using the assumptions (6.1.4) and (6.1.5), we obtain                                               

 1( ) 0( )  as  .V p p pα− −= →∞      (6.1.12)

and

 1( ) 0( )  as  0V p p pβ− −= → . (6.1.13)

These orders of ( )V p  assure that the integral in (6.1.10) exists and 
fi nite.

We now discuss, in some detail, the method of determination of the 
function ( ).V p  We consider the general case of (6.1.1) for which the pair 

(6.1.9)
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0 0( , )a b  has the property that either 0 0  and  a b  or both are non-zero, the 
same is assumed to hold good for the pair ( , )n na b  also.

Defi ning  

  
0

1 ( )( )   ,   ,
2

V tz dt z p ip
i t zπ

∞

′Ψ = = +
−∫  (6.1.14)

we note that ( )zΨ  is analytic in the complex z-plane with a cut along the 
positive real axis. Then by Plemelj formulae

 ( ) ( ) ( ),   0p p V p p+ −Ψ −Ψ = >  (6.1.15)

and

 
0

1 ( )( ) ( )   ,   0V tp p dt p
i t pπ

∞
+ −Ψ +Ψ = >

−∫  (6.1.16)

where  ( )  and  ( ) p p+ −Ψ Ψ are the limiting values of  ( )  as  z zΨ   
approaches a point  p   on the positive real axis from above and from 
below respectively.

From (6.1.10) and the relations (6.1.15) and  (6.1.16) we obtain

( ) ( ) ( )( ) ( ) ,   0,
( ) ( ) ( ) ( )

A p iB p C pp p p
A p iB p A p iB p

+ −+
Ψ −Ψ = >

− −
 (6.1.17)

which represents a Riemann-Hilbert problem for the determination of the 
sectionally analytic function ( ).zΨ   This Riemann-Hilbert problem can 
be solved as described below.

We fi rst construct a sectionally analytic function ( )zΩ  in the complex 
z-plane cut along the positive real axis, satisfying the relation

 
( ) ( ) ( ) ,   0
( ) ( ) ( )
p A p iB p p
p A p iB p

+

−

Ω +
= >

Ω −
 (6.1.18)

where   ( ),  ( )p p+ −Ω Ω  are the limiting values of  ( )zΩ   on the two sides 
of the positive real axis.

Assuming that ( ) ( )A p iB p+  possesses zeros at the points 
 ( 1, 2,... ) i i nμ = and ( ) ( )A p iB p−  possesses zeros at different points 
 ( 1, 2, ),j j nλ =   none of which lie on the positive real axis, and setting
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 ( ) ( ) z z zδΩ = Λ  (6.1.19)

with

 
1   ,

2
n n

n n

a ibln
i a ib

δ
π

+
=

−
 (6.1.20)

we can recast the problem (6.1.18) in the form 

 
1

( ) ,   0.
( )

n
j

j j

pp p
p p

μ
λ

+

−
=

−Λ
= >

Λ −∏  (6.1.21)

The solution of the problem posed by the relation (6.1.21) can easily be 
written down as (cf. Gakhov (1966)),

 1
10

1 1 ( )   dt  ( )
2

n
j

j j

t
ln z ln ln E z

i t t z
μ

π λ

∞

=

⎛ ⎞−
Λ = +⎜ ⎟⎜ ⎟− −⎝ ⎠

∑∫  (6.1.22)

where  1( )E z  is an entire function,  and using the Plemelj formulae, we 
obtain  

1

1 0

( ) 1 1 1    ,   0.
( ) 2 2

n
j j

j j j

p tE pln ln ln dt p
p p i t t p

λ λ
μ π μ

∞

+
=

⎡ ⎤⎛ ⎞− −
= + >⎢ ⎥⎜ ⎟⎜ ⎟Λ − − −⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫  (6.1.23)

After simplifi cation this gives

 1

1

( ) ( ) ( )
( )

j
n

j j
j

E p p p V p
p

γ λ+
=

= −
Λ ∏  (6.1.24)

where

( )
2

2 (1 )

0

( ) exp  
2 ( )( )

j

j
p

jj j j
j j j

j j j

tln
p

V p c p dt
p i t t

θ
π γ μλ λ μ

λ
μ π λ μ

− +

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎛ ⎞− − ⎝ ⎠= − −⎜ ⎟ ⎢ ⎥⎜ ⎟− − −⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥⎣ ⎦

∫  (6.1.25)

with

 j
1 2

j

1   ,  arg( ),  arg( ),
2j j j j jln

i
λ

γ θ λ θ μ
π μ

⎛ ⎞
= − = =⎜ ⎟⎜ ⎟

⎝ ⎠
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 1 2exp (0) {  (2 )}
2
j j

j j j j jc I ln i
i

λ μ
γ λ π θ θ

π
−⎡ ⎤

= − + − − −⎢ ⎥
⎣ ⎦

 

and

 
0

 (0) .
( )( )j j

ln tI dt
t tλ μ

∞

=
− −∫

 
We thus determine the limiting value of 

1
( )p+Ω

, as given by 
 

 
{ }1

1

1

( ) ( )
1
( ) ( )

n

j
j

n

j j
j

p p V p

p E p

δ γ

λ=

+

=
+

∑
−

=
Ω

∏
. (6.1.26)

Using the relation (6.1.18), we can recast (6.1.17) as

( ) ( )( ) ( ) ( ) ( ) ,   0,
( ) ( )

C p pp p p p p
A p iB p

−
+ + − − Ω

Ω Ψ −Ω Ψ = >
−

 (6.1.27)

producing

 2
0

1 ( ) ( ) 1( ) ( )    ( ),   
2 ( ) ( )

C t tz z dt E z
i A t iB t t zπ

∞ −Ω
Ω Ψ = +

− −∫  (6.1.28)

where  2 ( )E z   is an entire function.

By Plemelj formulae, we obtain from (6.1.28)

0

2

1 ( ) ( ) 1 ( ) ( ) 1 ( )  
2 ( ) ( ) ( ) 2 ( ) ( ) ( )

( )            , 0
( )

C p p C t tp dt
A p iB p p i p A t iB t t p

E p p
p

π

∞− −
+

+ +

+

Ω Ω
Ψ = +

− Ω Ω − −

+ >
Ω

∫
 (6.1.29)  

                                                                                                            

and 

  
2

0

( )1 ( ) 1 ( ) ( ) 1( )   ,  0.
2 ( ) ( ) 2 ( ) ( ) ( ) ( )

E pC p C t tp dt p
A p iB p i p A t iB t t p pπ

∞ −
−

− −

Ω
Ψ = − + + >

− Ω − − Ω∫  (6.1.30)

The function ( )V p  is fi nally determined, by using the relations (6.1.24) 
and (6.1.30) in the relation (6.1.15), and we fi nd that



148 Applied Singular Integral Equations

0

1 ( ) ( ) 1 1 1 ( ) ( ) 1( ) 1   
2 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

     

C p p C t tV p dt
A p iB p p i p p A t iB t t pπ

∞− −

+ + −

⎛ ⎞ ⎛ ⎞Ω Ω
= + + −⎜ ⎟ ⎜ ⎟− Ω Ω Ω − −⎝ ⎠⎝ ⎠

∫
 

 +  2
1 1 ( )
( ) ( )

E p
p p+ −

⎛ ⎞
−⎜ ⎟Ω Ω⎝ ⎠

.  (6.1.31)

The integral in the relation (6.1.31) can be easily evaluated by considering 
the contour integral

 
( ) ( )  

( )( )
C d
B z

ζ ζ ζ
ζ ζΓ

Ω
−∫

where   Γ   is closed contour comprising of a circle of large radius along 
with a loop around the positive real axis in the complex  ζ -plane, with the 
assumption that  1 2, ,...ζ ζ nζ   are the  n   distinct zeros of   ( )B ζ ,  which 
do   not lie  on the positive  real  axis  and ( ) 0  for  1, 2,...jB j nζ′ ≠ =  
(the case of multiple zeros can also be dealt with). Then, by application 
of the Cauchy residue theorem we obtain that (using the relation (6.1.18) 
also)

10

( ) ( )2 ( ) ( ) 1 ( ) ( ) ( ) 1 2 .
( ) ( ) ( ) ( ) ( )( )

n
j j

j j j

CC t t C p pdt p
A t iB t t p B p p B p

ζ ζ
π ζ ζ

∞ − −
+

+
=

Ω⎛ ⎞Ω Ω
= Ω + +⎜ ⎟ ′− − Ω −⎝ ⎠

∑∫       (6.1.32)

Using the result (6.1.31) in (6.1.32) we derive that

 
( )( )( ) ( )

2
1

1 2

( ) ( )
( ) 2 ( )

( )( )
( ) ,

( )

n
j j

j j j

n n n

C
B p iE p

B p
V p

a ib p p p p

ζ ζ
ζ ζ

λ λ λ
=

+

⎡ ⎤Ω
−⎢ ⎥′ −⎢ ⎥⎣ ⎦=

− − − ⋅⋅⋅ − Ω

∑
 (6.1.33)

which, on substitution for  ( )p+Ω   from the relation (6.1.26), gives

 1 2( ) ( )  ( ) ( ) ( )nV p H p p V p V p V pδ γ+= ⋅⋅⋅  (6.1.34)

where      

 
( )

2
1

1

( ) ( )
( ) 2  ( )

( )( )
( )

( )

n
j j

j j j

n n

C
B p i E p

B p
H p

a ib E p

ζ ζ
ζ ζ=

⎡ ⎤Ω
−⎢ ⎥′ −⎢ ⎥⎣ ⎦=

−

∑
 (6.1.35)

which is a rational function, with

 1 2 .nγ γ γ γ= + + ⋅⋅⋅+
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The analysis that has been explained above is applicable to (6.1.1) 
for the general case where ka ’s and kb ’s are complex constants.  But, 
for the particular case, when ka ’s and kb ’s are real constants, we have 

1 2j0 1.  Setting  ,  2 ,  j j jδ θ θ θ π θ< < = = − and   j jμ λ= , we obtain 

 1 ,  1,j
j jc

θ
γ

π
= − =

and using the relation (6.1.25) we fi nd that

 

( )( )

| |

2
0

1
2

sin  exp  
2  cos 1

( ) .

j

j

p

j

j

j

j j

ln t dt
t t

V p
p p

λ

θ
π

θ
π θ

λ λ
−

⎡ ⎤
⎢ ⎥
−⎢ ⎥− +⎢ ⎥
⎣ ⎦=

⎡ ⎤− −⎣ ⎦

∫
 (6.1.36)

This is equivalent to the result obtained by Varley and Walker (1989).

Ultimately, by using the form (6.1.34) we fi nd that

 
( )( ) 0   as  n

H pV p p
p δ−

⎛ ⎞
= →∞⎜ ⎟

⎝ ⎠
 (6.1.37)

and

 ( )( ) 0 ( )   as  0,V p H p p pγ δ+= →  (6.1.38)

which help is expressing  ( )H p   as  

 
1

( )  
n

j
j

j k
H p h p

−

=−

= ∑  (6.1.39)

where  1 ,  0,1,..., ( 1),k k k nδ γ− < + < = −   when the relations (6.1.12) 
and (6,1,13) are also used.

The determination of jh ’s can be completed by considering two 
separate cases as described next. These cases take care of even different 
degrees of the two polynomials ( )  and  ( ).A p B p

Case (i): If ( )  and  ( )A p B p  are of the same degree n , the constants   
0 1 1, ,..., nh h h −  can be obtained by using the relation (6.1.10) along with the 

fact that  1 2, ,... nζ ζ ζ  are the simple zeros of ( ).B p  The other constants  
1 2 1, ,... nh h h− − − +  will remain arbitrary.
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Case (ii): If    where  n m n>   is the degree of  ( )  and  A p m   is the 
degree of ( ),B p  then the 1 2  constants  , ,..., mm h h h  can be determined  
by using the   zeros of  ( )m B p  and the relation (6.1.10).  The other 
( 1)n m− −  constants 1 1,...,m nh h+ −  can be determined by using the 
asymptotic behaviour of ( )  as  .z zΩ →∞  The other constants will 
remain arbitrary.

The function ( )v x  can fi nally be determined by using the Laplace 
inversion formula and we fi nd that

( ) cos

0 0

( ) 2  cos sin  ( )  j j
n

x xs
j j j j

j
v x R x e l s e dsλ θλ θ α

∞
−

=

= + +∑ ∫  (6.1.40)

where    denotes the residue of  ( )  at  ji
j jR e V p pα λ=   and

 { }1( )  ( ) ( )
2

i il s V se V se
i

π π

π
−= −  (6.1.41)

with the expression for  ( )V p   as given by the relation (6.1.34). The 
unknown function ( )xϕ  can then be determined successfully, by using the 
second relation in (6.1.8) along with the convolution theorem for Laplace 
transforms.

Remark

Followings are some observations on the method that has been presented 
above.
 (i)  A  lot of complication is avoided by evaluating the Cauchy type 

integral in the relation (6.1.31) directly.
 (ii) In this analysis, the determination of  ( )H p  is simpler as compared  

to that explained by Varley and Walker (1989).
 (iii) The behaviour of the funtion  ( )V p   at the end points  

0  and  p p= = ∞  along with the analyticity property of  ( )V p  has 
helped to arrive at the expression for ( ),H p as given by the relation 
(6.1.35).

6.2 A SPECIAL TYPE SINGULAR INTEGRO-DIFFERENTIAL 
EQUATION 

In this section we describe a method of solution of a special type of singular 
integro-differential equation arising in the study of a problem concerning 
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heat conduction and radiation, in elastic contact problems, etc. (cf. Frankel 
(1995), Chakrabarti and Hamsapriye (1999)). This equation is given by

 
1

0

( ) ( )  ( ),   0 1d x y dy f x x
dx y x
θ θμ λ− = < <

−∫  (6.2.1)

where ,λ μ  are known non-zero constants, and ( )f x  is a known 
differentiable function of (0,1),x∈  with the end onditions for the 
unknown function θ  being given by

(0) (1) 0.θ θ= =

Using the transformations

 ( ) ( )1 1 +11 ,   1 ,   ( ) = 
2 2 2

y ξλ ξ η ξ θ ⎛ ⎞= + = + Θ ⎜ ⎟
⎝ ⎠

 (6.2.2)

we can rewrite the equation (6.1.1) as

 
1

1

1 ( )2  ,   1 1
2

d f d
d

ξ ημ λ η ξ
ξ η ξ−

Θ + Θ⎛ ⎞− = − < <⎜ ⎟ −⎝ ⎠ ∫  (6.2.3)

with the end conditions

 ( 1) 0.Θ ± =

If we use the inversion formula for the Cauchy type singular integral 
equation, as given by the relation (6.2.3), assuming that the left side of 
the relation is known, for the time being, and that we require bounded 
solutions at the end points 1ξ = ±  in the form ( 1) 0,Θ ± =  we fi nd that

( )
( )

1
1/22

1/22 2
1

2 1 1 1 1( ) 1     , 1 1,
2 21

d f d
d

μ ηξ ξ η ξ
λπ η μ η ξη−

⎧ ⎫Θ +⎛ ⎞Θ = − − − − < <⎨ ⎬⎜ ⎟ −⎝ ⎠⎩ ⎭−
∫  (6.2.4)

with the condition for bounded solution being given by

 
( )

1

1/22
1

1 1 1  0.
2 21

d f d
d

η η
η μη−

⎧ ⎫Θ +⎛ ⎞− =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭−

∫  (6.2.5)

If in the relations (6.2.4) and (6.2.5) we use the transformation

 2( ) (1 ) ( )ξ ξ ϕ ξΘ = −  (6.2.6)
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where  ϕ   is non-zero at  1,ξ = ±   the transformation being  motivated 
by the equation (6.2.3) under the end conditions for  ( ),ξΘ  we obtain the 
following relations:

( ) ( ){ ( )
1

1/ 2 1/ 22 2
1/ 22 2

1

2 1/ 2

2 21 ( )  1 ( ) ( )
1

1 1 1                                , 1 1  
2 (1 ) 2

f d

μ ηξ ϕ ξ η ϕ η ϕ η
π η

η η ξ
μ η η ξ

−

′− = − − −
−

⎫+⎛ ⎞− − < <⎬⎜ ⎟− −⎝ ⎠⎭

∫
      (6.2.7)

and

( )
( )

1
1/ 22

1/ 2 2 1/ 22
1

2 1 11 ( ) ( ) 0.
2 (1 ) 21

f dη ηη ϕ η ϕ η η
μ ηη−

⎧ ⎫+⎪ ⎪⎛ ⎞′− − − =⎨ ⎬⎜ ⎟− ⎝ ⎠−⎪ ⎪⎩ ⎭
∫  (6.2.8)

Now, in order to solve the equation (6.2.7), we assume that ( )ϕ ξ  can 
be expressed in terms of a convergent series as given by

 
0

( )  ( )n n
n

a Tϕ ξ ξ
∞

=

=∑  (6.2.9) 

where ( ) ( 0,1, 2,...)nT nξ =   are Chebyshev polynomials of the fi rst 
kind, and  na ’s  are unknown constants to be determined.  Then using the 
following results on Chebyshev polynomials ( )  and  ( )n nT Uξ ξ  of fi rst 
and second kinds

   (i)     1( )  ( ),   1, 2,...,n nT n U nξ ξ−
′ = =

  (ii)     0 ( ) 0,T ξ′ =

 (iii)     { }1( ) ( ) ( ) ( ) ,   , 0,1, 2,...,
2m n m n m nT T T T m nξ ξ ξ ξ+ −= + =

 (iv)      1( ) ,T ξ ξ=

  (v)      
( )1/ 221

1
1

1 ( )
   ( ),   =0,1,2,..., 1n

n

U
d T

ξ ξ
ξ π η η η

ξ η +
−

−
= − <

−∫ ,

 (vi)      
( )

1
1

1/ 22
1

( )  ( ),   0,1, 2,...,  1,
1 ( )

n
n

T d U nξ ξ π η η
ξ ξ η

+

−

= = <
− −

∫
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(vii)

      
( )

1

1/ 22
1

0  if  1,
 ( )

 if  1,1 2

n
n

T d
n

ξ ξ ξ π
ξ−

≠⎧
⎪= ⎨

=− ⎪⎩
∫

the equation (6.2.7) produces, after substituting the relation (6.2.9) into 
it,

( )

{ }

1/22

0 0

2
0

21  ( ) ( )    ( )

2                                        ( ) ( )

n n n n
n n

n n n
n

a T P n a T

a U U

μξ ξ ξ ξ
π

μ ξ ξ
λπ

∞ ∞

= =

∞

−
=

− = +

+ +

∑ ∑

∑
 (6.2.10)

where

 
( )

1

1/ 22 2
1

1
1 2( )  .

1 ( )

f
P d

η

ξ η
λπ η η ξ−

+⎛ ⎞
⎜ ⎟
⎝ ⎠=

− −
∫  (6.2.11)

Also the relation (6.2.8) gives

 
( )

1 1
2 1/2

1 1 1/220 1 -1

1
1 2  (1 ) ( )  .

2 1
n n

n

nf
n a U d a dη η η π η

μ η

∞

−
= −

+⎛ ⎞
⎜ ⎟
⎝ ⎠− − =
−

∑ ∫ ∫  
(6.2.12)

Now using the result

 ( )
1

1/ 22
1

1

0  if  1,
1 ( )

 if  1,
2

n

n
U d

n
η η η π−

−

≠⎧
⎪− = ⎨

=⎪⎩
∫  (6.2.13)

the relation (6.2.12) determines the unknown constant  1a   as

 
( )

1

1 1/22
1

1
1 2  .

1

f
a d

η

η
πμ η−

+⎛ ⎞
⎜ ⎟
⎝ ⎠= −
−

∫  (6.2.14)

Next, in order to determine the other constants ( 1),na n ≠  we multiply

both sides of the relation (6.2.10) by ( ) 1/ 221 ( )mTξ ξ
−

−  and integrate 
between 1−  to 1 to obtain
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( ) ( )

( )
{ }

1 1 1

1/2 1/22 20 01 1 1

1

21/220 1

( ) ( ) ( ) ( )2 ( ) ( )      
1 1

( )2           +    ( ) ( ) ,  0,1, 2,... .
1

m n m
n n m n

n n

m
n n n

n

P T T Ta T T d d n a d

Ta U U d m

ξ ξ ξ ξμξ ξ ξ ξ ξ
λπξ ξ

ξμ ξ ξ ξ
λπ ξ

∞ ∞

= =− − −

∞

−
= −

= +
− −

+ =
−

∑ ∑∫ ∫ ∫

∑ ∫  (6.2.15)

In the relation (6.2.15) if we use the results

 { }1( ) ( )  ( ) ( )
2m n m n m nT T T Tξ ξ ξ ξ+ −= +

and

 
( )

1

1/ 22
1

0  if  ,
( ) ( )    if  0,

1
 if  0,

2

m n

m n
T T d m n

m n

ξ ξ ξ π
ξ π−

⎧
⎪ ≠
⎪

= = =⎨
− ⎪

⎪ = >
⎩

∫

we obtain the following relations connecting the unknown constants na :

( )
1

0 01/ 220 01

( ) 2    ,   1, 2,...,
1

n n n n
n n

Pa c d a b mξ μξ
λπξ

∞ ∞

= =−

= + =
−

∑ ∑∫  (6.2.16)

( )
1

1/220 01

( ) ( ) 2      ,   1, 2,...,
1

m
n nm m n nm

n n

P Ta c d m a a b mξ ξ μ μξ
λ λπξ

∞ ∞

= =−

= + + =
−

∑ ∑∫  (6.2.17)

where

 
1

1

( ) ( ) nm n mc T T dξ ξ ξ
−

= ∫
and

 
( )

{ }
1

21/ 22
1

( ) ( ) ( ) .
1

m
nm n n

Tb U U dξ ξ ξ ξ
ξ

−
−

= +
−

∫  (6.2.18)

The unknown constants   ( 0,1, 2,...)na n =   can now be determined, 
approximately by truncating the series for  n N=  in the relations (6.2.16) 
and (6.2.17) and thereby obtaining a system of linear equations for  

0 1( 1)  unknown  , ,...N a a+ ,aN,of which the constant  1a   has to be given 
by the relation (6.2.14) for consistency.
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Having described a general method to solve approximately the 
singular integro-differential equation (6.2.3), we present in the next section 
three methods of solution given by Chakrabarti and Hamsapriya (1999).  
Convergence aspect of one method is also discussed.

6.3 NUMERICAL SOLUTION OF A SPECIAL SINGULAR 
INTEGRO-DIFFERENTIAL EQUATION

Here we present three numerical methods of solution of the special singular 
integro-differential equation

 
1

-1

( )2   ( ),   1 1d t dt f x x
dx t x
ϕ ϕλ− = − < <

−∫  (6.3.1)

where λ  is a known positive constant, and ( )xϕ  satisfi es the end 
conditions  ( 1) 0,ϕ ± =  and  ( )f x   has the special form  ( )f x = –x/2 
This equation arises in a heat conduction and radiation problem as already 
mentioned in section 6.2

Method 1    

In the fi rst method, a colloation method is employed instead of the Galerkin 
method of Frankel (1995), after recasting the equation (6.3.1) into the 
form

( )
( )1/221

1/22
1

11 1( )  ( ) 2  ,   1 1,
1

t dx c f t dt x
t x dtx

ϕϕ
λππ −

⎡ ⎤− ⎛ ⎞⎢ ⎥′= − − − < <⎜ ⎟⎢ ⎥− ⎝ ⎠− ⎣ ⎦
∫  (6.3.2)

where  c′   is defi ned as
1

1

( ) .c t dtϕ
−

′ = ∫

In the special case when ( )
2
xf x = − , as considered by Frankel (1995),

the relation (6.3.2) can be transformed to a more convenient form as

( ) ( )1/ 221 1
1/ 22 2

2
1 -1

1 ( )1 21 ( )  ( )   , 1 1 
4

t T xdx x t dt dt x
t x dt

ϕϕ ϕ
π λπ λπ−

−
− − − = − − < <

−∫ ∫  (6.3.3)
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after utilizing the result

 
( )1/ 221

2
1

(1
  ( ),   1 1.

2
t t

dt T x x
t x

π

−

−
= − − < <

−∫  (6.3.4)

It must be emphasized that the right side of the equation (6.3.3) will be 
more complicated in the case of any general ( )f x  (other than a polynomial 
itself). However, approximating ( )f x  by a suitable polynomial, the 
methods described here are still applicable.

The relation (6.3.3) can be rewritten in the operator form as 

 
2  ( ) ( ),   1 1D C x F x x⎛ ⎞+ = − < <⎜ ⎟

⎝ ⎠
ϕ

λπ
 (6.3.5)

where

 ( ) ( )
1

1/ 22

-1

1( ) 1 ( )  ( ) ,D x x x t dtϕ ϕ ϕ
π

= − − ∫  (6.3.6)

        ( ) ( )1/ 221

1

11( )  ,   1 1,
t dC x x

t x dt
ϕϕ

π −

−
= − − < <

−∫  (6.3.7)

 2
1( )  ( ).

4
F x T x

λπ
= −  (6.3.8)

Now we assume an approximation for the function ( )xϕ  in the form

 '' ( )

0
( ) ( )   ( )

N
N

N j j
j

x x c T xϕ ϕ
=

≈ ≡∑  (6.3.9a)

giving

 '' ( ) '' ( )
1

0 0
( )   ( )  ( )

N N
N N

j j j j
j j

x c T x c jU xϕ −
= =

′ ′= =∑ ∑  (6.3.9b)

with the constants ( )( )  0,1,...,N
jc j N=  are to be determined by the aid 

of a suitably selected set of collocation points, to be described below, for a 
suffi ciently large value of the positive integer N ,  ensuring the convergence 
of the method used.  Here double primes in the summation symbol denote 
that the fi rst and the last terms are halved.

Substituting the approximations (6.3.9) into the relation (6.3.3) and 
using the results
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( )1/221

1
1

1
 ( )  ( ),   1 1,j j

t
U x T x x

t x
π−

−

−
= − < <

−∫

 
1

2
1

1 ( 1)( ) ,   0,1, 2,...,
1

j

jT t dt j
j−

+ −
= =

−∫  (6.3.10)

we arrive at the relation

( )1/ 2'' ( ) 2 2
2

0

( )1 1 ( 1) 2 1  ( )  ( ) ,   1 1.
1 4

jN
N

j j j
j

T xjc x T x T x x
jπ λπ λπ=

⎡ ⎤+ −
− − + = − − < <⎢ ⎥−⎣ ⎦

∑  (6.3.11)

We now select the set of collocation points as given by

 cos ,   1, 2,..., ( 1),i
ix x i N
N
π⎛ ⎞= = − = −⎜ ⎟

⎝ ⎠
and derive the system of linear equations

   ( )1/2'' ( ) 2 2
2

0

( )1 1 ( 1) 2 1 ( ) ( ) ,  1, 2,..., ( 1).
1 4

jN
N i

j i j i j i
j

T xjc x T x T x i N
jπ λπ λπ=

⎡ ⎤+ −
− − + = − = −⎢ ⎥−⎣ ⎦

∑  (6.3.12)

Also, on using the end conditions ( 1) 0,ϕ ± =  we obtain two more 
equations

 '' ( ) '' j ( )

0 0
 0,     ( 1)  0. 

N N
N N

j j
j j

c c
= =

= − =∑ ∑  (6.3.13)

We have therefore reduced the problem of solving the equation (6.3.3), to 
that of solving the system of ( 1)N +  linear equations given by (6.3.12) 
and (6.3.13) for the unknown constants ( )  ( =0,1,2,..., ),N

jc j N  which 
can be handled by any standard method.  The above system of linear 
equations is solved for ( )  ( 0,1, 2,... )  and  ( )N

j Nc j N xϕ=  given by 
(6.3.9a) is computed at some intermediate points.  These computed values 
of ( )N xϕ  at some points are    given in Table 1 (taken from Chakrabarti 
and Hamsapriye(1999)). We note that, because of the symmetry property 

( )( )  ( ),   the N
jx x cϕ ϕ= − ’s   in the expression of ( )xϕ  have the property 

that ( )
2 1 0,  N

kc + = [ ] 0,1,..., / 2 .k N=           

We have considered three different values of ( 0)λ >  e.g. 0.1,  1,  10λ =  
as considered by Frankel (1995), and have selected 10,20,40N =  and 
80 for determining the constants ( )N

jc we have also fi xed the inermediate 
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points to be kx x= = 0.2 ,  0,1,...,5,k k± =  in all the methods.   We have 
tabulated the values of ( )N xϕ  only in the interval [ ]0,1 , and symmetry 
takes care of the negative half of the interval [ ]1,1 .−

The convergence of the numerical method is apparent from the given 
table.  The numerical results so obtained tally with those of Frankel 
(1995).

Table 1

( ) (Method 1)N xϕ

 λ     
/ix N        10                      20                         40         80

0.1
                           

     

 
1

10

        0
        0.2
        0.4
        0.6
        0.8
        1.0

        0
        0.2   
        0.4  
        0.6
        0.8
        1.0           

        0
        0.2     
        0.4
        0.6
        0.8
        1.0

0.11578506
0.11124202
0.09757759
0.07467364
0.04230536
         0

0.06950789
0.06712763
0.05985113
0.04718193  
0.02809934
         0                     

0.01392298
0.01358400
0.01255415  
0.01059876
0.00727896
         0

 0.11578505
 0.11124204
 0.09757695
 0.07467364
 0.04230520
          0

 0.06950780
 0.06712801
 0.05984643
 0.04718294
 0.02809826
         0

 0.01392237
 0.01358756
 0.01253918
 0.01060232
 0.00727837
         0

0.11578504
0.11124204
0.09757693
0.07467375
0.04230520
         0

0.06950773
0.06712802
0.05984624
0.04718280
0.02809828
        0

0.01392221 
0.01358769
0.01253874
0.01060181
0.00727857
        0

0.11578504
0.11124204
0.09757693
0.07467375
0.04230520
         0

0.06950773
0.06712802
0.05984626
0.04718280
0.02809828
        0

0.01392221
0.01358769
0.01253848
0.01060179
0.00727859
         0

Method  2    

In the second method, we utilize the end-bounded solution of the integro-
differential equation (6.3.1) in the form  

( )
( )

1/ 22 1

1/ 22 2
1

1 1( )  ( ) 2   ,   1 1,
1 ( )

x dx f t dt x
dt t t x−

− ⎛ ⎞= − − − < <⎜ ⎟
⎝ ⎠ − −

∫
ϕϕ

λπ
 (6.3.14)
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which satisfi es the end requirements ( 1) 0,ϕ ± =  provided the condition  

  
( )

1

1/ 22
1

1( ) 2  0
1

df t dt
dt t

ϕ

−

⎛ ⎞− =⎜ ⎟
⎝ ⎠ −

∫   (6.3.15)

is  satisfi ed.

In fact, the formula (6.3.14) for ( ),xϕ  can be shown to be equivalent to 
the formula (6,3,2), under the condition (6,3,15), beause of the fact that

 ( )
( )

( ) ( )
( )

2 2 221/ 22
1/ 2 1/ 22 2

111 ,   , ( 1,1),
1 1

x x ttt x t
t t

− + −−
− = = ∈ −

− −
  

giving

 
( ) ( )

( ) ( )

( )

1/221 1 1
2

1/2 1/22 2
1 1 1

1

1/22
1

1 ( ) ( )  ( )1  
1 ( ) 1

( )                                  +     for  ( ),   1 1,
1

t t t t tdt x dt dt
x t t x t t

tx dt L x
t

ψ ψ ψ

ψ ψ ρ

− − −

−

−
= − +

− − − −

∈ − < <
−

∫ ∫ ∫

∫
 

where  ( )L ρ   denotes the space of all real square injtegrable  functions on   
( 1,1)−  with respect to the weight function  2 1/2( ) (1 ) .x xρ −= −

Then, the relation (6.3.14) follows by choosing 
( ) ( ) 2   and  dx f x c

dx
ϕψ ′= −  to be 

( )
1 1

/22
-1 1

1  ( ) ( ) .
1

t tc dt t dt
t

ψ ϕ
π −

′ = − ≡
−

∫ ∫

It is rather obvious that the symmetry of ( )xϕ  as well as the antisymmetry 
of ( )f x  automatically forces the condition (6.3.15) to be satisfi ed.

The relation (6.3.14) can be viewed as an equivalent integro-
differential equation to the original equation (6.3.1) that satisfi es the end 
conditions.  An approximate solution to the new equation (6.3.14) has now 
been derived here by writing down the unknown function ( )xϕ  in terms 
of the Chebyshev approximation as given by

 '' ( )

0
( ) ( )   ( ),   1 1

N
N

N j j
j

x x a T x xϕ ϕ
=

≈ = − < <∑  (6.3.16)
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where  ( )  (j=0,1,...,N)N
ja   are certain constants to be determined, which 

are different from the ones used in Method 1.
Substituting the approximation (6.3.16) into the equation (6.3.14) and 

using the result, for 1 1,x− < <

( ) { }
1

21/22
( 1)/21

( 2)/2 /2

0  for  0, 1,
2   for  1,( )

( )  
2 ( )   for  odd integer,1 ( )
2  ( ) ( )  for  even integer,

j
j

j

j j

j
jU t

u x dt
U x jt t x
U x U x j

π

π

π
−−

−

= −⎧
⎪ =⎪

= = ⎨ =− − ⎪
⎪ =⎩

∫  (6.3.17)

we arrive at the relation

( ) ( )1/ 2 1/ 22 2
'' ( )

12
0

2 1 1
 ( )  ( ) ,   1 1,

2

N
N

j j j
j

x x
a T x j u x x

λπ λπ−
=

⎡ ⎤− −
⎢ ⎥− = − < <
⎢ ⎥
⎣ ⎦

∑  (6.3.18)

in the case when   ( ) .
2
xf x = −

We next discretize the relation in   (6.3.18)   at the   Chebyshev  points

    ix x= =  cos ,  0,1,...,i i N
N
π

− =   and obtain a system of   ( 1)N +  
linear   equations in the  ( 1)N +  unknowns  ( )  ( 0,1,..., ),N

ja j N=   whose 
solution is then obtained by any standard method.

Numerical values of ( ),N xϕ  obtained by Method 2, are tabulated 
in Table 2 (taken from Chakrabarti and Hamsapriye (1999)), at the 
same set of intermediate points as are chosen for Method 1. It is clear 
that we have obtained the results as close as the results of Table 1. 
As a check to the solution (6.3.16) (i.e. ( ))N xϕ  thus obtained, we 
have verifi ed that the relation (6.3.15) is satisfi ed automatically since 

[ ]( )
2 1 0  for  0,1,..., / 2 .N

ka k N+ = =

Method 3

We have also developed a Galerkin type method as discussed by Frankel 
(1995) using the reduced equation (6.3.14). The derivation is similar to 
that in Frankel (1995). We assume an expansion of ( )xϕ   

 2 2
1

( )  ( ) 1,   1 1.j j
j

x b T x xϕ
∞

−
=

= − − ≤ ≤∑  (6.3.19)

Using the prescribed end conditions ( 1) 0,ϕ ± =  we obtain the relation

 1
1j

j
b

∞

=

=∑  (6.3.20)
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Using (6.3.20), we can rewrite the expression for ( )xϕ  in the form

 ( )2 2 0
1

( )  ( ) ( ) ,   1 1.j j
j

x b T x T x xϕ
∞

−
=

= − − ≤ ≤∑  (6.3.21)

Substituting the relation (6.3.21) into the relation (6.2.14) and multiplying 
by the factor  

Table 2

( ) (Method 2)N xϕ

    λ   
/ix N         10                       20                          40         80

 0.1
                           

     

          

1

10

0
 0.2
0.4
0.6
0.8
1.0

0
0.2   
0.4  
0.6
0.8
1.0

0
0.2     
0.4
0.6
0.8
1.0

0.11578771
0.11124464
0.09758022
0.07467610
0.04230763
          0

0.06952008
0.06713985
0.05986398
0.04719460  
0.02811236
          0                   

0.01393546
0.01359641
0.01256880
0.01051380
0.00729842
          0

 0.11578525
 0.11124224
 0.09757715
 0.07467397
 0.04230538
           0

 0.06950874
 0.06712895
 0.05984741
 0.04718395
 0.02809929
         0

 0.01392346
 0.01358865
 0.01254040
 0.01060370
 0.00728008
          0

0.11578505
0.11124205
0.09757694
0.07467371
0.04230521
           0

0.06950781
0.06712809
0.05984633
0.04718288
0.02809836
        0

0.01392229
0.01358778
0.01253856
0.01060192
0.00727871
        0

0.11578504
0.11124204
0.09757693
0.07467375
0.04230520
           0

0.06950774
0.06712803
0.06984626
0.04718280
0.02809829
           0

0.01392221
0.01358769
0.01253849
0.01060180
0.00727860
        0

 
( )

2 2
1/ 22

( )   for  1, 2,...,
1

iT x i
x
− =

−
 and then integrating with respect to the

variable  ,x   in the range ( 1,1)− , we arrive at the following system of 
linear equations.

 
2

1
1 0

16 1 1 ( 1)   for  1,
2 1

j

j j
j l

b j i
l

π δ π
λπ λπ

−∞

= =

⎡ ⎤⎛ ⎞
− − = + =⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

∑ ∑  (6.3.22)
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2

1 0

2

16 2 1 ( 1)
2 (2 2 1)(2 2 3)

1 1                       for  2,3,...,
1- 4( -1)

j

j ij
j l

lb j
l i l i

i
i

−∞

= =

⎡ ⎤⎛ ⎞+
− −⎢ ⎥⎜ ⎟+ − − +⎝ ⎠⎣ ⎦

= =

∑ ∑π δ
λπ

λπ

 (6.3.23)

where  ijδ  denotes the Kronecker delta sybol, after using the following 
results

 (i) ( )
1

1/ 22
1

,   for  0
( ) ( )

,  for  0,
21
0,   for  ;

i j

i j
T t T t

dt i j
t

i j

π
π

−

= =⎧
⎪⎪= = ≠⎨

− ⎪
≠⎪⎩

∫  (6.3.24)

 (ii) 
( )

{ }
1

2 3
2 4 2 6 2 01/22

1

( )
2 ( ) ( ) ( ) ( ) ,  -1 1;

1 ( )
j

j j

U t
dt U x U x U x U x x

t t x
π−

− −
−

= + + ⋅⋅⋅ + + < <
− −

∫  (6.3.25)

 (iii) 
1

2 2 2
1

4 2( ) ( ) ,   , 0,1, 2,...,
(2 2 1)(2 2 3)l i

lU t T t dt i l
l i l i−

−

+
= =

+ − − +∫  (6.3.26) 

 (iv) 
1

2 2 2
1

2( ) .
1 4( 1)iT t dt

i−
−

=
− −∫  (6.3.27)

The above infi nite system of linear equations are solved for the jb ’s, by 
fi rst truncating the infi nite series in the relations (6.3.19) to (6.3.23), at an 
integral value ,N say.  In this case we consider the form

 ( )( )
2 2 0

1
( ) ( ) ( ) ( ) ,   1 1,

N
N

N j j
j

x x b T x T x xϕ ϕ −
=

≈ = − − ≤ ≤∑  (6.3.28)

as a possible approximation to the solution of the singular integro-
differential equation. The system of equation (6.3.22) and (6.3.23) then 
takes the form

2
( )

1
1 0

16 1 1 ( 1)  
2 1

jN
N

j j
j l

b j
l

π δ π
λπ λπ

−

= =

⎡ ⎤⎛ ⎞
− − = +⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

∑ ∑ for i = 1     (6.3.29)

2
( )

1 0

2

16 2 1 ( 1)
2 (2 2 1)(2 2 3)

1 1                            2,3,..., .
1 4( 1)

jN
N

j ij
j l

lb j
l i l i

for i N
i

π δ
λπ

λπ

−

= =

⎡ ⎤⎛ ⎞+
− −⎢ ⎥⎜ ⎟+ − − +⎝ ⎠⎣ ⎦

= =
− −

∑ ∑
 (6.3.30)
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The system of linear equations  (6.3.29) and (6.3.30) has been solved 
for different values of  ( 21,41,81,161)N N =  and the values of 

( ),N xϕ  as given by the relation (6.3.28), are tabulated in Table 3 (taken 
from Chakrabarti and Hamsapriye(1999)), upto seventh decimal place 
accuracy.

Table 3
( ) (Method 3)N xϕ   

λ /ix N        10                      20                          40         80

0.1
     

1

10

0
0.2
0.4
0.6
0.8
1.0

0
0.2   
0.4  
0.6
0.8
1.0

0
0.2     
0.4
0.6
0.8
1.0

0.1157803
0.1112375
0.0975728
0.0746703
0.0423029
         0

0.0694869
0.0671076
0.0598272
0.0471663 
0.0280865
         0                   

0.0139003
0.0135690
0.0125202
0.0105854
0.0072632
         0

 0.1157838
 0.1112408
 0.0975758
 0.0746729
 0.0423046
         0

 0.0695024
 0.0671228
 0.0598414
 0.0471786
 0.0280865
          0

 0.0139175
 0.0135831
 0.0125339
 0.0105975
 0.0072748
          0

0.1157847
0.1112417
0.0975766
0.0746735
0.0423050
         0

0.0695064
0.0671267
0.0598450
0.0471817
0.0280975
         0

 0.0139210
 0.0135565
 0.0125373
 0.0106007
 0.0072776
          0

0.1157850
0.1112419
0.0975768
0.0974673
0.0423051
         0

0.0695074
0.0671276
0.0698459
0.0471825
0.0280981
          0

0.0139219
0.0135873
0.0125382
0.0106015
0.0072784
          0

Before this discussion is closed, a study on the convergence aspects for 
the Method 1 has been taken up.  For this, the singular integro-differential 
equation (6.3.1), recast into the form (6.3.3) and expressible in the form 
(6.3.5), is considered here.

Convergence of Method 1

In the Method 1 (i.e. the collocation method), we have worked with an  
approximation to  ( )xϕ   of the form (cf. the relation (6.3.9a))

 '' ( )

0
( ) ( )  ( ),   1 1

N
N

N j j
j

x x c T x xϕ ϕ
=

≈ = − < <∑  (6.3.31)
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where  ( )N
jc ’s  are the constants which can be determined as described 

earlier. By suitably adjusting the coeffi cients in this approximation, we can 
rewrite ( )N xϕ  in a more convenient form as  

 ( )

0
( )  ( ),   1 1

N
N

N j j
j

x x xϕ α ψ
=

= − < <∑  (6.3.32)

where  ( )N
jα ’s  are certain constants and  ( )j xψ ’s  are defi ned by

 
1/ 22( ) ( ),   1, 2,...j jx T x jψ

π
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (6.3.33)

such that

 { }
1

2

1

( ) ( )  1jx x dxρ ψ
−

=∫
where 

 ( ) 1/22( ) 1 .x xρ
−

= −

In the convergence of the Method 1, it is required to prove that 
( )  tends to N tϕ ( ),xϕ  in some sense, as .N →∞   We shall show below 

that, in certain normed linear space of functions,

 0  as  N N
ρ

ϕ ϕ− → →∞  (6.3.34)

where  
ρ

⋅   denotes the norm, as will be explained  in the sequel.

Firstly, we show that the equation (6.3.3) or (6.3.5)  (i.e. the singular 
integro-differential equation), is an operator equation between two Hilbert 
spaces.  Let  ( )L ρ  denote the space of all real, square integrable functions 
with respect to the weight function ( ) 1/ 22( ) 1 .x xρ

−
= −

The inner product of any two functions ( )  and  ( )u x v x  belonging to 
L(ρ) and the norm are defi ned by

( )
{ }

1
1/2

1/22
1

( ) ( ),   and  ,
1

u x v xu v dx u u u
x

ρ ρρ
−

< > = = < >
−

∫  (6.3.35)
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respectively. It is well known that {ψj}
∞

j=0  as defi ned by the relation (6.3.33) 
forms a complete orthonormal system in the space ( ).L ρ

Thus, for any ( ),Lϕ ρ∈  we can write

 
0

( )  ,  ( ),j j
j

x xρϕ ϕ ψ ψ
∞

=

= < >∑

 { }
1/2

2

0
,  ,j

j
ρρ

ϕ ϕ ψ
∞

=

⎡ ⎤
= < > < ∞⎢ ⎥
⎣ ⎦
∑  (6.3.36)

the norm being obtained by using Parseval’s relation

We consider the subspace 1( )  of  ( ),L Lρ ρ  which consists of all 
those elements ,u  such that

 { }22

0
 , < j

j
j u ρψ

∞

=

< > ∞∑  (6.3.37)

for the reason, which is clear from the system of linear  equations (6.3.12) 
and (6.3.13), so obtained in the Method 1, for solving the unknowns  ( )N

jc .
By defi ning /   for  1,j jv j jψ= ≥  we obtain a complete orthonormal 

system in the space 1( ).L ρ  The subspace 1( )L ρ  can be made into 
a Hilbert space by defi ning the inner product of any two functions 

1( ),  ( ) ( )u x v x L ρ∈  and the norm to be 

 2
1

1
, ,  ,j j

j
u v j u vρ ρψ ψ

∞

=

< > = < > < >∑  (6.3.38)

and

 { }
1/ 2

22
1

1
,  j

j
u j u ρψ

∞

=

⎡ ⎤
= < > < ∞⎢ ⎥
⎣ ⎦
∑  (6.3.39)

respectively. It can be verifi ed that   
1

1,   1, 2,...,jv j= =

It can be verifi ed that D  is a Hilbert-Schmidt  operator from  
1( )  into  ( )L Lρ ρ  and hence compact  (cf. Golberg (1985)).  Further, it 

can be   shown that 
1
.Cu u

ρ
=

Thus we see that 
2D C
λπ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 is a mapping from the space 1( )L ρ

into the space ( ).L ρ  In fact 
2D C
λπ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 is an operator from a much 
larger space into ( )L ρ .
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It can further be verifi ed that 1
1: ( ) ( )C L Lρ ρ− →  exists and is given by

 

1

1
,  ,     ( )j

j
j

C u u u L
jρ

ψ
ψ ρ

∞
−

=

= < > ∈∑  (6.3.40)

since  .j jC jψ ψ=
Now the operator D  is compact and 1C−  exists.  Thus  

2D C
λπ

⎛ ⎞+⎜ ⎟
⎝ ⎠

has a bounded inverse (cf. Golberg (1985)) if and only if the null

space of the operator 
2D C
λπ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 contains only the zero element.

That is, the corresponding homogeneous equation of (6.3.3) has 
zero as its only solution. This is now assumed for some values of 
λ (see later). Therefore, we can fi nd a positive real constant K ,

such that for the norm of the inverse operator 
12D C

λπ

−
⎛ ⎞+⎜ ⎟
⎝ ⎠

 (for

10,  from  ( )  to  ( )),L Lλ ρ ρ>  there holds the estimation
 

 
12  .D C K

ρ
λπ

−
⎛ ⎞+ ≤⎜ ⎟
⎝ ⎠

 (6.3.41)

To prove that ( )N xϕ  converges to ( ),xϕ  we have to show that 
( )N xϕ  satisfi es an analogous operator equation as ( )xϕ . For this purpose, 

we consider the interpolatory projection map (cf. Atkinson (1997)) 
: ( ) ( ),NP L Lρ ρ→  that maps [ ]( )0( ) 1,1x Cϕ ∈ −  onto the unique  

polynomial which  interpolates  ( )xϕ   at certain  ( 1)N +  distinct points 
,   0,1,..., .jx j N=

Replacing    by  Nϕ ϕ  in the relation (6.3.5) and using the usual collocation 
procedure, we arrive at

 ( )2 0,   = cos ,  0,1,..., . N N j j
jD C F x x j N
N
πϕ ϕ

λπ
⎛ ⎞+ − = − =⎜ ⎟
⎝ ⎠

 (6.3.42)

Thus  Nϕ  satisfi es the relation (cf. Atkinson (1997))

 
2 0.N N NP D C Fϕ ϕ
λπ

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 (6.3.43)
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Since  ,N N NP C Cϕ ϕ=  we can write the relation (6.3.43) as

 
2 .N N N NP D C P Fϕ ϕ
λπ

+ =  (6.3.44)

Further, since 1C−  exists and D  is compact, there exists 0N N≥  where 0N

 is    a    large   positive integer such that 
12   exists  (for  0),NP D C λ

λπ

−
⎛ ⎞+ >⎜ ⎟
⎝ ⎠

 

and ( 12 ) ||  where NP D C K Kρλπ
− ′ ′+ ≤  is a constant (cf. Golberg

(1985)).
By using the invertibility of the operator 

2 ,NP D C
λπ

⎛ ⎞+⎜ ⎟
⎝ ⎠

 it can be 
proved that

( )
1

0
2 2   for  .N N NP D C C P C N Nϕ ϕ ϕ ϕ
λπ λπ

−
⎛ ⎞− = + − ≥⎜ ⎟
⎝ ⎠

 (6.3.45)

Thus, we obtain

 0
2   for  .N NK C P C N N

ρ ρ
ϕ ϕ ϕ ϕ

λπ
′− ≤ − ≥  (6.3.46)

Now we have

 ( ) ( )N NC P C C p P C pϕ ϕ ϕ ϕ− = − − −  (6.3.47)

for all polynomials  p   of degree  N≤ , since then  ,NP p p=  resulting 
in the relation

 { }( )
1 oN N C L

C P C P C p
ρ ρ ρ

ϕ ϕ ϕ
→

− ≤ + − . (6.3.48)

Now, from the operator equation

 
2 C F Dϕ ϕ
λπ

= −

it can be argued that Cϕ  is at least once differentiable. This is derived 
from the fact that  [ ]( )1( ) 1,1 .x Cϕ ∈ −   A proof of this is given below. 
Using the above observations and assuming   that p  is a polynomial   (of 
degree )N≤  of best uniform approximation to  Cϕ   and using the fact 
that NP   is bounded, we obtain
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{ }

{ }

{ }
( )

0

0

0

( )

1

( )
1

( )

0

2 1

2                1  ( )  

2                 = 1

                 =  0   for  ,   1,

N N C L

N C L

N C L

r

K P C p

K P C p x dx

K P C p

N N N r

ρ ρ ρ

ρ

ρ

ϕ ϕ ϕ
λπ

ϕ ρ
λπ

ϕ
λ

→

→ ∞
−

→ ∞

−

′− ≤ + −

′≤ + −

′ + −

≥ ≥

∫
 (6.3.49)

after applying Jackson’s theorem (cf. Baker (1977), Atkinson (1997)), so 
that

 0  as  .N N
ρ

ϕ ϕ− → →∞  (6.3.50)

This proves the convergence of the Method 1.

Two important results

We prove here two important results, which have been used in the above 
analysis.

Result 1: [ ]( ) [ ]( )1 1( ) 1,1   where  1,1x C C∈ − −ϕ  denotes the space of
once continuously differentiable functions on the interval [ ]1,1 .−

Proof:  We know that

 1( ) ( )  and  ( 1) 0.L Lϕ ρ ρ ϕ∈ ⊂ ± =

These imply that

 
1

1

( )( )( )   ( )tT x dt L
x t
ϕϕ ρ

−
= ∫ ∈

−
 (6.3.51)

since the singular integral operator is bounded (cf. Wolfersdorf (1983)).  
Thus from the integro-differential equation (6.3.1) we immediately see

that ( ).L
x
ϕ ρ∂
∈

∂
 Now, 

 
1 1

( ) ( 1)   .
x xd dx dt dt

dt dt
ϕ ϕϕ ϕ

− −

= − + =∫ ∫  (6.3.52)
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Thus, we can estimate the quantity 2 1| ( ) ( ) |x xϕ ϕ− , for any 1 2, [ 1,1]x x ∈ −  
to be

 

2

1

2 2

1 1

2 1

1/ 2
2

2

1/ 2
2 1

( ) ( )  

                         1  

                         ,

x

x

x x

x x

dx x dt
dt

d dt dt
dt

K x x

ϕϕ ϕ

ϕ

− =

⎡ ⎤⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪⎛ ⎞⎢ ⎥≤ ⎨ ⎬⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎣ ⎦

≤ −

∫

∫ ∫  (6.3.53)

where  K   is defi ned to be

 ( )
2

1

1/2

1/22

1 .
1

x

x

dK dt
dtt

ϕ⎡ ⎤
⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠−⎣ ⎦

∫  (6.3.54)

The inequality (6.3.53) shows that ( )xϕ  is Hölder 
continuous, with exponent 1/ 2  in  [ ]1,1− . Again, since

1

1

( )( 1) 0,   the CPV integral   ( 1 1)t dt x
x t
ϕϕ

−

± = − < <
−∫  is Hölder 

continuous with exponent 1/ 2  (cf. Muskhelishvili (1953)). Thus using

the equation (6.3.1) as well as the above observations, we fi nd that 
d
dx
ϕ

 is
also Hölder continuous and hence continuous on  [ ]1,1 .−

Result 2: The homogeneous integro-differential equation (6.3.1) with 
( 1) 0ϕ ± =  has only one solution 0ϕ ≡ for 0.λ >

Proof:   We consider the homogeneous integro-differential equation

 
1

1

( )2  0,   1 1d t dt x
dx x t
ϕ ϕλ

−

− = − < <
−∫  (6.3.55)

with  0.λ >  Multiplying both sides by  
d
dx
ϕ

  and integrating with respect 
to    over  x [ ]1,1−  , we obtain

 
21

1

2  ,    0d dx S
dx
ϕ λπ ϕ ϕ

−

⎛ ⎞ + < > =⎜ ⎟
⎝ ⎠∫  (6.3.56)
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where    , < >   is the usual inner product in the space  L   and that

 
1

1

1 ( )( )( )   ,   1 1.xS t dx t
x t
ϕϕ

π −

′
= − − < <

−∫  (6.3.57)

The second term in the relation (6.3.56) satisfi es the inequality (cf. 
Wolfersdrof (1983))

 
{ }
( )

21

1/22
1

( )
( , ) 0.

1

x
S dx

x

ϕ
ϕ ϕ

−

≥ ≥
−

∫  (6.3.58)

Thus it is clear that each term in the relation (6.3.56) has to be equal to zero, and

in particular, 0  which implies that  ( ) 0  since  ( 1) 0.d x
dx
ϕ ϕ ϕ= = ± =

In the next two sections we highlight two simpler approximate methods 
of solution of the integro-differential equation (6.3.1), which appear to 
be simple and straightforward in comparison with the Galerkin methods 
discussed above.  The convergences of the methods are also discussed.

6.4 APPROXIMATE METHOD BASED ON POLYNOMIAL 
APPROXIMATION

The Cauchy  type singular integral equation

 

1

1

( )2  ( ),   1 1,  0,d t dt f x x
dx x t
ϕ ϕλ λ

−

− = − < < >
−∫   (6.4.1)

with   ( 1) 0ϕ ± =   has been considered for numerical solution employing 
a simple method based on polynomial approximation of the function  

( ) ( 1 1)x xϕ − < <   by Mandal and Bera (2007). This simple method 
is discussed here.  Since the unknown function ( )xϕ  satisfi es the end 
condition ( 1) 0,ϕ ± =  it can be represented in the form

 ( )1/22( ) 1 ( ),   1 1x x x xϕ ψ= − − ≤ ≤  (6.4.2)

where  ( )xψ   is a well behaved unknown function of     in  ( 1.1).x − We 
approximate the unknown function  ( )xψ   by means of a polynomial of 
degree  n , as given by
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0

( )
n

i
j

j
x a xψ

=

=∑  (6.4.3)

where  's ( 0,1,..., )ja j n=   are unknown constants, then the equation 
(6.4.1) reduces to

 
0

( ) ( ),   1 1
n

j j
j

a x g x xα
=

= − < <∑  (6.4.4)

where

( )

( )

0 1/22

1 1 1
1 1

1/22 0

( ) ,
21

1 1
( 1) 1 ( 1) 2 2( ) ,   =1,2,..., .

2 41 2
2

                                                            

j j kj
j j k

j
k

xx x
x

k
jx j xx x x j n

kx

λπα

λα π
− + −

+ − −

=

= − −
−

⎧ + ⎫⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟⎪ ⎪− + + −⎪ ⎪⎝ ⎠ ⎝ ⎠= + − +⎨ ⎬
⎛ ⎞− ⎪ ⎪Γ +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

                                                                             and    
1( ) ( ).
2

g x f x=
 

(6.4.5)

The unknown constants ( 0,1,..., )ja j n= are now obtained by putting  
( 0,1,..., )lx x l n= =  in (6.4.4) where 'slx  are distinct and  1 1.lx− < <   

Thus we obtain a system of  ( 1)n +  linear equations, given by

 
0

,  0,1,..., ,
n

j jl l
j

a g l nα
=

= =∑  (6.4.6)

where

 ( ),   ( ).jl j l l lx g g xα α= =  (6.4.7)

The method is now illustrated for ( ) / 2f x x= −  as considered in 
section 6.3. However, other forms of ( )f x  can also be considered.  For the 
linear system (6.4.6), we choose  10,n = and the collocation points as x0 = 
–0.924, x1 = –0.665, x3 = –0.408, x4 = –0.023, x10 = 0.961 and 1λ = . Since 
f(x) = -x/2, we have g(x) = -x/4. The system of linear equations (6.4.6)now 
produces 0a =0.070, 1a =0.000, 2a =-0.024, 3a =0.000, 4a =-0.004, 5a
=-0.003, 6 0.035a = −   7 8 9 100.011,  0.061,  0.011,  0.052.a a a a= = = − = −  
Using  these  coeffi cients, the values of   ( )xϕ   at   0.2 ,  0,1,...5x k k= =   
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are presented in Table 1 below.  The values of ( )xϕ  given in Table 1 of 
section 6.3 at these points  (for 1)λ =  are also given (correct upto three 
decimal places) for comparison.   It is obvious that the results obtained 
by the present method compares favourably with the results obtained in 
section 6.3.

Table 1

      kx       0.0               0.2      0.4      0.6     0.8      1.0

               Present
              Method

  ( )kxϕ
Method
    Of
Sec. 6.3          

0.070
  
      

0.069

0.068

     

0.067 

  0.061
    
     

0.060

  0.048

      

0.047

0.029

   

0.028

0

       
 
0

The present choice of collocation points which are not equispaced, helps 
in casting the original problem of integro-differential equation (6.4.1) with

1,   ( )
2
xf xλ = = −  into a system of algebraic equations where appearance

of ill-conditioned matrices have been avoided altogether.

Convergence of the method

Substitution of ( )xϕ  in terms of ( )xψ  given by (6.4.2) into the equation 
(6.4.1) produces an equation for ( ).xψ  Then ( )xψ  satisfi es the equation  

    
 ( ) ( ),   1 1

2
D C x g x xλπ ψ⎛ ⎞− = − < <⎜ ⎟

⎝ ⎠
 (6.4.8)

where  ,C D   respectively denote the operators defi ned by

 ( ) ( )1/ 221

1

11( )   ( ) ,   1 1
t

Cu x u t dt x
x tπ −

−
= − < <

−∫  (6.4.9)

and

 ( ) ( )
( )

1/ 22
1/ 22

( ) 1   ( ),    1 1.
1

du xDu x x u x x
dx x

= − − − < <
−

 (6.4.10)
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Let   ( ) cos   with  cos ,nT x n xθ θ= =  be the Chebyshev polynomial 
of the fi rst kind. Then

 ( ) 1( ) ( ),   0n nCU x T x n+= − ≥  (6.4.11)

where   ( )nU x    is a Chebyshev polynomial of the second kind.

This shows that the operator C can be extended as a bounded linear 
operator from 1( )  to  ( ),L Lμ μ  where ( )L μ  is the subspace of functions 
square integrable with respect to ( ) 1/22

1( ) 1   and  ( )x x Lμ μ
−

= −  is the 
subspace of functions ( )u L μ∈  satisfying

 2 2 2
11

0
( 1) ,   k

k
u k u μψ

∞

+
=

= + < > < ∞∑  (6.4.12)

where

 
1/ 22 ,k kTψ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (6.4.13)

and

 
1

1

,   ( ) ( ) ( ) .u v t u t v t dtμ μ
−

< > = ∫  (6.4.14)

Again,

 ( )
( ) 11/22

1( )  ( ),   0.
1

n n
nDU x T x n

x
+

+
= − ≥

−
 (6.4.15)

This shows that D  can be extended as a linear operator from 
1( )  to  ( ).L Lμ μ  Assuming ( ),g L μ∈  we fi nd that the equation (6.4.8) 

possesses a unique solution 1( )  for each  ( ).L g Lψ μ μ∈ ∈
        If we use the polynomial approximation (6.4.3) for ,ψ  then  

 
0

( ) ( ) .
n

j
n j

j
x p x a xψ

=

≈ =∑  (6.4.16)

Since  ( 0,1,..., )jx j n=  can be expressed in terms of Chebyshev 
polynomials of fi rst kind ( ) ( 0,1,..., )mT x m j=  as (cf. Snyder (1966))

 
[ ]/ 2

21
0

1  ( )
2

j
j

j kj
k

j
x T x

k −−
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (6.4.17)
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where [ ]/ 2j  denotes the greatest integer   / 2,j≤  we can express  ( )np x   
given by (6.4.16)  as

 
0

( )  ( ),
n

n i i
i

p x b T x
=

=∑  (6.4.18)

where the coeffi cients  ( 0,1,..., )ib i n=  can be expressed in terms 
of    ( 0,1,..., )ja j i=  and vice-versa.  The right side of (6.4.18) is now 
denoted by

 
0

( )  ( )
n

n k k
k

u x c xψ
=

=∑  (6.4.19)

where

 
1/ 2

.
2k kc bπ⎛ ⎞= ⎜ ⎟

⎝ ⎠
To determine an error estimate in replacing ψ  by ,np  we note that

 
1 1n np uψ ψ− = − . (6.4.20)

Following the reasoning given in Golberg and Chen (p.309, 1997), it can 
be shown that

 
1n r

cu
n

ψ − <  (6.4.21)

where  c   is a constant and  r   is such that  [ ]1,1 .rg C∈ −   In the above
computation  ( )

4
xg x = −  and thus is a C∞   function.  Hence  r  in

(6.4.21) can be chosen very large so that the error becomes negligible as 
n  increases, and the convergence is quite fast. This is also refl ected in the 
above numerical results.

6.5  APPROXIMATE METHOD BASED ON BERNSTEIN 
POLYNOMIAL BASIS

The integro-differential equation

 
1

1

( )2   ( ),   1 1d t dt f x x
dx x t
ϕ ϕλ

−

− = − ≤ ≤
−∫  (6.5.1)
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with ( 1) 0,ϕ ± =   has also been solved numerically employing the method 
of polynomial approximation in the Bernstein polynomial basis by 
Bhattacharya and Mandal (2008). This method is briefl y discussed in this 
section.

Bernstein polynomials

The Bernstein polynomials of degree n  over the interval [ ]0,1  are defi ned by

 ( ) ( ), ( ) 1 , 0,1,..., .n in i
i n iB x x x i n−= − =  (6.5.2)

Bernstein fi rst used these polynomials in the proof of Wiestrass theorem. 
By a linear transformation, any interval [ ],a b  can be changed to [ ]0,1 , 
so that without any loss of generality one can consider a function to be 
defi ned on [ ]0,1 . The corresponding approximation of the function ( )f x  
on the Bernstein polynomial basis in the interval [ ]0,1  is given by

 
0

( )   (1 )
n

f i n i
n i

i

n
B x a x x

i
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (6.5.3) 

where   is defined as  .i i
ia a f
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (6.5.3) is a Bernstein polynomial

approximation of the function  ( )f x   and it can be proved that for a 
function  ( )f x   bounded on  [ ]0,1 ,

 lim ( ) ( )f
nn

B x f x
→∞

=  (6.5.4)

holds at each point of continuity  x   of  f ( )x   and that the relation holds 
uniformly on  [ ]0,1    if  ( )f x   is uniformly continuous on the interval 
(cf. Lorenz (1953)). In fact by making suitable changes in the defi nition of 
the coeffi cients ia  in the expression (6.5.3), this property can be extended 
to approximate any general function. The coeffi cients ia  in that case can 
be an arbitrary constant.  Hence Bernstein polynomial basis provides a 
very good basis for approximation of unknown function satisfying an 
integral equation.

Bernstein polynomials of degree 1 are given by

0,1 1,1( ) 1 ,   ( ) ;B x x B x x= − =
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Bernstein polynomials of degree 2 are given by
2 2

0,2 1,2 2,2( ) (1 ) ,   2 (1 ),   ;B x x B x x B x= − = − =

Bernstein polynomials of degree 3 are given by
3 2 2 3

0,3 1,3 2,3 3,3( ) (1 ) ,  ( ) 3 (1 ) ,  3 (1 ),  B ( ) ;B x x B x x x B x x x x= − = − = − =

and so on.

Properties of Bernstein polynomials 

(a)  Recursive relation:

      , , 1 1, 1( ) (1 ) ( ) ( ).i n i n i nB x x B x x x− − −= − +

(b)  Derivatives

      , 1, 1 , 1( ) ( ) ( )i n i n i n
d B x B x B x
dx − − −= − .

(c)   Positivity 

      [ ], ( )  is positive for  0,1 .i nB x x∈
(d)  Symmetry

      , ,( ) ( ).i n n i nB x B x−=

(e)  Sum to unity 

      
,

0
( ) 1.

n

i n
i

B x
=

=∑
Approximate solution using Bernstein polynomial basis 

The unknown function ( )xϕ  of (6.5.1) with ( 1) 0,ϕ ± =  can be represented 
in the form

 ( )1/ 22( ) 1 ( ),   1 1x x x xϕ ψ= − − ≤ ≤  (6.5.5)

where ( )xψ  is a well behaved function of  [ ]0,1 .x∈   To fi nd an 
approximate solution of (6.5.1),  ( )tψ   is approximated using Bernstein 
polynomials in  [ ]1,1−  as

 ,
0

( )  ( )
n

i i n
i

t a B tψ
=

≈∑  (6.5.6)
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where now  , ( ) ( 0,1,..., )i nB x i n=   are defi ned on  [ ]1,1−   as

 ,
(1 ) (1 )( )  ,   0,1,...,

2

i n i

i n n

n x xB x i n
i

−⎛ ⎞ + −
= =⎜ ⎟
⎝ ⎠

 (6.5.7)

and  ( 0,1,..., )ia i n=  are unknown constants to be determined.  Substituting 
(6.5.7) in (6.5.1) we get

( )
( )

1
1/2 ,2 2 1/2

, ,1/220 1

( )2 ( ) 2 1 ( )  (1 )
1

                                              = ( ),   1 1.

n
i n

i i n i n
i

B txa B x x B x t dt
x tx

f x x

λ
= −

⎡ ⎤
⎢ ⎥′− + − − −
⎢ ⎥−−⎣ ⎦

− ≤ ≤

∑ ∫  (6.5.8) 

Multiplying both sides by , ( ) ( 0,1,..., )j nB x j n=  and integrating from 
1  to  1−  we get a linear system given by

 
0

 ,   0,1,...,
n

i ij j
i

a C b j n
=

= =∑  (6.5.9)

where

( )
( )

( )

1 1
1/22

, , , ,1/22
1 -1

1 1
1/2 ,2

,
1 1

2  ( ) ( )   2 1 ( ) ( ) 
1

( )
           1   ( ) 

ij i n j n i n j n

i n
j n

xC B x B x dx x B x B x dx
x

B t
t dt B x dx

x t
λ

−

− −

′= − + −
−

⎧ ⎫
+ −⎨ ⎬−⎩ ⎭

∫ ∫

∫ ∫

 (6.5.10)

and

 
1

,
1

( ) ( ) .j j nb f x B x dx
−

= ∫  (6.5.11)

For  1,  we can write    asijCλ =  

 = ij ij ij ijC D E F+ +

where

( )
1

1/22
, 1, 1

1

 1  ( ) ( ) 

1 3 2
2 2      =  4    ,  1, 2,..., ;  0,1,..., ,

(2 2)

ij i n j nD n x B x B x dx

i j n i jn n
j j n i n

i j n

− −
−

= − −

⎛ ⎞ ⎛ ⎞Γ + + Γ − − +⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠− = =⎜ ⎟ ⎜ ⎟ Γ +⎝ ⎠ ⎝ ⎠

∫
 (6.5.12)
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( )
1

1/ 22
, , 1

1

 1  ( ) ( ) 

3 1 2
2 2     =  4( )   ,

(2 2)
                                                            0,1,..., ( 1);  0,1,...,

ij i n j nE n x B x B x dx

i j n i jn n
n j

i j n
j n i n

−
−

= −

⎛ ⎞ ⎛ ⎞Γ + + Γ − − +⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠− ⎜ ⎟ ⎜ ⎟ Γ +⎝ ⎠ ⎝ ⎠
= − =

∫

 
(6.5.13)

and

 
1

,
1

( ) ( ) ij i j nF A x B x dx
−

= ∫
where

1
, 1 1

0 0

1 1 
1 1+( 1) 2 2( )       ,
2 4 2

2
                                                                                              

mn k
i n k k m

i kn
k m

m
n

A x d x x
mi

π
−

+ − −

= =

⎡ + ⎤⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞ − ⎝ ⎠ ⎝ ⎠⎢ ⎥= − +⎜ ⎟ ⎛ ⎞⎢ ⎥⎝ ⎠ Γ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

       0,1,...,i n=

 (6.5.14)

so that 

  , ,
2

0 0

1

0

1 1 ( 1)      
2 2

1 1 
1 ( 1) 1+( 1) 2 2     +   ,  0,1,... ;  0,1,...

4 2
2

k rn n
i n j n

ij k rn
k r

k r m mk

m

n n
F d d

i j k r

m

j n i n
mk r m

π
+

= =

+ −−

=

⎡⎛ ⎞ ⎛ ⎞ − −
= −⎜ ⎟ ⎜ ⎟ ⎢ + +⎝ ⎠ ⎝ ⎠ ⎣

+ ⎤⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟ ⎥− − − ⎝ ⎠ ⎝ ⎠ ⎥ = =
+ − ⎛ ⎞ ⎥Γ +⎜ ⎟ ⎥⎝ ⎠ ⎦

∑ ∑

∑

 
(6.5.15)

with
, ( 1)  ,   0,1,... ;  0,1,..., ,i n k s

k
s

i n i
d k n i n

s k s
− −⎛ ⎞⎛ ⎞

= − = =⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
∑  (6.5.16)

the summation over s  being taken as follows: 
for   ( ) 0  to    for  ,  i n i i s k k i< − = ≤   
(ii) 0  to    for  ,  (iii)  ( )  to  s i i k n i s k n i n i= < ≤ − = − − −  
for  ,n i k n− < ≤    while for 

  (   being  an  even  integer)   (i)   0  to    for  ,i n i n s k k i= − = ≤  
(ii)    to     for s k i i= − ;  for  ,    and  i k n i n i i n i< ≤ > − −   above
are to be interchanged.  Also we fi nd that for the choice of ( ) ,

2
xf x = −

 ( )1 ( 1) ( 1)  2  ,   0,1,... .
2 ( 3)j n

n n j jb n j j n
j n

⎛ ⎞ Γ − + Γ +
= − =⎜ ⎟ Γ +⎝ ⎠

 (6.5.17)
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The system (6.5.9) is solved for unknowns  ( 0,1,..., )ia i n=  by standard 
numerical method and numerical values of ( )xϕ  for different values of x  
are obtained approximately.

In our numerical calculations we have chosen 
0 17,10,13 and  , ,..., nn a a a=  are obtained   numerically.  Using these   

coeffi cients   the values   of ( )   at   (0.2) ,x x kϕ =  0,1,...,5k =   are 
presented in Table 1 below. For a comparison between the present method 
and that of the method used in Frankel (1998), values of ( )xϕ  at these 
points obtained by Frankel (1995) are also given. It is obvious that the 
result compares favourably with the results of Frankel and also obtained in 
Table 1 of section 6.3, and in Table 1 section 6.4.

Table 1

  x  0    0.2     0.4   0.6   0.8   1.0

( )xϕ      n= 7

(Present  n=10

method)  n=13 

 
 0.06973

 0.06948

 0.06950  

    
0.06711
   
0.06714
   
0.06717

     
0.05964
    
0.05988
    
0.05981

  
0.04736
  
0.04711
  
0.04723

  
0.02811
  
0.02821
  
0.02805

   
   0

   0

   0

( )xϕ
Frankel’s
method

 0.06950
   
0.06712

    
0.05984

  
0.04718

   
0.02891    0

Convergence of the method can be proved as in section 6.4. In place of the 
relation (6.4.17), we have the relation (cf. Snyder (1969))

s
2

,
, 2

0 =0

1 1( )      ( ).
12 2

n
i n

i n s s mn s
s m

n s s
B x d U x

i m m

⎡ ⎤
⎢ ⎥⎣ ⎦

−
=

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∑  (6.5.14)

where ,i n
sd  is given in (6.5.16).

 Although the numerical computations have been carried out for 
( ) / 2,f x x= −  the method can be applied for other forms of ( )f x .



The term Galerkin method has already been intoduced in section 6.3 
without any explanation.  In this chapter the underlying mathematical 
idea behind Galerkin method of determining approximate solution to a 
general operator equation L f l=  along with approximation of the inner 
product [ , ],f l  is explained where L is a linear operator.  This will be 
applied to solve approximately singular integral equations with Cauchy 
type kernels. Also, application of the method to a number of water wave 
scattering problems involving thin vertical barriers arising in the linearised 
theory of water waves, as given in Mandal and Chakrabarti (1999), will 
be reviewed.

7.1  GALERKIN METHOD       

Here we explain the general Galerkin method, which is also called a 
projection method, to solve any operator equation of the form

 (L )( ) ( ),   f x l x x= ∈A (7.1.1)

where L is a linear operator from a certain product space  S  to itself and   
A denotes a simply-connected domain in  n� , in standard notations.

We fi rst introduce the following important defi nitions.

Defi nition 1: A function ( )f x  is said to solve the operator equation
(7.1.1), if and only if,

 [L , ] [ ,f λ λ≡ L * *] [ , ] [ , ]f l lλ λ= =  (7.1.2)

Chapter 7        

Galerkin Method and its Application
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for all  ( )xλ ∈S ,  where the inner product   [ ,u v ]  is defi ned as

 [ , ]  ( ) *( ) ,u v u x v x dx= ∫  (7.1.3)

the integral being understood in the ordinary Riemann sense and the stars 
(*) denote complex conjugates.  

Defi nition 2: The solution function ( ),f x  as defi ned by the relations 
(7.1.2), associated with the equation (7.1.1), is said to be an approximate 
solution of the equation (7.1.1), if the relations (7.1.2) hold good, only 
approximately, i.e., if

  [L , ] [ ,f λ λ≡ L f]*≈ [ , ]lλ *  (7.1.4) 
for all  ( )xλ ∈S.
Note: In the above defi nition, the phrase, “a relation holding good 
approximately”, means that the absolute value of the difference of the two 
sides of the relation is very small. For example, if we say that

 a b≈  (7.1.5)                                   

where   and  a b  are complex numbers, then we must have

a b ε− <

where  ε   is a suffi ciently small positive number.
As is clear from the above meaning of the approximate solution of the 

operator equation (7.1.1), it is found that the approximate relation (7.1.4) is 
to hold good instead of the actual equation (7.1.1).  Also since the quantity  
[L , ]f λ  represents the projection of the vector L ,f  onto the vector ,λ  in 
the usual sense whenever the inner products are interpreted geometrically, 
the approximate methods of solution of operator equations of the form  
(7.1.1), in the sense described above, are also called projection methods.

The method

In this section we are concerned with the Galerkin method of solving 
approximately the operator equation (7.1.1).  For this purpose we 
approximate ( )f x  in the form

 
1

( ) ( )  ( )
N

j j
j

f x F x a xϕ
=

≈ =∑  (7.1.6)

A
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where  { }
1

( )
N

j j
xϕ

=
  denotes a set, contained in  S, of independent functions

of x∈A, which need not be an orthogonal set nor need  be complete also, 
and  'sja  ( 1, 2,... )j N=  are unknown constants to be determined.
Then taking the inner product of both sides of the operator equation  (7.1.1), 
with  f   replaced by  ,F  as given by the relation (7.1.6), we obtain

 
1

 
N

j
j

a
=
∑ [L ( ), ( )j x xϕ λ ]≈ [ ( ), ( )]  for  l x xλ λ∈S. (7.1.7)

Then by choosing ( ) ( ),kx xλ ϕ≡  for some fi xed positive integer ,k  such 
that 1 ,k N≤ ≤  we obtain

 
1

 
N

j
j

a
=
∑ [L k( ),  ( )] [ ( ),  ( )],  1, 2,..., .j kx x l x x k Nϕ ϕ ϕ≈ =  (7.1.8) 

By treating then the approximate relations (7.1.8) as identities, as is 
customary in Galerkin methods, we obtain a system of N  linear equations, 
for the N  unknown constants 1 2, ,..., ,Na a a  which can be solved easily 
by standard methods.  The approximate solution of the operator equation 
(7.1.1), in the above described sense, is then given by the relation (7.1.6).

It is observed, from practical experience, that in many applications of 
integral equations, instead of getting the exact informations on the function 

( ),f x  satisfying the actual operator equation (7.1.1), many informations 
of physical importance concerning a practical problem can be derived from 
the knowledge of the inner product K =[ , ]f u , where ( )u x   is a known 
function of  x∈A.  It is then clear that the knowledge of the approximate 
function ( ),F x  as given by the relation  (7.1.6), helps in determining the 
number  K, by means of the relation  

 K [ ]
1

,  , ,
N

j j
j

f u a uϕ
=

⎡ ⎤= ≈ ⎣ ⎦∑  (7.1.9)

where the constants 's ( 1, 2,..., )ja j N=  are solutions of the system of 
linear equations (7.1.8).

Single-term approximation

In many problems in mathematical physics (cf. Jones p 269 (1966)) it is 
enough to use just a single-term Galerkin approximation, for which one 
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can take 1,N =  in the relation (7.1.6), and then fi nd just one equation, in 
the linear system (7.1.8), giving

 1 1( ) ( )  ( )f x F x a xϕ≈ =  (7.1.10)

with

 
[ ]
[ ]

1
1

1 1

,
.

,
l

a
L

=
ϕ

ϕ ϕ
 (7.1.11)

The approximate value of   K ,  in such circumstances, turn out to be given 
by the formula

 K
[ ][ ]
[ ]

1 1

1 1

, ,
,

,
l uϕ ϕ

ϕ ϕ
=

L 
 (7.1.12)

Some important observations

We have

 (i) [F , L F] [ , ]F l≈

 (ii) [ , ] [ , ] [ , ] [ , ]f l l f l F l f F= = + −

 (iii) [ , ] [ , ] 2[ , ] [ , ]l f F l f l F l F− = − +

                               ≈ [L , ] 2f f − [L , ] ( ,F F F+ L )  (by using (i))F

 (iv) [ ,f F− L ( )] [ ,f F f− = L ] [ ,L ] [ ,f f F F− − L ) [ ,f F+ L ]F

                                             [≈ L , ] 2 [f f − L , ] [ ,F F F+ L ]F

if  1 2 1 2 1 2[ , ] [ , ]  for all  ,h h h h h h= ∈L L S, i.e.  if  L  is a self-adjoint 
operator.

Thus by using the results (iii) and (iv), we fi nd that if  L  is a self-
adjoint operator, we have that

 [ , ] [ , ( )].l f F f F f F− ≈ − −L  (7.1.13)

If, further we have either of the facts that (a) L  is positive semi-defi nite, 
i.e., [h, L h] ≥ 0   for all  h∈S  and (b)  L  is negative semi-defi nite, i.e., [ 
h, L h]≤ 0  for all h ∈S , then we fi nd from equation (7.1.13), that, either
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   (I)     [ , ] [ , ]  in case (a),l F l f≤  (7.1.14a)

or

   (II)     [ , ] [ , ]  in case (b)l F l f≥ . (7.1.14b)

The above two facts (I) and (II) imply that the quantity [ , ],l F  
computed out of the approximate solution F  of the operator equation 
(7.1.1), provides a lower bound for the actual quantity [ , ]l F  in the 
cases where L represents a positive semi-defi nite operator whereas [ , ]l F  
provides an upper bound for the actual quantity [ , ]l f  in the cases where 
L represents a negative semi-defi nite operator.

Several problems of water wave scattering arising in the linearised 
theory of water waves, can be resolved approximately in the sense as 
described above, and bounds for certain useful quantities of the type 
[ , ]l f  for known ,l  can be determined approximately where one has to 
work simultaneously with a pair of operators in this class of problems. 
In many cases it has been observed that the two bounds, when computed 
numerically, agree up to two to three decimal places by employing the 
aforesaid single term approximations, and beyond six decimal places by 
employing multi-term approximations, so that their averages produce 
fairly accurate numerical estimates for the physical quantity  [ , ].l f  This 
principle has been utilized successfully in many water wave scattering  
problems involving barriers.

In the next section we briefl y describe the operator L arising in the 
study of a number of water wave scattering problems involving thin 
vertical barriers and give a list of exact solutions of approximate related 
problems, which are used in the single-term approximations.

7.2 USE OF SINGLE-TERM GALERKIN APPROXIMATION

In this section we describe a few water wave scattering problems for which 
single term Galerkin approximations have been utilized successfully to 
obtain accurate numerical estimates for the refl ection and transmission 
coeffi cients.

The oblique water wave scattering problems involving a plane vertical 
thin barrier in deep water cannot be solved explicitly unlike the case when 
the incoming surface wave train is normally incident on the barrier. The 
surface-piercing vertical barrier was considered by Evans and Morris 
(1972a), who used the aforesaid single-term Galerkin approximation 
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to obtain upper and lower bounds for the refl ection and transmission 
coeffi cients. These bounds involve some defi nite integrals, which are 
rather straightforward to compute numerically. It has been found that these 
bounds, when computed numerically for various values of the different 
parameters, coincide up to two to three decimal places and as such their 
averages produce fairly accurate numerical estimates for the refl ection and 
transmission coeffi cients.

In the course of mathematical analysis for the problem of oblique wave 
scattering by a thin vertical barrier present in deep water, the following 
integral equations arise (cf. Evans and Morris (1972a), Mandal and Das 
(1996))  

  ( ) f u∫ M ( , ) ,   Kyy u du e y L−= ∈  (7.2.1a)

  ( )g u∫ N ( , ) ,   Kyy u du e y L−= ∈  (7.2.1b)

where L  denotes an interval whose length is equal to the length of the 
wetted portion of the vertical barrier,  (0, ) ,   L L K= ∞ −   is a positive 
constant,  ( )f y   is proportional to the horizontal component of velocity 
in the gap above or below the barrier while  ( )g y   is proportional to 
the difference of velocity potential across the barrier so that  ( )f y   is 
required to have a square root singularity near an edge while  ( )g y   tends 
to zero as one approaches an edge, M ( , )y u  and  N ( , )y u   are given by

M
( ) ( )1/22 2 2 2

0

(  cos   sin )(  cos  sin )( , ) ,k ky K ky k ku K kuy u dk
k k Kν

∞ − −
=

+ +
∫  (7.2.2a)

N ( )1/22 2

2 20
0

(  cos  sin )(  cos  sin )
( , ) lim  , ,k

k k ky K ky k ku K ku
y u e dk y u

k K
ε

ε

ν∞
−

→ +

+ − −
= ∈

+∫ L  (7.2.2b)

with   sin ,  Kν α α=   being the angle of incidence of a surface wave 
train incident upon the barrier from a large distance.

Thus,  M ( , )  and  y u N ( , )y u   are real symmetric functions of  
  and  ,y u  and  M  and  N  are positive semi-defi nite linear integral 

operators defi ned by

 (M )( )  ( )
L

f y f u= ∫  M ( , ) ,   ,y u du y L∈

 (N )( ) ( )
L

g y g u= ∫  N ( , ) ,  .y u du y L∈  

L

L
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Along with the integral equations (7.2.1a) and (7.2.1b) we have that

 ( ) ,Ky

L

f y e dy C− =∫  (7.2.3a)

 2 2

1( ) Ky

L

g y e dy
K Cπ

− =∫  (7.2.3b)

where the real (unknown) constant  C   is related to the refl ection and 
transmission coeffi cients (complex)    and  TR   respectively by

 
(1 )cos cos .

(1 )
R TC
i R i T

α α
π π

−
= =

−
 (7.2.4)

The integral equations (7.2.1a) and (7.2.1b) can be identifi ed with the 
operator equation (7.1.1) while the relations (7.2.3a) and   (7.2.3b) can 
be identifi ed with the inner product (7.1.3), A  denoting   or  L L  and the 
inner product is simply the integral over  A.

It so happens that for normal incidence of the incoming wave train, 
the integral equations corresponding to (7.2.1a) and (7.2.1b) possess exact 
solutions. A single term Galerkin approximation to ( )f y  in terms of
the corresponding exact solution f0( ),y  say, for normal incidence of the 
wave train, provides a lower bound 1   for  CC  by noting the equality 
(7.2.3a) and using the inequality (7.1.14a) since M is a positive semi-
defi nite linear operator.  Similarly a single-term Galerkin approximation 
to ( )g y  in terms of the corresponding exact solution 0 ( ),g y  say, for

normal incidence of the wave train, provides a lower bound 
2

1 1  for  
C C

and hence an upper bound 2   for  C C  by noting the equality (7.2.3b) and 
using the inequality (7.1.14a) again since  N  is a positive semi-defi nite  
linear operator. Thus it is found that

 1 2.C C C≤ ≤  (7.2.5)

Now, we have from the equation (7.2.4),

 
( ) ( )1/2 1/22 2 2 2 2 2

sec1 ,   
1 sec 1 sec

CR T
C C

π α

π α π α
= =

+ +
. (7.2.6)
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It is found that 1 2  and  R R  obtained from (7.2.6) by using 1 2  and  C C  
respectively in place of C , provide upper and lower bounds for R . Similarly 
the bounds 1 2  and    for  T T T  are obtained.  Since  2 2 1 R T+ =
always, it is suffi cient to consider R  only. At least for three confi gurations 
of the vertical barrier, viz. surface-piercing partially immersed barrier 
(Evans and Morris (1972a)), submerged vertical plate (Mandal and Das 
(1996)), and thin vertical semi-infi nite barrier with a submerged gap (Das 
et al (1996)) it has been observed that 1 2  and  R R  agree within two to 
three decimal places when computed numerically for any wave number 
and some particular values of different parameters. Thus averages of 

1 2  and  R R  produce fairly accurate estimates for .R
Four different confi gurations of the barrier are usually considered. For 

a surface-piercing partially immersed barrier, (0, ),  ( , );L a L a= = ∞  for a 
submerged barrier extending infi nitely downwards, ( , ),  (0, );L a L a= ∞ =  
for a submerged plate ( , ),L a b=  (0, ) ( , )L a b= ∞∪  and for a vertical  
wall  with  a  submerged  gap,   (0, ) ( , )L a b= ∞∪ , ( , ).L a b=  We state 
below the functions 0 0( )  and  ( )f y g y  in terms of which the single-term 
Galerkin approximations of the integral equations (7.2.1a) and (7.2.1b) 
respectively are made for these geometrical confi gurations.
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0 1/22 2
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with

F
1/2

2 2
0

( )2( )  
a s

f u ds
u s
ρ

π
=

−∫

and   ( )uρ   is given in (iii) above.
The oblique scattering problems corresponding to the fi rst, third and 

fourth confi gurations have been considered by Evans and Morris (1973a), 
Mandal and Das (1996) and Das et al (1997). For the second confi guration, 
Evans and Morris (1973a) reported that similar single-term approximations 
do not provide good results.  For this reason, and to obtain more accurate 
results, multi-term Galerkin approximations in terms of suitable basic 
functions are required.  These are discussed in Mandal and Chakrabarti 
(1999) and the references given there.

7.3  GALERKIN METHOD FOR SINGULAR INTEGRAL 
EQUATIONS

Consider the singular integral equation

 ( ) ,I C fϕ− =  (7.3.1)

written in the operator  form, i.e., the equation

 
( )( )  ( ),   

b

a

tx dt f x a x b
t x
ϕϕ λ− = < <
−∫  (7.3.2)

where

 ( )( ) ( ),I x xϕ ϕ=  (7.3.3)

I   being the identity operator, and

 
( )( )( )   ,  ,

b

a

tC x dt a x b
t x
ϕϕ λ= < <
−∫  (7.3.4)

C  being the Cauchy singular operator, ,a b  being two known real numbers 
with  a b< , and  λ   being a known complex parameter of the problem 
under consideration  Writing

 
1

( ) ( )  ( )
N

N j j
j

x x a xϕ ϕ
=

≈ Φ ≡∑  (7.3.5)



190 Applied Singular Integral Equations

where the set  { }
1

N

j j
ϕ

=
 is linearly independent and 's ( 1, 2,..., )ja j N=  

are unknown constants and using the defi nition of the inner product [ ],u v  
as

 [ ] [ ]* *, , ( ) ( ) 
b

a

u v v u u x v x dx= = ∫  (7.3.6)

we obtain the following system of linear equations for the determination 
of the unknown constants  's ( 1, 2,..., )ja j N=

 ( ) ( )N NA =α γ  (7.3.7)

where the elements  jka   of the matrix  A   are given by

 , ,  , 1, 2,..., ,jk jk j ka j k Nδ λϕ ϕ⎡ ⎤= − =⎣ ⎦  (7.3.8)

and the N -dimensional vectors  ( ) ( )  and  N Nα γ   are given by

 ( )
1 2( , ,..., )N T

Na a a=α  (7.3.9)

and

 [ ] [ ] [ ]( )( )
1 2, , , ,..., ,

TN
Nf f f= ϕ ϕ ϕγ  (7.3.10)

in standard notations.

It is well known from linear algebra, because of various errors occurring 
in the formation of the system of equations (7.3.7) and its numerical 
solution, that we do not get the exact value of the solution vector ( )Nα  
in (7.3.7), and instead, we obtain an approximate solution ( ) ( )ˆ   to  N Nα α , 
which is the solution of the perturbed system

 ( ) ( ) ( )ˆ( ) N N NA A+ Δ = + Δα γ γ  (7.3.11)

where ( )  and  NAΔ Δγ  are perturbations to numerical integrations 
involving the various inner products.

Then, if we can associate with the perturbation ,AΔ  an appropriate 
norm, i.e. if  AΔ   is suitably defi ned, and also if   AΔ   is suffi ciently 
small, it follows that

 
( ) ( )

( ) ( ) 1
1

ˆ
1

N N
N N

A
A

A A
−

−

Δ + Δ
− ≤

− Δ

γ α
α α  (7.3.12)
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in standard notations, where  1A−  is the inverse of the matrix .A  The 
inequality (7.3.12) provides us with a bound of the error in the approximation 
of the solution of the system of equation (7.3.7), which also gives rise to a 
bound of the relative error as given by

 
( ) ( ) 1 ( )

( ) 1 ( )

ˆ
.

1

N N N

N N

A A A
AA A

−

−

⎡ ⎤− Δ Δ
⎢ ⎥≤ +

− Δ ⎢ ⎥⎣ ⎦

α α γ

α γ
 (7.3.13)

An excellent account of Galerkin method applied to Cauchy type singular 
integral equations can be found in the treatise by Golberg and Ghen 
(1997).



In this chapter we describe briefl y the development of some methods 
to obtain solutions of singular integral equations with Cauchy type 
singularities and hypersingular integral equations.  Equations of both fi rst 
and second kinds will be considered.

8.1   THE GENERAL NUMERICAL PROCEDURE FOR CAUCHY 
SINGULAR INTEGRAL EQUATION

Let us consider the singular integral equation of the form (involving a 
known weight function, for convenience)

0
( ) ( )( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ),   t ta x x x b x dt k x t t t dt f x x
t x

β β

α α

ω ϕω ϕ ω ϕ α β+ − = < <
−∫ ∫  (8.1.1)

where ϕ  is the unknown function to be determined, and  
( ),  ( ),a x b x  ω(x), k0 (x,t) and ( )f x  are all known functions for  

( , ) and ( , ),   and x tα β α β α β∈ ∈  being two known real constants, to 
be precise.  The kernel function 0 ( , )k x t  is assumed to be continuous and 
square integrable in ( , )  ( , ).α β α βΧ

If ( ) 0,a x ≡  then the equation  (8.1.1) is an equation of the fi rst kind, 
while if ( ) 0,a x ≠  it is an equation of the second kind. Here we explain 
numerical methods of solution of the general singular integral equation 
(8.1.1), and for this purpose, we fi rst consider the numerical approximation 
of integrals of the form

( )( )  ( , ) ( ) ( ) ,  .K x k x t t t dt x
β

α

ϕ ω ϕ α β≡ < <∫  (8.1.2)

Chapter 8        

Numerical Methods
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If   ( , )k x t  is continuous on ( , ) X ( , ),α β α β  then we can approximate 
( )( ),K xϕ  for any fi xed ( , ),x α β∈  by an expression of the form

 
0

( )( )  ( , ) ( )
n

j j j
j

K x w k x t tϕ ϕ
=

≈∑  (8.1.3)

by   standard  quadrature   methods  involving   the   interpolation  points    
0 1 ...t tα = < <  .nt β< =

If   ( , )k x t   has singularities, then other approaches are needed and, 
then, if we assume that  ( , )k x t   can be factored as

 ( , ) ( , ) ( , )k x t m x t n x t=  (8.1.4)

where  ( , )m x t   is the singular part of  ( , ) and ( , )k x t n x t  is continuous, 
then we fi rst approximate the expression  ( , ) ( )n x t tϕ   as
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r

i i
i

n x t t a t xϕ ψ
=

≈∑  (8.1.5)

(a degenerate approximation) with some known function   { } 0
( ) r

i i
a t

=
  and

  { } 0
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i i
xψ

=
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=
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∑∫

∑

dt
 (8.1.6)

where

 ( )  ( , ) ( ) ( ) ,  =0,1,..., .i iw x m x t t a t dt i r
β

α

ω= ∫  (8.1.7)

Remarks

 1. The approximation (8.1.5) is derived by interpolating ( , ) ( )n x t tϕ   
in  ' ',t  in some manner—usually   by   a  polynomial,   piecewise   
polynomial   or   trigonometric interpolant.

 2. If ( ) ( 0,1,..., ) iw x i r=  can  be  evaluated   analytically  or  numerically  
to high accuracy, by some other quadrature rule, then (8.1.6) is an 
effective approximation formula for the integral  ( )( )K xϕ .
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As an illustration of the above idea on the numerical approximation of 
integrals, we take up the following example.

Example:  Consider the evaluation of the weakly singular integral

 
1/ 21

1

1( )     ( ) ,  -1 1,
1

tI x ln x t f t dt x
t−

−⎛ ⎞= − < <⎜ ⎟+⎝ ⎠∫  

where  ( )f t   is a smooth function. We note that   ( )I x   can be expressed as

 
( )

1

1/ 22
1

(1 )    ( )
( )  ,   1 1.

1

t ln x t f t
I x dt x

t−

− −
= − < <

−
∫  (8.1.8)

Using Chebyshev series approximation, we can write

             ' ( )

0
(1 ) ( )   ( )

M
M

j j
j

t f t c T t
=

− ≈∑  (8.1.9)

where  ( ) 'sM
jc   are known constants,  'sjT   are the Chebyshev polynomials 

of the fi rst kind and the prime (') indicates that the fi rst term is halved, we 
obtain

 
( )

1
' ( )

1/ 220 1

( )
( )
0

1

   ( )
( )    ,  1 1 

1

( )1        =    2  
2

M
jM

j
j

MM
j jM

j

ln x t T t
I x c dt x

t

c T x
c ln

j

= −

=

−
≈ − < <

−

− −

∑ ∫

∑
 (8.1.10)

by using the result

 
( )

1

1/ 22
1

  2,   j=0,
   ( )

  
 ( ),   1.1

j

j

ln
ln x t T t

dt
T x jt j

π
π

−

−⎧− ⎪= ⎨− ≥− ⎪⎩
∫

For the best approximation in (8.1.9) (cf. Atkinson (1978)) 
( ) 's ( 0,1,..., )M
jc j M=  are given by 

 
1

( ) "

0

2  ( ) cos ,   0
1 1

M
M

j i
i

ijc g j M
M M

πθ
+

=

⎛ ⎞= ≤ ≤⎜ ⎟+ +⎝ ⎠
∑  (8.1.11)

with

 ( ) (1 ) ( )g t t f t= −  (8.1.12)
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and

 cos ,   0 1
1i

i i M
M
πθ = ≤ ≤ +
+

 (8.1.13)

where  ∑"
 denotes that the fi rst and the last terms of the summation are 

halved.
We now take up the approximate evaluation of the singular integral

 
( ) ( )( )( )   ,   ,t tS x dt x
t x

β

α

ω ϕϕ α β= < <
−∫  (8.1.14)

occurring in the equation (8.1.1).  We can easily derive the following 
important result, by using standard procedures in numerical analysis 
(cf. Atkinson (1978)).

Result: Let  ( )tω   be a non-negative function in the interval  ( , )α β   such 
that

  ( )   for  0.nt t dt n
β

α

ω < ∞ ≥∫  

Then, using an N-point polynomial quadrature rule, we have

 ( )
1

( ) ( )  
N

k k
k

t t dt w t
β

α

ω ϕ ϕ
=

≈ ∑∫  (8.1.15)

where

 (0)( ) ( ) ,k kw t l t dt
β

α

ω= ∫  (8.1.16)

(0) ( ) 's ( 1, 2,...kl t k N= ,N) being the fundamental polynomials of Lagrange 
interpolation for the set of points  1 2, ,..., ,Nt t t  i.e.

 (0)

1

( ) .
N

j
k

j k j
j k

t t
l t

t t=
≠

−
=

−∏

We also have, under these circumstances,  

 
1

( ) ( ) ( )( )( ) ( )( ) ,   ,  1 ,
( )

N
k k N

N k
k k N

w t q x xS x S x x t k N
t x x
ϕ ϕϕ ϕ

σ=

≈ = + ≠ ≤ ≤
−∑  (8.1.17)
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with

 '

( ) ( ) ,
( )( )

N
k

N k k

t tw dt
t t t

β

α

ω σ
σ

=
−∫  (8.1.18)

where   N  ,  ( )N NS S tϕ ϕ ϕ=   being  the  unique  polynomial  which  
interpolates  ( )tϕ   at

{ }1 2
1

, ,..., , ,  ( ) ( )  and  .
N

n N k N N
k

t t t x t t t q Sσ σ
=

= − =∏

Proof :   We fi rst note that, by using Lagrange’s interpolation formula, we 
have

                             
1

1
( ) ( ) ( ) ( ) ( )

N

N k k N
k

t l t t l t xϕ ϕ ϕ+
=

= +∑
 

(8.1.19)

where

 
'

1

( )( )( )   ,  1
( )( )( )
( )( )
( )

N
k

N k k k

N
N

N

t t xl t k N
t t t t x
tl t
x

σ
σ
σ
σ+

−
= ≤ ≤

− −

=
 (8.1.20)

and the dash denoting derivative. Thus we obtain

1

=1

'
=1

=1

( )( ) ( )( )

( ) ( ) ( ) ( )                = ( ) ( )  

( ) ( ) ( )( )                = ( )  ( )
( )( )( ) ( )

( )                =

N N

N
k N

k
k

N
N N

k
k N k k k N

N
k k

k k

S x S x

t l t t l tt dt x dt
t x t x

t t S xt dt x
t t t t x x

w t q
t x

β β

α α

β

α

ϕ ϕ

ω ωϕ ϕ

ω σ σϕ ϕ
σ σ

ϕ

+

=

+
− −

+
− −

+
−

∑ ∫ ∫

∑ ∫

∑ ( ) ( )   for  ,   1 ,
( )

N
k

N

x x x t k N
x
ϕ

σ
≠ ≤ ≤

 (8.1.21)

and this proves the result (8.1.17) along with the relation (8.1.18).

Remark

The above formulae are suffi ciently general, and particular cases depending 
on the interpolation points can be dealt with separately.
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Utilizing the above results and discussions into the singular 
integral equation (8.1.1), we fi nd that we can obtain the following 
approximate relation, connecting the ( 1)N +  unknowns 

1 2( ),  1, 2,..., ,   where  ...   and  k Nt k N t t t= = < < < =ϕ α β
( ),xϕ  as given by,

(0)

1
( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ),  for ,  1

N

N k k k
k

a x x x b x S x w x t f x x t k Nω ϕ ϕ ϕ
=

+ − = ≠ ≤ ≤∑  (8.1.22)

where

 (0) (0)
0( ) ( , ) ( ) ( ) k k kw x k x t t l t dt

β

α

ω= ∫  (8.1.23)

in which   (0) ( )kl t   is given by the formula (8.1.16) and  ( )( )NS xϕ   is given 
by the formula (8.1.21).

The equation (8.1.22) can fi nally be expressed as, after using the 
equation (8.1.21)

(0)

1 1

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ).
( )

                                                                           for  ,  1 .

N m
k k N

k k
k kk N

k

w t b x q xb x x t a x x x f x
t x x

x t k N

ϕ ω ϕ ω ϕ
σ= =

⎧ ⎫
− + + =⎨ ⎬− ⎩ ⎭

≠ ≤ ≤

∑ ∑  (8.1.24)

We thus observe that, we can hope to get a system of N  equations, for the 
N  unknowns ( ) ( 1, 2,..., ),kt k Nϕ =  out of the relation (8.1.24), if x  can 
be chosen such that  ( 1, 2,..., )kx t k N≠ = , and at the same time

 
( ) ( )( ) ( ) 0,

( )
N

N

b x q xa x x
x

ω
σ

+ =  (8.1.25)

and if, we can obtain compatible system of equations for the unknowns 
( ), (1 )kt k Nϕ ≤ ≤ , ultimately.

Thus the singular integral equation (8.1.1) can be solved, by the above 
explained approximate method, only under certain specifi c assumptions on 
the functions ( ),a x  ( )b x and  ( ).xω  In the special case when ( ) 0,a x =  
we fi nd that the values of x  which can provide a solvable system of 
equations for the unknowns ( ) ( 1, 2,..., ),kt k Nϕ =  are given by the 
solution of the equation

 ( ) 0Nq x =  (8.1.26)

where  ( )( ) ( ),N Nq x S xσ=   as introduced earlier. Having solved for 
( )( 1, 2,..., ),kt k Nϕ =  the function ( )  for any  ( , ),x xϕ α β∈ can be 

constructed by using a suitable interpolation formula.
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In another special case, when ( )   and  ( )a x a b x b= =  where 
  and  a b  are constants, along with the assumption that 1,  1,α β= − =  

in the given equation (8.1.1), we obtain the replacement of the result 
(8.1.24) by the following:

1

0 1

(0)

0

( ) ( )( ) ( ) ( ) ( )  
( )

                      + ( ) ( ),  for  , 0   

n
j j n

j j N

n

j j j
j

w t S x xa x x b b
t x x

w t f x x t j n

ϕ σ ϕω ϕ
σ

ϕ

+

= +

=

+ +
−

= ≠ ≤ ≤

∑

∑
 (8.1.27)

where  (0)
0 1 21 ... 1,  ( )n jt t t t xω− = < < < < =  being given by (8.1.23) 

with  k   replaced by  ,j   and

 1
0

( ) ( ).
n

n j
j

t t tσ +
=

= −∏  (8.1.28)

Thus, in this special case, if we can get enough number of values of x , 
for which the coeffi cient of ( )xϕ  in the left side of the relation (8.1.27) 
vanishes, i.e. if for these values of ,x  we have

 1 1 ( ) ( ) ( )( ) 0,n na x x b S xω σ σ+ ++ =  (8.1.29)

we  can  expect  to  solve  the resulting  system of linear algebraic equations 
(arising out of  (8.1.27))

(0)

0 0

( )
 ( ) ( ) ( ),  ,  0 ,

n n
j j

j j j
j jj

w t
b w x t f x x t j n

t x
ϕ

ϕ
= =

+ = ≠ ≤ ≤
−∑ ∑  (8.1.30)

for the  ( 1)n +   unknowns  ( ) ( 0,1,..., )jt j nϕ = .

Note that if 0,b =  the roots of the equation (8.1.29) are different from 
 ( 0,1,..., ).jt j n=

We close this discussion here and do not go into further details of this 
method.

8.2   A SPECIAL NUMERICAL TECHNIQUE TO SOLVE 
SINGULAR INTEGRAL EQUATIONS OF FIRST KIND WITH 
CAUCHY KERNEL        

In this section, we present a specially designed numerical scheme given by 
Chakrabarti and Vanden Berghe (2004) to tackle a class of singular integral 
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equations of the fi rst kind with Cauchy type kernels for their approximate 
numerical solutions. This method is guided by the analytical solutions 
of fi rst kind singular integral equations with Cauchy kernel discussed in 
section 2.3.  Let the singular integral equation of fi rst kind with Cauchy 
type kernel over a fi nite interval, be represented by the general equation

 { }
1

0
1

( , ) ( , ) ( ) ( ),  1 1k t x k t x t dt f x xϕ
−

+ = − < <∫  (8.2.1)

where

 0

ˆ( , )( , ) ,k t xk t x
t x

=
−

 (8.2.2)

the functions ˆ( , ),  ( , )k t x k t x  being regular and square integrable, 
ˆ( , ) 0.k x x ≠  The integral in (8.2.1) involving the factor ( ) 1t x −−  is 

defi ned in the sense of Cauchy principal value. Solution of the integral 
equation is to be found for the following four basically important and 
interesting cases:
Case    (i)    ( )xϕ   is unbounded at both end points  1,x = ±
Case   (ii)    ( )xϕ   is unbounded at the end point  1,x = −  but bounded   
        at  the end point 1,x =  
Case  (iii)    ( )xϕ   is bounded at the end point  1,x = −  but unbounded   
         at the end point 1,x = .
Case  (iv)    ( )xϕ   is bounded at both the end points  1x = ± .

The simplest integral equation of the form (8.2.1) is the one as 
given by

 
1

1

( )  ( ),  1 1t dt f x x
t x
ϕ

−

= − < <
−∫  (8.2.3)

for which  ˆ( , ) 1  and  ( , ) 0.k t x k t x≡ ≡   From section 2.3 it is well known 
that the complete analytic solutions of the singular integral equation (8.2.3), 
in the above four cases can be determined using the following formulae.

Case   (i) ( )
( )1/ 221

1/ 2 22
1

1 ( )1 1( )  ,  1 1,
1

t f t
x C dt x

t xx
ϕ

π −

⎡ ⎤−
⎢ ⎥= − − < <
⎢ ⎥−− ⎣ ⎦

∫    (8.2.4)

where  C   is an arbitrary constant,
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Case  (ii)    
1/ 2 1/ 21

2
1

1 1 1 ( )( )  ,  1 1,
1 1

x t f tx dt x
x t t x

ϕ
π −

− +⎛ ⎞ ⎛ ⎞= − − < <⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠∫     (8.2.5)

Case (iii)    
1/ 2 1/ 21

2
1

1 1 1 ( )( )  ,  1 1,
1 1

x t f tx dt x
x t t x−

+ −⎛ ⎞ ⎛ ⎞= − − < <⎜ ⎟ ⎜ ⎟− + −⎝ ⎠ ⎝ ⎠∫ϕ
π

   (8.2.6)

Case (iv)     ( )
( )

1/ 22 1

1/ 22 2
1

1 ( )( )  ,  1 1,
1 ( )

x f tx dt x
t t x−

−
= − − < <

− −
∫ϕ

π
    (8.2.7)

the solution existing in Case (iv), if and only if 

 ( )
1

1/22
1

( )  0.
1

f t dt
t−

=
−

∫  (8.2.8)

 Guided by the analytical results available, as given by the expressions 
(8.2.4) to (8.2.7), for the solution of the simple singular integral equation 
(8.2.3), as well as by utilizing the idea of replacing the integral by an 
appropriate approximate function, we explain here a numerical scheme 
that can be developed and implemented, for obtaining the approximate 
solutions of the general singular integral equation (8.2.1).  The particular 
cases of the equation (8.2.3) follow quite easily and the known analytical 
solutions are recovered in the cases of simple forms of the following 
function ( ),f x  being polynomials of low degree.

The numerical scheme: 

The unknown function ( )xϕ  is represented as

 
( )1/ 22

( )( ) ,  1 1,
1

xx x
x

ψϕ = − < <
−

 (8.2.9)

where  ( )xψ   is a well behaved function of  [ ]1,1 .x∈ −   Then the unknown 
function  ( )xψ  is approximated by means of a polynomial of degree n, 
as given by

 ( )( )

0
( ) ( ) ( ),   1, 2,3, 4

n
r j

r j r
j

x x c x x rψ ψ λ
=

≡ ≈ =∑  (8.2.10)
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in the four cases mentioned above,  where  1( ) 1xλ =  in case (i), 
2 ( ) 1x xλ = −  in case (ii), 3 ( ) 1x xλ = +  in case (iii) and 2

4 ( ) 1x xλ = −  
in case (iv); where the unknown coeffi cients  ( )r

jc   can be determined in 
terms of the values of the unknown function  ( )xψ  at  1n +   distinct 
points  ,jx  such that  0 11 ... 1.nx x x− ≤ < < < ≤

Using the above approximate form (8.2.10) of the function ( )xψ  
along with the representation (8.2.9), into the original integral equation 
(8.2.1), we obtain 

( ) ( )
1 1

( )
1/ 2 1/ 22 20 1 1

ˆ( ) ( , ) ( ) ( , ) + ( ),  1 1,  1, 2,3,4.
1 ( ) 1

j jn
r r r

j
j

t k t x t t k t x tc dt dt f x x r
t t x t= − −

⎡ ⎤
⎢ ⎥ = − < < =
⎢ ⎥− − −⎣ ⎦

∑ ∫ ∫
λ λ  (8.2.11)

In the equations (8.2.11) we next use the following polynomial 
approximations to the kernels ˆ( , )k t x  and ( , )k t x  given by

 
0 0

ˆ ˆ( , ) ( ) ,   ( , ) ( )
m s

p q
p q

p q
k t x k x t k t x k x t

= =

= =∑ ∑  (8.2.12)

with

 0 1

0 1

ˆ ( ) ( , ),   1 ... 1,
ˆ ( ) ( , ),   1 ... 1.

p p m

q q s

k x k t x t t t

k x k t x t t t

∧

= − ≤ < < < ≤

′ ′ ′ ′= − ≤ < < < ≤
 (8.2.13)

We thus obtain the following functional relation to be solved for the 
unknown constants ( )  ( 0,1,... )r

jc j n=

( ) ( )
1 1

( )
1/ 2 1/ 22 20 0 01 1

( ) ( )ˆ ( ) ( ) 
1 ( ) 1

                                                                 ( ),  1 1.

p j q jn m s
r r r

j p q
j p q

t t t tc k x dt k x dt
t t x t

f x x

λ λ+ +

= = =− −

⎡ ⎤
⎢ ⎥+
⎢ ⎥− − −⎣ ⎦

= − < <

∑ ∑ ∑∫ ∫  (8.2.14)

Now using the following well known results given by

 ( )
1/21

1
1/2 22

1

( )

( ) 1  ( ) 1
1 ( )

                                     ( ),   1 1

p j
p jr

r

r
p j

t t dt x x
xt t x

u x x

λ π λ
−+

+ −

−

+

⎛ ⎞= −⎜ ⎟
⎝ ⎠− −

≡ − < <

∫
 (8.2.15)
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and

 
( )

1
( )

1/ 22
1

( )    
1

q j
rr

q j
t t dt

t

λ γ
+

+
−

≡
−

∫  (8.2.16)

where  ( )s
q jγ +   is a constant obtainable in terms of Beta functions, we obtain

from (8.2.14)

( ) ( ) ( )

0 0 0

ˆ ( ) ( ) ( ) ( ),  1 1,  1, 2,3, 4.
n m s

r r r
j p p j q q j

j p q
c k x u x k x x f x x r+ +

= = =

⎡ ⎤
+ = − < < =⎢ ⎥

⎣ ⎦
∑ ∑ ∑ γ  (8.2.17)

Setting  ,  0,1, 2,...,lx x l n= =   in the above relation (8.2.17), we obtain 
the following  ( 1) ( 1)n n+ Χ +  linear equations for the determination of 
the unknown constants  ( )  ( 0,1,..., ) :r

jc j n=

 ( ) ( )

0
 ,   0,1,..., ;   = 1,2,3,4,

n
r r

j jl l
j

c f l n rα
=

= =∑  (8.2.18)

where

 ( )l lf f x=  (8.2.19)

and

 ( ) ( ) ( )

0 0

ˆ  ( )  ( )  ( ) .
m s

r r r
jl p l p j l q l q j

p q
k x u x k x+ +

= =

= +∑ ∑α γ  (8.2.20)

Solving the system of equations (8.2.18) and utilizing the relations (8.2.9) 
and (8.2.10), we determine an approximate solution of the singular integral 
equation (8.2.1), in the form

 
( )

( )

1/ 220
( ) ( ) ,  1, 2,3, 4.

1

r jn
j

r
j

c x
x x r

x
ϕ λ

=

≈ =
−

∑  (8.2.21)

Particular cases and examples

Example 1

For the simplest integral equation (8.2.3), we select in the fi rst instance the 
known function ( )f x  to be a polynomial of degree one, i.e.

 0 1( )  ,  1 1f x b b x x= + − < <  (8.2.22)
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with  0 1  and  b b   as known constants.  We fi rst observe that due to (8.2.8) 
we must have for the case (iv) that

 0 0.b =  (8.2.23)

whereas  0b   can be a non-zero constant for the other three cases (i), (ii) 
and (iii), for the existence of solutions.  Then, using the facts that, for the 
integral equation (8.2.3),

 ˆ( , ) 1  and  ( , ) 0k t x k t x= =  (8.2.24)

along with the relations (8.2.12) to (8.2.16), we obtain that
1

( ) ( ) 1
2

1( )  ( ) 1 ,  1, 2,3, 4;  0,1,..., ,r r j
jl j l l r l

l

u x x x r l n
x

α π λ
−

− ⎛ ⎞
= = − = =⎜ ⎟

⎝ ⎠
 (8.2.25)

and the equations (8.2.17) reduce to the simple polynomial relations

 ( ) ( )
0 1

0
( ) ,   1, 2,3, 4,

n
r r

j j
j

c u x b b x r
=

= + =∑  (8.2.26)

so that we can determine the unknown constants  ( )r
jc   directly, by just 

comparing the coeffi cients of various powers of  x   from both sides of the 
equation (8.2.26). There is thus no need to solve the system of equations 
(8.2.18) in this simple situation. Following expressions are easily found:

(1) (1) (1) (1) 2
0 1 2 3

(2) (2) (2) 2 (2) 2 3
0 1 2 3

(3)
0

10,          ,                    ,                         ,...;
2

1 1,      (1 ),          ,    ,...;
2 2 2

,   

u u u x u x

xu u x u x x u x x

u

π π π

π π π π

π

⎛ ⎞= = = = +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= − = − = − + − = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= (3) (3) 2 (3) 2 3
1 2 3

1 1      (1 ),          ,       ,...;
2 2 2

xu x u x x u x xπ π π⎛ ⎞ ⎛ ⎞= + = + + = + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

                                                                                    (8.2.27)  

The constants ( )r
jc  can then be determined easily and the fi nal forms of the 

unknown function ( )xϕ  agree with the known results obtainable from the 
relations (8.2.4) to (8.2.7).

Let us illustrate this for 4.r =  We fi nd from equation (8.2.26)

 (4) (4) (4) (4) (4) (4)
0 0 1 1 2 2 0 1( ) ( ) ( )c u x c u x c u x b b x+ + + = +�  

which is equivalent to 

 (4) (4) 2 (4) 3
0 1 2 0 1

1( ) ... .
2 2

xc x c x c x b b xπ π π⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞− + − − + − − + = +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
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By equating similar powers of x  from both sides of the equation and 
taking account  of (8.2.18), we obtain

(4)
1 0

(4) (4)
0 2 1

(4)

 0.
2

,
2

 0,    2,3,...j

c b

c c b

c j

= ≡

− + =

= =

π

ππ

giving as a result

 (4) (4)1
0 ,   0,   1, 2... .j

bc c j
π

= − = =

The result for ( )xϕ  follows from (8.2.9), (8.2.10) and  2
4 ( ) 1 ,x xλ = −

i.e.

 ( )1/ 221( ) 1 ,bx xϕ
π

= − −

which is also the exact value obtained by (8.2.7) for  ( )f x   given by 
(8.2.22).

Example 2

As a second example we consider the integral equation  

 
1

1

1 ( ) ( ),   1 1.t x t dt f t x
t x

ϕ
−

⎛ ⎞+ + = − < <⎜ ⎟−⎝ ⎠∫  (8.2.28)

For this, we have

 ˆ( , ) 1  and  ( , ) .k t x k t x t x= = +  
So, we obtain, in this case

 ( )

( )

0

0 1

1
( )

1/22
1

1
( )

1/22
1

ˆ ˆ( )    =  1,      ( )       =  0,   1, 2,...;

( )    =  ,      ( )       =  1,        ( ) 0,   2,3,...;

( )( )  =   ,   =0,1,2,...;
1 ( )

( )  =   ,
1

j

j

j
r r

j

j
r r

j

k x k x j
k x x k x k x j

t tu x dt j
t t x

t t dt
t

λ

λγ

−

−

=

= =

− −

−

∫

∫   =0,1,2,... .j
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Let us consider in detail the case 1.r =  Then

 
( )

1
(1)

1/ 22
1

 =   ,   =0,1,2,... 
1

j

j
t dt j
t

γ
− −
∫

so that

 (1) (1) (1) (1) (1)
0 1 2 3 4

3,   0,   ,   0,   ... .
2 8
πγ π γ γ γ γ π= = = = =  (8.2.29) 

Again,
 

( )
1

(1)
1/22

1

( ) =   ,   1 1
1 ( )

j

j
tu x dt x

t t x−

− < <
− −

∫  

so that

(1) (1) (1) (1) 2
0 1 2 3

1( ) 0,   ( ) ,   ( ) ,   ( ) ,...
2

u x u x u x x u x x⎛ ⎞= = = = +⎜ ⎟
⎝ ⎠

π π π . (8.2.30)

Then, using (8.2.20) we get for 1,r =

 (1) (1) (1) (1)
1( ) ,   , 0,1, 2,... .jl j l l j ju x x j lα γ γ += + + =

For  0,1, , 2,3,...j =  we fi nd

 

(1) (1) (1)
0 0 1
(1) (1) (1)
1 1 2
(1) (1) (1)
2 2 3

(1) 2 (1) (1)
3 3 4

,

,

,
1 ,
2

. . . . . . . . . . . . . . . . . . . . . . . . .

l l

l l

l l l

l l l

x
x

x x

x x

α γ γ

α π γ γ

α π γ γ

α π γ γ

= +

= + +

= + +

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 (8.2.31)

By introducing (8.2.29) we obtain

(1) (1) (1) (1)
0 1 2 3

3 3 3( ) ,   ,   ( ) ,   ( ) ,... .
2 2 8l l l l l l lx x x x x xα π α π α π α π ⎛ ⎞= = = = +⎜ ⎟

⎝ ⎠
 (8.2.32)

Finally, by choosing 3n = , we have to solve the linear system (8.2.18) for 
case (i) ( 1),r =  i.e.

 
3

(1) (1)

0
,   0,1, 2,3.j jl l

j
c f lα

=

= =∑  (8.2.33)
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In the special situation, when ( ) 1,f x =  the integral equation (8.2.28) can 
be expressed as

 ( )
1

0 1
1

( )  1 ,   1 1,t dt x x
t x
ϕ μ μ

−

= + + − < <
−∫  (8.2.34)

with

 
1 1

0 1
1 1

 ( ) ,   ( ) .t t dt t dtμ ϕ μ ϕ
− −

= − = −∫ ∫  (8.2.35)

We can easily solve the equation (8.2.34), by utilizing the relation (8.2.4), 
in the case (i), and we fi nd that ( )xϕ  is given by

 
( )

20
01/ 22

2( ) ( )
31

Bx x B x
x

ϕ π
π

= + −
−

 (8.2.36)

where  0B   is an arbitrary constant.
Again, by utilizing the system of equations (8.2.33), with 
1,   for  0,lg l= = 1,2,3 we obtain that, for any four chosen values of 

1( 1 1),lx x− ≤ ≤

 (1) (1) (1) (1)
0 0 1 2 0 3

2 2,   ,   ,   0
3 3

c B c c B c
π

= = = − =  (8.3.37)

where  0B   is an arbitrary constant.
Finally, by using the constants in (8.2.37) in the relation (8.3.10), in 

the case (i), i.e. for 1r = , we obtain the same expression (8.2.36), which is 
the exact solution for the integral equation (8.2.28), in the special situation 
when ( ) 1.f x =

Remark

 1.  The reason behind the matching of our approximate solution with the 
exact ones, of the two singular integral equations considered above, 
is that the known function ( )f x  is chosen to be a polynomial and 
that we take here suffi ciently large n  in the approximation (8.2.10).

 2.  We have not taken up any other example which require the solution 
of the system of equations (8.2.18) seriously, but the two examples 
taken up here assure the correctness and robustness of the method 
described above.
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8.3 NUMERICAL SOLUTION OF HYPERSINGULAR 
INTEGRAL EQUATIONS USING SIMPLE POLYNOMIAL 
EXPANSION

A general hypersingular integral equation of fi rst kind, over the interval 
[ ]1,1 ,−  can be represented by

 
( )

1

2
1

( , )( ) ( , )  ( ),   1 1K t xt L t x dt f x x
t x

ψ
−

⎧ ⎫⎪ ⎪+ = − ≤ ≤⎨ ⎬
−⎪ ⎪⎩ ⎭

∫  (8.3.1)

with  ( 1) 0,   where  ( , )  and  ( , )K t x L t xϕ ± =   are regular square-
integrable functions of t and x,   and  ( , ) 0,K x x ≠   and the integral 
involving  ( ) 2t x −−   is understood in the sense of Hadamard fi nite part.

A somewhat less general form of fi rst kind hypersingular integral 
equation given by

 
( )

1

2
1

1( ) ( , )  ( ),   1 1t L t x dt f x x
t x

ϕ
−

⎧ ⎫⎪ ⎪+ = − ≤ ≤⎨ ⎬
−⎪ ⎪⎩ ⎭

∫  (8.3.2)

with  ( 1) 0,ϕ ± =   arises in a variety of mixed boundary value problems in 
mathematical physics such as water wave scattering or radiation problems 
involving thin submerged plates (cf. Parsons and Martin (1992, 1994), 
Martin et al. (1997), Mandal et al. (1995), Banerjea et al. (1996), Mandal 
and Gayen (2002), Kanoria and Mandal(2002), Maiti and Mandal (2010)), 
and fracture mechanics (Chan et al. (2003)), etc. The integral equation 
(8.3.2) is usually solved approximately by an expansion-collocation 
method, the expansion being in terms of a fi nite series involving Chebyshev 
polynomials  ( )iU t  of the second kind. In particular, ( )tϕ  in (8.3.2) is 
approximated as 

 ( )1/ 22

0
( ) 1  ( )

n

i i
i

t t aU tϕ
=

≈ − ∑  (8.3.3)

where   ( 0,1,..., )ia i n=   are unknown constants. Substitution of (8.3.3) 
in (8.3.1) produces

 
0

( ) ( ),   1 1
n

i i
i

a A x f x x
=

= − ≤ ≤∑  (8.3.4)

where

 ( )
1

1/ 22

1

( ) ( 1) ( ) 1 ( , ) ( ) .i i iA x i U x t L t x U t dtπ
−

= − + + −∫  (8.3.5)
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To fi nd the unknown constants  ( 0,1,..., ),ia i n=  we put 
 ( 0,1,..., )jx x j n= =  where 'sjx  are suitable collocation points such 

that 1 1.jx− ≤ ≤  This produces the linear system  

 
0

,   =0,1,...,
n

i ij j
i

a A f j n
=

=∑  (8.3.6)

where  ( )  and   ( ).ij i j j jA A x f f x= =  This can be solved by any 
standard method.  The collocation points are usually chosen to be the zeros 
of 1 1( )  or  ( )n nU x T x+ + . This method becomes somewhat unsuitable for 
solving the general hypersingular integral equation (8.3.1) due to presence 
of the factor ( ) 2( , )  with  .K t x t x −−

Mandal and Bera (2006) developed a modifi ed method to solve 
approximately the equation (8.4.1). This method is somewhat similar to 
the method described in section 8.2 to solve a general type of fi rst kind 
singular integral equation with Cauchy type kernel, given by

 ( )
1

1

( , )( ) ,  ( ),  1 1,K t xt L t x dt f x x
t x−

⎧ ⎫+ = − < <⎨ ⎬−⎩ ⎭∫ ϕ  (8.3.7)

( )tϕ  satisfying appropriate conditions at the end points, and the integral 
involving 1( )t x −−  is in the sense of Cauchy principal value  ( )( , ) 0 .K x x ≠   
The approximate method developed below appears to be quite appropriate 
to solve the most general type of fi rst kind hypersingular integral equation 
(8.3.1) assuming of course that   ( , )K t x  and ( , )L t x   can be approximated 
as in section 8.2.

Method of solution 

The unknown function ( )xϕ  satisfying ( 1) 0ϕ ± =  can be represented in 
the form

 ( )1/ 22( ) 1 ( ),   1 1x x x x= − − ≤ ≤ϕ ψ  (8.3.8)

where  ( )xψ  is a well-behaved unknown function of [ ]1,1 .x∈ −   
Approximating   ( )xψ  by means of a polynomial of degree  ,n   given by

 
0

( )
n

j
j

j
x c xψ

=

≈∑  (8.3.9)
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where  'sjc  ( 0.1,..., )j n=   are unknown constants, then the original 
integral equation (8.3.1) produces

( )
( )

( )
1/ 22 1

1/ 22
2

0 1

1 ( , )
1 ( , )  ( ),  1 1.

jn
j

j
j

t K t x t
c dt t L t x t dt f x x

t x= −

⎡ ⎤−
⎢ ⎥+ − = − ≤ ≤
⎢ ⎥−⎣ ⎦

∑ ∫  (8.3.10)

As in section 8.2, the functions ( , )  and  ( , )K t x L t x  can be approximated 
as (for fi xed )x

 
0 0

( , ) ( ) ,    ( , ) ( ) 
m s

p q
p q

p q
K t x K x t L t x L x t

= =

= =∑ ∑  (8.3.11)

with known expressions for  ( )  and  L ( )p qK x x .  Then (8.3.10) gives

 ( )
0

( ) ,   1 1
n

j j
j

c x f x x
=

= − ≤ ≤∑ α  (8.3.12)

where

 
0 0

( ) ( ) ( ) ( ) ( )
m s

j p j p q j q
p q

x u x K x x L xα γ+ +
= =

= +∑ ∑  (8.3.13)

with

 
( )
( )

1/221

2
1

1
( ) ,   1 1

p j

p j

t t
u x dt x

t x

+

+
−

−
= − ≤ ≤

−∫  (8.3.14)

 ( )
1

1/22

1

( ) 1 ,   q j
q j x t t dtγ +
+

−

= −∫  (8.3.15)

which can be easily evaluated. The unknown constants  ( 0,1,..., )jc j n=  
are now obtained by putting  ( 0,1,..., )lx x l n= =  in (8.3.12), where 

1 1lx− ≤ ≤  and are to be chosen suitably. Thus we obtain a system of 
( 1)n +  linear equations, given by

 
0

,   0,1,...,
n

j jl l
j

c f l nα
=

= =∑  (8.3.16)

where

 ( ),   ( ),jl l l lx f f xα α= =  (8.3.17)

for the determination of the  ( 1)n +   unknowns   ( 0,1,..., ).jc j n=   This 
completes the description of the approximate method for solving (8.3.1).  
Below we give some simple examples to illustrate the method.
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Example 1: If we choose ( , ) 1,  ( , ) 0,K t x L t x≡ ≡  then the equation 
(8.3.1) reduces to the simple hypersingular integral equation

 
( )

1

2
1

( ) ( ),   1 1t dt f x x
t x
ϕ

−

= − < <
−∫  (8.3.18)

satisfying  ( 1) 0,ϕ ± =  whose solution is given by (see section (5.3))

( )( ){ }
1

1/ 22 2 2
1

1( ) ( )   ,   1 1.
1 1 1

x tt f x ln dx t
xt x t−

−
= − ≤ ≤

− + − −
∫ϕ

π
 (8.3.19)

However, here we use the method developed above to obtain the solution 
for the particular forcing function ( ) 1.f x =  Since for this case, ( )pK x  
and ( )pL x  in  (8.3.11) are given by

 0 ( ) 1,   ( ) 0 ( 0)  and  ( ) 0 ( 0)p qK x K x p L x q= = > = ≥  (8.3.20)

we fi nd that the relation (8.3.12) produces

 
0

( ) 1,   1 1
n

j j
j

c u x x
=

= − ≤ ≤∑  (8.3.21)

where

 

( )

2
0 1 2

3 2 4
3 4

1( ) ,    ( ) 2 ,    ( ) 3 ,
2

1 3( ) 4 ,    ( ) 5 ,... .
8 2

u x u x x u x x

u x x x u x x x

π π π

π π

⎛ ⎞= − = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − = + −⎜ ⎟
⎝ ⎠

 (8.3.22)

Substituting (8.3.22) in (8.3.21) and comparing the coeffi cients in both 
sides, we obtain

 0 1 2
1 ,   0c c c= − = = =�
π

 (8.3.23)

so that

 ( )1/ 221( ) 1x xϕ
π

= − −

which is in fact the exact solution of (8.3.18) for  ( ) 1f x =  obtained by 
using the relation (8.3.19).
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Example 2: Next we consider the hypersingular integral equation

 
( )

1

2
1

1 ( )  ( ) ( ),   1 1t x t dt f x x
t x

ϕ
−

⎧ ⎫⎪ ⎪+ + = − ≤ ≤⎨ ⎬
−⎪ ⎪⎩ ⎭

∫  (8.3.24)

with ( )1 0.ϕ ± =  This corresponds to  ( , ) 1  and  ( , ) . K t x L t x t x≡ ≡ +
 The equation (8.3.24) is of the form (8.3.1), and as such, we use the 

method developed above to obtain approximate solution of (8.3.24). Now, 
here, ( )pK x  and ( )pL x  are given by

0 0 1( ) 1,    ( ) 0 ( 1)  and  ( ) ,    ( ) 1,    ( ) 0 ( 2).p qK x K x p L x x L x L x q= = ≥ = = = ≥  (8.3.25)

Thus (8.3.13) gives

 1( ) ( ) ,   0,1,...,j j j jx u x x jα γ γ += + + =  (8.3.26)

where  ( ) ( 0,1,...)ju x j =  are the same as those given in (8.3.22) and

 

1/ 2

2 1 2

1  
20,   ,   0,1,...

2( 1)!j j

j
j

j

π
γ γ+

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠= = =
+

 (8.3.27)

so that  0 1( ),  ( ),...x xα α  etc.  are obtained in closed forms.

For simplicity if we choose the forcing function ( )f x  to be of the 
form 0 1 0 1( ) ,  where    and  f x b b x b b= +  are known constants, then we 
can determine the unknown constants 0 1, ,...c c  directly by comparing the 
coeffi cients of various powers of x  in the two sides of (8.3.12), as both 
sides are now polynomials.  This produces

( ) 0
0 0 1 1 1

2 1616 ,   ,   0 ( 2)
31 31 2 j

bc b b c b c j
π π

⎛ ⎞= − + = − + = ≥⎜ ⎟
⎝ ⎠

 (8.3.28)

and the solution of (8.3.24) in this case is obtained as

 ( )( )1/ 22
0 1( ) 1 .x c c x xϕ = + −  (8.3.29)
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However, if we use the expansion of ( )xϕ  in terms of Chebyshev 
polynomials given by (8.3.3), then in this case the functions 

( ) ( 0,1,...)iA x i =  are obtained as

2 2 3
0 1 2 3( ) ,   ( ) 4 ,   ( ) 3 16 ,   ( ) 16 32 ...

2 4
A x x A x x A x x A x x xπ ππ π π π π π= − + = − = − = −  (8.3.30)

and comparing the coeffi cients of both sides of the relation (8.3.4) we obtain

( ) 0
0 0 1 1 1

2 816 ,   ,   0  ( 2).
31 31 2 i

ba b b a b a i
π π

⎛ ⎞= − + = − + = ≥⎜ ⎟
⎝ ⎠

 (8.3.31)

Noting that  0 1( ) 1  and  ( ) 2 ,U x U x x= =   we fi nd from (8.3.3) that  ( )xϕ   
is exactly the same as given in (8.3.29).

It may be   noted   that   the   collocation   method to obtain the 
unknown constants  ( 0,1,...)ic i =   in (8.3.9) and   ( 0,1,...)ia i =  
in (8.3.3) for this problem can be used. For simplicity we choose 

0( ) 1 2   so that  1  and f x x b= + =  also b1 = 2 above.  Choosing  3n =  in 
the expansion (8.3.4).  The unknown constants 0 1 2 3, , ,c c c c  are determined 
from the linear system

 
3

0
,   0,1, 2,3.j jl l

j
c f lα

=

= =∑  (8.3.32)

If we choose the collocation points as 0 1 2 3
1 11,  ,  ,  1,
3 3

x x x x= − = − = =  
then the linear equations (8.3.32) produce

 0 1 2 30.3696501,   0.4107224,   0,   c 0,c c c= − = − ≈ ≈  (8.3.33)

which are almost the same as given in (8.3.28).  Similarly choosing 3n =  
in (8.3.3), we see that the unknown constants 0 1 2 3, , ,a a a a  are to be found 
by solving the linear system

 
3

0
,   0,1, 2,3 .i ij j

i
a A f j

=

= =∑  (8.3.34)

Choosing the same set of collocation points as 
1 11,  - ,  ,  1,
3 3

−  we fi nd
that the linear equations (8.3.34), when solved, produce

 0 1 2 30.3696500,   0.2053610,   0,   0a a a a= − = − ≈ ≈  (8.3.35)

which are again almost the same as given in (8.3.31). It may be noted 
that by increasing ,n  the same results as above are obtained for both the 
methods.
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8.4 NUMERICAL SOLUTION OF SIMPLE HYPERSINGULAR 
INTEGRAL EQUATION  USING BERNSTEIN POLYNOMIALS 
AS BASIS

The simple hypersingular integral equation (8.3.18) has also been solved 
numerically by Mandal and Bhattacharya (2007) employing the Bernstein 
polynomials as basis for the expansion of the unknown function  ( ).xϕ   
This is briefl y presented here. We can write

 ( )1/ 22( ) 1 ( ),   1 1x x x xϕ ψ= − − ≤ ≤  (8.4.1)

where  ( )xψ   is a well-behaved function of  [ ]1,1 .x∈ −   Now  ( )xψ   is 
approximated in terms of Bernstein polynomials in the form

 ,
0

( ) ( ),   1 1.
n

i i n
l

x a B x xψ
=

= − ≤ ≤∑  (8.4.2)

Then the equation (8.3.16) produces the relation

 ( )
0

( ) ,   1 1
n

i i
i

a A x f x x
=

= − ≤ ≤∑  (8.4.3)

where  

( )
2

, 2

0 =0

1 1 
1 1 ( 1) 2 2( ) ( 1) + ( 1) ,
2 4 2

2

mn k
n i n k k m

i i kn
k m

m

A x d k x k m x
m

π
−

− −

=

⎡ + ⎤⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟⎢ ⎥+ − ⎝ ⎠ ⎝ ⎠⎢ ⎥= − + − −
⎛ ⎞⎢ ⎥Γ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑  (8.4.4)

the summation inside the square bracket being  understood to be absent for  
2k < , and ,i n

kd ’s are given in (6.5.16) of section 6.5.
The unknown constants  ( 0,1,..., )ia i n=  can be found by a 

collocation method as has been done in section 8.3 where an expansion for  
( )xψ  has been used in terms of simple polynomials instead of Bernstein 

polynomials. However, here we follow a different method as described 
below.

Multiplying both sides of (8.4.3) by , ( ) ( 0,1,..., )j nB x j n=  and 
integrating with respect to  x   between  1  to  1,−   we obtain

 
0

,   0,1,...  
n

i ij j
i

a c f j n
=

= =∑  (8.4.5)
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where now

( )( )

1

,
1

, ,
2n

0 0

-2

=0

( ) ( ) 

1 1 ( 1)    =    ( 1)  
2 1

1 1 
1 ( 1) 1 ( 1) 2 2    +   ( 1)

1 4 2
2

ij i j n

k rn n
n n i n j n
i j k r

k r

k r m mk

m

c A x B x dx

d d k
k r

m

k m
mk r m

π

−

+

= =

+ −

=

⎡ + −
− +⎢ + +⎣

+ ⎤⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟ ⎥+ − + − ⎝ ⎠ ⎝ ⎠ ⎥− −
+ − − ⎛ ⎞ ⎥Γ +⎜ ⎟ ⎥⎝ ⎠ ⎦

∫

∑ ∑

∑

 (8.4.6)

and

 
1

,
1

( ) ( ) ,   0,1,..., .j j nf f x B x dx j n
−

= =∫  (8.4.7)

We note that when ( ) 1,f x =

 ( ) ( ) ,

0

1 11    ,   0,1,..., .
2 1

kn
n j n

j j kn
k

f d j n
k=

+ −
= =

+∑  (8.4.8)

The constants ,i n
kd  occurring in (8.4.4) and (8.4.8) are defi ned in (6.5.16) 

of section 6.5.
In our numerical computation here, ( )f x  is chosen to be 1, and n  to 

be 3.  The constants  ( 0,1, 2,3)ia i =  are calculated by solving the linear 
system (8.4.5) for 3n =  and  ( 0,1,jf j =  2, 3) given by (8.4.8). Thus the 
function ( )xψ  is found approximately, and hence, by using the relation 
(8.4.1), ( )xϕ  is obtained approximately.  A comparison between this

approximate solution and the exact solution given by

2 1/ 21( ) (1 )x xϕ
π

= − −

is presented in Table 1 for 0,  0.2,  0.4,  0.6,  0.8.x = ± ± ± ±  It is seen 
that the approximate and the exact values are same and they coincide.  
Mandal and Bhattacharya (2007) plotted the absolute difference between 
exact and approximate solutions and found from that fi gure that the 
accuracy is of the order of 1710 .−
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Table 1

 x 0 ± 0.2 ± 0.4 ± 0.6 ± 0.8

 ( )xϕ  -0.318310 -0.311879 -0.291736 - 0.254648 -0.190986
 (approx)

 ( )xϕ  -0.318310 -0.311879 -0.291736 - 0.254648 -0.190986
 (exact)

Convergence of the method

The simple hypersingular integral equation (8.3.18) has the representation 
in the operator form

 1( )( ) ( ),   1 1H x f x xψ = − ≤ ≤  (8.4.9)

where  H   is the operator defi ned by

 ( )1/ 221

1

11( )( )  ( ) ,   1 1
tdH x t dt x

dx t x
ψ ψ

π −

⎡ ⎤−
⎢ ⎥= − ≤ ≤
⎢ ⎥−
⎣ ⎦
∫ , (8.4.10)

the integral within the square bracket being in the sense of Cauchy principal 
value, and

 1
1( ) ( ).f x f x
π

=  (8.4.11)

Since

 ( )( ) ( 1) ( ),   0,n nHU x n U x n= − + ≥

H can be extended as a bounded linear operator (cf. Golberg and 
Chen (1007, p 306)) from  1( )L w   to  ( ),  where  ( )L w L w   is 
the space of functions square integrable with respect to the weight  

( ) [ ]1/22
1( ) 1   in  1,1 ,  and  ( )w x x L w= − −   is the subspace of functions   

( )u L w∈ satisfying

 2 2
1

0
( 1) , k w

k
u k u u

∞

=

= + < > < ∞∑  (8.4.12)

where

 ( )
1

1/22

1

, 1 ( ) ( ) .k w ku u x u x u x dx
−

< > = −∫  (8.4.13)
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Now the function ( )xψ  satisfying the equation (8.4.9) is approximated in 
terms of the Bernstein polynomials , ( )i nB x  in the form

 ( ) ( )nx p xψ �  (8.4.14)

where
 ,

0
( )  ( )

n

n i i n
i

p x a B x
=

=∑  (8.4.15)

In terms of the orthonormal Chebyshev polynomials  
2( )  ( ),  j ju x U x=
π

( )np x  can be expressed in the form 

 
0

( ) ( )
n

n j j
j

p x c u x
=

=∑  (8.4.16)

where   ,   ( 0,1,..., )
2j j jc b b j nπ

= =  being expressed in terms of

 ( 0,1,..., ).ia i n=   If  [ ]1 1,1 ,  0,rf C r∈ − >  then it follows that 
(cf. Golberg and Chen (1997, p 306)).

 11
 r

np c nψ −− ≤  (8.4.17)

where  1c   is a constant. Thus the convergence is quite fast if r  is large.  
Here we have chosen 1f  to be a constant and thus [ ]1 1,1 .f C∞∈ −  Hence 
the convergence is very rapid and this has been refl ected in the numerical 
computation.

8.5   NUMERICAL SOLUTION OF SOME CLASSES OF 
LOGARITHMICALLY SINGULAR INTEGRAL EQUATIONS 
USING BERNSTEIN POLYNOMIALS

Weakly singular integral equations are of crucial importance and have 
been discussed widely in the literature. There exist a number of powerful 
methods for solving integral equations of such kinds approximately such as 
Nystorm and Galerkin methods. Bhattacharya and Mandal (2010) employed 
expansion in terms of Bernstein polynomials to obtain approximate 
numerical solutions of some weakly singular integral equations with 
logarithmic singularities in their kernels. Capobianco and Mastronardi 
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(1998) employed the interpolation method to obtain an approximate 
solution to a Volterra type integral equation with constant coeffi cients 
containing a logarithmic kernel, after transforming the integral equation 
into an equivalent singular integral equation with Cauchy type kernel. 
An approximate numerical solution was obtained by using the invariance 
property of orthogonal polynomials for Cauchy singular integral equations. 
Khater et al (2008) used the method of fi nite Legendre expansion to solve 
Volterra integral equations with logarithmic kernels. Maleknejad et al 
(2007) used Galerkin wavelet method to solve certain logarithmically 
singular fi rst kind integral equations. Here a straightforward method based 
on truncated expansion of the unknown function involving Bernstein 
polynomials is employed for these integral equations for the purpose of 
obtaining their approximate solutions.

(a)  Fredholm integral equation of second kind   

We consider a general Fredholm integral equation of the second kind with 
logarithmic kernel given by,

  ( )    ( ) ( ),   
b

a

x ln x t t dt f x a x bα ϕ β ϕ+ − = ≤ ≤∫  (8.5.1)

where    and  α β  are arbitrary constants. To fi nd an approximate solution 
of   (8.5.1), we approximate the unknown function ( )xϕ  using the Bernstein 
polynomials , ( )i nB x  defi ned in the interval [ ],a b   by

 ( )( ) ( )
( ), ( ) ,   0,1, 2,...

i n i
n

i n i n

x a b x
B x i

b a

−− −
= =

−
,n, (8.5.2)

using an expansion of the form

 ,
0

( )  ( ),   
n

i i n
i

x a B x a x bϕ
=

≈ ≤ ≤∑  (8.5.3)

where 's ( 0,1,..., )ia i n=   are unknown constants to be determined.  
Substituting (8.5.3) in (8.5.1) we obtain

 
, ,

0
  ( )     ( ) ( ),   .

bn

i i n i n
i a

a B x ln x t B t dt f x a x bα β
=

⎡ ⎤
+ − = ≤ ≤⎢ ⎥

⎣ ⎦
∑ ∫  (8.5.4)
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Putting    ( 0,1,..., ),  'sj jx x j n x= =  being chosen to be a set of suitable 
distinct points in  ( , )a b , we obtain the linear system

 
0

 ,   0,1,...,
n

i ij j
i

a A f j n
=

= =∑  (8.5.5)

where

, , ( )    ( ) ,  , 0,1,...,
b

ij i n j j i n
a

A B x ln x t B t dt i j nα β
⎡ ⎤

= + − =⎢ ⎥
⎣ ⎦

∫  (8.5.6)

and

 ( ),    0,1,..., .j jf f x j n= =  (8.5.7)

It may be noted that 's  and  'sij jA f  can easily be computed numerically.  
The linear system (8.5.5) is now solved to obtain the unknown constants 

 ( 0,1,..., ).ia i n=  These are then used in (8.5.3) to obtain the unknown 
function approximately.

For  0α =  and 1,β =  we have the fi rst kind Fredholm integral 
equation given by

   ( ) ( ),   .
b

a

ln x t t dt f x a x bϕ− = ≤ ≤∫  (8.5.8)

In the linear system (8.5.6) ijA ’s are given by

                     
b

ij
a

A = ∫ ln |x-t| , ( ) , , 0,1,..., .i nB t dt i j n=                                                                  (8.5.9)

(b)   Volterra integral equation of second kind

Consider a general Volterra integral equation given by

  ( )    ( ) ( ),   
x

a

x ln x t t dt f x a x bα ϕ β ϕ+ − = ≤ ≤∫  (8.5.10)

,α β   being arbitrary constants.  Here again, the unknown function ( )xϕ  
is approximated in the interval  [ ],a b   as

 ,
0

( )  ( ),   .
n

i i n
i

x c B x a x bϕ
=

≈ ≤ ≤∑  (8.5.11)
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Again, by suitable choice of  ,   0,1,..., ,jx x j n= =  the equation (8.5.10) 
can be  converted into the linear system

 
1

 ,   0,1,...,
n

i ij j
i

c D f j n
=

= =∑  (8.5.12)

where

 
, , ( )    ( ) ,   , 0,1,...,

jx

ij i n j j i n
a

D B x ln x t B t dt i j n= + − =∫α β  (8.5.13)

and
 ( ),   0,1,..., .j jf f x j n= =  (8.5.14)

The system (8.5.12) is solved for the unknown constants 
,  0,1,..., .ic i n=

Illustrative Examples

We now illustrate the above method for a Volterra-type integral equation 
and two fi rst kind Freedholm integral equations with logarithmic kernels.

Example 1: Consider the Volterra-type integral equation given by

1
2

1 1

 ( )    ( )   ( ) (1 ),   1 1,
x ba t dt t ln t x dt w x x x xϕ ϕ

π− −

+ − = − − ≤ ≤∫ ∫  (8.5.15)

where

 ( )1/ 4 3/ 4( ) 1 (1 )w x x x= − +  (8.5.16)

and 2 2 1.a b+ =

A direct differentiation of (8.5.15) with respect to  x   reduces  it 
to a Carleman singular integral equation with Cauchy type kernel.                                                                                              
It was shown by Capobianco and Mastronardi (1998) that a direct analytical 
solution of (8.5.16) is given by

( )

( )

2
2

2

2

1 1 1 4 6( ) 4 1 ( )   
2 2 1 3 1

1                                                  -  6 1-3  ln  ( ). 
1

b x xx a x x w x x x ln
x x

xx x w x
x

ϕ
π

⎡ ⎧ ⎫− −⎪ ⎪⎛ ⎞ ⎛ ⎞⎢= − + + + − +⎨ ⎬⎜ ⎟ ⎜ ⎟ + −⎢⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣
− ⎤+ ⎥+ ⎦

 (8.5.17)



220 Applied Singular Integral Equations

Now substituting

 ,
0

( )  ( ),   1 1
n

i i n
i

x a B x xϕ
=

≈ − ≤ ≤∑  (8.5.18)

in (8.5.15) and putting   ,  0,1,...,jx x j n= =   where  
21 ,

1jx j
n

= − +
+

 
we obtain the linear system

 
0

 ,   0,1,...,
n

i ij j
i

a D f j n
=

= =∑  (8.5.19)

where

( ) ( )( )( ) ( )

( ) ( ) ( )

1

  1
0 02

1

  
0

1

11  1
12

11 1      +   1   (1 )
1 1

(1 ) 1      (1 ) , ,  0,1,..., .
1 1

k lk li n i
l jn i n i

ij i k l
n k l

r
k l

r jk l k l r
r j

r

r
j

j

x
D

k l

x
x ln x

r r

x
ln x i j n

r r

++ +−
−

+ = =

+
+

+ + −

=

+

⎡ + −
= − ⎢

+ +⎢⎣

⎧ +⎪ ⎛ ⎞− + −⎨ ⎜ ⎟+ +⎝ ⎠⎪⎩
⎤⎫− ⎪⎛ ⎞+ − − =⎥⎬⎜ ⎟+ +⎝ ⎠⎪⎥⎭⎦

∑ ∑

∑π
 (8.5.20)

and

 ( )2( ) 1 ,   0,1,..., .j j j jf w x x x j n= − =  (8.5.21)

Choosing  1/ 2

1   and  27,
2

a b n= = =  the linear system (8.5.19) is solved

for the unknown constants  ( 0,1,..., 27).ia i =  The following Table 1 
gives a comparison between the values of the function ( )xϕ  obtained 
by the present method and that of the exact value given by (8.5.17) at 
different points.  From this table it is clear that the method gives a good 
approximation.

Table 1

 x -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

 ( )xϕ  -0.4191 -0.1726 0.6947 0.9509 0.4387 -0.2432 -0.9887 -1.3475
 (approx)

 ( )xϕ  -0.4266 0.1660 0.6883 0.9443  0.4304  -0.2536 -1.0037 -1.3894     
 (exact)
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Example 2: Consider the fi rst kind Fredhokm integral equation 

 
1

0

  ( ) 2 (2 1),   0 1ln x t t dt x xϕ π− = − − ≤ ≤∫  (8.5.22)

whose exact solution is (cf. Maleknejad et al (2007))

 
( ){ }1/ 22

4(2 1)( ) .
1 2 1

xx
x

ϕ −
=

− −
 (8.5.23)

Approximating  ( )tϕ  on [ ]0,1  using the Bernstein polynomials and 
following the method illustrated above, we obtain the linear system

 
0

 ,   0,1,...,
n

i ij j
i

a A f j n
=

= =∑  (8.5.24)

where

 ( ) ( )( )( )

( )

1
   j

0 0

1

1 1 ( 1)  
1 1

1     1  (1 ) ,   , 0,1,...,
1

i k ln i i k
k jn n i i k l l

ij l k l j
k l

l

j j

x
A x ln x

l l

x ln x i j n
l

+ −− +
− + +

= =

+

⎧ ⎛ ⎞= − − −⎨ ⎜ ⎟+ +⎝ ⎠⎩
⎫⎛ ⎞+ − − − =⎬⎜ ⎟+⎝ ⎠⎭

∑ ∑
 (8.5.25)                                                                                                                                           

                                                                                                                                                      
                                                                                                         

and

 ( )2 2 1 ,   0,1,..., .j jf x j nπ= − − =  (8.5.26)

Choosing n = 17 and 
1j

jx
n

=
+

, the linear system (8.5.24) is solved and 

the unknown function ( )xϕ  is obtained approximately. The Table 2 gives a 
comparison between the results of the present method and the exact values 
obtained from (8.5.23) at x = 0.1, 0.2, …, 0.9.

Table 2

 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

( )xϕ  -5.0266 -2.9160 -1.7118 -0.8033 0.0000 0.8022 1.7100 2.9122 5.0136
(approx.)

( )xϕ  -5.3333 -3.0000 -1.1746 -0.8165 0.0000 0.8165 1.7457 3.0000 5.3333
(exact)
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Example 3: Consider the fi rst kind Fredholm integral equation

( )
1

2 2

0

1 1  ( )   1   (1 ) ,   0 1.
2 2

ln x t t dt x ln x x ln x x xϕ ⎡ ⎤− = + − − − − ≤ ≤⎢ ⎥⎣ ⎦∫  (8.5.27)

whose exact solution is (cf. Maleknejad et al (2007))

 ( ) .x xϕ =  (8.5.28)

Following the method illustrated above, we obtain the linear system

 
0

 ,   0,1,...,
n

i ij j
i

a A d j n
=

= =∑  (8.5.29)

where  'sijA   are given by (8.5.25) and

( )2 21 1  1   (1 ) ,   0 1.
2 2j j j j j jd x ln x x ln x x x⎡ ⎤= + − − − − ≤ ≤⎢ ⎥⎣ ⎦

 (8.5.30)

Choosing  6  and  ,  0,1,...,6,
7j
jn x= =  the system (8.5.29) is solved,

and a comparison between the approximate and exact results is given in 
Table 3.  The table 3 shows that the results are exactly same.

Table 3

 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 ( )xϕ  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 (approx)

 ( )xϕ  0.1 0.2 0.3 0.4  0.5 0.6 0.7 0.8 0.9
 (exact)

Convergence Analysis

The Fredholm integral equation (8.5.1) can be expressed in the operator 
form

 ( )( )( ) ( ),   I K x f x a x bϕ+ = ≤ ≤  (8.5.31)

where  I   is the identity operator and  ( )( )K xϕ   denotes

 ( )( )   ( ) .
b

a

K x ln x t t dtϕ ϕ= −∫  (8.5.32)
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The norm  ϕ   is defi ned as

 sup ( ) .
a t b

t
≤ ≤

=ϕ ϕ

For the integral equation (8.5.31), ( )tϕ  is approximated in terms of 
Bernstein polynomials as

 ,
0

( ) ( )  ( ).
n

n i i n
i

t t a B tϕ ϕ
=

=∑�  

For determining the unknown constants  ( 0,1,..., )ia i n=  the collocation 
points  ( 0,1,..., )jx j n=  used in the linear system (8.5.5) are chosen as
 

 ( 0,1,..., ).
1j

b ax a j j n
n
−

= + =
+

The convergence of the polynomial ( )  to  ( )n t tϕ ϕ  can be obtained by 
following the arguments given by Vainikko and Uba (1983) and it is found 
that if [ ], ,mf C a b∈  then

 
1 ,   1 .n m

nμϕ ϕ μ− < ≤ ≤  (8.5.33)

Then the present method when applied to a Fredholm integral equation 
with a logarithmically singular kernel provides a convergent numerical 
method.

The Volterra type integral equation (8.5.15), as mentioned earlier, was 
solved by Capobianco and Mastronardi (1998) explicitly by reducing it 
to a Carleman singular integral equation by simple differentiation of the 
two sides. This is also discussed in the treatise by Kythe and Puri (2002). 
The Carleman equation possesses an explicit solution. Capobianco and 
Mastronardi (1998) used this explicit solution to obtain an approximate 
solution by considering the interpolation of the known function on the 
right of (8.5.15) and substituting this in the solution. Using the invariance 
properties of orthogonal polynomials for the Cauchy integral equation, 
they obtained the approximate solution and also gave weighted norm 
estimate for the error. It is now well known that the Carleman singular 
integral equation when approximated by Chebyshev polynomials, has the 
error estimate   rcn−   when  [ ]1,1nf C∈ −  (cf. Golberg and Chen (1997, 
Chap.7). Since the equation (8.5.15) reduces to a Carleman singular 
integral equation, it may be assumed that when ( )xϕ  satisfying (8.5.15) 
is approximated by Chebyshev polynomials, the error estimate will be 
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similar. Again, as Bernstein polynomials can be expressed in terms of 
Chebyshev polynomials, the present method of solving the Volterra type 
integral equation of the form (8.5.15) yields a similar estimate.

For  0  and  0α β= = , the integral equation (8.5.1) becomes a fi rst 
kind integral equation with logarithmically singular kernel. This is known 
as Symm’s integral equation in the literature. Sloan and Stephen (1992) 
studied this integral equation for its numerical solution by expanding the 
unknown function in terms of truncated series of Chebyshev polynomials 
of fi rst kind multiplied by an appropriate weight function, and employed 
a collocation method to obtain the unknown constants of the truncated 
series. If the function f  on the right side is smooth, it was shown by 
Sloan and Stephen (1992) that this process yields faster-than-polynomial 
convergence. In the examples 2 and 3 above, Bernstein polynomials 
have been used in the expansion in place of the Chebyshev polynomials.  
However, Bernstein polynomials can be expressed in terms of Chebyshev 
polynomials, and thus the present method also yields the same type of 
convergence. This is refl ected in the illustrative examples 2 and 3.

8.6   NUMERICAL SOLUTION OF AN INTEGRAL EQUATION 
OF SOME SPECIAL TYPE

The problem of determining the crack energy and distribution of stress in 
the vicinity of a cruciform crack leads to the formulation of the integral 
equation of the second kind.

 
1

0

( ) ( , ) ( ) ( ),   0 1x K x t t dt f x xϕ ϕ+ = < ≤∫  (8.6.1)

where

 
( )

2

1/ 22 2

4( , )  ,   0 , 1.xtK x t x t
x tπ

= < ≤
+

 (8.6.2)

The derivation of the integral equation (8.6.1) can be found in the works of 
Rooke and Sneddon (1969) and Stallybrass (1970).  Here  ( )f x  is a known 
function depending on the internal pressure.  As the value of ( )xϕ  at the 
point 1x =  directly relates to the stress intensity factor at the crack tips, 
evaluation of (1)ϕ  is important.  Also the kernel ( , )K x t  has a singularity 
at the point (0,0) , which results in computational complexities.

Tang and Li (2007) solved (8.6.1) using a Taylor series expansion 
and compared the values of ( )tϕ  with those of the values obtained by 



Numerical Methods 225

Stallybrass (1970), who employed Wiener Hopf technique to solve (8.6.1). 
Rooke and Sneddon (1969) also gave another solution to (8.6.1) where they 
used Fourier Legendre series to reduce the integral equation to that of an 
infi nite system of simultaneous linear equations.  However, the methods of 
Stallybrass (1970) and Rooke and Sneddon (1969) are somewhat elaborate, 
while the method of Tang and Li (2007) makes use of Cramer’s rule where 
calculations become tedious as terms in the approximations increase.  Also 
Elliot (1997) used various sigmoidal transformations to fi nd approximate 
solution of the integral equation (8.6.1), for the special case when ( ) 1.f x =  
Bhattacharya and Mandal (2010) used two simple methods, one based on 
approximation in terms of the Bernstein polynomials, and the other based 
on the rationalized Haar functions, to obtain numerical solution of (8.6.1).  
These are now discussed below.

The Bernstein polynomial method

To fi nd an approximate solution of the integral equation (8.6.1), ( )xϕ  is 
approximated using the Bernstein polynomial basis in [ ]0,1  as

 ,
0

( )  ( )
n

i i n
i

x a B xϕ
=

=∑    (8.6.3)

where  , ( ) ( 0,1,..., )i nB x i n=   are the Bernstein polynomials of degree n 
defi ned on  [ ]0,1   as

 ( ) ( ), ( ) 1 ,   0,1,..., ,n in i
i n iB x x x i n−= − =  (8.6.4)

and  ( 0,1,..., )ia i n=  are unknown constants to be determined.  Substituting 
(8.6.3) in (8.6.1) we get

1

, ,
0 0

( ) ( , ) ( ) ( ),   0 1.
n

i i n i n
i

a B x K x t B t dt f x x
=

⎡ ⎤
+ = < ≤⎢ ⎥

⎣ ⎦
∑ ∫  (8.6.5)

Multiplying both sides of (8.6.5) by  , ( ) ( 0,1,..., )j nB x j n=   and integrating 
with respect to  x   from  0  to  1   we obtain the linear system

 
0

 ,   0,1,...,
n

i ij j
i

a C f j n
=

= =∑  (8.6.6)
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where

 ij ij ijC D E= +  (8.6.7)

with

 

( )

1

, ,
0

 ( ) ( )

( 1) (2 1)       =  
(2 2)

ij i n j n

n
i

D B x B x dx

i j n i j
n

=

Γ + + Γ − − +
Γ +

∫
 (8.6.8)

and
 

( )

( ) ( )( )( )

1 1 2

, ,2 2
0 0

   
0 0

4   ( )  ( ) 

4 1 2     =  1 ( )
8 4

4 1 3         (1 )
4 4 4

     

ij i n j n

n jn i
l mn n i n j

i m l
m l

xtE B t dt B x dx
x t

j lj l
j l i m

j l i m i mi m

−−
+− −

= =

⎧ ⎫⎪ ⎪= ⎨ ⎬
+⎪ ⎪⎩ ⎭

⎡ ⎧ + +⎛ ⎞− + Ψ⎨⎢ ⎜ ⎟+ + + + ⎝ ⎠⎩⎣
+ + ⎫ ⎧ − − − − ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞−Ψ + + + Ψ −Ψ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭ ⎩ ⎭

∫ ∫

∑ ∑

π

π

( )1 ( )    2 1 (1 )sec ,
2

i m i mi m+ + + ⎤⎛ ⎞− − + + ⎜ ⎟⎥⎝ ⎠⎦

ππ

 (8.6.9)

( )zΨ   being the logarithmic derivative of the gamma function, given by 

 
( )( ) ,
( )

zz
z
′Γ

Ψ =
Γ

 (8.6.10)

and

 
1

,
0

( ) ( ) .j j nf f x B x dx= ∫  (8.6.11)

If the internal pressure applied to each arm of the crack is chosen to be 
1,  xρ− 0 1,x≤ <   ρ   being an integer, then  ( )f x   is given by

 

1

1/ 2

2( ) .
1 

2

x
f x

ρρ

ρπ

−⎛ ⎞Γ⎜ ⎟
⎝ ⎠=

+⎛ ⎞Γ⎜ ⎟
⎝ ⎠

 (8.6.12)

Then for this case

 
1/ 2

( 1) ( 1) 
2 .

1  (1 )
2

j

j n j
f

n

ρ ρ

ρπ ρ

⎛ ⎞Γ Γ − − Γ − +⎜ ⎟
⎝ ⎠=

+⎛ ⎞Γ Γ + +⎜ ⎟
⎝ ⎠

 (8.6.13)
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The linear system (8.6.6) is now solved for the unknowns  ( 0,1,..., )ia i n=  
by standard numerical method to obtain ( )xϕ  approximately.  Different 
values of (1),ϕ  which gives the stress intensity factor in the cruciform 
crack, are obtained for 1, 2,...,10.ρ = A comparison between the exact 
results as given in Tang and Li (2007) and the results obtained by the 
present method for 12n =  is given in Table 1. This table shows that the 
results are fairly accurate.

The rationalized Haar function method

The rationalized Haar functions have been used to solve a number of 
Fredholm integral equations by Maleknejad and Mirazee (2003,2005) and 
some Volterra integral equations by Reihani and Abadi (2007) with regular 
kernels.  This method is applied here to solve (8.6.1) whose kernel has a 
singularity at one end.  It may be noted that the idea of using Haar functions 
come from the rapid convergence feature of Haar series in the expansion 
of functions.  It is thus very useful to approximate the unknown function 
in various problems of mathematical physics, which can be effectively 
reduced to differential and integral equations. Calculations involved in the 
solution process by this method are very simple and requires merely some 
matrix operations.

Table 1: Numerical values of (1)ϕ

 ρ  Exact results                   Approximate results
  1                                0.86354                               0.86352
 2                                0.57547                               0.57535
 3                                0.46350                               0.46349
 4                                0.39961                               0.39963
 5                                0.35681                               0.35682  
         6                               0.32549                            0.32549
 7                                0.30125                               0.30125
 8                                0.28176                               0.28176
 9                                0.26564                               0.26564
 10                                0.25201                            0.25201

The orthogonal set of Haar functions considered here are a group of 
square waves with magnitudes / 2 / 22 , 2  and 0,  0,1,...j j j− = . Further, the 
Haar functions are the rationalized Haar functions obtained by deleting 
the irrational numbers and introducing integer powers of 2. Thus the 
rationalized Haar functions, which retain all the properties of the original 
Haar functions, have magnitudes 1, 1 and 0.−



228 Applied Singular Integral Equations

The rationalized Haar functions are defi ned as

 
1 1/ 2

1/ 2 0

  1,   ,
( ) 1,  ,

  0, otherwise
m

J x J
x J x J

≤ <⎧
⎪Φ = − ≤ <⎨
⎪
⎩

 (8.6.14)

where

 
1,   0,  ,  1.

2 2i

jJμ
μ μ−

= =  (8.6.15)

The values of m  is given in terms of   and  i j  as

 1 22 1,   0,1,..., 1, 2 , 2 ,..., 2i im j i j= + − = =  (8.6.16)

and
 0 ( ) 1,   0 1,   0, 0.x x i jΦ = ≤ < = =  (8.6.17)

Also, the orthogonal property of Haar functions gives

 
1

0

2 ,  ,
( ) ( ) 

0   ,   otherwise.

i

m l
m l

x x dx
−⎧ =

Φ Φ = ⎨
⎩

∫  (8.6.18)

Now, any function ( )g x , which is square integrable over [ ]0,1  , can be 
expanded using the rationalized Haar functions as

 
0

( )  ( )r r
r

g x d x
∞

=

= Φ∑  (8.6.19)

so that

 
1

0

2  ( ) ( ) ,   0,1,... .i
r rd g x x dx r= Φ =∫  (8.6.20)

Therefore, to fi nd an approximate solution of the integral equation (8.6.1), 
we approximate ( )xϕ  using the rationalized Haar functions as

 
1

0
( )  ( )

p

r r
r

x d xϕ
−

=

Φ∑�  (8.6.21)

 ( )T x= Φd  (8.6.22)
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with

 2 1,   0,1,..., ; 1, 2,...ip j i jα= + − = = ,2i,

and
  1 1, ,...,

T

pd d d −⎡ ⎤⎣ ⎦0d =  (8.6.23)

 0 1 1( ) ( ), ( ),..., ( )
T

px x x x−⎡ ⎤= Φ Φ Φ⎣ ⎦Φ  (8.6.24)

The kernel  ( , )K x t   is also approximated by using the rationalized Haar 
functions as

 
1 1

0 0
( , )  ( ) ( )

p p

uv u v
u v

K x t h x t
− −

= =

= Φ Φ∑ ∑  (8.6.25)

 ( ) ( )T x t= Φ H  (8.2.26)

where

 
1 1

0 0

2 ( , ) ( ) ( )  ,uv u vh K x t x t dx dtμ ν+= Φ Φ∫ ∫  (8.6.27)

 [ ] x
,   2 1,   2 1;uv p p

h u μ νγ δ= = + − + −H

 , 0,1,..., ;   1, 2,..., 2 ;    1, 2..., 2 .= = =μ νμ ν α γ δ

By truncating (8.6.19) upto a fi nite number of terms, it can be shown that

 
1 3 2 1 ˆ, ,...,

2 2 2
pg g g

p p p
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞−

=⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

ΦTd  (8.6.28)

with

 
2 1ˆ ,  ,..., .

2
p

p p p
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
Φ Φ Φ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1 3Φ =
2 2

 (8.6.29)

Hence

 ( ) ˆˆ ˆ 
T1 1= H− −Φ Φ  (8.6.30)

where

 
x

2 1 2 1, ,   , 1, 2,...,
2 2

p p

m nK m n p
p p

⎡ ⎤⎛ ⎞− −
= =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
H . (8.6.31)

 HΦ

 H
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Similarly  ( )  in  f x (8.6.1) can be approximated using   rΦ (x) as

 
1

0
( )  ( )

        =  

p

r r
r

T

f r f x

x

−

=

Φ∑�

Φ( )F

 (8.6.32)

with

 0 1 1
ˆˆ, ,..., T

pf f f 1
−⎡ ⎤ =⎣ ⎦ ΦF = F−  (8.6.33)

where

 
1x

2 1 , 1,2,..., .
2

p

nf n p
p

⎡ ⎤⎛ ⎞−
=⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
=  (8.6.34)

Using these evaluations, the equation (8.6.1) produces

 ( ) ( ) ( ) T T T Tx t t dt x
1

=∫d d F
0

+ ( )Φ Φ Φ ΦH  (8.6.35)

which reduces to

 
1

0

 ( ) ( ) ,T
p t t dt

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∫ =I H d FΦ Φ  (8.6.36)

pI   being the identity matrix of order  ,p   and

 
1

0

( ) ( ) ,Tt t dt =∫ Φ Φ D  (8.6.37)

D   being the diagonal matrix given by

2 3

2 3 3 3

2 2 2

1 1 1 1 1 1 1 1 1 11;1; ,  , , ,  ,..., ,..., ,...,
2 2 2 2 2 2 2 2 2 2

diag
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

����� ����� �����
α

α αD =  (8.6.38)

Therefore (8.6.35) further reduces to

 ( )p + =I HD d F  (8.6.39)

 HΦ

F̂
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so that

  ( ) 1

p

−
+d = I HD F.  (8.6.40)

Thus the unknown constants  ( 0,1,...rd r = ,p – 1 are obtained and 
these then given an approximation to ( )xϕ  after using (8.6.21).  From 
this, ( )tϕ  is obtained.  Table 2 shows comparison between the exact 
values of (1)ϕ  as given in Tang and Li (2007) to those obtained by the 
present method for 4,5  and  6.α =  From this table it is observed that the 
results are fairly accurate and improve as  (i.e. )pα  increases.

Table 2: Numerical values of ( )tϕ  for different values of α
 ρ  Exact results Approximate results

   

 1 0.86354 0.98307 0.99995 0.99998 
 2 0.57547 0.62659 0.63162 0.63412
    3 0.46350 0.48445 0.49220 0.49609
 4 0.39961 0.40479 0.41453 0.41945
 5 0.35681 0.35208 0.36341 0.36917
 6 0.32549 0.31380 0.32646 0.33295
 7 0.30125 0.28431 0.29813 0.30524
 8 0.28176 0.26063 0.27547 0.28316
 9 0.26564 0.24106 0.25680 0.26500
 10 0.25201 0.22449 0.24105 0.24973

8.7 NUMERICAL SOLUTION OF A SYSTEM OF GENERALIZED 
ABEL INTEGRAL EQUATIONS 

Here a system of generalized Abel integral equations arising in certain 
mixed boundary value problems in the classical theory of elasticity, is 
considered. Pandey and Mandal (2010) solved this system numerically by 
using Bernstein polynomials. This is now described briefl y. 

Many interesting problems of mechanics and physics lead to an 
integral equation in which the kernel ),( utK  is of convolution type, that 
is )(),( utkutK −= , where k(x) is a certain function of one variable. 
A similar integral equation with weakly singular kernel, named as Abel 
integral equation, appears in many branches of science and engineering. 
Usually, physical quantities accessible to measurement are quite often 
related to physically important but experimentally inaccessible ones by 
Abel integral equations. A system of generalized integral equations of 

4, 3.2          5, 64          6, 128p p pα α α= = = = = =
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Abel type were studied by Lowengrub(1976) and Walton(1979). As stated 
by Walton (1979), certain mixed boundary value problems arising in the 
classical theory of elasticity reduce to the problem of determining functions 

1φ  and 2φ  satisfying Abel type integral equations of the type, 

 

⎪
⎪
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⎪

⎬
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−
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−

=
−
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)()(

)(
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)()(
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2
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21

1
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1
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xfdt
tx
txadt

xt
txa

xfdt
xt
txadt

tx
txa

x

x

x

x

μααμαα

μααμαα

φφ

φφ

 (8.7.1)

where, )1,0(∈x , 10 << μ , 1≥α  and )(xaij  are continuous on [0,1]. 
Since only 2,1=α  occur in physical problems, we restrict our attention 
to these values only. Mandal et al (1996), solved this problem analytically 
for the special case 1=α , 2/1=μ , 1)( =xaij , using the idea of 
fractional calculus. Here a simple algorithm based on approximation of 
unknown functions in terms of Bernstein polynomials has been used to 
fi nd numerical solutions by converting and solving the generalized system 
into a system of linear equations for given )2,1()( =ixf i .

For obtaining the approximate solution of (8.7.1), )(1 tφ and )(2 tφ  are 
approximated in the Bernstein polynomial basis on ]1,0[  as, 

)()(~)( ,
0

11 tBatt ni

n

i
i∑

=

=≈φφ   and  )()(~)( ,
0

22 tBbtt ni

n

i
i∑

=

=≈φφ     (8.7.2)

where ii ba  and,  ...,2,1,0(i = ,n) are unknown constants to be 
determined. Substituting (8.7.2) in (8.7.1), we obtain, 

 
)()()()()( 1

0
12

0
11 xfxbxaxaxa i

n

i
ii

n

i
i =+ ∑∑

==

βλ
 

(8.7.3)
)()()()()( 2

0
22

0
21 xfxbxaxaxa i

n

i
ii

n

i
i =+ ∑∑

==

λβ

where,

∫ −
=

x
ni

i dt
tx
tB

x
0

,

)(
)(

)( μααλ , ∫ −
=

1
,

)(
)(

)(
x

ni
i dt

xt
tB

x μααβ  and )1,0(∈x .
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We now put njxx j ,...,1,0, ==  in (8.7.3), where jx ’s are chosen 
as suitable distinct points in (0,1) such that 1...0 0 <<< nxx . Putting 

jxx = we obtain the linear system 

  
)()()( 1

0
12

0
11 jji

n

i
ijji

n

i
ij xfbxaaxa =+ ∑∑

==

βλ
 (8.7.4)

)()()( 2
0

22
0

21 jji

n

i
ijji

n

i
ij xfbxaaxa =+ ∑∑

==

λβ
where,

   )( jiji xλλ =  and )( jiji xββ = ,   for   nji ,...,1,0, = .                                             

The linear system (8.7.4) can be easily solved by any standard method for 
the unknown constants ia ’s and ib ’s provided of course the coeffi cient 
matrix is nonsingular. It is emphasized that it is always possible to choose 
distinct points )1,0(∈jx ( j ...,1,0= ,n) such that this is possible.  The 
computed ia ’s and ib ’s are then used in (8.7.2) to obtain the approximate 
solutions )(~

1 tφ and )(~
2 tφ .

A number of illustrative examples are now presented to demonstrate 
the simplicity of the method as well as accuracy of the numerical results. 
In all these examples we have chosen 8=n  and the errors, defi ned as 

)()(~)( 111 tttE φφ −= and )()(~)( 222 tttE φφ −= , are computed for 
different values of ]1,0[∈t  and depicted graphically. Also we tabulated 
the approximate and exact solution for 0.1,8.0,...,2.0,0.0=t .

Illustrative examples 

Case1: In this case, we have considered examples with the assumption 
that 1=α .

Example1.1 Consider the system of generalized Abel integral

equations (8.7.1) with a
ij

1)( =x , for 2,1, =ji , 2/1=μ  with 

2/32/122/52/3
1 )1(

3
4)1(2)1(

5
2

3
4)( xxxxxxxf −+−+−+= , 

2/52/12/3
2 15

16)1(2)1(
3
2)( xxxxxf +−+−= . 

This has the exact solution tt =)(1φ and 2
2 )( tt =φ .
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Table 1: Approximate and exact solution of example 1.1

t 0.0 0.2 0.4 0.6 0.8 1.0

)(~
1 tφ -0.000110 0.200022 0.400040 0.600035 0.800067 0.998009

)(1 tφ 0.0 0.2 0.4 0.6 0.8 1.0
)(~

2 tφ -0.000063 0.040015 0.160037 0.360032 0.640060 0.998055
)(2 tφ 0.0 0.04 0.16 0.36 0.64 1.0

0 0.2 0.4 0.6 0.8 1
0.002

0.00125

5 .10 4

2.5 .10 4

0.001

E1 t( )

E2 t( )

t
Fig. 1 Errors associated with Ex. 1.1

Example1.2 Consider the system of generalized Abel integral equation 
with aij 1)( =x , for 2,1, =ji , 3/1=μ  with

                     

3/83/523/23

3/53/223/83/113/143/5
1

)1(
8
3)1(

5
9)1(

2
3

)1(
5
6)1(

2
3)1(

8
9)1(

11
3

1540
729

10
9)(

xxxxx

xxxxxxxxxxf

−−−+−+

−−−−−+−++= ,    

and

.
40
27

440
243)1(

14
3)1(

2
3

)1(
11
12)1(

5
12)1(

2
3)1(

14
19)1(

5
3)(

3/43/113/143/2

3/113/533/243/823/5
2

xxxxx

xxxxxxxxxxf

−+−+−+

−+−+−+−+−=
,

This has exact solution 4
1 )( ttt +=φ and 23

2 )( ttt −=φ .

Table 2: Approximate and exact solution of example 1.2

t 0.0 0.2 0.4 0.6 0.8 1.0
)(~

1 tφ 0.000147 0.201583 0.425635 0.729584 1.209559 2.001582
)(1 tφ 0.0 0.201600 0.425600 0.729600 1.209600 2.0
)(~

2 tφ -0.000316 -0.032005 -0.095979 -0.143986 -0.128090 0.000498
)(2 tφ 0.0 -0.032000 -0.096000 -0.144000 -0.128000 0.0



Numerical Methods 235

Example1.3 
In this example, ,3)(,2/1)(,4/1)(,1)( 22211211 ==== xaxaxaxa 2/1=μ  
with 

  

2/52/72/3

2/132/122/322/52/5
1

)1(
10
3)1(

14
1)1(

3
1

)1(
2
1)1(

2
1)1(

2
1)1(

10
1

15
16)(

xxxxx

xxxxxxxxxf

−+−+−+

−+−+−+−+= ,    

and

    2/72/52/32/122/5
2 35

96
5

16)1(
3
2)1()1(

5
1)( xxxxxxxxf ++−+−+−= .

This has exact solution 2
1 )( tt =φ and 32

2 )( ttt +=φ .

Table 3: Approximate and exact solution of example 1.3

t 0.0 0.2 0.4 0.6 0.8 1.0

)(~
1 tφ -0.001610 0.040050 0.160083 0.359990 0.639726 1.009014

)(1 tφ 0.0 0.040000 0.160000 0.360000 0.640000 1.000000

)(~
2 tφ -0.000084 0.047977 0.223992 0.575916 1.151847 2.005230

)(2 tφ 0.0 0.048000 0.224000 0.576000 1.152000 2.000000

0 0.2 0.4 0.6 0.8 1
0.001

5 .10 4

0

5 .10 4

0.001

0.0015

0.002

E1 t( )

E2 t( )

t
Fig. 2 Errors associated with Ex. 1.2
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Fig. 3 Errors associated with Ex. 1.3

Example1.4 This example presents the problem (1), with 
,2)(,2/)(,4/)1()(,1)( 22

2
2112

2
11 xxaxxaxxaxxa −==+=+=

2/1=μ  and

⎟
⎠
⎞

⎜
⎝
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15
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2 )1(
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1)2(

35
32)( .

 
This has exact solution 2

1 )( tt =φ and 3
2 )( tt =φ .

Table 4: Approximate and exact solution of example 1.4

t 0.0 0.2 0.4 0.6 0.8 1.0

)(~
1 tφ 0.000000 0.040019 0.160049 0.359974 0.639978 1.003905

)(1 tφ 0.0 0.040000 0.160000 0.360000 0.640000 1.000000

)(~
2 tφ 0.000000 0.008019 0.064023 0.215971 0.511841 1.001006

)(2 tφ 0.0 0.008000 0.064000 0.216000 0.512000 1.000000

0 0.2 0.4 0.6 0.8 1
0.001

0.001

0.003

0.005

E1 t( )

E2 t( )

t

Fig. 4 Errors associated with Ex. 1.4
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Example 1.5 In this example, 
,8/1)(,2)(,4/1)(,1)( 22211211 ==== xaxaxaxa 3/2=μ  with 
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xxxxxxxxxxf
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This has exact solution 23
1 )( ttt −=φ and 34

2 )( ttt −=φ .

  Table 5: Approximate and exact solution of example 1.5

t 0.0 0.2 0.4 0.6 0.8 1.0

)(~
1 tφ 0.000009 -0.006404 -0.038404 -0.086399 -0.102402 -0.000014

)(1 tφ 0.0 -0.006400 -0.038400 -0.086400 -0.102400 0.0

)(~
2 tφ 0.000021 -0.032064 -0.095994 -0.143986 0.127987 0.000140

)(2 tφ 0.0 -0.032000 -0.096000 -0.144000 0.128000 0.0

Fig. 5 Errors associated with Ex. 1.5
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Case2: In this case, we have considered examples with the assumption 
that 2=α .
Example 2.1 Consider the system of a generalized Abel integral equation 
with aij 1)( =x , for 2,1, =ji  with

 ( )1/ 2 2 2 2
1

1 1 1( ) (1 ) ln 1 1 ln ( )
2 2 2

f x x x x x x x= + − + + − − ,  

2/122
2 )1(

4
)( xxxf −+=

π
. This has exact solution tt =)(1φ and

 2
2 )( tt =φ

.

Table 6: Approximate and exact solution of example 2.1

t 0.0 0.2 0.4 0.6 0.8 1.0

)(~
1 tφ -0.000003 0.200011 0.400036 0.600028 0.800080 0.997813

)(1 tφ 0.0 0.200000 0.400000 0.600000 0.800000 1.000000

)(~
2 tφ -0.000003 0.040016 0.160038 0.360031 0.640077 0.998037

)(2 tφ 0.0 0.040000 0.160000 0.360000 0.640000 1.0

Fig. 6 Errors associated with Ex. 2.1

Example 2.2: In this example we consider a system of generalized Abel 
integral equations of the form (8.7.1) with
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This has exact solution 42
1 )( ttt +=φ and 2

2 )( tt =φ .

Table 7: Approximate and exact solution of example 2.2

t 0.0 0.2 0.4 0.6 0.8 1.0

)(~
1 tφ -0.000001 0.041640 0.185705 0.489598 1.049501 2.008946

)(1 tφ 0.0 0.041600 0.185600 0.489600 1.049600 2.0

)(~
2 tφ 0.000000 0.040094 0.160081 0.359896 0.639494 1.003657

)(2 tφ 0.0 0.040000 0.160000 0.360000 0.640000 1.0

Fig. 7 Errors associated with Ex. 2.2

From the given numerical examples and tables, we conclude that the 
method based on approximation in terms of Berstein polynomials is a 
powerful tool for solving systems of generalized Abel integral equations.
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In this chapter we have presented the methods of solution of certain 
special forms of a pair of coupled singular integral equations of Carleman 
type occurring in the study of scattering of surface water wave problems 
(cf. Gayen et al. (2006, 2007), Gayen and Mandal (2009)).
The coupled singular integral equations under consideration are of the 
following special forms:

1 2
1 1

0 0

( ) ( )1 1( ) ( ) +     ( ),   0
ltt t ea x x dt dt f x x

t x t x
ϕ ϕϕ

π π

∞ ∞ −

− = >
− +∫ ∫  (9.1)

2 1
2 2

0 0

( ) ( )1 1( ) ( ) +     ( ),   0
ltt t ea x x dt dt f x x

t x t x
ϕ ϕϕ

π π

∞ ∞ −

− = >
− +∫ ∫  (9.2)

where  1 2( ),  ( )  and  ( )a x f x f x   are known functions, l   is a known positive 
parameter, and  1 2  and  ϕ ϕ   are unknown functions to be determined, the 
integrals involving  ( ) 1t x −−   being in the sense of Cauchy principal value 
integrals.

The specifi c forms of the known function ( )a x  which occurs in the 
study on water wave problems (cf. Gayen et al (2006, 2007), Gayen and 
Mandal (2009)) are

 
( )
2

1 2
1 2 1 2

1 2

( )  ,  0,  0,  x K Ka x K K K K
x K K

+
= > > ≠

−
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and

 
2 4 2

5

( 1)( )  ,  0,  0.x Dx Ka x D K
DKx
+ +

= > >  

The functions  1 2( ),  ( )f x f x   also have known forms.

9.1 THE CARLEMAN SINGULAR INTEGRAL EQUATION

The Carleman singular integral equation over a semi-infi nite range given 
by

 
 

0

1 ( )( ) ( ) +   ( ), 0,ta x x dx f x x
t x
ϕϕ

π

∞

= >
−∫  (9.1.1)

also occurs in the study of water wave problems (cf. Chakrabarti (2000)) 
and its solution can be obtained by reducing it to an appropriate Riemann 
Hilbert problem. Its method of solution is briefl y described below.

Introducing a sectionally analytic function ( )zΦ  in the complex 
z-plane cut along the positive real axis as defi ned by

 
0

1 ( )( )   
2

tz dt
i t z

ϕ
π

∞

Φ =
−∫  (9.1.2)

and utilizing the Plemelj formulae

 
0

1 1 ( )( )  ( )   ,
2 2

tx x dt
i t x

ϕϕ
π

∞
±Φ = ± +

−∫  (9.1.3)

the equation (9.1.1) can be expressed as

 { } { }( ) ( ) ( ) ( ) ( ),  0a x i x a x i x f x x+ −+ Φ − − Φ = >  (9.1.4)

where  
0

( ) lim ( ),  0.
y

x z x±

→±
Φ = Φ >   The relation (9.1.4) represents a

Riemann Hilbert Problem for the determination of the function  ( ).zΦ
The solution of the problem (9.1.4) can be easily obtained in the 

form

 0
00

1 1( ) ( )   
2 ( ( ) ) ( )

dtz z
i a t i t t zπ

∞

+Φ = Φ
+ Φ −∫  (9.1.5)
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where  0 ( )zΦ   represents the solution of the homogeneous problem

 { } { }0 0( ) ( ) ( ) ( ) 0,  0a x i x a x i x x+ −+ Φ − − Φ = >  (9.1.6)

and    0 00
( ) lim ( ),  0.

y
x z x±

→±
Φ = Φ >

0 ( )zΦ   is non-zero and sectionally analytic in the complex z-plane cut 
along the positive real axis, and is such that  ( )0 ( ) 0 1  as  z .zΦ = →∞

This produces   
1( ) 0  as z ,z
z

⎛ ⎞
Φ = →∞⎜ ⎟⎜ ⎟

⎝ ⎠
 as is to be expected from

the representation (9.1.2) for the function  ( )zΦ .  The function 0 ( )zΦ  is 
obtained as

 0
0

1 ( )( ) exp     .
2 ( )

a t i dtz ln
i a t i t zπ

∞⎡ ⎤⎛ ⎞−
Φ = ⎢ ⎥⎜ ⎟+ −⎝ ⎠⎣ ⎦

∫  (9.1.7)

Thus  ( )zΦ  is now known from (9.1.5), and the solution of the integral 
equation (9.1.1) is obtained by using the formula

 ( ) ( ) ( ),  0.x x x xϕ + −= Φ −Φ >  (9.1.8)

Remark
While the Carleman singular integral equation (9.1.1) possesses an explicit 
solution, the two coupled equations (9.1) and (9.2) cannot be solved explicitly 
due to the presence of the parameter l  in the non-singular integral in each 
equation. Two types of methods can be employed to solve the integral 
equations, one of them being an approximate method valid for large values 
of the parameter l, and the other method casts the original integral equations 
into a system of Fredholm integral equations of the second kind with regular 
kernels which can be solved numerically for any value, large, medium or 
small, of the parameter l . These two methods are described in the next two 
sections.  In both these methods, the common feature is the utility of the 
explicit solution of the Carleman integral equation (9.1.1).

9.2   SOLUTION OF THE COUPLED INTEGRAL EQUATIONS 
FOR LARGE l
The coupled integral equations (9.1) and (9.2) were solved approximately 
for large  l   by Gayen et al (2006) when  1 2( ),  ( ),  ( )a x f x f x   have the 
following specifi c forms:
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 ( )
2

1 2

1 2

( )  ,x K Ka x
x K K

+
=

−  
(9.2.1)

 
2

1
2 2

1( ) ,
2 2

iK lef x
x iK x iK

α β
= +

− +
 (9.2.2)

 
2

2
2 2

1( ) ,
2 2

iK lef x
x iK x iK

= +
− +

β α
 (9.2.3)

where  1 20,  0  and  ,K K α β> >   are unknown constants.  1 2,  K K   are 
real but  ,α β   are in general complex.  This method is described below 
briefl y.

For very large values of ,l  we can ignore the integrals involving lte−  
in (9.1) and (9.2), and thus as zero-order approximation we obtain the 
following uncoupled integral equations:

 
0

0 01
1 1

0

( )1( ) ( )   ( ),  0
2

ta x x dt f x x
t x
ϕϕ

∞

+ = >
−∫  (9.2.4)

 
0

0 02
2 2

0

( )1( ) ( )   ( ),  0
2

ta x x dt f x x
t x
ϕϕ

∞

+ = >
−∫  (9.2.5)

where the superscript  '0 '   denotes the zero-order approximations, and  
0 0

1 2( ),  ( )f x f x   are the same as  1 2( ),  ( )f x f x   given in (9.2.2), (9.2.3) 
above with  ,α β   replaced by  0 0,  .α β   The two independent equations 
(9.2.4) and (9.2.5) can be solved as in section 9.1.

The solutions are found to be

 20 0 0
1 1 2( )   ( )  ( ),iK lx e P x P xϕ α β= +  (9.2.6)

 0 0 0
2 2 1( )  ( )  ( ),x P x P xϕ α β= +  (9.2.7)

where

 ( )
( )( )( ) ( )

1 2 0
1 2

1 2 2 0 2

 ( )1( ), ( )  
2

K K x x
P x P x

x iK x iK x iK iK

+− Λ
=

− − Λ ±∓
 (9.2.8)
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with

1 2
0

1 20 0

1( ) exp   2  2 .
2

t iK t iKdt dtz ln i ln i
i t iK t z t iK t z

π π
π

∞ ∞⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪Λ = − − −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟+ − + −⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
∫ ∫

 (9.2.9)

The zero-order approximations 0 0  and    to    and  α β α β  
respectively can be determined from some other relations (see Gayen et al 
(2006) for details).

To obtain the next order (fi rst-order) approximate solutions 
1 1
1 2( ),  ( )x xϕ ϕ  of the coupled equations (9.1) and (9.2), we 

decouple these by replacing 2 ( )tϕ  in (9.1) by the known function 
0 0
2 1 1( )  and  ( )  in (9.2) by   ( )t t tϕ ϕ ϕ , and also approximate ,α β  

appearing in 1 1
1 2( )  and  ( )  by  , .f x f x α β  This art gives rise to the 

following pair of Carleman singular integral equations for 1 1
1 2( ),  ( )x xϕ ϕ  

as

 
1

1 11
1 1

0

( )1( ) ( )   ( ),  0,ta x x dt f x x
t x
ϕϕ

π

∞

+ = >
−∫  (9.2.10)

 
1

1 12
2 2

0

( )1( ) ( )   ( ),  0ta x x dt f x x
t x
ϕϕ

π

∞

+ = >
−∫  (9.2.11)

where

20 1 1
1 1

1
2 20

( )1 1( )    
2 2 2

iK lltt e ef x dt
t x x iK x iK

ϕ α β∞ −

= + +
+ − +∫  (9.2.12)

20 1 1
1 2

2
2 20

( )1 1( )    .
2 2 2

iK lltt e ef x dt
t x x iK x iK

ϕ β α∞ −

= + +
+ − +∫  (9.2.13)

Note that 1 1
1 2( )  and  ( )  f x f x contain the unknown constants 1 1,  .α β  

(the fi rst-order approximations to , )α β .
The equations (9.2.10) and (9.2.11) can be solved as before, and it can 

be shown that (cf. Gayen et al (2006))

 21 1 1
1 1 2( )   ( ) ( )iK lx e P x P xϕ α β= +  (9.2.14)

 21 1 1
2 2 1( ) ( )  ( )iK lx P x e P xϕ α β= +  (9.2.15)
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where 1 2( ), ( )P x P x   are given in (9.2.8) above.  The fi rst-order 
approximations  1 1,   to  ,α β α β   can be obtained from some other 
relations as was in the case for zero-order approximations  0 0,α β . The 
details can be found in Gayen et al. (2006).

This process can be repeated in principle to obtain higher order 
solutions. However, Gayen et al. (2006) did not pursue this further as the 
fi rst order solutions produced suffi ciently accurate approximations for 
some quantities of physical interest involved in the water wave problem 
studied.

9.3 SOLUTION OF THE COUPLED INTEGRAL EQUATIONS 
FOR ANY l
For the values of 1 2( ),  ( ),  ( )a x f x f x  given by (9.2.1), (9.2.2), (9.2.3) the 
coupled integral equations (9.1) and (9.2) have been solved by Gayen et al 
(2007) for any l .  For this purpose, the equations (9.1) and (9.2) have been 
written in the operator form

 ( ) ( )1 1( ) ( ) ( ),  x>0,x x f xϕ ϕ+ =2S N  (9.3.1)

 ( ) ( )2 2( ) ( ) ( ),  x>0,x x f xϕ ϕ+ =1S N  (9.3.2)

where the singular operator  S   and the non-singular operator  N  are 
defi ned by

 ( )
0

1 ( )( ) ( ) ( )  ,  >0,tx a x x dt x
t x
ϕϕ ϕ

π

∞

= +
−∫S  (9.3.3a)

 ( )
0

1 ( )( )  ,  0.
ltt ex dt x

t x
ϕϕ

π

∞ −

= − >
+∫N  (9.3.3b)

It is observed that the Carleman singular integral equation

 ( )( ) ( ),  0x f x xϕ = >S  (9.3.4)
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has the  explicit solution

 
( )

( )

1

+
0

( ) ( )

( ) ˆ         = ( ),  0
( )

x f x

x h x x
a x i

ϕ −=

Φ
>

−

S

S
 (9.3.5)

with

 
( )0

( )( ) ,  0
( ) ( )

f th t t
t a t i+= >

Φ −
 (9.3.6)

where the operator  Ŝ  is defi ned by

 ( )
0

1 ( )ˆ ( ) ( ) ( )   ,  0h th x a x h x dt x
t xπ

∞

= − >
−∫S  (9.3.7)

and

 0 00
( ) lim ( ),  ,

y
x z z x iy+

→+
Φ = Φ = +

where

1 2
0

1 20 0

1( ) exp  2  2 ,
2

                                                                                                        

t iK t iKdt dtz ln i ln i
i t iK t z t iK t z

z

π π
π

∞ ∞⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪Φ = − − −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟+ − + −⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
∫ ∫

(0, )∉ ∞

 (9.3.8)

  
is a solution of the homogeneous problem

 ( ) ( )0 0( ) ( ) ( ) ( ) 0,  0.a x i x a x i x x+ −+ Φ − − Φ = >  (9.3.9)

We now apply the operator 1−S  to (9.3.1) to obtain

 ( )1
1 1( ) ( ),  0x f x xϕ ϕ−= − >2S N   (9.3.10)

which when substituted into (9.3.2) produces

 ( ) ( )( )1
2 1 2( ) ( ) ( ),  0.x f x f x xϕ ϕ−+ − = >2S N S N  (9.3.11)
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Applying the operator 1−S  to both sides of (9.3.11), we fi nd

 ( )( )2 ( ) ( ),  0x r x xϕ− = >2I L  (9.3.12)

where  I   is the identity operator and

 1−=L S N , (9.3.13)

 ( )1
2 1( ) ( ),  0r x f f x x−= − >-1S NS . (9.3.14)

It should be noted that the operator 1−NS  is not commutative.
Now  1 2( )  and  ( )f x f x  are substituted from (9.2.2) and (9.2.3) into 

(9.3.14) to obtain ( )r x  in the form

 1 2( )  ( )  ( )r x r x r xα β= +

where

( ) ( )
2

0 0
1

2 2 00

( ) ( )1 1( )  
2 ( ) 1 ( ) ( ) ( )

ltiK lx t eer x dt
c a x x iK a t i t x t iK t

∞+ + −⎡ ⎤Φ Φ
= +⎢ ⎥− + − + − Φ −⎣ ⎦

∫π
 (9.3.15)

and

( ) ( )
2

0 0
2

2 2 00

( ) ( )1 1( )  
2 ( ) 1 ( ) ( ) ( )

ltiK lx t eer x dt
c a x x iK a t i t x t iK t

∞+ + −⎡ ⎤Φ Φ
= +⎢ ⎥− − − + + Φ −⎣ ⎦

∫π  (9.3.16)

with

 ( )
1/ 2

2
0 2

1 2

2 .Kc iK
K K

⎛ ⎞
= Φ ± = ⎜ ⎟+⎝ ⎠

 

We now defi ne two functions ( )  and  ( )  for  0x x xψ χ >  such that

 ( ) ( )2 2( ) ( ) ( ),  ( ) ( ) ( ),  0x x x x xϕ ψ ϕ χ+ = − = >I S I S  (9.3.17)

so that

( ) ( ) ( )2 2
1 1( ) ( ) ( ) ,  ( ) ( ) ( ) ,  0
2 2

x x x x x x xϕ ψ χ ϕ ψ χ= + = − >S  (9.3.18)
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Then the integral equation (9.3.12) can be written either as

 ( )( ) ( ) ( ),  0x r x xχ+ = >I L  (9.3.19)

or as

 ( )( ) ( ) ( ),  0x r x xψ− = >I L . (9.3.20)

Since

 1 2( )  ( )  ( )r x r x r xα β= +

we may express  ( ),  ( )x xψ χ   as

 ( )1
1 2( ) ( ) ( )  ( )  ( ),x r x x xψ α ψ β ψ−= − = +I L  (9.3.21)

 ( )1
1 2( ) ( ) ( )  ( )  ( ),x r x x xχ α χ β χ−= + = +I L  (9.3.22)

where  ( ),  ( ) ( 1, 2),  0j jx x j xψ χ = >   are unknown functions.
The integral equation (9.3.19) along with the relation (9.3.21), and the 

integral equation (9.3.20) along with the relation (9.3.22) are satisfi ed if 
( ),  ( ) ( 1, 2)j jx x jψ χ =  satisfy

( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

( ) ( ) ( ),  0,   ( ) ( ) ( ),  0,

( ) ( ) ( ),  0,   ( ) ( ) ( ),  0.

x r x x x r x x

x r x x x r x x

ψ ψ

χ χ

− = > − = >

+ = > + = >

I L I L

I L I L
 (9.3.23)

These are in fact Fredholm integral equations with regular kernels.
The integral operator L

The integral operator 1−=L S N  is now obtained explicitly.  Using 
the defi nitions of the integral operators 1   and  −S N  as given in (9.3.5) 
and (9.3.3b) respectively, it is easy to see that

( )

( )

( )

1

0

0 0

2
00 0

( )( )  ( ) ( )

( ) ( ) 1 ( )               =   
( ) ( ) ( )

1                 +  ( ) .
( ) ( ) ( )( )

lt

lt

m x m x

x a x m t e dt
a x i x a x i t x

dm t e dt
a i t x

π

ξ
π ξ ξ ξ ξ

−

∞+ −

+

∞ ∞
−

+

=

⎡ ⎛ ⎞Φ
−⎢ ⎜ ⎟− Φ + +⎢ ⎝ ⎠⎣

⎤⎛ ⎞
⎥⎜ ⎟⎜ ⎟Φ + + − ⎥⎝ ⎠ ⎦

∫

∫ ∫

L S N

 (9.3.24)
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To evaluate the inner integral in the second term of (9.3.24), we 
consider the integral

 
0

,  
( )( )( )

d z
z t zΓ

∉Γ
Φ − + −∫

ζ
ζ ζ ζ

 (9.3.25)

where  Γ   is a positively oriented contour consisting of a loop around 
the positive real axis of the complex -planeζ , having indentations above 
the point  0x iζ = +   and below the point  0x iζ = −   in the complex   

-planeζ .  Also  0 ( )ζΦ  satisfi es the homogeneous RHP

 ( ) ( )0 0( ) ( ) ( ) ( ) 0,  0.a i a iξ ξ ξ ξ ξ+ −+ Φ − − Φ = >  (9.3.26)

We observe that

( )

0 0 00

00

1 1  
( )( )( ) ( ) ( ) ( )( )

                                       =  2  .
( ) ( ) ( )( )

d d
t z t z

di
a i t z

∞

+ −
Γ

∞

+

⎧ ⎫
= −⎨ ⎬Φ + − Φ Φ + −⎩ ⎭

Φ + + −

∫ ∫

∫

ζ ξ
ζ ζ ζ ξ ξ ξ ξ

ξ
ξ ξ ξ ξ

 
(9.3.27)

Also from the residue calculus theorem

 
0 0 0

2 1 1 .
( )( )( ) ( ) ( )

d i
t z t z z t

ζ π
ζ ζ ζΓ

⎧ ⎫
= −⎨ ⎬Φ + − + Φ Φ −⎩ ⎭

∫  (9.3.28)

Comparing (9.2.27) and (9.2.28) we fi nd

 

( )0 0 00

1 1 1 1 2   .
( ) ( ) 2 ( ) ( ) ( )( )

i d
t z z t i a i t z

ξ
π ξ ξ ξ ξ

∞

+

⎧ ⎫
− =⎨ ⎬+ Φ Φ − Φ + + −⎩ ⎭

∫

Applying Plemelj formulae to the above relation, the inner integral in the 
second term on the right side of (9.3.24) is evaluated as

 

( ) ( )0 0 00

( ) 1
( ) ( ) ( )( ) ( ) ( ) ( )

d a x
a i t x t x a x i x t

ξ π
ξ ξ ξ ξ

∞

+ +

⎧ ⎫⎪ ⎪= −⎨ ⎬Φ + + − + + Φ Φ −⎪ ⎪⎩ ⎭
∫

which when substituted into (9.3.24), produces

 ( ) 0

00

( )1 ( )( )   .
( ) ( ) ( )

ltx m t em x dt
a x i t x tπ

∞+ −Φ
= −

− + Φ −∫L  (9.3.29)
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The Fredholm integral equations in (9.3.23) can be solved numerically 
and then the functions ( ),  ( ) ( 1, 2)j jx x jψ χ =  can be found numerically.  
It may be noted that considerable analytical calculations are required 
to reduce the functions ( ) ( 1, 2)jr x j =  to forms suitable for numerical 
computation.

Simplifi cation of 1 2( )  and  ( )r x r x
The basic step for the evaluation of the integral equations 

(9.3.23) and the functions 1 2( ),  ( )r x r x  is to determine the functions 
0 0( )  and  ( )  for  0x x x+Φ − Φ >   in computable forms.   Now an explicit 

derivation of these functions and simplifi cation of 1( )  andr x  2 ( )r x   is 
given.

The function 0 ( )x+Φ   is given by

1 2
1/ 2

1 21 2
0

1 2 0

 
1( )  exp   ,  0.

2

t iK t iKln
t iK t iKx iK x iKx dt x

x iK x iK i t x

∞
+

⎛ ⎞⎛ ⎞− +
⎜ ⎟⎜ ⎟+ −⎛ ⎞− + ⎝ ⎠⎜ ⎟Φ = >⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

∫π
 (9.3.30)

If we defi ne
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2
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j
j

j

j j
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π

∞

∞

⎛ ⎞+
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= = >

+ −

= − = − >

∫

∫

 

(9.3.31)

then

 

( )

( )

1 2 0

1/2

1 2
0

1 2

  ( ) ( ) ( ),   ( ) exp ( ) ,

( )  exp ( ) .

Y x Y x Y x x X x

x iK x iKx Y x
x iK x iK

+

= − Φ − =

⎛ ⎞− +
Φ = ⎜ ⎟+ +⎝ ⎠

 (9.3.32)
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Following Varley and Walker (1989) the derivative of ( )jY x′  is found to 
be

 
( )
( )

( )
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/( ) /( )
( ) ,  =1,2.

2
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j j

ln x iK ln x iKK
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⎡ ⎤−
′ = − +⎢ ⎥

+ −⎢ ⎥⎣ ⎦
 

It may be observed that ( ) 0.  Integration of  ( )j jY Y x′∞ =  gives
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After some manipulations ( )Y x  reduces to
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Hence  ( )o x+Φ   has the alternative form
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where  
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( )  isX x  simplifi ed in a similar manner and we fi nd that 

 ( ) ( ) ( ),  1, 2.j j jX x Y x Y x j= − = − =
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Thus  ( ) ( ),  andX x Y x= −   
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The various complex-valued functions appearing in 1 2( )  and  ( )r x r x  are 
simplifi ed as follows:
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Using (a) to (d), 1 2( )  and  ( )r x r x  are simplifi ed as

( )
( )

( )
( )

-1
22

2 2 -1
2

3  tan /
1 0 1/22 2

02

( 2 )
 tan /

2 0 1/22 2
02

1( ) ( )    ( , ) ,

( ) ( ) + ( , ) ,

i K uiK l

i K l
i K u

r x r x e M u x e du
x K

er x r x M u x e du
x K

θ

∞

∞+

⎡ ⎤
⎢ ⎥= +
⎢ ⎥+⎣ ⎦

⎡ ⎤
⎢ ⎥=
⎢ ⎥+⎣ ⎦

∫

∫

where

 ( )
( )

( )
( ) ( )

1

1
2 1

1/ 42 21 2
0 23/ 42 2

1

2 2  tan  ( / )
1 2

1/ 22 2 2 2
1 2

 ( )     ( )    ,

  ( )  
( , )   .

2  ( )

i

i i K ulu

K K x E x er x x K
x K

u e E x eK KM u x
c u K u K u x

θ

θ

π
−

−

−−

−
= +

+

−
=

+ + +

 

(9.3.38)

The functions 1 2( ), ( )x xϕ ϕ  
The functions 1 2( )  and  ( )x xϕ ϕ  which satisfy the two coupled 

singular integral equations (9.3.1) and (9.3.2) are now found in a straight 
forward manner as
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where
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 ( )( )1 2 2
2
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xx x x
c a x i x iK
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 2 1 1
1( ) ( ( ) ( ))
2

x x xαϕ ψ χ= +  (9.3.43)

 2 2 2
1( ) ( ( ) ( ));
2

x x xβϕ ψ χ= +  (9.3.44)

the value of the constant  c   being given earlier.
Thus  1 2( )  and  ( )x xϕ ϕ  are obtained in principle for any value of 

the parameter .l

Remarks

 1.  The integral equations (9.3.3a) and (9.3.3b) are coupled. They can 
be decoupled simply by addition and subtraction in the following 
manner. If we defi ne

 1 2 1 2( ) ( ) ( ),   ( ) ( ) ( )x x x x x xϕ ϕ ϕ ψ ψ ψ= + = −  (9.3.45)

then addition and subtraction of equations (9.3.3a) and (9.3.3b) 
produce

0 0

( ) ( )1 1( ) ( ) +     ( ),   0
ltt t ea x x dt dt f x x

t x t x
ϕ ϕϕ

π π

∞ ∞ −

− = >
− +∫ ∫  (9.3.46)

0 0

1 ( ) 1 ( )( ) ( ) +     ( ),   0
ltt t ea x x dt dt g x x

t x t x
ψ ψψ

π π

∞ ∞ −

+ = >
− +∫ ∫  (9.3.47)

where

 1 2( ), ( ) ( ) ( ).f x g x f x f x= ±  (9.3.48)

The two equations (9.3.46) and (9.3.47) are not coupled. A similar approach 
as described above can be employed to solve them for any value of .l  This 
is described below briefl y.
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Using the operators   and  S N  defi ned in (9.3.3a) and (9.3.3b) 
respectively, the equations (9.3.46) and (9.3.47) reduce to

 ( ) ( )( ) ( ) ( ),   0,x x f x xϕ ψ+ = >S N  (9.3.49)

 ( ) ( )( ) ( ) ( ),   0.x x g x xϕ ψ+ = >S N  (9.3.50)

Applying the operator 1−S  to the above equations we fi nd that

 ( ) ( )1( )( ) ( ),   0,x f x xϕ −+ = >I L S  (9.3.51)

 ( ) ( )1( )( ) ( ),   0,x g x xψ −+ = >I L S  (9.3.52)

where the operator  L   is defi ned in (9.3.29).
The right-hand sides of (9.3.51) and (9.3.52) are of the forms

 ( )1 ( )  ( )  ( )f x f x f xα βα β− = +S  (9.3.53)

 ( )1 ( )  g ( )  g ( )g x x xα βα β− = +S  (9.3.54)

so that
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and
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= +

L
 (9.3.56)

where  ( ), ( ),  ( ), ( )  x x x xα β α βϕ ϕ ψ ψ  are to be found.
Comparing (9.3.51) and (9.3.52) (together with (9.5.53) and (9.5.54)) 

to (9.3.55) and (9.3.56) we see that equations  (9.3.51) and   (9.3.52) will 
be satisfi ed if the functions ( ), ( ),  ( ), ( )  x x x xα β α βϕ ϕ ψ ψ satisfy the 
following Fredholm integral equations of the second kind.

( ) ( )
( ) ( )
( ) ( ) ( ),  0,  ( ) ( ) ( ),  0

( ) ( ) ( ),  0,  ( ) ( ) ( ),  0.

x f x x x f x x
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I L I L

I L I L
 (9.3.57)
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Once the four equations (9.3.57) are solved numerically the functions 
( ), ( )x xϕ ψ  can be found in terms of   and  α β  using (9.3.55) and 

(9.3.56), and then 1 2( )  and  ( ) x xϕ ϕ can be determined from (9.3.45).

 2. The form 
2 2 2

2

( 1)( ) ,x Dx Ka x
DKx
+ +

=  and some specifi c forms of 
1( )f x  and 2 ( )f x

  (different from (9.2.2) and (9.2.3))  occur in a water wave problem 
involving a fl oating elastic plate of fi nite width l   in two dimensions 
(see Gayen and Mandal 2009).  The coupled, singular integral 
equations in this situation can be solved by reducing them to twelve 
Fredholm integral equations of second kind with regular kernels. 
Details can be found in Gayen and Mandal (2009).

 3. The forms of the coupled singular integral equations of Carleman 
type given by (9.1) and (9.2) can be generalized to the forms

 ( ) ( )1 1 2 1( ) ( ) ( ),   0,x x f x xϕ ϕ+ = >S N  (9.3.58)

 ( ) ( )2 2 2 2( ) ( ) ( ),   0,x x f x xϕ ϕ+ = >S N  (9.3.59)

where

 
0

1 ( )( )( ) ( ) ( )  , 0,  1, 2i i
tx a x x dt x i

t x
ϕϕ ϕ

π

∞

= + > =
−∫S

and  N   is the same as defi ned in (9.3.3b).
Finding the method of solution of this pair of equations for any value 

of the parameter l  appears to be a challenging task.
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